

Analysis of Performance Monitoring Counter support and

Implementation of Performance Application Programming

Interface (PAPI) on an Automotive chip

Author: Jeremy Jens Giesen León

Specialization in Computer Engineering

Degree in Informatics Engineering

Escuela de Ingeniería Informática (EII)

Universidad de Las Palmas de Gran Canaria (ULPGC)

Tutors:

Enrique Fernández García1

Enrico Mezzetti2

June, 2018

1Universidad de Las Palmas de Gran Canaria (ULPGC)

 2Barcelona Supercomputing Center (BSC-CNS)

 TFT04

Ver.12 21/05/18

D/Dª Jeremy Jens Giesen León, autor del Trabajo de Fin de Título "Analysis of

Performance Monitoring Counter support and Implementation of Performance

Application Programming Interface (PAPI) on an Automotive chip",

correspondiente a la titulación Grado en Ingeniería Informática,
en colaboración con la empresa/proyecto (indicar en su caso) Barcelona Supercomputing
Center

S O L I C I T A

que se inicie el procedimiento de defensa del mismo, para lo que se adjunta la
documentación requerida.

Asimismo, con respecto al registro de la propiedad intelectual/industrial del TFT,
declara que:

[] Se ha iniciado o hay intención de iniciarlo (defensa no pública).
[X] No está previsto.

Y para que así conste firma la presente.

Las Palmas de Gran Canaria, a 29 de Mayo de 2018.

El estudiante

Fdo.: Jeremy Jens Giesen León

DIRECTOR DE LA ESCUELA DE INGENIERÍA INFORMÁTICA

SOLICITUD DE DEFENSA DE TRABAJO DE FIN DE TÍTULO

A rellenar y firmar obligatoriamente por el/los tutor/es

En relación a la presente solicitud, se informa:

[X] Positivamente [] Negativamente
 (la justificación en caso de informe

negativo deberá incluirse en el
TFT05)

Fdo.: Enrique Fernández García Fdo.: Enrico Mezzetti

 TFT04

Lista de comprobación de documentación adjunta
(resumida, detalles en el Manual Operativo)

 [X] Memoria (máximo 100 pág. ~30000 palabras) en formato pdf con logos e

identificación del Trabajo en la portada y, tras ella, la primera página de este
TFT04 insertada (el pdf resultante debe firmarse digitalmente, ubicando las
firmas en el espacio previsto para ello en el TFT04).

[X] Resumen en formato txt en español e inglés (un único fichero txt con límite
de 120 palabras por idioma).

[X] Código (en caso de que el TFT lo incluya, un directorio, o bien fichero
comprimido, o bien un txt con instrucciones para acceder al repositorio).

- Sólo en el caso de que en este impreso TFT04 se haya indicado que NO
está previsto iniciar trámite de registro de la propiedad
intelectual/industrial …

[X] Impreso relativo a la Difusión en Abierto del TFT en Biblioteca ULPGC
como pdf firmado de forma digital.

NOTA: si se marca el registro de la propiedad intelectual sólo los tutores y el
tribunal pueden asistir a la defensa.

Procedimiento de entrega: se enviarán instrucciones concretas a través del
Moodle.

Agradecimientos
Quiero en primer lugar agradecer al Barcelona Supercomputing Center y en

especial al grupo CAOS por acogerme y darme tanto los medios, como soporte humano

y financiero para hacer posible este Trabajo de Fin de Grado. Quiero mostrarle mi

agradecimiento a Francisco Javier Cazorla Almeida, Enrico Mezzetti y a Enrique

Fernández García por guiarme y darme la oportunidad de realizar este trabajo relacionado

con la investigación en el campo de la arquitectura de computadores, así como por los

recursos dedicados al desarrollo del mismo entre los que se encuentran tanto el material,

los desplazamientos, así como su propio tiempo. También me gustaría citar a las personas

que me ha dado soporte, en particular a Mikel Fernandez, sobre todo por su ayuda con

los contratiempos de las fases más avanzadas del proyecto. No cabe duda de que el trabajo

realizado me ha dado la oportunidad de definir y encauzar el rumbo al que quiero dirigir

mi carrera profesional.

