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Abstract
Purpose The shape and size of the aortic lumen can be associated with several aortic diseases. Automated computer seg-
mentation can provide a mechanism for extracting the main features of the aorta that may be used as a diagnostic aid for
physicians. This article presents a new fully automated algorithm to extract the aorta geometry for either normal (with and
without contrast) or abnormal computed tomography (CT) cases.
Methods The algorithm we propose is a fast incremental technique that computes the 3D geometry of the aortic lumen from
an initial contour located inside it. Our approach is based on the optimization of the 3D orientation of the cross sections of the
aorta. The method uses a robust ellipse estimation algorithm and an energy-based optimization technique to automatically
track the centerline and the cross sections. The optimization involves the size and eccentricity of the ellipse which best fits
the aorta contour on each cross-sectional plane. The method works directly on the original CT and does not require a prior
segmentation of the aortic lumen. We present experimental results to show the accuracy of the method and its ability to cope
with challenging CT cases where the aortic lumen may have low contrast, different kinds of pathologies, artifacts, and even
significant angulations due to severe elongations.
Results The algorithm correctly tracked the aorta geometry in 380 of 385CT cases. Themean of the dice similarity coefficient
was 0.951 for aorta cross sections that were randomly selected from the whole database. The mean distance to a manually
delineated segmentation of the aortic lumen was 0.9mm for sixteen selected cases.
Conclusions The results achieved after the evaluation demonstrate that the proposed algorithm is robust and accurate for the
automatic extraction of the aorta geometry for both normal (with and without contrast) and abnormal CT volumes.

Keywords Aorta · Ellipse tracking · Centerline · Cross section · CT images

Introduction

The practice of evidence-based medicine [1] has become a
reality, with the publication of guidelines for the diagno-
sis and management of patients of different diseases from
the results achieved in several meta-studies. In many cases,
these guidelines employ quantitative imaging biomarkers
of great usefulness for providing evidence-based decisions.
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Thereby, the introduction of new computer tools that can
provide robust, reliable, accurate and reproducible values of
such biomarkers has become a fruitful area of development.

In particular, the presence of aneurysms, dissections,
mural thrombi, or elongations are currently considered the
main anomalies of the thoracic aorta [2], and the use of
images from CT scanners has been extensively employed to
study these.Moreover, the correct measurement of distances,
the presence of different textures, or the characterization of
shapes are some of themain tasks to be addressed. The devel-
opment of fully automated tools that can be applied to a broad
variety of volumetric chest CT scans is currently a great chal-
lenge to be faced.

The first step in the development of such automated tools
is the correct segmentation of the aorta from the whole CT
volume [3]. Even though this task can be appeared to be
relatively simple for contrast CT scans of normal cases, the
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presence of artifacts and abnormalities, or the use of non-
contrast CT scans make the standard 3D segmentation, based
on intensity or even edge information, fail due to the presence
of neighboring pixels with similar intensity, which leads to
leakage as the algorithm evolves.

Several algorithms for automated aorta segmentation from
CT volume data have been previously developed. In general,
the Hough Transform has been employed to detect a first
slice, fromwhich either a seed point, or an initial contour, are
taken. From there, several approaches have been proposed.
Wang et al. proposed an iterative method based on building a
2-D region for segmenting the ascending aorta [4]. Martinez
et al. [5] employed active contours to delineate the aorta con-
tour on each slice.However, such approacheswere developed
for contrast-enhanced CT scans, where there is a significant
difference between the aorta and the surrounding tissues.

If no contrast is injected, the evolution of the algorithms is
more challenging because the vessels are not enhanced from
the background. To address this drawback, and to avoid the
leakages, some approaches that rely on a priori shaped mod-
els are employed. However, the development of a shaped
model for the aorta requires a large dataset of manually
labeled training examples because the aorta can adopt mul-
tiple shapes, mainly from abnormal cases. This is the reason
why most of the previous developments based on this idea
use regular shapes such as the circle to model the aorta and
perform the tracking by adapting the model to the orien-
tation of its orthogonal cross section. This is the case for
Kurugol et al. [6], where ascending and descending aorta
were modeled as tubular shapes and the arch section as a
torus, but in any case, preserving the circular shape for cross
sections. Dasgupta et al. [7] proposed the use of morpho-
logical geodesic active contours to segment the aorta. The
aorta boundary for both ascending and descending aorta was
located by using a circular Hough Transform. Xie et al. [8]
used a cylinder-tracking algorithm that follows the shape of
the aorta by adapting the length of such cylinder to the aortic
diameter and curvature. As in the two previous works, the
first aorta boundary was automatically extracted in the slice
where the carina is located. Furthermore, Krissian et al. [9]
and Frangi et al. [10] used diffusion filters to enhance the
contrast of vessels and improved the performance of vessel
segmentation.

