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Abstract
The principal parameters of a multipath channel are the delay
and the gain coefficient of each path, and the number of
significant paths. We develop a methodology for estimating
path-delays and path-coefficients and applied it to the
ionospheric channel estimation. Also, if path coefficients are
stationary random processes, the power spectral density of the
coefficients can be estimated from measured data of real
channels. Finally, some parameter estimations for real
narrowband HF ionospheric channels are shown, where
several rays are detected with a Doppler spread about 0.2 Hz.

1 Introduction
As is well known, a radio HF link by ionospheric reflection is
an important alternative to satellite link when cost, confidence
and security of communications are considered. HF
communication systems were used in military applications
due to the technological challenge for strategic
communications, and as an attractive alternative to other radio
communications. Presently, there is a large expertise in this
field for both civil and military applications.

Watterson et al. [1] analyzed HF ionospheric channels from
measured data and estimated the parameters of a transversal
filter (tapped delay line) with time-variant coefficients,
concluding that for narrowband channels (up to 12 KHz) the
hypotheses about the Gaussian characteristic of the
coefficients (Gaussian processes and Gaussian spectra) is 
fulfilled. In [2] a new simple narrowband HF ionospheric
channel model is introduced by modelling independently
delay and Doppler effects, and in [3,4] models for wideband
(up to 1 MHz) HF ionospheric channels are presented.

In a general multipath channel model, the path delays and
path coefficients are time-dependent (model useful for both
narrow- and wide- band channels). The problem is the reliable
estimation of the path-delays and path-coefficients from
measured data. In fact, we have a matrix of data (two-
dimensional data) that corresponds to frequency and time, as 
it can be seen later. Then, the problem is reduced to the
estimation of sinusoidal signals (amplitudes, phases and
frequencies). This is a classical problem in spectral analysis 

[5, Chap. 16], but the well-known Prony’s method doesn’t
work adequately under noisy data [5, pp. 1193], and other
methods based on eigen-structures are not applied here due to
the non-stationary character of the problem.

In this paper, we propose a new methodology for this
estimation problem based on, first to estimate path delays
and, then, to estimate path coefficients after incorporating
delay estimations. Algorithms for solving this problem have
been developed by the authors of this paper and some results
will be shown later. In Section 2, we define the model to be
used; in Section 3, we describe the algorithm in general
terms; in Section 4, we show estimation results for real 
ionospheric channels. Finally, Section 5 summarizes the main
conclusion of the paper.

2 Ionospheric channel as a multipath channel 
A linear time-variant system can be characterized by the 
convolution integral as follows [6]

( ) ( ; ) ( )y t h t x t d  (1)

where ( )x t  is the system input,  is the system output and( )y t
( ; )h t  is the unit impulse response of the time-variant

system, i.e. the response of the system at time “ ” to a unit
impulse (a Dirac delta function) located at time “

t
t ”. If 

( ; )h t  does not depend on “ ”, we have the well-known
linear time-invariant system. According to [7], the impulse
response

t

( ; )h t  of a general multipath channel may be
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where K is the number of paths between the transmitter and
the receiver,  is the complex coefficient of the kth-path,

 is the corresponding path delay,
( )ka t

( )k t ( )g t  is the equivalent
impulse response of the transmitter filters. It is assumed the
corresponding equivalent low-pass complex-envelope signals.
Now, if the input signal 0( ) j tx t e , from (1) we have

0
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where ( )G j  is the equivalent transfer function of the
transmitter filters. 

Our purpose is to estimate complex coefficients  and
delays  from noisy measures of

( )ka t
( )k t ( ; )H j t .

Consequently, ( ; )H j t  will be sampled in its two variables, 
i.e. 1m m

)
, m=1, 2, ..., M, and , n=1,

2, ..., N, in such a way that
1nt t n t

( ;m nH j t , m=1, 2, ..., M, and
n=1, 2, ..., N, represent ( ; )H j t . Also, it is supposed that 

 for m=1, 2, ..., M, i.e. the frequency samples are
inside the transmitter passband. (If ,  we divide
both sides of (3) by

( )mG j 1
( ) 1G j

( )G j ).

