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Abstract. Pipeline stalls due to branches limit processor performance
significantly. This paper provides an in depth evaluation of Dynamic
History Length Fitting, a technique that changes the history length of
a two-level branch predictor during the execution, trying to adapt to its
different phases. We analyse the behaviour of DHLF compared with fixed
history length gshare predictors, and contribute showing two factors that
explain DHLF behaviour: Opportunity Cost and Warm-up Cost.
Additionally, we evaluate the use of profiling for detecting future im-
provements. Using this information, we show that new heuristics that
minimise both opportunity cost and warm-up cost could outperform sig-
nificantly current variable history length techniques. Especially at pro-
gram start-up, where the algorithm tries to learn the behaviour of the
program to better predict future branches, the use of profiling reduces
considerably the cost produced by continuous history length changes.

Keywords: branch prediction, dynamic history length, warm-up, op-
portunity cost.

1 Introduction

Presence of control hazards in the processor pipeline can significantly reduce ILP
in programs execution because the outcome of a branch is not known until several
cycles after it has been fetched. As modern processors increase the number of
pipeline stages and the number of instructions on the fly, it becomes more critical
to overcome the problem caused by a control dependency, since the number of
stall cycles increases.

In this paper we focus on two-level branch predictors [12,5,8,4,6] as being
one of the most efficient solutions for solving this problem.

Juan et al. [3] argued that the use of a global fixed history length during the
execution of a program can hinder the accuracy of two-level branch predictors,
and proposed an algorithm (DHLF) for dynamically fitting the history length
according to different phases of program execution.

The goals of this paper are: (i) to analyse the behaviour of the dynamic
history length fitting algorithm, and (ii) to define new variations in the method

H. Zima et al. (Eds.): ISHPC 2002, LNCS 2327, pp. 271–280, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



272 Ayose Falcón et al.

that could lead to more accurate predictions, either by adopting new factors
that determine when it is necessary a history length change or by using profile
feedback. Our purpose is to provide new data about the behaviour of this kind
of algorithms, analysing their advantages and drawbacks. Although we will deal
with DHLF, our study can be extended to oth er variable history length methods.
Along the paper, we will study not only the misprediction rates that different
aproximations can achieve, but also their effect on IPC (Instructions Per Cycle).

The rest of this paper is organised as follows: In section 2 we explain other
related work; section 3 motivates our work, showing the potential improvement
of using variable history length; section 4 analyses DHLF, studying the basis of
its way of operating; in section 5 we study how DHLF could be enhanced using
profiling and present the results obtained. Finally, in section 6 we conclude this
paper and present gu idelines for future work.

2 Related Work

Most of the predictors used in current processors are based on the two-level
adaptive branch predictor proposed by Yeh & Patt [12,11]. In particular, in this
paper we will use the gshare predictor by McFarling [5]. The low-order branch
instruction address bits and global history bits (Branch History Register) are
xor-ed together to form an index to the Pattern History Table, thus reducing
interferences that appear when using a global second level table.

Two main characteristics affect the accuracy of a gshare predictor: the second
level table size and the number of bits taken to xor the branch address. Two
level table sizes of 212–216 are integrated in current microprocessors and designers
usually select history lengths of maximum size.

Chang et al. [1] questioned the assumption that correlation among branches is
always benefitial. They showed that the accuracy of two-level branch predictors
tends to decrease when increasing the first level register length for branches that
are mostly taken or not-taken. Tarlescu et al. [10] also proposed variations in
the gshare predictor, assigning different fixed history lengths to different static
branches using profiling information.

Juan et al. [3] propose an algorithm (DHLF) for dynamically adjusting the
history length to the portion of code considered. During an interval of a number
of step branches the history length remains unchanged, and after this interval
the algorithm can change to a better history length. When the history length
changes, the algorithm adds a warm-up interval to adapt to the new change.

Figure 1.a shows prediction rates when using a gshare branch predictor with
history lengths ranging from 0 to 16 and a PHT with 216 entries, for each
SPECint95. The last point of each curve corresponds to the results obtained with
the DHLF algorithm. DHLF monitors branch mispredictions produced during
the execution of the program (in intervals of step branches) and changes the his-
tory length to the best one according to the past behaviour of the program. This
is based on the observation that history lengths that can lead to high prediction
rates in one benchmark, can lead to low prediction rates in others. For example,
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Fig. 1. Prediction accuracy and IPC of gshares with fixed history length vs. DHLF

the use of the appropriate history length compared to the worst one can lead to
speedups of 20.82% for li, 12.36% for go or 10.40% for m88ksim (see figure 1.b).

