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Classical molecular dynamics simulations of hydrogen plasmas and development of an analytical
statistical model for computational validity assessment
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Classical molecular dynamics simulations of hydrogen plasmas have been performed with an emphasis on
the analysis of the equilibration process. The theoretical basis of the simulation model as well as numerically
relevant aspects, such as the proper choice and definition of simulation units, are discussed in detail, thus proving
a thorough implementation of the computer simulation technique. Because of the lack of experimental data,
molecular dynamics simulations are often considered as idealized computational experiments for benchmarking
of theoretical models. However, these simulations are certainly challenging and consequently a validation
procedure is also demanded. In this work we develop an analytical statistical equilibrium model for compu-
tational validity assessment of plasma particle dynamics simulations. Remarkable agreement between model
and molecular dynamics results including a classical treatment of the ionization-recombination mechanism is
obtained for a wide range of plasma coupling parameter values. Furthermore, the analytical model provides
guidance to securely terminate simulation runs once the equilibrium stage has been reached, which in turn gives
confidence in the statistics that potentially may be extracted from time histories of simulated physical quantities.
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I. INTRODUCTION

Computer simulation is the discipline of designing an
abstract model to reproduce the dynamics and behavior of an
actual physical system, translating the model into a computer
program, and analyzing the data obtained from the program
execution. With the increase of computational power and data
storage, computer simulations have proven to be a valuable
tool in many different fields in physics because of their ability
for solving complex problems just by relying on fundamental
first principles and barely using either physical or mathemat-
ical approximations. Results from computer simulations are
often considered as idealized experiments, where different
effects can be artificially switched on and off to assess their
potential impact, thus providing deep insight into the underly-
ing physics and a unique testbed for theory validation.

In particular, the use of computer simulations to study the
problem of broadening of spectral line shapes in plasmas has
a long history, having significantly contributed to the develop-
ment and improvement of theoretical models [1]. Nowadays,
the theory of Stark broadening has matured enough and be-
come one of the most important diagnostic tools for astrophys-
ical and laboratory plasmas. However, some issues remain
still open, e.g., line broadening theory has been validated
using independent methods of extracting plasma conditions
only for low-Z elements at free electron densities below
1025 m−3, disagreement between different approaches persist
especially in describing the ion motion effects [2–5], and also
discrepancies in the line shape calculations have been pointed
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out as the major source of uncertainty in the inferred plasma
conditions from the analysis of K-shell spectra observed in
opacity-related experiments [6]. This scenario has stimulated
the research on line broadening over the last few years and led
to a series of dedicated workshops for detailed comparisons
of computational and analytical methods in order to identify
sources of discrepancies and set model validity ranges [7–9].

Computer simulations applied to calculations of Stark-
broadened line shapes follow a three-step scheme [1]. The
first one consists of simulating the plasma particle dynamics,
i.e., the motion of electrons, ions, and neutrals as a result of
their mutual interactions of electric nature. Particle dynamics
simulations (PDS) provide information about the behavior and
statistical properties of local electric microfields, which are
ultimately responsible for the Stark broadening and shift of
line transitions. In the second step, a representative statistical
sample of time histories of the local electric microfield is used
to numerically integrate the time-dependent Schrödinger’s
equation of the radiator, i.e., the emitting ion or atom, and
compute the dipole autocorrelation function. In the third step,
the Fourier transform of the autocorrelation function, i.e.,
the power spectral density, is computed, which finally leads
to the spectral line profile. In this process, the first step is
the most challenging one, since the last two rely on the
PDS ability to provide a faithful picture of particle motion
and an accurate representation of plasma equilibrium states,
which is critical to determine the correct statistics of physical
quantities. This work provides insight into the physical and
numerical requirements needed for performing reliable PDS.

Mainly, two different approaches have been used over time
to simulate the plasma particle dynamics. The first one follows
the independent particle approximation (IPA) [2,3,10–16],
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i.e., particle interactions are neglected and they all move fol-
lowing straight-path trajectories. When computing time his-
tories of relevant physical quantities a Debye screened field is
assumed to account for coupling effects. Obviously, IPA valid-
ity is limited to weakly coupled plasmas. The second approach
relies on molecular dynamics (MD) simulations. Now, inter-
actions among all particles are explicitly included and cal-
culations therefore are quite computationally demanding. On
the upside, however, collective behaviors (e.g., ion dynamic
effects) emerge in a natural way, the range of validity extends
to strongly coupled plasmas and, with the lack of experimental
data, MD results are often considered as a reference to reveal
model deficiencies and provide valuable guidance for theory
improvement. Classical MD simulations have been applied to
the study of diverse statistical properties, particle correlation
effects, and in particular to the investigation of plasma electric
microfield distributions [17–25]. Although mainly performed
in the context of fully ionized two-component plasmas, all this
work enabled the study of electric microfield issues beyond
the capability of most theoretical methods. Furthermore, full
MD simulations have been used in several works to carry
out elaborate calculations of Stark-broadened line profiles in
hydrogenic plasmas [14,26–28].

Performing a simulation based on MD techniques is not a
straightforward task. A thorough analysis and implementation
of numerical and computational modeling of the physics
involved are required to optimize the computational time and
warrant reliable calculations. In particular, MD simulations
have to deal with two pathologic problems: (i) the simulta-
neous simulation of both light and heavy particles and (ii)
the requirement for the system to reach a stationary state in
order to provide meaningful statistical samples of the relevant
physical quantities. As discussed in Sec. II, the first issue
demands a careful analysis of all characteristic time and
length scales in the system and its consistent implementation
into the numerical algorithms to solve the particle dynamics
equations. The second issue is the most delicate one. At the
beginning, when Coulomb interactions are switched on, the
initial distribution of electrons and ions constitutes a plasma
out of equilibrium and an exchange of kinetic and poten-
tial energies then takes place between particles throughout
the simulation volume. Ideally, at the end of the relaxation
phase, statistical measurements can provide an equilibrium
temperature together with a density of ion-electron pairs (i.e.,
recombined ions) and populations of free electrons and ions
which fully characterize the equilibrated plasma. In between,
the plasma state is slowly evolving and quite undefined until it
can be considered as stationary. Thus, in this work we develop
a method to carefully control the approach to equilibrium
allowing one to know when this slow fluctuating evolution
can be securely interrupted to get one of the expected sets of
particle positions and velocities, i.e., our technique provides a
way to achieve a well-defined plasma equilibrium state.