3 Algorithms to estimate multipath parameters 
For the parameter estimation, a good criterion is the
minimization of the quadratic error ( , )n n na ,  defined by
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where  means “magnitude of ”, and column vectors
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A standard (gradient, genetic, etc) minimization algorithm
applied to (4) does not work adequately because of the large
amount of local minima. Also, the global minimum of (4) is
very critical and sensitive with respect to vector . Note that
if vector  is known, vector  that minimize (4) can be 
solved from the well-known linear equation
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for each , n=1, 2, ..., N, and column vector  is also 

giving as , being ;
m=1, 2, ..., M.  Therefore, the problem is to estimate the delay 
vector .
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3.1 First Estimation of path delays.

Suppose we know ( ; )nH j t  in the passband of the
measurement system, and that ( )BW j  is a frequency
window narrower than the passband system; now, taking the

inverse Fourier transform of ( ; ) ( )n BH j t W j  and
considering the modulus of the result (in the -domain), we
have

1
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where ( )Bw  is the inverse Fourier transform of ( )BW j ,
and “ ” means convolution operation. Therefore, to detect 
adequately k  by a peak detector, the separation among
delays k , k=1, 2, ..., K,  must be greater than the time
window length ( )Bw  which is the inverse value of the
frequency window length ( )BW j ; also, the side-lobe 
aliasing and the noise of the measured data perturb the
estimation of k , k=1, 2, ..., K. It is important to use an 
adequate frequency window ( )BW j  for minimizing time-
aliasing and noise effects on (7). In our application we have
used a Kaiser window for ( )BW j  with a shape parameter

2  (see, for example, [5]). For separations among path-
delays grater than the length of the time window ( )Bw , the
peak detector over (7) is a quasi-optimum detector under
white Gaussian noise, because the referred approach is related
to the matched filter applied to each kth-ray.

In order to estimate close k  (k=1, 2, ..., K) in (7) at time ,
we use a threshold for detecting possible intervals of 

nt
-

values that contain several close k ’s. The threshold should
be estimated from the noise level, and set adequately in order
to prevent noise-peak detections. If the length of a detected
interval is lower than the window length of ( )Bw , it is 
supposed that there is one k  in the middle of the referred
interval. If the length of the detected interval is greater than a

( )Bw  window length, and lower than two time-window 
lengths, then it is supposed that there are two k ’s out of K in 
the referred interval, and so on. Therefore, multiple k ’s can
be estimated inside a detected peak-interval, depending on the
interval length, resulting in a delay resolution lower than a 
half of the time-window length of ( )Bw . Furthermore, for
very close paths it is difficult to detect the paths with low
intensity (say, lower than a tenth of the largest intensity). For
these cases, we have proposed to remove all the strongest rays
after they have been estimated (i.e. subtracting them from the
data), and then to estimate successively the lower rays.

3.2 First Estimation of path coefficients.

Once the delays k  (k=1, 2, ..., K) have been estimated, where
K is the maximum number of detected k ’s, the
corresponding coefficients  can be computed from (5). 
Note that in fact, we have and  for k=1, 2, ..., K,
at time instant “ ”, and we have to repeat the estimations for
all time instants t

ka
( )k nt ( )k na t

nt
n, n=1, 2, ..., N. Finally, a precise estimation



of vectors  and  for a fixed   (n=1, 2, ..., N) can be done
if we apply an optimization gradient algorithm after the first
estimation given above. The details are given below.