Por otro lado, me gustaría agradecer de forma general a todo el Personal Docente

Investigador, miembros del Personal de Administración y Servicios y en definitiva a los

compañeros que me han tendido la mano para ayudarme cuando lo he necesitado. De este

último grupo me gustaría destacar a mi compañero y amigo Javier Enrique Barrera

Herrera por su eterna y contagiosa ilusión, disposición y apoyo a lo largo de todos estos

años.

Me gustaría hacer una especial mención al grupo de compañeros y amigos con los

que he compartido tantos buenos momentos y viajes a lo largo de todo el Grado, a los que

me gustaría recordarles que disponen de mi total disponibilidad y amistad de forma

indefinida.

Por último y por ello no menos importante, quiero expresar mi más profundo

agradecimiento por el apoyo incondicional y desinteresado que he recibido de mi familia

y pareja a lo largo de todo el Grado, por haber sido capaces de entender mi limitada

disponibilidad hacia ellos especialmente en los últimos momentos del mismo y por haber

hecho de mi la persona que soy hoy.

Achnowledgments
First of all, I would like to thank the Barcelona Supercomputing Center and

especially the CAOS group for welcoming me and giving me both the means and the

human and financial support to make this project possible. I want to show my gratitude

to Francisco Javier Cazorla Almeida, Enrico Mezzetti and Enrique Fernández García for

guiding me and giving me the opportunity to do this work related to research in the field

of computer architecture, as well as for the resources dedicated to the development of it,

including the material, the trips, as well as their own time. I would also like to mention

the people who have given me support, in particular to Mikel Fernandez, especially for

his help to deal with the setbacks of the most advanced phases of the project. There is no

doubt that the work done has given me the opportunity to define and channel the direction

I want to give to my professional career.

On the other hand, I would like to thank in a general way all the Research Teaching

Staff, members of the Administration and Services Staff and ultimately the colleagues

who have reached me out when I needed it. From this last group I would like to highlight

my colleague and friend Javier Enrique Barrera Herrera for his eternal and contagious

illusion, willingness and support throughout all these years.

I would like to make a special mention to the group of colleagues and friends with

whom I have shared so many good times and trips throughout the whole Degree, to whom

I would like to remind that they have my full availability and friendship indefinitely.

Last but not least, I would like to express my deepest gratitude for the

unconditional and unselfish support I have received from my family and partner

throughout the Degree, for having been able to understand my limited availability to them

especially in the last moments of it and for having made of me the person that I am today.

