
Performance model for mesh optimization on
distributed-memory computers

D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez
SIANI institute & DIS department, University of Las Palmas de Gran Canaria

Las Palmas de Gran Canaria, Spain

ABSTRACT
Many mesh optimization applications are based on vertex
repositioning algorithms (VrPA). The execution times of these
numerical algorithms vary widely, usually with a trade-off
between different parameters. In this work, we analyze the
impacts of six parameters of sequential VrPA on runtime.
Our analysis is used to propose a new workload measure
called number of mesh element evaluations. Since the exe-
cution time required for VrPA programs may be too large
and there is concurrency in processing mesh elements, paral-
lelism has been used to improve performance efficiently. The
performance model is extended to parallel VrPA algorithms
that are implemented in MPI. This model has been validated
using two Open MPI versions on two distributed-memory
computers and is the basis for the quantitative analysis of
performance scalability, load balancing and synchronization
and communication overheads. Finally, a new approach to
mesh partitioning that improves load balancing is proposed.

KEYWORDS
Performance modeling, parallel numerical methods, parallel
mesh optimization, load balancing.
ACM Reference Format:
D. Benitez, J.M. Escobar, R. Montenegro, E. Rodriguez. 2018. Per-
formance model for mesh optimization on distributed-memory com-
puters. In 25th European MPI Users’ Group Meeting (EuroMPI
’18), September 23–26, 2018, Barcelona, Spain. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3236367.3236372

1 INTRODUCTION
A mesh composed of vertices, edges and elements is used in
numerical solvers of differential equations. There are several
areas of research involving parallel processing of meshes.
For example, many mesh processing techniques have been
developed to generate meshes in parallel [5]. The sizes and
shapes of generated elements affect the efficiency and accuracy
of computational applications. Thus, other parallel algorithms

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
EuroMPI ’18, September 23–26, 2018, Barcelona, Spain
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6492-8/18/09. . . $15.00
https://doi.org/10.1145/3236367.3236372

are used for mesh optimization [8]. Additionally, parallel
mesh warping algorithms have been developed for use in
computational simulations with deforming domains [15].

A few performance models for parallel meshing algorithms
have been developed. Such models can enable us to under-
stand, fine-tune and predict the performance of applications.
Barker and Chrisochoides applied an analytical model for
load balancing to mesh generation asynchronous applications
[1]. Sarje et al. used a performance model to propose a mesh
partitioning that improves the load balancing of an ocean
modeling code [16]. Mathis and Kerbyson presented a para-
metric model to predict the parallel performance of a partial
differential equation solver on unstructured meshes [13]. Ver-
tex repositioning algorithms (VrPA) have been adopted by a
vast majority of mesh optimization applications [6–8, 17, 18],
but no performance model for distributed-memory computers
has been proposed yet.

Our contributions are: (1) a performance model for loosely
synchronous VrPA programs executed on distributed-memory
computers is proposed; (2) this parallel model is based on a
new workload measure; (3) the performance scalability, load
balancing and synchronization and communication overheads
of VrPA algorithms is studied; (4) a new approach to mesh
partitioning that reduces load imbalance is proposed.

The paper is organized as follows. Section 2 describes gener-
alized versions of the sequential and parallel VrPA algorithms.
We use experimental evidences to propose the new perfor-
mance model. Thus, Section 3 describes the experimental
setup and Sections 4 & 5 the sequential performance evalua-
tion. After that, Sections 6 & 7 explain the parallel model.
Section 8 analyzes the scalability and parallel overheads of
VrPA algorithms. Section 9 describes the new load balancing
proposal. Finally, the main conclusions are given.

2 GENERALIZED ALGORITHMS
VrPA algorithms improve the quality of a mesh by moving its
free vertices. They can be posed as numerical optimization
techniques in which the following parameters are considered
[6]: objective function approach (𝐴) and formulation (𝑓),
element quality metric (𝑞), minimization method (𝑁𝑀) and
convergence or termination criteria (𝑇 𝐶). There are many
choices for each free parameter. In this paper, we limited
the options to those shown in Table 1. Each combination
of choices will be called VrPA configuration and denoted:
⟨𝐴⟩-⟨𝑓⟩-⟨𝑞⟩-⟨𝑁𝑀⟩-⟨𝑇 𝐶⟩, for instance, “Gl-D1-hS-SD-TC2”.

2.1 Sequential algorithm
Many mesh optimization applications employ a VrPA that
is similar to Algorithm 1 [6, 7, 18]. It consists of a variable

https://doi.org/10.1145/3236367.3236372
https://doi.org/10.1145/3236367.3236372
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3236367.3236372&domain=pdf&date_stamp=2018-09-23

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain D. Benitez et al.
Table 1: Free VrPA parameters and their choices that are considered in this paper.

Parameter Options Related work
Objective function

approach (A):
𝐾 =

∑︀𝑛

𝑖
𝑓 (𝑞𝑖)

𝑛: total free elements*

Gl: All-vertex 𝑛 = 𝑁𝑀 : free elements* of mesh [6]

Lo: Single-vertex 𝑛 = 𝑁𝑣 : free elements* of local patch [6]

Objective function
formulation: 𝑓 (𝑞𝑖)

𝑞𝑖: quality of 𝑖𝑡ℎ element
𝑞𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑞𝑖)𝑖∈{1...𝑛}

ℎ(𝑧) = 1
2

(︀
𝑧 +

√
𝑧2 + 4𝛿2

)︀
𝛿, 𝜇 = constants

D1: Distortion 1 𝑓 (𝑞𝑖) = 𝑞−1
𝑖 [4]

D2: Distortion 2 𝑓 (𝑞𝑖) = 𝑞−2
𝑖

[4]
log1: Logarithmic

barrier 1 𝑓 (𝑞𝑖) = 𝑛−1𝑞−1
𝑚𝑖𝑛 − 𝜇 𝑙𝑜𝑔(𝑞−1

𝑚𝑖𝑛 − 𝑞−1
𝑖) [2]

log2: Logarithmic
barrier 2 𝑓 (𝑞𝑖) = 𝑛−1𝑞𝑚𝑖𝑛 + 𝜇 𝑙𝑜𝑔(𝑞𝑖 − 𝑞𝑚𝑖𝑛) [17]

inv: Regularized barrier 𝑓 (𝑞𝑖) = 𝑞−1
𝑖 + 1

ℎ
(︀

𝑞−1
𝑚𝑖𝑛

−𝑞−1
𝑖

)︀ [2]

Element quality
metric: 𝑞𝑖

𝑆𝑖: Jacobian matrix
|| ||𝐹 : Frobenius norm

ℎ(𝑧) = 1
2

(︀
𝑧 +

√
𝑧2 + 4𝛿2

)︀
𝜎𝑖 = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝑆𝑖)
triangle: 𝑑 = 2, 𝑠 = 3

tetrahedron: 𝑑 = 3, 𝑠 = 6
𝑎, 𝑏, 𝛿, 𝜆= constants

hS: Regularized
mean ratio 𝑞𝑖 =

𝑑 [ℎ(𝜎𝑖)]2/𝑑

||𝑆𝑖||2
𝐹

[7]

MQ: Hybrid
quality metric

𝑣𝑜𝑙= element volume
𝑙𝑗= element side lengths

𝑞𝑖 =
𝜆 𝑣𝑜𝑙

1+𝑒𝑎 𝜆 𝑣𝑜𝑙 +
𝐴

1+𝑒−𝑏 𝐴

𝐴 = 𝑣𝑜𝑙
𝐿𝑑/2 𝐿 =

∑︀𝑠

𝑗=1 𝑙2
𝑗

[17]

TU: Untangle
quality metric 𝑞𝑖 = 2

(︀
− 𝜎𝑖 +

√︀
𝜎2

𝑖 + 𝛿2
)︀−1

[4]

Numerical minimiza-
tion method (NM)

CG: Conjugate Gradient Polack-Ribiere, analytical derivatives [4]
SD: Steepest Descent analytical derivatives [4]

Termination
criteria (TC)

𝑄𝑖: mean-ratio quality
value of the 𝑖𝑡ℎ element

𝑄𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑄𝑖)𝑖∈{1...𝑁𝑀 }

TC1 (elements are not inverted) 𝑡𝑟𝑢𝑒 = (𝑄𝑚𝑖𝑛 > 0)

TC2 (output mesh is optimum)
𝑄: average mean-ratio

value of mesh
∆: maximum variation

between outer iterations

𝑡𝑟𝑢𝑒 = (𝑄𝑚𝑖𝑛 > 0 𝑎𝑛𝑑
∆𝑄 < 10−3 𝑎𝑛𝑑
∆𝑄𝑚𝑖𝑛 < 10−3)

* 𝐹 𝑟𝑒𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡: mesh element with at least one free vertex.

number of mesh sweeps. In each of them, every one of the
free vertices is processed and can be repositioned if required
by the numerical optimization method. The vertices that lie
on the mesh surface are treated as fixed and are not updated.

