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ABSTRACT 

This paper evaluates gains in efficiency produced by the use of efficient designs to analyze 

stated choice (SC) data. Based on a standard experiment used in a previous research, we 

compare the efficiency of this design with that of the efficient design obtained according to 

the minimization of the D-error, considering different modelling strategies. The experiment 

was conducted in the context of the choice between the plane and the new high speed train 

in the route Madrid-Barcelona. As the levels assigned to some attributes in the stated choice 

exercise were customized to each respondent experience, pivoting the information provided 

by preliminary revealed preference questions around the reference alternative (the plane, in 

this case), a different efficient design was created for every respondent in the sample. 

Results of the analysis demonstrate that substantial gains in the significance level of the 

parameter estimates could have been attained if the efficient design had been used to 

analyze SC data. 

Keywords: Stated Choice Data, Efficient Designs, Discrete Choice Models 
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1. INTRODUCTION 

During decades, the use of orthogonal designs, obtained as a fraction of the full factorial 

design preserving the orthogonality among the attribute vectors, was considered common 

practice in the construction of stated choice experiments. The majority of these designs were 

extracted from existing catalogues or specialized software that provided the corresponding 

combinations of the attribute levels in every choice situation (e.g. Kocur et al, 1982; Hahn y 

Shapiro, 1966; Bradley, 1988; SDG, 1990 among others) leaving decisions such as the 

number and the value of the attributes and levels included in the experiment to the analyst.  

More recently, researchers have raised questions about the relevance of the orthogonality in 

the construction of stated choice experiments, claiming that this property is normally lost 

once the attribute values are assigned to the orthogonal codes of the experimental design 

(Rose and Bliemer, 2004). Hence, the construction of fractional experiments based on 

efficiency criteria like the minimization of the asymptotic standard error of the parameter 

estimates is becoming a more attractive idea. Although there exist different methods to 

obtain efficient designs, the most popular are those that minimize the D-error, that is defined 

in terms of the asymptotic variance-covariance (VC) matrix, which depends, in turn, on the 

second derivatives of the log-likelihood function. Thus the difficulty entailed in the 

computation of the D-error varies with the complexity of the choice model to be estimated. At 

this point, as much of the previous research have been done using classical designs, the 

question arise to which extent the use of non-efficient designs reduces the efficiency of the 

experiment or the accuracy in the estimates. In other words, it would be interesting to assess 

the loss of efficiency due to the use of non-efficient designs and to which extent the sample 

size could have been reduced by using an efficient design in order to guarantee the same 

level of significance in the estimates obtained with a non-efficient design. 

In this paper we compare the efficiency of the experimental design used in a previous 

research with the efficient design obtained according to the minimization of the D-error, in the 

case of a Multinomial Logit (MNL) and a Mixed Logit (ML) model. In the previous experiment, 

we faced respondents to the choice between the plane and the new high speed train in the 

route Madrid-Barcelona. As the levels assigned to some attributes in the stated choice 

exercise were customized to each respondent experience, pivoting the information provided 

by preliminary revealed preference questions around the reference alternative (the plane, in 

this case), a different efficient design was created for every respondent in the sample. The 

comparison of the D-error for these two designs allowed us to conclude that, for this 

particular case with a sample of around 300 individuals, we could have obtained substantial 

savings in the sample size (ranging from 5% to 24%) if models were estimated with efficient 

design data; which is equivalent to say that, maintaining the same sample size, we could 

have improved the level of significance of the parameter estimates. 
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2. CRITICAL ISSUES IN THE CONSTRUCTION OF STATED 
CHOICE EXPERIMENTAL DESIGNS 

The main purpose of every experimental design is to determine the independent effect of 

different attributes upon certain observed outcomes that, in the particular case of SC 

experiments, are represented by choices made by the sample respondents that undertake 

the experiment (Rose and Bliemer, 2009). A typical SC experiment consists in a sample of 

individuals that complete different choice tasks in which they are asked to select the most 

preferred alternative among a finite set of options. Alternatives are defined in terms of the 

different values, or levels, that the attributes can take. Technically, the experimental design 

consists in the disposition of the levels of the attributes, on a certain way, in the design matrix 

