
An automatic strategy for
adaptive tetrahedral mesh generation

R. Montenegro a,∗, J.M. Cascón b, J.M. Escobar a, E. Rodrı́guez a,
G. Montero a

aUniversity of Las Palmas de Gran Canaria, University Institute for Intelligent Systems
and Numerical Applications in Engineering, Spain.

bUniversity of Salamanca, Department of Mathematics, Faculty of Sciences, Spain.

Abstract

This paper introduces a new automatic strategy for adaptive tetrahedral mesh generation.
A local refinement/derefinement algorithm for nested triangulations and a simultaneous
untangling and smoothing procedure are the main involved techniques. The mesh generator
is applied to 3-D complex domains whose boundaries are projectable on external faces of
a meccano approximation composed of cuboids. The domain surfaces must be given by
a mapping between meccano surfaces and object boundary. This mapping can be defined
by analytical or discrete functions. At present, we have fixed mappings with orthogonal,
cylindrical and radial projections, but any other one-to-one projection may be considered.

The mesh generator starts from a coarse and valid hexahedral mesh that is obtained by an
admissible subdivision of the meccano cuboids. The automatic subdivision of each hexahe-
dron into six tetrahedra produces an initial tetrahedral mesh of the meccano approximation.

The main idea is to construct a sequence of nested meshes by refining only those tetra-
hedra with a face on the meccano boundary. The virtual projection of meccano exter-
nal faces defines a valid triangulation on the domain boundary. Then a 3-D local refine-
ment/derefinement is carried out so that the approximation of domain surfaces verifies a
given precision. Once this objective is reached, those nodes placed on the meccano bound-
ary are really projected on their corresponding true boundary, and inner nodes are relocated
using a suitable mapping. As the mesh topology is kept during node movement, poor quality
or even inverted elements could appear in the resulting mesh; therefore, we finally apply
a mesh optimization procedure. The efficiency of the proposed technique is shown with
several applications to complex objects.

Key words: Tetrahedral mesh generation, adaptive refinement/derefinement, nested
meshes, mesh smoothing, mesh untangling, 3-D finite element method.
1991 MSC: 65M50, 65N50

Preprint submitted to Elsevier 17 February 2009



1 Introduction

In finite element simulation in engineering problems, it is crucial to automatically
adapt the three-dimensional discretization to geometry and to solution. In the past,
many authors have devoted great effort to solving this problem in different ways
[2,11,12,31], but automatic 3-D mesh generation is still an open problem. Gener-
ally, as the complexity of the problem increases (domain geometry and model), the
methods for approximating the solution become more complicated. At present, it is
well known that most mesh generators are based on Delaunay triangulation and ad-
vancing front technique. On the other hand, local adaptive refinement strategies are
employed to adapt the mesh to singularities of numerical solution. These adaptive
methods usually involve remeshing or nested refinement [14,17,18,27]. Another
interesting idea is to adapt simultaneously the model and the discretization in dif-
ferent regions of the domain. A perspective on adaptive modeling and meshing is
studied in [3]. The main objective of all these adaptive techniques is to achieve a
good approximation of the real solution with minimal user intervention and low
computational cost. For this purpose, the mesh element quality is also an essen-
tial aspect for the efficiency and numerical behaviour of finite element method.
The element quality measure should be understood depending on the isotropic or
anisotropic character of the numerical solution.

In this paper we present new ideas and applications of an innovative tetrahedral
mesh generator which was introduced in [21,4]. This automatic mesh generation
strategy uses no Delaunay triangulation, nor advancing front technique, and it sim-
plifies the geometrical discretization problem for 3-D complex domains, whose
surfaces can be mapped from a meccano face to object boundary. The main idea of
the new mesh generator is to combine a local refinement/derefinement algorithm
for 3-D nested triangulations [17] and a simultaneous untangling and smoothing
procedure [7]. The resulting adaptive meshes have an appropriate quality for finite
element applications.

At present, this idea has been implemented in ALBERTA code [30,29]. This soft-
ware can be used for solving several types of 1-D, 2-D or 3-D problems with adap-
tive finite elements. The local refinement and derefinement can be done by eval-
uating an error indicator for each element of the mesh and it is based on element
bisection. To be more specific, the newest vertex bisection method is implemented
for 2-D triangulations [20]. Actually, ALBERTA has implemented an efficient data
structure and adaption for 3-D domains which can be decomposed into hexahedral
elements as regular as possible. Each hexahedron is subdivided into six tetrahedra
by constructing a main diagonal and its projections on its faces, see Figure 1(a). The
local bisection of the resulting tetrahedra is recursively carried out by using gen-

∗ Corresponding author.
Email address: rafa@dma.ulpgc.es (R. Montenegro).
URL: www.dca.iusiani.ulpgc.es/proyecto0507 (R. Montenegro).

2



eral ideas of the longest edge [28] and the newest vertex bisection methods. The
refinement of a given triangulation is performed by a recursive algorithm. In order
to guarantee that this algorithm terminates in a finite number of iterations, several
conditions on the initial mesh are necessary. Basically, the algorithm requires that
the refinement edge of an element in the initial mesh is the same for all elements
that share this edge. Details about the local refinement technique implemented in
ALBERTA for two and three dimensions and restrictions on initial mesh are ana-
lyzed in [30,17,20]. This strategy works very efficiently for initial meshes obtained
by subdivision of regular quadrilateral or hexahedral elements. In these cases, the
degeneration of the resulting 2-D or 3-D triangulations after successive refinements
is avoided. The restriction on the initial element shapes and mesh connectivities
makes it necessary to develop a particular mesh generator for ALBERTA. In this
paper, we summarize the main ideas introduced for this purpose. Obviously, our
mesh generation technique could be developed in other codes. Moreover, these
ideas could be combined with other types of local refinement/derefinement algo-
rithms for tetrahedral meshes [14,18,27].

