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a b s t r a c t 

Arithmetic coding is the data compression techniques, which encodes the data by generating the code 

string that represents a functional value between 0 and 1. In this paper, we propose a modified-Adaptive 

Binary-RC (Range Coder) or M-ABRC. Our algorithm minimizes the multiplication bit capacity through 

introducing the VLSI architecture, proposed algorithm uses the LUP (Look UP Table)-VSW (Virtual Sliding 

Window) for the probability estimation. In order to achieve the higher compression rate, our method M- 

ABRC has been implemented, this in terms provides the better adoption probability in encoding phase 

and also gives the absolute estimation of low-EBS(entropy binary sources). Moreover In order to evaluate 

the algorithm we have compared with the several existing technique, comparison takes place based on 

the two parameter i.e. device utilization and the power dissipation (static and dynamic). 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Arithmetic coding provides the coding of efficient variable

ength, which reaches the limit of entropy. Arithmetic coding

1] manages the various symbols with the adoptive models. This

ethod requires the arithmetic operation such as multiplication

nd division is used for computing the symbol probabilities along

ith the interval. In case if there are two symbols involved, we use

inary arithmetic coder, several methods are available such as QM-

oder [2] , this method only needs the operations of bit shift and

ubtraction for computing the probability interval. In order to cal-

ulate the adaptive distribution [3] , later the division is removed

y using the state machine. 

To encode the multi-symbol data using the BAC (Binary Arith-

etic coding), the symbol is converted to the binary format. In

AC, the recursive portioning takes place, which ranges accord-

ngly along with the occurrence probabilities of the given two in-

ut symbols [4] . Let’s consider an example that there are certain

umber of symbols, each of them represents the binary number.

ere, each bits are encoded using the BAC(Binary arithmetic cod-

ng) with their own probability state. In other words, there would

e certain number of independent contexts for estimation of prob-

bility. 
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In a theoretical manner, each and every possible data set holds

he “code-word” which is assigned by the arithmetic codes. The

ode words consists of unit-interval and subinterval (half open)

enoted by 0 and 1. These intervals are expressed through defin-

ng the particular bits for differentiating the subinterval data from

he all-possible sub-intervals. Moreover, arithmetic codes provides

uch better compression than the prefix codes. However, the di-

ect correspondence between the input data set and coded output

le. Arithmetic coding is nothing but the particular form of entropy

ncoding which is used in lossless data compression. Lossless data

ompression is part of data compression methodology that allows

he reconstruction of original data from the compressed data [5] .

rithmetic coding was developed almost a decade ago, this method

ffers extensive efficiency when compared to the other VC (video

oding) standards namely MPEG-2 [6] , H.263 [7] . Actually, these

ethods mainly relied on the coding method of Huffman [8] to

ntropy the steps of coding for compression. Due to its several ad-

antage and high efficiency, arithmetic coding has drawn the atten-

ion of many researchers. ABAC has played one of the eminent role

hen it comes to video coding and for compressing the data and

t achieves the good result in software part, however it lacks from

he hardware implementation as it uses the multiplication in in-

ernal division part. Providing the high compression is essential as

he media files (compressed) is increasing day by day from many

pplications such as from music players, digital cameras and inter-

et. 

Hence, we have designed and developed the modified version

f ABRC; our research work contribution can be listed as below: 

https://doi.org/10.1016/j.micpro.2019.102901
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➢ Modified ABRC can be used for the probability estimation and

it does not require any LUP (Look up Table) instead it uses VSW

(virtual Sliding Window). 

➢ Moreover, in this research work, we propose a model in order

to obtain higher compression; this algorithm is based on the M-

ARBC our algorithm gives the much faster probability adoption;

this is done at the encoding stage. 

➢ Our method is very much suitable for the hardware implemen-

tation; this highlights the reduction of bit capacity multiplica-

tion. 

➢ Our algorithm completely elaborates the reduction required in

the given interval part and suggest how loop usage can be

avoided. 

➢ Later VLSI architecture of our model is presented which shows

the comparative analysis with the existing technique. 

2. Literature survey 

The first standard AEC (Arithmetic Entropy Coder) within the

hybrid video coder, which is based on the block design is intro-

duced by [8] . However, the main problem with this method was

that the arithmetic coder used in this method was in considerable

amount and this would not fulfil the criteria of most application.

