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SUMMARY

This paper presents a new procedure to improve the quality of triangular meshes defined on surfaces. The

improvement is obtained by an iterative process in which each node of the mesh is moved to a new position

that minimizes a certain objective function. This objective function is derived from algebraic quality measures of

the local mesh (the set of triangles connected to the adjustable or free node). If we allow the free node to move

on the surface without imposing any restriction, only guided by the improvement of the quality, the optimization

procedure can construct a high-quality local mesh, but with this node in an unacceptable position. To avoid this

problem the optimization is done in the parametric mesh, where the presence of barriers in the objective function

maintains the free node inside the feasible region. In this way, the original problem on the surface is transformed

into a two-dimensional one on the parametric space. In our case, the parametric space is a plane, chosen in terms
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2 J. M. ESCOBAR ET AL

of the local mesh, in such a way that this mesh can be optimally projected performing a valid mesh, that is, without

inverted elements. Several examples and applications presented in this work show how this technique is capable

to improve the quality of triangular surface meshes. Copyright c© 2000 John Wiley & Sons, Ltd.

KEY WORDS: Surface mesh smoothing; Surface triangulations; Algebraic quality measures; Adaptive finite

elements

1. INTRODUCTION

The element quality of a mesh heavily affects the numerical convergence of the FEM computational

scheme (see for example [1]). In particular, the quality of the surface mesh of a 3-D domain has

an important role when boundary conditions involve the evaluation of integrals on boundary faces.

Moreover, the improvement of a 3-D mesh is conditioned by the quality of its boundary discretization.

Special attention must be taken into account when a mesh generator, which starts from a boundary

triangulation, is used. This is the case of the advancing front method. It can be thus deduced that it is

essential to have a technique that allows us to optimize surface meshes.

In this work we present an algebraic method to smooth meshes defined on surfaces. The smoothing

technique is based on a vertex repositioning directed by the minimization of an suitable objective

function. The construction of the objective function is done in the framework of theory of algebraic

quality measures developed by Knupp in [2]. For 2-D or 3-D meshes the quality improvement can

be obtained by an iterative process in which each node of the mesh is moved to a new position that

minimizes the objective function [3]. This function is derived from a quality measure of the local mesh

determined by the set of triangles connected to the adjustable or free node.

We have chosen, as a starting point in section 2, a 2-D objective function that presents a barrier at the
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Figure 1. Illustration of a local mesh M(p) on a surface Σ and its projection N(q) on a plane P (a). Optimized

local meshes after relocation of the free node (b).

boundary of the feasible region (set of points where the free node could be placed to get a valid local

mesh, that is, without inverted elements). This barrier has an important role because it does not allow the

optimization algorithm to create a tangled mesh when it starts with a valid one. Nevertheless, objective

functions constructed by algebraic quality measures are only directly applicable to inner nodes of 2-D

or 3-D meshes, but not to its boundary nodes. To overcome this problem, the local mesh, M(p), sited

on a surface Σ, is orthogonally projected on a plane P (the existence and search for this plane will be

discuss in section 3) in such a way that it obtains a valid local mesh N(q), see Figure 1(a). Therefore,

it can be said that M(p) is geometrically conforming with respect to P [4]. Here p is the free node on

Σ and q is its projection on P . The optimization of M(p) is obtained by the appropriated optimization

of N(q). To do this we try to get ideal triangles in N(q) that become equilateral in M(p), see Figure
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4 J. M. ESCOBAR ET AL

1(b). In general, when the local mesh M(p) is on a surface, each triangle is placed on a different plane

and it is not possible to define a feasible region on Σ. Nevertheless, this region is perfectly defined in

N(q) as it is analyzed in section 2.1.

To construct the objective function in N(q), it is first necessary to define the objective function in

M(p) and, afterward, to establish the connection between them. A crucial aspect for this construction

is to keep the barrier of the 2-D objective function. This is done with a suitable approximation in the

process that transforms the original problem on Σ into an entirely two-dimensional one on P . We

develop this approximation in section 2.2. The barrier has a beneficial effect on keeping N(q) valid if

initially it satisfies this requirement. In other words, the barrier prevents creation ofN(q) tangled mesh

if it is valid before the optimization.

The optimization of N(q) becomes a two-dimensional iterative process. The optimal solutions of

each two-dimensional problem form a sequence
{
xk

}
of points belonging to P . We have checked

in many numerical test that
{
xk

}
is always a convergent sequence. We will show an example of this

convergence in section 4.1. It is important to underline that this iterative process only takes into account

the position of the free node in a discrete set of points, the points on Σ corresponding to
{
xk

}
and,

therefore, it is not necessary that the surface is smooth. Indeed, the surface determined by the piecewise

linear interpolation of the initial mesh is used as a reference to define the geometry of the domain.

If the node movement only responds to an improvement of the quality of the mesh, it can happen that

the optimized mesh loses details of the original surface, specially when this has sharp edges or vertices.

To avoid this problem, every time the free node p is moved on Σ, the optimization process checks the

distance between the centroid of the triangles of M(p) and the underlying surface (the true surface,

if it is known, or the piece-wise linear interpolation, if it is not). When this distance is greater than

certain threshold value, the movement of the node is aborted and its previous position is stored. Details
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 5

about this strategy are presented in section 2.2. Although this criterion does not assure that the maximal

distance between the original and optimized meshes exceeds a given tolerance threshold, this is a good

and easily computable approximation. Following this procedure, it is possible to measure such distance

in more significant points of the triangles and, thus, to obtain a more accurate approximation.