The meccano technique presents several advantages with respect to more tradi-
tional approaches, such as Delaunay triangulation or advancing front technique
[2,11,12,31]. Delaunay triangulation requires a control in order to avoid slivers.
Furthermore, the mesh conformity with the object boundary is not a trivial problem
for complex geometry. On the other hand, advancing front technique requires a suit-
able surface triangulation. In addition, an appropriate definition of element sizes is
demanded for obtaining good quality tetrahedra. Other technical difficulties appear
when these two methods are applied to objects comprising different materials.

Our approach is based on the combination of several former procedures (refine-
ment, derefinement, projection, untangling and smoothing) which are not in them-
selves new, but the overall integration is an original contribution. Authors have
used them in different ways. Triangulations for convex domains can be constructed
from a coarse mesh by using refinement/projection [29]. Adaptive nested meshes
have been constructed with refinement/derefinement algorithms for evolution prob-
lems [8]. Large domain deformations can lead to severe mesh distortions, especially
in 3-D. Mesh optimization is thus key for keeping mesh shape regularity and for
avoiding a costly remeshing [15,16]. In traditional mesh optimization, mesh mov-
ing is guided by the minimization of certain overall functions, but it is usually done
in a local fashion. In general, this procedure involves two steps [10,9]: the first is
for mesh untangling and the second one for mesh smoothing. Each step leads to
a different objective function. In this paper, we use the improvement proposed by
[7], where a simultaneous untangling and smoothing guided by the same objective
function is introduced.

Some advantages of our technique are that: surface triangulation is automatically
constructed, the final 3-D triangulation is conforming with the object boundary,
inner surfaces are automatically preserved (for example, interface between several

3



materials), node distribution is adapted in accordance with the object geometry, and
parallel computations can easily be developed for meshing the meccano pieces.
Nevertheless, our procedure demands an automatic construction of the meccano
approximation. In addition, an admissible mapping between the meccano boundary
and the object surface must be defined. Some effort should be made in that respect
in the future.

In the following section we present a description of the main stages of the new
mesh generation procedure. In section 3 we show test problems and practical ap-
plications which illustrate the efficiency of this strategy. Finally, conclusions and
future research are presented in section 4.

2 Description of the Mesh Generator

In this section, we present the main ideas that have been introduced in the mesh
generation procedure. The following algorithm describes the whole mesh genera-
tion approach (for an example of this process, see Figure 5):

Mesh generation
(1) Construct a meccano approximation formed by cuboids.
(2) Define an admissible mapping between the meccano approximation and the

object boundaries.
(3) Construct a valid hexahedral mesh of the meccano approximation.
(4) Construct a coarse tetrahedral mesh from the previous hexahedral mesh.
(5) Generate a local refined tetrahedral mesh of the meccano for a given preci-

sion.
(6) Move the boundary nodes of the meccano to the object surface according to

the mapping defined in 2.
(7) Relocate the inner nodes of the meccano.
(8) Optimize the actual tetrahedral mesh applying the simultaneous untangling

and smoothing procedure.

In section 2.1 and 2.2, we start with the definition of the domain and its subdivision
in an initial 3-D triangulation that verifies the restrictions imposed by ALBERTA.
In section 2.3, we continue with the presentation of different strategies to obtain an
adapted mesh which can approximate the boundaries of the domain within a given
precision. We construct a mesh of the domain by projecting the boundary nodes
from a meccano plane face to the true boundary surface and by relocating the inner
nodes. These two steps are summarized in section 2.4 and 2.5, respectively. Finally,
in section 2.6 we present a procedure to optimize the resulting mesh.

4



2.1 Object Meccano

The first step of the procedure is to construct a meccano approximation by connect-
ing cuboids. In general this is a non-valid hexahedral mesh. The general idea of the
meccano technique could be understood as the connection of different polyhedral
pieces. The use of cuboid pieces is an initial particular case.

Once the meccano approximation is fixed, we have to define an admissible mapping
between the boundary faces of the meccano and the boundary of the object. We now
introduce this concept. Let Σ0 be the boundary of the meccano and Σ the boundary
of the object. We denote Σi

0 the i-th face of the meccano boundary, such that Σ0 =⋃n
i=1 Σi

0 where n is the number of meccano boundary faces. We define Π : Σ0 → Σ
as a piecewise function, such that Π|Σi

0
= Πi where Πi : Σi

0 → Πi(Σi
0) ⊂ Σ. Then,

Π is called an admissible mapping if it satisfies:

(1) Functions {Πi}n
i=1 are compatible on Σ0. That is Πi

|Σi
0∩Σj

0

= Πj

|Σj
0∩Σi

0

, ∀i, j =

1, . . . , n, with i �= j and Σi
0 ∩ Σj

0 �= ∅.
(2) Global mapping Π is continuous and biyective between Σ0 and Σ.
(3) Functions Πi are differentiable on Σi

0.

We note that, if the mesh size of the meccano boundary is not small enough, the
resulting surface mesh could be non-valid. The appropriate element size depends
on the variation of the gradient of Πi. We also note that admissible mapping is not
unique. Obviously, the quality of the resultant surface mesh depends on the chosen
mapping.

2.2 Coarse Tetrahedral Mesh of the Meccano

The meccano is now decomposed into a coarse and valid hexahedral mesh by an
appropriate subdivision of initial cuboids. Then, we build a coarse tetrahedral mesh
by splitting each hexahedron into six tetrahedra [17]. For this purpose, it is neces-
sary to define a main diagonal on each hexahedron and corresponding diagonal on
its faces. For an example of the subdivision of a cube, see Figure 1(a). In order to
get a conforming tetrahedral mesh, all hexahedra are subdivided in the same way,
maintaining compatibility between the diagonal of their faces. The resulting initial
mesh τ1 can be introduced in ALBERTA since it verifies the imposed restrictions
about topology and structure. The user can introduce in the code the necessary
number of recursive global bisections [17] for fixing a uniform element size in the
whole initial mesh. Three consecutive global bisections for a cube are presented in
Figures 1 (b), (c) and (d). The resulting mesh of Figure 1(d) contains 8 cubes similar
to the one shown in Figure 1(a). Obviously, the quality of the resulting tetrahedral
mesh is directly related to the quality of the previous hexahedral mesh. Therefore,

5



(a) (b) (c) (d)

Fig. 1. Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision into six
tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube main diagonal,
(c) new nodes in diagonals of cube faces and (d) global refinement with new nodes in cube
edges

although the ideal case is the subdivision of the cuboids into cubes, it is not always
possible.

