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Some Bayesian Credibility Premiums Obtained
by Using Posterior Regret Γ-Minimax

Methodology

E. Gómez-Déniz∗

Abstract. In credibility theory, the premium charged to a policyholder is com-
puted on the basis of his/her own past claims and the accumulated past claims
of the corresponding portfolio of policyholders. In order to obtain an appropriate
formula for this, various methodologies have been proposed in actuarial literature,
most of them in the field of Bayesian decision methodology.

In this paper, following the robust Bayesian paradigm, a procedure based on
the posterior regret Γ-minimax principle is applied to derive, in a straightforward
way, new credibility formula, making use of simple classes of distributions. This
methodology is applied to the most commonly used premium calculation principles
in insurance, namely the net, Esscher and variance principles.

Keywords: Classes of distributions, Credibility, Minimax, Premium, Posterior re-
gret, Robustness

1 Introduction

Credibility theory is an experience rating technique that was developed in actuarial
science and is frequently used in assessing automobile insurance, workers’ compensation
premium, loss reserving and IBNR-Incurred But Not Reported claims. Under this
theory, premiums are established according to the accumulated past claims in a portfolio.
As a result, the premium for a policyholder in class j, j = 1, . . . , l, is computed by
combining the experience of the individual (contract or policyholder) with the experience
of a collective (portfolio) by using the expression

Pj = (1− Zj)m + ZjMj , j = 1, 2, . . . , l. (1)

where Pj is the credibility adjusted premium, m is the overall mean (the expected claim
size for the whole portfolio), Mj is the mean for individual risk j and Zj is the credibility
factor, a number between 0 and 1. This expression was suggested by Whitney (1918)
in a heuristic form, but can also be obtained under different Bayesian methodologies.
In this regard, credibility theory is used to determine the expected claims experience of
an individual risk when risks are not homogeneous, since the individual risk belongs to
a heterogeneous collective. The main purpose of credibility theory is to calculate the
weight to be assigned to individual risk data in order to determine a fair premium.
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Various useful results, not shown in this work, have been proposed regarding how to
choose the credibility factor. These include limited fluctuation credibility, the Hachemeis-
ter random coefficient regression model, multi-dimensional credibility and Hilbert spaces
methods. The most important contribution to date was proposed by Bühlmann (1967,
1969), who, in a simple and elegant form, derived a general result under the squared-
error loss function without assuming any probability distribution for modelling risk.
This result is known as Bühlmann’s classical model (see Bühlmann (1967, 1969); and
see also Bühlmann and Gisler (1967) for recent contributions in this field).

Obviously expression (1) can also be thought of as a compromise between the mean
of the current observations, the data, and the prior mean, an estimate based on the
actuary’s prior opinion. This expression includes the concept of prior knowledge, in the
spirit of the Bayesian paradigm. Firstly, Bailey (1945) and later other authors (Jewell
(1974); Gerber and Arbor (1980); Heilmann (1989); Landsman and Makov (1998, 2000);
among others) obtained some approaches to the credibility problem computed under
standard Bayesian methodologies and robust ones (Eichenauer et al. (1988) and Gómez
et al. (2006)).

In this paper, we apply the idea proposed in Zen and DasGupta (1993) and Ros
Insua et al. (1995) to the problem of selecting a prior distribution in a class of possible
prior distributions when global Bayesian robustness analysis has been completed. The
decision-maker is interested in choosing a single action from the set of actions provided
by a global procedure. The idea of this is to select the posterior regret Γ-minimax
action (see Zen and DasGupta (1993); Ros Insua et al. (1995) and Gómez et al. (2006)).
This procedure has the advantage, with respect to the Γ-minimax action (also called
conditional Γ-minimax), that the estimator is always Bayesian when a parametric class
is used, with the parameters varying over a connected set of the real line (Zen and
DasGupta (1993) and Ros Insua et al. (1995)).

This relatively recent methodology consists of choosing an estimate which lies be-
tween the Bayes action and the Bayes robust methodology. By using this procedure
(see Gómez et al. (2006)), we have derived new credibility expressions under the net
premium principle and the gamma-gamma model as the likelihood and the prior, re-
spectively. A generalization of the results obtained in the earlier study is completed in
the present paper to obtain new credibility premiums under the exponential dispersion
family of distributions and the squared-error loss function. The procedure set out here
is carried out by choosing the weighted squared-error loss function.

The paper is organized as follows. In Section 2, the methodology to be applied
to obtain premiums and to implement the posterior regret Γ-minimax procedure is
presented. In Section 3, we derive credibility premiums under this procedure, addressing
the squared-error loss function and the exponential dispersion family of distributions.
The latter includes, as a particular case, the natural exponential family of distributions.
In Section 4, an extension is obtained by using the weighted squared-error loss function.
Section 5 contains a numerical application under the classical Poisson model with gamma
prior distribution when the weighted squared-error loss is used. Finally, some concluding
remarks are made in Section 6.
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2 The methodology

In risk theory, the procedure of premium calculation is modelled as follows. The number
of claims of one contract in one period is specified by a random variable X ∈ X following
a probability density function f(x|θ) depending on an unknown risk parameter θ ∈ Θ.
A premium calculation principle (e.g. Eichenauer et al. (1988) and Heilmann (1989))
assigns to each risk parameter θ a premium within the set P ∈ IR, the action space.
Let L : Θ × P → IR be a loss function that assigns to any (θ, P ) ∈ Θ × P the loss
sustained by a decision-maker who takes the action P and is faced with the outcome θ
of a random experience. The premium must be determined such that the expected loss
is minimized.