In this paper, we introduce an extension of the method
described by Alvarez et al. [11], presented at the MICCAI
Conference in 2017, to address the problem of estimating the
aortic lumen in CT volumes. The main contribution consists
in the development of a fully automated method to estimate
the aortic lumen geometry, which relies on a tracking pro-
cedure of the aorta cross sections. Such cross sections are
modeled by using ellipses oriented in the 3D space accord-
ing to planes transversal to the aorta. To perform this task, the
estimation of the aortic lumen geometry is formulated as an

energy minimization problem, where we optimize the orien-
tation in the space of the cross-sectional planes, as well as the
ellipse parameters in these planes. To compute the ellipses,
we have followed the method proposed in [12]. However,
because we also have to deal with the optimization of the
orientation of the cross-sectional planes, a more complex
energy minimization formulation was required.

Potential applications of these methods are the extraction
of morphology characteristics for detection of diseases [13],
patient follow-up, surgery planning [14], or even as biomark-
ers in order to understand cardiovascular diseases [15].
Therefore, the method has to be accurate (the shape of the
lumen has to be quite similar to the cross section obtained),
and robust (the whole volume of the aorta has to be tracked
without leakages, even in the presence of artifacts or dis-
eases). In this way, an extensive experimental study that
demonstrates the robustness and accuracy of this new tech-
nique is also presented in this paper, including the software
and the dataset used as experimental setup on the Web site
http://www.ctim.es/demo110/.

Automatic trackingof theaortic lumengeom-
etry

Themain goal of this paper is to design a newmethod that, by
taking a 3D thoracic CT volume as input, allows extracting
the 3D tubular structure of the aortic surface automatically,
even in cases where the morphology of that structure has a
certain degree of tortuosity. This occurs for the aortic arch,
or in cases where the presence of severe elongations or mural
thrombi transforms the cylindrical shape of the aorta into a
more complex morphology.

Themethod can be described as a three-step process: First,
the procedure starts from an initial circle that is automatically
estimated in one of the slices of the CT volume. This can
be located in either the ascending or descending aorta. The
image intensity value of the 3D volume is then truncated
using two threshold values to focus the analysis on the aorta
lumen and the surrounding areas. Finally, the aorta centerline,
the cross sections, and the ellipses fitting the aorta lumen
are tracked in both upward and downward directions from
the initial contour. The main tool used is an ellipse tracking
algorithm, introduced in [12], and based on the minimization
of the following energy:

E1(C, I, σ ) = 1

|C |
∮
C

∇Gσ ∗ I(C(s)) · n̄(s)ds, (1)

where I is a 2D image (the aorta cross section in our case),
C represents the ellipse,Gσ is a Gaussian convolution kernel
with standard deviation σ , and n̄ represents the normal to the
ellipse contour. In this way, the above line integral measures
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the contrast of the convolved image along the ellipse and the
local minimum of such energy is attained for ellipses fitting
high-contrast contours.

Location of the first contour

It is well known that, due to its tubular shape, when the ori-
entation of the aorta is orthogonal to a CT slice, it can be
approximated by a circle. For this reason, a circle Hough
Transform is employed as a first step for the detection of
an initial contour for our algorithm. However, several other
structures, such as the trachea or the backbone also appear as
circular shapes in those CT slices. To avoid the selection of
circles that are present in the slices but do not correspond to
vascular structures, amore complex procedure is required. To
address this problem, we use the algorithm described in [16].
Briefly, for each slice I z of the 3D volume, a circle Hough
Transform is computed. The most voted circle Cz , with cen-
ter (czx , c

z
y)

T and radius Rz , is then collected for each slice.
Next, an optimal circle, Czopt , is selected from {Cz}, based
on a Qz quality value that is defined for each of theCz circles
as follows:

