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A Site-City effect ?

Context
I Structure-Soil-Structure Interactions not taken into account

in usual engineering practice
I Records in urban area during Mexico earthquakes : long

duration, beatings. Might they depend on the city ?
(Wirgin & Bard, 1996, BSSA)

I Assumptions ? Methods ?

Horizontal accelerations recorded in Mexico on firm

ground (top) and in the lake bed zone (bottom) du-

ring the 25th April 1989 event [Chavez-Garcia et al.,

1994]

Objective
To identify, describe and quantify
large scale multiple interactions
phenomena through
experimental, numerical and
theoretical crossed analyses
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Idealization of a city

Los Angeles - downtown

ℓ
Σ

Σ-periodic distribution of identical
resonant structures
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Periodic surface under long wavelength

Λ ≫ 2πℓ

ℓ

I Σ-periodic surface
Σ = `2

I Scale separation : the wavelength is
much larger than the width of the period

Λ� 2π`

I Isotropic :
Same resonant behaviour in all directions

I Constructive interferences

I Homogenization (Boutin & Roussillon, 2004, BSSA) :
Surface stress= Force exerted by Resonator/|Σ|

I Resonator exerts a force on surface because it is shaken
Resonator Force = Resonator Impedance Z × Surface velocity

I City impedance Zo =Z/|Σ|
Surface stress = City impedance Zo × Surface velocity
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Periodic surface under long wavelength
City Impedance

Zo
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City impedance

ℓ
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e.g. Mexico : η ∼ 10%
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City resonance coincidences with layer resonance
The layer would like to amplify the displacement imposed at its base
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I a free-like condition in Y inert direction

I a rigid-like condition at resonance in X direction
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Design Layer City

I Elastic, linear, isotropic

I Eigenfrequency fL < 15 Hz

I Aspect ratios > 2

I Period width `� Λ Wavelength

I Eigenfrequency fo ≈ fL

I Modal mass mo ∼ Mass of layer
under period
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I hL = 76 cm

I fL = 9.36 Hz in X (9.11 Hz in Y)

I ξ = 4.9 %

I Period width ` = 5 cm

I fo ≈ 8.4 Hz ξo ≈ 5 %

I η ≈ 13.6% (Mexico : η ∼ 10%)
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Mock-up
Period ` = 5 cm 37 resonators
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Instrumentation

X

Y

SETRA

MEMS

SETRA : 1D, 30 grams each, 8 cm-
wide base plate

MEMS : 3D, 2 grams, 2 cm wide
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Drastic changes in records

X
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I 1 sheet : usual temporal response of a layer

I 37 sheets : drastic change in shape of records and lower amplitude

I City impedance analysis is accurate temporaly

I Longer coda and clear beatings
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Drastic changes in modal shapes
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Depolarization

I X : antiresonance
I Y : resonance

I X : resonance
I Y : inertial
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Depolarization

Depolarization :
I frequency-dependent
I due to surface anisotropy
I Affects : direction, ellipticity, orientation
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As the city gets denser

I Already significant with 9 structures

I Model applies even for large period
(2π`/Λ ≈ 0.4 for 9 sheets)

I The denser the city, the bigger the effect
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X

Y

9 sheets
All surface
η = 2.8%

X
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All surface
η = 13.6%
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As the city gets smaller

I The smaller the city, the smaller the effect

I Still significant with only 5 structures
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Various distributions of 9 resonators
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9 sheets random ≈ 9 sheets gathered

Periodic condition is not mandatory
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Numerical simulation with a BEM-FEM model
I The foam block is analyzed using a harmonic 2D direct boundary

element formulation leading to a matrix form of the discretized
boundary integral equation of the type Hu = Gt, where u and t are the
vectors of displacements and tractions ; and H and G are the coefficient
matrices arising from the BEM.