Also, when simulating plasma particle dynamics, several
papers [20,28–32] have discussed the difficulty in dealing with
the situation in which an electron is trapped by a charged
ion, which may restrict the model applicability to the weak-
coupling regime. In this context a few works used MD tech-
niques to model the plasma ionization balance, i.e., includ-
ing the ionization-recombination mechanism [33–35]. In the

simulation model described here the ionization-recombination
process is explicitly included within a classical framework,
so that recombined ions and neutral pairs are actually native
constituents of the final ionization balance and equilibrium
state. Our model is therefore appropriate for the study of
strongly coupled plasmas beyond the fully ionized scenario,
which in turn makes it particularly useful for the calculation of
Stark-broadened line shapes. Such study will be addressed on
a forthcoming publication. Here, we first focus on demonstrat-
ing the robustness and internal consistency of the simulation
technique. Thus, benchmarking of numerical algorithms and
results is shown for hydrogen plasmas [36], although our
technique can be indeed applied for modeling of general
multicharged plasmas [37]. Within the framework of classical
statistics, we developed an analytical model that mimics the
idealized picture of a computer-simulated hydrogen plasma
and allows one to obtain the corresponding equilibrium state
for given conditions. In this regard, when compared with MD
simulation results, the statistical model, firstly, provides a way
to prove that a unique equilibrium state has been reached at the
end of the relaxation phase and, secondly, leads to a practical
definition of a classical atom, which in turn enables the proper
definition of a criterion to classify the electron population
in the plasma into trapped and free ones. With computer
simulations considered as reference numerical experiments,
our statistical equilibrium model represents a powerful tool
to assess the computational validity of MD simulations and
the accuracy of employed numerical methods. To the best of
our knowledge, this is the first time in which such crossed-
comparison is made.

II. MOLECULAR DYNAMICS SIMULATION MODEL

This work focuses on classical MD simulations of parti-
cle dynamics of hydrogen plasmas. In this framework, the
simulation box is a cube of side L containing np electrons
with mass me and charge −q, and np ions with mass mi

and charge +q. Boundary periodic conditions are assumed,
i.e., when a particle leaves the box at a given velocity and
direction, a particle of the same type enters from the opposite
side with exactly the same velocity and direction. At this
point it is convenient to recall the definition of some global
plasma parameters. Thus, for a hydrogen plasma characterized
by a free-electron density Ne and an equilibrium tempera-
ture T , r0 = (3/4πNe )1/3 gives the average electron-electron
distance, and the Debye length, λD = (ε0kT /q2Ne )1/2, mea-
sures the effective range of Coulomb interactions as a result
of the plasma constituents coupling. A characteristic plasma
time scale is given by t0 ≡ r0/v0, where v0 ≡ √

2kT /me is the
characteristic electron velocity. It is common to introduce the
dimensionless coupling parameter ρ = r0/λD ∝ N

1/6
e T −1/2,

with 1/ρ3 giving the average number of free electrons within
Debye’s sphere [13]. A frequent alternative definition of the
coupling parameter is � = q2

4πε0r0

1
2kT

, which represents the ra-
tio between typical Coulomb potential energy and particle ki-
netic energy. Both parameters satisfy � = ρ2/6. We note that
different combinations of Ne and T may lead to the same ρ

(or �) value. Some representative values are as follows: (a)
for arc discharge plasmas, with Ne ∼ 1022 m−3 and kT ∼
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FIG. 1. 2-D representation of the cubic simulation box with pe-
riodic boundary conditions. Each particle only interacts with others
within a sphere of radius RI .

1 eV, ρ ∼ 0.4 (� ∼ 3 × 10−2); (b) for representative toka-
mak conditions, Ne ∼ 1018 m−3 and kT ∼ 1 keV, ρ ∼ 0.003
(� ∼ 1.5 × 10−6); and (c) for an inertial-fusion imploding
plasma, with Ne ∼ 1029 m−3 and kT ∼ 1 keV, ρ ∼ 0.2 (� ∼
7 × 10−3). In order to keep computational resources and cost
within practical limits, each particle is assumed to interact
only with charges within a sphere of radius RI = L/2 cen-
tered at the particle (see Fig. 1). This sphere of interaction al-
lows one to remove anisotropic effects that naturally arise due
to the cubic shape of the whole enclosure. We notice that this
assumption does not introduce any additional approximation
in the simulation as long as RI � λD . The latter condition
actually sets a lower bound for the number of particles to
be used in the simulation, i.e., np � 1/ρ3. In other words,
plasma conditions, Ne and T , determine a minimum number
of particles to be included in the simulation. For instance, for
Ne ∼ 1029 m−3 and kT ∼ 1 keV, np � 125.

A. Regularized potential

In order to avoid the collapse of a classical system of
ions and electrons interacting through Coulomb forces, the
attractive behavior of Coulomb potential should be modified
at short distances, thus leading to a finite value at the origin.
Such procedure is known as potential regularization and has
been extensively discussed in the literature. In summary, two
alternatives have been proposed for the choice of a regular-
ized potential. The first one is the use of so-called quantum
statistical potentials (QSPs) [38–45], which were devised
to take into account short-range quantum effects and avoid
divergences in statistical thermodynamics due to Coulomb
potential singularity. QSPs were used for the first time in
classical MD simulations to investigate hydrogen plasma
properties in a strong-coupling regime [17–19]. The second
alternative (see Refs. [23,31,33,34]) has a phenomenological
origin and was constructed to improve the modeling of ion
population kinetics in MD simulations. While QSPs’ behavior
at short distances typically depends on plasma temperature

through the thermal de Broglie wavelength, the latter one
is designed to match the corresponding ionization energy
at the origin. The impact of using different types of po-
tentials on statistical properties of dense hydrogen plasmas
with impurities has been recently studied [24,25]. Neglecting
the ionization-recombination mechanism, these works suggest
that slow electric microfield distributions are rather insensitive
to the potential alternatives and, therefore, such choice would
have a small impact on the calculation of Stark-broadened line
profiles. The reader interested in these topics is referred to
given references for details.

Here we propose a phenomenological ion-electron poten-
tial with a quadratic behavior at short distances. A similar
model is employed to describe the nuclear interaction in
the well-known relativistic self-consistent field Hartree-Fock
ATOM package [46,47] and the more recent and widely used
FLEXIBLE ATOMIC code [48] for spectroscopic-quality calcula-
tions of atomic structure. As shown in Sec. III, this choice has
the major advantage of permitting one to develop an analytical
plasma equilibrium model, that will be further used to assess
the computational validity of our simulation technique. Thus,
the ion-electron potential energy Vie(r ) is defined as

Vie(r ) =

⎧⎪⎨
⎪⎩

Vi

[
1
3

(
r
a

)2 − 1
]
, r � a

− q2

4πε0

1
r
, a < r � RI

0, r > RI

(1)

with Vi denoting the ionization energy, and

a = 3

2

q2

4πε0

1

Vi

(2)

being determined to satisfy continuity and derivability con-
ditions. We note in turn that a, which ultimately depends
on the ionization energy Vi , provides an estimate for the
characteristic atomic size. From a classical point of view, this
potential corresponds to the case of having the ion charge
uniformly distributed in the volume of a sphere with radius
a, which is also permeable to pointlike electrons.

The ion-electron force then results as

Fie(r ) =

⎧⎪⎨
⎪⎩

− q2

4πε0a3 r, r � a

− q2

4πε0r3 r, a < r � RI

0, r > RI .

(3)

For r � RI , ion-ion and electron-electron interactions are
considered as purely Coulombian, i.e., Vii (r ) = Vee(r ) =

q2

4πε0r
. For r > RI , Vii (r ) = Vee(r ) = 0.