Qz = V z

Md{V z} − Ez

Md{Ez} − σ z

Md{σ z} − Dz

Md{Dz} , (2)

where Md{.} represents the median estimator, V z is the
voting score provided by the Hough Transform, σ z is the
standard deviation of the image intensity values inside the cir-
cle, Dz is the distance between circle centers for consecutive
slices (czx , c

z
y)

T and (cz+1
x , cz+1

y )T , and Ez is the following
circle energy introduced in [17]:

E(R, c̄) = 1

2π

∫ 2π

0
∇ Iσ (C(θ)) · n̄(θ)dθ (3)

+α−

(∫∫
A−(Iσ (C(θ)) − I−)2rdrdθ

|A−|

) 1
2

(4)

+α+

(∫∫
A+(Iσ (C(θ)) − I+)2rdrdθ

|A+|

) 1
2

, (5)

where C(θ) = (cx + R · cos(θ), cy + R · sin(θ))T , Iσ is the
original image convolved with a Gaussian kernel, α−, α+ ≥
0, A−, A+ are annuli on both sides of the circle contour, and
I−, I+ are the average of Iσ in A− and A+, respectively.

Once a reference circle Czopt has been estimated by maxi-
mizing the quality criterion (2), we obtain, by similarity with
this one, a collection of circles that could be used as well
as initial contours. Figure 1 shows some of such circles for
the same CT scan obtained in different slices. If the track-
ing of the aorta is stopped before the heart is reached, the
method automatically detects this problem and starts from
a new initial contour. This usually happens when the aortic
arch is being tracked. If the algorithm is not able to fully track
the aortic arch, we recomputed the aorta centerline by using
another circle of that collection {Czi } as initial contour. This
is automatically performed by checking the distance between
the position of the last centerline point obtained and the cen-
terline point where the z coordinate attains its maximum. If
this distance is too short, a new initial contour from {Czi } is
taken.

Estimation of the thresholds

Following [16], from the collection of circles obtained above
{Czi }, a kernel density estimation (KDE) of the distributions
of the intensities inside and outside the aorta is computed
(Fig. 2). Percentiles of the obtained distributions are used for
estimating two thresholds Pout and Pin that are employed to
perform a basic image truncation. That is, we update the CT
volume intensity I (x, y, z) in the following way:

I (x, y, z) =
⎧⎨
⎩

I (x, y, z) if I (x, y, z) ∈ [Pout, Pin]
Pout if I (x, y, z) < Pout
Pin if I (x, y, z) > Pin

. (6)

The main goal of this truncation procedure is to exclude dark
areas (due to the presence of air) or bright spots (due to the
presence of calcifications, metallic structures, or even accu-
mulations of physiological contrast) from the vicinity of the
aorta (Fig. 3). These kinds of artifacts could affect the per-
formance of the tracking algorithm that is described below.

Fig. 1 Initial contours obtained automatically using the method proposed in [16]
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Fig. 2 KDE of the density probability distributions inside and outside
the aorta vessel obtained using the method proposed in [16]

Tracking of the aorta

As pointed out above, the aortic contour usually approaches
a circular shape. However, on certain occasions this circu-
lar shape degenerates and it is more suitable to model these
contour as an ellipse. Thus, for instance, when the tortuos-
ity of the aorta is high and there are large angulations, the
aorta cross section can be far away from the circular shape
(Fig. 4). To deal with these kinds of drawbacks, we propose
the following algorithm, based on ellipse tracking [11].

Let I : Ω ⊂ R3 → R be a 3D image, c = (cx , cy, cz)T ∈
R3, and α, β ∈ R. We define the 2D image I α,β

c (x, y) as

Iα,β
c (x, y) (7)

= I

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝ cx
cy
cz

⎞
⎠ +

⎛
⎝ cosα 0 sin α

− sin α sin β cosβ cosα sin β

− cosβ sin α − sin β cosα cosβ

⎞
⎠

︸ ︷︷ ︸
R

⎛
⎝ x

y
0

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠
.

I α,β
c (x, y) represents the intersection of the 3D CT vol-

umewith the plane that contains the point c and is orthogonal
to n = (sin α, cosα sin β, cosα cosβ)T . In Fig. 5, we illus-
trate the shape of a cross-sectional plane. We denote by Cα,β

c,σ
the ellipse which optimizes the energy (1) for such an image.