The most time-consuming operation called 𝑉 𝑒𝑟𝑡𝑒𝑥𝑅𝑒𝑝𝑜𝑠𝑖−
𝑡𝑖𝑜𝑛𝑖𝑛𝑔 moves free vertices (𝑉) of an input mesh (𝑀). It iter-
ates an inner loop while a minimum of the objective function
(𝐾) is being reached by using a numerical method (𝑁𝑀). 𝐾
is constructed with 𝐴, 𝑓 and 𝑞. 𝐿𝑜𝑔𝑖𝑐𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 uses termi-
nation criteria (𝑇 𝐶) to stop the algorithm. The outer loop
is iterated in 𝑀𝑎𝑖𝑛 procedure while 𝐿𝑜𝑔𝑖𝑐𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is not
true. In each outer iteration, the spatial coordinates of all
free vertices (𝑋𝑉) are updated, and so a mesh sweep is imple-
mented. 𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 provides the average and minimum
mean-ratio quality metric of the mesh [6]. At the end of the
algorithm, an optimized mesh is obtained.

2.2 MPI algorithm
Algorithm 2 shows a generalized VrPA for distributed-memory
computers that is similar to others [8, 17]. The input is a set
of 𝑛𝐶 files, one for each mesh partition, 𝑃𝑖. Every partition
includes spatial coordinates of vertices and information of
element edges. A partitioning tool is used to obtain these
files from the file with information of a mesh, 𝑀 .

The mesh is partitioned by assigning each vertex to one
partition. In this way, the number of send and receive MPI
messages between parallel processes is minimized. Each par-
tition is required to additionally include information of all
vertices of elements where at least one vertex is assigned to

Algorithm 1 - Sequential mesh vertex repositioning algorithm.
1: ◁ Input: file with information of M mesh
2: #define: approach (𝐴), formulation (𝑓), quality metric (𝑞), numerical

minimization method (𝑁𝑀)
3: #define termination criteria: 𝑇 𝐶 = 𝐿𝑜𝑔𝑖𝑐𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑄𝑚𝑖𝑛, ∆𝑄, ∆𝑄𝑚𝑖𝑛)
4: #define constants: 𝜏 = 10−6 (maximum increase),𝑁𝑚𝑎𝑥𝐼𝑛𝐼𝑡𝑒𝑟 = 150

(maximum number of inner iterations),𝑁𝑚𝑎𝑥𝑂𝑢𝑡𝐼𝑡𝑒𝑟 = 100 (maximum
number of outer iterations)

5: 𝑁𝑒 ← 0 ◁ Global variable: number of mesh element evaluations
6: procedure VertexRepositioning(𝑊, 𝑋, 𝑛)
7: ◁𝐼𝑛𝑝𝑢𝑡𝑠 : 𝑊 (free vertices),𝑋(their coordinates),𝑛(number of elements)
8: ◁ 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 : 𝐾 = 0, ∆𝐾 = 0, 𝑚 = 0 (inner loop index)
9: while ∆𝐾 ≤ 𝜏 and 𝑚 ≤ 𝑁𝑚𝑎𝑥𝐼𝑛𝐼𝑡𝑒𝑟 do ◁ Inner loop

10: �̂� ← 𝑋 ◁ Returned spatial coordinates (�̂�) of vertices (𝑊)
11: ◁ 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 : 𝑃 ← 0 ◁ Moving directions: 𝑃 = {𝑝𝑣}, 𝑣 ∈ 𝑊
12: for 𝑖 = 1, . . . , 𝑛 do ◁ 𝑛: number of free elements
13: for each free vertex 𝑣 𝑜𝑓 𝑖𝑡ℎ 𝑓𝑟𝑒𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 do
14: 𝑝𝑣 += NM(𝑓 ′(𝑞𝑖),𝑣) ◁ 𝑓 ′: derivatives used in NM
15: 𝑁𝑒 + = 1 ◁ Number of mesh element evaluations
16: 𝑋 ← �̂� + 𝑃 ◁ Tentative positions of free vertices
17: 𝐾𝑡 ← 0 ◁ Initial value of objective function
18: for 𝑖 = 1, . . . , 𝑛 do
19: 𝐾𝑡 += 𝑓(𝑞𝑖) ◁ MESH ELEMENT EVALUATION
20: 𝑁𝑒 + = 1 ◁ Number of mesh element evaluations
21: ∆𝐾 ← 𝐾𝑡 −𝐾
22: 𝐾 ← 𝐾𝑡 ◁ Final value of objective function
23: 𝑚 + = 1 ◁ Number of inner iterations
24: return �̂� ◁ Output: updated coordinates of free vertices
25: procedure main()
26: ◁ Read the vertex and element information of M mesh
27: 𝑄𝑚𝑖𝑛 ← GlobalMeasures(𝑀) ◁ Minimum quality of input mesh
28: ◁ 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 : ∆𝑄 = 106, ∆𝑄𝑚𝑖𝑛 = 106, 𝑘 = 0 (loop index)
29: while 𝑇 𝐶 , 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑘 ≤ 𝑁𝑚𝑎𝑥𝑂𝑢𝑡𝐼𝑡𝑒𝑟 do ◁ Outer loop
30: if 𝐴 = 𝐺𝑙 then ◁ 𝐺𝑙 : all-vertex approach
31: 𝑋𝑉 ← VertexRepositioning(𝑉, 𝑋𝑉 , 𝑁𝑀)
32: else ◁ 𝐿𝑜 : single-vertex approach
33: for each free vertex 𝑣 ∈𝑀 do
34: 𝑥𝑣 ← VertexRepositioning(𝑣, 𝑥𝑣 , 𝑁𝑣)
35: (𝑄𝑚𝑖𝑛, ∆𝑄, ∆𝑄𝑚𝑖𝑛)← GlobalMeasures(M)
36: 𝑘 + = 1 ◁ Number of mesh/outer iterations
37: ◁ Output: file with information of optimized M mesh

Performance model for mesh optimization EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

Algorithm 2 - Parallel mesh vertex repositioning algorithm.
1: ◁ Input: files with information of 𝑃𝑖 partitions, 𝑃𝑖 ← Partition(M)
2: ◁ Defines and subroutines as in Algorithm 1
3: 𝑁𝑒,𝑖 ← 0 ◁ element evaluations for partitions 𝑃𝑖, 𝑖 ∈ {1, . . . , 𝑛𝐶}
4: procedure main()
5: for 𝑃𝑖 ∈𝑀 in parallel do ◁ Parallel phase 1: begin
6: ◁ Read the vertex and element information of 𝑃𝑖 partition
7: 𝐼𝑖 ← BoundaryColoring(𝑃𝑖)
8: ◁ 𝐼𝑖 = {𝐼𝑖𝑗}𝑗∈{1..𝑛𝐹𝑖},𝑖∈{1..𝑛𝐶}
9: MPI_Send-MPI_Receive information of boundary/ghost vertices