From this parameter, the unknown premium P ≡ P (θ), called the risk premium,
can be obtained by minimizing the expected loss Ef [L(θ, P )]. L is usually taken as
the weighted squared-error loss function, i.e. L(a, x) = h(x)(x − a)2. Using different
functional forms for h(x) we have different premium principles. For example, for h(x) =
1, h(x) = exp{cx}, c > 0 and h(x) = x we obtain the net, Esscher and variance premium
principles, respectively (Heilmann (1989) and Gómez et al. (2006); among others).

If experience is not available, the actuary computes the collective premium, P (π),
which is given by minimizing the risk function, i.e. minimizing Eπ [L(P (θ), θ)], where
π is the prior distribution on the unknown parameter θ ∈ Θ. On the other hand,
if experience is available, the actuary takes a sample x from the random variables
Xi, i = 1, 2, . . . , t, assuming Xi i.i.d., and uses this information to estimate the unknown
risk premium P (θ), through the Bayes premium P (πx), obtained by minimizing the
Bayes risk, i.e. minimizing Eπx [L(P (θ), θ)]. Here, πx is the posterior distribution of
the risk parameter, θ, given the sample information x.

Another approach to the Bayes setup analyzed above is to be found when practi-
tioners suppose that a correct prior π exists, but they are unable to apply the pure
Bayesian assumption, perhaps because they are not confident enough to specify it com-
pletely. Thus, a prior π is assigned to the risk parameter θ, which is a good approach
for the true prior. A similar situation arises when a problem must be solved by two or
more decision-makers and they do not agree on the prior distribution to be used. A
common approach to prior uncertainty in Bayesian analysis is to choose a class Γ of
prior distributions and then to calculate the range of Bayes actions as the prior ranges
over Γ. This is known as the robust Bayesian methodology (see Berger (1994) and
Ros Insua and Ruggeri (2000), for a review of this question). An alternative to this
approach consists of choosing a procedure which lies between the Bayes action and the
robust Bayesian methodology. Such a hybrid approach is known as the posterior regret
Γ-minimax principle.

If ρ(πx, P ) is the posterior expected loss of an action P under πx, the posterior regret
of P is defined as (see Zen and DasGupta (1993) and Ros Insua et al. (1995))

r(πx, P ) = ρ(πx, P )− ρ(πx, P (πx)), (2)

which measures the loss of optimality incurred when P is chosen instead of the optimal
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action P (πx).

RP (πx) ∈ P is the posterior regret Γ-minimax action if

inf
P∈P

sup
π∈Γ

r(πx, P ) = sup
π∈Γ

r(πx, RP (πx)). (3)

This methodology is based on the idea that the optimal action minimizes the supre-
mum of the function over distributions in class Γ. Therefore, in insurance settings, the
actuary should seek to ensure that the largest possible increase in risk, when the wrong
choice of prior distribution is made, should be kept as small as possible.

It is easy to show (see Ros Insua et al. (1995) and Zen and DasGupta (1993))
that if we choose h(x) = 1, i.e. the premium considered is the net premium prin-
ciple, and that the posterior regret Γ-minimax action is the midpoint of the interval
[infπ∈Γ P (πx), supπ∈Γ P (πx)].

In the following sections we provide some classes of distributions for which the pos-
terior regret Γ-minimax actions are Bayes actions and can be written as a credibility
formula, as in (1). The idea of obtaining credibility expressions from the standard
Bayes premiums is based on the correct choice of the likelihood and its conjugate prior
distributions.

3 Regret credibility premiums under the squared-error
loss function

When the weighted squared-error loss function with h(x) = 1 is used, this is the simple
squared-error loss function. The action that minimizes the expected loss Eπ[L(θ, P )]
is called the net premium principle. In this case, the risk and collective net premiums
are given by (see Eichenauer et al. (1988); Heilmann (1989) and Gómez et al. (2006);
among others):

P (θ) = Ef (X|θ) =
∫

X
xf(x|θ)dx,

P (π) = Eπ [Ef (X|θ)] =
∫

Θ

P (θ)π(θ)dθ, (4)

respectively. The Bayes premium, P (πx), is obtained by replacing π(θ) in (4) by πx(θ).

