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Abstract

Complex human-computer interfaces are more and more making use of high-level concepts extracted from
sensory data for detecting aspects related to emotional states like fatigue, surprise, boredom, etc. Repetitive
sensory patterns, for example, almost always will mean that the robot or agent will switch to a ”bored”
state, or that it will turn its attention to other entity. Novel structures in sensory data will normally cause
surprise, increase of attention or even defensive reactions. The aim of this work is to introduce a simple
mechanism for detecting such repetitive patterns in sensory data. Basically, sensory data can present two
types of monotonous patterns: constant frequency (be it zero or greater than zero, be it a unique frequency
or a wide spectrum) and repetitive frequency spectrum changes. Both types are considered by the proposed
method in a conceptually and computationally simple framework. Experiments carried out using sensory
data extracted both from the visual and auditory domains show the validity of the approach.
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1 Introduction mation is continually received from the environ-
ment, and it has to be somehow filtered so that
the agent can focus on the interesting data. Mars-
land [12] defines habituation as ”a way of defocus-
ing attention from features that are seen often”.
Many animals, and humans too, have some kind
of mechanism to filter uninteresting stimuli.

Living beings possess habituation mechanisms
that allow them to ignore repetitive stimuli. If
such stimuli were not gradually ignored, the con-
tinuous response would lead the living being to
complete exhaustion. A large amount of infor-
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Habituation is a filtering mechanism that has re-
ceived a lot of attention in the physiological and
psychological areas. In the physiological area,
some researchers have investigated the mecha-
nisms of habituation in animals, being one of the
most known works the study of the Aplysia’s gill-
withdrawal reflex [2]. When the animal’s siphon
is touched, its gill contracts for a few seconds.
If the siphon is stimulated repeatedly, the gill-
withdrawal effect tends to disappear. Crook and
Hayes [4] comment on a study carried out on two
monkeys by Xiang and Brown who identified neu-
rons that exhibit a habituation mechanism since
their activity decreases as the stimulus is shown
repeatedly.

Stanley’s model [16] of habituation, proposed to
simulate habituation data obtained from the cat
spinal cord, has been widely used in the literature.
This model describes the decrease efficacy y of a
synapsis by the first-order differential equation:

Td@ili(tt) = a(yo —y(t)) — S(t), (1)

where yo is the normal, initial value of y, S(¢)
represents the external stimulation, 7 is a time
constant that governs the rate of habituation and
« regulates the rate of recovery. Equation (1) en-
sures that the synaptic efficacy decreases when
the input signal S(¢) increases and returns to its
maximum yo in the absence of an input signal.

The model given by (1) can only explain short-
term habituation, so Wang [19] introduced a
model to incorporate both short-term and long-
term habituation using an inverse S-shaped curve,
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where «,yo and v have the same meaning than
in (1), 8 regulates the habituation and z(t) de-
creases monotonically with each activation of the
external stimulation S(¢), and models the long-
term habituation. Due to this effect of z(t) after
a large number of activations, the recovery rate
is slower.

Novelty detection is a concept related to habitua-
tion. Novelty detection is the discovery of stimuli
not perceived before and so habituation serves as
a novelty filter [17]. The rest of this paper is orga-
nized as follows. In Section 2 we briefly describe

some applications of habituation mechanisms. In
Section 3 the proposed method is described in de-
tail. Experimental results are evaluated in Sec-
tion 4. A brief discussion appears in Section 5.
Finally in Section 6 we outline the main conclu-
sions and future work.

2 Motivation

From a engineering viewpoint, perceptual user
interfaces, like human-like robots, should be en-
dowed with a habituation mechanism. The inter-
est is twofold. First, it would be a filtering mech-
anism, discarding (or minimizing the importance
of) repetitive information while paying attention
to new experiences. This is in part motivated
by the desire to distinguish between artificial and
human signals. Artificial signals are often static
or repeat with a fixed frequency. We do not want
our robot to pay much attention to the hands
of a wall-mounted clock. Instead, it would be
more interesting to detect non-repetitive stimuli,
such as a conversation or a sudden loud noise.
Note that we generally consider monotonous sig-
nals as those having a fixed frequency or frequen-
cies (which can be zero, that is, the signal does
not change) but signals whose frequency changes
in a periodic pattern could also be considered
monotonous. Higher scales are also possible but
we do not consider them in this work because
they are very hard to visualize and real examples
of them are not so common.