If we consider a meccano composed of hexahedra pieces instead of cuboids, a sim-
ilar technique can be applied. In this case, the recursive local refinement [17] may
produce poor quality elements, depending on the initial mesh quality. The mini-
mum quality of refined meshes is function of the initial mesh quality. A study of
this aspect can be seen in [19,32]. In this paper, as a first approach, we have used a
decomposition of the object meccano into cuboids.

2.3 Local Refined Mesh of the Meccano

The next step in the mesh generator includes a recursive adaptive local refinement
strategy of those tetrahedra with a face placed on a boundary face of the initial
coarse mesh. The refinement process is done in such a way that the true surfaces
are approximated by a linear piecewise interpolation within a given precision. That
is, we seek an adaptive triangulation on the meccano boundary faces, so that the
resulting triangulation after node mapping on the object true boundary is a good
approximation of this boundary. The user has to introduce as input data a parame-
ter ε, which is a tolerance to measure the separation allowed between the linear
piecewise interpolation and the true surface. At present, we have considered two
criteria: the first related to the Euclidean distance between both surfaces and the
second attending to the difference in terms of volume.

To illustrate these criteria, let abc be a triangle placed on the meccano boundary, and
a′b′c′ the resulting triangle after projecting the nodes a, b and c on surface Σ, see
Figure 2. We define two different criteria to decide whether it is necessary to refine
the triangle (and consequently the tetrahedra containing it) in order to improve the
approximation.

For any point Q in the triangle abc we define dQ
1 as the euclidean distance between

the mapping of Q on Σ, Q′, and the plane defined by a′b′c′. This definition is an

6



a
b

c

O

P

a’ c’

b’

P’

(a)

a
b

c

a’
c’

b’

O

P

P’

(b)

Fig. 2. Node mapping from meccano to real domain: (a) transformation of an external node
P and (b) of an inner node P

estimate of the distance between the surface of the object and the current piecewise
approximation.

We also introduce a measure in terms of volume, then, for any Q in the triangle abc
we define dQ

2 as the volume of the virtual tetrahedron a′b′c′Q′. In this case, dQ
2 is an

estimate of the lost volume in the linear approximation by the face a′b′c′ of the true
surface.

The threshold of whether to refine the triangle or not is given by a tolerance εi

fixed by the user. With the previous definition, dQ
1 < ε1 for all Q in the boundary

on the meccano implies that the distance between the surface of the object and its
piecewise linear approximation is less than ε1. On the other hand, dQ

2 < ε2 for all
Q in the boundary on the meccano would mean that the lost volume per boundary
face is bounded by ε2. Alternatively, ε2 could be defined as the allowed difference
of volumes and we could use an equidistribution strategy as is usual in a-posteriori
error estimates. Nevertheless, here we prefer to use here a local version of ε2, so the
difference of volumes is estimated by multiplying ε2 by the number of boundary
faces of the final approximation.

Obviously, other measures could be introduced in line with the desired approxima-
tion type (curvature, points properties, etc.). What is more, the user could consider
the combination of several measures simultaneously.

Once we have defined separation measures di and the corresponding tolerances
εi, we propose two different strategies for reaching our objective in the following
subsections.

7



2.3.1 Sequence of Refinements and Derefinement

The first strategy consists of a simple method. It combines a sequence of refinement
steps with one derefinement step.

Simple refinement step. We construct a sequence of tetrahedral nested meshes by
recursive bisection of all tetrahedra that contain a face located on the meccano
boundary faces; see Figure 1. The number of bisections nb is determined by the user
as a function of the desired resolution. At this point, we identify the true surface
with the linear approximation obtained with this resolution. So, we have a uniform
distribution of nodes on these meccano faces and we can consider their virtual
mapping on the object boundary.

Derefinement step. We apply a derefinement procedure, which is a generalization
of the strategy developed in [8]. This criterion fixes which tetrahedra introduced
in the refinement sequence can be eliminated without damaging the approximation
for the prescribed tolerance εi. The derefinement is applied iteratively to the current
mesh and concludes either when there are no elements to remove or when the coarse
mesh is reached.

Note that each tetrahedron T (generated by bisection of its father) has a so-called
newest node P . This node was introduced at the middle point of a prescribed edge
ac of the father of T to generate its two sons, see Figure 2(a). The derefinement
criterion is efficient because it only computes the distance dP

i relative to this newest
node to decide if the tetrahedron T could be removed. This distance is related to
the face abc (or its virtual mapping a′b′c′) of the father of T .

Then, the derefinement criterion, associated to a tetrahedron T of the sequence of
nested meshes, can be introduced as:

Derefinement criterion. Tetrahedron T is marked to be derefined, if it satisfies
one of the following conditions:
(1) The newest node P of T is interior.
(2) The newest node P of T is placed on the boundary of the meccano and

dP
i < εi.

A marked tetrahedron T will be removed only if all the elements generated by the
bisection of the edge ac of its father are also marked. Finally, the refinement/derefi-
nement procedure to construct a local refined tetrahedral mesh of the meccano is
summarized in the following algorithm:

Refinement/derefinement procedure
(1) Set nb and εi.
(2) Construct the coarse tetrahedral mesh of the meccano.
(3) Refine nb times all tetrahedra with at least one face placed on the meccano

boundary.

8



(4) Mark for derefinement all tetrahedra that satisfies the derefinement criterion
for a distance di and a tolerance εi.

(5) Derefine the mesh.
(6) If the mesh was modified, go to step 4.