X, whose columns and rows are normally associated to the attributes of the alternatives and 

to the choice situations, respectively (see, e.g. Bliemer and Rose, 2006; and Rose and 

Bliemer, 2008)1. The way the attribute levels are arranged in the design matrix determines 

the ability of the experiment to measure the independent effect of every attribute and to 

obtain statistically significant parameter estimates. Many different design types can be 

considered by the analyst. The simplest one to construct is the so-called full factorial design, 

consisting of all possible combinations of the attribute levels, yielding all possible different 

choice situations. Although this design guaranties that main and all interaction effects can be 

estimated and has many other desirable properties, it is not useful in practice as the number 

of choice situations may become typically too high. Therefore, most researchers rely on 

fractional factorial designs, consisting in the selection of a subset of choice situations from 

the full factorial design. 

The principle of orthogonality has been considered, in the past, the paradigm in the 

construction of fractional factorial experimental designs. In an orthogonal design all the 

columns of the design matrix are perpendicular vectors. In other words, the product of the 

design matrix by its transpose is a diagonal matrix. Thus, the attributes in an orthogonal 

design are treated as statistically independent variables, being possible to estimate the 

influence of each attribute upon the observed outcomes. Rose and Bliemer (2009), point out 

that orthogonality is purely a statistical property that is related to the correlation structure 

between the attributes of the design and not a behavioural property imposed upon the 

experiment. Therefore, an orthogonal design, by construction would not be theoretically 

appropriate in cases where attributes were cognitively correlated in the minds of the 

respondents (e.g. price and service quality attributes). 

In the case of linear models (such as linear regression models), the orthogonality of the 

design is considered an especially important property. The VC matrix of a linear regression 

model is represented by the expression: 

 
12VC X X


      (1) 

Where 
2 is the model variance and X is the design matrix. It is relatively simple to 

demonstrate that the diagonal elements of VC (that is, the variances of the parameter 

estimates) are minimized and that the off-diagonal elements (covariances) are zero when X 

is an orthogonal matrix. Therefore, for linear models, apart from the absence of 

                                                 
1
 Rose and Bliemer (2009) point out other typical representations of the design matrix used by other researchers 

that associate multiple rows of the design matrix to an individual choice situation (see, e.g. Huber and Zwerina, 
1996; Sándor and Wedel, 2001, 2002; Carlsson and Martinsson, 2002; Kanninen, 2002; Kessels et al., 2006).  
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multicollinearity (i.e. uncorrelated parameter estimates), the analyst will have the guaranty 

that the model will optimize the significance level of the parameter estimates, producing the 

highest t-ratios at a given sample size. 

Unfortunately, these properties are not transferred to non-linear models, such as discrete 

choice models, and orthogonality does not ensure the minimization of the standard errors of 

the parameter estimates. This is the main reason why many researchers during the past 

decade have questioned the use of orthogonal designs to analyse SC data providing 

different strategies to generate statistically efficient designs (see e.g. Huber and Zwerina, 

1996; Kanninen, 2002; and Sándor and Wedel, 2002). 

A choice among a set of alternatives requires the application of a decision rule. Discrete 

choice models are based on the utility maximization behavioural rule, which lies under the 

scheme of the rational choice, and normally implies a compensatory decision process, i.e. 

individuals made trade-offs among attributes in determining the alternative with the highest 

utility. Since the analyst does not have full information about the utility of the decision maker 

n for the alternative j in the choice situation s, nsjU , it is modelled as the sum of two 

components: a deterministic or observable utility nsjV , and a random term nsj representing 

the portion of utility unknown to the analyst. Thus, the true utility to the decision maker is 

represented by the random variable nsj nsj nsjU V   ; and therefore, the analyst, under the 

assumption of utility maximization, is only able to model the choice probability of the different 

alternatives. 