There are several alternatives to the previous method. For example, Garimella et al. [5] develop a

method to optimize meshes in which the nodes of the optimized mesh are kept close to the original

positions by imposing the Jacobians of the current and original meshes to also be close. Frey et

al. [6] get a control of the gap between the mesh and the surface by modifying the element-size

(subdividing the longest edges and collapsing the shortest ones) in terms of an approximation of the

smallest principal curvatures radius associated with the nodes. Rassineux et al. [7] also use the smallest

principal curvatures radius to estimate the element-size compatible with a prescribed gap error. They

construct a geometrical model by using the Hermite diffuse interpolation in which local operations like

edge swapping, node removing, edge splitting, etc. are made to adapt the mesh size and shape. More

accurate approaches, that have taken into account the directional behavior of the surface, have been

considered in by Vigo [8] and, recently, by Frey in [9].

Other applications of our proposed optimization technique are presented in section 4.2 and 4.3.

2. CONSTRUCTION OF THE OBJECTIVE FUNCTION

As it is shown in [3], [10], and [11] we can derive optimization functions from algebraic quality

measures of the elements belonging to a local mesh. Let us consider a triangular mesh defined in R
2

and let t be an triangle in the physical space whose vertices are given by x k = (xk, yk)T ∈ R
2,

k = 0, 1, 2. First, we are going to introduce an algebraic quality measure for t. Let tR be the reference

triangle with vertices u0 = (0, 0)T , u1 = (1, 0)T , and u2 = (0, 1)T . If we choose x0 as the translation
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6 J. M. ESCOBAR ET AL

vector, the affine map that takes tR to t is x =Au + x0, where A is the Jacobian matrix of the affine

map referenced to node x0, given by A = (x1 − x0,x2 − x0). We will denote this type of affine map

as tR
A→ t. Let now tI be an ideal triangle (not necessarily equilateral) whose vertices are wk ∈ R

2,

(k = 0, 1, 2) and let WI = (w1 −w0,w2 −w0) be the Jacobian matrix, referenced to node w0, of the

affine map tR
WI→ tI ; then, we define S = AW−1

I as the weighted Jacobian matrix of the affine map

tI
S→ t . In the particular case that tI was the equilateral triangle tE , the Jacobian matrix WI = WE

will be defined by w0 = (0, 0)T , w1 = (1, 0)T and w2 = (1/2,
√

3/2)T .

The weighted matrix S is independent of the node chosen as reference; it is said to be node invariant

[2]. We can use matrix norms, determinant or trace of S to construct algebraic quality measures of t.

For example, the Frobenius norm of S, defined by |S| =
√

tr (STS), is specially indicated because

it is easily computable. Thus, it is shown in [2] that qη = 2σ
|S|2 is an algebraic quality measure of t ,

where σ = det (S). The maximum value of qη is unity and it is reached when S = µΘ, where µ is a

nonnegative scalar and Θ is a 2×2 orthogonal matrix with determinant 1 (a rotation matrix). So, when

qη = 1 the Jacobian matrix is A = µΘWI and, therefore, the triangle t is a scale change and a rotation

of the ideal triangle tI . In other words, the triangle t that maximizes qη is similar to tI . We shall use

this quality measure to construct an objective function.

Let x = (x, y)T be the position vector of the free node, and let Sm be the weighted Jacobian matrix

of the m-th triangle of a valid local mesh of M triangles. The objective function associated to m-th

triangle is ηm = |Sm|2
2σm

, and the corresponding objective function for the local mesh is the n-norm of

(η1, η2, . . . , ηM ), i.e .,

|Kη|n (x) =

[
M∑

m=1

ηn
m (x)

] 1
n

(1)

In this context the feasible region is defined as the set of points where the free node must be located to

get the local mesh to be valid. More concretely, the feasible region is the interior of the polygonal set
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 7

H =
M⋂

m=1
Hm, where Hm are the half-planes defined by σm (x) ≥ 0. We say that a triangle is inverted

if σ < 0. The objective function (1) presents a barrier at the boundary of the feasible region that avoids

the optimization algorithm to create a tangled mesh when it starts with a valid one.

Previous considerations and definitions are only directly applicable for 2-D (or 3-D) meshes, but

some of them must be properly adapted when the meshes are located on an arbitrary surface. For

example, the concept of valid mesh is not clear in this situation because neither is the concept of

inverted element. We will deal with these questions in next subsections.

2.1. Relation between the surface mesh and the parametric mesh

Suppose that for each local mesh M(p) placed on the surface Σ, that is, with all its nodes on Σ,

it is possible to find a plane P such that the orthogonal projection of M(p) on P is a valid mesh

N(q). Moreover, suppose that we define the axes in such a way that the x, y-plane coincide with

P . If, in the feasible region of N(q), it is possible to define the surface Σ by the parametrization

s(x, y) = (x, y, f(x, y)), where f is a continuous function, then, we can optimize M(p) by an

appropriate optimization of N(q). We will refer to N(q) as the parametric mesh. The basic idea

consists on finding the position q in the feasible region of N(q) that makes M(p) be an optimum local

mesh. To do this, we define ideal elements in N(q) that become equilateral in M(p). Let τ ∈M(p) be

a triangular element on Σ whose vertices are given by yk = (xk, yk, zk)T , (k = 0, 1, 2) and tR be the

reference triangle in P (see Figure 2). If we choose y0 as the translation vector, the affine map tR
Aπ→ τ

is y = Aπu + y0, where Aπ is its Jacobian matrix, given by

Aπ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

x1 − x0 x2 − x0

y1 − y0 y2 − y0

z1 − z0 z2 − z0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

(2)
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8 J. M. ESCOBAR ET AL

Now, consider that t ∈ N(q) is the orthogonal projection of τ on P . Then, the vertices of t are

xk = Πyk = (xk, yk)T , (k = 0, 1, 2), where Π = (e1, e2)
T is 2 × 3 matrix of the affine map τ

