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ABSTRACT

The signal received in a mobile radio environment exhibits rapid signal level fluctuations which are generally Rayleigh-
distributed. These result from interference by multiple scattered radio paths between the base station and the mobile receptor.
Fading-shadowing effects in wireless channels are usually modelled by means of the Rayleigh--Lognormal distribution (RL),
which has a complicated integral form. The K-distribution (K) is similar to RL but it has a simpler form and its probability
density function admits a closed form; however, due to the Bessel function, parameter estimates are not direct. Another
possible approach is that of the Rayleigh-inverse Gaussian distribution (RIG). In this paper, an alternative is presented, a
generalisation of the Rayleigh distribution which is simpler than the RL, K and RIG distributions, and thus more suitable
for the analysis and design of contemporary wireless communication systems. Closed-form expressions for the bit error
rate (BER) for differential phase-shift keying (DPSK) and minimum shift keying (MSK) modulations with the proposed
distribution are obtained. Theoretical results based on statistically well-founded distance measurements validate the new
distribution for the cases analysed. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fading-shadowing effects in wireless channels are usu-
ally modelled using the Rayleigh--Lognormal distribution
(RL) [1,2], which has a complicated integral form. The K-
distribution [3], which results from a combination of the
Rayleigh distribution (for the fading) and the gamma distri-
bution (for the shadowing), is similar to the RL distribution
but it has a simpler form and its probability density function
(pdf) admits a closed form but, due to the Bessel function,
the estimates of the parameters are not direct. An alternative,
based on the Lognormal distribution and other than the RL
distribution, is the Rayleigh-inverse Gaussian distribution
(RIG) [4] with the same restriction as the above. New fad-
ing models and their corresponding pdf have been proposed
recently (see Ref. [5--7]) and have been validated from the-
oretical and experimental results. For these models, second
order statistics, mainly for level crossing rate (LCR) and
average fade duration (AFD) have been obtained in a closed
form and the physical models are also well-established [8--
11]. Currently, the RL distribution is extensively applied

to fading modelling, especially for the long-term signal
variation, whereas the short-term signal variation can be
described by the Rayleigh distribution (and others). There-
fore, the goal of finding a new analytic distribution to better
approximate the RL distribution, and which includes the
Rayleigh distribution as a particular case, fully justifies the
new distribution that is discussed in this paper. Such a dis-
tribution can be applied to model both long and short-term
signal variations in a wireless fading channel.

The new distribution has two main advantages: it has
a simple mathematical expression and it subsumes the
Rayleigh distribution. Parameter estimation can be accom-
plished either by matching the first and the second order
moments or by maximum likelihood estimation. In both
cases, the parameters are calculated after solving a system
of equations. Due to the simple mathematical form of the
new distribution, closed-form expressions for the bit error
rate (BER) for DPSK and MSK modulations can be easily
computed and are provided in the paper.

The new distribution can be simulated in terms of pha-
sors, which makes it suitable for the physical modelling
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of the fading. The fundamental statistical parameters of
the new distribution, such as the median, the variance
and higher order moments, as well as their estimation
by maximum likelihood procedures, are also examined in
this paper. Theoretical results based on statistically well
founded measurements validate the new distribution for the
cases analysed. Its application to the practical modelling
of fading-shadowing effects in wireless channels is also
discussed.

In order to make the paper self-contained, we start
by recalling the expressions for the PDFs of the
Rayleigh-Lognormal distribution, the K-distribution and
the Rayleigh-inverse Gaussian distribution:
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respectively. Here x ≥ 0, y ≥ 0, c > 0, d > −1, φ >

0, λ > 0, �(z) = ∫ ∞
0

tz−1e−tdt and Kν(z) denotes the
modified Bessel function of the second kind of order ν and
argument z.

The organisation of this paper is as follows. First, the
distribution and relevant statistical parameters are derived.
Section 3 compares the new distribution to others that are
widely applied to describe the statistics of mobile radio sig-
nals, and discusses specific parameters related to wireless
communication channels. Section 4 is focussed on generat-
ing a random variate for the proposed density distribution,
and Section 5 introduces the generalised Rayleigh phasor
and presents some simulation plots. Finally, some conclu-
sions are drawn in Section 6.

