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Abstract: In this work, we have obtained a new constitutive matrix to calculate the induced Lorentz
electric current of in a conductive disk in movement within a magnetic field using the cell method in
3D. This disk and a permanent magnet act as a magnetic brake. The results obtained are compared
with those obtained with the finite element method (FEM) using the computer applications Getdp and
femm. The error observed is less than 0.1173%. Likewise, a second verification has been made in the
laboratory using Hall sensors to measure the magnetic field in the proximity of the magnetic brake.
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1. Introduction

The use of magnetic brakes has obvious advantages compared to brakes based on mechanical
friction. The mechanical friction brakes have the risks of hydraulic fluid loss or the contamination
of the fluid by cooling water, with a consequent loss of braking power, among others [1]. The use
of permanent magnets in linear magnetic brakes is explained in detail in [2]. In [1], a mixed system
with mechanical friction and a magnetic brake is analyzed, comparing the results obtained with an
analytical equation and the finite element method (FEM) in 2D and 3D.

In most of the works consulted in the bibliography, approximate analytical equations or numerical
methods such as the FEM are used. In the present work, we propose the finite formulation (FF) [3],
and the cell method (CM) as its associated numerical method [4,5], to analyze this type of device.

FF works with global magnitudes associated with spatially oriented elements such as volumes,
surfaces, lines and points of the discretized space, as well as temporal elements, instead of field
magnitudes associated with the independent variables of spatial and temporal coordinates [6].
In FF, the equations of constitutive type—equations of the medium—are clearly differentiated
from the topological type—equations of balance. The analysis of the magnetic brake with this
methodology facilitates, to a great extent, the boundary conditions and continuity, when working with
global magnitudes.

The contribution of this work consists on obtaining a new constitutive equation that relates the
Lorentz current with the magnetic potential using CM. This result applies to the magnetic brake.

This consists of a copper disk with an angular velocity
→
Wr, and a permanent magnet is placed in

front it.
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The structure of this paper is as follows. In Section 2, the methodology to obtain the constitutive
matrix in the CM and the corresponding Lorentz term is explained in detail. Section 3 explains the
results obtained and their comparison with other references. Finally, in Section 4, the conclusions
are given.

2. The Constitutive Matrix in the Cell Method

The electric field strength,
→
E , measured in a fixed coordinate system with respect to the laboratory,

is related to the electric field strength
→
E

v
, measured in a coordinate system referring to each point of

a moving conductor, with velocity
→
v , with respect to the laboratory (1) [7], where v2 � c2, and c is

the speed of light,
→
B is the magnetic induction,

→
a is the magnetic vector-potential and ϕ is the electric

scalar-potential, where

→
E

v
=
→
E +

→
v ×

→
B =

(
−
→

grad ϕ− ∂
→
a

∂t

)
+
→
v ×

→
B . (1)

If we work with a permanent magnet, then ∂
→
a

∂t = 0, and (1) is simplified. The current density is

shown in (2), where σ is the volumetric electric conductivity. The Equation (2) contains σ

( →
grad ϕ

)
.

These are the electric currents produced by the corresponding electric potentials. This term of the
equation is developed with CM in [8]. The first term of Equation (2) in CM is Equation (3). The electric
currents refer to the electric conductivity constitutive matrix, Mσ. The differences of electric potentials
are associated to the edges ei, i = 1:6, of the reference tetrahedron (see Figure 1a).

→
j = σ

(
−
→

grad ϕ +
→
v ×

→
B
)

, (2)

Ĩϕ = [Ii]
ϕ
6×1 = Mσ[Ui]

ϕ
6×1 = MσUϕ, (3)

where the matrix Mσ = σε

vε S̃iS̃j, i, j = 1 : 6, is function of the electric conductivity of each tetrahedron,
its volume and the dot product of the surface vectors that correspond to the dual planes of primal
edges ei and ej (see Figure 1a).