B. Ionization-recombination mechanism

As discussed in Sec. I, several works pointed out the
treatment of electron trapping by a charged ion as a delicate
issue when performing MD simulations. Here we define a
criterion model to deal with such scenario and therefore
enable a quantitative control of the ionization-recombination
mechanism. Thus, in our simulation model, an electron is
considered to be trapped by an ion when (a) their mutual
distance is less than the characteristic atomic size, a, and (b)
the total energy of the pair measured in the center-of-mass
reference frame becomes negative. For such calculation, we
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only take into account the potential energy associated to the
corresponding electron-ion pair, which is by far the dominant
contribution. When this criterion is satisfied, the electron-ion
pair is considered as a recombined ion and the electron counts
as a bound (trapped) one. Later, due to the interaction with
remaining particles, the above-mentioned criterion conditions
may not be satisfied anymore, which is interpreted as an
ionization, with the electron then returning to the free-electron
pool. Within a classical perspective, this dynamic ionization-
recombination process is taken into account throughout the
simulation run, thus allowing neutral pairs to be natural con-
stituents of the final equilibrium state. Following this scheme,
plasma ionization degree, α, can be computed at each time
instant.

C. Particle dynamics and simulation units

Particle dynamics follows the Newton’s second law,

mk

d2rk

dt2
=

∑
k′

k �=k′

Fkk′, (4)

where mk denotes the mass of the kth particle and rk gives its
position within the cell.

From a numerical perspective, in order to accurately solve
the system of motion equations, proper length rp and time tp
units have to be chosen. Thus, we can write

rk = rp xk, t = tp τ, (5)

where xk and τ are dimensionless quantities taking values of
the order of 1 in the numerical calculation. In terms of rp and
tp, electron equations of motion can be rewritten as

d2xk

dτ 2
= �E F(e)

k , (6)

with

�E = 1

me

q2

4πε0

t2
p

r3
p

. (7)

In Eq. (6), F(e)
k denotes the total force on the kth electron

measured in units of q2/4πε0r
2
p, i.e., the simulation force unit.

A similar expression is found for ions, in which me is replaced
by mi .

The average distance between free electrons, r0, might be a
tempting choice for the simulation length unit rp. However, in
the course of the simulation some electrons will be trapped by
ions, so that the exact number of free electrons will be known
only when achieving the equilibrium state. Therefore, in the
simulation, r0 is a priori unknown. We then choose for the
length unit, rp, the average distance between electrons, either
free or bound, within the simulation box, i.e.,

L

rp

=
(

4

3
πnp

)1/3

. (8)

If ne denotes the number of free electrons within the simula-
tion box and α is the ionization degree, then

ne = αnp, with 0 � α � 1. (9)

According to Eqs. (8) and (9) and the definition of r0, we find
r0

rp

= α−1/3, (10)

i.e., the simulation length unit results in a fraction of the free-
electron average distance.

Similarly, the simulation time unit is defined in terms of the
plasma characteristic time, t0, in such a way that

t0

tp
= β. (11)

By substituting Eqs. (10) and (11) into Eq. (7), we find

�E = 1

αβ2

1

me

q2

4πε0

t2
0

r3
0

= 1

αβ2
�. (12)

Equation (12) suggests to take β = α−1/2, so that the nu-
merical parameter �E matches the simulated target plasma
coupling parameter �, i.e., when launching a simulation, one
intends to investigate a plasma at certain target conditions
Ne and T , which leads to the target coupling parameter �.
However, as discussed above, the simulation equilibrium state
is a priori unknown, so the resulting coupling parameter from
the computational experiment, �expt., may differ from the orig-
inally intended one, �. We note in passing that Eq. (12) sets
the way to define the electron charge value in the numerical
calculation. Finally, Eq. (11) results as

t0

tp
= α−1/2. (13)

This careful choice of simulation units enables our sim-
ulation technique to properly deal with the disparate length
and timescales that arise in the problem of plasma particle
dynamics.

The system of motion equation, Eq. (4), is solved using
Verlet’s algorithm [49,50] with a certain time step �τ . At each
time step, potential, kinetic, and total energy of the system can
be easily calculated. Since the system is conservative, total
energy must keep constant as time evolves. To numerically
satisfy this requirement and find a correct solution of the
dynamical equations, a proper �τ must be used. In this
work, �τ is chosen so that the average of energy numerical
fluctuations is equal to zero during the simulation. This is a de-
manding requirement that typically leads to a short �τ value
and, accordingly, to a high computational cost. Nevertheless,
as discussed in Sec. IV B, we benefit from the fact that no
numerical heating [51–54] is observed, thus avoiding the use
of numerical thermostats [55].

Going through Eqs. (1)–(13), one can see that simulation
depends on only two independent physical parameters, i.e.,
Vi and �E , and the number of particles, np. This makes a
simulation to exhibit interesting scaling properties. Results
obtained in simulation units can be expressed in absolute
physical units and an understanding of such unit conversion is
very important for the corresponding physical interpretation.
For instance, working in simulation units, let us suppose a
simulation launched with Vi = 4.75 (≡ 4.75E0, being E0 the
simulation energy unit), �E = 0.116, and np = 255. Also,
suppose that, at equilibrium, the simulation gives α = 0.53
and we numerically measure a kinetic energy per particle
of Ek = 0.50 (≡ 0.50E0). Now if we are actually interested
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in simulating a hydrogen plasma, then Vi = 13.6 eV. This
fact sets the simulation energy unit, i.e. E0 = 2.86 eV. Since
Ek = 1

2me〈v2〉 = 3
2kT , from the kinetic energy measurement

we have the plasma temperature at equilibrium, i.e., kT =
0.95 eV. Using Eq. (2), in physical units, the characteristic
atomic size results as a = 1.59 Å. Considering Eqs. (2) and
(7), and taking into account that in simulation units me =
1, rp = 1, and tp = 1, in terms of input parameters then we
have a = 3

2
�E

Vi
= 0.0366 (≡ 0.0366rp). Thus, the simulation

length unit equivalent is determined, i.e., rp = 43.39 Å. Using
Eq. (8), one may calculate the size of the simulation box,
i.e., L ≈ 443 Å. Finally, from Eq. (10) and definition of r0,
we obtain the plasma electron density at equilibrium, i.e.,
Ne = 1.55 × 1024 m−3.

D. Setup of initial conditions

In order to initialize the system of motion equations, initial
positions and velocities of all particles in the simulation must
be specified. Ion positions are drawn following a uniform
distribution within the volume of the simulation box. Around
each ion, one electron is randomly placed in a spherical sur-
face of a certain radius. For such configuration, the potential
energy is mainly given by the sum of binding energy of
ion-electron pairs, since the contribution from the remaining
particles is almost negligible. Thus, a proper choice of the ion-
electron distance allows one to easily set the initial potential
energy to the desired value. Particle velocities are randomly
set according to a Maxwellian distribution characterized by a
certain temperature and the corresponding mass for each type
of particle.

Initial configuration determines the initial potential and
kinetic energy and, therefore, the total energy of the system.
Also, some of the ion-electron pairs may satisfy the criterion
described in Sec. II B to be considered as a recombined
ion, so that in general the initial ionization degree does not
correspond to the fully ionized state. In other words, the
ionization degree is not set by means of any fine-tuning of
initial conditions; such initial value is the one that naturally
results from the initial configuration.

