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Electrochemical double-layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, are devices in which diffusion
phenomena play an important role. For this reason, their modeling using integer-order differential equations does not yield
satisfactory results. The higher the temporal intervals are, the more problems and errors there will be when using integer-order
differential equations. In this paper, a simple model of a real capacitor formed by an ideal capacitor and two parasitic resistors,
one in series and the second in parallel, is used. The proposed model is based on the ideal capacitor, adding a fractional behavior
to its capacity. The transfer function obtained is simple but contains elements in fractional derivatives, which makes its resolution
in the time domain difficult. The temporal response has been obtained through the Mittag-Leftler equations being adapted to any
EDLC input signal. Different charge and discharge signals have been tested on the EDLC allowing modeling of this device in the
charge, rest, and discharge stages. The obtained parameters are few but identify with high precision the charge, rest, and discharge

processes in these devices.

1. Introduction

In recent years, the growing demand for new electrical energy
storing systems has led to a remarkable development of
electrochemical double-layer capacitors (EDLC). The EDLC
are devices capable of storing energy and are characterized by
their very rapid response during charge and discharge cycles,
which allows them to provide high power and to hold a high
number of charge and discharge cycles.

The complementary qualities of EDLC and batteries have
allowed the generation of numerous hybrid applications
for energy recovery or storage systems. Energy storage in
EDLC is not supported by chemical processes. Moreover,
supercapacitors have a high life cycle and do not need
any maintenance. From the above it can be concluded that
because of their characteristics these devices have raised great
interesting expectations [1, 2].

It is a usual procedure that the dynamics of real systems
are modeled by differential equations. In most cases, the
differential equations are based on conventional derivatives,

yielding sufficiently accurate mathematical models. However,
there are a variety of systems or phenomena in which math-
ematical models based on ordinary differential equations do
not provide satisfactory solutions. One of these elements is
the EDLC. It is this case, when the application of models
based on fractional derivatives, studied in the field of frac-
tional calculus, is very useful. These equations are called frac-
tional differential equations.

In multiple fields of physics, there are numerous examples
in which a differential equation is used as fractional modeling
tool [3-5]. This is very common when considering geometry
conditions with fractal dimension and distributed parameter
systems [6-8]. In the field of electric power, the current
through a capacitor is proportional to the noninteger-order
integral for electric current [9, 10]. An electric network
composed of infinite RC elements can be modeled through
fractional differential equations [11, 12].

In this paper, a dynamic fractional model for EDLC is
developed, based on a differential equation with fractional



derivatives. This equation has been solved by means of
the Laplace transform, and in order to obtain the time
domain solution used the Mittag-Leffler function E, g ().
The solution has been obtained for a unitary step input and
for a generic input. This model has been applied to an EDLC
for its identification in long time periods, obtaining very
satisfactory results.

This paper is organized as follows: Section 2 shows a brief
review of fractional calculus; in Section 3 the fractional model
of the EDLC is deduced; Section 4 expounds the experimental
data and the discussion; finally in Section 5 the conclusions
are presented.

2. Brief Review of Fractional Calculus

In this section is exposed a brief mathematical background
of the fractional calculus [3], for understanding methods,
results, and conclusions presented in this paper. The fol-
lowing are some of the most popular functions, definitions,
and properties of the fractional calculus.

2.1. Riemann-Liouville Derivative Definition. Riemann-Liou-
ville definition expresses the fractional derivative as a time
convolution integral
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where 7 is an integer and « is a real number and the frac-
tional derivative order.

2.2. Caputo Derivative Definition. Caputo definition of a frac-
tional derivative of a function is
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where 7 is an integer and « is a real number and the frac-
tional derivative order.