The observed component of the utility is typically assumed to be a linear relationship of 

observed attribute levels of each alternative, X, and their corresponding weights represented 
by a set of unknown parameters  . The random component, can adopt different forms 

depending on the type of model considered. Thus, in the case of the widely used MNL 

model, the unobserved random component nsj  are assumed to be a vector of variables iid 

extreme value type I distributed. Then the probability that respondent n chooses alternative j 

in choice situation s is given by the well know formula (see McFadden, 1974): 

 

exp( )

exp( )
ns

nsj

nsj

nsi

i J

V
P

V





      (2) 

Where Jns is the set of alternatives presented to respondent n in the choice situation s. 
Unknown parameters  are estimated from data, SC data in our case, by maximizing the 

likelihood function L given by the following expression: 

1

( ) nsj

n ns

N
y

nsj

n s S j J

L P
  

       (3) 

Where N denotes the total number of respondents, Sn is the set of choice situations faced by 

respondent n, and ynsj is equal to one if respondent n chooses alternative j in choice situation 

s, and zero otherwise. Equation (3) is transformed into a simpler expression by taking the 

natural logarithm (log-likelihood), yielding the same optimal solution without loss of 

generality: 

1

log log
ns

N

nsj nsj

n s S j J

L y P
  

      (4) 

As the error terms in the MNL model are independent variables, all the observations are 

treated as independent, obviating the possible correlation among choices of the same 
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respondent in the different choice sets. Despite this fact pose an important question about 

the appropriateness of the MNL model to deal with panel data, there is still much research 

work done using this model to analyze SC data.    

In case of a ML model, we assume that some of the parameters are random2, following a 

certain probability distribution. In that case, simulation is required and the expected likelihood 

function in the following expression is maximized in order to estimate the distribution of the 

parameters. 

1 1

( ) ( ) ( )nsj nsj

n ns n ns

N N
y y

nsj nsj

n s S j J n s S j J

E L E P E P
     

   
       

   
      (5) 

In which the second term holds since we assume that all respondents make their decisions 

independent of each other, but taking into account the dependency among the choice  

probabilities for a single respondent in multiple choice situations. This formulation is known 

as the panel Mixed Logit model (Bliemer and Rose, 2009). The expectation in (5) is taken 

over the random β values, which make the probabilities Pnsj random as well. As in the case of 

the MNL model, expression (5) is also simplified by considering the log-likelihood: 

1

log ( ) log ( ) nsj

n ns

N
y

nsj

n s S j J

E L E P
  

 
   

 
       (6) 

Behind the construction of statistically efficient designs there exists a trade-off between:  i) 

obtaining the maximum amount of information about the parameters of the attributes from 

each choice task; and ii) reducing the cognitive effort that the respondent may experience 

during the entire experiment through a reduction in the number of choices required. Thus, 

efficiency measures for SC experiments focus on the minimization of sample size required to 

obtain asymptotically efficient and reliable parameter estimates; or alternatively, minimize the 

standard error of the parameter estimates for a fixed number of choice observations. The 

most commonly used efficiency measure within the literature is the D-error that is computed 

by taking the determinant of the asymptotic VC matrix and applying a scaling factor in order 

to take the number of parameters into account. Thus, for one single respondent, the D-error 

of the experimental design represented by the design matrix X is defined as: 
1/

1error (det ) KD         (7) 

Where 1 is the asymptotic VC matrix for one single respondent facing s choice situations in 

the experiment, and K is the total number of parameters to estimate. The D-error measures 

the inefficiency of the design in the sense that the lower the D-error the more efficient the 

design is. A design with the lowest D-error is called D-optimal. Bliemer and Rose (2006) 

point out that it is very difficult, in practice, to find the design with the lowest D-error, 

therefore we should use instead a design with sufficiently low D-error, called the D-efficient 

design. 