2.3.2 Sequence of Local Refinements

The second strategy also starts with the coarse mesh of the meccano, but it only
applies local refinement to obtain the fine one. In this case the refinement criterion
for tetrahedron T is:

Refinement criterion. Tetrahedron T is marked to be refined, if it satisfies the
following two conditions:
(1) T has a face F on the boundary of the meccano.
(2) dQ

i ≥ εi for some point Q located on face F of T .

From a numerical point of view, the number of points Q (analyzed in this strategy)
is reduced to a set of points on a uniform mesh of a given resolution, or a set of
points of quadrature. Finally, the refinement strategy for constructing a local refined
tetrahedral mesh of the meccano is summarized in the following algorithm:

Refinement procedure
(1) Set nb and εi.
(2) Construct the coarse tetrahedral mesh of the meccano.
(3) Mark for refinement all tetrahedra which satisfies the refinement criterion

for a distance di and a tolerance εi.
(4) Refine the mesh.
(5) If the number of refinement steps is less than nb and the mesh was modified,

go to step 3.

While first strategy is simpler, it could lead to problems with memory requirements
if the number of tetrahedra is very high before applying the derefinement algorithm.
For example, this situation can occur when there are surfaces defined by very high
resolution functions. Nevertheless, the user could control the number of recursive
bisections nb and the tolerance εi.

On the other hand, the problem of the second strategy is to determine whether
a face placed on meccano boundary must be subdivided to achieve the desired
approximation of the true surface. This analysis must be done every time that a
boundary face is subdivided into its two son faces. Suppose, for example, that the
true surface is given by a discrete function. Then, the subdivision criterion should
stop for a particular face when all the surface discretization points, defined on this
face, have been analyzed and all of them verify the approximation criterion. So, this
second strategy has the inconvenience that each surface discretization point could
be studied many times and, therefore, it generally involves a higher computational

9



cost than the first strategy. Nevertheless, both of those strategies could be faster
depending on the geometry of the object surface and the parameters fixed by the
user.

2.4 External Node Mapping on Object Boundary

Although ALBERTA has already implemented a node projection on a given bound-
ary surface during the bisection process, it has two important restrictions: nodes be-
longing to the initial mesh are not projected and inverted elements could appear in
the case of projecting new nodes on complex surfaces (i.e. non-convex object). In
the latter case, the code does not work properly since it is only prepared to manage
valid meshes.

Therefore, a new strategy must be developed in the mesh generator. The projection
(or mapping) is really done once we have defined the local refined mesh by using
one of the two methods proposed in the previous section. Then, the nodes placed
on the meccano faces are projected (or mapped) on their corresponding true sur-
faces, maintaining the position of the inner nodes of the meccano triangulation. We
have remarked that any one-to-one projection can be defined: orthogonal, spherical,
cylindrical, etc. For example, spherical projection from point O has been used in
Figure 2.

After this process, we obtain a valid triangulation of the domain boundary, but a
tangled tetrahedral mesh could appear. Inner nodes of the meccano could now be
located even outside the domain. Thus, an optimization of the mesh is necessary.
Although the final optimized mesh does not depend on the initial position of the
inner nodes, it is better for the optimization algorithm to start from a mesh with as
good a quality as possible. Therefore, we propose to relocate the inner nodes of the
meccano in a reasonable position before the mesh optimization.

2.5 Relocation of Inner Nodes

There would be several strategies for defining an appropriate position for each in-
ner node of the domain. An acceptable procedure is to modify their relative po-
sition as a function of the distance between boundary surfaces before and after
their projections. This relocation is done attending to proportional criteria along
the corresponding projection line. For example, relocation of inner node P in its
new position P ′, such that OP ′ = OP × Oa′ / Oa, is represented in Figure 2(b).

Although this node movement does not solve the tangle mesh problem, it normally
lessens it. In other words, the resulting number of inverted elements is lower and
the mean quality of valid elements is greater.

10



2.6 Object Mesh Optimization: Untangling and Smoothing

An efficient procedure is necessary to optimize the current mesh. This process must
be able to smooth and untangle the mesh and is crucial in the proposed mesh gen-
erator.

The most usual techniques to improve the quality of a valid mesh, that is, a mesh
with no inverted elements, are based upon local smoothing. In short, these tech-
niques consist of finding the new positions that the mesh nodes must hold, in such
a way that they optimize an objective function. Such a function is based on a cer-
tain measurement of the quality of the local submesh, N (v), formed by the set of
elements connected to the free node v whose coordinates are given by x. We have
considered the following objective function (1) derived from an algebraic mesh
quality metric studied in [16], but it would also be possible to use other objective
functions that have barriers like those presented in [15].

K (x) =

[
M∑

m=1

(
1

qηm

)p

(x)

] 1
p

(1)

where M is the number of elements in N (v), qηm is an algebraic quality measure of
the m-th element of N (v) and p is usually chosen as 1 or 2. Specifically, we have

considered the mean ratio quality measure, which for a tetrahedron is qη = 3σ
2
3

|S|2 and

for a triangle is qη = 2σ
|S|2 , being |S| the Frobenius norm of matrix S associated to

the affine map from the ideal element (usually equilateral tetrahedron or triangle) to
the physical one, and σ = det (S). Other algebraic quality measures can be used as,
for example, the metrics based on the condition number of matrix S, qκ = ρ

|S||S−1| ,
where ρ = 2 for triangles and ρ = 3 for tetrahedra.

As it is a local optimization process, we can not guarantee that the final mesh is
globally optimum. Nevertheless, after repeating this process several times for all
the nodes of the current mesh, quite satisfactory results can be achieved. Objective
functions are usually appropriate to improve the quality of a valid mesh, but they do
not work properly when there are inverted elements. This is because they present
singularities (barriers) when any tetrahedron of N (v) changes the sign of its Jaco-
bian determinant. To avoid this problem it is possible to proceed as Freitag et al. in
[10,9], where an optimization method consisting of two stages is proposed. In the
first, the possible inverted elements are untangled by an algorithm that maximizes
their negative Jacobian determinants [10] while, in the second, the resulting mesh
from the first stage is smoothed using another objective function based on a quality
metric of the tetrahedra of N (v) [9]. After the untangling procedure, the mesh has
a very poor quality because the technique has no motivation to create good-quality
elements. As remarked in [9], it is not possible to apply a gradient-based algorithm

11



to optimize the objective function because it is not continuous all over R
3, making

it necessary to use other non-standard approaches.