Second, habituation would lead to a more human-
like behaviour, as perceived by users of the inter-
face. As an example of this, consider the multi-
modal interface Kismet [1]. Someone can catch
the eye of the system while waving a hand in its
visual field of view, but if the stimulus is repeti-
tive for a long time the system can show a lack of
interest in it. Many aspects of Kismet’s mental
architecture are directly or indirectly influenced
by the detection of monotonous sensory signals:
stimulation and fatigue drives and the arousal di-
mension of its affect space (and in turn some emo-
tional states, like surprise, boredom or interest).

Although we focus our work on the abilities de-
scribed above, many other applications are also
imaginable. In the robotics field, habituation
mechanisms have been used to reduce oscillations
caused by collision-avoidance behaviours when
navigating through a narrow corridor [3]. Mars-
land [13] uses a SOM neural network as a memory



for novelty detection. To add short-term habitu-
ation to the original network, each neuron of the
SOM is connected to an output neuron with ha-
bituable synapses based on the model (1). Habit-
uation is also used in [18] for controlling reactiv-
ity strength, visual attention [15, 1], and general
learning [5]. On the other hand, there is consid-
erable interest in the field of musicology in Beat
Tracking Systems (BTS) [8]. BTS systems aim
to find the tempo of an audio signal, which is
basically the rate of repetitions. The main appli-
cations of BTS systems are audio/video editing,
synchronization of computer graphics with music,
stage lighting control and audio content search-
ing.

3 Proposed Method

If we use the model of Equation (1) we can ob-
tain undesired effects with certain stimuli. A pe-
riodic input signal (with frequency greater than
zero) can produce a response that does not ex-
hibit habituation. This is due to the fact that
the model does not account for changing stimuli,
but for continuous ones. In order to include this
fact in the model, we propose to use an auxil-
iary signal which will be zero when the stimulus
is stationary or with a fixed frequency, and one
otherwise, and use this signal as an input to the
habituation model (1).

The auxiliary signal, which basically detects
monotonous stimuli, is obtained from the spec-
trogram of the stimulus itself. The spectrogram
is a time-frequency distribution of a signal, and it
is based on the Fourier Transform with a sliding
window [9]. The equation
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gives the definition of a spectrogram with a Gaus-
sian window function of half~-width 7', and it is the
power spectrum of a signal which corresponds to
the squared magnitude of the Fourier transform of
the windowed signal. The window can have other
forms apart from the Gaussian one. In Figure
1 we show an audio signal and its corresponding
spectrogram, where brighter areas correspond to
higher power. Two well defined frequency spec-
tra can be distinguished, for there is a change in
the input signal at time 0.5 s. Temporal patterns

of the stimulus signal have a specific pattern in
the spectrogram. A fixed frequency signal corre-
sponds to a straight line parallel to the time axis
in the spectrogram, and the length of this line
indicates how long has been the stimulus present.

Spectrograms are computed from windows of the
input signal. These windows, of length I, over-
lap by | — 1 samples. Let each spectrogram be
represented as a matrix M, in which rows repre-
sent frequencies and columns represent time. We
calculate the variance of each row of M, which
produces a column vector v. The norm of this
vector v is a measure of how monotonous the in-
put signal is. The norm will be high when the
signal is changing, and low otherwise. Thus, the
auxiliary signal needed is simply the thresholded
norm of v. The amplitude of the input signal af-
fects the power content of the spectrograms, and
in turn the norm of v. Thus, prior to calculat-
ing the FFT the input signal must be normal-
ized dividing each input window by the sum of
its absolute values. A value of 1 for the auxiliary
signal will mean that there are changes in the in-
put signal, while a value of 0 indicates that the
input signal is monotonous. Once the auxiliary
signal is available, the model (1) is used to get
the desired habituation behaviour, as controlled
by parameters 7 and «.