For linear models, 1 is defined in terms of the design matrix as in Equation (1), and it is 

relatively straightforward to demonstrate that the D-error is minimized when X is an 

orthogonal matrix. Therefore, the orthogonal design is optimal, i.e., it is the one with the 

lowest D-error. The former argument does not hold for non linear models and the derivation 

of the asymptotic VC matrix entails certain complexity. The asymptotic VC matrix is defined 

as the inverse of the Fisher information matrix I1 (see, e.g. Train, 2003), where the latter, is 

equal to minus the expected Hessian (i.e., the matrix of the second derivatives) of the log-

                                                 
2
 Note that this is true for the two equivalent formulations for this model, error component and random parameters 

used in practice (Train 2003)  
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likelihood function. Therefore, in general, we will say that 1 varies with the model to be 

estimated and is represented in terms of the design matrix X, the outcomes of the survey Y, 
and the parameter values  : 

1
2

1

1 1

log ( , , )
( , , ) ( , , )

L X Y
X Y I X Y E


 

 




  

         
   (8) 

Since   are unknown in advance, prior information   must be used to approximate the true 

values of the parameters. 

The computation of the D-error can also be extended to a sample of N respondents, simply 

by computing the Fisher information matrix as minus the sum of the expected Hessian for 

every single respondent.  

For the MNL model, the vector of outcomes drops out when computing the second 

derivatives of the log-likelihood function (McFadden, 1974), simplifying the analytical 

computation of the asymptotic VC matrix. In other cases, such as the panel ML model, Monte 

Carlo simulation is performed in order to simulate the outcomes of the survey. Bliemer and 

Rose (2009) and Bliemer et al. (2008) provide the analytical derivation of the asymptotic VC 

matrix for the panel ML model and for the Nested Logit (NL) model respectively. 

Depending on the amount of information available on the prior parameters different D-error 

measures can be defined: 

i. When no information is available, the parameters are set to zero ( 0  ) and the 

efficiency measure is called Dz-error (see e.g. Huber and Zwerina, 1996). 

ii. When some information is available by an accurate guess  of the true parameters 

(priors), the efficiency measure is called Dp-error (see e.g. Carlson and Martinsson, 

2002; and Huber and Zwerina, 1996). 

iii. When information is available but with uncertainty, we use a Bayesian approach 

assuming some random priors that follow a probability distribution yielding the Db-

error measure which is represented by the expected value of the D-error according to 

the priors distribution (See e.g. Sándor and Wedel, 2001). 

Different strategies can be use to generate efficient designs. The N-gene program is the 

most recent and specialized software for generating experimental designs (especially 

efficient designs) that are used in stated choice experiments (See ChoiceMetrics, 2009 for a 

detailed reference about the program). 

To gain realism and accuracy in the outcomes of the experiment, it is common practice to 

customize the levels of the attributes to respondent’s current experience. Thus, alternatives 

presented in the choice sets are different for each respondent and are defined pivoting 

attribute level values around the reference alternative, considering relative or absolute 

deviations. As the efficiency of the design depends on the attribute values, in an ideal 

situation, a specific design should be created for every single respondent. As this could be 

difficult to implement in practice, Rose et al. (2008) suggest different strategies to cope with 

this problem. The best way is to collect the data in a two stage process. In the first stage, 

collect the data for the reference alternative, and in the second stage optimise a design for 

each individual based on their reference levels. This could be done on the fly3 if the design 

generator is linked to the questionnaire, but this requires specialized software to conduct the 

survey. Another way is to generate the design for different segments based on segment 

                                                 
3
 This could involve substantial processing time for certain models such as the panel ML. 



  

7 
 

averages assumed as reference levels, and to assign respondents to these segments based 

on how close they are in terms of the real levels. Although the latter would produce sub-

optimal results, from a practical stand point, it represents the best strategy if the appropriate 

means are not available. As the D-error (as well as the standard error of the estimates) is 

expected to decrease with the sample size, the use of an efficient vs. a non-efficient design 

represents a compromise between model accuracy and expending extra money in additional 

surveys.  

3. THE DATA SET 

In this paper we use an existing data set consisting in choices made by 297 respondents that 

provided information about their travel preferences in nine different choice situations, yielding 

a total of 2673 sample observations. These data are part of a research project financed by 

the Spanish Ministry of Transport  with the main purpose of analyzing potential demand for 

new high speed rail (HSR) services in the corridor Madrid-Barcelona (see Román et al, 2010 

for more details about the project). SC data were collected during the second term of the 

year 2004, avoiding vacation periods (Easter and local holidays). At this time, the HSR was 

already operating between Madrid and Zaragoza (the main intermediate city along the 

corridor), but rail services between Madrid and Barcelona were still provided by conventional 

trains. Thus, a specific stated choice (SC) experiment was included in the questionnaire of 

plane travellers that were faced to the choice between the plane and the new HSR 

alternative in different hypothetical choice situations. 