Bailey (1945) showed that if the likelihood is the binomial distribution and the prior
is the Beta distribution, then credibility occurs under the net premium principle. In the
same paper, the credibility expression in the Poisson-gamma case was obtained. Similar
results were later obtained by Mayerson (1964). Jewell (1974) generalized these results
and showed that for the natural exponential family of distributions (NEF, henceforth)
and its conjugate priors, exact credibility premiums were derived. Finally, Landsman
and Makov (1998, 2000) obtained a more general result by using the exponential dis-
persion family of distributions (EDF, henceforth) (see also Jorgensen (1986)). In this
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work, the EDF family with parametrization

f(x|θ, λ) = exp{λ(xθ − k(θ))}q(x|λ), θ ∈ Θ ⊂ IR , λ ∈ IR+ (5)

and a conjugate prior distribution given by the density

π(θ) ∝ exp{x0θ − t0k(θ)}, (6)

are used.

Landsman and Makov (1998, 2000) proved that given t years of individual experience
x1, x2, . . . , xt, the Bayesian net premium is given by,

P (πx) =
x0 + λ

∑t
i=1 xi

t0 + tλ
= Z(t)x̄ + (1− Z(t))P (π), x̄ =

1
t

t∑

i=1

xi. (7)

Here, Z(t) = tλ/(t0 + tλ), with Z(t) → 0 when t → 0 and Z(t) → 1 when t → ∞,
while P (π) =

∫
Θ

P (θ)π(θ)dθ = x0/t0, with P (θ) = Ef (X|θ) = k′(θ).

By taking λ = 1, the EDF reduces to the NEF and obviously (7) coincides with the
result in Jewell (1974). It is easy to show (see Jewell (1974)) that this credibility factor
admits the same formulation as in Bühlmann (1967, 1969), which is:

Z(t) =
tVarπ(Ef (X|θ))

tVarπ(Ef (X|θ)) + Eπ(Varf (X|θ)) , (8)

Example 1. In Table 1 some natural likelihoods and their prior distributions for NEF
are shown. The credibility expression and the corresponding credibility factor are also
shown.

The Bayesian methodology requires specification of the prior distribution. Thus,
after an elicitation procedure by which a prior π is obtained, any prior close to π could
also constitute a good representation of prior beliefs. In accordance with the notion
of Bayesian robustness, we will consider the practitioner to be unwilling or unable to
choose a functional form for the prior distribution π. Total unawareness of the prior
distribution could be solved by choosing the following class of prior distributions

Q1 = {All probability distributions} .

It is well known (see Sivaganesan and Berger (1989) and Gómez et al. (2000); among
others) that under a global Bayesian methodology, the range of variation of the Bayes net
premium when the prior distribution entersQ1 is given by [infθ∈IR+ k′(θ), supθ∈IR+ k′(θ)]
and therefore the regret gamma-minimax net premium is

RP (πx;Q1) =
1
2

[
inf

θ∈IR+
k′(θ) + sup

θ∈IR+
k′(θ)

]
,

where it is assumed that Θ is restricted to take values in (0,+∞).
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Likelihood
Prior Posterior P (π) P (πx) Z(t)

X ∼ Po(θ)
θ ∼ G(a, b) G(a + t, b + tx̄) a

b
a+tx̄
b+t

t
b+t

X ∼ NB(r, θ)
θ ∼ B(a, b) B(a + tr, b + tx̄) rb

a−1
r(b+tx̄)
a+tr−1

rt
a+tr−1

X ∼ Bi(m, θ)
θ ∼ B(a, b) B(a + tx̄, b + mt− tx̄) ma

a+b
m(a+tx̄)
a+b+tm

mt
a+b+mt

X ∼ G(θ, ν)
θ ∼ G(a, b) G(a + tx̄, b + tν) νa

b−1
ν(a+tx̄)
b+tν−1

tν
b+tν−1

X ∼ N (θ, σ2)
θ ∼ N (a, τ2) N

(
aσ2+tx̄τ2

σ2+tτ2 , σ2τ2

σ2+tτ2

)
a aσ2+tx̄τ2

σ2+tτ2
tτ2

σ2+tτ2

Po: Poisson, G: Gamma, NB: Negative binomial,
Bi: Binomial, B: Beta, N : Normal

Table 1: Credibility premiums under NEF and the net premium principle

If class Q1 is used and similar conclusions are obtained, then no additional informa-
tion is required. However, if the range of variation is very large, more information is
needed. In this case, we might acquire partial information about the prior (for example,
the mode) and consider all prior distributions that are compatible with this information,
using

Q2 = {All distributions with a given mode, θ0} .

The range of variation of the Bayes net premium when the prior distribution enters
Q2 is given by (see Sivaganesan (1991) and Gómez et al. (2000)) [M1,M2], where
M1 = infz∈IR+ R(z) and M2 = supz∈IR+ R(z), where

R(z) =

∫ θ0+z

θ0
k′(θ)f(x|θ, λ)dθ

∫ θ0+z

θ0
f(x|θ, λ)dθ

, z > 0 (9)

R(z) = k′(θ0), z = 0 (10)

and therefore, the regret gamma-minimax net premium is RP (πx;Q2) = 1
2 (M1 +M2).