Π→ t,

being {e1, e2, e3} the canonical basis in R
3 (the associated projector from R

3 to P , considered as a

subspace of R
3, is ΠT Π). Taking x0 as translation vector, the affine map tR

AP→ t is x = APu + x0,

where AP = ΠAπ is its Jacobian matrix

AP =

⎛

⎜
⎜
⎝

x1 − x0 x2 − x0

y1 − y0 y2 − y0

⎞

⎟
⎟
⎠ (3)

Therefore, the 3 × 2 matrix of the affine map t
T→ τ is

T = AπA
−1
P (4)

Let Vπ be the subspace spanned by the column vectors of Aπ and let π be the plane defined by Vπ and

the point y0. Our goal is to find the ideal triangle tI ⊂ P , moving q on P , such that tI is mapped by

T into an equilateral one, τE ⊂ π. Note that each triangle of M(p) defines a different ideal triangle on

P , because the plane π changes with the considered triangle.

Because rank(Aπ) = rank(AP ) = 2, there exists a unique factorization Aπ = QR, where Q is an

orthogonal matrix and R is an upper triangular one with [R] ii > 0 (i = 1, 2). The columns of the 3× 2

matrix Q define an orthonormal basis {q1,q2} that spans Vπ , so we can see Q as the matrix of the

affine map tR
Q→ τR and R as the 2 × 2 Jacobian matrix of the affine map τR

R→ τ (see Figure 2). As

tR
WE→ tE andQ is an orthogonal matrix that keeps the angles and norms of the vectors, then t E

Q→ τE

and, therefore

QWE = AπR
−1WE (5)

is the 3 × 2 Jacobian matrix of affine map tR
QWE→ τE . On the other hand, we define on the plane π

S = RW−1
E (6)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 9

as the 2× 2 weighted Jacobian matrix of the affine map that transforms the equilateral triangle into the

physical one, that is, τE
S→ τ .

We have chosen as ideal triangle in π the equilateral one (τI = τE), then, the Jacobian matrix WI

of the affine map tR
WI→ tI is calculated by imposing the condition TWI = QWE , because tR

TWI→ τI

and tR
QWE→ τE . Taking into account (5), this yields

TWI = AπR
−1WE (7)

and, from (4), we obtain

WI = APR
−1WE (8)

so we define on P the ideal-weighted Jacobian matrix of the affine map t I
SI→ t as SI = APW

−1
I .

From (8) it results

SI = APW
−1
E RA−1

P (9)

and, from (6)

SI = APW
−1
E SWEA

−1
P = APW

−1
E S

(
APW

−1
E

)−1
= SESS

−1
E (10)

where SE = APW
−1
E is the equilateral-weighted Jacobian matrix of the affine map tE

SE→ t. Finally,

from (10), we obtain the next similarity transformation.

S = S−1
E SISE (11)

Therefore, it can be said that the matrices S and SI are similar.

2.2. Optimization on the parametric space

S, as it is defined in (6), might be used to construct the objective function and, then, solve the

optimization problem. Nevertheless, this procedure has important disadvantages. First, the optimization

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6

Prepared using nmeauth.cls
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Figure 2. Local surface mesh M(p) and its associated parametric mesh N(q).

of M(p), working on the true surface, would require the imposition of the constraint p ∈ Σ. It would

complicate the resolution of the problem because, in many cases, Σ is not defined by a smooth function.

Moreover, when the local mesh M(p) is on a curved surface, each triangle is sited on a different plane

and the objective function, constructed fromS, lacks barriers. It is impossible to define a feasible region

in the same way as it was done at the beginning of this section. Indeed, all the positions of the free node,

except those that make det(S) = 0 for any triangle, produce correct triangulations of M(p). However,

for many purposes as, for example, to construct a 3-D mesh from the surface triangulation, there are

unacceptable positions of the free node. As example, in Figure 3(a) is shown a surface mesh formed by

the triangles ABp, BCp and ACp, whose vertices A, B, C and p are sited on a sphere. The feasible

region of the parametric mesh N(q), resultant to project M(p) into the plane P , is the triangle ABC.
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 11

If the optimization is done only attending to the shape of the triangles, we could obtain a non valid

mesh N(q) as it is shown in Figure 3(c). This would be the resultant smoothed mesh if no restriction,

except p ∈ Σ, is imposed. Note that, in this case, q is outside the feasible region and, then, N(q) is

tangled. We shall consider M(p) unacceptable as a local surface triangulation. Finally, in Figure 3(b)

is shown the resulting position obtained when the optimization process only allows movement of node

q inside the feasible region. A particular case of this example is discussed in section 4.1.

To overcome these difficulties we propose to carry out the optimization of M(p) in an indirect way,

working on N(q). With this approach the movement of the free node will be restricted to the feasible

region of N(q), which avoids construction of unacceptable surface triangulations. It all will be carried

out using an approximate version of the similarity transformation given in (11).