To estimate the best orientation of the cross-sectional
plane, a new energy is defined:

E(α, β, c) = w1E1(C
α,β
c,σ ) + w2

√
Area(Cα,β

c,σ )︸ ︷︷ ︸
E2(C

α,β
c,σ )

(8)

+w3Eccentricity(C
α,β
c,σ )︸ ︷︷ ︸

E3(C
α,β
c,σ )

,

where w1, w2, w3 ≥ 0. The above energy E(α, β, c) is the
balance of three terms: E1(C

α,β
c,σ ), given by (1), a quality fac-

tor relatedwith the existence of high-contrast values between
the aorta lumen and the surrounding region. E2(C

α,β
c,σ ), that

penalizes ellipses with a large area, and E3(C
α,β
c,σ ), which in

turns, penalizes a large value of the ellipse eccentricity. In
order to set proper values for the weight parameters wi , we
seek to balance the three terms of the energy. It must be noted
that, in the CT images, E1 is proportional to the intensity val-
ues of the image, close to several hundreds. E2 (square root
of the area of the ellipse which fits the aorta cross section)
is approximately a few tens of units, and E3 (eccentricity)
is in the range [0, 1). In all the experiments performed, the
following values have been used: w1 = 0.1, w2 = 1 and
w3 = 10.

To track the centerline point ck , the orientation of the
cross-sectional plane (αk, βk) and the ellipse in each cross
section Cαk ,βk

ck ,σ , the following iterative procedure is per-
formed:

1. An initial estimation of ck is computed as

ck = ck−1 + h · nk−1,

where h is a discretization step (in the experiments we
use h as the minimum of the image voxel edge lengths ).

2. (αk, βk) and C
αk ,βk
ck ,σ are computed by minimizing energy

E(α, β, ck) with respect to α, β, that is

(αk, βk) = argmin︸ ︷︷ ︸
α,β

E(α, β, ck). (9)

The minimization is performed by a Newton–Raphson-
type algorithm using the previous values (αk−1, βk−1) as
initial guess for (αk, βk).

3. ck is updated by applying the isometry defined in (7) to
the center of the ellipse Cαk ,βk

ck ,σ in the following way:

ck = ck + R · (xc, yc, 0)
T ,

where (xc, yc)T is the center of the ellipse Cαk ,βk
ck ,σ .

4. The orthogonal direction nk to the cross-sectional plane
is computed as

nk = ± (sin αk, cosαk sin βk, cosαk cosβk)
T , (10)

where the sign of nk is fixed in such away thatnk ·nk−1 >

0.

The same procedure is used to track the aorta upward or
downward from the initial contour. This is accomplished by
changing h by −h in the step 1.
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Fig. 3 Challenging cases from the LIDC database. In spite of the poor contrast of the images and the presence of artifacts, the proposed method is
able to compute cross sections and ellipses properly

Fig. 4 Left: 3D reconstruction of an aorta; right: one cross section of
the aorta in the proximity of a severe elongation. The shape of this cross
section approaches an ellipse

The output of the algorithm is the aorta centerline given
by the points ck, the orientation of each cross section, given
by the angles (αk, βk) and the ellipses Cαk ,βk

ck ,σ . From these
data, it is possible to build a representation of the 3D ellipses
that model the cross sections calculated along the aorta
(Fig. 6(left)). Therefore, what we obtain is not an aorta lumen
segmentation in itself, i.e., we do not obtain a solid volume.
However, for comparison purposes, we can easily obtain this
solid volume by filling the inner volume between every con-
secutive pair of such ellipses (Fig. 6(right)). The intersection
of such volume with axial planes enables the contour of the
aorta in the original axial slices to be obtained.

Fig. 5 Illustration of a cross-sectional plane including the centerline
point c = (cx , cy, cz)T , the plane normal orientation n given by the
angles α, β and the ellipse corresponding to the intersection of the plane
and the 3D volume

Experiments and dataset

Images from two independent databases were employed to
assess the robustness and the accuracy achieved by the algo-
rithm. For robustness, a qualitative procedure based on visual
inspection was designed. Thereby, the correct initialization
of the algorithm and its capacity for tracking the whole
aorta were analyzed. For accuracy, a quantitative evalua-
tion procedure was performed. In this way, regions manually
delineated by a human expert (Sm) were compared with
regions extracted by the algorithm (Sa).
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Fig. 6 Left: ellipses obtained for patient USC-119; right: automatic
aorta volume segmentation computed from the ellipses