Formally, let N and [ be the number of rows and
columns of M, respectively, and let m; ; represent
the element in row 7 and column j of M. Vector
v is calculated as:

l
My 5
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The auxiliary signal is then, for a given threshold
T:

A:{ 1 if |v|>T

0 if v|<T (™)

With this method both static an fixed frequency
stimuli can be detected. However, there are stim-
uli that change their frequency according to a pe-
riodic pattern. These stimuli should also be con-
sidered as monotonous. The hissing sound of a
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Figure 1: Audio signal (left) and its corresponding spectrogram (right).

siren, for example, is a signal whose frequency
changes in a repeated pattern. After few repeti-
tions the signal will be considered monotonous.
One way to detect these kind of stimuli is to
use the same method with the auxiliary signal.
If the input signal changes its frequency content
in a repeated pattern, the auxiliary signal will
be periodic with a fixed frequency, and that can
be detected as explained in the previous para-
graph. Thus, two thresholds will be needed, one
for the "first level” and one for the ”second level”.
Higher levels could conceivably be used, but we
have not considered them because they are very
difficult to visualize and encounter in the physical
world. Note that the second-level auxiliary signal
will be 1 when there are changes in the first-level
auxiliary signal, and thus when there are changes
in the input signal, and 0 otherwise. Thus, the fi-
nal input to the habituation model (1) will be the
second-level auxiliary signal. Note that this sec-
ond level introduces additional computation, and
in some cases we could consider it unnecessary, if
we decide to detect only simple monotonous sig-
nals.

There is only one detail left. If the first-level aux-
iliary signal is 1 (meaning that the input signal
is changing), and this remains for a while, the
second-level auxiliary signal will be 0 (because
the second-level norm of the variance vector will
be 0) which is not the correct value. In order to
correct this, the second level must detect when
the norm is 0 and, if so, use the value of the first-
level auxiliary signal, instead of the second-level
auxiliary signal. Note that if the first-level aux-
iliary signal is periodic the second-level variances
obtained should theoretically be 0, which would
prevent the use of this correction. However, in all

the experiments carried out this never happened,
because there is always an unavoidable amount of
fluctuations in the input signal, which makes the
variances larger than 0.

A previous version of the method proposed here
has been already published elsewhere [11, 10].
That version used only the frequency associated
to the maximum power. Habituation should be
present when the plot of that frequency versus
time is a straight line. Changes are detected by
fitting a line to the last k values of the frequency
and computing the difference between the current
value and the predicted value with the fitted line.
That approach, however is too simplistic in the
sense that it assumes that the input signal is en-
tirely represented by the frequency of maximum
power.

4 Experiments

The algorithm described in Section 3 was im-
plemented to test it with different input signals.
The first experiments that we present use only
the first level mentioned in Section 3. In or-
der to gather signals from the visual domain, we
recorded video containing a yellow bright stimu-
lus (a yellow card) that was moved in a repeti-
tive fashion, see Figure 2-a). Using simple seg-
mentation techniques we extracted the centroid
of the card on each frame (384x288) and summed
the = and y pixel coordinates to form the one-
dimensional signal of Figure 2-b). The sequence
of card movements throughout the recording was:
horizontal movement, random (aperiodic) move-
ment, vertical movement and vertical movement
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Figure 2: a) Video recording used for the visual habituation experiment, b) one-dimensional signal extracted

from it.

at a different frequency than the previous one.

The results appear in Figure 3. Windows of 128
samples were used, and the variance threshold
was set at 1000.

As for the audio domain, we recorded signals with
a standard PC microphone, at a 22050 Hz sample
rate, 8 bits. Figure 4 shows the results obtained
for an audio signal that contains three sequential
parts: silence (0-0.5s), people speaking (0.5-1s)
and a tone played from an electric piano (1-1.4s).
Note that there is an initial delay due to the need
to fill the input window, here of length [ = 5120.
The habituation level, obtained using the model
of (1), shows a satisfactory response.

Figure 5 shows the results obtained for an au-
dio signal that contains another three sequential
parts: a tone played from an electric piano (0-
0.5s), silence (0.5-1s) and another tone (1-1.4s).
The same window length [ = 5120 was used, and
again the habituation level shows a satisfactory
behaviour.