For t > 0, the system will evolve undergoing multiple
ionizations and recombinations and an exchange between po-
tential and kinetic energy will occur until the system reaches
the corresponding equilibrium state and ionization balance.
Typically, at t ∼ 0 a sudden exchange between kinetic and
potential energy takes place, which is interpreted as a natural
readjustment of the initial configuration. Initially, particle
velocities are assigned following a Maxwellian distribution,
so that the initial kinetic energy is already well distributed.
However, this is not the case of potential energy. At t ∼ 0
all particles have a potential energy value very similar to
the one resulting from the initial draw. This leads to an
initial potential energy distribution which resembles a Dirac
δ function and that is certainly far from the one to be reached
at equilibrium (see Fig. 14). As a consequence, early in time,
such configuration will evolve very quickly. Just a small
collective movement of the order of rp is sufficient to produce
a significant exchange between kinetic and potential energy.
This occurs in a time lapse of the order of tp, so definitely

the initial energy exchange will be observed as a sudden event
compared to the system evolution’s typical timescale.

In the entire process, the total energy will remain (within
numerical fluctuations) constant. We recall that the generated
time histories of physical quantities will be useful for statis-
tical purposes only after equilibrium has been reached. The
setup of initial conditions described here permits one to easily
manage the balance between the initial potential and kinetic
energy, which with the guidance provided by the equilibrium
model developed in Sec. III eventually represents a way to
speed up the simulation to reach the equilibrium state without
any artificial numerical adjustments. In particular, we recall
that no thermostat algorithm has been used.

E. Computational resources and details

Simulations were run in parallel in a computer cluster
equipped with a total of 52 graphics processing units (GPUs).
All computer programs referred to in this work have been
coded from scratch using C++ and CUDA®. No commercial
software or public domain code was used. We actually devel-
oped two different codes, one to be run on central processing
unit (CPU; sequentially) and the other on GPU (in parallel).
This allowed us an easier debugging of our programs, since
starting from the same initial conditions, both versions must
lead to the same results. Running on CPU was approximately
30 times slower than doing it on GPU, so the CPU version was
obviously used only for debugging purposes.

When working on a GPU, the CUDA® programming model
distinguishes between threads (the smallest execution unit)
and blocks (a group of threads). Also, CUDA® memory hier-
archy consists of multiple memory spaces. For instance, each
thread has its own private local memory and each block has
shared memory visible to all block threads with the same
lifetime as the block. In our simulation code, each block
deals with one simulation box, i.e., one plasma sample, and
each thread within a block is responsible for one single
particle. This way all threads run exactly the same piece of
code but using different numerical data. Particle locations
and interactions between them are saved in the block shared
memory, whereas thread local memory stores the velocity
of the associated particle. Calculation of interactions is per-
formed in three steps. In the first one, code computes the
repulsive force between electrons, the repulsive force between
ions in the second step, and the attractive force between ions
and electrons in the last one. For calculation of repulsive
interactions a do-loop is launched for i = 1, . . . , (np − 1)/2,
with np always being an odd integer; we recall that np denotes
the number of electrons (and ions) in the simulation. In the ith
loop iteration, every j th thread computes the interaction be-
tween the j th particle and the one with index (j + i) mod np,
coded as (j+i)% np in C++. Force corresponding to the
symmetric configuration is obtained according to Newton’s
third law and for that reason only (np − 1)/2 iterations are
needed. On every loop iteration, computed force is stored
in the block shared memory. This action will never cause a
memory conflict because there is not one thread pair working
with the same interaction. At the end of every loop iteration,
all threads are synchronized, thus preventing any memory
conflict during the next iteration. A similar algorithm is used
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for attractive interactions. For these algorithms cache is loaded
only once and remains unchanged for the specified number of
time steps.

The major limitation of the code comes from the cache
size, which restricts the maximum number of particles that can
be simulated. All calculations presented here were performed
this way, which in turn represents the fastest, well-tested and
reliable version of the simulation code. In order to increase
the total number of particles, operations must be distributed
among different blocks, thus breaking the one-by-one cor-
respondence between plasma samples and blocks. We also
developed such a version, which is slower due to required
synchronization between different blocks and consequently
more prone to cache faults occurrence.

The entire set of calculations (not all of them shown
here) and analyses performed to build up the present research
spanned over six wall-clock time months. In total, we carried
out 1488 independent simulations that took a range of compu-
tational times from 1 to 81 days (typically 5 days) depending
on the physical conditions of the simulated plasma.

III. ANALYTICAL STATISTICAL EQUILIBRIUM MODEL

Computer simulations are often considered as idealized
experiments providing a unique testbed for validation of the-
oretical models. In this regard, an assessment of simulation
reliability becomes a critical task that has not always received
the attention it deserves. Here we have developed an analytical
model to describe the equilibrium state of a hydrogen plasma
and thus checking the reliability and validity of the computer
simulations. This model does not aim to describe the behavior
of a real plasma but to mimic the physical conditions in which
simulation takes place and properly describe the correspond-
ing statistics.

Dissipative radiative processes are not taken into account
in the simulation, so the ionization balance appears as a result
of collisional ionization and recombination processes. In this
context, population kinetics is ruled by the well-known Saha
equation [56],

neni

nn

= Ze(T )Zi (T )

Zn(T )
, (14)

wherein ne, ni , and nn are the number of free electrons, ions,
and neutral atoms (in the simulation a neutral atom consists
of a bound electron-proton pair) in the plasma, respectively,
and Ze(T ), Zi (T ), and Zn(T ) are the corresponding classical
partition functions at equilibrium temperature T .

Particle dynamics is ruled by laws of classical mechanics
and accordingly it will show classical statistical properties.
Hence, the free-electron partition function is given by

Ze(T ) =
∫

V

d3r
∫

d3p exp

(
− p2

2mekT

)

= V (2πmekT )3/2. (15)

Similarly, for ions we have

Zi (T ) = V (2πmikT )3/2. (16)

Lastly, the neutral atoms partition function is obtained as

Zn(T ) = Zn trans(T ) Zn int (T ), (17)

with

Zn trans(T ) =
∫

V

d3r
∫

d3p exp

(
− p2

2mnkT

)

= V (2πmn kT )3/2, (18)

Zn int (T ) =
∫
E<0

d3r
∫

d3p exp

{
− 1

kT

[
p2

2μ
+ Vie(r )

]}

=
(

3πkT a2

Vi

)3/2

(2πμkT )3/2 eVi/kT

×
{

1 − e−Vi/kT

[
1 +

(
Vi

kT

)
+ 1

2

(
Vi

kT

)2
]}

.

(19)

Here, V stands for the plasma volume, mn = mi + me, and
μ = mime/mn is the ion-electron reduced mass. Zn trans(T )
denotes the translational partition function, i.e., resulting from
the movement (translation) of the center of mass, and Zn int (T )
is the internal partition function, which accounts for internal
degrees of freedom. In Eq. (19) the integration domain is
limited to the phase-space region satisfiying

E (r, p) = p2

2μ
+ Vie(r ) < 0, (20)

as happens in a bound system. We also note that the choice
of the quadratic behavior for Vie(r ) at short distances, Eq. (1),
leads to an analytical solution for the coordinates integral in
Eq. (19).