We start from the expression of the magnetic induction, (4), within each tetrahedron as a function
of the magnetic fluxes associated with the faces of the reference tetrahedron [9].
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The second term of (2), which corresponds to the Lorentz term, is developed in this article with
CM, where

→
B e =

1
3Vt

(
→
e 4φ1 +

→
e 5φ2 +

→
e 6φ3 +

→
0 φ4

)
. (4)

The integration of the differences of the electrical potential associated to both primal edges ei,

i = 1:6, with the Lorentz term
→
E Lo =

→
Ve ×

→
B e is expressed in Equation (5):

Ui =
∫

ei

→
E Lo·d

→
l =

∫
ei

(→
Ve ×

→
B e

)
·d
→
l (5)

Solving (5), the Ui in the primal edges ei is expressed in (6),

Ui =
1

3Vt

(→
Ve ×

→
e 4·
→
e iφ1 +

→
Ve ×

→
e 5·
→
e iφ2 +

→
Ve ×

→
e 6·
→
e iφ3 +

→
0 φ4

)
, (6)

where

→
Ve ×

→
e e =

∣∣∣∣∣∣∣
→
i

→
j

→
k

Ve
x Ve

y Ve
z

ex ey ez

∣∣∣∣∣∣∣, (7)

→
e i·
→
e j = ei

xej
x + ei

yej
y + ei

zej
z. (8)

With the six edges of the reference tetrahedron, the Lorentz voltages-vector is shown in (9) and
VLo is calculated using (10).

ULo = [Ui]
Lo
6×1 = VLo[φi]4×1. (9)

(10)

In the reference tetrahedron, the magnetic fluxes can be expressed as magnetic potentials
associated to the edges of the tetrahedron [6]. This is developed as (11),

[φi]4×1 = [C]4×6[ai]6×1. (11)

Substituting (11) in (9), we get (12), which is the proposed equation in this work. Matrix C is the
incidence matrix between the faces and edges of the reference tetrahedron (see Figure 1a),

ULo = [Ui]
Lo
6×1 = VLoC[ai]6×1 = VLoCa. (12)

The current produced by the Lorentz voltage is shown in (13). The total current will be Ĩ = Ĩφ + ĨLo:

ĨLo = MσULo = MσVLoCa = MVLa, (13)

where MVL is the new constitutive matrix proposed for the calculation of the Lorentz current, ILo,
depending on magnetic potentials.

To validate the proposed equation, the problem of the magnetic brake (MB) is posed using FF.
The MB is a disk, made of copper, which rotates around an orthogonal axis, y. On the upper side of the
disk there is a neodymium permanent magnet (see Figure 1b). The velocity for any point of the disk is
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calculated by (14), where
→
Wr is the angular velocity of the disk and

→
r is the radius-vector respective to

the central point of the disk,
→
Ve =

→
Wr ×

→
r . (14)

To solve the problem, the electric-potential ϕ and a magnetic-potential formulation are used.
In this formulation, the continuity equation for electric current, (15), is used, where D̃ is the face-volume
incidence matrix in the dual mesh,

D̃ Ĩ = D̃
(

Ĩϕ + ĨLo

)
= 0. (15)

Taking into account the fact that D̃ = −Gt, where G is the edge-node incidence matrix in the
primal mesh (see Figure 1a), then Equations (3), (12) and (13), with the continuity equation for electric

current, and all terms—including the term
(

∂
→
a

∂t

)
—remain as indicated in (16):

−Gt Mσ jWa + Gt MVLa− Gt MσGϕ = 0. (16)

The definition equation for the permanent magnet is Equation (17). Mν is the magnetic reluctivity
matrix [4], F̃c is the vector of coercive magnetomotive forces supplied by the manufacturer of the
magnet, and F̃ is the vector of magnetomotive forces associated to the edges of the dual mesh:

F̃ = Mνφ− F̃e. (17)

The constitutive equation in the air and the conductive material is (18). If Ampere’s law (19) is
applied to the permanent magnet, then it reads as (20). If the same law is applied to the air, it is shown
as (21). Finally, applying Ampere’s law to the conductive material, then we obtain (22),