2. THE GENERALISED RAYLEIGH
DISTRIBUTION

Rayleigh fading is a reasonable model when there are many
objects in the environment that scatter the radio signal
before it arrives at the receiver. The central limit theo-
rem holds that if there is sufficient scattering, the channel
impulse response will be well modelled as a Gaussian
process irrespective of the distribution of the individual
components. If there is no dominant component to the scat-
tering, then such a process will have zero mean and phase,
uniformly distributed between 0 and 2π radians. The enve-
lope of the channel response will therefore be Rayleigh

distributed, with the pdf

g(r; α) = r

α
exp

{
− r2

2α

}
, r ≥ 0, α > 0, (1)

where R(R2) = 2aIE(R2) = 2α is the expected value of R2.
In this case we write R ∼ R(α).

Consider now the random variable R|Z ∼ R(α/Z),
where α > 0 and Z is a random variable taking values in
the set {1, 2, . . . }. If the random variable Z is allowed to
follow a positive geometric distribution with the probability
mass function (pmf)
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=
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, a > 0, z = 1, 2, · · · , (2)

the pdf of R, f(r), can be obtained from the conditional
Rayleigh pdf by using the pmf of Z, and is

f (r; α, a) = r(1 + a)
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r ≥ 0, α > 0, a > 0 (3)

from which (1) is obtained from (3) when a tends to 0.
Henceforth, this distribution is represented as GR (α,a).

A simple interpretation of the new model is given in the
following conjecture. Suppose that {Ri}Z

i=1 are independent
and identically distributed random variables with density
R(α) and that Z is random and independent of the {Ri}i,
and follows the pmf (2). It is then simple to show that the
marginal pdf of R = min{R1, R2, · · · , RZ} is given by (3).
For example, consider the variation of the amplitude of the
diffuse component, which occurs due to the presence of an
unknown number of scattering points Z of the same kind.
The Ri can then represent the amplitude of different signals
after reflection and scattering. The new model can then be
used to estimate the minimum value of the received signal.

By computing the derivative of (3) and equating to zero,
we obtain, after some simple algebra, the following equa-
tion:

h(r) = (α−r2)(1 + a)exp

{
r2

2α

}
−a(α + r2) = 0 (4)

Now, because h′(r) < 0 for r∈(0, ∞), we conclude that
the new distribution is unimodal with a modal value satis-
fying Equation (4).

The following result shows that the pdf (3) can be rep-
resented as an infinite mixture of the classical Rayleigh
pdf.

Proposition 1 The GR(α,a) distribution can be rewritten
as an infinite mixture of R(α/(1 + i)) in the form
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Proof By expressing (3) as

f (r; α, a) = r

α(1 + a)

exp{−r2/(2α)}
[1−(a/(1 + a))exp{−r2/(2α)}]2

,

r ≥ 0, α > 0, a > 0 (6)

and using the series representation
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zi, |z| < 1, k > 0 (7)

we obtain the result after simple algebra.
The survivor and hazard functions of the random variable

R ∼ GR(α, a) are given by
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for r ≥ 0, α > 0, a > 0, respectively.
From (8) it is simple to derive the quantile γ(rγ ), which

is given by
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√
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[
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]

In particular, the median is r0.5 =√
2αlog[(2 + a)/(1 + a)]. This value is always lower

than the median of the Rayleigh distribution, given by√
2αlog 2.
By conditioning, and starting from the s-th moment

around the origin of the Rayleigh distribution, it is a simple
exercise to show that the first and second moments around
the origin of distribution (3) are given by,
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where Lin(z) = ∑∞
k=1 zk/kn represents Euler’s polyloga-

rithm function (see Ref. [12]) which is readily available in
standard software such as Mathematica [13].

Because log(1 + a)/a < 1 the expected value of R2 under
(3) is smaller than that under (1).The variance is

Var(R; α, a) = α
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Expressions (9) and (10) can be used to estimate the param-
eters of the model by the method of moments. Moreover,
for a sample (r1, . . . , rn) taken from model (3) and tak-
ing into account that the log-likelihood function is 	 =
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Figure 1. Illustration of the shape of the GR distribution for a set
of different ˛,a parameter values (top) and the GR distribution

plotted for a = 1 and ˛ as a parameter (bottom).