Thus, our classical Saha equation results as

Ne Ni

Nn

=
(

Vi

kT

1

3πa2

)3/2
e−Vi/kT

1 − e−Vi/kT
[
1 + (

Vi

kT

) + 1
2

(
Vi

kT

)2] ,

(21)

with Nx = nx/V and x ≡ e, i, n.
With Np = Ni + Nn, in terms of the ionization degree,

α, we have Ne = Ni = αNp and Nn = (1 − α)Np. Then,
Eq. (21) becomes

α2

1 − α
= K (T ) (22)

being

K (T ) = 4

9
√

3π

( rp

a

)3
(

Vi

kT

)3/2

× e−Vi/kT

1 − e−Vi/kT
[
1 + (

Vi

kT

) + 1
2

(
Vi

kT

)2] , (23)

where Np = 1/( 4
3πr3

p ). As seen from Eq. (23), plasma ion-
ization balance does not depend on ion mass. Thus, we finally
obtain a compact analytical formula for the plasma ionization
degree,

α = K (T )

2

[√
1 + 4

K (T )
− 1

]
. (24)
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TABLE I. Summary of the entire set of calculations performed to build up the present work. Specifications of the electron-positron and
electron-proton simulated plasmas are given. These include (a) the numerical coupling parameter, �E ; (b) the ionization energy, Vi/E0; (c) the
number of electrons, np , included in the simulation, which equals the number of positrons or protons; the ranges of initial (d) kinetic and (e)
potential energy [examples of specific initial values are indicated as open circles (green) associated to t = 0 in Fig. 10]; (f) the range of time
step values used to integrate the motion equations, �t/tp; (g) the range of values for the number of time steps reached in the simulation; and
(h) the number of simulation runs associated to the specified input parameter values (indicated as c × g, where c is the number of cases and g

is the number of plasma samples sharing the same initial physical conditions).

Type of plasma: Electron-positron

Input parameters Initial conditions Time step No. steps/106
No. simulation

�E Vi/E0 np Ek/E0 range Ep/E0 range �t/10−4tp ttotal/106�t runs

0.1161 3.00 255 [0.00, 3.00] [−1.25, −0.25] 4 [140, 300] 18 × 8
0.1161 4.75 255 [0.00, 3.00] [−2.25, −0.25] [1, 5] [36, 300] 53 × 8
0.1161 5.50 255 [0.00, 3.00] [−2.70, −0.25] [2, 4] [133, 300] 20 × 8
0.1161 6.80 255 [0.00, 3.00] [−3.25, −0.25] [1, 5] [67, 237] 33 × 8
0.0417 4.75 425 [0.00, 3.00] [−2.00, −0.25] 2 [15, 1445] 15 × 8
0.0417 6.80 425 [0.00, 3.00] [−3.25, −0.25] 5 [487, 1309] 33 × 8

Type of plasma: Electron-proton

Input parameters Initial conditions Time step No. steps/106
No. simulation

�E Vi/E0 np Ek/E0 range Ep/E0 range �t/10−4tp ttotal/106�t runs

0.1161 4.75 255 [0.00, 3.00] [−2.00, −0.25] [0.5, 5] [40, 1886] 14 × 8

As shown in detail in Sec. IV B, the last equation will be
very useful to analyze the results provided by the numerical
simulations.

Equilibrium curve

Besides providing the plasma ionization degree, the ana-
lytical model allows us to build an equilibrium curve, i.e., a
potential energy vs kinetic energy plot that shows how the
total energy distributes on each equilibrium state.

In this context, the average kinetic energy is simply given
by

Ek = 3

2
kT , (25)

and the average potential energy of free particles is considered
to be equal to zero. The potential energy of an ion-electron
pair in a neutral atom is given by its binding energy, since this
is by far the most important contribution and the ones from
remaining particles can be neglected. Hence, the potential
energy per bound particle is written as

Epb = 1

2

(
−Vi + 3

2
kT

)
, (26)

as corresponds to a parabolic potential. The 1
2 common factor

distributes the binding energy between the proton and the
electron in the pair. The potential energy per particle is given
by

Ep = 1 − α

2

(
−Vi + 3

2
kT

)
. (27)

IV. RESULTS

The investigation addressed in this work relies on a sig-
nificant number of MD simulations of both electron-positron

and electron-proton plasmas. Comprehensive studies to check
the consistency of the simulation code and physical behavior
with respect to simulation parameters like the potential-energy
well depth or the coupling parameter were performed. For the
sake of clarity, the entire set of calculations is summarized
in Table I, with indications of input parameter values and
other simulation details, such as the chosen time step and
kinetic- and potential-energy initial conditions. Obviously,
there is no point in showing all the collected calculations here.
Representative results have been properly chosen according to
the aims of this work: the study of the equilibration process
and the computational validity assessment of our simulation
model. These topics and results are discussed in the following
Secs. IV A and IV B.

A. Equilibration process

In a MD simulation the statistical sampling of relevant
physical quantities and processes is only meaningful once
particle dynamics becomes stationary and the system thus
reaches the equilibrium state. This means that a MD calcu-
lation has to go through an initial equilibration or relaxation
stage, which is by itself useless to get relevant physical
information, but in turn necessary to drive the system to
the stationary stage from which the statistical sampling can
be safely performed. From a computational point of view,
the time needed to reach the equilibrium state in a simu-
lation run is substantial. Typically, for MD simulations of
positron-electron plasmas, equilibration time easily hits a few
thousands of simulation time units, i.e., ∼103 tp, which is in
agreement with the results obtained in Ref. [27]. With the
choice of an integration time step of the order of 10−4tp
for solving the system of motion equations, reaching the
stationary stage therefore requires several millions of time
steps. In this regard, caution must be taken to not prematurely
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FIG. 2. Time evolution of potential energy per particle in a simu-
lation of an electron-proton plasma (mp = 1836me). Throughout the
thermalization process, the inspection of a time interval including
tens of millions of steps may result in being too short to securely
identify that equilibrium has been reached.

terminate simulation runs, which might lead to an inaccurate
statistics of physical quantities.

Equilibration time further increases with mass difference
between plasma constituents (electrons and heavier ions, for
instance), since very different timescales appear than involved
in motion equations. Figure 2 illustrates the delicate and slow
process of plasma equilibration. In this case a proton-electron
plasma (i.e., hydrogen plasma) has been simulated. The figure
shows the time evolution of potential energy per particle.
From the inset plot it is clear that when looking at a time
interval including only tens of millions of time steps the
change in energy appears hidden by numerical fluctuations.
This may lead to wrongly thinking that the equilibrium has
been achieved and thus prematurely terminate the simulation
run. In the example, the true equilibrium state is still far from
being reached. In this regard, it is certainly helpful to have a
model such as the one described in Sec. III to provide guid-
ance about the equilibrium point (Eeq

k , Eeq
p ) and undoubtedly

identify the thermalization of the simulated plasma. We note
in passing that, in this work, thermalization (i.e., equilibrium
state) is considered to occur when statistical distributions of
all physical quantities become stationary.

The equilibration process is much faster in a positron-
electron plasma than in a proton-electron case. For com-
parison, time evolution of kinetic and potential energy per
particle, and plasma ionization degree are shown in Figs. 3–5,
respectively. While ions take more time to thermalize, electron
kinetic energy rapidly reaches the stationary state even for a
hydrogen plasma. A slower path to equilibrium is observed for
the case of potential energy, i.e., particle spatial distribution
takes longer to achieve an equilibrium configuration. This is
particularly important because our simulations are ultimately
aimed to study and characterize the local electric field proper-
ties, and obviously the corresponding dynamics and statistics
are ruled by particle spatial arrangement.