The first database, named USC, comprises 108 CT vol-
umes of patients that were scanned in the Department of
Radiology of the University Hospital of Santiago de Com-
postela, Spain. Normal and abnormal cases were included in
this database. Most of the abnormal cases were related to the
presence of aneurysms, but also different kinds of pathologies
like dissections, mural thrombi, or severe elongations were
included (Table 3). All the cases were obtained after intra-
venous contrast was injected, which is the standard protocol
for this kind of patient. Thereby, the opacity of the lumen of
the aorta is enhanced, which usually facilitates its detection.
However, depending on the aortic illness that is suffered, the
morphology of the lumen for these abnormal cases can be
quite different to that expected, which makes it difficult to
build a standard model. This database includes cases from
two different scanners and the slice thickness ranges from
0.625 to 5.0mm. The dose is automatically adjusted depend-
ing on the physical characteristics of the patient.

The second database, named LIDC, comprises 277 CT
volumes from the LIDC-IDRI public database (see [18,19]).
Because of this database was built for lung cancer detection,
most of the cases are normal as regards the aorta and were
acquired as low-dose non-contrast CT images. This database
includes cases from six different scanners and the slice thick-
ness also ranges from 0.625 to 5.0mm.

Manual annotations were delineated using the paintbrush
tool of the ITK-SNAP program (http://www.itksnap.org). A
tablet with a digital stylus was employed for this task per-
formed by a radiologist in collaboration with an experienced
researcher (both are among the authors of this paper).

Evaluation of the robustness

Both the selection of the first contour and the final result
achieved for the tracking procedure were analyzed. For the

Fig. 7 Illustration (in white) of the intersection in the CT scan of the
3D ellipse collection with a plane approximating the centerline points.
The dark segment inside the aorta represents the location of the contour
used to initialize the tracking. Left: a CT scan where the method has
successfully tracked the aortic lumen in all the aorta segments; Right:
a CT scan where the method has failed to track the aortic lumen in the
aortic arch

selection of the first contour, it was checked whether the
candidate circles that the algorithm selected automatically
were inside the lumen.

For the tracking procedure, we analyze, by visual inspec-
tion, whether the algorithm is able to properly track the aorta
from the descending to the ascending aorta so that it does
not get trapped in spurious locations. To do this, reformat-
ted planes were obtained. In order to optimally visualize the
shape of the aorta, those planeswere calculated automatically
using the centerline points (see Fig. 7).

Evaluation of the accuracy

Accuracy assessment was performed in two ways. (1) First,
for each CT scan of the database, the algorithm provides a
set of reformatted images where the cross sections of the
aorta are placed (Fig. 10) in its center. For each case, we
randomly selected eleven of those images (five located in
the ascending aorta and the aortic arch, and six located in
descending aorta) to manually trace the border of the aorta.
(2) Second, to analyze the accuracy of themethod in different
contexts in more detail, 16 cases were specially selected to
encompass the greatest possible variability. The aim was to
analyze how accurate the algorithm with and without the
presence of disease, artifacts and/or physiological contrast,
etc. (see Table 3). For those cases, all the axial slices were
delineated by hand. Thereby, the aorta volumes (manually
extracted vs algorithm extracted) could be compared.

As comparative measures, we used the dice similarity
coefficient (DSC) and the bias estimator Bpn given by:

DSC = 2 |Sm ∩ Sa|
|Sm| + |Sa| , (11)
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Fig. 8 Illustration of an aorta cross section with the lumen contour
manually delineated (in white, Sm), the ellipse estimated using the pro-
posed method (black dotted line, Sa) and the ellipse estimated from the
manual contour (black continuous line, S1a )

Bpn = |Sa\Sm| − |Sm\Sa|
|Sm ∩ Sa| . (12)

We point out that when there is no overlap, the outcome of
DSC is 0, and for complete overlap the outcome is 1. In the
above expression for Bpn , |Sa\Sm| and |Sm\Sa| compute the
number of points that belong to Sa but are not within Sm and
vice versa. Thus, Bpn is positive (respectively, negative) in
the case Sa provides an over- (respectively, under- ) segmen-
tation of Sm.

For each CT scan, we compare the region inside the man-
ual segmentation (Sm), the region inside the estimated ellipse
(Sa) and the region inside an ellipse estimated from the man-
ual contour using a basic algebraic method to fit an ellipse
to a collection of points (we name such region S1a ). In Fig. 8,
we illustrate the shape of the contours of the sets Sm, Sa and
S1a for a particular cross section. We observe that this cross
section is a challenging case because the aorta lumen does
not have an elliptical shape due to a mural thrombus.