F̃ = Mνφ, (18)

C̃F̃ = Ĩ, (19)

C̃
(

Mνφ− F̃e

)
= 0, (20)

C̃Mνφ = 0, (21)

C̃Mνφ = Mσ

(
−Gϕ− ∂a

∂t
+ VLoφ

)
, (22)

where C̃ is the discrete curl operator in the dual mesh. Taking into account the fact that C̃ = Ct and
φ = Ca, then Ampere’s law and continuity equation for electric current in all domains both form
a system of equations as in (23). This system of equations, in a sinusoidal steady state, has been
programmed in C++, using the numerical software package PETSc [10].[

Ct MνC−MVL + Mσ jW MσG
−Gt Mσ jW + Gt MVL −Gt MσG

][
a
ϕ

]
=

[
Ct F̃e

0

]
. (23)

3. Results and Discussion

3.1. Characterization of the Magnetic Brake

The magnetic brake consists of a disk of copper alloy and a permanent magnet located at a distance d

(see Figure 2). The disk is coupled to a DC motor. The DC motor rotates at angular velocity
→
Wr (see Figure 3).

The permanent magnet, which is used in the numerical simulations and experiments at the
laboratory, is modeled in the second quadrant, with H < 0 and B > 0. It is a linear model with
two parameters, Br and µ. This model is adequate when rare earth permanents magnets are used.
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The characteristics of the permanent magnet are the following: the material us NdFeB, with a block
form of 50.8× 50.8× 25.4 mm, a magnetization sense in axis y along the dimension 25.4 mm, the coating
is nickel-plated (Ni-Cu-Ni), manufactured by sintering, the magnetization type is N40, the remanence
Br is in the interval 1.26–1.29 T, the coercive Hc is in the interval 860–955 kA/m, the intrinsic coercive
Hc ≥ 955 kA/m and the maximum energetic product is in the interval 303–318 kJ/m3.

The disk has a volumetric electric conductivity of σ = 4.1·107 S/m, its diameter is 315 mm and its
thickness is 5 mm.

When the equation system in (23) has been solved, the losses by Joule effect are obtained in the
disk. These are calculated using a volume-integral as in (24),

PJ =
∫ 1

σ

→
J ·
→
J dv, (24)

where
→
J is the volumetric density electric current indicated in (22). The braking torque, along the

y axis, is calculated using a volume-integral as indicated in (25).

→
T =

∫ (
→
r ×

→
J ×

→
B
)

dv. (25)
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3.2. Numerical Simulations

Different numerical experiments have been developed using different angular velocities with an
air-gap between the disk and the permanent magnet equivalent to 6 mm. The constitutive matrix of
velocities proposed in (13), developed in CM and Equations (23), have been used in these simulations.
The arising system, Equation (23), is not as symmetric as in FEM. We use numerical methods based
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in the subspace of Kryslov due to the fact that the matrices are sparse and of large dimensions.
These algorithms are implemented in the software PETSc [10].

In particular, the linear solver employed is the generalized minimal residual algorithm (GMRES).
Besides this, we precondition the matrix to improve the condition number of the matrix to reduce
the number of iterations. This method is valid for non-symmetric systems. Relative and absolute
tolerances with an order of magnitude of 10−10 are enough to achieve convergence for the linear solver.

We have used tetrahedral elements because they are better for complex geometries. The number
of elements depends on the model analyzed. For example, in a particular implementation, we used
261,868 elements, and the assembling and solution time was lower than 500 s, with an Intel
core machine i7-3820, 3.6GHz and 32GB of RAM with four cores and eight threads of execution.
The convergence has been studied, increasing the number of elements until a reasonable rate of
convergence was obtained.

To avoid singularities in the problem solution, we control the dimensionless Péclet number to get
a reasonable convergence, with manual mesh refinements, using a higher density of points where the
linear velocity of the disk is higher.