10: ◁ Store the order of partition free boundary/ghost vertices
11: 𝑄𝑚𝑖𝑛,𝑖 ← GlobalMeasures(𝑃𝑖) ◁ Initial partition quality
12: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 MPI_Allreduce ◁ Parallel phase 1: end
13: for 𝑃𝑖 ∈𝑀 in parallel do
14: ◁ 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 : ∆𝑄𝑖 = 106, ∆𝑄𝑚𝑖𝑛,𝑖 = 106, 𝑘𝑖 = 0 (loop index)
15: while 𝑇 𝐶 , 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑘𝑖 ≤ 𝑁𝑚𝑎𝑥𝑂𝑢𝑡𝐼𝑡𝑒𝑟 do ◁ Outer loop
16: if 𝐴 = 𝐺𝑙 then ◁ Par. pha. 2 - Interior processing: begin
17: 𝑋𝑉 ← VertexRepositioning(𝑉, 𝑋𝑉 , 𝑁𝑀)
18: else ◁ 𝐴 = 𝐿𝑜 (single-vertex)
19: for each free interior vertex 𝑣 ∈ 𝑃𝑖 do
20: 𝑥𝑣 ← VertexRepositioning(𝑣, 𝑥𝑣, 𝑁𝑣)
21: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 MPI_Barrier ◁ Parallel phase 2: end
22: ◁ Parallel phase 3: begin
23: for each boundary independent-set 𝐼𝑖𝑗 ∈ 𝑃𝑖 do
24: for each free boundary vertex of partition 𝑣 ∈ 𝐼𝑖𝑗 do
25: 𝑥𝑣 ← VertexRepositioning(𝑣, 𝑥𝑣, 𝑁𝑣)
26: MPI_Send-MPI_Receive 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑥𝑣

27: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 MPI_Barrier ◁ All boundary vertices
28: (𝑄𝑚𝑖𝑛,𝑖, ∆𝑄𝑖, ∆𝑄𝑚𝑖𝑛,𝑖) ← GlobalMeasures(𝑃𝑖)

29: 𝑘𝑖 + = 1
30: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 MPI_Allreduce ◁ Parallel phase 3: end
31: MPI_Send-MPI_Receive 𝑁𝑒,𝑖

32: ◁ Output: files with information of optimized 𝑃𝑖 partitions

that partition. The boundary of a partition is constituted by
shared elements, each of them is formed by vertices assigned
to that partition and at least to another partition.

In each mesh partition, vertices are classified as interior,
non-ghost boundary (or simply, boundary), ghost or fixed.
Interior vertices form elements whose all vertices belong
to that partition. Boundary vertices form shared elements
where at least one vertex belongs to another partition. Ghost
vertices are these vertices that belong to other partitions.
Thus, ghost vertices are replicated in shared partitions.

Each partition is assigned to a different MPI process that
optimizes interior and boundary vertices but not ghost ver-
tices. The numerical processing is divided into three parallel
phases. The first phase is implemented in lines 5 to 12. It is
used only once to prepare the processing of vertices laying
on the partition boundaries in phase 3.

When a boundary vertex is being repositioned in phase 3,
the numerical method needs the coordinates of all connected
vertices that should remain fixed. Computational dependency
appears between adjacent boundary and ghost vertices be-
cause one vertex begins to be processed after another has
been repositioned. Thus, vertices of shared elements cannot
be optimized in parallel.

BoundaryColoring divides the boundary of a partition
(𝑃𝑖) into 𝑛𝐹 independent sets (𝐼𝑖𝑗), also called colors (line
7) [3]. After that, the order of processing and interchange
of boundary and ghost vertices is established. The resulting
orderings are interchanged among shared partitions (line 9).

Finally, a list with the order of boundary and ghost vertices
is created in line 10. This list determines the order in which
these vertices are optimized in the MPI process or received

from other MPI processes in phase 3. Interior vertices do not
need to be reordered because all adjacent vertices are assigned
to the same MPI process. Using the function MPI_Allreduce
at the end of phase 1, a synchronization barrier ensures that
all partitions have completed these steps before continuing
computation (line 12).

In each mesh sweep, also called outer or mesh iteration,
all interior and boundary vertices are optimized separately
in parallel phases 2 (lines 16. . . 21) and 3 (lines 22. . . 30),
respectively, adjusting the spatial coordinates 𝑥𝑣 of each free
vertex v. The optimization method is the same as Algorithm 1
(lines 17, 20, 25). Thus, the parallel performance is based on
the performance of the underlying serial numerical method.

Interior vertices of every partition are not dependent on
vertices of other partitions and are sequentially optimized by
the same MPI process. In this way, the interior vertices of
all partitions are optimized in parallel. A single synchroniza-
tion phase among partitions is established to ensure that all
interior vertices are completely repositioned (line 21).

For partition boundaries, some independent sets of free ver-
tices from different partitions (𝐼𝑖𝑗) are optimized in parallel.
After an independent set has been optimized, the interchange
of updated coordinates is implemented using send/receive
MPI functions (line 26). These computation-synchronization-
communication phases are repeated until all boundary ver-
tices have been optimized (lines 23. . . 26).

When all boundary vertices have been updated (line 27),
the minimum quality metrics of all partitions are calculated
and distributed (lines 28. . . 30) and the mesh sweep finishes.
At this moment, a new mesh sweep may begin if convergence
conditions are not met (line 15). After a variable number of
mesh sweeps, the output of our parallel algorithm provides
optimized mesh partitions (line 32).

3 EXPERIMENTAL SETUP
We developed programs that include double-precision floating-
point data structures and functions from MPI and the Mesqui−
𝑡𝑒 C++ library [4], which is specialized in mesh smoothing.
𝑀𝑒𝑠𝑞𝑢𝑖𝑡𝑒 was extended to support hS and MQ quality met-
rics, log1 , log2 and inv objective function formulations and
TC2 termination criterion (see Table 1). We used Open MPI
(3.1.0, 1.6.5), and gcc (4.4.7, 4.8.4) with -O2 flag on 𝐿𝑖𝑛𝑢𝑥
systems. A pure sequential version was selected for baseline
runs. For each VrPA configuration, we repeated the execution
of the sequential and parallel programs several times, such
that the 95% confidence interval was lower than 1%.

Algorithms 1 and 2 were applied to the meshes shown
in Figure 1 whose characteristics are in Table 2. The 2D
mesh was obtained by using Gmsh tool [9], taking a square,
meshing with triangles and displacing selected nodes of the
boundary. This type of tangled mesh can be found in some
problems with evolving domains [12]. All 3D meshes were
obtained from a tool for adaptive tetrahedral mesh generation
that tangles the mesh [14]. All the mesh sizes were always
fixed, and we used 𝑀𝑒𝑡𝑖𝑠 5.1.0 for mesh partitioning [11].

Numerical experiments were conducted on two cluster com-
puters called Cluster1 and Cluster2 that are in two different

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain D. Benitez et al.

Table 2: Characteristics of the input meshes. All meshes have inverted elements: 𝑄𝑚𝑖𝑛=0.
Mesh characteristic Square Toroid Screwdriver Egypt

Total vertices 3314499 9176 39617 1724456
Free vertices (they can be moved) 3309498 3992 21131 1616442

Fixed vertices (they are not moved) 5001 5184 18486 108014
Element type: triangle (2D), tetrahedron (3D) 2D 3D 3D 3D

Total free elements (𝑁𝑀) 6620936 35920 168834 10013858
Inverted/Tangled elements (%) 0.1% 38.2% 49.4% 46.2%

Average mean-ratio quality metric (𝑄) 0.953 0.171 0.130 0.230
Standard deviation of the mean-ratio metric (𝜎𝑄) 0.047 0.312 0.214 0.268

Input meshes (unstructured, tangled, fixed-size)

Output optimized meshes using VrPA configuration:
Gl-D1-hS-SD-TC2

(a) Square(2D) (b) Toroid(3D) (c) Screwdr.(3D) (d) Egypt(3D)

Figure 1: Input and output meshes for four optimization prob-
lems solved with the same VrPA algorithm.

locations. Cluster1 is a Bull computer with 28 compute nodes
that are organized in 7 BullxR424E2 servers. They are inter-
connected with Infiniband QDR 4X (32 Gbit/s). Each node
integrates two Intel Xeon E5645 (6 Westmere-EP cores each,
2.4 GHz), and 48 GB of DDR3/1333 MHz ECC RAM. So,
up to 336 cores were used in parallel. The storage system is a
RAID-5 disk array consisting of 7200 RPM SATA2 disk drives.
All compute nodes share a common file system through NFS
over a gigabit Ethernet LAN. Cluster2 is a Fujitsu computer
that has the same type of network, storage and file system
as Cluster1 but only four compute nodes (Primergy CX250)
with 16 Sandy Bridge-EP E5-2670@2.6GHz cores and 32 GB
of DDR3/1600 ECC RAM per node. We activated multiples
of 12 or 16 cores to completely occupy the compute nodes.
During the experiments, the compute nodes were not shared
among other user-level workloads. Additionally, multithread-
ing and Turbo Boost were disabled.