Let us consider that x = (x, y)T is the position vector of the free node q, sited on the plane P . If we

suppose that Σ is parametrized by s(x, y) = (x, y, f(x, y)), then, the position of the free node p on the

surface is given by y = (x, y, f(x, y))T = (x, f(x))T .

Note that SE = APW
−1
E only depends on x because WE is constant and AP is a function of x.

Besides, SI = APW
−1
I depends on y, due to WI = APR

−1WE , and R is a function of y. Thus,

SI (y) depends on the parametrization of the surface, but SE (x) does not. We shall optimize the local

mesh M(p) by an iterative procedure maintaining constant W I (y) in each step. To do this, at the first

step, we fix WI (y) to its initial value, W 0
I = WI(y0), where y0 is given by the initial position of p.

So, if we define S0
I (x) = AP (x) (W 0

I )−1, we approximate the similarity transformation (11) as

S0 (x) = S−1
E (x)S0

I (x)SE (x) (12)

Now, the construction of the objective function is carried out in a standard way, but using S 0 instead of

S. Following the same procedure, pointed out at the beginning of this section, we obtain the objective

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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12 J. M. ESCOBAR ET AL

function for a given triangle τ ⊂ π

η0 (x) =

∣
∣S0 (x)

∣
∣2

2σ0 (x)
(13)

where σ0 (x) = det(S0 (x)).

With this approach the optimization of the local mesh M(p) is transformed into a two-dimensional

problem without constraints, defined on N(q), and, therefore, it can be solved with low computational

cost. Furthermore, if we write W 0
I as A0

P (R0)−1WE , where A0
P = AP

(
x0

)
and R0 = R

(
y0

)
, it is

straightforward to show that S 0 can be simplified as

S0 (x) = R0
(
A0

P

)−1
SE (x) (14)

In fact, this is the expression used to construct our objective function for the local mesh

∣
∣K0

η

∣
∣
n

(x) =

[
M∑

m=1

(
η0

m

)n
(x)

] 1
n

(15)

Let now analyze the behavior of the objective function when the free node crosses the boundary of

the feasible region. If we denote αP = det (AP ), α0
P = det

(
A0

P

)
, ρ0 = det

(
R0

)
, ωE = det (WE)

and taking into account (14), we can write σ 0 = ρ0
(
α0

P

)−1
αPω

−1
E . Note that ρ0, α0

P , and ωE are

constants, so η0 has a singularity when αP = 0, that is, when q is placed on the boundary of the

feasible region of N(q). This singularity determines a barrier in the objective function that prevents

the optimization algorithm from taking the free node outside this region. This barrier does not appear

if we use the exact weighted Jacobian matrix S, given in (6), due to det (R) = R 11R22 > 0.

Suppose that x1 = x0 is the minimizing point of (15). As this objective function has been

constructed by keeping y in its initial position, y0, then x1 is only the first approximation to our

problem. This result is improved updating the objective function at y 1 = (x1, f(x1))T and, then,

computing the new minimizing position, x2 = x1. This local optimization process is repeated,
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 13

obtaining a sequence
{
xk

}
of optimal points. The Algorithm 1 summarize the previous local mesh

optimization procedure. Due to the regularity of the objective function
∣
∣Kk

η

∣
∣
n

(x) inside the feasible

region, any standard and efficient unconstrained optimization method can be used. In particular, we

have applied BFGS method [12] to minimize this objective function.

At present, we have not found a general theoretical proof about the convergence of Algorithm 1, but

we have experimentally verified its convergence in numerous tests involving continuous functions to

define the surface Σ. As was to be expected, the convergence rate of Algorithm 1 depends on the

grade of oscillations of reference surface in the local region around the free node. In concrete, if

surface Σ is a plane, then the ideal triangle tI does not depends on the position of the free node.

Therefore, the matrix WI associated to the affine map tR
WI→ tI is constant. This implies that

Sk
I (x) = AP (x) (W k

I )−1 = AP (x) (W 0
I )−1 = S0

I (x) and, taking into account equation (12),

Sk (x) = S0 (x). In consequence, Algorithm 1 converges in one iteration since the objective functions

satisfy
∣
∣Kk

η

∣
∣
n

(x) =
∣
∣K0

η

∣
∣
n

(x) for any k.

To prevent exceptional cases in which convergence is not achieved, we have fixed a maximum

number of iterations in our code for terminating the Algorithm 1. In section 4.2 we will show results

about convergence for a test problem.

Let us consider P as an optimal projection plane (this aspect will be discussed in next section). In

order to prevent a loss of the details of the original geometry, our optimization algorithm evaluates

the difference of heights ([∆z]) between the centroid of the triangles of M(p) and the reference

surface, every time a new position xk is calculated. If this distance exceeds certain threshold, ∆(p), the

movement of the node is aborted and the previous position is stored. This threshold ∆(p) is established

attending to the size of the elements ofM(p). In concrete, the algorithm evaluates the average distance

between the free node and the nodes connected to it, and takes ∆(p) as percentage of this distance.
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14 J. M. ESCOBAR ET AL

Algorithm 1 Local optimization
Let ε > 0 be the stopping criterion;

Let y0 = (x0, f(x0))T be the initial position of the free node on Σ;

S0(x) and η0 (x) are constructed by (14) and (13), respectively, for all triangles of M(p);

∣
∣K0

η

∣
∣
n

(x) is constructed by (15) using η0 (x);