The results obtained for the disk of copper alloy are shown in Figure 4a,b. In Figure 4a,
the maximum current density in the disk is compared in CM and software package Getdp [11].
In Figure 4b, the losses by Joule’s effect are compared. The proposed numerical simulations have been
developed in CM. The reference, used to compare the results, is Getdp.

The software package Gmsh [12] is used in the mesh and the data visualization. In Figure 5,
the normal force between the disk and permanent magnet is shown. The results obtained in CM are
compared with the results obtained in FEM.
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3.3. Numerical Validation of the Simulations

Three experiments were developed and the results are compared with those obtained through
CM and Getdp. These experiments are specified in Table 1.

Table 1. Numerical experiments developed.

C1. Maximum current density value (see Figure 4a)

C2: Heat in the disk by eddy currents (see Figure 4b)

C3: Normal force between disk-magnet (see Figure 5)



Sensors 2018, 18, 3185 7 of 15

Sensors 2018, 18, x FOR PEER REVIEW  6 of 14 

 

The software package Gmsh [12] is used in the mesh and the data visualization. In Figure 5, the 
normal force between the disk and permanent magnet is shown. The results obtained in CM are 
compared with the results obtained in FEM. 

  
(a) (b) 

Figure 4. (a) Maximum current density in the disk, CM vs. Getdp; (b) the heat dissipated in the disk, 
CM vs. Getdp. 

 
Figure 5. Normal force Fy with Wr = 34.55 rad/s, cell method (CM) vs. Getdp. 

3.3. Numerical Validation of the Simulations 

Three experiments were developed and the results are compared with those obtained through 
CM and Getdp. These experiments are specified in Table 1. 

Table 1. Numerical experiments developed. 

C1. Maximum current density value (see Figure 4a) 
C2: Heat in the disk by eddy currents (see Figure 4b) 
C3: Normal force between disk-magnet (see Figure 5) 

The statistics used in the validation of the models are the following: R2, determination coefficient, 
see [13–15]; MSE: mean square error, see [13,16–19]; RMSE: root mean square error, see [18–20]; 
RMSPE: root M. S. perceptual error, see [21]; MAE: mean absolute error, see [16,18,20,22]; MAEP: 
mean absolute percentage error, see [21]; PBIAS, percentage bias, see [13,16,23,24]. NSEF: modelling 
efficiency Nash & Sutcliffe, see [16,17,19]; U1: Theil inequality coefficient, see [24–26]; UM: bias 

Figure 5. Normal force Fy with Wr = 34.55 rad/s, cell method (CM) vs. Getdp.

The statistics used in the validation of the models are the following: R2, determination coefficient,
see [13–15]; MSE: mean square error, see [13,16–19]; RMSE: root mean square error, see [18–20]; RMSPE:
root M. S. perceptual error, see [21]; MAE: mean absolute error, see [16,18,20,22]; MAEP: mean absolute
percentage error, see [21]; PBIAS, percentage bias, see [13,16,23,24]. NSEF: modelling efficiency Nash &
Sutcliffe, see [16,17,19]; U1: Theil inequality coefficient, see [24–26]; UM: bias proportion or difference
between means (systematic error), see [25]; US: variance proportion (systematic error), see [25]; UC:
covariance proportion (non-systematic error), see [25]. d: d-Willmott Index, see [27]; MEF: modelling
efficiency, see [28]; CD: determination coefficient of modelling, see [28]; C: error coefficient of modelling,
see [28].

Table 2 shows the metrics of the comparisons that have been proposed in Table 1, following the
statistics previously mentioned.

In Table 2, we can see that all the metrics are different from the optimum. MAE is given in true
measurements with its units. This metrics show the validity of FF-CM for our analysis.