Stark et al. [9] apply the same DHLF idea to path-based branch predictors
using profiling to determine which is the best path length for each static branch.

For more information, an extended version of this paper can be found in [2].

3 Motivation

Figure 2 shows the speedup obtained by the DHLF mechanism over several
fixed history length gshares, and over an ideal variable history length gshare.
The first bar corresponds to the speedup obtained with a DHLF over a gshare
with the longest history length (16); the second bar, over a gshare with the
shortest history length (0, like a bimodal predictor [7]); the third bar represents
the speedup of DHLF over the fixed history length gshare that achieves the best
IPC (accordin g to the results of figure 1.b). In some cases the use of the longest
history does guide to the best results, and in other cases the best performance
is obtained with the shortest history length. In all cases, compared with the
worst gshare, DHLF can improve the performance significantly, as in li, where
we obtain a 18.5% speedup. But compared with the fourth bar (against the best
fixed gshare) there is a negative speedup in all benchmarks, up to 6.6% in the
case of gcc. That confirms that the election of the optimum history length when
using a fixed history length gshare is a critical factor and that the choice is
different for each benchmark.

The last bar of figure 2 shows the speedup obtained by DHLF over an ideal
variable history length gshare. This gshare works as an oracle DHLF which
knows the best history length in each interval and uses an independent PHT
for each history length. This involves that no aliasing will appear due to history
changes. The data of this fourth bar shows us which is the maximum potential
that can be achieved. DHLF obtains a −4.2% speedup in average, and a peak
of −15% in gcc. Compa red with the best gshare, the ideal predictor achieves a
2.6% speedup in average, with peaks of 11% in gcc and 8% in perl.
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Fig. 2. Speedup of DHLF compared with gshare with the longest, shortest and best
history length, and with an ideal variable history length gshare

Table 1. Baseline configuration

Processor core Memory Hierarchy
Inst. Fetch Queue 8 insts. L1 data cache 64 KB, 2-way (LRU), 1-cycle lat.
Fetch width 8 insts./cycle L1 instruction cache 64 KB, 2-way (LRU), 1-cycle lat.
Issue width 8 insts./cycle L2 cache Unified, 2MB, 4-way (LRU),
Decode width 8 insts./cycle 4-cycle lat.
Commit width 8 insts./cycle Memory 75-cycles lat.
Register Update Unit 128 entries L1 cache ports 2
Load/Store queue 64 entries Branch prediction
ALU 8 int + 8 fp BTB 2048-entry, 4-way
Multiplier/Divider 2 int + 2 fp Return Address Stack 8 entries

3.1 Simulation Environment

For the purpose of our study, we have selected SPECint95 benchmarks, compiled
on a DEC Alpha AXP-21264 using Compaq’s C compiler. All benchmarks were
run until completion using a reduced input. The timing simulator used is derived
from the SimpleScalar 3.0a Toolkit.

The processor configuration used in our simulations is shown in table 1. In
all cases, the BHR length determines the PHT size: for N bits of history, 2N

PHT entries are allocated. As in [3], we will use a DHLF step of 16000 branches.

4 Analysis of History Length Changes Effects

4.1 Warm-Up and Opportunity Cost:
When Is Good to Change the History Length?

Each time the history length changes many mispredictions are introduced be-
cause the mapping of branches in PHT entries change radically, and a branch
that was previously predicted by a particular 2 bit counter will be now predicted
by another counter. This warm-up period involves a large payment and causes
the number of mispredictions in the next interval to grow considerably.
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Fig. 3. Effect of history length changes in penalisation and opportunity cost in go

To alleviate this problem, DHLF stops counting mispredictions during an
interval to allow the predictor to adapt to the new history length. During this
warm-up interval, the misprediction counter remains unchanged and after this
period begins the count of mispredictions of the real interval.

The control algorithm will be the responsible for deciding which will be the
history length to use in the next interval. For evaluating the cost of these deci-
sions, we define the following terms:

– Opportunity Cost (OC): Number of additional mispredictions payed due to
being in the history length B instead of being in the best history length C.

– Penalisation (P): Number of mispredictions payed due to change from his-
tory length A to history length B [≡ warm-up cost ].

– Penalised Opportunity Cost (POC): Number of mispredictions obtained with
the current history length, due to opportunity cost and penalisation (POC
= P + OC).

Using these terms, a fixed history length gshare will have a null penalisa-
tion and its penalised opportunity cost will be due to opportunity cost. At the
contrary, if we change the history length continuously to the best one, the op-
portunity cost will be null but the penalisation paid on each history change will
be the responsible of the penalised opportunity cost. The best solution will be
an intermediate proposal that minimises penalised opportunity cost.