Let K
0

=
∣
∣K0

η

∣
∣
n

(
x0

)
= min[

x∈H

∣
∣K0

η

∣
∣
n

(x)], where H is the feasible region of N(q);

x1 = x0;

y1 = (x1, f(x1))T ;

k = 1;

convergence = false;

while (convergence = false) do

Sk(x) and ηk (x) are constructed by (14) and (13), respectively, for all triangles of M(p), fixing

y = yk;

∣
∣Kk

η

∣
∣
n

(x) is constructed by (15) using ηk (x);

Let K
k

=
∣∣Kk

η

∣∣
n

(
xk

)
= min[

x∈H

∣∣Kk
η

∣∣
n

(x)];

if (
∣
∣∣K

k−K
k−1

K
k

∣
∣∣ < ε) then

convergence = true;

end if

xk+1 = xk;

yk+1 = (xk+1, f(xk+1))T ;

k = k + 1;

end while

The optimal solution is xk;
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 15

Another possibility is to fix ∆(p) as a constant for all local meshes. In the particular case in which

we have an explicit representation of the surface by a function f(x, y), ∆(p) can be established as a

percentage of the maximum difference of heights between the original surface and the initial mesh.

x

z

y

q

p

BA

P

C

(a)

x

y

C

BA q

p

P

z

(b)

C

BA

q

p

P

(c)

Figure 3. Initial surface mesh formed by the triangles ABp, BCp and ACp sited on a sphere (a). Optimized

triangulation with a valid parametric mesh N(q) (b). Optimized triangulation with a tangled parametric mesh (c).

3. SEARCH FOR THE OPTIMAL PROJECTION PLANE

The former procedure needs a plane in which the local mesh, M(p), is projected conforming a valid

mesh, N(q). If this plane exists it is not unique, because a small rotation of the coordinate system
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16 J. M. ESCOBAR ET AL

produces another valid projection plane, that is, another plane in whichN(q) is valid. We have observed

that the number of iterations required by the Algorithm 1 depends on the chosen plane. In general, this

number is less if the plane is well faced to M(p). We have to find the rotation of reference system

x, y, z such that the new x′, y′-plane, P ′, is optimal with respect to a suitable criterion.

We will denoteN(q′) as the projection ofM(p) onto P ′ and t′ the projection of the physical triangle

τ ∈M(p) onto P ′. LetA′
P = (x′

1−x′
0,x

′
2−x′

0) be the matrix associated with the affine map that takes

the reference element defined on P ′ to t′, then, the area of t′ is given by 1
2 |α′

P | where α′
P = det (A′

P ).

Our goal is to find a coordinate system rotation such that
M∑

m=1
α′

Pm
is maximum satisfying the

constraints α′
Pm

= det
(
A′

Pm

)
> 0 for all the triangles of N(q ′), that is, m = 1, ...,M . Note that,

to do possible the observance of the constraints, it is necessary that all triangles ofM(p) have the same

orientation in the original mesh. In [13] a method to determine a projection plane is considered but

without the enforcement of these constraints. We remark that in our problem it is essential to maintain

the constraints in order to get N(q ′) valid.

According to Euler’s rotation theorem, any rotation may be described using three angles. The so-

called x-convention is the most common definition. In this convention, the rotation is given by Euler

angles (φ, θ, ψ), where the first rotation is by an angle φ ∈ [0, 2π] about the z-axis, the second is by an

angle θ ∈ [0, π] about the x-axis, and the third is by an angle ψ ∈ [0, 2π] about the z-axis (again).

Let Φ(φ, θ, ψ) be the Euler’s rotation matrix such that y ′ = Φy, then, the Jacobian matrix

Aπ = (y1 − y0,y2 − y0) associated to the triangle τ of M(p), defined in (2), can be spanned on

the rotated coordinate system as A′
π = (y′

1 − y′
0,y

′
2 − y′

0) = ΦAπ. Thus, the Jacobian matrix A′
P is

written as A′
P = ΠA′

π = ΠΦAπ . With these considerations it is easy to prove that the value of α ′
P is

α′
P = det(ΠΦAπ) = m1 sin (φ) sin(θ) +m2 sin (θ) cos (φ) +m3 cos (θ) (16)

where mi is the minor obtained by deleting the i-th row of Aπ. Note that equation (16) only depends
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 17

on φ and θ angles, as was to be expected.

Although the above maximization problem can be solved taken into account the constraints, we

propose an unconstrained approach.

Let us consider, as a first attempt, the objective function
M∑

m=1
(α′

Pm
)−1(φ, θ). The minimization of

this function tends to maximize the values of α ′
Pm

and, due to the barrier that appears when α ′
Pm

= 0

for some triangle of N(q ′), the values of α′
Pm

are maintained positive if the minimization algorithm

starts at an interior point, that is, a point (φ0, θ0) belonging to the set Ψ of angles (φ, θ) such that

α′
Pm

(φ, θ) > 0 for (m = 1, ...,M ). On the other hand, if any α ′
Pm

< 0 the barrier prevents reaching

the required minimum. In next paragraph we propose a method to find an interior point (φ 0, θ0) of Ψ

to be used as a starting point in the minimization algorithm.

Let G = [gm] be the 3 ×M matrix formed by the vectors, gm, normal to the triangles of M(p).