We have proposed an alternative to this procedure [7], so the untangling and smoo-
thing are carried out in the same stage. For this purpose, we use a suitable modi-
fication of the objective function such that it is regular all over R

3. It consists of
substituting the the term σ in the quality metrics with the positive and increasing
function h(σ) = 1

2
(σ +

√
σ2 + 4δ2). When a feasible region (subset of R

3 where
v could be placed, N (v) being a valid submesh) exists, the minima of the original
and modified objective functions are very close and, when this region does not ex-
ist, the minimum of the modified objective function is located in such a way that it
tends to untangle N (v). The latter occurs, for example, when the fixed boundary
of N (v) is tangled. With this approach, we can use any standard and efficient un-
constrained optimization method [1] to find the minimum of the modified objective
function.

In addition, a smoothing of the boundary surface triangulation could be applied
before the movement of inner nodes of the domain by using the new procedure
presented in [6] and [22]. This surface triangulation smoothing technique is also
based on a vertex repositioning defined by the minimization of a suitable objective
function. The original problem on the surface is transformed into a two-dimensional
one on the parametric space. In our case, the parametric space is a plane, chosen
in terms of the local mesh, in such a way that this mesh can be optimally projected
performing a valid mesh, that is, without inverted elements.

3 Test Examples

The performance of our new mesh generator is shown in the following applica-
tions. The first corresponds to a domain defined over a complex terrain, the second
to a torus, the third to an object with two different materials and the fourth to a
3-D scanned object whose boundary is defined with a surface triangulation. For
all presented examples, the meccano cuboids are subdivided into a valid mesh of
cubes.

3.1 Domain over Complex Terrain

In the last few years, we have developed a tetrahedral mesh generator that approx-
imates the orography of complex terrains with a given precision [23,24]. To do so,
we only have digital terrain information. Our domain is limited on its lower part by
the terrain and on its upper part by a horizontal plane placed at a height at which the
magnitudes under study may be considered steady. The lateral walls are formed by

12



four vertical planes. The generated mesh could be used for numerical simulation
of environmental phenomena, such as wind field adjustment [26], fire propaga-
tion or atmospheric pollution [25]. The following procedures were mainly involved
in this former automatic mesh generator: a Delaunay triangulation method [5,13],
a 2-D refinement/derefinement algorithm [8] and a simultaneous untangling and
smoothing algorithm [7]. Moreover, we have recently developed a new method for
improving the quality of surface triangulations by using optimal local projections
[6,22], which can be introduced in the mesh generator.

(a)

(b)

Fig. 3. Detail of Isla de La Palma (Canary Island): (a) initial mesh and (b) resulting mesh
after five steps of the optimization process

As an alternative to this strategy, the new automatic mesh generator proposed in
this paper can be used for the same purpose. As a practical application we have

13



considered a rectangular area in Isla de La Palma (Canary Islands) of 22× 16 km.
The upper boundary of the domain has been placed at h = 6 km. To define the
topography we use a digitalization of the area where heights are defined over a
uniform grid with a spacing step of 200 m in directions x and y. We start from a
cuboid (meccano) of 22 × 16 × 6 km initially subdivided into 11 × 8 × 3 cubes
with edge sizes of 2 km. Each cube is subdivided into six tetrahedra by using the
subdivision proposed in [17], see Figure 1(a). This discretization is used to define
the uniform initial triangulation τ1 of the parallelepiped. We refine it 18 times by
constructing a recursive bisection of all tetrahedra containing a face placed on the
lower face of the parallelepiped. If we applied 6 global refinements by using the
4-T Rivara’s algorithm [28] instead of previous recursive bisections, the resultant
2-D triangulation on the lower face of the parallelepiped would be the same.

Once the orography is virtually interpolated on this local refined mesh, the derefine-
ment condition is applied with a derefinement parameter related to distance ε1 = 25
m. Then, we make an orthogonal projection on the terrain of the adaptive triangu-
lation obtained on the lower face of the parallelepiped. In addition, we relocate
the other nodes vertically by using a proportional criterion. The adapted mesh has
65370 tetrahedra and 15263 nodes, see Figure 3(a), and it nears the terrain surface
with an error less than ε1 = 25 m.

This mesh has 115 inverted tetrahedra, its average quality measure is qκ = 0.68 and
its minimum quality is 0.091, see reference [7] and Figure 4. The node distribution
is hardly modified after five steps of the optimization process by using our modified
objective function. We remark that, during this optimization process, we have not
relocated those nodes placed on the terrain.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10000  20000  30000  40000  50000  60000  70000

Initial mesh
Iteration  2
Iteration  5

Fig. 4. Quality curves, using qκ = 3
|S||S−1| , for the initial and optimized meshes after two

and five iterations for the domain defined in Isla de La Palma (Canary Island)

The evolution of the mesh quality during the optimization process is represented in

14



Figure 4. These curves are obtained by sorting the elements in increasing order of
quality. This measure tends to stagnate quickly. The quality curves corresponding
to the second and fifth optimization steps are close. The average quality measure
increases to qκ = 0.75. After this optimization process, the worst quality measure
of the optimized mesh tetrahedra is 0.34. Finally, we remark that the number of
parameters necessary to define the resulting mesh is quite low, as is the computa-
tional cost. The total CPU time for the initial mesh and its optimization is less than
1 minute on an Intel Pentium M processor, 2.26 GHz and 2 Gb RAM memory.
In particular, the computational cost of five iterations of the simultaneous untan-
gling and smoothing procedure is about half a minute. At the first iteration of this
optimization process the mesh is untangled.