Furthermore, a 3D segmentation of the aorta lumen is
obtained for each selected CT by manual delineation of the
lumen (in this case, this represents the set Sm) and is com-
pared with a 3D segmentation of the aortic lumen obtained

by the proposed method (set Sa). Figure 9 shows the sets Sa
(blue) and Sm (red) for a particular CT. We also compute the
Euclidean distance to the closest point in the boundary of the
set Sm (Fig. 9 (right)) for every voxel in the boundary of the
set Sa.

Results

Figure 10 shows some of the ellipses computed by our
methodbyminimizing the expression (8). Thedifferent struc-
tures of the CT volume appear represented in the projection
and the calculated ellipses are overlaid to depict the behavior
of the algorithm. We can observe that, even in the case of
the presence of artifacts related to calcifications or metallic
structures (stent), the robustness of the algorithm enables the
aorta to be tracked, adapting the shape of the ellipse to the
aortic wall up to the heart.

Figure 11 shows the 3D segmentations obtained for the
sixteen selected cases. The colormap used is the same as in
Fig. 9.

Evaluation of the robustness

After visual inspection, we conclude that all the circles
selected for the sets of initial contours {Czi } are inside the
lumen for all the cases in the database. Moreover, in 380 out
of 385 cases, the tracking procedure has provided centerline
points passing through all aortic segments (the descending
aorta, the aortic arch and the ascending aorta). In 351 out
of these 380 cases where the tracking procedure does not
get trapped in spurious locations, the method uses the first
circle provided by the proposed method as initial contour to
track the aorta. Thereby, in 29 cases the method has auto-
matically detected that the tracking procedure has failed but
has worked properly using another circle from the collection
{Czi } as initial contour.

Fig. 9 Patient LIDC-0126.
From left to right: manual
segmentation (red),
segmentation computed from
the ellipses (blue), 3D distance
map between both volumes. The
colormap indicates the
Euclidean distance to the closest
point (in mm) for every
boundary voxel
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Fig. 10 Examples of aortic cross sections and the corresponding ellipses obtained for different segments of the aorta of patient USC-0119, using
the proposed method. We observe that the patient has a stent surrounding part of the aortic lumen

LIDC-0001 LIDC-0029 LIDC-0126 LIDC-0836

LIDC-0978 USC-0053 USC-0055 USC-0100

USC-0104 USC-0119 USC-0139 USC-0141

USC-0149 USC-0164 USC-0173 USC-EL01

Fig. 11 3D segmentations for the sixteen selected cases. The colormap
used is the same as in Fig. 9

Evaluation of the accuracy

Tables 1 and 2 depict a summary of the results achieved for
quantitative evaluation for the entire database. Themean, and
some percentiles of the DSC and Bpn estimators were com-
puted. DSC1 and B1

pn correspond to the comparison between
Sm and S1a . We separate the study according to the location
of the cross sections in the different segments of the aorta.
We also show the eccentricities of the ellipses given by the
boundary of the set Sa (named ECC) and the boundary of the
set S1a (named ECC1).

Table 3 shows the DSC and Bpn estimators for the sixteen
selected cases. It also includes the mean and several per-
centiles of the distribution of the distances between boundary
voxels, as described above.

Discussion

The results obtained demonstrate that the developed pro-
cedure is able to extract the aortic geometry from normal

Table 1 Results of the quantitative evaluation for ascending aorta and
aortic arch segments

Mean P0.01 P0.05 P0.25 P0.5

DSC 0.953 0.829 0.909 0.945 0.959

DSC1 0.972 0.941 0.958 0.969 0.973

Bpn − 0.04 − 0.30 − 0.15 − 0.07 − 0.03

B1
pn − 0.05 − 0.08 − 0.07 − 0.05 − 0.05

ECC 0.238 0.000 0.000 0.068 0.247

ECC1 0.265 0.000 0.000 0.136 0.279
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Table 2 Results of the quantitative evaluation for descending aorta

Mean P0.01 P0.05 P0.25 P0.5

DSC 0.950 0.840 0.911 0.942 0.956

DSC1 0.967 0.938 0.953 0.964 0.969

Bpn − 0.05 − 0.29 − 0.15 − 0.08 − 0.04

B1
pn − 0.06 − 0.10 − 0.09 − 0.07 − 0.06

ECC 0.181 0.000 0.000 0.012 0.151

ECC1 0.222 0.000 0.000 0.072 0.218

and abnormal CT volumes acquired at different conditions
(including low-dose and non-contrast) in more than 98% of
the cases, and even in situations where the presence of arti-
facts as part of the image is relevant.