Keeping in mind the criterion adopted in the simulation
to model the ionization-recombination mechanism (described
in Sec. II B), the plasma ionization degree can be computed

FIG. 3. Comparison of the equilibration process between
positron-electron and proton-electron plasmas. Here we plot the
time history of the kinetic energy per particle. The characteristic
sudden evolution early in time from the initial configuration has been
zoomed in in the left box.

at each time instant throughout the system evolution. An
example is shown in Fig. 5. Compared to kinetic and potential
energy, the ionization degree shows the slowest approach
to equilibrium. This is because, as suggested before, from
a classical perspective the ionization balance equilibration
process is basically ruled by the less-frequent three-body
processes. Thus, even when a small change in the kinetic
energy of a given electron or in the potential energy associated
to a positron-electron (or ion-electron) pair has a negligible
influence on the corresponding average values, such a small
change may determine the difference for an electron to be
considered either as a bound or a free one, which indeed
has a greater impact on the calculation of the ionization
degree. Stationarity assessment of this parameter is crucial,
since it determines the free-electron density value, which is
a key quantity for the statistical analysis of the local electric
field.

As Eqs. (23), (24), and (27) suggest, neither energy dis-
tribution among particles nor partition between kinetic and
potential energy depend on particle mass. We have both
numerically confirmed this fact and taken advantage of it
to speed up the simulation of hydrogen plasmas. We launch
the calculations using positrons and once the equilibirum

FIG. 4. Time history of potential energy per particle for the same
cases shown in Fig. 3.
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FIG. 5. Time history of plasma ionization degree for the same
cases shown in Figs. 3 and 4.

is reached, positron mass is replaced by proton mass and
velocity moduli are modified accordingly to keep the right
kinetic energy values. Thenceforth, taking the particle spatial
distribution at the switch time, the simulation proceeds with
updated masses and velocities.

We illustrate this point in Figs. 6–8. Figure 6 shows time
histories of kinetic, potential, and total energy per particle.
The evolution of the plasma ionization degree is plotted in
Fig. 7. When going through the positron-proton switch time,
we did not observe any appreciable difference in either aver-
age energy values or plasma ionization degree, which show
the characteristic steady behavior at equilibrium. Also, with
the only expected exception of the ion velocity distribution, it
is seen that statistical distributions of the system do not change
with the positrons-by-protons (ions) replacement. An illustra-
tion is given in Fig. 8. For the case of positrons, the potential
energy statistical distribution shown in the figure actually

FIG. 6. Time histories of kinetic, potential, and total energy per
particle for a simulation that begins as an electron-positron plasma
and converts to a hydrogen plasma. The positron-by-proton replace-
ment occurs at tc = 2.2 × 105tp . The plot illustrates the technique
to speed up the process for achieving the equilibrium in a hydrogen
plasma.

FIG. 7. Time history of plasma ionization degree for the same
case shown in Fig. 6.

represents the average result over eight simulation runs with
the same plasma macroscopical physical conditions sampled
at the time tc, i.e., right before the replacement. The distribu-
tion corresponding to hydrogen ions has been obtained using
data from the same eight independent simulations but further
sampling each simulation every 1000 time units throughout a
2.64 × 105-units-long time interval at equilibrium conditions
(i.e., the results shown in the figure actually sum up the
data from 2112 different plasma configurations taken from
simulation time histories within the stationary stage). We also
note that the duration of the referred interval after switch
time is equivalent to ∼6000 times the proton characteristic
time, which is long enough for each proton to go ∼700 times
across the simulation box. As seen, good consistency between
distributions before and after updating the mass and velocity
of positively charged particles was obtained.

FIG. 8. Statistical distribution of potential energy per particle.
Results are shown for (a) positrons (in an electron-positron plasma)
at the time tc of positron-by-proton replacement and (b) protons
(electron-proton plasma) after the switch time (see the text for
details).
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FIG. 9. Illustration of kinetic, potential, and total energy time
histories in a simulation. For the case shown, the average kinetic and
potential energies in the initial configuration were Ek = 0.74E0 and
Ep = −1.25E0, respectively; and Vi = 4.75E0. Results represent the
average over eight simulations launched with the same initial average
kinetic and potential energies. On the left side, simulation earliest
stage has been zoomed in. On the right side, the entire time history is
shown. For the sake of clarity, only 1 every 10 calculation time steps
is displayed in the electron time histories and only 1 every 40 in the
case of positrons.

B. Comparison with the equilibrium model and computational
validity assessment

Our goal in this section is the computational validity
assessment of simulation results by comparison with the
analytical theoretical model described in Sec. III. Results
shown here were obtained from a considerable number of
positron-electron plasma simulations. As shown in Sec. IV A,
the system properties and configuration at equilibrium do
not depend on particle masses, so we take advantage of this
fact and use positrons with the only purpose to speed up the
simulations and reduce the computational time to achieve the
equilibrium. For each simulation, the positions and velocities
of 255 (or 425) positrons and electrons were drawn according
to the procedure described in Sec. II D. In order to obtain more
accurate statistical distributions and average values, for each
pair (Ek, Ep ) of kinetic and potential energies, we performed
from 8 to 64 completely independent simulations, i.e., initial
positions and velocities were different, but yielding the same
average potential and kinetic energy values per particle.

As discussed in Sec. II, numerical algorithms employed in
our simulation model are robust enough, so that throughout
the evolution of simulated plasma no external control pro-
cedure of total energy value was needed. The time step for
integration of motion equations was chosen between 5 × 10−5

and 5 × 10−4 depending on the case, i.e., time step value is
taken lower the greater the average kinetic energy. As a rule of
thumb, in a time step a plasma particle travels a distance of the
order of 10−4 times the characteristic interparticle distance.
No numerical heating was observed.

For illustration of the equilibration process in the sim-
ulation runs shown in this section, in Fig. 9 we plot the
evolution of kinetic, potential, and total energy per particle
for a given simulation case. The results have been obtained
by averaging eight plasma simulations launched with the
same initial kinetic and potential energies. Typically, at the

FIG. 10. Comparison between the equilibrium curve predicted
by the analytical model (dashed line) and the one obtained from
numerical simulation runs. Path to equilibrium for each simulation
run (solid circles) follows a Ek + Ep = cte trajectory. Starting, i.e.,
initial configuration, and final points of simulation trajectories are
indicated by open circles (green and blue, respectively). The triangle
dot indicates the minimum energy state of the system, i.e., the case
of a static distribution of ions and bound electrons. Simulation input
parameters were Vi = 4.75E0 and �E = 0.116.

earliest stage of the simulation, a sudden change in both
particle positions and velocities happens as a consequence
of a kinetic and potential energy exchange. Then, a slower
evolution toward the equilibrium is observed. In the case
shown, a transfer from kinetic to potential energy occurred,
although the opposite might happen in other cases. As seen,
total energy is conserved throughout the entire simulation and
only the characteristic numerical fluctuations are observed.