The attributes included in the experiment represent typical level-of-service variables like 

travel time (tv), access and egress time (ta), travel cost (cv) and frequency (f)4. We also 

include the latent variables reliability (r) and comfort (C). This set of variables helped us to 

define the global quality of the alternatives in each choice situation.  

Main features of the experimental design 

A main effects fractional factorial design consisting of six attributes (four defined at three 

levels and two at two levels) and nine scenarios for each alternative was created using the 

WINMINT software5. The Table 1 presents the combination of attribute levels in the 

experimental design using the orthogonal coding (Louviere et al. 2000). Attribute levels are 

balanced except in the case of the frequency and comfort; and the design is non orthogonal. 

In this case, it is easy to check that the design matrix A does not satisfy the property: 

A’A=Diagonal matrix. 

 

 

 

 

 

                                                 
4
 This variable was introduced in the survey as the service headway, i.e. the time between two consecutive 

services, but was then specified in the model as the service frequency; that is, the number of services per hour. 
5
 This is a standard software, developed by Rand Europe http://www.hpgholding.nl/  (the former Hague 

Consulting Group (HCG)), which was frequently used to conduct SC experiments at the time this data set was 
gathered.  

http://www.hpgholding.nl/


  

8 
 

Table I – Attributes and levels’ codes in the experimental design. Orthogonal codes. 

Scenario 

PLANE 
(Levels’ codes) 

 
Scenario 

HSR 
(Levels’ codes) 

cv tv ta r f C  cv tv ta r f C 

1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1 -1 -1 1 

2 -1 0 0 +1 -1 +1  2 -1 0 0 +1 -1 1 

3 -1 +1 +1 0 -1 -1  3 -1 +1 +1 0 -1 1 

4 0 -1 0 0 +1 -1  4 0 -1 0 0 1 1 

5 0 0 +1 -1 +1 +1  5 0 0 +1 -1 1 1 

6 0 +1 -1 +1 +1 -1  6 0 +1 -1 +1 1 1 

7 +1 -1 +1 +1 -1 -1  7 +1 -1 +1 +1 -1 1 

8 +1 0 -1 0 -1 +1  8 +1 0 -1 0 -1 1 

9 +1 +1 0 -1 -1 -1  9 +1 +1 0 -1 -1 1 

 

Choice sets formation 

Choice sets in WINMINT were created according to the following recursive process: 

1. The program makes a permutation of the levels of the attributes. For example if the 

permutation of the Figure 1 is considered for the travel cost, the level -1 is turned into 

the level +1, the level 0 is turned into the level -1; and the level +1 is turned into the 

level 0. Hence, after the permutation, the combination of levels for the travel cost in 

the nine scenarios would be: +1, +1, +1, -1, -1, -1, 0, 0, 0 

 

Figure 1 – Permutation of levels 

 

2. The program selects at random scenarios for the two alternatives creating different 

choice sets. For example if the scenario 3 is selected for the plane and the scenario 8 

is selected for the HST, the choice set of Table 2 is created. 

 
Table 2 – Example of choice set. 

CHOICE SET 1 

Scenario cv tv ta r F C Alternative 

3 -1 +1 +1 0 -1 -1 PLANE 

8 +1 0 -1 0 -1 1 HST 

 

-1

0

1

-1

0

1
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3. The program creates nine different choice sets for the same individual. 

4. The program stars with a new individual at step 1. 

Attributes and levels 

Level codes in the experiment were associated to plausible values of the corresponding 

attributes. To gain realism, the levels assigned to some attributes in the SC exercise were 

customized to each respondent experience pivoting the information provided by some 

questions included in the questionnaire about the reference alternative (the plane, in this 

case). Thus, the levels of travel cost and access time were defined in terms of the values 

experienced by the sample respondents; and plausible percentage variations according to 

the available information about future fares and access time for the HSR were also 

considered. The service frequency was also customized to the departure time declared by 

the respondent. This information is presented in Table 3. 