Mostly non-block based VC (Video Coding) uses the ECS (Entropy

coding scheme) based on the arithmetic coding [9] . In this par-

ticular research, AB-(Adaptive Binary)AC(Arithmetic Coder) is pro-

posed, basically, this method was free of multiplication and also

there was no need of LUP(Look Up Table). In order to obtain this,

probability estimation of both which is based on the VSW (Virtual

Sliding Window). Moreover, simple operation is done in order to

calculate the next approximation and this is done after each binary

symbol is encoded. 

[10] In this paper, an adaptive BAC (Binary Arithmetic coder)

was proposed, when compared to the M-coder, it achieves the

higher compression efficiency and possess the faster performance

also it does not require the look up table. This method was based

on VSW (Virtual Sliding Window). In case of non-stationary binary

sources, it also obtains the tradeoff between the precision of prob-

ability estimation and adaption speed. However, it was preferable

only to the non-standardized codecs. 

[11] In this paper, an efficient multiplication-free, multi-

alphabet AAC (Adaptive Arithmetic Coder) is proposed. Here, at

first probability estimation is generalized by using VSW in case of

multialphabet case, this clearly indicates that this do not require

the trade-off among the probability estimation and adoption speed

of the same. Later, how VSW (Virtual Sliding Window) is general-

ized, this shows the elimination of division and multiplication. 

[12] Later in order to estimate the LB (locally Biased) proba-

bilities and recover the source, SWBP methodology has been pro-

posed, to set the SW(Sliding Window)-size in SWBP, another novel

mechanism is proposed. This scheme is insensitive to the given ini-

tial setting; this makes the scheme to implement in more practi-

cality. However, decoding part was not favourable. Hence, In pa-

per [13] a method is proposed which requires the less memory

and less complexity and this in terms helps in increasing the good

compression efficiency. In order to compute the coefficient of DWT,

fractional WF (Wavelet Filter) is employed by the encoder. The al-

gorithm named as LMB (Low Memory Block)-tree coding is imple-

mented, this algorithm comes under the category of listless WBTC.

It helps in reducing the memory requirement. 

[14] In this paper, modified version of ARC (Adaptive Range

Coding) is presented in case of modern parallel hardware. This al-

gorithm combines the higher compression ratio with Huffman cod-

ing; this explores the utilization of FPGA, compression ratio, per-

formance and given built in LZSS + PARC. Hence, [15] proposed an

architecture of parallel hardware is presented for the estimation of
ate in the HEVC for increasing the parallelism so that the compu-

ational time can be reduce, this highly parallel architecture pro-

ides flexibility with the CABAC, however it ignores the certain

yntax element. 

[16] In this paper, both binary arithmetic coding and context

odelling is combined to achieve the high degree adaption and

inimized redundancy is achieved. The framework of CABAC in-

ludes the methodology of low complexity for the probability esti-

ation and arithmetic coding; this in terms is very much applica-

le for the software and hardware implementation. However, still

ot of improvement is required since it is still in infancy stage. 

This work is organized in such a way that in our first section we

iscuss about the introduction part, second section deals with the

xisting methodology that has helped us in designing our model.

hird section shows the proposed methodology with pictorial pre-

entation and mathematical notation and algorithm. Evaluation of

lgorithm is depicted in fourth section, last but not the least sec-

ion concludes our research. 

. Proposed methodology 

In this section, we introduce the M-ABRC (Modified ABRC) that

s very suitable for the implementation of hardware. Also, we rep-

esents the multiplication bit capacity required in the given inter-

al part and suggest how loop usage can be avoided. The proposed

-ABRC utilizes the VSW for estimation of probability that does

ot need the look-up-tables. In next section, we reviews the BAC

ased integer implementation, Estimation of probability based on

SW and Byte Re-Norm in the range coders. 

.1. Generalized ABRC 

.1.1. BAC (Binary Arithmetic Coding) based Integer implementation 

We assume that ρ is probability of 1 ′ swith the stationary dis-

rete memoryless of binary source. In BAE (Binary Arithmetic

ncoding), a code word for the BS (binary-sequence) A 

N =
 a 1 , a 2 , . . . , a N } , a t ∈ { 0 , 1 } is denoted as the number of bits

−log 2 P B ( A 

N ) + 1 � . 
P 
(
A 

N 
)

+ 0 . 5 × P B 

(
A 

N 
)

(1)

here, PB ( A 

N ) = probability and CP ( A 

N ) = cumulative probability

f the sequence A 

N that can be computedby the help of re-current

elations: 