2.3. Grunwald-Letnikov Derivative Definition. Grunwald-
Letnikov definition is a numerical form of the fractional
derivative
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2.4. Laplace Transform of the Fractional Derivative. An inter-
esting property of the fractional derivative operator is its
Laplace transform

L[,DSf ()] = L e DI (t)dt

© & k (4)
k-1
=s"F(s)- Y & D F (D),
k=0
n-1<ac<n),
where, if initial conditions are null, it yields

L[ DY f (8)] = s“F (s). (5)

2.5. Mittag-Leffler Function. The two-parameter function of
the Mittag-Leffler type E, g (z) playsa very important role in
the fractional calculus and is defined as
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The exponential function e® isa particular case of the Mittag-
Leftler function
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One of the main uses of the Mittag-Leffler function comes
from the following Laplace transform
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where k indicates the order of the derivative of the Mittag-
Leffler function
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Considering the specific case for k = 0 yields
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And by substituting the Mittag-Leffler function, the following
is obtained:
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Which will be the relation used for calculating the solution in
the time domain.
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3. Dynamic Model of EDLC

Electric modeling of supercapacitors is an active line of
investigation with numerous contributions in the last few
years [13-15]. There are not yet totally satisfactory models
applicable to any operating mode of the EDLC, allowing the
EDLC behavior to be observed and simulated. That is the
reason why models based on heuristic techniques are mainly
used [14]. Models based on the physics processes occurring
in EDLC are also used [15]. Most of the models obtained
make use of a considerable number of variables, either of a
high number of passive elements or of fractional variables
models [16-18]. Either way, testing these devices during long
time periods has allowed observing their behavior and their
applicability to energy storage systems. Charge and discharge
are rapid processes occurring in a short time interval, since
high currents are used.

Due to diffusion processes resulting after the charging
phase. The evolution of the processes occurring inside the
EDLC generates a nonreversing thermal dissipation which
makes the assessment of losses in the device possible. This
process would occur in both the EDLC charge and discharge
phases.

The model of EDLC has been considered as single input
(current), single output (voltage) system. The electric model
used comes from the model applied to ideal capacitors using
integer-order differential equations. Subsequently, a model
based on fractional order differential equations is proposed.

3.1. Electric Model of a Conventional Capacitor. The mathe-
matical equation, relating the current and the voltage at the
terminals of a real capacitor, can be deduced from an electric
circuit made of an ideal capacitor and two parasitic resistors
[9,19].

Naming the series resistor as R; and the parallel one
as R, and operating the following equation is obtained:

dv (t) di(t)

dt dt
(12)

R,-C

+v(t)=(R,+R))-i(t)+R,-R,-C

with v(t) being the voltage at the terminals of the EDLC
and i(t) its current. The transfer function or impedance in
the Laplace domain will be calculated as the quotient between
voltage and current

Vi(s) _
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(13)
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Gathering the constants of the transfer function the following
is obtained:
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FIGURE 1: Equivalent circuit of a real capacitor.

The differential equation resulting from the transfer function
can be solved for simple and complex signals using the
existing simulation programs.

3.2. Electric Model of EDLC. The model obtained for real
capacitor (12) fits well to the behavior of real capacitors in a
wide range of frequencies. However, if applied to an EDLC,
the adjustment is unsatisfactory, especially when long time
periods are analyzed.

Many papers [3, 10, 20] exposed the fractional behavior
of EDLC. Thus, by changing the ideal capacitor in the model
in Figure 1 for a fractional one, the voltage and the current
across such fractional capacitor are given by

C-D*v(t)=i(t). (16)

Applying this relation to the circuit of Figure 1, it gives a
differential equation of the form

oDiv(t)+a-v(t) =k, - (Dii(t)+ky-i(t). (17)

Applying Laplace transform (5) and assuming that the initial
conditions are zero, the following is obtained:

G(s)=V(SS)=<k Sk, ) (18)
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This transfer function is similar to (14), differing only in
the fractional aspect of the capacitor. In this case differ-
ential equation (17) is of fractional order, being defined
by variable «. This equation can be solved for simple and
complex signals input, using Mittag-Leftler functions [3, 21].

3.3. Solution to the Fractional Equation of EDLC. In this
section the solution to (18) will be deduced in the time
domain for a variable input over time.

3.3.1. Solution to a Unitary Step Input. Multiplying transfer
function (18) by the unit step input i(s) = 1/s, the response
of the system to this signal is obtained:

a—1 -1

v(s)=kls—+ y s
s“+a s“+a
(19)
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Applying relation (11),
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(20)

The response in the time domain to a unit step input is
obtained.



3.3.2. Solution to a Generic Input. The response can be
extended to any input. For this purpose, the superposition
of steps displaced by the sampling period of the input signal
has been used. Thus, for the first input signal, the temporal
response matches the response obtained by (20). So, for the
first time interval,

J

V(t):i(o)'< zr(oc J+1

00 _ .ttx]' (21)
ANV i il iy |
ST(ajta+l)
0<t<T.