Figure 3 shows intervals 2100 to 2200 during the execution of go. The dotted
line represents the history length used. Note that after a history length change
the opportunity cost tends to decrease because the algorithm is reaching the
optimum state. The penalisation (due to warm-up) increases significantly after
the history length change but tends to decrease in the next intervals because
two-bit counters begin to adapt.

The effect of the warm-up reaches in average 20 intervals, which means that
after 320,000 branches a PHT of 216 should have learned the new situation.
With a smaller PHT, the effect reaches less intervals. However, the penalisation
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Fig. 4. Plot of the DHLF algorithm path over the ijpeg opportunity cost 2D graph
(intervals 900–1000)

effect is larger if the history length increment or decrement is bigger than 1 unit,
because the number of PHT entries affected after a change is larger and the
warm-up requires more time.

Note that the best results of opportunity cost are obtained with history
length 6, the best for go according to figure 1.

4.2 DHLF Path Analysis

In this subsection we will study the behaviour of DHLF, comparing the decisions
taken by the algorithm about which history length must be used in each interval,
and the errors that will obtain gshare predictors with fixed history length in the
same intervals.

The methodology used is the following: first of all, we execute all the program
using the DHLF algorithm, and take a record of which history length has been
used in each interval. Later we execute 17 gshare predictors, each one with a
fixed history length from 0 to 16, and we record the number of mispredictions
obtained in each interval. With this information, we plot the 2D opportunity
cost values (figures 4 and 5) and plot over them the evolution of the history
length used b y the DHLF algorithm. The X axis represents intervals between
the number displayed below the graphs (100 intervals ≡ 1,600,000 branches).
The Y axis represents the history lengths used by each gshare, ranging from 0 to
16. The level of grey of the zones represents the opportunity cost and the dotted
line represents the time evolution of the DHLF algorithm, i.e., which history
length is being used in each interval.

Looking at figures 4 and 5 we can evaluate how well is performing the control
algorithm of DHLF. Further details of this analysis can be found in [2].

With these graphics we have tried to show the behaviour of DHLF during
the execution. From this data, we can conclude that:

– During the execution of the code there are zones very difficult-to-predict in
which choosing the history length that fits better becomes critical.

– In some cases DHLF behaves well, adapting the history length to the changes
in the code and trying to avoid the black and dark grey zones we show above.
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Fig. 5. Plot of the DHLF algorithm path over the go opportunity cost 2D graph
(intervals 2100–2200)

– In other cases DHLF does not behave well, taking a lot of intervals to reach
an optimum zone, or not realising that it is crossing a bad zone.

– The heuristics used by DHLF, based on mispredictions obtained in the pre-
vious parts of the code, could be improved using more information.

5 Algorithm Feedback

In previous sections we have shown why DHLF works, and the reasons of its good
performance. However, we consider that results obtained in some programs under
some situations can still be improved. One of the reasons of the low prediction
rate in some intervals during the execution of the code is due to the DHLF mech-
anism, which tries to learn the past to predict the future. But sometimes, the
future does not behave in the same way, especially in programs with very differ-
ent phases, and it causes the DHLF al gorithm to obtain too many mispredictions
due to a high opportunity cost. Other times, the causes of mispredictions come
from continuous changes in the history length, specially in programs with very
different and very difficult-to-predict phases, because the warm-up time until the
2 bit counters become ready to predict is too long. In these cases, penalisation
cost paid overcomes opportunity cost saved.

For solving this, we have used feedback data extracted from previous com-
plete executions of the program. Our first test has been feeding the DHLF al-
gorithm with a record of the history lengths that had the best prediction rate
in each interval when considering executions of the individual gshares. From
the results of figure 2 (’DHLF vs. IDEAL’ bar) we know that an ideal variable
gshare can achieve great IPC values, and now we study the gain obtained when
applying this history le ngths record in a DHLF predictor with an only PHT.

Figure 6.a shows the results of the normal DHLF algorithm in terms of oppor-
tunity cost and penalisation. We use an accumulative value (both opportunity
cost and penalisation are divided by the number of branches taken until the
current interval) for a better view. The first intervals, that corresponds to the
first phase of the execution, show a penalised opportunity cost that reaches the
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(b) DHLF using profiling (threshold = 1500)

Fig. 6. Evolution of Penalisation, Opportunity Cost and Penalised Opportunity Cost
(accumulated form) in go

6%. In that zone the cost due to penalisation is much larger than the opportu-
nity cost. Looking at this gr aphic it is clear that improving the performance
of this zone we could improve the performance of the overall execution. Taking
the total execution, the penalised opportunity cost has a value near to 1.2%, to
which contribute almost equally the opportunity cost and the penalisation.