∑n

i=1 log f (ri) we can straightforwardly obtain the max-
imum likelihood estimates for distribution (3) by solving
the system of equations
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where r̄ and s2 are the sample mean and the variance, respec-
tively.

The shape of the GR(α,a) distribution is shown in
Figure 1, where the dependence of the shape on the param-
eters α and a can be appreciated.

3. COMPARISON WITH THE RL, K
AND RIG DISTRIBUTIONS

In this section, some examples are given to show how
the new generalised Rayleigh distribution works. It is well
known that the distance or relative information between
two probability distributions can be studied by using
the Kullback--Leibler divergence measure [14], which is
defined as follows. Let f and g be probability densities on
IRn such that f is absolutely continuous with respect to g
(that is, g(x) = 0 implies f(x) = 0), then the relative informa-
tion or Kullback--Leibler divergence, DKL(f ||g) of f with
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Table I. Parameter estimates for c = 2.

d −0.20 0.30 0.90
� 1.216 1.965 2.460
� 1.090 0.867 0.721
� 1.279 3.034 5.570
� 6.400 10.400 15.200
a 13.787 5.142 2.715
˛ 32.757 29.462 31.450

respect to g is

DKL(f ||g) =
∫ ∞

0

f (x)log

{
f (x)

g(x)

}
dx (11)

with the convention that 0/0 = 1. When f is not absolutely
continuous with respect to g we define DKL(f ||g) = ∞.
One of the disadvantages of (11) is that the Kullback--
Leibler divergence is not symmetric and therefore it is not
a genuine distance metric. To overcome this problem, we
use the Jensen--Shannon divergence [15] given by

DJSD(f ||g) = 1

2
(DKL(f ||m) + DKL(g||m))

where m = (f + g)/2. The integrated squared error (ISE) [16]
is given by

DISE(f ||g) =
∞∫

0

(f (x)−g(x))2dx

To compare the RL(µ,σ), K(c,d) and RIG(φ,λ) distribu-
tions and the new model proposed in this paper, we used
the values of c = 2 and d = −0.2, 0.3 and 0.9, as consid-
ered by Abdi and Kaveh [3]. The equivalent parameters of
the above distributions were estimated by the method of
moments. The set of parameters related to the distributions
is shown in Table I. The pdf’s of the above distributions are
shown in Figure 2. Table II includes the Jensen--Shannon
divergence for the GR, K and RIG distributions for the case
c = 2. It can be seen that, except for the case d = 0.90, the
GR distribution provides the lowest distance with respect
to the RL distribution. Similar results are obtained for other
combination of parameters corresponding to typical values
of signal envelope fading (−40 to 15 dB).

In order to compare the fit of the distributions, the pdf of
GR(α,a) and the pdf of the RL, for various parameter values,
are illustrated in Figure 3. The parameters for the GR(α,a)
distribution are estimated by the method of moments. The
figure also illustrates the excellent fit between the RL dis-
tribution and the GR(α,a) distribution.

Note that the new distribution is more suitable than the K
distribution and the RIG distribution, which both involve the
Bessel function and therefore make analysis more compli-
cated. The existence of a simpler form enables us to estimate
specific channel parameters, such as BER performance (see
next section) and diversity effects, as well as the outage
probability for co-channel interferences. The conclusion
that can be drawn from these results is that the proposed
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Figure 2. Illustration of the shape of the distributions (top: c = 2,
d = 0.9, bottom: c = 2, d = −0.2).

Table II. Numerical values of JSD and ISE measures for K, RIG
and GR distributions.

d −0.20 0.30 0.90
JSD

K 5.52 × 10−3 1.36 × 10−3 4.67 × 10−

RIG 1.32 × 10−2 1.67 × 10−2 1.92 × 10−2

GR 5.75 × 10−4 5.57 × 10−4 6.33 × 10−

ISE
K 6.20 × 10−3 1.07 × 10−3 2.83 × 10−4

RIG 1.94 × 10−2 1.73 × 10−2 1.54 × 10−2

GR 4.32 × 10−4 1.85 × 10−4 1.97 × 10−4
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Figure 3. Shapes of probability density functions of GR(˛,a) and
RL for various parameter values.