To understand the differences of magnitude in MSE, RMSE and MAE, we have to observe that
C1 is a large quantity—with a current density on the order of magnitude 107 (see Figure 4a)—and
both C2 and C3 are small—with a heat in the disk and normal force on the order of magnitude 102

(see Figures 4b and 5). Therefore, C1 is apparently a large quantity and both C2 and C3 are small
quantities. However, as these quantities are absolute errors they seem large. The optimum is 0 because
this is the limit to which these magnitudes tend as we increase the number of elements in the mesh.

Table 3 presents the evolution of the error and the execution time for the assembling and solution
for Joule heating as the number of degrees of freedom increases in the system of Equations (23) for an
angular velocity of 15 rad/s. With 46,723 degrees of freedom, we obtain an error less than 3%, but we
have implemented, in this particular case, 233,471 degrees of freedom obtaining a negligible error in
324.30 s.
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Table 2. Metrics of the comparisons proposed.

Comparatives C1 C2 C3

R2 [0, +1]
Optimum: +1

0.9990 0.9998 0.9760

MSE [0, +∞]
Optimum: 0

2.25
×1011 17.4812 17.4794

RMSE [uds] 0.47 × 106 4.1810 4.1808

RMSPE [−1, +1]
Optimum: 0 0.0386 0.0500 −0.1173

MAE [uds] 6 × 105 2.3796 3.1703

MAEP [−1, +1]
Optimum: 0 0.0257 0.0284 −0.0889

PBIAS [−1, +1]
Optimum: 0 −0.0116 0.0276 0.0741

NSEF [−∞, 1]
Optimum: 1 0.9982 0.9984 0.9526

U1 de Theil [0, 1]
Optimum: 0 0.0144 0.0155 0.0499

UM de Theil [0, 1]
Optimum: 0 0.0890 0.3239 0.4658

US de Theil [0, 1]
Optimum: 0 0.3489 0.5454 0.0115

UC de Theil [0, 1]
Optimum: 0 0.5621 0.1307 0.5227

Willmott-dW [0, 1]
Optimum: 1 0.9995 0.9996 0.9884

MEF [−∞, 1]
Optimum: 1 0.9982 0.9984 0.9526

CD [−∞, +∞]
Optimum: 1 1.0516 0.9424 0.9352

C [−∞, +∞]
Optimum: 0 0.0257 0.0284 −0.0889

Table 3. Evolution of the error and the execution time.

Degrees of Freedom Time (s) Joule Heating
(W) Error (%)

3018 0.42 76.62 42.90
4718 0.85 71.92 34.10

22,796 7.86 55.82 4.10
34,466 15.00 55.58 3.69
46,723 24.65 55.20 2.98
61,937 37.90 54.90 2.42
86,127 74.44 54.84 2.31

132,518 138.18 53.90 0.55
233,471 324.30 53.60 0.00

3.4. Experimental Validation of the Simulation

In this section, we obtain experimental measures to validate the cell method used in the simulation
of the magnetic field in the proximities of a magnetic brake. Besides this, we experimentally analyze
the electromagnetic torque generated in the brake.
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In order to develop the experimental system, it is necessary to calibrate the Hall sensors that
measure the magnetic field. These sensors will be previously calibrated through reference magnets.

3.4.1. Calibration of the Hall Sensors

First of all, we will characterize the reference magnets, and then we will calculate the gain of
the Hall sensors. For the measurements, we have used precision weights that have been verified in
a precision balance showing a negligible deviation. Distances have been measured with a precision of
hundredth of a millimeter, which is a very good precision for our experiments.

Reference magnet characterization: The experimental measurement of the magnetic field on the
proximities of the copper disk is performed with three Hall sensors that allow the measurement of the
magnetic induction in the three directions of the Cartesian axes x, y, z. These sensors are of the 49E
linear type in a measurement range between −90 mT and +90 mT [29].

In order to calculate the gain of each sensor, we use a consistent magnetic field source with
two magnets of NdFeB of cylindrical shape and a radius of 2 mm and a height of 5 and 40 mm,
respectively, as shown in Figure 6a.

The first set of measurements is performed in order to determine, in an accurate way, the intensity
of the coercitivity field, Hc, of the magnets, because it is unknown.