Inspection of Tables 1 and 2 shows that the DSC has mean
values above 0.95 for all the aorta sections. Even at relatively
low percentiles P0.05, those values are still higher than 0.9,
which means that there is a high degree of similarity between
manual and automatic aortic lumen extractions. Moreover,
those values are even higher for DSC1, which demonstrates
that modeling the aortic lumen as an ellipse seems to be a
valid assumption. This is confirmed by analyzing the values
achieved by ECC , where a certain degree of eccentricity is
demonstrated, which is more relevant for the ascending aorta
and the aortic arch.

On the other hand, Bpn is slightly biased to negative
values, but close to zero (see Tables 1 and 2). Hence, no sig-
nificant differences between the regions are selected by both
methods, except for a few cases (less than 1%), where the
region selected by the automatic method tends to be smaller
than the manually selected one (see P0.01).

From the analysis of the results shown in Tables 1 and 2,
we can also conclude that there is no significant differences
for DSC and Bpn as regards the position where the algorithm
was applied (descending aorta vs ascending aorta and aor-
tic arch). No leakages were observed, and the algorithm was
able to correct the ellipse orientation and continue tracking
the aorta properly, inmost of the cases.Wehave observed that
the presence of lateral vessels like the carotid arteries (aor-
tic arch) or the renal artery (descending aorta) can reduce,
in some cases, the accuracy of the algorithm generating,
locally, high variation in the aorta cross-sectional plane ori-
entation. This may introduce some small indentations when
the solid volume is generated. However, this only happens
for a small number of slices, which is not significant in terms
of the computation of the whole CT volume. In any case, as
a postprocessing step, active contour models could be used
to address this issue.

The analysis of Table 3 shows that, for the sixteen selected
cases, the mean distance is lower than 0.9mm. Considering
that the normal diameter of the aorta typically ranges from 30
to 40mm, we can conclude that the algorithm has performed

Table 3 Results of the quantitative evaluation for the sixteen selected
cases. For pathology, A refers to the presence of aneurysms, C refers to
the presence of calcifications, D refers to the presence of dissections,
MT refers to the presence of mural thrombi, E refers to the presence
of elongations, N refers to normal case and S refers to the presence

of stents. DSC and Bpn are computed between the estimated and the
manually delineated aorta segmentations. The mean and the percentiles
P0.5, P0.75, P0.95, P0.99 are computed for the distribution of distances
(in mm) between the voxels of the contours of both segmentations

Case Pathology Voxel size (Δx,Δy,Δz) DSC Bpn Mean distance (mm) P0.5 P0.75 P0.95 P0.99