A solution of the inequality system (if it exists) GT g > 0 provides a direction, defined by vector g,

such that all the triangles of M(p) can be projected on a plane, normal to the unitary vector n = g
‖g‖ ,

so that α′
Pm

> 0 for (m = 1, ...,M ). Then, it only remains to find the angles φ0 and θ0 in which the

coordinate system needs to be rotated to get the z ′ axis to point in the direction of n. More precisely,

the angles φ0 and θ0 are the solution of the equation ΦT (φ0, θ0, 0) e3 = n, where e3 = (0, 0, 1)T .

If the inequality system has no solution, then, there is no valid projection plane for this local mesh,

against the premise done in section 2.1. In this case, the local mesh optimization procedure maintain

the free node p at its initial position.

We have observed that the previous objective function has computational difficulties as the

optimization algorithms use discrete steps to search for the optimal point. A step leading outside the

region Ψ may indicate a decrease in the value of the objective function and take to a false solution. To

overcome this problem we propose a modification of the objective function in such a way that it will be
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18 J. M. ESCOBAR ET AL

regular all over R
3 and its barrier will be ”smoothed”. The modification consists of substituting α ′

Pm

by h(αPm), where h(α) is the positive and increasing function given by

h(α) =
1
2
(α+

√
α2 + 4δ2) (17)

being the parameter δ = h(0). The behavior of h(α) in function of δ parameter is such that,

lim
δ→0

h(α) = α, ∀α ≥ 0 and lim
δ→0

h(α) = 0, ∀α ≤ 0. The characteristics of h function and its

application in the context of mesh untangling and smoothing have been studied in [14]. Thus, the

proposed objective function for searching the projection plane is

Ω(φ, θ) =
M∑

m=1

1
h(α′

Pm
(φ, θ))

(18)

A crucial property is that the angles that minimize the original and modified objective functions are

nearly identical when δ is small. Details about the determination of δ value for 3-D triangulations can

be found in [14]. Note that h (α) is an increasing function that makes Ω tend to ∞ when the area

of any triangle of N(q ′) tends to −∞, since lim
α→−∞h (α) = 0. This last property makes the function

Ω continues increasing when the sign of α ′
Pm

changes from positive to negative and making it very

difficult to leave Ψ.

4. EXAMPLES AND APPLICATIONS

This section is divided in four subsections. In the former two subsections we analyze test problems

in order to show the behavior of the Algorithm 1. In the third subsection we consider an orographic

surface defined by a terrain. Finally, in the last subsection, the proposed technique is applied to smooth

the mesh of a scanned object. The norm chosen for the objective function (1) in all these applications

have been n = 2.
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 19

4.1. Test problem 1

The first test problem is a practical example based on the situation shown in Figure 3 and commented

in section 2.2. This example shows the differences between our proposed objective functions
∣
∣Kk

η

∣
∣
2

and the exact version, |Kη|2, constructed by Sk (14) and S (6), respectively. Let us suppose that the

mesh nodes of Figure 3 are sited on a sphere with radium 4 and centered in (0, 0, 0). The positions

of nodes are A( 1√
2
,− 1√

2
,
√

15), B(− 1√
2
,− 1√

2
,
√

15) and C(0,−1,
√

15), and the initial position of

the free node is p(0,−0.717, 3.935). Firstly, this mesh is optimized by using the iterative procedure

presented in Algorithm 1 with the approximate objective function
∣
∣Kk

η

∣
∣
2

and, after, by using the direct

minimization of |Kη|2. Thus, in Figure 4 you can see the transversal cuts of
∣
∣K0

η

∣
∣
2

and
∣
∣K3

η

∣
∣
2

through

the y, z-plane. In concrete, Figure 4(a) shows the initial objective function
∣∣K0

η

∣∣
2

in terms of y and

Figure 4(b) shows the similar representation of the objective function at the third iteration of Algorithm

1,
∣
∣K3

η

∣
∣
2
. We present in Figure 5(a) the exact objective function |K η|2 for this test problem. The

presence of barriers at y = −1 and y = − 1√
2

in the functions of Figures 4(a) and (b) maintains the

free node inside the feasible region. Nevertheless, it does not necessarily occur if we minimize the

exact objective function (see Figure 5(a)) due to the barrier at y = − 1√
2

does not exist. In present case,

the minimizing position of the exact objective function is p(0, 0.025, 4.0), that is, outside the feasible

region. For other initial position of the free node the minimizing point could be inner to the feasible

region, for example, if we start at p(0,−0.75, 3.929) we obtain the minimum at p(0,−0.848, 3.909).

On the other hand, Algorithm 1 converges to p(0,−0.850, 3.909), therefore, inside of the feasible

region. The same minimum is reached if it start at any other position of the free node, whenever this

one is inner to the feasible region. We remark that, in this last situation, minimizing points obtained by

exact and approximated objective functions are near the same.

Finally, in Figure 5(b) we show the behavior of exact objective function for a similar test to former
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20 J. M. ESCOBAR ET AL

one, but taking the radium of the sphere r = 1.5. The positions of nodes are now A( 1√
2
,− 1√

2
,
√

5
2 ),

B(− 1√
2
,− 1√

2
,
√

5
2 ) and C(0,−1,

√
5

2 ), and the initial position of the free node is p(0,−0.717, 1.317).

In this case there is not any local minimum inner to the feasible region and, then, any initial

position of the free node leads to minimizing point p(0,−0.061, 1.499) external to the feasible region.

Nevertheless, our algorithm always converges to a minimizing point p(0,−0.825, 1.252), sited inside

of the feasible region.