In this way, the two magnets are located as in Figure 6a, and the equilibrium force between both
is measured for different distances between 2 and 14 mm. The mass used to obtain the equilibrium
force consists of different precision weights from 2 to 100 g and are situated on the 40 mm magnet as
can be observed in Figure 6a. We have taken two sets of experimental data to assure the repeatability
of the measures and they are called Exp-0 and Exp-1, as shown in Figure 6b.

The intensity of the coercitivity field, Hc, which better fits the data, is Hc = 1.0902 MA/m.
These data have been obtained by successive MEF simulations in 2D and 3D, finding the repulsion
force between the magnets. Figure 6b shows the best fits obtained through MEF using Getdp 3D
software and femm 2D software which takes advantage of the axial symmetries of this problem.
Besides this, working in 2D, we can use denser meshes for the same computational cost, obtaining
more accurate results.

These fits confirm that MEF is an adequate tool to calculate the magnetic field in the proximities
of magnetic fields generated by permanent magnets.

Calculation of the gain of the Hall sensors: Although we use three Hall sensors of the same type
and manufacturer [30], the gain of each one is slightly different. In this section, we experimentally
characterize the gain of each one.
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As Figure 7a shows, we locate the magnet using a high precision CNC—Computer Numerical
Control—at a particular distance from the Hall sensor. Measuring the electric potential difference in the
Hall sensor generated by the magnetic field of the magnet, we can determinate the gain of the sensor.
The magnetic field was calculated using femm MEF software as explained in the previous section.

The gains obtained for Hall sensors x, y, z are 20.0, 17.5, and 21 mV/mT, respectively, as can be
seen in Figure 7b.
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3.4.2. Measures of the Magnetic Field and Torque

As previously mentioned, we use a disk made of a copper alloy, of diameter 315 mm and thickness
5 mm that can rotate in both directions. This disk is moved by a DC motor regulated in speed by the
electric potential of the armature.

The effective conductivity of the copper alloy has been obtained by minimizing the error between
the measured and simulated magnetic field, varying the electric conductivity between 1 × 107 and
8 × 107 S/m, with an angular velocity of the disk of 20.49 rad/s, as Figure 8a shows. The obtained
value for a minimum error corresponds to 4.1 × 107 S/m. With this value, we have implemented all
the numeric simulations from now on.

At a variable distance from the disk and with magnetization in the y direction, we have placed
a permanent magnet. The magnet is a brick with the dimensions 50.8 × 50.8 × 25.4 mm. As shown in
Figure 8b, we have also placed three Hall sensors in a trihedral trirectangle which determines a unique
vertex. The trihedral can be displaced in the x, y, z directions.

Then, we analyze the magnetic field vector as a function of the angular velocity of the disk in the
points 1, 2, 3 and 4, as can be seen in Figure 8b.

Experimental results and magnetic field discussion: We have taken eight measurements for
different values of the angular velocity of the magnetic field in points 1, 2, 3 and 4 of Figure 8b.
Four have been taken with the disk rotating clockwise and four anticlockwise.

Figure 9 represents the module of magnetic induction measured by the Hall transducers and
the numeric simulations of the angular anticlockwise velocity, Wr–. We observe that there is a great
coincidence between experimental values and those obtained by numeric simulation because the
discrete values are almost coincident with the continuous curves that represent the simulations.
Besides this, the curves are increasing: that is to say, the magnetic induction increases as the angular
velocity increases.
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On the other hand, Figure 10 represents the module of the magnetic induction, measured with
the Hall sensors at the same points, and the numeric simulations, as functions of the angular clockwise
velocity, Wr+. Likewise, we observe that there is a great coincidence between the experimental
values and those obtained by numeric simulation. However, these curves are decreasing: that is to
say, the magnetic induction decreases as the angular velocity increases. This behavior is due to the
asymmetry of the currents induced in the disk when the rotating direction of the angular velocity
changes (see Figure 11).
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Experimental results and electromagnetic torque: This set of experiments consists of the
measurements of the losses by the Joule effect made in the laboratory. These measurements have been
obtained by subtracting the total electrical power at the input of the DC motor from the Joule losses
in the armature windings and the mechanical losses in the non-load regimen, without the magnetic
brake. With these calculations, the electromagnetic torque for braking is obtained for a determinate
angular velocity (see Figure 12). The characteristics of the DC motor are the following: AEG, direct
current, armature 220 V–2.2 A, field 220 V, 0.5 kW, 1400 rpm, IP E22.