a nt

3.3 Refining estimations of delays and coefficients.

Suppose we have an initial approximation  to  that
corresponds to the global minimum of equation (4), from
equation (5) we compute an initial approximation  of
that corresponds to the global minimum of equation (4), i.e.
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where  is the value of  for the iteration i ,( )i  is the step 
parameter that controls the convergence speed and the 
stability of the algorithm, and column vector ( ) ( , )i a  is 

the gradient of ( , )a  with respect  to vector  for
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where Re{·} and Im{·} mean real and imaginary parts, and
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and matrix  is computed from (6) for  and( )i
eM ( )i

1 2( , , , )M . The stopping value I (last iteration) is 
considered when ( )I  is close enough to .( 1)I

It is important to note that the estimation refinement is
possible if the measured data are not too noisy (e.g. from our 
simulations: signal-to-noise ratio greater than 10 dB);
otherwise, the first estimation of path delays given above in 
Subsection 3.1 can not be improved by the refining equation
(9). Our algorithm realizes a test to accept or reject the
computed refinements according to the computed errors for 
estimated values  and . After the path delays

 and the path coefficients  for k=1, 2, ..., K, have
been estimated at time instant “ ”, we have to repeat the
estimations for all time instants t

( )ia a ( )i

( )k nt ( )k na t

nt
n , n=1, 2, ..., N.  Also, we

can plot  versus  for each k, realize histograms of ( )k nt nt k

(if it does not depend on tn) or obtain statistical characteristics 
of . As for , we can plot the magnitude and
phase versus  for each k, obtain the spectral characteristics

(e.g. power spectrum) of , n=1, 2, ..., N  for each k, etc. 
We will see these possibilities in the next section. 
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These algorithms have been applied to a real ionospheric 
channel in the HF band (carrier frequency of 14.8 MHz),
being the transmitter 1800Km apart from the receiver: the
transmitter is in Madrid and the receiver is in the Canary
Islands. The equivalent baseband channel has a bandwidth of
2700 Hz approximately, and the separation between two
consecutive frequency samples is 37.5 Hz. We point out that
with a bandwidth of 2700 Hz, it is only possible to get a delay
resolution about 0.2 milliseconds in close rays of similar 
strength.

4 Experimental results
Consider a real ionospheric HF narrowband channel, and try
to estimate the channel parameters. Suppose, we have a
M N  matrix:  of 
complex data (complex envelope), measured by an HF
modem, and considering the multipath model, we can write

ˆ ( ; ), 1, 2, ..., ; 1, 2, ...,m nH t m M n N

m
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1

ˆ ( ; ) ( )
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m M n N

(13)

Our purpose is to estimate the number K of ionospheric rays,
the complex amplitudes  and the delays , k=1, 2,
..., K. from (13), considering the following parameter values:
M=73 frequency samples, N=5400 time samples with a time
rate of 33 ms (or an observation time of 3 minutes,
approximately), and

( )ka t ( )k t

2m f , with 1 37.5,m mf f

1, 2, ..., .m M  A matrix of data ˆ ( ; ),m nH t 1, 2, ..., ,m M
1, 2, ..., ,n N  was measured repeatedly 12 times in one day

(24 hours) and here we show the more interesting results. The
ionospheric link was established between Madrid and the
Canary Islands on 1st April 2008. Firstly, we have to say that 
at night (say, from local time 22:00 to local time 6:00,
approximately) no link was possible (no path or ray was
detected). In the day times, some paths or rays are possible: a 
strong ray and others slighter. In Figs. 1-4, we show two of
these links: Figs. 1 and 2 correspond to a local time about
06:00,  and Figs. 3 and 4 correspond to 12:00, approximately.

Fig. 1(a) shows delay realization sections of three possible
paths, where estimation (median) delays are ,

 and milliseconds (the strongest ray
indicates the reference delay, i.e. ). Fig. 1(b) shows
delay histograms for all possible path estimations, and we can
see up to five paths defined by the corresponding delays,
although path numbers greater than three are not significant
(according to the histogram, the number of detected cases is 
less than 10% for the fourth and the fifth paths). Fig. 2(a)
shows coefficient-magnitude realizations of the three
strongest paths (rays), where the strongest ray is about 10-
times the second strongest one and 20-times the third one. 