3.2 Torus

We now consider the automatic 3-D triangulation of a torus. We start from a sim-
ple meccano composed of four cuboids as shown in Figure 5(a). This meccano is
included in a parallelepiped whose dimensions are 6 × 6 × 2 and which contains
the directrix circumference of the torus. Therefore, the definition of a one-to-one
projection between the meccano and torus boundaries is straightforward.

In the first step of the mesh generator procedure, the meccano is splitted into a
coarse and uniform valid mesh with 64 cubes, see Figure 5(b). As each cube is di-
vided into six tetrahedra, it results in an initial 3-D meccano triangulation of 384
tetrahedra, see Figure 5(c). In the following step, we apply 9 recursive bisections
on all tetrahedra which have a face placed on the meccano boundary. This mesh
contains 15364 nodes and 61328 tetrahedra. Then, we virtually project meccano
boundary nodes on the torus boundary. Attending to this virtual projection, the re-
finement/derefinemet algorithm is applied with a derefinement parameter, related
to volume, ε2 = 0.0001. The resulting adaptive mesh contains 2032 nodes and
7840 tetrahedra and it is shown in Figure 5(d). The real projection of this meccano
surface triangulation on the torus surface produces a 3-D tangled mesh with 1424
inverted elements, see Figure 5(e). The relocation of inner nodes by using a pro-
portional criterion reduces the number of inverted tetrahedra to 240. The average
quality measure of this tangled mesh is qκ = 0.63. If we use the tetrahedral mesh
optimization presented in [7], the mesh quality is improved to a minimum value
of 0.39 and an average qκ = 0.73 after two iterations. The evolution of the mesh
quality during the optimization process to the inner nodes of the domain, is repre-
sented in Figure 6. The quality curves of following iterations are very close. The
final mesh can be seen in Figure 5(f).

We remark that, due to the high quality surface triangulation obtained with our
method, the mesh improvement is not significant if we previously apply the smooth-
ing surface triangulation algorithm introduced in [6]. The CPU time for construct-

15



(a) (b)

(c) (d)

(e) (f)

Fig. 5. Main stages of the mesh generator for the torus: (a) meccano approximation formed
by four cuboids, (b) valid mesh of cubes, (c) coarse tetrahedral mesh, (d) mesh adaption
after applying the refinement/derefinement procedure, (e) tangled mesh after the projection
on torus surface and (f) resulting mesh after inner node relocation and mesh optimization

ing the initial mesh is approximately 0.5 seconds and for its optimization process
is 2.5 seconds on an Intel Xeon processor, 3.06 GHz and 4 Gb RAM memory.

16



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000

Initial mesh
Iteration 1
Iteration 2

Fig. 6. Quality curves, using qκ = 3
|S||S−1| , for the initial and optimized meshes after two

iterations for the torus

(a) (b)

Fig. 7. Cross sections of the torus before (a) and after (b) the application of the mesh
optimization process

In order to show the efficiency of the mesh optimization technique inside the torus
after relocation of inner nodes, we display in Figure 7 two cross sections before (a)
and after (b) its application. We note that the optimization procedure can lead to the
final mesh without any relocation of inner nodes. Obviously, the necessary number
of iterations and CPU time to obtain a similar final mesh quality increases in this
case. The CPU time for optimization procedure (four untangling iterations and five
smoothing iterations) should be 3.8 seconds instead of 2.5 seconds.

Finally we analyze the relation between the derefinement parameter ε2 and the
surface deviation. We report in Table 1 for several values of ε2: the number of
boundary faces of the resulting mesh (#Faces), the volume of the piecewise linear
approximation |Ωk|, the relative difference of volumes between the true object and
the piecewise linear approximation ( |Ω|−|Ωk|

|Ω| ), the volume of the set-theoretic differ-
ence of Ω and Ωk, an estimation of this value (#Faces ×ε2), and the ratio between
the estimation and true difference. The results show that ε2 correctly controls the

17



ε2 #Faces |Ωk| |Ω|−|Ωk|
|Ω| (%) |Ωk\Ω ∪ Ω\Ωk | #Faces ×ε2

#Faces×ε2
|Ωk\Ω∪Ω\Ωk|

10−4 2336 39.0842 0.99 % 0.4316 0.2336 1.84

10−5 8016 39.3655 0.28 % 0.1269 0.0801 1.58

10−6 24416 39.4421 0.09 % 0.0423 0.0244 1.72

10−7 74048 39.4668 0.02 % 0.0137 0.0074 1.84

10−8 241216 39.4747 0.01 % 0.0042 0.0024 1.76

Table 1
Relation between the derefinement parameter ε2 and the surface deviation. The volume of
the true torus is 4π2 ≈ 39.4784

derefinement procedure and that ε2×#Faces is a good and cheap estimation of the
quality of the approximation obtained.

3.3 Object with Two Different Materials

In order to show the efficiency of our automatic tetrahedral mesh generator on more
complex domains, we now consider the discretization of a glass with liquid. The
input data consists on a meccano of five cuboids for the glass and one cuboid for
the liquid, see Figure 8(a). This meccano is included in a parallelepiped whose
dimensions are 5× 5× 8. The new mesh generation strategy automatically defines
the boundary between the two materials and achieves a good mesh adaption to the
geometrical domain characteristics. A one-to-one projection between meccano and
object is defined by a cylindrical projection for vertical faces and an orthogonal one
for horizontal faces.

The meccano is splitted into a 3-D triangulation of 1146 tetrahedra and 320 nodes.
We apply 9 recursive bisections on all tetrahedra which have a face placed on the
meccano boundary or on the material interface. This mesh contains 42811 nodes
and 195272 tetrahedra. The derefinement parameter is ε2 = 0.0002 in this case. The
resulting adaptive mesh contains 2722 nodes and 12520 tetrahedra and is shown in
Figure 8(b). The projection of this meccano surface triangulation on the true surface
produces a 3-D tangled mesh with 4192 inverted elements, see Figure 8(c). In order
to highlight the capability of the optimization procedure [7], in this case, we do not
relocate any inner node. After nine iterations, this mesh optimization algorithm
converts the tangled mesh into the one presented in Figure 8(d). The mesh quality
is improved to a minimum value of 0.21 and an average qκ = 0.51. The quality
curves for the initial and final triangulations are shown in Figure 9. The CPU time
for constructing the initial mesh is approximately 2 seconds and for its optimization
is 12 seconds on a Intel Xeon processor, 3.06 GHz and 4 Gb RAM memory.