4 SEQUENTIAL PERFORMANCE
The first performance model proposed in this work for sequen-
tial VrPA algorithms tries to justify their execution times.
Using Cluster1 , Figure 2 shows the execution times of 68 se-
quential algorithms for mesh untangling. Except for the TC1
convergence criterion, the input mesh and rest of VrPA pa-
rameters are free. Note that not all parameter combinations
are depicted. It is due to the existence of inverted elements
in the output meshes; i.e., TC1 is not met.

Some authors have shown that the execution time of VrPA
algorithms is directly proportional to mesh size [18]. This
is true only when the VrPA configuration is fixed and the
total numbers of inner and outer iterations are both fixed.
Figure 3(a) shows a graph of mesh size versus time that
was obtained from the above-mentioned configurations that
successfully untangle a mesh. Note that 11 symbols are used

to represent 68 performance results. The same symbol repre-
sents the results derived from configurations that employed
different solvers (⟨𝑁𝑀⟩={CG, SD}), were applied to distinct
meshes and fixed the rest of the parameters. Taking the 68
configurations, the correlation between time and mesh size
taken in the linear scale is 𝑟=0.43. Fixing the TC1 conver-
gence criterion does not limit generality as results for TC2
have similar correlation coefficient.

4.1 The number of mesh element evaluations
𝑁𝑒 in Algorithm 1 is called number of mesh element eva-
luations and takes into account multiple evaluations of an
element quality metric and its derivative. This measure in-
volves computing the separable but not independent parts
of objective function evaluations. Although not exactly the
same definition, mesh element evaluation is similar to the
concurrent function evaluation step defined in [19] for identi-
fying parallelism opportunities in finite difference gradients.

Figure 3(b) shows a graph of 𝑁𝑒 versus time for the above
mentioned 68 VrPA configurations. In this case, the corre-
lation coefficient between time and 𝑁𝑒 taken in the linear
scale is 𝑟=0.94. Therefore, execution time is more directly
proportional to mesh element evaluations than mesh size.

It is important to note that 𝑁𝑒 is not very intrusive and
depends not only on the problem size but also on the number
of inner and outer iterations required to meet the convergence
criteria. If 𝑁𝑒 was known before computation, the execution
time of a VrPA algorithm could be predicted. Estimating 𝑁𝑒

a priori is a difficult and open problem since it depends in a

Lo
-D

1-
hS

-C
G-

TC
1

Lo
-D

2-
hS

-C
G-

TC
1

Lo
-lo

g1
-h

S-
CG

-T
C1

Lo
-in

v-
hS

-C
G-

TC
1

Lo
-D

1-
hS

-S
D-

TC
1

Lo
-D

2-
hS

-S
D-

TC
1

Lo
-lo

g1
-h

S-
SD

-T
C1

Gl
-D

1-
hS

-C
G-

TC
1

Gl
-D

2-
hS

-C
G-

TC
1

Gl
-in

v-
hS

-C
G-

TC
1

Gl
-D

1-
hS

-S
D-

TC
1

Gl
-D

2-
hS

-S
D-

TC
1

Gl
-in

v-
hS

-S
D-

TC
1

VrPA CONFIGURATION

104

TI
M

E
[s

]

(a) Square

Lo
-D

1-
hS

-C
G-

TC
1

Lo
-D

2-
hS

-C
G-

TC
1

Lo
-lo

g1
-h

S-
CG

-T
C1

Lo
-in

v-
hS

-C
G-

TC
1

Lo
-D

1-
TU

-C
G-

TC
1

Lo
-lo

g2
-M

Q-
CG

-T
C1

Lo
-D

1-
hS

-S
D-

TC
1

Lo
-D

2-
hS

-S
D-

TC
1

Lo
-lo

g1
-h

S-
SD

-T
C1

Lo
-in

v-
hS

-S
D-

TC
1

Gl
-D

1-
hS

-C
G-

TC
1

Gl
-D

2-
hS

-C
G-

TC
1

Gl
-lo

g1
-h

S-
CG

-T
C1

Gl
-in

v-
hS

-C
G-

TC
1

Gl
-D

1-
hS

-S
D-

TC
1

Gl
-D

2-
hS

-S
D-

TC
1

Gl
-lo

g1
-h

S-
SD

-T
C1

Gl
-in

v-
hS

-S
D-

TC
1

VrPA CONFIGURATION

102

104

TI
M

E
[s

]

(b) Toroid

Lo
-D

1-
hS

-C
G-

TC
1

Lo
-D

2-
hS

-C
G-

TC
1

Lo
-lo

g1
-h

S-
CG

-T
C1

Lo
-in

v-
hS

-C
G-

TC
1

Lo
-D

1-
TU

-C
G-

TC
1

Lo
-lo

g2
-M

Q-
CG

-T
C1

Lo
-D

1-
hS

-S
D-

TC
1

Lo
-D

2-
hS

-S
D-

TC
1

Lo
-lo

g1
-h

S-
SD

-T
C1

Lo
-in

v-
hS

-S
D-

TC
1

Lo
-lo

g2
-M

Q-
SD

-T
C1

Gl
-D

1-
hS

-C
G-

TC
1

Gl
-D

2-
hS

-C
G-

TC
1

Gl
-lo

g1
-h

S-
CG

-T
C1

Gl
-in

v-
hS

-C
G-

TC
1

Gl
-D

1-
hS

-S
D-

TC
1

Gl
-D

2-
hS

-S
D-

TC
1

Gl
-lo

g1
-h

S-
SD

-T
C1

Gl
-in

v-
hS

-S
D-

TC
1

VrPA CONFIGURATION

103

2 × 102

3 × 102
4 × 102

6 × 102

TI
M

E
[s

]

(c) Screwdriver

Lo
-D

1-
hS

-C
G-

TC
1

Lo
-D

2-
hS

-C
G-

TC
1

Lo
-lo

g1
-h

S-
CG

-T
C1

Lo
-in

v-
hS

-C
G-

TC
1

Lo
-D

1-
TU

-C
G-

TC
1

Lo
-lo

g2
-M

Q-
CG

-T
C1

Lo
-D

1-
hS

-S
D-

TC
1

Lo
-D

2-
hS

-S
D-

TC
1

Lo
-lo

g1
-h

S-
SD

-T
C1

Lo
-in

v-
hS

-S
D-

TC
1

Lo
-lo

g2
-M

Q-
SD

-T
C1

Gl
-D

1-
hS

-C
G-

TC
1

Gl
-lo

g1
-h

S-
CG

-T
C1

Gl
-in

v-
hS

-C
G-

TC
1

Gl
-D

1-
TU

-C
G-

TC
1

Gl
-D

1-
hS

-S
D-

TC
1

Gl
-lo

g1
-h

S-
SD

-T
C1

Gl
-in

v-
hS

-S
D-

TC
1

VrPA CONFIGURATION

104

TI
M

E
[s

]

(d) Egypt
Figure 2: Performance of mesh untangling algorithms.

Performance model for mesh optimization EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

4.5 5.0 5.5 6.0 6.5 7.0
log(MESH SIZE [elements])

1

2

3

4

5

lo
g(

 E
XE

CU
TI

ON
 T

IM
E

[s
])

LOG-LOG regression line
 Lo-D1-hS-<NM>-TC1
 Lo-D2-hS-<NM>-TC1
 Lo-log1-hS-<NM>-TC1
 Lo-inv-hS-<NM>-TC1
 Lo-D1-TU-<NM>-TC1
 Lo-log2-MQ-<NM>-TC1
 Gl-D1-hS-<NM>-TC1
 Gl-D2-hS-<NM>-TC1
 Gl-log1-hS-<NM>-TC1
 Gl-inv-hS-<NM>-TC1
 Gl-D1-TU-<NM>-TC1

(a) Mesh size vs. time, 𝑟=0.43

7 8 9 10 11
log(MESH ELEMENT EVALUATIONS)

1

2

3

4

5

lo
g(

 E
XE

CU
TI

ON
 T

IM
E

[s
])

LOG-LOG regression line
 Lo-D1-hS-<NM>-TC1
 Lo-D2-hS-<NM>-TC1
 Lo-log1-hS-<NM>-TC1
 Lo-inv-hS-<NM>-TC1
 Lo-D1-TU-<NM>-TC1
 Lo-log2-MQ-<NM>-TC1
 Gl-D1-hS-<NM>-TC1
 Gl-D2-hS-<NM>-TC1
 Gl-log1-hS-<NM>-TC1
 Gl-inv-hS-<NM>-TC1
 Gl-D1-TU-<NM>-TC1

(b) Element evaluations vs. time, 𝑟=0.94

Figure 3: Scalability of mesh untangling algorithms (TC1).

non-deterministic way on all VrPA parameters considered in
this work. However, this measure can be used in practice to
quantitatively justify real performance and fine-tune parallel
programs. We will use the number of element evaluations as
workload measure in two new performance models.