As the input signal changes in the second period, its response
can be obtained by superposing to the previous response a
second step, delayed in time, a period T, resulting in
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(22)

Generalizing (22) for a generic time interval N, the following
is obtained:

N
v(t)= Y ((kT)—i((k-1)T))
k=0

(-a- (t - kT)*)
k v 7
IZO T(x-j+1)

(-a-(t-kD)" )]

thy (£ = KT)" z F(oc ]+0c+1)

NT <t<(N+1)T,
(23)

where the initial conditions are zero.

4. Experimental Results, Identification,
and Discussion

4.1. Instruments. The experimental data have been obtained
in the laboratory making a test circuit and recording the
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FIGURE 2: Schematic diagram of the experimental circuit.

@ ——EDLC

electrical variables of the EDLC. The analyzed EDLC, man-
ufactured by ELNA, has a capacity of 4.7 F and a voltage of
25V.

Figure 2 shows the electric circuit for the charge-dis-
charge control. A Crouzet Millenium III PLC has controlled
the charge and discharge switches. Voltage and current data
have been recorded through a NI USB-6009 data logger by
National Instruments.

4.2. Experimental Results. Several tests have been performed
to the EDLC in order to monitor voltage and current signals.
Because EDLC have memory effect, just before each test they
have been short-circuited for 24 hours to ensure zero initial
conditions.

The tests were performed as follows. In a first phase lasting
a few minutes, was charged at a constant current between
20 mA and 0.9 A until the voltage reached 2.4 V; in the second
phase, the current is cut off and left to rest for 8 hours to
allow the voltage stabilization, and finally in the third phase
is discharged through a resistance of 5 ohm until it was fully
discharged.

Although the sampling period of voltage and current
has been recorded at 0.1s; sfor identification purposes it
has been considered a 5s sampling time. Figure 3 shows
the experimental data obtained. The evolution of voltage
in the EDLC throughout the process can be appreciated in
Figure 3(a), while the current supplied at Figure 3(b). They
are observed perfectly the three stages described above.

4.3. Identification. The coeflicients for the proposed model
have been defined according to transfer function (18) and
implemented using (23).

For identification the MATLAB simulation software was
used. The function created has as input parameters «, a, ky,
and k,. Using (23) the voltage response is generated taking
all the current samples as input. The voltage is compared
with the experimental data through standard deviation (24),
generating the output of the function. Using this function in
the command fminsearch of MATLAB, sought parameters
are obtained. For implementing (23), the terms j of the sum
may be truncated without causing significant errors.

The index chosen in this paper is the standard deviation
defined as

N 2

_ \JZ#] (yi,exp - yi,cal) (24)

oy = ,
N-1

where N is the number of samples and subindexes which

represent the values obtained experimentally and calculated
according to the model.
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FIGURE 3: Charge-rest-discharge at 20 mA.
Charge (0.9A)-rest (best identification with a = 1) TaBLE 2: Charge + rest electrical parameters.
2.7 T T T T T T T
Test I(A) « C R, R,
S T A B 1 0.02A 0941 495 0239  3.382E+06
. : . . : 2 0.1A 0.952 5.35 0.261 2.155E + 06
~ Experimental data - : 3 05A 0950 580 0267  1.660E +06
o |V ol d’ y S 4 05A 0.950 5.91 0.250 1.660E + 06
g Calculated values 5 09A 0.953 6.08 0.228 1.658E + 06
S 21 f 1
TABLE 3: Parameters calculated for test number 5 setting « = 1.
19} i .
' Ry Test a C R, R,
1 1.000 9.00 1.262 2.191E + 04
1.7 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Time (h) TABLE 4: Discharge identification parameters.
FIGURE 4: Fitting in the resting phase using integer derivatives. Test o a ky k, 04
1 0.975 9.600E — 08 0.235 0.187 1.391E - 02
T b dentificati 2 0.981 9.282E - 08 0.244 0.185 1.281E - 02
ABLE 1: Charge + rest identification parameters. 3 0.978 8.427E — 08 0.267 0.192 2.068F — 02
Test 1(A) « a k, k, o, 4 0976  1556E-07 0251 0202  2.338E-02
1 0.02A 0941 5974E-08 0239 0202 2.079E 02 5 0.982  1.032E-07  0.240 0171  1.285E-02
2 01A 0952 8671E-08 0261 0187 1.297E—02
3 0.5A 0950 1.02E-07 0.267 0.170 1.354E-02 TABLE 5: Discharge electrical parameters.
4 05A 0950 1.020E—07 0250 0169 1.338E - 02 " - - -
5 09A 0953 9917E-08 0228 0164 1.096E — 02 est « L 2
1 0.975 5.34 0.235 1.950E + 06
2 0.981 5.40 0.244 1.996E + 06
The EDLC identification has been carried out calculating 3 0.978 5.21 0.267 2278E + 06
the parameters «, a, k;, and k, in (18) and has consisted 4 0.976 4.95 0.251 L.297E + 06
of two parts: first, from the beginning until just before 5 0.982 5.85 0.240 L.656E + 06