As might be expected, other classes of prior distributions can also be considered. For
example, the class defined by the quantile (Lavine (1991) and Sivaganesan (1991)) or
the class given by generalized moment conditions Betrò et al. (1994) and Goutis (1994);
among others). Excellent surveys of this topic can be found in Berger (1994) and Ros
Insua and Ruggeri (2000).

Obviously, this methodology does not provide closed expressions for premiums that
are rewritten as a credibility formula. For this purpose, henceforth, we will assume that
the practitioner can assert that the prior distribution is an element of the family defined
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by (6), but that he is unaware of the simultaneous values of the parameters x0 and t0.
Accordingly, the following classes of prior distributions will be used:

Γ1 =
{

π(θ) : x
(1)
0 ≤ x0 ≤ x

(2)
0 , t0 fixed

}
,

Γ2 =
{

π(θ) : t
(1)
0 ≤ t0 ≤ t

(2)
0 , x0 fixed

}
,

Γ3 = {π(θ) : γ1 ≤ P (π) ≤ γ2, t0 fixed} .

Observe that Γ3 has the feature of moment specification, in particular a generalized
moment condition; a similar class appears in Eichenauer et al. (1988). If subjective in-
formation about the distribution of the parameter θ is available, then it seems reasonable
to consider that information to be valid for the risk premium, which is a characteristic
of the prior distribution.

The posterior regret Γ-minimax net premiums for the classes Γj , j = 1, 2, 3 are given
in the following result.

Theorem 1. Consider the EDF in (5) and the conjugate prior distribution (6), then the
posterior regret Γ-minimax net premiums for Γi, i = 1, 2, 3, classes are given by:

RP (πx; Γj) =
Xj + tλx̄
Tj + tλ

, j = 1, 2, 3, (11)

where

X1 =
1
2

(
x

(1)
0 + x

(2)
0

)
, T1 = t0,

X2 = x0, T2 =
tλ(t(1)0 + t

(2)
0 ) + 2t

(1)
0 t

(2)
0

2tλ + t
(1)
0 + t

(2)
0

,

X3 =
1
2

(γ1 + γ2) t0, T3 = t0,

Proof: The Bayes premium is given by

P (πx) =
x0 + λtx̄
t0 + tλ

. (12)

Then, for class Γ1 the infima and suprema of (12) are given by:

inf
π∈Γ1

P (πx) =
x

(1)
0 + λtx̄
t0 + tλ

, sup
π∈Γ1

P (πx) =
x

(2)
0 + λtx̄
t0 + tλ

,

while for class Γ2 they are:

inf
π∈Γ2

P (πx) =
x0 + λtx̄

t
(2)
0 + tλ

, sup
π∈Γ2

P (πx) =
x0 + λtx̄

t
(1)
0 + tλ

.
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For the class Γ3, the restriction γ1 ≤ P (π) ≤ γ2 is equivalent to γ1t0 ≤ x0 ≤ t0γ2

and, therefore, the infima and suprema are given by:

inf
π∈Γ3

P (πx) =
γ1t0 + λtx̄

t0 + tλ
, sup

π∈Γ3

P (πx) =
γ2t0 + λtx̄

t0 + tλ
.

Finally, after some algebra, it is straightforward to obtain the desired result by
choosing

RP (π; Γj) =
1
2

(
inf

π∈Γj

P (πx) + sup
π∈Γj

P (πx)

)
, j = 1, 2, 3. ¦

Since closed intervals on the real line are connected sets, by using Proposition 3.2
in Ros Insua et al. (1995), we can conclude that RP (π; Γj), j = 1, 2, 3, are Bayes
premiums under the prior (6) with parameters (Xj , Tj), j = 1, 2, 3. Observe that the
corresponding prior in Γ2 depends on the sample size but not on the actual observations.

The next result shows that expression (11) can be written as a credibility formula.
Corollary 1. The posterior regret Γ-minimax net premiums in (11) can be rewritten as
a credibility formula

Zi(t)g(x̄) + (1− Zi(t))Pi(π), i = 1, 2, 3,

where g(x̄) = x̄,

P1(π) =
x

(1)
0 + x

(2)
0

2t0
,

P2(π) =
x0(2tλ + t

(1)
0 + t

(2)
0 )

tλ(t(1)0 + t
(2)
0 ) + 2t

(1)
0 t

(2)
0

,

P3(π) =
γ1 + γ2

2
,

and the credibility factor is given by:

Zi(t) =
tλ

t0 + tλ
, for i = 1, 3,

Zi(t) =
tλ(2tλ + t

(1)
0 + t

(2)
0 )

2tλ(t(1)0 + t
(2)
0 ) + 2t

(1)
0 t

(2)
0 + 2t2λ2

, for i = 2.

Proof: The proof is readily apparent. ¦

4 Regret credibility premiums under the weighted squared-
error loss function

In Bayesian robustness literature, little attention has been paid to the general weighted
squared-error loss function. Under the posterior regret methodology, Boratyńska (2008)
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studied its effect on insurance premiums in the collective risk model. Usually, in
Bayesian robustness analysis, the principal goal concerns the posterior mean of a func-
tion of the unknown parameter θ, i.e. P =

∫
Θ

m(θ)πx(θ)dθ. This posterior mean is
obtained under the squared–error loss function, i.e. h(x) = 1.