 
Table 3 – Attributes and levels 

Attributes Levels 
Mode 

Plane HSR 

Travel cost 
(cv) 

-1 cv*1.10 cv 

0 cv cv*0.90 

+1 cv*0.90 cv*0.80 

Travel time 
(tv) 

-1 1h 20 min 2h 45 min 

0 1h 10 min 2h 30 min 

+1 1h 2h 15 min 

Access + Egress 
time (ta) 

-1 ta*1.20 ta 
0 ta ta*0.90 

+1 ta*0.80 ta*0.80 

Frequency 
(Headway) 

(f) 

 
Departure 

before 9:00 
Departure 
after 9:00 

Departure 
before 9:00 

Departure 
after 9:00 

-1 Every 30 min Every  60 min Every 60 min Every 90 min 

+1 Every 15 min Every 30 min Every 30 min Every 60 min 

Reliability 
(r) 

-1 
30 min delay 

(Inside the plane) 
10 min delay 

0 
15 min delay 

(in the boarding gate) 
5 min delay 

+1 Departure on time Departure on time 

Comfort 
(C) 

-1 
Low: 

Small leg room 
Narrow seats 

 
 
 

High: 
Ample leg room 

Wide seats 
+1 

High: 
Ample leg room 

Wide seats 

cv=Travel cost in plane 
ta=Access+Egress time in plane 
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Figure 2, presents an example of a choice task in the form presented in the survey to the 

respondent. 

 

Plane 
 

HSR 
 

Travel cost: 99 € 
Travel time: 1 h 

Access+Egress time: 36 min 
Reliability: 15 min delay 

   Service Frequency: every 30 min…       
Comfort: low (small leg room) 

 

Travel cost: 72 € 
Travel time: 2h 30 min 

Access+Egress time: 45 min 
Reliability: 5 min delay 

   Service Frequency: every 60 min… 
Comfort: high (ample leg room) 

 

 

 

 

 

 
Actual Travel cost: 90€ 
Actual Access time: 45 min 
Departure before 9:00 

Which alternative do you prefer for a trip like this one? 
    Plane                HSR 

 

Figure 2 – Example of a choice task presented to the respondent 

Model estimation 

Two different model specifications were considered for this data set based on the utility 

maximization behavioural rule: a Multinomial Logit model (MNL) and an error component 

panel Mixed Logit model (ECPML) with fixed parameters but accounting for correlation 

among the responses provided by the same respondent6. In both cases a linear-in-the-

parameter specification was considered for the observed utility. Parameter estimates will be 

used as prior information in the computation of the D-error for the analysis in the next 

section. Estimation results are presented in Table 4. All parameter estimates resulted 

significant at the 95% confidence level, with the only exception of the frequency in the MNL 

model and the frequency and the comfort in the ECPML model. It is worth to point out that 

the error component sigma in the ECPML model resulted with a high significance, indicating 

the existence of strong correlation among the choices of the same respondent in the 

experiment. This highlights the importance of using the appropriate modelling strategy when 

dealing with SC data. 

Parameter estimates, provide very reliable prior information for the analysis carried out in the 

next section for the construction of efficient designs. 

                                                 
6
 For this purpose we added to the error term a random component sigma following the normal distribution with 

zero mean 
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Table 4 – Estimation results 

 MNL ECPML 

Parameter Estimate Std. error t-test Estimate Std. error t-test 

Travel Cost -0.03073 0.003 -9.1 -0.08870 0.007 -12.2 

Travel Time -0.00778 0.001 -7.4 -0.01820 0.003 -6.9 

Access Time -0.01128 0.003 -4.0 -0.02490 0.005 -5.2 

Reliability -0.01608 0.003 -5.2 -0.03960 0.005 -7.6 

Frequency 0.07087 0.067 1.1 0.20000 0.119 1.7 

Comfort 0.16840 0.082 2.0 0.14800 0.140 1.1 

Sigma - - - 3.37000 0.235 14.4 

l*(0) -1863.873 -1863.873 

l*(θ) -1792.827 -1181.523 

 