(a) (b)

Figure 4. Transversal cut of
�
�K0

η

�
�
2

through the y, z-plane in function of y for the mesh of Figure 3 formed by

nodes A, B, C and p sited on a sphere of radium r = 4 (a). The objective function after three iterations,
�
�K3

η

�
�
2
,

for the previous mesh (b).

4.2. Test problem 2

To understand other aspects of the behavior of Algorithm 1, now we choose a simple mesh with

six triangles placed on the paraboloid given by f(x, y) = 5
4 (x2 + (y − 1)2). The projection of

this mesh on the plane z = 0 forms a mesh with all the triangles equilateral. The positions of the

fixed nodes on the paraboloid are y1 = (0,−1, 5)T , y2 = (
√

3
2 ,− 1

2 ,
15
4 )T , y3 = (

√
3

2 ,
1
2 ,

5
4 )T ,

y4 = (0, 1, 0)T , y5 = (−
√

3
2 ,

1
2 ,

5
4 )T , and y6 = (−

√
3

2 ,− 1
2 ,

15
4 )T , and the initial position of the

free node is y0 = (0, 0, 5
4 )T . At the bottom of Figure 6(a) it is presented the projection of the mesh
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 21

(a) (b)

Figure 5. Exact objective function for a mesh sited on a r = 1.5 sphere (b) Transversal cut by y, z-plane of the

exact objective function |Kη|2 as a function of y, for the mesh of Figure 3 formed by nodes A, B, C and p sited

on spheres of radium r = 4 (a) and r = 1.5 (b).

on plane z = 0 and, at the top, the projected mesh on the tangent plane to the paraboloid at y 0. The

corresponding meshes after three steps of Algorithm 1 are shown in 6(b). Although the quality of the

mesh on plane z = 0 has decreased after the process, the mesh quality on the paraboloid has increased.

In concrete, the minimum mesh quality on the paraboloid goes from 0.476 to 0.600 and the average

quality goes from 0.642 to 0.668. In this application we have used the exact representation of the

surface to calculate the z-coordinate of the free node at each step of Algorithm 1, but very close results

are obtained using the approximate surface defined by the linear interpolation of the initial mesh.

To check the convergence of the local process we choose the former application first with an

exact representation of the surface, and then by using the linear interpolation. The logarithm of the

relative error used as stopping criterium in Algorithm 1, log
(∣
∣∣K

k−K
k−1

K
k

∣
∣∣
)

, is represented in terms

of the number of iterations for both cases in Figure 7. We have observed a similar behavior in our

experimental test.
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x2
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(b)

Figure 6. Representations of the mesh constructed on the paraboloid f(x, y) = 5
4
(x2 + (y − 1)2). At the bottom

of figure (a) is shown the projection on z = 0 for the initial position of free node (in white). At the top, it is

represented the projection on the tangent plane to the paraboloid at y0 (an approximate frontal view). In figure (b)

the same projections are shown with the free node at the final position after three iterations of Algorithm 1.

4.3. Application to orographic surfaces

The numerical simulation of environmental problems, as wind field adjustment [16] or air pollution

modeling, require 3-D meshes adapted to complex terrains [15]. The aim is to create a tetrahedral
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Figure 7. Convergence of Algorithm 1 for the test problem 2. Logarithm of the relative error in terms of the number

of iterations.

mesh of a region bounded in its lower part by the terrain and in its upper part by a horizontal plane. To

do this we make a 3-D Delaunay triangulation of a previously established distribution of points, whose

density increases with the complexity of the orography. The point generation in the domain is done over

different layers defined from the terrain to the upper part of the domain. The adaptive position of nodes

in the terrain surface is automatically determined by applying a 2-D refinement/derefinement algorithm

of nested meshes. To avoid conforming problems between mesh and orography, the tetrahedral mesh

will be designed with the help of an auxiliary parallelepiped, in such a way that every terrain node

is projected on its lower plane. Once the 3-D Delaunay triangulation of the set of points has been

constructed on the parallelepiped, points are replaced on their real positions keeping the mesh topology

[15]. In this last stage there can be occasional low quality elements, or even inverted elements. In

particular, the triangles of the terrain, that initially was rectangle on the lower plane of the auxiliary

parallelepiped, result deformed and the quality of the surface mesh decrease. Therefore, it is necessary
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24 J. M. ESCOBAR ET AL

to apply untangling and smoothing procedures. Here, we propose to solve the problem in two stages.

In the first one the surface mesh is optimized and, in the second one, the 3-D mesh is untangled and

smoothed maintaining fixed the surface nodes. This last problem already has been solved in [14],

therefore, it only remain to undertake the first task.

The surface defined by the terrain is very irregular, so it is difficult to find a smooth function that

properly interpolates this surface. For this reason, we have used a linear interpolation on the initial

mesh to obtain a reference surface. The particular way in which the surface mesh has been constructed

make it possible to choose the same parametric planeP for all the local meshes, but in order to compare

results, we have used two strategies in this application: using optimal local projection planes and fixing

the z = 0 plane. The results are shown below.

We have applied our smoothing technique to a terrain triangulation of NW of Gran Canaria island.