If a t = 0 , then 

 

C P 
(
A 

t 
)

← C P 
(
A 

t−1 
)

P B 

(
A 

t 
)

← P B 

(
A 

t−1 
)
( 1 − ρ) 

(2)

If a t = 1 , then 

 

C P 
(
A 

t 
)

← C P 
(
A 

t−1 
)

+ P B 

(
A 

t−1 
)
( 1 − ρ ) 

P B 

(
A 

t 
)

← P B 

(
A 

t−1 
)
ρ

(3)

This paper utilizes " ← " = assignment operator, S L indicated the

eft shift and S R indicated the right shift, � = XOR operation and

!" = bitwise not operation. 

The arithmetic encoder’s of integer implementation is based on

iven two registers such as X and Y with b bits of size, which is

entioned in Fig. 1 . The register X and Y which corresponds to

P ( A 

N ) and PB ( A 

N ). The accuracy need to represent the two reg-

sters X and Y that grows with maximize of N. In order to min-

mize the coding latency and avoid registers under-flow, the Re-

orm method is used for each symbol of output, which is shown

n Fig. 2 . 
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Fig. 1. Flow chart of encode procedure a t of Binary data. 

Fig. 2. flow chart of Bit Re-Norm. 

Fig. 3. Flow chart of byte Re-Norm. 
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.1.2. Estimation of probability based on the VSW (Virtual Sliding 

indow) 

In the real applications, the ones probability is unknown. Here,

 t is denoted as the binary symbol of input and 

̂ ρt denotes the es-

imation probability which is used and calculated in Fig. 1 . instead

f ρ . The well-known probability estimation is based of SW (slid-

ng window). The source of probability symbol is analyzed by the

oncept of special buffer. Previously, the encoded symbol WL keeps

he buffer, where WL is denoted as the length buffer. Afterwards,

o encode the every symbol the buffer’s content is shifted by one

osition, a new symbol is written to free the cell and the earliest

uffer symbol is removed which is disccused in Fig. 3 . 

According to Krichevsky–Trofimov, ˆ ρt+1 is denoted as the prob-

bility for the binary symbol with t + 1 index that can be esti-

ated as: 

ˆ t+1 = 

s w n + 

1 
2 

W L + 1 

(4) 

here, sw n is denoted as thenumber of 1 ′ s in SW before encod-

ng the symbol with t + 1 index. The estimation of SW (Sliding

indow) can obtain the source statistics of more accurate evalu-

tion and the fast adaption to statistic source by maximizing WL .

n both the decoder and encoder, the SW must be stored, that can

ncur the problem of memory with maximizing the size of WL . To

esolve the two-step of method for calculating the number of ones

fter encoding and proposed the a t symbol. 
Step-1: Remove the average number of 1 ′ s from the window. 

s w n +1 ← s w n − s w n 

W L 
(5) 

Step-2: Join the symbol from source 

s w n +1 ← s w n +1 + a t (6) 

By integrating (6) and (5) , the rules for calculating the number

f 1 ′ s, which can be assumed as, follows: 

 w n +1 = 

(
1 − 1 

W L 

)
.s w n + a t (7) 

Based on (7) , the estimation of probability utilizing the VSW

as introduced. Let us multiply by both sides of (7) by WL: 

 w n +1 
′ = 

(
1 − 1 

W L 

)
.s w n + W L a t (8)

here, s w n +1 
′ = W L a t . Let us assume W L = 2 wl , where the posi-

ive value of integer is wl . Later an integer rounding of Eq. (8) , then

e get 

 w n +1 
′ = 

{
s w n 

′ + � 2 2 ws −s w n 
′ + 2 ws −1 

2 ws 	 , i f a t = 1 

s w n 
′ − � s w n 

′ + 2 ws −1 

2 ws 	 , i f a t = 0 , 
(9) 

The probability of 1 ′ s is evaluated as: 

ˆ t = 

s w n 
′ 

2 

2 ws 
(10) 

Thus, the algorithm of ABAC is based on the VSW (Virtual Slid-

ng Window). 
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Fig. 4. Encoding process. 
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3.1.3. Byte Re-Norm (Renormalization) 

the range coders and arithmetic coders utilize the bytes as an

output of bit stream of elements and perform the bytes Re-Norm

at the time. The byte Re-Norm is represented in flowchart 3. Here

X and Y are 32 bit of registers, 2 3 ×2 3 = TOP and 2 2 ×2 3 = BOTTOM.in

next section, we introduces the hardware-efficient M-ABRC and en-

coding process. 