Figure 6.b shows the results of employing the heuristic described below with
distance 1500. This algorithm pays few due to the history length change, but pays
a lot due to not being in the best history length each time —low penalisation,
but high opportunity cost—. When using distance 1000 the opportunity cost
decreases, but arises the penalisation due to the larger number of history length
changes. Finally, using distance 400, the effect is the contrary: the payment due
to opportunity cos t is smaller but there is more penalisation due to the history
length changes. Note that using these heuristics we are outperforming normal
DHLF in the first intervals, those related with the algorithm start-up (< 3%
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Table 2. Use of profiling with different error distances (Prediction accuracy and IPC)

d0 d200 d400 d600 d800 d1000 d1250 d1500 DHLF
099.go PrAcc 0.79 0.80 0.80 0.80 0.81 0.81 0.80 0.81 0.81

IPC 1.72 1.75 1.78 1.79 1.80 1.80 1.81 1.81 1.81
124.m88ksim PrAcc 0.96 0.96 0.96 0.96 0.94 0.94 0.94 0.94 0.96

IPC 3.18 3.14 3.22 3.22 2.92 2.92 2.92 2.92 3.21
126.gcc PrAcc 0.89 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.88

IPC 2.19 2.26 2.27 2.28 2.28 2.28 2.28 2.29 2.17
129.compress PrAcc 0.93 0.93 0.93 0.93 0.92 0.90 0.90 0.90 0.93

IPC 3.05 3.07 3.08 3.06 3.02 2.86 2.86 2.86 3.07
130.li PrAcc 0.95 0.96 0.95 0.95 0.95 0.95 0.96 0.92 0.96

IPC 2.41 2.50 2.34 2.29 2.29 2.29 2.50 2.24 2.48
132.ijpeg PrAcc 0.90 0.91 0.92 0.90 0.90 0.90 0.90 0.90 0.90

IPC 3.14 3.18 3.20 3.15 3.13 3.13 3.13 3.13 3.15
134.perl PrAcc 0.99 0.99 0.99 0.96 0.96 0.96 0.96 0.96 0.99

IPC 2.84 2.88 2.81 2.67 2.67 2.67 2.67 2.67 2.87
147.vortex PrAcc 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

IPC 2.91 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.92

in the worst case). The reason is that the cold start makes DHLF to traverse
all the history length to begin PHT warm-up, and both opportunity cost and
penalisation are too high.

Table 2 shows the results obtained when feeding DHLF with profiling infor-
mation. For each SPEC, the first row corresponds to the prediction rate accuracy
and the second row represents the IPC obtained. The last column shows the re-
sults of the normal DHLF for each SPEC. Of course, as we have mentioned
during this paper, the effects of the history length change limit the overall per-
formance. In such cases, we will try to process the history lengths record to get
flater curves, chang ing the history length only when the difference in number
of mispredictions between staying in the same history length and changing to
the best in the same interval is over a determined threshold. We have considered
9 different thresholds: 0, 100, 200, 400, 600, 800, 1000, 1250 and 1500 mispre-
dictions. Logically, greater threshold values suppose smoother curves and the
algorithm will repeat many times the history length during several intervals,
instead of changing. Our purpose is to minimize penalisation d ue to warm-up
mispredictions without improving significantly mispredictions due to opportu-
nity cost. The average speedup obtained is 1.2% and yields 5.53% in gcc.

6 Conclusions

This paper has examined the behaviour of DHLF technique, analysing the impact
of changing or not the history length in the overall performance. Using the terms
opportunity cost and penalisation we have analised the effect of the decisions
taken by the DHLF algorithm. We have shown that the high penalisation cost
limits dynamic fitting capability, so it is desirable to employ new heuristics that
improve performance by avoiding quick history length variations.

Another contribution of this study is the use of profiling information for
feeding back DHLF. We found that profile information can improve the bad
decisions taken by DHLF in some zones of the execution, especially at the start-
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up. This is a particular application that shows up that our approach is useful to
improve dynamic history length mechanisms.

We have analised DHLF, but our study can be applied to other variable
history length mechanisms. Future work includes new schemes that reduce the
effect of warm-up, maintaining the adaptativity of changing the history length
dynamically. In addition, we will study the influence of changing history length
in other two-level schemes based on the factors analised in this paper, as well as
the benefits of combining heuristics decisions and profiling information to help
these methods to select the next history l ength to use.
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