If we use the weighted squared-error loss function with an arbitrary weight function
h(x), by minimizing the expected loss E[L(θ, P )], then the risk and collective premiums
are given by (see Eichenauer et al. (1988); Heilmann (1989) and Gómez et al. (2006)):

P (θ) =

∫

X
xh(x)f(x|θ)dx

∫

X
h(x)f(x|θ)dx

,

P (π) =

∫

Θ

P (θ)h(P (θ))π(θ)dθ
∫

Θ

h(P (θ))π(θ)dθ

, (13)

respectively. Again, the Bayes premium, P (πx), is obtained by replacing π(θ) in (13)
by πx(θ).

Note that the collective premium can be expressed as:

P (π) =

∫

Θ

P (θ)h(P (θ))π(θ)dθ
∫

Θ

h(P (θ))π(θ)dθ

=
∫

Θ

P (θ)π∗(θ)dθ,

which can be rewritten as an expectation of P (θ) with respect to the probability density
function

π∗(θ) =
h(P (θ))π(θ)∫

Θ

h(P (θ))π(θ)dθ

, (14)

and the Bayes premium is also obtained by replacing π and π∗ by πx and π∗x, respectively.
Then, the Bayes premium can be seen as a posterior expectation, i.e. the net premium,
with respect to the new prior distribution π∗(θ). Therefore, the posterior regret of P
and the posterior regret Γ-minimax actions are as in (2) and in (3), by replacing π by
π∗, respectively. Now, we have the following result.
Proposition 1. Suppose that the risk X follows a distribution as in (5) and that θ follows
a prior distribution as in (14), where π is as in (6) and that the risk premium is given
by P (θ) = mk′(θ), m ∈ IR+. Then, the collective and Bayes premiums are given by

P (π∗) = m
αm + x0

t0
,

P (π∗x) = m
αm + x0 + λtx̄

λt + t0
, (15)

respectively.
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Proof: It is easy to see that

π∗(θ) ∝ exp {(x0 + αm)θ − t0k(θ)} ,

while the posterior distribution is given by

π∗(θ|x) ∝ exp {(x0 + αm + λtx̄)θ − (t0 + λt)k(θ)} .

Now, following a reasoning similar to expressed in Jewell (1974) and Landsman and
Makov (1998), we obtain the result. ¦

Observe that expression (15) can be written as a credibility formula

Z(t) = Z(t)g(x̄) + [1− Z(t)] P (π∗),

where g(x) = mx̄ and Z(t) = t0/(t0 + λt).

The next result is a consequence of Proposition 1 and is similar to that set out in
Theorem 1 and, therefore, the proof will be omitted.

Theorem 2. Under the assumptions of Proposition 1 the posterior regret Γ-minimax net
premiums for Γi, i = 1, 2, 3, classes are given by:

RP (π∗x; Γj) = m
αm + Xj + tλx̄

Tj + tλ
, j = 1, 2, 3, (16)

where

X1 =
1
2

(
x

(1)
0 + x

(2)
0

)
, T1 = t0,

X2 = x0, T2 =
tλ(t(1)0 + t

(2)
0 ) + 2t

(1)
0 t

(2)
0

2tλ + t
(1)
0 + t

(2)
0

,

X3 =
1

2m
(γ1 + γ2) t0, T3 = t0,

It is straightforward to prove that expression (16) can be rewritten as a credibility
formula.

4.1 The Esscher principle

Let us suppose that the practitioner decides to compute the premium by using the Ess-
cher premium principle (see Gerber and Arbor (1980), Heilmann (1989) and Zehnwirth
(1981)). In this case h(x) = eαx, where the parameter α > 0 is known as the safety
loading.

Since the Esscher premium principle tends to the net premium principle when α → 0
(see Zehnwirth (1981)), the results in Theorem 2 coincide with those in Theorem 1 when
α is chosen to be close to 0 and m = 1.
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Let us now consider the particular case where the risk X follows a Poisson distri-
bution with parameter θ > 0 and the prior distribution is a gamma distribution with
parameters a > 0 and b > 0. After some simple computations, it is straightforward to
obtain that π∗(θ) is a gamma distribution with parameters a and b − αeα, b > αeα.
Then, the risk, collective and Bayes premiums are given by:

P (θ) = θeα,

P (π∗) =
aeα

b− αeα
, b > αeα, (17)

P (π∗x) =
(a + tx̄)eα

b + t− αeα
, b + t > αeα. (18)

Observe that expression (18) can be rewritten as:

Z(t)g(x̄) + (1− Z(t))P (π∗),

where

Z(t) =
t

b + t− αeα
(19)

is the credibility factor,

g(x̄) = eαx̄ (20)

and P (π) is the collective premium given by (17). This corresponds to the premium
charged to a policyholder in the portfolio, regardless of the sample information about
him. Therefore, the Bayes premium is a credibility expression with the same formulation
as in (8) as can be easily proved.