GR(α,a) distribution in general provides better results than
do other, commonly used distributions and therefore it
can be used to efficiently characterise wireless channel
fading.
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3.1. Some measures of interest

In this section, expressions for the Rényi entropy, the aver-
age BER for the DPSK and MSK signals transmitted over
the GR(α,a) fading channel are derived.

It is well known that the Rényi entropy of the GR(α,a)
is defined as IR(γ) = (1/(1−γ))log

∫ ∞
0

f γ (r; α, a)dr, for
γ > 0 and γ �= 1. By using (6) and (7) we obtain
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The last term can be fitted from the Nakagami distribution
[10] and, it follows after some simple algebra that the Rényi
entropy is given by
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while the Shannon entropy is

h(g(r; α, a)) = 1
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×
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2
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where 2F1(m, b, c, s) = ∑∞
k=0 (m)k(b)k/(c)ksk/k! is the

hypergeometric function and (l)k is Pochhammer’s symbol.
See Johnson et al. [17] for details.

Some measures of special interest, such as the amount of
fading and average BER of DPSK and MSK for the gen-
eralised Rayleigh distribution proposed here and which are
useful in wireless fading channels, can be obtained under
closed form, as shown below.

For a single-input--single-output (SISO) system, the
amount of fading, AF = Var(R2)/[E(R2)]2, for the gen-
eralised Rayleigh distribution discussed here is given by

AFGR = 2a
Li2(a/(1 + a))

log 2(1 + a)
−1

which varies between 1 and ∞ for a > 0.
Now, using the BER expression for DPSK and MSK for

the Rayleigh distribution in Ref. [18] we can obtain, by
conditioning, the corresponding average BER of DPSK and
MSK for the generalised Rayleigh distribution. These are
given by

P̄b,DPSK = 1

2
− αγ

(1 + a)(1 + 2αγ)

× 2F1

(
1, 1 + 2αγ; 2 + 2αγ;

a

1 + a

)

P̄b,MSK = 1

2
− 1

1 + a

√
γα

2
�

(
a

1 + a
,

1

2
, 1 + 2αγ

)

respectively. Here γ = EB/N0, where Eb is the transmit-
ted energy per bit, N0 is the noise power spectral density
and �(z, s, a) = ∑∞

k=0 zk/(k + a)s is the Lerch trascendent
function, which also allows the following integral represen-
tation, �(z, s, a) = 1/�(s)

∫ ∞
0

ts−1e−at/(1−ze−t)dt.
In Figure 4, the average BERs are plotted for DPSK

and MSK for the RL, K, RIG and and GR(α,a) distribu-
tions for the three sets of parameter values given in Table
I. For the GR(α,a) distribution, the above expressions are
applied. For the K distribution, the expressions from Ref.
[18] are used. The BERs for the RL and RIG distributions
were computed numerically for DPSK and MSK. Setting
A is for d = −0.20, setting B is for d = 0.30 and setting C
is for d = 0.90. For all cases c = 2, as shown in the same
table.

The utility of the GR(α,a) distribution for BER prediction
in multipath fading-shadow fading channels can be seen
from these plots. Note the excellent fit between the proposed
GR(α,a) distribution and the common RL distribution for all
settings for the DPSK and MSK modulation schemes. It is
clear for all the cases illustrated that the GR(α,a) distribution
provides a better approximation to the RL than do the other
fading distributions which are normally used. Note, too, that
for the RL distribution, there is no closed-form expression
for the average BER, which must be calculated by numerical
integration methods (usually, the Gauss--Hermite method).
For the RL distribution, an exact but complicated formula
for estimating the BER in the DPSK case is reported in Ref.
[19].

Comparison of the analytic expresions for BER estima-
tion for the GR(α,a) distribution and the K distribution
reveals a similar level of mathematical complexity.
Therefore, the proposed distribution may be efficiently
applied to capture fading shadowing aspects of wireless
channels.
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Figure 4. Average BERs of DPSK and MSK for the RL, GR, K and RIG distributions assuming the values for the parameters given in
different settings as in Table I.