To reflect the difficulty of this test problem, we present two object cross sections in
Figure 10. In the first, we plot the glass (a) and in the second, we include the liquid
(b). It is interesting to observe the mesh conformity with the material interface.
Moreover, the mesh generator constructs an appropriate discretization of the thin

18



glass walls.

(a) (b)

(c) (d)

Fig. 8. Main stages of the mesh generator for the glass with liquid: (a) meccano, (b) mesh
adaption after applying the refinement/derefinement procedure, (c) tangled mesh after the
projection on torus surface and (d) resulting optimized mesh

19



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2000  4000  6000  8000  10000  12000  14000

initial mesh
final mesh

Fig. 9. Quality curves, using qκ = 3
|S||S−1| , for the initial tangled mesh and the optimized

triangulation after nine iterations for the glass with liquid

(a) (b)

Fig. 10. Cross sections of the glass without (a) and with (b) liquid

3.4 Scanned Object

In this last example, we have applied our technique to construct a 3-D triangulation
of Igea. A surface triangulation of this object is fixed by using a 3-D scanner and it
can be obtained from http://www.cyberware.com/. We use this information to define
the object surface. The original surface triangulation of Igea has 67170 triangles
and 33587 nodes, see Figure 11(a). Note the poor quality of this original mesh in
several parts. The initial value of the average quality for this surface triangulation

20



is 0.79 (measured with the quality metric based on the condition number [9]) and
the minimum is 0.10.

The 3-D mesh is automatically constructed starting from only one 60 × 60 × 60
cube and using a spherical projection with a derefinement parameter ε2 = 0.005.
We choose the focus point close to the centroid of the surface nodes. The surface
triangulation of the resulting 3-D mesh is shown in Figure 11(b) with 39012 tri-
angles and 19508 nodes. Its average quality increases to 0.84 and its minimum to
0.16. We have compared the initial volume of Igea, see Figure 11(a), and of the final
surface triangulation, Figure 11(b), resulting in 278478 and 278389, respectively.
This means a 0.03% decrease in the volume that is directly related with ε2.

In order to show the efficiency of mesh adaption in the interior of Igea, we present
in Figure 12 a cross section of the 3-D mesh before (a) and after optimization (b).
It is interesting to observe the inner mesh adaption in function of the surface geom-
etry. In this case, the 3-D mesh generator constructs a discretization of Igea with
174952 tetrahedra and 41215 nodes. The mesh quality is improved to a minimum
value of 0.14 and its average quality increases from qκ = 0.28 to qκ = 0.70. The
CPU time for constructing the initial mesh is approximately 15 seconds and for its
optimization is 56 seconds on a Intel Xeon processor, 3.06 GHz and 4 Gb RAM
memory.

Finally, we remark again that, due to the high quality surface triangulation obtained
with our method, application of the smoothing surface triangulation algorithm [6]
does not produce significant improvements. The resulting average and minimum
qualities are 0.85 and 0.18, respectively.

4 Conclusions and Future Research

The proposed mesh generator is an efficient method for creating tetrahedral meshes
on domains with boundary faces projectable on a meccano boundary. We remark
that it requires minimum user intervention and has a low computational cost. The
main ideas presented in this paper for automatic mesh generation, which have been
implemented in ALBERTA, could be used for different codes which work with
other tetrahedral or hexahedral local refinement/derefinement algorithms. Taking
these ideas into account, complex domains could be meshed by decomposing its
outline into a set of connected cuboids. In future works, new types of pieces and
connections could be considered for constructing the meccano.

Although this procedure is at present limited in applicability for highly complex
geometries, it results in a very efficient approach for the problems that fall within
the mentioned class. At present, the user has to define the meccano associated to the
object and mapping between meccano and object surfaces. Once these aspects are

21



(a)

(b)

Fig. 11. (a) Original mesh of Igea obtained from http://www.cyberware.com/ and (b) sur-
face triangulation obtained with the 3-D mesh generator

22



(a)

(b)

Fig. 12. Surface triangulation and inner view of the brain of Igea before (a) and after opti-
mization (b)

23



fixed, the mesh generation procedure is fully automatic. In future works, we will
develop a special CAD package for more general input object. Specifically, object
surface patches should be defined by using meccano surfaces as parametric spaces.

The mesh generation technique is based on sub-processes (subdivision, projection,
optimization) which are not in themselves new, but the overall integration using
a simple shape as starting point is an original contribution of this paper and it
has some obvious performance advantages. We have also introduced a generalized
derefinement condition for a simple approximation of surfaces. Finally, another in-
teresting property of the new mesh generation strategy is that it automatically fixes
the boundary between materials and achieves a good mesh adaption to the geomet-
rical characteristics of the domain.

Acknowledgments

This work has been supported by the Spanish Government, “Secretarı́a de Estado de
Universidades e Investigación”, “Ministerio de Educación y Ciencia”, and FEDER,
grant contracts: CGL2004-06171-C03, CGL2007-65680-C03 and CGL2008-06003-
C03. We would also like to thank the authors of ALBERTA [29] for the code avail-
ability in internet [30] and for their suggestions.

References

[1] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear Programing: Theory and
Algorithms, John Wiley and Sons Inc., New York, 1993.

[2] G. F. Carey, Computational Grids: Generation, Adaptation and Solution Strategies,
Taylor & Francis, Washington, 1997.

[3] G. F. Carey, A perspective on adaptive modeling and meshing (AM&M), Comput.
Meth. Appl. Mech. Eng. 195 (2006) 214–235.