3.2. M-ABRC (Modified-ABRC) 

3.2.1. BRC (Bit Reduction Capacity) 

The disadvantage of range coder is needed to utilize the mul-

tiplication in the internal division of part. The value represents

the bit capacity of Y × s multiplication, which depends on the

wl values. We can see that the windows w = 2 3 , . . . . . . , 2 10 need

from 32 × 6 to 32 × 20bits capacity. In first, these multiplications of

bit capacities are very high for the implementation of hardware,

specifically for the larger windows. In second, every single window

needs its self-precise multiplier, which generates the hardware of

architecture with more than one window complex even more than

before. To solve these disadvantages we introduced the following

method. 

Therefore, we can evaluate the register T 1 ← Y 
 2 3 , T 1 > 0

and utilize in place of Y in multiplication. Here the register T 1 
has 3 × 2 3 -bit size, in place of 2 5 . Second, we evaluate the regis-

ter T 2 ← st 
 ( 2 ws − 2 3 ) , whose size is 2 3 bits and utilize in place

of st in multiplication. As an outcome, for all the windows the

multiplication of bit capacity is minimized to 3 × 2 3 × 2 3 multiplier,

which is required to implement the hardware of architecture with

more than one windows. However, we cannot ensure that T 2 > 0

for all possible windows 2 ws and the states ( st ). This concept can

be illuminated in the following way. 

From (9) if it satisfies then represents the initial value of st 0 

2 

ws −1 − 1 ≤ s t 0 ≤ 2 

2 ws − 2 

ws −1 + 1 (11)

Then overall-operational time, the st value of low possible is 

s t low 

= 2 

ws −1 (12)

3.2.2. Encoding process 

The arithmetic coding in AVC/H.264 is consists of two parts

such as encoding process and Re-Norm. The Encoding process de-

fines the new range. Fig. 4 demonstrates the flowchart of encoding

process. When encodes one symbol then the range value is smaller

and low value is bigger or equal. For utilizing the arithmetic coding

of integer, the value is re-normalized later, each symbol is encod-

ing. The low value is Re-Norm with the help of range value. To

update the context information after encoding the symbol. 
.2.3. Architectural representation of encoding 

The basic architecture of block diagram is shown in Fig. 4 ,

hich consists 3 pipeline phases. In this architecture, we separate

he operations of low and range into phase1, phase 2. In phase

 the unit of byte packing can pack the outcomes into the for-

at of byte. Therefore, the architecture can support the 2 encoding

odes. As shown in Fig. 4 the phase 1 computes the range value

nd update the context in probability model. In phase 2 calculates,

he low value and generates the output in bits. The phase 3 groups

he bits from the output of phase2 and packs them in byte-by-byte

anner. Additionally, the bit stuff is done in phase 3 which is ex-

lained in Fig. 5 . 

The block diagram of phase 1 is given below in Fig. 6 . The phase

 has 3 input signals, three intermediate signals and one output

or the next phase. The meaning of every symbol is explained as

ollows: 

➢ S (Symbol) = encode symbol and st = state 

➢ Cont (context) = the model of context probability consists the

Most-PS and Qe. 

➢ EM (Encoding mode) = specifies the coding in bypass and regu-

lar mode. 

➢ The 2 signals is passing to the next phase that means the value

which will enhance with low number of output in the process

of encoding. 

➢ Cont update = the output is utilized to update the cont infor-

mation. 

For support, the mode of bypass in phase 1, the sig “Add-

o-low” and range of the register is controlled by the signal-EM.

hen bypass the EM, the range will remain un-changed and the

ignal “Add-to-low” will take the range value. Then the signal of

ncoding mode will pass to the next phase. In phase 1 the main

peration consists the Re-Norm and computation. The experimen-

al outcomes representing the benefits of Modified-ABRC are given

n next section of Fig. 7 . 

. Result analysis 

In this section, our methodology is evaluated by comparing the

odified ABRC with the existing methodology. The main intention

f our work is to minimize the dynamic power dissipation and area

FPGA). Our proposed methodology is simulated by using the Xil-

nx version of 14.7 and the code is written using the VHDL. More-

ver for the evaluation of Modified ABRC, we have compared it

ith several existing methodologies mentioned later in the same

ection and various parameter and constraint has been considered

nd in each case our methodology outperforms the existing one

he result section is parted into two section i.e. power and device
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Fig. 5. EM architecture of phase-1 symbol. 