4. GENERATING A RANDOM
VARIATE FOR THE PROPOSED
DENSITY DISTRIBUTION

To test the capabilities of the proposed density distribu-
tion, it is necessary to generate, at low computational cost,
a random variate according to the density distribution. To
generate a set of data distributed with the GR(α,a) density,
the inverse transform method [20] was applied. This method
was also used in Ref. [21] but for the generation of bivari-
ate Rayleigh and Nakagami-m fading envelopes. Although
it is known that this method is not necessarily the most effi-
cient for generating random variates, it was selected here on
the basis of its straightforward implementation. The inverse
transform method is quite simple and can be summarised as
follows: let X be a random variable with cumulative proba-
bility distribution (CDF) Fx(x). As Fx(x) is a nondecreasing
function, the inverse function F−1

x (y) may be defined for
any value of y between 0 and 1 as: F−1

x (y) is the smallest x
satisfying Fx(x) ≥ y, that is,

F−1
x (y) = inf{x : Fx(x) ≥ y}, 0 ≤ y ≤ 1

To apply the inverse transform method, Fx(x) must be
available in a form for which the corresponding inverse

transform can be found analytically, which fortunately is
the case for the GR(α,a) distribution. When this is not possi-
ble, a numerical technique, for instance the well-established
bisection approach, must be applied, as occurs in Ref. [21],
which makes this powerful method less efficient in terms of
computational time and the quality of the data obtained.

Hence, if r∈U(0, 1) is uniformly distributed over the
interval (0.1), from expression (7), each random variate y
distributed with GR(α,a) pdf is explicitly given by,

U =
y∫

−∞

fX(t)dt = 1− 1

(a + 1)exp(y2/(2α))−a

that is,

y =
√

2α log

(
1

a + 1

(
a− 1

r−1

))

This methodology works well, as can be seen in Figure
5, where a good fit between the analytic and simulated dis-
tributions is observed. The analytic median is provided by
r0.5 =

√
2αlog[(2 + a)/(1 + a)], which, for α = 0.978 and

a = 0.5 gives a value of 1.0 (0 dB) which is very close to
the simulated median (1.0019), and provides a relative error
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Figure 5. Analytic and simulated density distributions (solid
line and dotted line, respectively) for the GR(˛,a) distribution
with median = 1 (parameters: ˛ = 0.978 and a = 0.5), and with

median = 2 (parameters: ˛ = 4.932 and a = 1.0).

of around 0.2%. For the variance (see expression 10), the
results are: 0.3854 for the analytic variance and 0.3848 for
the simulated variance, which represents a relative error of
around 0.15%. The mean squared error is around 1.11. For
the pdf with a median value of 2 (and a corresponding ana-
lytic variance of 1.8021), a simulated median of 1.9990 is
obtained (a relative error of around 0.05%) and a simulated
variance of 1.8118 (a relative error of around 0.53%). The
mean squared error for this latter case is around 2.53. A
C++ routine was written to implement the above random
variate generator. A Monte Carlo simulation to generate
N = 100 000 random variates takes less than a second on
a Pentium IV, 3 GHz-single core-computer, which makes
this approach a practical one for fading channel analysis.
For both distributions, a total of 10 000 samples were used
and a transmitter frequency of 870 MHz was assumed.

The fading simulation for the GR(α,a) distribution is
shown in Figure 6, where a RL distribution is also plotted
for the sake of comparison. The RL distribution is simulated
as explained in Ref. [22]. As shown in the figures, the fad-
ing level is concentrated at the 0 dB level. This, for the case
of the Rician fading distribution, results from the dominant
line-of-sight (LOS) signal, unlike in the Rayleigh fading
distribution. For the GR(α,a) distribution, this must be anal-
ysed. The peak-to-peak fading level spans those reported in
the relevant references for well-established fading distribu-
tions. Note that the deep fading level (−25 dB) is also taken
into consideration in the simulated data. Fading level val-
ues lower than −25 dB can be easily generated from the
parameters α and a.

5. THE GENERALISED RAYLEIGH
PHASOR

In this section, we show that the generalised Rayleigh distri-
bution can be obtained in an exact form as a sum of mutually
independent Gaussian stochastic processes, as is required in
order to account for the simulation of the fading channel,
that is, to simulate the signal envelope.
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Figure 6. Simulated samples of GR(˛,a) data set spaced 0.1
wavelength apart for the 0 dB median value (˛ = 0.978 and
a = 0.5) (top). Horizontal zoom for the same image with a simu-
lated RL sample data set (� = 0 dB and � = 3 dB) superimposed

with dashed line (bottom).