[4] J. M. Cascón, R. Montenegro, J. M. Escobar, E. Rodrı́guez, G. Montero, A new
meccano technique for adaptive 3-d triangulation, in: Proc. of the 16th International
Meshing Roundtable, Springer, Berlin, 2007, pp. 103–120.

[5] J. M. Escobar, R. Montenegro, Several aspects of three-dimensional Delaunay
triangulation, Adv. Eng. Soft. 27 (1996) 27–39.

[6] J. M. Escobar, G. Montero, R. Montenegro, E. Rodrı́guez, An algebraic method for
smoothing surface triangulations on a local parametric space, Int. J. Num. Meth. Eng.
66 (2006) 740–760.

24



[7] J. M. Escobar, E. Rodrı́guez, R. Montenegro, G. Montero, J. M. González-Yuste,
Simultaneous untangling and smoothing of tetrahedral meshes, Comput. Meth. Appl.
Mech. Eng. 192 (2003) 2775–2787.

[8] L. Ferragut, R. Montenegro, A. Plaza, Efficient refinement/derefinement algorithm of
nested meshes to solve evolution problems, Comm. Num. Meth. Eng. 10 (1994) 403–
412.

[9] L. A. Freitag, P. M. Knupp, Tetrahedral mesh improvement via optimization of the
element condition number, Int. J. Num. Meth. Eng. 53 (2002) 1377–1391.

[10] L. A. Freitag, P. Plassmann, Local optimization-based simplicial mesh untangling and
improvement, Int. J. Num. Meth. Eng. 49 (2000) 109–125.

[11] P. J. Frey, P. L. George, Mesh Generation, Hermes Science Publishing, Oxford, 2000.

[12] P. L. George, H. Borouchaki, Delaunay Triangulation and Meshing: Application to
Finite Elements, Editions Hermes, Paris, 1998.

[13] P. L. George, F. Hecht, E. Saltel, Automatic mesh generation with specified boundary,
Comput. Meth. Appl. Mech. Eng. 92 (1991) 269–288.

[14] J. M. González-Yuste, R. Montenegro, J. M. Escobar, G. Montero, E. Rodrı́guez, Local
refinement of 3-d triangulations using object-oriented methods, Adv. Eng. Soft. 35
(2004) 693–702.

[15] P. M. Knupp, Achieving finite element mesh quality via optimization of the jacobian
matrix norm and associated quantities. Part II - A frame work for volume mesh
optimization and the condition number of the jacobian matrix, Int. J. Num. Meth. Eng.
48 (2000) 1165–1185.

[16] P. M. Knupp, Algebraic mesh quality metrics, SIAM J. Sci. Comput. 23 (2001) 193–
218.

[17] I. Kossaczky, A recursive approach to local mesh refinement in two and three
dimensions, J. Comput. Appl. Math. 55 (1994) 275–288.

[18] R. Löhner, J. D. Baum, Adaptive h-refinement on 3-d unstructured grids for transient
problems, Int. J. Num. Meth. Fluids 14 (1992) 1407–1419.

[19] J. Maubach, Local bisection refinement for n-simplicial grids generated by reflection,
SIAM J. Sci. Comput. 16 (1995) 210–227.

[20] W. F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems,
ACM Trans. Math. Soft. 15 (1989) 326–347.

[21] R. Montenegro, J. M. Cascón, J. M. Escobar, E. Rodrı́guez, G. Montero,
Implementation in alberta of an automatic tetrahedral mesh generator, in: Proc. of
the 15th International Meshing Roundtable, Springer, Berlin, 2006, pp. 325–338.

[22] R. Montenegro, J. M. Escobar, G. Montero, E. Rodrı́guez, Quality improvement
of surface triangulations, in: Proc. of the 14th International Meshing Roundtable,
Springer, Berlin, 2005, pp. 469–484.

25



[23] R. Montenegro, G. Montero, J. M. Escobar, E. Rodrı́guez, Efficient strategies for
adaptive 3-d mesh generation over complex orography, Neural, Parallel & Scientific
Computation 10 (2002) 57–76.

[24] R. Montenegro, G. Montero, J. M. Escobar, E. Rodrı́guez, J. M. González-Yuste,
Tetrahedral mesh generation for environmental problems over complex terrains, in:
Lecture Notes in Computer Science, vol. 2329, Springer, Berlin, 2002, pp. 335–344.

[25] G. Montero, R. Montenegro, J. M. Escobar, E. Rodrı́guez, J. M. González-Yuste,
Velocity field modelling for pollutant plume using 3-d adaptive finite element method,
in: Lecture Notes in Computer Science, vol. 3037, Springer, Berlin, 2004, pp. 642–
645.

[26] G. Montero, E. Rodrı́guez, R. Montenegro, J. M. Escobar, J. M. González-Yuste,
Genetic algorithms for an improved parameter estimation with local refinement of
tetrahedral meshes in a wind model, Adv. Eng. Soft. 36 (2005) 3–10.

[27] M. C. Rivara, A grid generator based on 4-triangles conforming. Mesh-refinement
algorithms, Int. J. Num. Meth. Eng. 24 (1987) 1343–1354.

[28] M. C. Rivara, C. Levin, A 3-d refinement algorithm suitable for adaptive multigrid
techniques, J. Comm. Appl. Numer. Meth. 8 (1992) 281–290.

[29] A. Schmidt, K. G. Siebert, Design of Adaptive Finite Element Software: The Finite
Element Toolbox ALBERTA, vol. 42 of Lecture Notes in Computer Science, Springer,
Berlin, 2005.

[30] A. Schmidt, K. G. Siebert, D. Köster, O. Kriessl, C. J. Heine, ALBERTA - an adaptive
hierarchical finite element toolbox (2007).
URL http://www.alberta-fem.de/

[31] J. F. Thompson, B. Soni, N. Weatherill, Handbook of Grid Generation, CRC Press,
London, 1999.

[32] C. T. Traxler, An algorithm for adaptive mesh refinement in n dimensions, Computing
59 (1997) 115–137.

26