5 SEQUENTIAL PERFORMANCE MODEL
Taking the findings of the previous section, we use a sim-
ple one-parameter model to understand the performance of
sequential VrPA algorithms,

𝑡𝑆𝑚𝑜𝑑𝑒𝑙
𝐶𝑃 𝑈 = 𝛼 𝑁𝑒 (1)

with 𝑡𝑆𝑚𝑜𝑑𝑒𝑙
𝐶𝑃 𝑈 the execution time, 𝑁𝑒 the number of mesh

element evaluations and 𝛼 the model parameter that repre-
sents the time per element evaluation. Equation 1 assumes
that computation time is much larger than total input/output
time. In this way, the time to optimize a mesh is directly
proportional to the number of element evaluations.

This model may justify previous experimental observa-
tions where more element evaluations cause usually larger
runtimes. However, there are VrPA configurations with fewer
element evaluations than others that require more runtime
(see Figure 3(b)). This is due to the fact that each VrPA
configuration causes a different time per element evaluation.

5.1 Model application and accuracy
To check the accuracy of this model, we used the 68 VrPA
configurations that met the TC1 convergence criterion. Ran-
domly chosen, half of the configurations were used to obtain 𝛼.

Table 3: Relative errors of the sequential performance model.
CPU: E5645 CPU: E5-2670

Free VrPA parameter Mean Max Mean Max
Approach (𝐴) 0.28 0.61 0.19 0.61

Formulation (𝑓) 0.07 0.12 0.06 0.17
Quality metric (𝑞) 0.05 0.10 0.05 0.11

Numerical method (𝑁𝑀) 0.08 0.17 0.08 0.16
Convergence criteria (𝑇 𝐶) 0.01 0.02 0.01 0.21

Mesh 0.07 0.20 0.09 0.41

We calculated for each configuration the ratio of time to ele-
ment evaluations: 𝛼 = 𝑡𝑆𝑟𝑒𝑎𝑙

𝐶𝑃 𝑈 /𝑁𝑒. After averaging the results,
𝛼 was 6.7 10−7 and 4.9 10−7 [sec/elem] when E5645 and
E5-2670 CPUs were used, respectively. The relative errors of
estimates were obtained with the other half of configurations.
The average errors were 0.27 (E5645) and 0.34 (E5-2670).

We extended this accuracy analysis by setting free only
one of the five VrPA parameters (see Table 1) or the input
mesh. For this experiment, we analyzed a total of 136 VrPA
configurations that met the convergence criteria TC1 or TC2.

Taking groups of configurations that have one free and five
fixed VrPA parameters, we obtained a mean time per element
evaluation (𝛼) in each group. Then, we compared the time
provided by our model (Eq.1) with the real execution time
(𝑡𝑆𝑟𝑒𝑎𝑙

𝐶𝑃 𝑈) of every configuration in each group. For each free
parameter, the mean and maximum relative errors using the
above-mentioned CPUs are shown in Table 3.

The errors are caused by the variability in 𝛼 of the VrPA
configurations that constitute each group. The largest vari-
ability about the mean occurs when the approach parameter is
free. Our model fits best when it is applied to a specific VrPA
algorithm and mesh. Moreover, our results indicate that the
model parameter (𝛼) depends on the processor architecture.
This one-parameter model is the basis of the performance
model for parallel VrPA algorithms that is described below.

6 PARALLEL PERFORMANCE MODEL
In this section, we describe a new performance model to jus-
tify the parallel runtimes of Algorithm 2 for a selected VrPA
configuration on a determined distributed-memory computer.
This model uses the time per mesh element evaluation (𝛼)
that is obtained from the sequential execution of the same
configuration using Algorithm 1. Then, selecting one VrPA
configuration and using Equation 1,

𝛼 =
𝑡𝑆𝑟𝑒𝑎𝑙
𝐶𝑃 𝑈

𝑁𝑒
(2)

We assume that this model parameter is constant for all
parallel experiments that use the same VrPA configuration
and cluster computer. Since there is an MPI barrier between
the repositioning of interior and partition boundary vertices,
Equation 3 models the parallel execution time that is divided
into two components, one for optimizing interior vertices and
the other for partition boundary vertices,

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝐶𝑃 𝑈 = 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙

𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 + 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (3)

In this case, we have assumed that the execution time for
the mesh partitioning phase and parallel phase 1 are negligible

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain D. Benitez et al.

with respect to parallel phases 2 and 3. The parallel time for
interior vertices is expressed as a sum of two components,

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙

𝑠𝑐𝑎𝑙𝑎𝑏𝑙𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 + 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 (4)

where the first term denotes the scalable interior paralle−
lism. If the workload was evenly distributed among 𝑛𝐶 MPI
processes, the total workload for optimizing interior vertices
in all partitions (𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟) would be divided by 𝑛𝐶,

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑠𝑐𝑎𝑙𝑎𝑏𝑙𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛼

𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

𝑛𝐶
(5)

The second component of Equation 4, called interior
imbalance, measures the additional time required by the most
loaded partition when the workload for processing interior
vertices is not evenly distributed. It is given by Equation 6,
where 𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟,𝑚𝑎𝑥 is the maximum number of interior
element evaluations of a partition.

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛼

(︁
𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟,𝑚𝑎𝑥 −
𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

𝑛𝐶

)︁
(6)

The values of 𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and 𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟,𝑚𝑎𝑥 for Equa-
tions 5 and 6 are measured at the end of the parallel execution.
The time needed to optimize all partition boundary vertices
has four terms,

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙

𝑠𝑐𝑎𝑙𝑎𝑏𝑙𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 +

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑠𝑦𝑛𝑐ℎ𝑟𝑜,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + 𝑡𝑃 𝑚𝑜𝑑𝑒𝑙

𝑐𝑜𝑚𝑚,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (7)

Scalable boundary parallelism (Equation 8) assumes that
the workload of boundary vertices (𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) is evenly
distributed among 𝑛𝐶 partitions.

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑠𝑐𝑎𝑙𝑎𝑏𝑙𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝛼

𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑛𝐶
(8)

Boundary imbalance (Equation 9) measures the additional
time needed by the most loaded partitions when workloads
of the 𝑛𝐹 independent sets are not evenly distributed,

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝛼

(︁ 𝑛𝐹∑︁
𝑗=1

𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑗,𝑚𝑎𝑥 −

−
𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑛𝐶

)︁
(9)

where 𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑗,𝑚𝑎𝑥 is the maximum number of el-

ement evaluations of the 𝑗 independent-set of a partition.
𝑁𝑃 𝑚𝑜𝑑𝑒𝑙

𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 and the accumulated value (
∑︀

𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑗,𝑚𝑎𝑥)

in Equations 8 and 9 are obtained at the end of parallel exe-
cution for a given number of partitions (𝑛𝐶).

Synchronization (Eq. 10) assumes that all partitions can-
not optimize boundary vertices concurrently in phase 3. It
is due to the vertex dependence imposed by the process-
ing and interchange order of boundary and ghost vertices
that is determined in phase 1. In this term of the model,
the scalable workload of boundary processing is factored
with (𝑛𝐶 − 𝑛𝐶′)/𝑛𝐶′, where 𝑛𝐶′ is the number of partitions
that actually are optimizing vertices concurrently in phase
3 (0 < 𝑛𝐶′ ≤ 𝑛𝐶). As fewer opportunities for parallelism

are available in the boundary phase, 𝑛𝐶′ will reduce and the
modeled effect causes an increase in execution time. 𝑛𝐶′ is
obtained by averaging the number of partitions that finish a
vertex reposition between another partition terminates two
consecutive repositioning of boundary vertices.