It is known that Rayleigh fading envelopes can be gener-
ated from zero-mean complex Gaussian random variables.
Other fading distributions (see for instance Ref. [23] for the
Nakagami-m case) are obtained in a similar manner after
some mathematical considerations. Hence, it is necessary to
prove that the phase and the amplitude of a given propagat-
ing signal are distributed according to a uniform pdf in the
[0,2π] interval and to the generalised Rayleigh distribution,
respectively.

Following Ref. [24], consider the sum

S = Reiθ =
n∑

j=1

Ajei�j = (X, Y ) = (R cos θ, R sin θ)

where the terms X (the in-phase phasor) and the Y (quadra-
ture phasor) are independent uniformily distributed phasors
(UDP) and the Aj are all distributed identically. When
n is large and Aj is not correlated with the �j , both X
and Y will be distributed normally with mean 0 and vari-
ance (1/2)n = ∑n

j=1 E(A2
j ). Let us now assume (1/2)n =∑n

j=1 E(A2
j ) = σ2/Z, Z = {1, 2, · · ·}. Then, the joint
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distribution of X and Y is

p(x, y) = Z

2πσ2
exp

{
− (x2 + y2)Z

2σ2

}
(12)

Let now thatZ = {1, 2, · · ·} is a discrete random variable
following the pmf (2). Then, by expressing (12) in polar
coordinates we have

p(r, θ|z) = rZ
απ

exp{−r2Z/α}, 0 ≤ θ ≤ 2π, r ≥ 0.

It is straightforward to obtain the following marginal
distributions:

p(θ|z) ≡ p(θ) =
∫ ∞

0

p(r, θ|z)dr = 1

2π
,

p(r|z) =
∫ 2π

0

p(r, θ|z)dθ = 2rz

α
exp{−r2z/α}.

Hence, the nonconditional distributions (independent of
z) are

p(θ) =
∞∑

z=1

p(θ|z)π(z) = 1

2π

p(r) =
∞∑

z=1

p(r|z)π(z)

= r

α(1 + a)

exp{−r2/(2α)}
1−(a/(1 + a))exp{−r2/(2α)}

It is clear that the phase distribution is uniform, i.e.p(θ) =
(1/(2π)), 0 ≤ θ ≤ 2π, and the amplitude distribution is,
with α/2 ≡≡ α, as in (3). In consequence, a generalised
Rayleigh distribution as in (3) is always a UDP phasor.
Otherwise, the generalised Rayleigh distribution can be
obtained as a sum of phasors directly from expression (5).

Therefore, once a set of Rayleigh distributions g(r;α)
with parameter α′ = α/(1 + i) is generated from the zero-
mean complex Gaussian random variables, the generalised
Rayleigh distribution, GR(α,a) can be obtained from the
infinite mixture of the Rayleigh distributions. The pdf of the
generalised Rayleigh distribution, GR(α,a) obtained from
expression (5) is illustrated in Figure 7 (top) in order to show
that all that is required is a value of i = 10, and a Rayleigh
distribution of g(r; α′) to accurately fit the desired pdf. In
this case, each g(r; α′) pdf is evaluated from its analytic
expression. In the same figure (bottom), a similar result is
obtained but in this case, each g(r; α′) is obtained through
simulation using the phasors described above.

To comply with the fading channel characteristics for the
physical simulation of the channel, the random process (ran-
dom data set) must be correlated in time but uncorrelated
between processes. Therefore, to generate the GR(α,a) data
set, we first generated a Rayleigh data set using a random
number generator to obtain the random phasor sum in the
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Figure 7. PDF of the Generalised Rayleigh (˛ = 4.932606, a = 1),
from the sum of analytic Rayleigh distributions (top). Comparison
of the generalised Rayleigh (˛ = 4.932606, a = 1) magnitude pdf

and the simulated data set using expression (5) (bottom).

complex plane, as follows:

X = Re(RRayleigh) = r cos θ =
n∑

j=1

Aj cos φj =
n∑

j=1

Xj

Y = Im(RRayleigh) = r sin θ =
n∑

j=1

Aj sin φj =
n∑

j=1

Yj

where Aj accounts for the jth random amplitude and φ rep-
resents the jth random phase. The Rayleigh data set can be
obtained, after fitting the desired amplitude as,

RRayleigh = rejθ =
n∑

j=1

Ajejθj

where r is a random variable for the amplitude of the
Rayleigh distribution and θ is the phase of the distribution
with a uniform distribution pdf, p(θ) = (1/(2π)), 0 ≤ θ ≤
2π. In the simulation represented in Figure 7, 15 scattered
random phasors and 15 000 samples were used.