Fig. 6. Block diagram of range of EM. 
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Fig. 7. Static Power Comparison. 

Table 1 

Analysis of proposed resizing architecture. 

Architecture Technology Logic cell (no.) Memory (Kbit) 

NLS [17] Xilinx Virtex 2-4 10,125 432 

Bit-plane Parallel SPIHT [18] Xilinx Virtex 2000E 83,808 N/A 

1D SPIHT [19] Xilinx Virtex 6-LX75T 16,621 0 

BPS [20] Xilinx Virtex 5-LX330 22,996 8.3 

JPEG [21] Xilinx Spartan 3-S200 2711 N/A 

CL-DCT [22] Xilinx Spartan 3-S200 2385 N/A 

STS [23] Xilinx Zynq Z-7020 1017 0 

MQ Coder [24] Xilinx Virtex 4-LX80 15,692 4.17 

MQ Coder Dyer [25] Altera Stratix 761 2675 

MQ Coder Dyer [26] Altera Stratix 1596 8192 

MQ Coder Kai [27] Xilinx Virtex 4- XC4VL 6974 4269 

ABRC Shcherbakov [28] Xilinx Virtex 5- ML507 1544 552,960 

ABRC [29] Xilinx Virtex 4-LX80 1688 0 

ABRC [30] Altera Stratix 1296 0 

Proposed ABRC Xilinx Virtex 4- XC4VF 885 0 

Table 2 

Power dissipation Comparison with various architecture. 

Architecture MQ Coder CL-DCT STS ABRC M-ABRC 

Frequency (MHz) 48.30 66.4 96 105.92 142.95 

Dynamic power (mW) 488.67 96 74 127.05 16.75 

Normalized power (mW/MHz) 10.117 1.45 0.77 1.19 0.117 

Power density ( μW/(MHz × Logic cell no.)) 0.65 0.60 0.75 0.71 0.13 
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utilization. Device utilization is discussed through the Table 1 and

the power is influenced using the Table 2 . 

4.1. Device utilization 

The below table i.e. Table 1 gives the outcomes of M-ABRC

when FPGA implementation takes place, here the different archi-

tecture is compared. Through this table, we see that first column

depicts the various architecture, whereas second column depicts

the technology that has been used. All these architecture given in

Table 1 has been implemented on Xilinx FPGA. Similarly, third col-

umn gives the Logic cell or the area, which is used. Logic cell is one

of the best parameter that has been used in order to compare the

various resources which is basically used by the FPGA technolo-

gies. Moreover, it is observed that any modification in the image

size have no impact on the given hardware resource of M-ABRC

at given and fixed block size. From the Table 1 it is clear that M-

BRC (Modified ABRC) consumes less amount of resources when

compared to the architecture based on JPEG [21] and SPIHT [18] .

We see that the logic cell number required by the JPEG is almost

three times more than the M-ABRC. Whereas in case of NLS [17] ,

NLS requires more than 11 times of the area compared to the M-
BRC. Similarly, we see that MQ-Coder [24] , MQ-Coder [25] and

Q Coder [26] requires almost 2 times, 8 times and 1.5 times

ore logic cell than the M-ABRC respectively. Bit-PP (plane Paral-

el) SPIHT [18] , 1DSPIHT [19] and BPS [20] requires the amount of

rea when compared to the M-ABRC that are described in Figs. 8

nd 9 . 

.2. Power dissipation 

Table 2 shows the comparative analysis between the MQ Coder,

L-DCT, STS, ABRC and M-ABRC. In Table 2 , second row depicts the

aximum amount of operating frequency for each methodology.

aximum operating frequency for MQ Coder is 48.30(in MHZ),

6.4 MHz for CL-DCT, 96 for ABRC and for the proposed method

M-ABRC) the maximum operating frequency is 142.95 MHz which

s comparatively high than the other, this shows the efficiency of

-ABRC. In second row, the comparative analysis is given on the

arameter dynamic power. MQ Coder, CL-DCT, STS, ABRC Possesses

he Dynamic Power of 488.67 mW, 96 mW, 74 mW, 127.0 mW,

hereas our proposed model i.e. M-ABRC possesses only 16.75 mw

f dynamic power. The less the dynamic power, the more efficient

he model is, hence our methodology outcast the other methodol-
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Fig. 8. Dynamc PowerComparison. 