Index

Summary ...1

1 Introduction ...6

1.1 Problem definition ..6

1.2 State of the art on timing analysis ...6

1.2.1 Static Timing Analysis (STA) ..6

1.2.2 Measurement-Based Timing Analysis (MBTA) ...6

1.2.3 Limitations ...7

1.3 Performance Monitoring Counters ...7

1.3.1 PMCs support for Timing analysis ...8

1.4 Need for standardized API for PMCs ...8

1.5 Project environment ...9

1.5.1 Software resources ..9

1.5.1.1 Aspects to consider ...9

1.5.1.2 Cygwin and Tricore-gcc ...9

1.5.1.3 Universal Debug Engine UDE and Microcontroller Debugger for AURIX

TriCore 9

1.6 Hardware resources ..10

1.6.1 The AURIX TriCore TC275 ...10

1.6.1.1 TC275 Blocks Diagram ..12

2 PAPI: Performance Application Programming Interface..16

2.1 Introduction to PAPI...16

2.1.1 What is PAPI? ..16

2.1.2 Architecture ..16

2.2 Events ...17

2.2.1 What are events?...17

2.2.2 Native Events ...17

2.2.3 Preset Events ..18

2.3 Event Sets ...18

3 AURIX TC275 Performance Monitoring Counters support ...20

3.1 AURIX TC275 PMU ..20

3.2 Mapping AURIX events to PAPI interface ...22

3.2.1 Detailed analysis of relevant events ..31

3.2.1.1 Implementable events ...31

3.2.1.2 Non-implementable events ...34

3.2.1.3 Relevant events not defined in PAPI ..36

4 Embedded Performance Application Programming Interface (ePAPI): Design and

implementation ...38

4.1 Design requirements for an embedded PAPI ..38

4.2 Analysis of the PAPI subset of functions to be included in ePAPI38

4.2.1 Introduction to the analysis ...38

4.2.2 High level API functions analysis ...39

4.2.3 Low level API functions analysis ...40

4.2.4 Functions analysis conclusions ...46

4.3 ePAPI implementation..46

4.3.1 Events and counter interface ...47

4.3.2 High-level API ...48

4.3.2.1 Execution rate calls ...49

4.3.2.2 Starting, numbering, reading, accumulating and stopping counters49

4.3.2.3 Differences between the high-level APIs of PAPI and ePAPI50

4.3.3 Low-level API ..51

4.3.3.1 Creating, adding, removing, and emptying (to) an event set51

 4.3.3.2 State of an Event Set ...54

4.3.3.3 Differences between the low-level APIs of PAPI and ePAPI54

5 ePAPI verification and validation ..56

5.1 Methodology ..56

5.1.1 Test environment ..56

5.1.2 Followed procedure ..56

5.2 Verification of ePAPI functions ...57

5.3 Validation of ePAPI ...57

5.3.1 Experiment set-up ...57

5.3.2 Results ..58

6 Main contributions, achieved objectives and future directions ...60

6.1 Main contributions and achieved objectives ...60

6.2 Critical assessment ...60

6.3 Future directions ...61

Bibliography ...62

Jeremy Jens Giesen León 1

Summary

Application domain and scope of the project

This project is framed in the fields of computer architecture, embedded real-time

systems, and computer technology. It has been developed in collaboration with the

Computer Architecture Operating System (CAOS) group at the Barcelona

Supercomputing Center (BSC) as part of an existing research line of the group at issue,

focused on the analysis of the effects of inter-core interference in multicore systems.

Within this same research line, the group has been proposing different analytical models,

for different hardware platforms, that relate Performance Monitoring Counters (PMCs)

to the upper bound to the timing interference incurred by a program owing to conflicts in

the use of shared hardware resources (e.g., main memory, bus, etc.). Devising an effective

and industrially amenable approach for capturing timing interference is a major concern

in critical embedded real-time systems where timely execution is as important as

functional correctness. This project has been devised as a first step to lay the foundations

for a methodology for the use of PMCs to support timing analysis of embedded

processors, with particular interest on those used in automotive engineering, for which a

representative platform (Infineon AURIX TC27x) was considered and analyzed. The

PMC support available on the selected automotive board has been analyzed both

theoretically and empirically in order to support the configuration and low-level

manipulation of PMCs, creating a high-level application programming interface (API)

that instantiates, for the first time, the high-performance Performance Application

Programming Interface (PAPI) into the embedded domain.

Motivation and Objectives

 Performance monitoring counters are extensively present in the debug support unit

(DSU) of most modern hardware platforms. PMCs are normally used for early functional

verification on the hardware design and for average performance analysis and profiling.

PMCs have been normally exploited, for example, in the optimization of high-

performance computing platforms and applications. In order to relieve the user from low-

level, error-prone manipulation of PMC registers, several efforts have been put for the

2 Jeremy Jens Giesen León

definition of a high-level interface to the PMCs. The Performance Application

Programming Interface (PAPI) is a project originally developed at the University of

Tennessee’s Innovative Computing Laboratory in the Computer Science Department that

aimed at designing, standardizing, and implementing a portable and efficient API

(Application Programming Interface) to access the hardware performance counters found

on most modern microprocessors. However, the scope of PAPI (i.e., its support) is

currently limited to a relatively short list of mainstream microprocessors and generally,

from the high-performance domain. So far, no PAPI or equivalent implementation has

been carried out on embedded processors, where instead we identify a strong need for a

standardized interface to the PMC layer, to support the use of PMCs for timing analysis.