The physical model is completed by reformulating the
phasors as are the fading models widely applied in previous
studies (see Ref. [23]) as follows,

xi(t) =
N∑

j=1

Aij cos(wijt−φij)

yi(t) =
N∑

j=1

Aij sin(wijt−φij)

In both expressions, Aij accounts for the amplitude, and
the ensemble average is

〈∑N

j=1 A2
ij)

〉 = 1 and the phase
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Figure 8. Fading signal for the generalised Rayleigh (˛ = 0.4450,
a = 2); frequency = 900 MHz, speed = 40 km/h.

θ is now replaced by the term θ = wijt−φij . The phase
φij is the random phase uniformly distributed in [−π,π],
and wij = βv cos(ψij) is the Doppler shift, where ν repre-
sents the vehicle speed, β = 2π/λ the wave number, λ the
wavelength and βν the maximum Doppler shift (in radi-
ans per second), respectively. The angle of arrival of the
signal is ψij , which is also distributed in [−π,π], while N
is the number of sinusoidal waves; if this value is large
enough then both xi(t) and yi(t) can be considered Gaussian
processes. Consequently, the Rayleigh signal envelope is
given by r2 = x2

i + y2
i , and i = 1,2, . . . . Then, using (5) the

amplitude of the envelope is fitted to the GR(α,a) amplitude.
A simulated fading signal for the GR(α,a) distribution

is shown in Figure 8, which corresponds to a signal with
a mean amplitude value of −5.8516 dB. Six Rayleigh pro-
cesses were simulated to obtain the GR(α,a) envelope, and
the simulated envelope pdf of the data set fits well with
the analytical one (not shown here). The envelope in this
case extends to very deep fading levels of around −50 dB
which, although rather infrequent have been reported in
rapid fading in HF long-distance propagation, see Ref. [23].

Although in this paper, we have not discussed the physi-
cal model related to the new distribution, it seems clear from
expression (5) that there must exist a straightforward rela-
tion between the α parameter and the carrier-to-multipath
power appearing in the Rayleigh distribution. However, the
relation for the parameter a does not seem so evident, but we
believe that it may be related to the power of the scattered
waves.

A simulator block implementing the GR(α,a) signal has
been developed (coded in C++) and included in a more gen-
eral mobile radio channel software simulator. The simulator
performs the Gaussian processes to account for the Rayleigh
simulation to obtain the signal envelope distributed with
GR(α,a) pdf. Some typical routines are also included, such
as an n-pole Tchebicheff filter block and a simple RF com-
biner (for the equal gain and maximum-ratio cases).

6. CONCLUSIONS

A new distribution, GR, which can be used to replace the
RL distribution, is presented. The proposed distribution also

includes the Rayleigh distribution as a particular case. The
expressions for the parameter estimation of the new dis-
tribution are discussed. The new distribution can be used
to replace the K, the RIG or other equivalent RL fading
distributions and it is considerably simpler from a mathe-
matical point of view. It is important to note that the new GR
distribution can be applied to model both long and short-
term signal variations, and hence there is no need to include
any other distribution to account for the fading in current
wireless channels. Two methods to obtain the simulated
envelope are discussed, one based strictly on the pdf of the
distribution and the other on a physical model built from the
Rayleigh physical model. The latter is exact and hence all
the attributes of the GR are retained. A closed-form expres-
sion for the BER for DPSK and MSK modulations for the
proposed distribution are also derived. An area for future
work is the development of analytic models to enable us
to understand the physical model related to the new fading
distribution, in order to give a physical meaning to the new
parameters and to provide exact expressions for the second-
order statistics quantities, such as LCR (average LCR) and
AFD.
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