1̂ 0.02

2ˆ 0.33 3̂ 0.52

1̂ 0
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Fig. 1. Delay estimations for a real ionospheric channel.
(a) Path-delay Estimations vs. Time Evolution (sample
number) for the three strongest paths: , k=1, 2 and 3
for 1 . (b) Delay Histograms for 3400 samples
of the delay sequences. The measurements were realized
on 1st April at 6:00 a.m. for 3 minutes.
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The estimated signal-to-noise ratio (SNR) for each coefficient
is as follows: SNR(a1)=17dB, SNR(a2)= –3dB and SNR(a2)=
–8dB, approximately. In Fig. 2(b), we show estimations of the
power spectral density for ray coefficients, where we have
used a sequence of 3400 samples (4 sections of 850 samples
each one). All curves are bell-shaped with approximately a
mean Doppler frequency close to –0.1 Hz (modem receiver
tunes automatically the mean received frequency) and
Doppler-frequency spread close to 0.1 Hz. Finally, according 
to our measured results, the total power is about 12.1, and the
powers of three rays are approximately: ,
and ,  if we remove all the ray signals from the 
received signal (13) it remains a flat power spectrum that
corresponds to noise and interference with approximately a
power of 0.2 units.

1 11.7P 2 0.1P

3 0.03P

Fig. 3(a) shows delay realizations of four possible paths,
where the median delays are , ,

 and  milliseconds. Fig. 3(b) shows delay
1̂ 0.01 2ˆ 0.45

3̂ 0.26 4ˆ 0.92

Fig. 2.  Random coefficient realizations and power spectra
for the real ionospheric channel of Fig 1. (a) Coefficient
Magnitude Estimations vs. Time Evolution (sample
number) for the three strongest paths: ( )ka n , k=1, 2 and
3, for 500 3000n . (b) Power spectral density 
estimations (P1, P2 and P3) of the coefficients.

histograms for all possible path estimations, and we can see
clearly the four significant paths defined by the corresponding
delays. In Fig. 4(a) it is shown coefficient-magnitude
realizations of the four strongest paths (rays), where the
strongest ray is about 5-times the second strongest one, 10-
times the third strongest one and, also, 10-times the fourth
one. The estimated signal-to-noise ratio (SNR) for each
coefficient is approximately as follows: SNR(a1)=15dB,
SNR(a2)=3dB, SNR(a3)= –5dB  and SNR(a4)= – 4dB. In Fig.
4(b), we show estimations of the power spectral density for
ray coefficients, where we have used a sequence of 3400 
samples (4 sections of 850 samples each one). All curves are
bell-shaped with approximately –0.4 Hz mean Doppler
frequency (negative value) and a Doppler-frequency spread
close to 0.2 Hz. The total power is about 12, and the powers 
of four significant rays are approximately: ,

,  and ,  if we remove all the ray
signals from the received signal (13) it remains a flat power
spectrum that corresponds to noise and interference with 
approximately a power of 0.3 units.

1 10.8P

2 0.52P 3 0.09P 4 0.1P
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Fig. 3. Delay estimations for a real ionospheric channel.
(a) Path-delay Estimations vs. Time Evolution (sample
number) for the four strongest paths: , k=1, 2, 3 and
4, for 5 . (b) Delay Histograms for 3400
samples of the delay sequences. The measurements were
realized on 1st April at 12:00 a.m. for 3 minutes.
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5. Conclusions 
We have described algorithms for estimating path delays and
path coefficients. Our algorithms have been applied to
parameter estimations of real ionospheric channels, showing
high ability in ray detection, and in delay and coefficient
estimations for each ray. This model cannot distinguish 
between ordinary and extraordinary propagation modes.
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