This led us to consider the need to develop “ePAPI” (embedded Performance Application

Programming Interface) which is the name that the library receives in reason of explicitly

targeting the need of the embedded domain, and to suggest a new way of exploiting PMCs

in the analysis of embedded real-time systems. In defining ePAPI we tried to understand

and capture the requirements from the timing analysis of embedded systems. We also

assess how the “generic” PAPI standpoint may or may not cover those requirements.

At the end of this project, we became familiar with a current and representative

platform of the automotive domain. We have as well achieved a deep knowledge of the

PMC support specially in relation with the PAPI organization. We were able to check the

functioning of the PMC library and work scientifically to obtain verifiable results. In

addition, the ability to present and explain the different techniques, evaluations and results

with clarity and scientific rigor has been acquired.

Summary of the chapters

This section summarizes the how this work is structured in chapters, showing a

preview of what is involved in each of them. Subsequently, we will highlight the

justification of the specific competences, of the computer engineering specialization, that

are covered in this project.

The first chapter introduces the reader to the problem of devising an effective and

efficient analysis of the timing behavior of embedded real-time systems; some

background information is given on the state of the art as far as timing analysis is

concerned and the current methods of timing analysis. Following these points, the

Jeremy Jens Giesen León 3

limitations of the current methods are highlighted, and the PMCs are proposed as a means

that assists and improve the existing methods. We introduce idea of a standardized API

for PMCs for embedded systems, and hint at ePAPI as our original proposal. In addition,

in the first chapter, we describe the project environment and set-up, which includes the

software and hardware resources used to develop the project.

In the second chapter the Performance Application Programming Interface is

introduced. Its architecture is described as well as the basic types on which it relies for its

operation also known as Events and how to group them.

The chapter three, focuses in the PMC support of the AURIX TC275. In this

chapter, the study related to the mapping of events between the board and the PAPI

interface is carried out with a high level of detail.

In the fourth chapter, the design and implementation of ePAPI is disclosed. The

design requirements are brought to discussion and the identification of a relevant subset

of PAPI is described. Then, the events and counter interface including the high-level and

low-level APIs are exposed together with the differences between ePAPI and the standard

PAPI.

 In the fifth chapter, the developed library is brought to verification and validation.

First of all, we describe the methodology we followed, the test environment and the

followed procedure. Then, we report on the verification of the library, followed by the

validation.

 Finally, the last chapter deals with the main contributions as well as the fulfilled

objectives A critical assessment closes the document, providing a quick outlook on future

directions.

Specific competences

This project covers, in addition to the common competences of the final project (TFG01),

the following competences:

• IC03: Ability to analyze and evaluate computer architectures, including parallel

and distributed platforms, as well as to develop and optimize software for them.

• IC05: Ability to analyze, evaluate and select the most suitable hardware and

software platforms to support embedded and real-time applications.

4 Jeremy Jens Giesen León

• IC06: Ability to understand, apply and manage the guarantee and security of

computer systems.

• IC07: Ability to analyze, evaluate, select and configure hardware platforms for

the development and execution of applications and computer services.

Jeremy Jens Giesen León 5

6 Jeremy Jens Giesen León

Chapter 1

Introduction

1.1 Problem definition

The market of real-time embedded systems (CRTES, for its acronym: Critical

Real-Time Embedded Systems), which includes aircraft systems/avionics, space,

railways and automotive domains, is experimenting an unprecedented growth and it is

expected to continue growing in the future. When we speak about CRTES it is mandatory

to speak about the necessity to guarantee the execution times. This leads to the need of

carrying out a study that gives us the worst-case execution time (WCET, for its acronym:

Worst-Case Execution Time).

1.2 State of the art on timing analysis

In the state of art there are two well-differentiated approaches in what time

analysis refers to: Static Timing Analysis and Measurement-Based Timing Analysis.