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑠𝑦𝑛𝑐ℎ𝑟𝑜,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =

𝛼 𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑛𝐶

𝑛𝐶 − 𝑛𝐶′

𝑛𝐶′
(10)

Equation 11 measures the MPI communication overhead
of boundary processing using a two-parameter model for
SMP nodes working in the short regime [10]. This equation
has two terms times the number of outer iterations (𝑘). The
first term represents the communication latency, which is
modeled as the network latency (𝐿𝐴𝑇) times the number of
data block communications (2 𝛽 𝑛𝐹) during a single outer
iteration. 𝛽 denotes the total number of edges of a new graph
that represents which partitions share boundary elements.
An edge represents the boundary between two partitions.
Neighboring partitions are represented by adjacent vertices.
An MPI communication is performed through each edge of
this graph after processing an independent set. 𝑛𝐹 denotes
the average number of independent sets per partition that is
obtained in phase 1.

𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝑐𝑜𝑚𝑚,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑘

(︁
𝐿𝐴𝑇 2 𝛽 𝑛𝐹 +

+
32 (𝛾 − 1) 𝑛𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝐵𝑊

)︁
(11)

The other term is data transmission time, where 𝐵𝑊 de-
notes the data rate that each process can achieve in sending
or receiving a message. The effective rate is dependent on the
transmitted data size. However, we assume this parameter is
constant because the variability of message sizes is small and
computing time significantly exceeds communication time.
For each vertex, we use a 32-byte block to send/receive spa-
tial coordinates and global ID. 𝛾 denotes the average number
of partitions that share the same vertex, and 𝑛𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 the
number of free boundary vertices of all partitions. 𝐿𝐴𝑇 was
determined by performing an MPI latency timing test in both
clusters: 𝐿𝐴𝑇 = 2 10−6𝑠𝑒𝑐. 𝐵𝑊 was obtained using code
instrumentation and performing an MPI bandwidth test. At
first, we measured the average size of MPI messages for each
VrPA configuration and number of partitions. Then, 𝐵𝑊 was
assigned the average bandwidth provided by the MPI test for
each message size. In our experiments, 𝐵𝑊 ranged from 0.36
to 18.0 Gbit/sec in both clusters. The rest of the parameters,
𝛽, 𝛾 and 𝑛𝑉𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 , are obtained from the partitions of the
input mesh at the end of the partitioning phase.

7 VALIDATION OF THE PARALLEL MODEL
The point of this section is to validate the parallel model
using different VrPA parameters, meshes and number of MPI
processes. Our experiments involved a total of 136 configura-
tions, half of them met the TC1 convergence criterion, and
the other half met TC2. Due to lack of space and the number
of parallel results, we have selected four configurations. Since
the performance of sequential algorithms was explained using
mesh untangling problems (TC1), the selected configurations

Performance model for mesh optimization EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

simultaneously untangle and smooth meshes (TC2). The rest
of parameters cover most of the choices shown in Table 1.

Figures 4 and 5 show results that were obtained from
Clusters 1 and 2 , respectively. The resulting execution times
(𝑡𝑃 𝑟𝑒𝑎𝑙

𝐶𝑃 𝑈) are compared to the predictions of our parallel model
(𝑡𝑃 𝑚𝑜𝑑𝑒𝑙

𝐶𝑃 𝑈). In these tests, the numbers of partitions, MPI
processes and CPU cores had the same value. We include
results obtained using partitions that activated all cores of
different subsets of compute nodes. Thus, each bar diagram
shows execution times for numbers of cores that are multiple
of 12 (𝐶𝑙𝑢𝑠𝑡𝑒𝑟1) or 16 (𝐶𝑙𝑢𝑠𝑡𝑒𝑟2).

On average, the mean relative errors of our parallel model
in the estimation of the times obtained from 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1 and
𝐶𝑙𝑢𝑠𝑡𝑒𝑟2 were 0.027 and 0.031, respectively. This discrepancy
can be explained by the inaccuracy introduced when 𝑛𝐶′

and
∑︀

𝑗 𝑁𝑃 𝑚𝑜𝑑𝑒𝑙
𝑒,𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑗,𝑚𝑎𝑥 were obtained. Another source of

inaccuracy is introduced by 𝛼 that may be slightly different
between parallel and sequential processing. In the next sec-
tion, the parallel model is employed to study the performance
scalability, load balancing and overheads of VrPA algorithms.

8 MPI PERFORMANCE ANALYSIS
Figure 6 shows stacked column graphs for the times provided
by our parallel model when 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1 was used to run Algo-
rithm 2. Every single column is divided into six sections that
are grouped into four categories called scalable parallelism,
imbalance, synchronization and communication. Next, these
results are analyzed and discussed. Due to lack of space in
this paper, the analysis of categories only considers results
obtained from 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1.

Scalable parallelism includes runtimes for optimizing inte-
rior and boundary vertices if the sequential workloads were
evenly distributed over all MPI processes (Eq. 5 & 8). These
times are represented in Figure 6 by the two bottom columns
denoted as Inter-Scaling and Boun-Scaling, respectively.

As the number of processes increases in strong scaling
when a mesh is optimized, we can observe that the time
devoted to this category reduces. It is due to the fact that we
are solving fixed-size problems and the element evaluations
in each partition reduce. Note in Figure 6 that the fraction of
time in scalable parallelism also reduces, which means that
overheads are more relevant. However, the fraction of time
in boundary optimization tends to increase because the ratio
of boundary to interior element evaluations increases when
the number of partitions increases.

Another increasing trend is observed when problems of
different sizes are compared for a given number of cores. For
example, using 324 cores in 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, note that the fraction of
time in scalable parallelism is 25% for Screwdriver mesh, 68%
for Egypt mesh and 78% for Square mesh. Since for 324 cores
Screwdriver requires fewer element evaluations than Egypt
and Egypt fewer element evaluations than Square (1.8 109,
2.5 1010, 1.1 1011, respectively), the workload distributed
among partitions is lower for Screwdriver than for Egypt,
which is lower than for Square. Thus, VrPA algorithms cannot
compensate for the parallel overheads when Screwdriver is

optimized as much as when Egypt or Square are optimized. In
general, this performance category is associated with parallel
efficiency, which depends mainly on the fraction of time
occupied by mesh element evaluations perfectly balanced.

Load imbalance (Eq. 6 & 9) is another category that in-
cludes the execution times due to processor overload during
vertex repositioning when the element evaluations are not well
balanced (see Inter-Imbalance and Boun-Imbalance in Fig. 6).
Although the load imbalance cost decreases as the number of
partitions for a given problem increase because the elements
evaluations per partition decrease, its percentage relevance
tends to be larger. It is due to the less homogeneous distri-
bution of workload that is assigned by the mesh partitioning
tool. Note that this tool distributes vertices and elements
among partitions but it does not know in advance how many
mesh elements evaluations will be completed. For our largest
problems, Square and Egypt, this overhead category is the
major cause of the parallel bottleneck. For example, using
324 cores in 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, load imbalance is responsible for 11%
and 19% of the total runtime, respectively.

Synchronization (Eq. 10) includes the overheads caused by
the independent sets of partition boundary vertices that have
to be processed in the order determined in parallel phase 1.
Note in Figure 6 that, as the number of MPI processes (𝑛𝐶)
increases, the percentage relevance of this category tends to
be larger in all of our optimization problems. It is due to the
number of processes that concurrently reposition partition
boundary vertices (𝑛𝐶′), which increases less than the num-
ber of partitions. This percentage relevance is also affected
by the increasing ratio of boundary to interior element evalu-
ations, which is larger, as described above when the number
of MPI processes increases.

Another effect of synchronization overhead can be observed
when problems of different sizes are compared for a given
number of partitions. Taking any number of partitions, the
percentage relevance of this category is larger for Toroid and
Screwdriver than Square and Egypt. It is due to that 𝑛𝐶′

tends to reduce when the number of boundary element evalu-
ations reduces. So, the factor of our model (𝑛𝐶 − 𝑛𝐶′)/𝑛𝐶′

is larger. The modeled effect is concordant with fewer op-
portunities for parallelism when the concurrent boundary
element evaluations reduce. Moreover, although the number
of boundary elements evaluations is smaller in Toroid and
Screwdriver than Square and Egypt for a given number of
partitions, the ratio of boundary to interior element evalu-
ations is larger in Toroid and Screwdriver than Square and
Egypt. Thus, the percentage relevance of synchronization is
also larger.