Following the Bayesian robustness paradigm, we will assume a class of prior distri-
butions instead of a single prior, in the following way:

Γ1 = {π∗(θ) = G(a, b− αeα) : a1 ≤ a ≤ a2, b fixed} , (21)
Γ2 = {π∗(θ) = G(a, b− αeα) : b1 ≤ b ≤ b2, a fixed} , (22)
Γ3 = {π∗(θ) = G(a, b− αeα) : γ1 ≤ P (π) ≤ γ2, b fixed} . (23)

The next result provides a guide to reaching the posterior regret Γ-minimax action
in the Poisson-gamma model under the Esscher premium principle.

Proposition 2. Under the Poisson-gamma model and classes Γi, i = 1, 2, 2 the posterior
regret-Γ-minimax Esscher premiums are given by

RP (πx; Γj) =
(δi + tx̄)eα

βi + t− αeα
, i = 1, 2, 3, (24)
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where
δ1 =

a1 + a2

2
, β1 = b,

δ2 = a, β2 =
2b1b2 + (b1 + b2)(t− αeα)

b1b2 + 2(t− αeα)
,

δ3 =
γ1 + γ2

2
b− αeα

eα
, β3 = b.

Proof: The proof is a direct consequence of applying the results of Theorem 2. ¦
Again, the posterior regret Γ-minimax Esscher premiums under Γi, i = 1, 2, 3, are

Bayes premiums with respect to the priors G(δi, βi), for i = 1, 2, 3, and the corresponding
prior in Γ2 depends on the sample size but not on the actual observations.

Corollary 2. The posterior regret Γ-minimax Esscher premiums in (24) can be rewritten
as a credibility formula:

Zi(t)g(x̄) + (1− Zi(t))Pi(π∗), i = 1, 2, 3,

where g(x̄) = eαx̄,

P1(π∗) =
(a1 + a2)eα

2(b− αeα)
,

P2(π∗) =
aeα

2b1b2+(b1+b2)(t−αeα)
b1b2+2(t−αeα) − αeα

,

P3(π∗) =
γ1 + γ2

2
,

and the corresponding credibility factors are given by:

Zi(t) =
t

b + t− αeα
, for i = 1, 3,

Zi(t) =
t

2b1b2+(b1+b2)(t−αeα)
b1b2+2(t−αeα) + t− αeα

, for i = 2.

Proof: The proof is obvious. ¦

4.2 The variance principle

Let us suppose that the practitioner wishes to compute the premium by using the
variance premium principle h(x) = x (see Heilmann (1989) and Caldern et al. (2006);
among others). An extra effort will be needed to obtain a general result for NEF
similar to the one completed under the Esscher premium principle. For this reason, we
will assume that the risk X follows a gamma distribution with parameters ν > 0 and
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θ > 0 and that the prior distribution is a gamma distribution with parameters a > 0
and b > 0. After some simple computation it is straightforward to obtain that π∗(θ) is
a gamma distribution with parameters a − 1, a > 1 and b. Then, it is easy to prove
that the risk, collective and Bayes premiums are given by:

P (θ) =
ν + 1

θ
,

P (π∗) = (ν + 1)
b

a− 2
, a > 2, (25)

P (π∗x) = (ν + 1)
b + tx̄

a + tν − 2
, a + tν > 2. (26)

Observe that expression (26) can be rewritten as:

Z(t)g(x̄) + (1− Z(t))P (π∗),

where Z(t) = tν/(a + tν − 2) is the credibility factor, g(x̄) = (ν + 1)x̄/ν and P (π∗)
is the collective premium given by (25). Therefore, the Bayes premium is a credibility
expression with the same formulation as in (8).

Assuming that the prior distribution lies in classes (21), (22) and (23), posterior
regret Γ-minimax variance premiums are obtained in the next result.

Theorem 3. Under the gamma-gamma model and classes Γi, i = 1, 2, 3, the posterior
regret-Γ-minimax variance premiums are given by

RP (πx; Γj) = (ν + 1)
βi + tx̄

δi + tν − 2
, i = 1, 2, 3, (27)

where

δ1 =
2a1a2 + (a1 + a2)(tν − 2)

a1 + a2 + 2tν − 4
, β1 = b,

δ2 = a, β2 =
b1 + b2

2
,

δ3 = a, β3 =
γ1 + γ2

2
a− 2
ν + 1

.

Proof: The proof is similar to that of Theorem 1. ¦
Again, the posterior regret Γ-minimax variance premiums for Γi, i = 1, 2, 3, are

Bayes premiums with respect to the priors G(δi, βi), for i = 1, 2, 3, and the corresponding
prior in Γ1 depends on the sample size but not on the actual observations.