1.2.1 Static Timing Analysis (STA)

The static analysis consists of the construction of a system model and a

mathematical representation of the application from which it is possible to derive the

temporal behavior of the application, without the need to execute it. The mathematical

representation is processed to determine the upper bound of the WCET, obtaining a

formally proved results. The main limitation of this method is the large amount of

information that must be taken into account to carry out the analysis, mainly information

about the status or history of execution of the system. On top of this, the complexity added

by certain architectures, in which processors under intellectual property restrictions with

incomplete and / or reserved documentation, makes it more difficult, if at all possible, to

build an accurate and sound model for static analysis. In these cases, the alternative is to

perform an analysis based on measurements, which is still largely the most common

method in industry.

1.2.2 Measurement-Based Timing Analysis (MBTA)

Measurement-based timing analysis consists in carrying out tests in an intensively

way trying to cover the input data domain, with the aim of establishing a high-water mark

(HWM). This high-water mark symbolizes the WCET, the longest observed execution,

plus a margin of safety. Even so, it is quite difficult to ensure the behavior that a system

Jeremy Jens Giesen León 7

will have, especially in architectures with cache memories or other type of elements that

introduce temporary complexity and unpredictability.

1.2.3 Limitations

As already highlighted, the validation of the execution time is a critical step when

designing and using real time systems for control systems. As the time it takes to execute

a task or a program depends on many factors, to be able to execute it under strong timing

guarantees, it is necessary to know the most pessimistic case or Worst-Case Execution

Time (WCET), which is usually obtained via a WCET analysis approach. One of the lines

of research developed by the BSC focuses on the techniques and methodologies of WCET

calculation, with special emphasis on multithreaded systems.

The growing demand in CRTES for increased performance impels us to use

complex high-performance systems, with multiple levels of cache, and multiple cores in

one chip. In this scenario, the WCET calculation approaches based on Static Timing

Analysis (STA, for its acronym: Static Timing Analysis) are becoming obsolete. This is

because they face significant challenges due to the excessive cost of getting the detailed

knowledge of the internal operations and the state of the system, which makes it difficult

to compute reliable and tight execution time bounds. This difficulty leads in most cases

to the provision of extremely pessimistic bounds. All these concerns on the analyzability

of the timing behavior of multicores are compromising their adoption in critical systems.

Measurement-Based Timing Analysis (hereinafter MBTA) have traditionally

been considered as an industrially viable alternative for STA. However, end-to-end

measurements, aimed at obtaining the High-Water Mark, hardly provide the necessary

reliable guarantees required by the certification authorities of each critical application

domain, especially in the increasingly complex hardware and software systems.

More advanced ways of carrying out MBTA can be devised by capturing

additional information about the execution of the program. The Performance Monitoring

Counters (PMC), that are usually available in the modern Debug Support Units, can be

used to collect detailed information about the behavior of the software and hardware

during execution, even in relation to time measurements. Unfortunately, PMC support

varies greatly through hardware platforms, and tracked events may even vary between

models of the same platform. This diversity complicates the definition of an analysis

framework of generic time analysis (and process) based on PMCs.

1.3 Performance Monitoring Counters

All modern processors support some form of performance monitoring counters.

Although originally implemented for debugging hardware designs during late hardware

development pahses, they have come to be used extensively for performance analysis and

8 Jeremy Jens Giesen León

for validating tools and simulators. The types and numbers of events tracked and the

methodologies for using these performance counters vary widely, not only across

architectures, but also across systems sharing the same ISA. For example, the Pentium III

tracks 80 different events, measuring only two at a time, but the Pentium 4 tracks 48

different events, measuring up to 18 at a time. Chips manufactured by different companies

have even more divergent counter architectures: for instance, AMD and Intel

implementations have little in common, despite the support the same ISA. Verifying that

measurements generate meaningful results across arrays of implementations is essential

to using counters for research.

1.3.1 PMCs support for Timing analysis

As already highlighted, hardware counters exist on every major processor today.

These counters can be used to collect detailed information about the behavior of software

and hardware during execution, even in relation to time measurements. Thus, they provide

performance analysts with a basis for tool development, and application developers with

valuable information about those sections of their code that can be improved to allow

better performance. However, there are only a few APIs that allow accessing these

counters, and many of them are poorly documented, unstable, or unavailable. In addition,

performance metrics may have different definitions and different programming interfaces

on different platforms.