 

4. COMPARISON OF THE ORIGINAL DESIGN WITH THE 
EFFICIENT DESIGN 

In this section we contrast the efficiency of the original design with the efficient design for the 

two models estimated. For this purpose, we evaluate the original design through the 

computation of the Dp-error for every single respondent separately, considering the design 

matrix provided by our former experiment in each particular case. This information was 

compared with the Dp-error obtained in the case an efficient design was used instead. As we 

had already pointed out, prior parameters were taken from model estimates in the former 

section.  In the case of the MNL model, a special code in Matlab was created to compute the 

Dp-error of the actual and efficient designs respectively. For the ECPML model case, where 

Monte Carlo simulation is required to simulate the outcomes of the experiment, the N-gene 

software (ChoiceMetrics, 2009) was used instead. In this case the, the efficient design was 

obtained after 100 iterations. With a regular computer, it took a computation time of five 

hours to run the program for 20 individuals once at a time. 

Figure 3, shows the comparison of the Dp-error of the actual design (horizontal axis) with the 

Dp-error of the efficient design (vertical axis) for the individuals in the sample. All the 

observations lay below the diagonal, indicating the consistency of the analysis; that is, the 

efficient design exhibits lower Dp-error than the actual; and for a given model, the further from 

the diagonal is an observation, the more inefficient is the information provided by the actual 

design (represented by yellow dots in the graph). Although observations corresponding to the 

ECPML model are more distant from the diagonal than observations of the MNL model, this 

fact does not directly confer higher gains of efficiency to the ECPML model, as this effect 

could be confounded with the differences in scale that exist when computing the Dp-error for 

the two models. 
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Figure 3 – Comparison of the actual design vs, the efficient for MNL and ECPML models  

 

In Figure 4 we compare in relative terms the gains in efficiency for the two models defined in 

terms of the percentage reduction in the Dp-error by using the efficient design. Hence, for the 

MNL model, gains in efficiency are less than 20% for 200 individuals whilst, for the ECPML 

model, gains in efficiency are higher than 30% for 248 observations. Therefore, the impact of 

the efficient design upon the reliability of the estimates is much more positive for the ECPML 

model than for the MNL model. This could be an important argument in favour of using 

efficient designs, if we take into account that panel ML models represent the appropriate 

modelling strategy when dealing with SC data. Considering that the number of iterations 

used to compute the Dp-error of the efficient design in this exercise is relatively low, gains in 

efficiency could be substantially higher if we increased the number of iterations.  

 



  

13 
 

Percentage Reduction in D-Error. MNL and ECPML Models
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Figure 4 – Percentage reduction in Dp-error for the MNL and the ECPML models  

In order to interpret efficiency gains in terms sample size savings, instead of obtaining the 

Dp-error for every single respondent, we analyze how the accumulate Dp-error, for the actual 

and efficient designs, diminishes with the sample size. This analysis is represented in the 

graphs of Figure 5 for the MNL model case. Although it is difficult to distinguish, due to the 

scale of the graph, the graphic of the efficient design lies bellow the graphic of the actual 

design for any given sample size. In the right hand side graph we observe that the efficient 

design would attain the actual level of accuracy (i.e. that of the actual design) with a sample 

size saving of 16 observations. 

A similar analysis has been carried out for the standard error of the parameter estimates. 