Corollary 3. The posterior regret Γ-minimax variance premiums in (27) can be rewritten
as a credibility formula

Zi(t)g(x̄) + (1− Zi(t))Pi(π∗), i = 1, 2, 3,
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where g(x̄) = (ν + 1)x̄/ν,

P1(π∗) =
(ν + 1)b

2a1a2+(a1+a2)(tν−2)
a1a2+2tν−4 − 2

,

P2(π∗) =
(ν + 1)(b1 + b2)

2(a− 2)
,

P3(π∗) =
γ1 + γ2

2
,

and the corresponding credibility factors are given by:

Zi(t) =
tν

2a1a2+(a1+a2)(tν−2)
a1a2+2tν−4 + tν − 2

, for i = 1,

Zi(t) =
tν

a + tν − 2
, for i = 2, 3.

Proof: The proof is obvious. ¦
Remark 1. Observe that all the new credibility factors obtained, when the prior distri-
butions π or π∗ are considered, have the same form as (8).

5 Numerical application

In this section, an application to the Esscher premium principle is examined to demon-
strate how the methodology works.

Let us consider a Poisson model where the Poisson parameter θ represents a driver’s
propensity to make a claim and the prior indicates how that propensity is distributed
throughout the population of insured drivers. This pattern has been used successfully
to model the number of vehicle motor accidents (see for example Lemaire (1979)).

Let us also assume that the practitioner accepts that the expected frequency is
E(θ) = 0.4. Thus, the company can expect about two claims every five years with this
policy. According to Scollnik (1995), the prior information available for this parameter
could be well modelled by a gamma distribution with parameters a and b. This is
reasonable, since the shape of the gamma density is very flexible.

Since the mode is a very intuitive statistical concept, a well-prepared actuary should
assess the unimodality of the risk parameter and its numerical value, based on historical
data. This phenomenon, in the insurance context, is commonly found in vehicle motor
accidents. Let us suppose now that the practitioner accepts that the mode of the prior
distribution is 0.2, i.e. θ0 = 0.2. If we have limited prior information available on θ,
then the choice a = 2, b = 5 will result in a fairly satisfactory and relatively diffuse
prior for θ.

Table 2 shows the credibility factor, g(x̄), collective and Bayesian premiums obtained
by using expressions (19), (20), (17) and (18), respectively. The loading was taken as
α = 0.4.
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t = 1 Z(t) g(x̄) P (π∗) P (π∗x)
x̄ = 0 0.185 0.000 0.677 0.552
x̄ = 2 0.185 2.983 0.677 1.104
x̄ = 4 0.185 5.967 0.677 1.656
t = 5 Z(t) g(x̄) P (π∗) P (π∗x)
x̄ = 0 0.531 0.000 0.677 0.317
x̄ = 2 0.531 2.983 0.677 1.903
x̄ = 4 0.531 5.967 0.677 3.490
t = 10 Z(t) g(x̄) P (π∗) P (π∗x)
x̄ = 0 0.694 0.000 0.677 0.207
x̄ = 2 0.694 2.983 0.677 2.278
x̄ = 4 0.694 5.967 0.677 4.350

Table 2: Credibility factor, g(x̄), collective premium and Bayes premium. Esscher
principle

We have computed now the posterior regret Γ-minimax Esscher premium for the
class Q2. The values of M1 and M2 were computed by substituting k′(θ)ek′(θ) in (9)
and (10) for k′(θ) (see Table 3). It can be seen that the larger the range of variation, the
larger the regret Bayes premium computed for this class. Therefore, larger premiums
than the standard Bayesian ones shown in Table 2 are now obtained, except for t = 10
with x̄ = 2 and x̄ = 4.

Table 3: Posterior regret Γ-minimax premium and range of variation of the premium
under the class Q2. Esscher principle

t = 1 M1 M2 RP (π∗x)
x̄ = 0 0.298 3.997 2.147
x̄ = 2 0.300 11.098 5.699
x̄ = 4 0.298 18.496 9.397
t = 5 M1 M2 RP (π∗x)
x̄ = 0 0.298 0.637 0.467
x̄ = 2 0.298 3.726 2.010
x̄ = 4 0.298 7.114 3.706
t = 10 M1 M2 RP (π∗x)
x̄ = 0 0.200 0.457 0.328
x̄ = 2 0.298 3.338 1.818
x̄ = 4 0.298 6.504 3.401

Using the results in Theorem 2 and Corollary 2, the posterior regret Γ-minimax
Esscher premiums were computed by taking classes in (21), (22) and (23) with the
following parameter bounds: a ∈ [1, 3], b ∈ [3, 8] and P (π) ∈ [0.1, 0.6]. The results are
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shown in Tables 4, 5 and 6.

t = 1 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.185 0.000 1.355 1.104
x̄ = 2 0.185 2.983 1.355 1.656
x̄ = 4 0.185 5.967 1.355 2.208
t = 5 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.531 0.000 1.355 0.634
x̄ = 2 0.531 2.983 1.355 2.221
x̄ = 4 0.531 5.967 1.355 3.807
t = 10 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.694 0.000 1.355 0.414
x̄ = 2 0.694 2.983 1.355 2.485
x̄ = 4 0.694 5.967 1.355 4.557