Figure 12 shows the electromagnetic torque obtained by experimentation and simulation in the
copper disk for an angular velocity from 0 to 35 rad/s.

The magnets are situated at distances of 9, 10 and 11 mm. Experimental results are almost
coincident with numeric simulations. Besides this, as expected, we can observe that as the angular
velocity increases, the torque increases. It can also be observed that as the proximity to the disk
increases, the torque also increases.

As there is no induced current when the angular velocity is zero, the magnetic torque converges
to zero in both experimental and simulation results.

Figures 9, 10 and 12 show the experimental and simulation results. As can be seen, the differences
are small. Figures 9 and 10 show the calculations and measurements of magnetic fields and Figure 12
shows the calculations and measurements of the electromagnetic torque.Sensors 2018, 18, x FOR PEER REVIEW  12 of 14 
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4. Conclusions

A constitutive matrix has been developed into the cell method in 3D. The Lorenz electric current
has been obtained using the magnetic potential.

This methodology has been applied to a disk that moves inside a magnetic field.
The results obtained have been compared with the finite element method, using the free software

packages Getdp and femm as a reference. The error is less than 0.1173%.
A second verification has been made in the laboratory using Hall sensors to measure the magnetic

field in the proximity of the magnetic brake.

Author Contributions: J.M.M.-V. supported the theory background, calibrated de Hall sensors, developed
experiments, analyzed the data and wrote the paper. P.I.G.-D. and S.G.-A. supported the theory background,
analyzed the data and wrote the paper. All the authors read and approved the final manuscript.

Funding: This work was funded by project FICASES (TEC2017-89403-C2-2-R) of the Spanish Ministry of Economy
and Competitiveness.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

Symbol Name Unit
→
E Electric field strength V/m
→
E

v
Electric field strength with velocity v V/m

φ Electric scalar-potential V
σ Electric conductivity S/m
Ĩϕ Electric currents by electric scalar-potential A
Mσ Electric conductivity constitutive matrix S
Uϕ Electric potential differences V
σt Electric conductivity of the tetrahedron S/m
→
B Magnetic induction Wb/m2

ϕ Magnetic flux Wb
a Magnetic potential in primal edges Wb
→
a Magnetic vector-potential Wb/m
C, C̃ Incidence matrix faces-edges in primal and dual mesh -
D̃ Incidence matrix face-volume of dual mesh -
G Incidence matrix edges-nodes of primal mesh -
→
E Lo Lorentz electric field strength V/m

ULo Vector of Lorentz tension in primal edges V
VLo Vector of Lorentz s−1

ĨLo Vector of Lorentz currents in dual face A
MVL New constitutive matrix of Lorentz S/s
Mν, Mσ Magnetic and electric constitutive matrix A/Wb
W Angular frequency 1/s
→
v Lineal velocity m/s
→
Wr Angular velocity 1/s

t Time s
→
J Current density A/m2

→
ei Length edge of i vector m
Vt Volume of tetrahedron m3
→
Ve Barycenter velocity of the tetrahedron m/s
→
i ,
→
j ,
→
k Unitary vectors -

S̃i i surface vector of dual mesh m2
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→
r Radial vector pointing from the center of the disk m
F̃e Coercive magnetomotive forces of the magnet A
F̃ Vector of magnetomotive forces of the dual mesh edges A
i Imaginary unit -
Pj Joule heating W
Tj Braking torque Nm
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