In order to illustrate the validity assessment of our MD
code, comparisons between the analytical equilibrium model
and the simulation results are displayed in Figs. 10, 11, and 13.
In particular, Fig. 10 shows the equilibrium curve as predicted

FIG. 11. Ionization degree as a function of temperature at equi-
librium. Comparisons between the analytical model and simulations
are shown for two cases, i.e., Vi = 4.75E0 and Vi = 6.80E0 (with
�E = 0.116).
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by the model according to Eqs. (25)–(27). Paths to equilibrium
in such Ep:Ek plane are also plotted for a collection of 40
different simulation cases. Potential and kinetic energy values
of initial configurations span over an interval broad enough to
survey the equilibrium curve in a wide temperature range. For
each case, the plasma approaches the equilibrium by means of
an exchange between kinetic and potential energy, and always
following a Ek + Ep = cte trajectory. When simulation starts
at a point below the model equilibrium curve, the simulated
plasma cools down and the average potential energy increases.
Oppositely, there is a transfer from potential to kinetic en-
ergy when the initial configuration lies above the equilibrium
curve. A remarkable agreement between the equilibrium curve
obtained from the analytical model and the one defined by
simulation runs is observed.

Figure 11 shows the ionization degree as a function of tem-
perature at equilibrium. Two different simulation groups are
plotted, for Vi = 4.75E0 and Vi = 6.80E0, respectively. Over-
all, when comparing with model predictions, i.e., Eq. (23), a
good agreement is observed, with simulated ionization degree
slightly overestimating model results. Differences come from
the way in which electrons are classified as bound or free in
either the model or the numerical simulation. In the theoretical
model, a chemical picture is inherently used, and plasma
constituents are viewed as atoms, ions, and free electrons.
Hence, bound and free electrons are clearly distinguished.
MD simulations, however, naturally develop within a physical
picture, where interactions among particles are treated on an
equal many-body footing. The frontier between bound- and
free-electron concepts is not so well defined and a criterion,
like the one described above, must be specified to perform
such classification and determine the ionization degree. From
a comparison like the one shown in Fig. 11, a numerical
criterion to match with the results that arise from the chemical
picture implicitly assumed in the model could be extracted.
However, as discussed below, this would require a deeper
investigation on the existence and treatment of collectivized
electrons in the plasma, which is beyond the scope of this
work.

Once the equilibrium is reached, corresponding tempera-
ture, ionization degree, and free-electron density values are
obtained, and therefore the experimental plasma coupling
parameter (i.e., as a result of the computational experiment)
can be determined. The simulation results shown in Figs. 10
and 11, using a fixed numerical input parameter �E = 0.116,
lead to experimental coupling parameter values in the range
0 � �expt. � 0.13 (see Fig. 12), thus spanning from weakly
to moderately coupled plasmas. We here recall the physical
meaning and difference between dimensionless parameters
�E and �, as described above in Sec. II C. Numerical
parameter �E controls the strength of particle interactions
[see Eq. (6), which is written in simulation units]. In other
words, �E defines the magnitude of electron charge in the
simulation. Coupling parameter � instead is determined by
the ratio between the typical free-electron interaction energy
and the corresponding kinetic energy, i.e., it gives a relation
between free-electron density and electron temperature, and
therefore accounts for the system coupling degree. When a
simulation is launched, a certain amount of energy is delivered
to the system by means of draw-resulting initial conditions.

FIG. 12. Plasma coupling parameter as a function of temperature
at equilibrium. Comparisons between the analytical model and sim-
ulations are shown for two cases, i.e., Vi = 4.75E0 and Vi = 6.80E0

(with �E = 0.116).

The system consistently evolves according to interaction
strength fixed by �E and energy is redistributed to eventu-
ally reach an equilibrium state and ionization balance with
well-defined values for kinetic and potential energy. At such
equilibrium state we can measure the resulting free-electron
density and temperature, and therefore obtain �expt.. As ob-
served in Fig. 12, in the low-temperature limit, plasma mainly
consists of noninteracting neutral pairs, and consequently
coupling is weak. As the temperature rises, plasma ionizes
which favors the ion-electron coupling up to a maximum
value. If the temperature further increases, kinetic energy
clearly overcomes the potential contribution, and coupling
between particles drops. In the moderate-coupling range, in-
teractions among particles in fact play a non-negligible role
and MD calculations are therefore meaningful. For the sake of
completeness, we checked that our simulation technique is
robust enough to deal with strong-coupling conditions, and
a good agreement between simulation and model was also
found for coupling parameter values up to �expt. ≈ 1. Above
this limit classical picture becomes questionable since the
characteristic atomic size may become comparable to the
average electron distance. Also, as expected, the results from
MD simulations reproduce those from IPA simulations for the
case of weakly coupled plasmas, with both comparing well
with the statistical model.

At equilibrium, total energy behavior as a function of tem-
perature is easy to interpret (see Fig. 13). At low temperatures,
the system mainly consists of neutral atoms, which have a
total of six degrees of freedom, i.e., three translational degrees
plus three internal degrees, and therefore the total energy
goes as 3kT . In the high-temperature limit, plasma is fully
ionized; it behaves like a monoatomic ideal gas and the total
energy per particle equals the translational kinetic energy,
i.e., 3

2kT . In the intermediate regime we observe the phase
transition between neutral and fully ionized plasma states.
In this region, the total energy per particle strongly increases
with temperature. In other words, the required total energy to
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FIG. 13. Total energy per particle as a function of temperature at
equilibrium. Comparisons between the analytical model and simu-
lations are shown for two cases, i.e., Vi = 4.75E0 and Vi = 6.80E0

(with �E = 0.116).

produce a temperature increase is significant, because most of
it is employed to overcome the neutral atom binding energy.

Further illustration of this phase equilibrium is shown in
Fig. 14, where we plot the statistical distribution of potential
energy per particle at particular equilibrium conditions. In
the example, the plasma ionization results are ∼50%, so that
the potential energy distribution shows two well-separated
bell-shaped peaks having similar area values and arising from
the bound- (left one) and free- (right one) electron ensembles.
Moreover, it is seen that the average potential energy of free
electrons lies slightly below zero. This plasma collective effect
naturally emerges from the simulation and reflects the fact that
many electrons in the plasma have a negative total energy
and are not bound to a particular positive ion but to the
plasma as a whole, hence they sometimes are referred to as
collectivized electrons [57–59]. This behavior has to do with

FIG. 14. Statistical distribution of electron potential energy (per
particle) obtained from a simulation at equilibrium. For the case
shown, equilibrium conditions are kT = 0.37E0 and α = 0.53.

the effect of ionization potential depression (IPD) [57,60]
that appears in dense plasmas and also illustrates how diverse
the information provided by MD simulations can be. In fact,
some IPD investigations in aluminum plasmas at and out of
thermodynamic equilibrium have already been performed by
using multicomponent classical MD simulations [61,62].

Overall, the results shown in this section reveal the robust-
ness of the numerical algorithms implemented in the code,
confirm a proper description of the ionization-recombination
mechanism, and ultimately provide confidence in the physics
that can be extracted from our MD simulations. Once this
simulation technique has been validated, the analytical sta-
tistical model now becomes a useful tool to (a) anticipate
the simulation equilibrium state and thus securely interrupt a
simulation run and (b) optimize the calculation by consistently
improving the choice of initial configuration when launching
a simulation.