These results are presented in Table 5. We observe that the highest percentage reduction 

(8.03%) in the standard error, for the actual sample size when using the efficient design, is 

produced for the travel cost parameter. However, the highest sample size savings (68 

observations) for the actual level of accuracy are produced for the access time parameter. 
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Figure 5 – Dp-error versus sample size. MNL model  

 

 

 

 
Table 5 – Minimum sample size required for the efficient design. MNL model 

 

PARAMETER 
 MNL 

Minimum 
Sample Size 

(with the efficient 
design) 

Sample 
Savings 

% Reduction in 
 SE or Dp-error 
(with the efficient 

design) 

Travel Cost 270 27 -8.03% 

Travel Time 275 22 -2.99% 

Access Time 229 68 -8.00% 

Reliability 289 8 -1.15% 

Frequency 280 17 -2.03% 

Comfort 281 16 -2.71% 

Dp-Error 281 16 -5.10% 

 

 
If we adjust a tendency line, of the potential type, to the accumulate Dp-error (see the green 
line in Figure 6), and extrapolate for additional observations, we observe that the original 
design would require 320 observations to attain the level of accuracy of the efficient design 
for the actual sample size. 

 

 

 

 

D-error vs Sample Size. MNL Model
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D-error vs Sample Size. MNL Model
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Figure 6 – Sample size required with the original design. MNL model  

The same analysis is conducted for the ECPML model (see Figure 7). In this case, 70 

observations less would be required in order to attain the actual level of accuracy. Regarding 

standard errors, we obtain substantially better results. The highest percentage reduction 

(21.23%) in the standard error, for the actual sample size when using the efficient design, is 

again produced for the travel cost parameter; and the highest sample size savings (124 

observations) for the actual level of accuracy are produced, as well, for the access time 

parameter (see Table 6). 
The tendency line adjusted to the accumulate Dp-error (see the green line in Figure 8) 
extrapolated for additional observations indicates that the original design would require 394 
observations to attain the level of accuracy of the efficient design for the actual sample size. 
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D-error vs Sample size. ECPML Model
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Figure 7 – Dp-error versus sample size. ECPML model  

 

 
Table 6 – Minimum sample size required for the efficient design. ECPML model 

 

PARAMETER 
 ECPML 

Minimum 
Sample Size 

(with the efficient 
design) 

Sample 
Savings 

% Reduction in 
 SE or Dp-error 
(with the efficient 

design) 

Travel Cost 198 99 -21.32% 

Travel Time 218 79 -14.27% 

Access Time 173 124 -20.92% 

Reliability 215 82 -14.59% 

Frequency 208 89 -18.03% 

Comfort 226 71 -12.96% 

Dp-Error 227 70 -23.79% 

 

 

 

 

 

 

 

 

D-error vs Sample size. ECPML Model
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D-error vs Sample Size. ECPML Model
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Figure 8 – Sample size required with the original design. ECPML model  

 

 

5. CONCLUSIONS 

SC data have become an essential tool to analyze consumers demand in many different 

contexts. Their use is especially important when the objective is to study the preference for 

alternatives that are not yet available in the marketplace. However, the construction of 

appropriate experimental designs has been object of discussion by researchers during many 

decades. The ability of the experiment to obtain significant parameter estimates has been the 

focus of attention in the more recent years, placing the interest on the construction of efficient 

designs based on the minimization of the D-error. 

In this paper we quantify the efficiency gains produced by the efficient design using real data, 

in the context of mode choice between the plane and the new high speed rail in the route 

Madrid-Barcelona. To this end, we evaluate the original design computing the Dp-error. This 

value is compared with the Dp-error obtained for the efficient design generated with the aid of 

the specialized software N-gene. The use real SC data allowed us to obtain very reliable 

prior parameters from model estimates as necessary input for the analysis. As in the original 

design, the different choice tasks were created pivoting attribute levels from the reference 

alternative, the comparison of the Dp-error for every single respondent was required. 

The analysis was carried out for two different choice models. In the first case, the general 

MNL model was used. The analysis demonstrates that the efficient design would produce 

moderate savings in the sample size (up to 5%) and fair reductions in the estimates’ 
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standard errors (less than 8%). In the second case, a panel ML model was used. This model 

accounts for the correlation amongst the choices of the same respondent in the different 

choice situations, being more appropriate to replicate choice behaviour. Substantial savings 

in the sample size (up to 24%) are obtained in this case, yielding also considerable 

reductions in the parameters’ standard errors, ranging from 12% to 22%. 

Finally, we would like to highlight the importance of considering the appropriate modelling 

strategy, as this reinforce the benefits of using efficient designs to analyze SC data.  
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