In order to test both the first and second levels of
the method, we built an audio signal containing
three sequential parts: a beep repetitive sound
from a mobile phone, people speaking and a tone
played from an electric piano. This signal was
accelerated to reduce computation time, which
does not alter the qualitative results of the ex-
periments. Results are shown in Figure 6. The
window length was [ = 5120 for the first level
and [ = 2148 for the second. In this case the
repetitive beeps (clearly observed as a repetitive
pattern in the first part of the spectrogram) are

correctly considered as monotonous. This would
not have occurred if we had used the first-level
auxiliary signal alone, for numerous changes are
detected (see Figure 6-d).

5 Discussion and Implemen-
tation

In this section we discuss a few aspects of practi-
cal interest. Particularly, we will comment on the
effect of the values of the different parameters to
use:

e Length of the input window, {: It should be
the largest possible, in order to detect stim-
uli with large period. However it cannot be
too large because that would introduce an
unacceptable delay in the response to stim-
uli with smaller period. Thus, it depends
on the type of stimuli. A flexible solution
would be to implement multiple instances of
the problem, each one with a different size
for this parameter, in a multiscale fashion.

e Tau, 7: It controls the rate of habituation.
e Alpha, a: It controls the rate or recovery.

e Number of discrete frequency levels, N: De-
pendent on the type of input stimulus, it
should normally be the largest possible. For
the case of auditive signals, the minimum
noticeable difference that people can distin-
guish is as low as 1.3Hz [14]. Other input
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Figure 3: a) Evolution of the (I2) norm of the variance vector v, b) habituation level, using 7 = 5, = 1.

stimuli could be sonar data, blob positions,
pressure readings, etc.

e Variance thresholds: They refer to the min-
imum change in the frequency spectrum to
detect a change in the signal. If set too high,
we run the risk of ignoring signal changes.
If set too low, ”hypersensitive” responses
could be obtained. The appropriate val-
ues depend both on the type of input sig-
nal and the number of discrete frequency
levels. These thresholds could be changed
depending on the amount of available re-
sources. If available resources are high, a
lower threshold could be appropriate (pro-
ducing more sensitivity or attention). Oth-
erwise, a higher threshold would produce a
more believable response.

The computational cost of the proposed method
is basically dependent on the calculus of the spec-
trogram. This, in turn, basically depends on the
FFT. Thus, the total cost, for a window of length
lis llog, I (for the first-level alone). This is there-
fore the cost of producing a new value of the aux-
iliary signal for each input sample. If a multi-
scale (multiple values for [) approach is used, the
multiple instances of the problem can use parallel
computation. Also, the second-level part of the
problem can be solved in parallel with the first-
level.

The habituation mechanism described here
has been implemented for an anthropomorphic
robotic head that is being developed at our labo-
ratory [7]. The robotic head is intended as a mul-
timodal interface with human-like abilities. The

habituation mechanism has been implemented for
signals in the visual domain, i.e. images taken by
the cameras placed in the eyes. The difference
between the current and previous frame is calcu-
lated. Then it is thresholded and filtered with the
Open and Close operators. Also, blobs smaller
than a threshold are removed. Then the center
of mass of the resultant image is calculated. The
signal that feeds the habituation algorithm is the
sum of the x and y components of the center of
mass. When the image does not show significant
changes or repetitive movements are present for
a while the habituation signal grows. When it
grows larger than a threshold, an inhibition sig-
nal is sent to the attention module of the robot
[6], which then changes its focus of attention. The
head pan and tilt movements produce changes in
the images, though it was observed that they are
not periodic, and so habituation does not grow.

6 Conclusions

Habituation is the decrease in the strength of an
agent’s response when it receives repetitive stim-
uli. This ability is present in almost any living
being, and it is of capital importance, if we con-
sider the effect that a lack of it would have. In
this work we propose a simple spectrogram-based
algorithm for detecting monotonous input signals,
independent of their sensory origin (auditive, vi-
sual, ...). Signals that repeat with constant fre-
quency or frequencies are considered monotonous.
Signals that present a periodic changing pattern
in their frequency content can also be considered
monotonous. The usefulness of the algorithm is
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Figure 4: a) Spectrogram of the audio signal, b) evolution of the (l3) norm of the variance vector v, c)
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