V. CONCLUSIONS

Particle dynamics simulations of hydrogen plasmas have
been performed in the context of classical molecular dynam-
ics. The theoretical basis of the simulation model as well as
numerically relevant aspects are discussed in detail, thus prov-
ing a thorough implementation of the computer simulation
technique. Particle dynamics equations are solved without
using any thermostat algorithm and the simulation model
properly deals with the ionization-recombination mechanism.
A comprehensive study of the equilibration process is made,
with an emphasis on the need for reaching the stationary stage
for a safe statistical sampling of relevant physical quantities.
Molecular dynamics simulations are often considered as ide-
alized experiments, where different effects can be artificially
switched on and off to assess their potential impact, thus pro-
viding deep insight into the underlying physics and a unique
testbed for theory validation. However, these simulations are
certainly challenging and consequently a validation process
is also demanded. Here we developed an analytical statistical
equilibrium model for computational validity assessment of
plasma particle dynamics simulations. Good agreement be-
tween the model and molecular dynamics results was obtained
in a wide range of plasma coupling parameters, thereby re-
vealing the robustness of the employed numerical algorithms
and ultimately providing confidence in the physics that can be
inferred from simulation results. Continuing with the research
on plasma Stark broadening performed by our group over the
last three decades, the internal consistency and validity tests of
MD simulations performed in this work are a first step toward
the ultimate goal of carrying out a detailed investigation of the
impact of ionization-recombination dynamics on broadening
mechanisms of spectral line shapes from emitting ions in mul-
ticomponent plasmas (i.e., beyond a fully ionized scenario).
This topic will be addressed in a forthcoming publication.
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APPENDIX: SOME CONSIDERATIONS ON
NUMERICAL HEATING

It is well known that combined and accumulated effect of
computational errors in molecular dynamics leads to the so-
called numerical heating [51–54]. In fact, the effect manifests
as a total energy increase since, as can easily be demonstrated,
such heating does not always result in a temperature rise.
Here, we will discuss this phenomenon in order to assess both
potential imposed limitations on molecular dynamics and its
practical consequences when using simulation techniques for
the statistical analysis of a local electric microfield.

At the time instant t , the total energy of a system configu-
ration is given by

E =
∑

i

1

2
miv

2
i + 1

2

∑
i,j

i �=j

V (rij ), (A1)

with rij = ri − rj . After each time step �t , vi and ri will
change, thus producing the consequent energy variation.
Taking into account that, numerically, v(t + �t ) = v(t ) +
1
m

F �t , then we have

�v2
i = v2

i (t + �t ) − v2
i (t )

= 2
1

mi

vi · Fi�t + 1

m2
i

F 2
i �t2,

(A2)

�V (rij ) ≈
(

∂V

∂rij

)
· �rij

= −Fij · vij�t

= −Fij · (vi − vj )�t,

so it follows

�E ≈
∑

i

vi · Fi �t + 1

2

∑
i

1

mi

F 2
i �t2

− 1

2

∑
i,j

i �=j

Fij · (vi − vj )�t. (A3)

Also,

Fi =
∑

j

j �=i

Fij , with Fij = −Fji . (A4)

Then, the first and third addends in Eq. (A3) cancel out and it
is found

�E ≈
∑

i

1

mi

F 2
i �t2, (A5)

which is a positive quantity.
Therefore, it is said that the system numerically heats

up, but it does not necessarily mean that the kinetic and
potential energy separately increase. It will depend on the

FIG. 15. Time histories of kinetic, potential, and total energy for
three simulation cases. In order to assess the impact of numerical
heating, different time step values, �t , were used in each case to
solve the system of motion equations.

system configuration, i.e., depending on particles location,
either kinetic or potential energy could even decrease, but their
sum will always increase.

We illustrate this fact in Fig. 15. The time evolution
of kinetic, potential, and total energy are shown for three
simulation cases (hereafter, it should be noted that each
case actually represents an average over eight independent
simulation runs) that were executed using different time
step values. The three cases started from exactly the same
initial configuration. When looking at the figure it might
seem simulations start at different points, but this is because
the typical sudden initial change happens in a different way
for each case (note that simulation early times have not
been zoomed in the figure). For the greatest time step value,
numerical heating is certainly noticeable, whereas for the
smallest one it is negligible. Also, under certain conditions,
it is observed that numerical heating leads to an increase
of potential energy per particle, while temperature remains
constant -(see the case for �t = 5 × 10−4tp).

The impact of numerical heating can be more deeply
analyzed by means of Fig. 16, where trajectories in the

FIG. 16. Simulation trajectories in the Ep:Ek plane. Four simula-
tion cases launched from different initial configurations are shown.
Pointedly, a coarse time step was chosen, so that numerical heating
cannot be avoided and total energy increases with time in each case.
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Ep:Ek plane are shown for four simulation cases launched
from different initial conditions. In all of them the same
relatively coarse time step was employed. As already men-
tioned, early in time a sudden exchange between kinetic and
potential energy takes place. Then, the system approaches
to equilibrium and the total energy continuously increases,
i.e., unlike that observed in Fig. 10, and as a consequence
of numerical heating, for the cases shown in Fig. 16, the
path to equilibrium does not follow a Ek + Ep = cte tra-
jectory. In labeled cases (3) and (4), the relaxation phase
develops as plasma cools down, i.e., the kinetic energy per
particle decreases, so that the increase in total energy due
to numerical heating actually manifests as a potential energy
increase.

Once the system reaches the equilibrium curve (the one
obtained from the analytical model discussed in Sec. III is
displayed for reference), such total energy increase distributes
among kinetic and potential energy. Still, it mainly entails
an increase of potential energy, since temperature does not
change too much in the process (note that different scales
are used in kinetic and potential energy axes). Thus, if a
thermostat algorithm, i.e., a temperature control, were used
to force the simulation to stabilize, one might not realize
about numerical heating because the numerically added en-
ergy amount would mostly turn into potential energy, with the

kinetic one barely changing in the simulation. Nevertheless,
strictly speaking, when the system begins to move following
the equilibrium curve, numerical heating truly leads to a
temperature increase. In fact, if the system is left to evolve
for a long time it will end up in the fully ionized state. We
note in passing that this picture is not consistent with a steady
ionization-recombination equilibrium state.

On the other hand, since after a certain time the system
evolves going through subsequent equilibrium configurations,
if numerical heating slowly builds up its effect will be tol-
erable provided that desired information from the simulation
does not require the extraction of long time histories.

Nevertheless, it should be kept in mind that the heating ef-
fect may have a greater impact on particle spatial distribution
than on plasma temperature itself, so a separate surveillance of
kinetic and potential energy is needed as well as a consequent
handling of simulation data. In this connection, we recall
that the average potential energy arises from particle spatial
arrangement, which ultimately determines the microfield sta-
tistical distribution. As known, the latter plays a pivotal role
in the study of Stark effect.

The analysis shown here guided the calculations performed
for this work. Thus, as mentioned, in all simulation runs
discussed in Sec. IV, a time step was chosen small enough
to make the numerical heating effect negligible.
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