Communication is a category that considers the overhead
caused by the transmission of updated coordinates of par-
tition boundary vertices (Eq. 11). This overhead increases
with the number of partitions because it depends on the num-
bers of boundary vertices and independent sets. However, its
percentage relevance is the lowest, from 1% to 2% when 336
cores are used (see Fig. 6). Therefore, VrPA algorithms do
not suffer significantly from the MPI communication over-
head in our experiments. This is due to the dependence of

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain D. Benitez et al.

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

103

200

300

400
500
600
700
800
900

2000

3000

4000
5000

EX
EC

UT
IO

N
TI

M
E

[s
]

Parallel experiments
Parallel performance model

(a) Square

12 24 48 96 192 216
NUMBER OF CORES

101

8

9

20

EX
EC

UT
IO

N
TI

M
E

[s
]

Parallel experiments
Parallel performance model

(b) Toroid
VrPA configuration: Lo-D2-hS-SD-TC2 VrPA configuration: Gl-inv-hS-SD-TC2

serial: 𝑡𝑆𝑟𝑒𝑎𝑙
𝐶𝑃 𝑈 = 5.8 104𝑠𝑒𝑐, 𝛼 = 4.6 10−7𝑠𝑒𝑐/𝑒𝑙𝑒𝑚 serial: 𝑡𝑆𝑟𝑒𝑎𝑙

𝐶𝑃 𝑈 = 19.5 𝑠𝑒𝑐, 𝛼 = 1.1 10−6𝑠𝑒𝑐/𝑒𝑙𝑒𝑚

output meshes: 𝑄𝑚𝑖𝑛 = 0.633 ± 0.001 output meshes: 𝑄𝑚𝑖𝑛 = 0.333 ± 0.094

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

102

20

30

40

50
60
70
80
90

200

EX
EC

UT
IO

N
TI

M
E

[s
]

Parallel experiments
Parallel performance model

(c) Screwdriver

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

102

103

40
50
60
70
80
90

200

300

400
500
600
700
800
900

EX
EC

UT
IO

N
TI

M
E

[s
]

Parallel experiments
Parallel performance model

(d) Egypt
VrPA configuration: Gl-log1-hS-CG-TC2 VrPA configuration: Lo-D1-hS-SD-TC2

serial: 𝑡𝑆𝑟𝑒𝑎𝑙
𝐶𝑃 𝑈 = 1.6 103𝑠𝑒𝑐, 𝛼 = 7.5 10−7𝑠𝑒𝑐/𝑒𝑙𝑒𝑚 serial: 𝑡𝑆𝑟𝑒𝑎𝑙

𝐶𝑃 𝑈 = 1.1 104𝑠𝑒𝑐, 𝛼 = 5.2 10−7𝑠𝑒𝑐/𝑒𝑙𝑒𝑚

output meshes: 𝑄𝑚𝑖𝑛 = 0.255 ± 0.002 output meshes: 𝑄𝑚𝑖𝑛 = 0.201 ± 0.002
Figure 4: Results of the parallel experiments (𝑡𝑃 𝑟𝑒𝑎𝑙

𝐶𝑃 𝑈) and performance model (𝑡𝑃 𝑚𝑜𝑑𝑒𝑙
𝐶𝑃 𝑈) using Cluster1 and OpenMPI 1 .6 .5 .

16 32 48 64
NUMBER OF CORES

103

700
800
900

2000

3000

EX
EC

UT
IO

N
TI

M
E

[s
] EXPERIMENTS

PARALLEL MODEL

(a) Square

16 32 48 64
NUMBER OF CORES

0

5

10

EX
EC

UT
IO

N
TI

M
E

[s
] EXPERIMENTS

PARALLEL MODEL

(b) Toroid

16 32 48 64
NUMBER OF CORES

0

50

100

EX
EC

UT
IO

N
TI

M
E

[s
] EXPERIMENTS

PARALLEL MODEL

(c) Screwdriver

16 32 48 64
NUMBER OF CORES

0

200

400

600
EX

EC
UT

IO
N

TI
M

E
[s

] EXPERIMENTS
PARALLEL MODEL

(d) Egypt
Lo-D2-hS-SD-TC2 Gl-inv-hS-SD-TC2 Gl-log1-hS-CG-TC2 Lo-D1-hS-SD-TC2

(𝑡𝑆𝑟𝑒𝑎𝑙
𝐶𝑃 𝑈 , 𝛼)=(4.6 104𝑠𝑒𝑐, 0.4 𝜇𝑠𝑒𝑐/𝑒𝑙𝑒𝑚) (10 𝑠𝑒𝑐, 0.6 𝜇𝑠𝑒𝑐/𝑒𝑙𝑒𝑚) (9.9 102𝑠𝑒𝑐, 0.4 𝜇𝑠𝑒𝑐/𝑒𝑙𝑒𝑚) (8.2 103𝑠𝑒𝑐, 0.4 𝜇𝑠𝑒𝑐/𝑒𝑙𝑒𝑚)

𝑄𝑚𝑖𝑛 = 0.633 ± 0.001 𝑄𝑚𝑖𝑛 = 0.318 ± 0.108 𝑄𝑚𝑖𝑛 = 0.256 ± 0.001 𝑄𝑚𝑖𝑛 = 0.202 ± 0.002

Figure 5: Results of the parallel experiments (𝑡𝑃 𝑟𝑒𝑎𝑙
𝐶𝑃 𝑈) and performance model (𝑡𝑃 𝑚𝑜𝑑𝑒𝑙

𝐶𝑃 𝑈) using Cluster2 and OpenMPI 3 .1 .0 .

communication time on the numbers of partition boundary
vertices and independent sets, in contrast to the optimization
time of boundary vertices and other overhead categories that
are dependent on the concurrent mesh element evaluations.

9 APPLICATION TO LOAD BALANCING
Parallel mesh optimization algorithms for distributed-memory
computers use a previous phase of mesh partitioning to bal-
ance and distribute vertices among MPI processes [17]. As
stated above, we used the Metis package that provides pro-
grams based on the multilevel graph partitioning paradigm

[11]. These programs require as input a file storing a mesh.
Part of this file contains information relevant for vertices.

The results of the previous section show that load imbal-
ance is a significant overhead. To reduce this overhead, we
propose to include in the input file a weight associated with
each vertex. This weight coincides with the number of ele-
ment evaluations that are needed by the vertex in a previous
outer iteration of the parallel execution of the VrPA algo-
rithm. Thus, the first outer iteration is repeated twice, one
for weight calculation and the other for mesh optimization.
Without vertex weights, the partitioning program balances

Performance model for mesh optimization EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(a) Square, Lo-D2-hS-SD-TC2

12 24 48 96 192 216
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(b) Toroid, Gl-inv-hS-SD-TC2

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(c) Screwdriver, Gl-log1-hS-CG-TC2

12 24 48 96 192 216 312 324 336
NUMBER OF CORES

0.0

0.2

0.4

0.6

0.8

1.0

EX
EC

UT
IO

N
TI

M
E

(%
)

INTER-SCALING
BOUN-SCALING

INTER-IMBALANCE
BOUN-IMBALANCE

SYNCHRONIZATION
COMMUNICATION

(d) Egypt, Lo-D1-hS-SD-TC2
Figure 6: Time breakdowns provided by the parallel model when 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1 and OpenMPI 1 .6 .5 were used.

vertices. With our proposal, this program balances element
evaluations, e.g., the sum of evaluations of the vertices as-
signed to each MPI process is approximately the same across
the partitions.

Figure 7 shows the element evaluations that were needed
on average in every outer iteration by each free vertex of two
meshes. Note that vertices are sorted by element evaluations
from largest to smallest. This figure shows that there is
a large range of workloads per vertex (black line). Using
Equation 1 and assuming constant 𝛼, this means that each
vertex requires a runtime that can range in a large interval.

Equations 5 and 8 show that the main workload of a par-
tition or MPI process (𝑃𝑖) is due to the element evaluations
of all assigned vertices. Equations 6 and 9 show that load
imbalance is caused by the difference in element evaluations
between the most loaded partition and the average partition.
Thus, we might expect that load balancing would improve
when mesh partitioning uses the sum of workloads assigned
to partitions rather than the sum of vertices.