I Quadratic 3-noded boundary elements are used in meshing the block

I Resonators are modelled using 2-node 6-dof beam finite elements

I Resonators and block are linked by perfectly-bonded rigid surfaces
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Numerical simulation with a BEM-FEM model
Considering equilibrium and compatibility conditions in the
coupling, applying boundary conditions and reordering, the
equations describing the dynamic response of the system can
be written as

Koo Kob 0 0
Kbo Kbb C 0

0 HfcD −Gfc Aff

0 HccD −Gcc Acf




uo

ub

tc

xf

 =


fo

0
fff

fcf

 (1)

where
I c and b refer to BEM and FEM nodes in the coupling, and f and

o to the ones outside
I u and f are the vectors of displacements and external forces
I K = K∗ − ω2M
I D and C matrices defining the compatibility and equilibrium of

the rigid interface
I and xf the rest of BEM unknowns
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Agreement between numerical and analytical models
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Conclusions

I Multiple interactions phenomena exist and can be significant

I Physical, theoretical and numerical models are validated

I Signatures of the phenomena are identified

I Phenomena are robust (only 5 structures seems sufficient)

I Theory gives the key parameters to quantify the effects

I Application to strongly non-linear soil is out of scope

I Other configurations have been tested within the project

Back to Impedance Back to Design Back to Experiment Back to BEM-FEM Appendix
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Appendix

Cellular poylurethan foam

Edge rods

Modal shapes

City gets denser

City gets smaller

Distributions of 9 resonators

City with two types of resonators

Other videos

Other depolarizations
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Material : Cellular polyurethan foam Appendix

I Homogeneous and light :
ρ = 49kg/m3

I Elastic linear, isotropic and
soft : E ≈ 118kPa ν ≈ 0.1

I No need for a container,
clean, cheap, recyclable

Size

X

Y

275 mm

760 mm

2130 mm176
0 m

m

Base plate assembly
Shaking table

Foam block

I L×B×H = 2.13m×1.76m×0.76m
I Aspect ratios :

L/H = 2.8 and B/H = 2.3
I Total mass : 140 kg

(without the base plate assembly)
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Design of the edge rods Appendix

X

Y

Foam block
with free edges

UΓ

Ub

Infinite layer :
UΓ

Ub
=

1

cos
(

π
2

f
fL√

1−i2ξL

)
fL = 9.36 Hz in X

fL = 9.11 Hz in Y

ξL = 4.9% in X and Y

I 3 mm-diameter 75 cm-long vertical steel rods are adhered at 35 cm
centres around the periphery of the foam block

I Diameter and spacing designed to limit boundary effects
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Design of the edge rods Appendix

X

Y

Foam block
with edge rods

UΓ

Ub

Infinite layer :
UΓ

Ub
=

1

cos
(

π
2

f
fL√

1−i2ξL

)
fL = 9.36 Hz in X

fL = 9.11 Hz in Y

ξL = 4.9% in X and Y

I Eigenfrequency and damping remain unchanged
I The transfer function UΓ/Ub is the one of a theoretical infinite

layer
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Modal shapes Appendix

I At both resonance peaks : usual wave-quarter shape for layer

I 1st resonance peak : oscillators in phase with layer

I 2nd resonance peak : oscillators in phase opposition with layer

I At surface antiresonance : oscillators in resonance
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As the city gets denser Appendix

I 5 sheets : main resonance frequency
↘ in Y but↗ in X !

I Theory accurate for poor scale separation

I The DENSER the city, the BIGGER the effect
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All surface
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X

Y 9 sheets
All surface
η = 2.8%

X

Y 19 sheets
All surface
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X

Y 37 sheets
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η = 13.6%
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As the city gets smaller Appendix

I Same period⇒ same η ( ?)

I The smaller the city, the smaller the effect

I Still significant with only 5 sheets

I 1 sheet : no effect
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Various distributions of 9 resonators Appendix

I 9 sheets uniformly : significant

I 9 sheets gathered 6= 9 sheets uniformly ?

I 9 sheets random ≈ 9 sheets gathered !

I Inert mass counts
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City with two types of resonators Appendix

I 6= oscillators eigenfrequency⇒ 6= shapes

I 2 ANTIRESONANCES (like theory)

I Quite the same no matter the distribution

I Same mass, different effects
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& 10 bigger
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Videos Appendix
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Depolarization Appendix

I X : Quasi-static
I Y : Quasi-static
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Depolarization Appendix

I X : Resonance
I Y : Near resonance
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Depolarization Appendix

I X : Near anti-resonance
I Y : Resonance
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Depolarization Appendix

I X : Anti-resonance
I Y : Not so far from resonance
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Depolarization Appendix

I X : Resonance
I Y : Inertial regime
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Depolarization Appendix

I frequency-dependent
I due to surface anisotropy
I Affects : direction, ellipticity, orientation
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