Table 4: Credibility factor, g(x̄), collective premium and posterior regret Γ-minimax
premium. Esscher principle. Class Γ1

t = 1 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.342 0.000 1.553 1.021
x̄ = 2 0.342 2.983 1.553 2.043
x̄ = 4 0.342 5.967 1.553 3.065
t = 5 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.425 0.000 0.442 0.254
x̄ = 2 0.425 2.983 0.442 1.524
x̄ = 4 0.425 5.967 0.442 2.794
t = 10 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.447 0.000 0.241 0.133
x̄ = 2 0.447 2.983 0.241 1.468
x̄ = 4 0.447 5.967 0.241 2.804

Table 5: Credibility factor, g(x̄), collective premium and posterior regret Γ-minimax
premium. Esscher principle. Class Γ2

Thus, the collective and posterior regret Γ-minimax Esscher premiums take values
which are always between those obtained for classes Γ1 and Γ3, that is, RP (π∗x; Γ3) <
P (π∗x) < RP (π∗x; Γ1). It also seems that the larger the value of t, the larger the difference
between the standard Bayesian premium and the posterior regret Γ-minimax Esscher
premium. A graphical illustration of these comments is shown in Figure 1.

Therefore, a more stable situation arises when classes Γ1 and Γ3 are used. This is
surely provoked by the fact that the values of the prior distribution, when the class Γ2

is used, depend on t, as is shown in Theorem 2. Since the variation range of the Bayes
premium for classes Γ1 and Γ3 (this is easily computed using the results in Theorem 2)
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t = 1 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.185 0.000 0.3150 0.285
x̄ = 2 0.185 2.983 0.350 0.837
x̄ = 4 0.185 5.967 0.350 1.389
t = 5 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.531 0.000 0.350 0.161
x̄ = 2 0.531 2.983 0.350 1.750
x̄ = 4 0.531 5.967 0.350 3.336
t = 10 Z(t) g(x̄) P (π∗) RP (π∗x)
x̄ = 0 0.694 0.000 0.350 0.107
x̄ = 2 0.694 2.983 0.350 2.178
x̄ = 4 0.694 5.967 0.350 4.250

Table 6: Credibility factor, g(x̄), collective premium and posterior regret Γ-minimax
premium. Esscher principle. Class Γ3

is lower than that computed for the class Q2, the practitioner is able to choose the Bayes
premium with a certain security level and, as might be expected, either the Bayes or the
posterior regret Γ-minimax premium could be chosen, depending on the practitioner’s
preferences.

Since, as mentioned above, the Esscher premium principle tends to the net premium
principle when α → 0 (see Zehnwirth (1981)), expression (24) coincides with expression
(11) when α is chosen to be close to 0 and λ = 1. As a result, the posterior regret
Γ-minimax net premiums can be easily computed.

In robust Bayesian analysis, the practitioner assumes a prior distribution belonging
to a class of prior distributions instead of a single prior. The robust Bayesian method-
ology usually provides a variation range of the Bayes premium in an interval form, but
it does not indicate how to choose the correct action. As Zen and DasGupta (1993) say
”it is clearly essential to be able to recommend one action from this set to the user”.
The methodology developed in this work seems to go in that direction, providing the
practitioner with an action, i.e. a selection criterion. Furthermore, all the premiums
proposed under this methodology can be written as credibility expressions, a convex
sum of the collective premium and the sample information. These expressions, which
are attractive for the actuarial community, have been obtained under different Bayesian
methodologies, including standard Bayesian methods, the Γ-minimax approach and the
methodology used in this work, the posterior regret Γ-minimax.

6 Closing comments

The analysis proposed in this paper has been used to derive a number of new Bayesian
premiums that can be expressed as a credibility formula. These expressions have been
found to be rewarding in actuarial practice when experience rating, via Bayesian anal-



240 PRGM Credibility Premiums

0 2 4
0

0.5

1

1.5

2

2.5

3

3.5
t=1

Sample mean

B
ay

es
 a

nd
 r

eg
re

t p
re

m
iu

m
s

 

 

0 2 4
0

1

2

3

4
t=5

Sample mean

B
ay

es
 a

nd
 r

eg
re

t p
re

m
iu

m
s

0 2 4
0

1

2

3

4

5
t=10

Sample mean

B
ay

es
 a

nd
 r

eg
re

t p
re

m
iu

m
s

Bayes
Γ

1

Γ
2

Γ
3

Figure 1: Bayes and posterior regret Γ-minimax premiums under the different classes
considered

ysis, is used to compute premiums expressed as a compromise between the past claims
of the policyholder that belongs to a portfolio, and the past claims of this portfolio as
a whole.

The methodology proposed is uncomplicated and the credibility formulae are straight-
forwardly obtained. Moreover, this technique has advantages over other Bayesian ro-
bustness methodologies, i.e. the local (Caldern et al. (2006)), global (Ros Insua and
Ruggeri (2000)) and the Γ-minimax approaches (Eichenauer et al. (1988)), since more
basic and plausible classes of distributions can be used.
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