Fig. 9. Total Power Comparison. 
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gy in terms of Dynamic power. Third column shows the normal-

zed power and it should be evident that the normalized power

ossession should be as less as possible. Here the comparison anal-

sis shows that M-ABRC possesses 0.117 MHZ which is compara-

ively lesser than the other model, such as MQ Coder, CL-DCT, STS

nd ABRC possesses 10.117, 1.45,0.7,1.19 (in MHZ) respectively. This

hows that our model has lower normalized power dissipation. At

ast, the comparison analysis can be done based on power density,

hich is given in fifth row of Table 2 . We see that MQ Coder re-

uires the 0.65 μW, whereas CL-DCT, STS, ABRC requires the 0.60,

.75 and 0.715(in mW) respectively, whereas M-ABRC possesses

.13 μW. The comparative analysis of power dissipation shows that

BRC performs better than MQ Coder, CL-DCT, STS, and ABRC;

owever, we observe that our model performs slightly marginally

etter than these entire model including the M-ABRC. 

.3. Static power 

Static power is defined as the power consumed when no ac-

ivity takes place in the circuit. The low static power of any par-

icular model indicates that the model is better, i.e. the low the

tatic power dissipation, the more efficient model it is. In order

o prove the efficiency of our model, we have considered this pa-

ameter which is given in below figure. For the comparison anal-
sis we have taken two best model i.e. MQCoder Kai [27] and

BRC [29] and it is compared with our model M-ABRC. Moreover,

he static power dissipation of the other two model is 624.68 and

22.55 respectively. When these model are compared, observation

an be made that ABRC performs slightly better whereas proposed

odel is marginally better than the other two. Static power dissi-

ation of our proposed model is 166.71 mW. 

.4. Dynamic power 

Dynamic power is defined as the power, which is consumed

hen the given inputs are in active state. Dynamic power Dis-

ipation is considered as one of the key parameter while com-

aring the model. In here when the below figure is observed we

ee that MQ-Coder [27] possesses the 69.81 mW and ABRC pos-

esses 18.15 mW, this shows the marginal improvement in the

BRC model. However, M-ABRC performs slightly better than the

BRC i.e. it possesses 16.75 mw. 

At last, the comparative analysis takes place based on total

ower required to perform the task. For the model to be effi-

ient, the total power requirement should be as less as possible. In

he above graph of total power we observe that the two existing

odel i.e. MQ Coder Kai [22] and ABRC possesses 694.49 mW and

40.7 mW of total power respectively, whereas our model needs
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only 183.46 mW, which shows the efficiency of our model and ob-

servation can be made that our model simply outperforms the

other two models. 

5. Conclusion 

In this paper, we have presented a model known as M-ABRC

(Modified ABRC), this paper presented the model along with the

hardware architecture. The proposed model is LUP (Look UP Table)

based which helps in reduction of bit capacity multiplication, this

model helps in achieving the higher compression performance and

it provides comparatively faster adaptation at the initial stage (both

encoding as well as decoding). In order to evaluate our method

we compared our method with the existing methodology in terms

of device utilization and power dissipation. We see that in device

utilization, the area (FPGA) required by the JPEG is almost three

times more than the M-ABRC. Whereas in case of NLS, NLS re-

quires more than 11 times of the area compared to the M-ABRC.

Similarly, we see that several methodology of MQCoder requires

almost 2 times, 8 times and 1.5 times more logic cell than the

M-ABRC respectively. Bit-PP (plane Parallel) SPIHT [20] , 1DSPIHT

[22] and BPS [21] requires the amount of area when compared to

the M-ABRC. We see that MQ Coder requires the 0.65 μW, whereas

CL-DCT, STS, ABRC requires the 0.60, 0.75 and 0.715 (in mW) re-

spectively, whereas M-ABRC possesses 0.13 μW. In terms of static

power, we see that MQ Coder requires the 0.65 μW, whereas CL-

DCT, STS, ABRC requires the 0.60, 0.75 and 0.715 (in mW) re-

spectively, whereas M-ABRC possesses 0.13 μW. In terms of Dy-

namic power, M-ABRC performs slightly better than the ABRC, i.e.

it possesses 16.75 mw. MQ Coder Kai [22] and ABRC possesses

694.49 mW and 640.7 mW of total power respectively, whereas our

model needs only 183.46 mW, which shows the efficiency of our

model. 
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