Our hypothesis was examined in a new experiment by
comparing the performance of parallel VrPA algorithms that
use meshes partitioned both with and without workload
information. The reduction in load imbalance is significant as
can be seen in Figure 8. This figure shows the maximum and
minimum numbers of element evaluations per MPI process
normalized to the mean number of evaluations.

Consequently, the execution times were reduced in this par-
allel experiment. Our proposal achieved an average speedup
of 1.28X and 1.13X when Screwdriver and Egypt meshes were
optimized, respectively. The extra times of both the previous
mesh iteration and another mesh partitioning were added to
the evaluation of our proposal. Performance improvement is
not as high for Egypt as it is for Screwdriver because the
relevance of load imbalance is smaller (see Fig. 6).

10 CONCLUSIONS
We have proposed a performance model for parallel ver-
tex repositioning algorithms on distributed-memory com-
puters. This model involves a new workload measure called
number of mesh element evaluations. The parallel model has
been shown to be accurate with low average errors across
a range of configurations in terms of the number of MPI
processes, CPU microarchitecture, mesh geometry, and algo-
rithm configuration utilized. Further, the parallel model was
used to quantitatively understand the performance scalabil-
ity, load balancing and synchronization and communication
overheads. Finally, we have proposed a new approach to
mesh partitioning that uses the number of mesh element
evaluations to distribute vertices among MPI processes. This
proposal reduces load imbalance and improves performance.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain D. Benitez et al.

0.0 0.5 1.0 1.5 2.0
RENUMBERED VERTEX GLOBAL ID1e4

0.0

0.5

1.0

1.5

2.0
NU

M
BE

R
OF

 E
LE

M
EN

T
EV

AL
UA

TI
ON

S
PE

R
IT

ER
AT

IO
N 1e4

MEAN and STANDARD DEVIATION

(a) Mesh: Screwdriver, VrPA: Lo-D1-hS-CG-TC2

0.00 0.25 0.50 0.75 1.00 1.25 1.50
RENUMBERED VERTEX GLOBAL ID1e6

1

2

3

4

5

6

NU
M

BE
R

OF
 E

LE
M

EN
T

EV
AL

UA
TI

ON
S

PE
R

IT
ER

AT
IO

N 1e3

MEAN and STANDARD DEVIATION

(b) Mesh: Egypt, VrPA: Lo-D1-hS-SD-TC2
Figure 7: Element evaluations per vertex and mesh iteration.

ACKNOWLEDGEMENT
This work has been supported by Spanish Government, "Sec-
retaría de Estado de Universidades e Investigación", "Min-
isterio de Economía y Competitividad" and FEDER, grant
contract: CTM2014-55014-C3-1-R. Cluster2 (TeideHPC) was
provided by the "Instituto Tecnológico y de Energías Ren-
ovables, S.A.". We thank to anonymous reviewers for their
valuable comments and suggestions on this manuscript.

REFERENCES
[1] K. Barker, N. Chrisochoides: Practical Performance Model for

Optimizing Dynamic Load Balancing of Adaptive Applications.
19𝑡ℎ IPDPS, pp.28.a-28.b, 2005.

[2] M.S. Bazaraa, H.D. Sherali, C.M. Shetty: Nonlinear Programming:
Theory and Algorithms, 3𝑟𝑑 Edition. Wiley, 2006.

[3] D. Bozdag, A. Gebremedhin, F. Manne, E. Boman, U. Catalyurek:
A framework for scalable greedy coloring on distributed memory
parallel computers. J. Par. Distrib. Comp. 68(4):515-535, 2008.

[4] M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. Melander: The
Mesquite mesh quality improvement toolkit. 12𝑡ℎ Int. Meshing
Roundtable, pp.239-250, 2003.

[5] N. Chrisochoides: A survey of parallel mesh generation methods.
Tech. Rep. SC-2005-09, Brown University, 2005.

[6] L. Diachin, P. Knupp, T. Munson, S. Shontz: A Comparison of
Inexact Newton and Coordinate Descent Mesh Optimization Tech-
niques. 13𝑡ℎ Int. Meshing Roundtable, pp.243-254, 2004.

[7] J.M. Escobar, E. Rodríguez, R. Montenegro, G. Montero, J.M.
González-Yuste: Simultaneous untangling and smoothing of tetra-
hedral meshes. Comp.Meth.Appl.Mech.Eng. 192, 2775-2787, 2003.

[8] L. Freitag, M.T. Jones, P.E. Plassmann: A parallel algorithm for
mesh smoothing. SIAM J. Sci. Comput. 20(6):2023-2040, 1999.

[9] C. Geuzaine, J.F. Remacle: Gmsh, a three-dimensional finite ele-
ment mesh generator with built-in pre- and post-processing facili-
ties. Int. J. Num. Meth. Eng. 79(11), pp.1309-1331, 2009.

0.50

0.75

1.00

1.25

1.50

NO
RM

AL
IZ

ED
 E

VA
LU

AT
IO

NS

Balancing vertices, MIN
Balancing evaluations, MIN

Balancing vertices, MEAN
Balancing evaluations, MEAN

Balancing vertices, MAX
Balancing evaluations, MAX

12 24 48 96 192 336
NUMBER OF CORES

100

101

TI
M

E

Balancing vertices Balancing evaluations

(a) Mesh: Screwdriver, VrPA: Lo-D1-hS-CG-TC2

0.6

0.8

1.0

1.2

NO
RM

AL
IZ

ED
 E

VA
LU

AT
IO

NS

Balancing vertices, MIN
Balancing evaluations, MIN

Balancing vertices, MEAN
Balancing evaluations, MEAN

Balancing vertices, MAX
Balancing evaluations, MAX

12 24 48 96 192 336
NUMBER OF CORES

101

102

103
TI

M
E

Balancing vertices Balancing evaluations

(b) Mesh: Egypt, VrPA: Lo-D1-hS-SD-TC2
Figure 8: Comparison of mesh partitioning strategies.

[10] W. Gropp, L. N. Olson, and P. Samfass: Modeling MPI Com-
munication Performance on SMP Nodes. Proceedings of the 23𝑟𝑑

European MPI Users Group Meeting, pp.41-50, 2016.
[11] G. Karypis: METIS (version 5.1.0) - A software package for par-

titioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices. Univ. of Minnesota, 2013.

[12] P. Knupp: Updating meshes on deforming domains: an applica-
tion of the target-matrix paradigm. Commun. Num. Method Eng.
24:467-476, 2007.

[13] M. Mathis, D. Kerbyson: A General Performance Model of Struc-
tured and Unstructured Mesh Particle Transport Computations. J.
Supercomputing 34:181-199, 2005.

[14] R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodríguez, G.
Montero: An Automatic Strategy for Adaptive Tetrahedral Mesh
Generation. Appl. Num. Math. 59(9):2203-2217, 2009.

[15] T. Panitanarak, S.M. Shontz: A parallel log barrier-based mesh
warping algorithm for distributed memory machines. Engineering
with Computers (34):59-76, 2018.

[16] A. Sarje, S. Song, D. Jacobsen, K. Huck, J. Hollingsworth, A.
Malony, S. Williams, L. Oliker: Parallel Performance Optimizations
on Unstructured Mesh-Based Simulations. Procedia Computer
Science V. 51, pp.2016-2025, 2015.

[17] S.P. Sastry, S.M. Shontz: A parallel log-barrier method for mesh
quality improvement and untangling. Engineering with Computers
30(4):503-515, 2014.

[18] S.P. Sastry, S.M. Shontz, S.A. Vavasis: A log-barrier method
for mesh quality improvement and untangling. Engineering with
Computers 30(3):315-329, 2014.

[19] R.B. Schnabel: Concurrent Function Evaluations in Local and
Global Optimization. CU-CS-345-86. Comp. Science Tech. Rep.
332. Univ. Colorado, Boulder, 1986.

	Abstract
	1 Introduction
	2 Generalized algorithms
	2.1 Sequential algorithm
	2.2 MPI algorithm

	3 Experimental setup
	4 Sequential performance
	4.1 The number of mesh element evaluations

	5 Sequential performance model
	5.1 Model application and accuracy

	6 Parallel performance model
	7 Validation of the parallel model
	8 MPI performance analysis
	9 Application to load balancing
	10 Conclusions
	References