discharged and second, from the discharge onwards. This
is because the internal processes in the EDLC are different
(22, 23].

The data obtained for the charge and rest phases are
shown in Table 1.

Considering relation (15) between the parameters cal-
culated with the resistors and the capacity in Figure 1, the
parameters obtained for the charge are in Table 2.

In order to compare the adjustment with traditional
model (14) in which the fractional index is an integer, Table 3
and Figure 4 show the best fit to the data of test number 5
setting o = 1.

Operating in a similar way, the parameters for the
discharge through the 5 Q) resistor are in Table 4.

Of which the following electric parameters are obtained
in Table 5.

The following figures show graphically the fit of the
proposed model with experimental data. Figure 5 shows that
the model has a good precision all over the time range tested.
Figures 6 and 8 display the model and the experimental
data in the charging and discharging phases. Figures 4 and 7
show the fit when using transfer functions with integer and
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FIGURE 5: Experimental data of test number 5 versus proposed
model.
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FIGURE 6: Detail of fitting in charging phase.

fractional indices, showing that the fit with the traditional
model gives unsatisfactory results. In summary, it can be
observed that the voltage deduced through the fractional
model adjusts very close to the real data even in long time
periods.

4.4. Discussion. The self-discharge adjustment of EDLC after
charging and after long time resting phases is a complex phe-
nomenon which is not easily applicable to modeling through
integer-order transfer functions. In this work the EDLC has
been modeled making use of the fractional derivative. Taking
the electric circuit in Figure 1 as starting point and assuming
that the capacitor has a fractional index «, fractional transfer
function (18) has been deduced. This function has been
solved in the time domain using Mittag-Leffler functions and
implemented in a simulation program through (23).

First of all, considering Figure 5, it can be observed that
the proposed transfer function adjusts well to the real data,
modeling satisfactorily the self-discharge phenomenon.

Unlike the traditional capacitor model, which is defined
by the value of two resistors and the capacity, the proposed
model adds a new parameter, that is, the fractional index « of
the fractional capacitor. This new parameter models to a
greater extent the self-discharging phenomenon.
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FIGURE 7: Fitting in the resting phase using the proposed model.
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FIGURE 8: Fitting in the discharging phase.

Although constants in Tables 1 and 4 have been taken for
the identification of equations, constants in Tables 2 and 5 will
provide the data related to the value of the electric elements.

In all cases the adjustment has been very precise, with the
typical deviation being less than 0.03.

The constancy of R;, R,, and C values for both charge
and discharge is especially noteworthy.

At last, the most significant difference in terms of charge
and discharge is given by the value of the fractional index «,
which is around 0.95 in the charge and around 0.98 in the
discharge.

5. Conclusions

This work has consisted of EDLC modeling by implement-
ing a simple fractional model allowing a very satisfac-
tory response for long time periods. Traditional models
based on transfer functions with integer coeflicients yield
good results in those cases when there is no self-discharge
phenomenon. Applying fractional mathematics implies an
additional parameter to the already necessary parameters in
order to define the basic model shown in Figure 1, which is
the fractional index . According to the tests this index has
different values for the charge and the discharge, with those
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values being apparently independent of the EDLC charging
current.

Thanks to the proposed transfer function and the Mittag-
Leftler functions, it is possible to estimate the voltage at the
EDLC terminals after a long time, taking into account the
charging current and the way it has been charged.
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