LIDC-0001 N, C (0.703, 0.703, 2.500) 0.928 − 0.073 0.546 0.000 0.703 2.223 2.899

LIDC-0029 N, C (0.879, 0.879, 1.250) 0.954 − 0.033 0.581 0.879 0.879 1.250 2.157

LIDC-0126 N (0.781, 0.781, 2.500) 0.959 − 0.027 0.387 0.000 0.781 1.105 2.471

LIDC-0836 N (0.547, 0.547, 1.800) 0.928 − 0.023 0.661 0.547 0.773 2.373 3.981

LIDC-0978 N, C (0.725, 0.725, 0.750) 0.947 − 0.001 0.590 0.725 0.725 1.632 3.129

USC-0053 A, MT (0.873, 0.873, 2.500) 0.932 − 0.037 0.672 0.873 0.873 2.469 3.049

USC-0055 S (0.730, 0.730, 0.620) 0.942 − 0.012 0.691 0.620 0.958 1.633 2.585

USC-0100 C (0.910, 0.910, 5.000) 0.936 0.022 0.625 0.000 0.910 3.641 5.000

USC-0104 N (0.865, 0.865, 0.625) 0.934 − 0.100 0.569 0.625 0.865 1.520 2.065

USC-0119 E, S (0.758, 0.758, 0.620) 0.949 − 0.16 0.810 0.620 0.979 2.399 3.871

USC-0139 C, MT (0.775, 0.775, 0.620) 0.947 − 0.043 0.608 0.620 0.775 1.655 3.877

USC-0141 N (0.854, 0.854, 0.620) 0.941 − 0.103 0.550 0.620 0.854 1.207 2.758

USC-0149 A, C (0.703, 0.703, 0.620) 0.961 − 0.034 0.624 0.620 0.703 1.589 4.219

USC-0164 MT (0.912, 0.912, 0.625) 0.935 − 0.050 0.756 0.625 1.106 1.928 3.966

USC-0173 D (0.703, 0.703, 0.620) 0.950 − 0.049 0.509 0.620 0.703 1.240 3.372

USC-EL01 E (0.703, 0.703, 0.620) 0.966 − 0.011 0.442 0.620 0.620 0.994 1.690
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an accurate segmentation in both databases (USC and LIDC)
regardless of the presence of different kinds of abnormalities.

From the analysis of the percentiles inTable 3,we can state
that such values are very low in general. For three cases, P0.5
is exactly 0.0. This means that most of the boundary vox-
els obtained by the automatic procedure match the manually
marked boundary. Furthermore, for all the cases, P0.75 is
lower than 1.2mm. Regarding the values of P0.95 and P0.99,
those relatively high numbers (> 3mm) are related either
with the presence of artifacts or with the presence of small
indentations in the solid volume, generated as described
above. In this sense, the role of the voxel size should be
highlighted. The larger the voxel, the greater the indentation.
Therefore, low-resolution CT cases may be more affected by
this drawback.

However, we have to point out that a fair quantitative com-
parison with other published studies is not possible because
the image databases used are not available in these studies. In
fact, as a contribution of our paper we provide the database
we have used, including annotated aorta segmentations as
well as an implementation of our algorithm so that anyone
can reproduce our experiments or test their own algorithms
in the same image database. We also point out that, among
the images we selected for our study, there are a number of
challenging ones including patients suffering severe elonga-
tions, aneurysms, calcifications, stent implantations or low
contrast media administration. From a quantitative point of
view, in our database we obtain a mean DSC of 0.951 for the
380 cases we tested (0.928 for the 16 selected cases). Using
different databases, Kurugol et al. [6] reported a mean DSC
of 0.92 (using 45 CT cases). Xie et al. [8] reported a mean
DSC of 0.933 on a dataset of 60 CT cases. On the other
hand, the method proposed in this paper does not require
the development of any complex model for the aorta, as is
the case for Isgun et al. [20]. This avoids the need to per-
form time-consuming multiple registrations (around 15min
for a single registration in that case). In this sense, it is worth
mentioning that the dynamic programmingmethod proposed
by Avila-Montes et al. [21] takes around 9min. In our case,
all calculations take less than 1min, on a standard PC, for
a typical CT case with 500 slices. Furthermore, our method
does not need the prior detection of any anatomic landmark
to start the process, unlike in Xie et al. [8] and Kurugol et
al. [6], which require detecting the carina.

Conclusions

A fully automated algorithm for the extraction of the aorta
centerline, cross sections and their corresponding ellipses fit-
ting the aorta lumen contours has been developed for chest
CT volumes, and evaluated using 385 CT cases from two dif-
ferent databases. The algorithm that models the cross section

of the aorta as an ellipse is able to track the whole structure of
the aorta by adapting the ellipse to the best size, eccentricity,
and 3D orientation.

The algorithm successfully segmented the aorta inmost of
the cases. By visual inspection, about 98% of the cases were
successfully segmented. Only in 5 out of 385 cases was the
algorithm unable to fully track the aorta, because the algo-
rithm gets trapped in the aortic arch. The results achieved
by the algorithm for the entire databases in terms of mean
DSC were 0.951 (0.953 for descending aorta, and 0.950 for
ascending aorta and aortic arch). The DSC computed for
the 3D segmentations of the selected 16 CT cases is always
higher than 0.928. The mean distance was less than 0.9mm
for the sixteen selected cases. We have observed that the
method is robust and accurate and can provide good results
for normal and abnormal cases, even in challenging situa-
tions or in regions close to the heart, where the presence of
different kinds of artifacts may affect the performance of the
algorithm.

Finally, as part of our contribution, we would like to men-
tion that we have included the software and the dataset that
was used as experimental setup on the website http://www.
ctim.es/demo110/, for reproducibility purposes.
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