The dimensions of the domain are 16.5 × 9.5 km and it has been discretized by using a digitalization

of the terrain with a resolution of 25 × 25 m and a maximum error of 5 m in height. In Figure 8 it is

shown the relief of this part of the island. A projection on z = 0 plane of the original mesh, obtained

by our mesh generator [15], is shown in Figure 9(a). Note that, due to existence of many ravines and

cliffs, it was necessary to refine several times in neighborhood of these areas in order to capture the

real orography. The average quality of this original mesh, measured with the condition number metric

[3], is 0.86. The corresponding smoothed mesh after four stages of the optimization procedure, using

optimal projection planes, is shown in Figure 9(b). Its average quality has been increased until 0.90 (the

same result is obtained by using the z = 0 parametric plane). This improvement is not very great since

the initial quality is close to the maximum quality, 1. The average quality of the worst 200 triangles

has been increased from 0.55 until 0.66 (0.59 using the z = 0 parametric plane). The minimum quality

have changed from 0.37 until 0.39 (0.37 with z = 0 parametric plane). As it was expected, the use of
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ALGEBRAIC METHOD FOR SMOOTHING SURFACE TRIANGULATIONS 25

optimal projection planes improves the results.

We have allow a 10% over the average distance between the free node and the nodes connected to

it to establish the local threshold ∆(p). With this strategy, the maximum gap detected between the

reference surface and the optimized one has been 9.4 m (respect to z ′ direction) for the application

obtained by choosing oriented parametric planes and 10.9 m for the application with fixed z = 0

parametric plane.

4.4. Application to a scanned object

We have applied the optimization technique to a mesh obtained from the Large Geometric Model

Archives at Georgia Institute of Technology. Now, the projection plane is chosen in terms of the local

mesh to be analyzed. The mesh (see Figure 10) has 96966 triangles and 48485 nodes. The value of

the average quality is 0.82 (measured with the quality metric based on the condition number [3]). The

optimized mesh is shown in Figure 11. Note the poor quality of the original mesh in several parts of the

neck of the horse in Figure 12(a). After five iterations of our optimization procedure the mesh has been

smoothed, as it can be seen in Figure 12(b). To show that our surface smoothing procedure prevents

a loss of sharp features, we present a detail of the horse’s ears for the initial and optimized meshes in

Figure 13. Its average quality has been increased to 0.91. A more significant data is the increment in

the average quality of the worst 1000 triangles: its initial value is 0.17 and the final value is 0.63. The

quality curves for the initial and optimized meshes are shown in Figure 14. These curves are obtained

by sorting the elements in increasing order of its quality, q(e).

The stopping criteria for Algorithm 1 used in this application has been ε = 10−2, and the most

frequent number of iteration to achieve the convergence has been one. In general, we have observed

that the computational cost for finding a locally optimal plane has been less than the one for optimizing
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the local mesh with Algorithm 1.

Choosing the same strategy and tolerance than in the previous example for evaluating the local

threshold ∆(p), we have obtained, by using Gauss’s Theorem, the volume of the horse before and after

smoothing, resulting 0.0002634 and 0.0002633, respectively. That means a decrease in the volume of

0.038%.

5. CONCLUSIONS AND FUTURE RESEARCH

We have developed an algebraic method to optimize triangulations defined on surfaces. Its main

characteristic is that the original problem is transformed into a fully two-dimensional sequence of

approximate problems on the parametric space. This characteristic allows the optimization algorithm

to deals with surfaces that only need to be continuous. Moreover, the barrier exhibited by the objective

function in the parametric space prevents the algorithm to construct unacceptable meshes. This would

not be assured if working on the real mesh. Indeed, our procedure can be used to optimize the boundary

of a 3-D mesh, although in this case, the node movement on the surface can produce a tangle in the

3-D mesh, making necessary a subsequent untangling and smoothing procedure.

We have also developed a procedure to find an optimal projection plane (our parametric space) based

on the minimization of a suitable objective function. We have observed in many test that the number

of iterations carried out for Algorithm 1 is less as the projection plane is better faced to the local mesh

M(p), so the correct choice of this plane plays a relevant role. Moreover, we have also observed in

problems in which it is possible to choose a unique projection plane (as those defined by orographic

surfaces) that the resulting mesh, after a fixed number of iterations, has better quality when we work

with optimal parametric planes.

The optimization process includes a control on the gap between the optimized mesh and the reference
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surface that avoids losing details of the original geometry. In this work we have used a piecewise linear

interpolation to define the reference surface when the true surface is not known, but it would be also

possible to use a more regular interpolation, for example, the proposed in [7]. Likewise, it would be

possible to introduce a more sophisticated stopping criterion for the gap control that takes into account

the curvature of the surface [6], [7], [8], [9].

In the present work we have only considered a sole objective function obtained from an isotropic and

area independent algebraic quality metric. Nevertheless, the framework that establishes the algebraic

quality measures [2] provides us the possibility to construct anisotropic and area sensitive objective

functions by using a suitable metric.
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Figure 8. Relief of the NW of Gran Canaria island.
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(a)

(b)

Figure 9. Original mesh of the NW of Gran Canaria island (a), and the smoothed mesh after four stages of our

optimization procedure (b).
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Figure 10. Original mesh of the horse from the Large Geometric Model Archives at Georgia Institute of

Technology.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6

Prepared using nmeauth.cls



32 J. M. ESCOBAR ET AL

Figure 11. Optimized mesh of the horse after five iterations of our procedure.
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(a)

(b)

Figure 12. Detail of the neck of the horse for the initial (a) and optimized (b) meshes.
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(a)

(b)

Figure 13. Detail of the horse’s ears for the initial (a) and optimized (b) meshes.
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Figure 14. Quality curves of the initial horse mesh and the resulting smoothed mesh after five steps of our

optimization process. Function q(e) is the quality measure of the triangle e.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6

Prepared using nmeauth.cls