1.4 Need for standardized API for PMCs

As described above, one of the objectives of this project is to investigate the

possibility of implementing a common abstract PMC library to enable the collection, in a

platform-independent way, of those hardware events that are relevant from the multicore

contention analysis perspective. The PAPI interface and tools identify a de facto standard

for the configuration and collection of hardware events on mainstream hardware devices.

For this reason, we selected PAPI as a term of reference and investigate whether the

generic (platform-independent) events singled out by the interface are relevant to

multicore contention analysis. We were also interested in understanding whether the

subset of relevant events can be effectively supported by the set of PMCs available on a

typical platform from the real-time embedded domain. We focused on the support

available on the AURIX TC-27x family of processor, a reference platform in the

automotive domain.

Jeremy Jens Giesen León 9

1.5 Project environment

1.5.1 Software resources

This section describes the basic software components, such as the development

environment, the debug engine, as well as the utilities and tools used in the project.

1.5.1.1 Aspects to consider

Starting from the fact that the AURIX TriCore platform was located in the BSC,

it is concluded that remote access was necessary. To do so, the MobaXterm program was

selected in order to connect from a terminal to a remote served called bsc-caos-gw-bsc.es

from which it could be launched rdesktop instances to connect to the computer where

the AURIX TriCore platform was connected.

1.5.1.2 Cygwin and Tricore-gcc

 In the computer at issue there was a C/C++ development environment called

CygWin, which is a collection of tools developed by Cygnus Solutions that provide a

similar behavior to Unix systems on top of a Microsoft Windows system. Its goal is to

port software that runs on POSIX systems to Windows by recompiling its sources.

 The compiler that was used to generate the binaries that were going to be launched

on top of the platform is the gcc porting to the AURIX TriCore architecture and ISA,

called tricore-gcc provided by HighTec GmbH.

1.5.1.3 Universal Debug Engine UDE and Microcontroller Debugger for

AURIX TriCore

The Universal Debug Engine (UDE) is the debug interface used in the project.

The UDE was used to upload the binaries to the platform,, run them and obtain the

results. It offers a wide range of development support solutions for software

development of systems-on-silicon including debug support. Its features are:

• Microcontroller debug support.

• Multi-core Debugging (MCA) support

• Multi-core Debug Solution (MCDS) support by Universal Emulation

Configurator (UEC)

10 Jeremy Jens Giesen León

• FLASH Memory Programming.

• Aurora Gigabit Trace (AGBT) support

• JTAG / MiniDAP / cJTAG / MiniJTAG / ETKS support

• Device Access Port (DAP / DAP2) with up to 160 MHz serial clock

support

• Hardware Security Module (HSM) support

• Profiling support

• Code coverage ISO 26262 support

• Eclipse Plug-in

• UDE Starterkits

• PXROS-HR with Memory Protection

• CAN Loader, CAN Recorder and CANopen® Message Formatter

• CIF Video Trace support

• Generic Timer Module (GTM) support

• IP Snooping Trace support

• Triggered Transfer (TTF) support

• On-Chip Debug Support JTAG (OCDS L1/L2) for Core, PCP, PCP2,

DMA

1.6 Hardware resources

Throughout the development of this project it has been guaranteed remote access

to the selected hardware target, on which there has been the possibility of testing and

analyzing the library that was being developed. The selected board on which the library

has been developed was the AURIX TriCore TC275 which is a representative platform

of the automotive domain.

1.6.1 The AURIX TriCore TC275

The TC275 combines three powerful technologies within one silicon die,

achieving high levels of power, speed, and economy for embedded applications:

• Reduced Instruction Set Computing (RISC) processor architecture.

• Digital Signal Processing (DSP) operations and addressing modes.

• On-chip memories and peripherals.

DSP operations and addressing modes provide the computational power necessary

to efficiently analyze complex real-world signals. The RISC load/store architecture

provides high computational bandwidth with low system cost. On-chip memory and

peripherals are designed to support even the most demanding high-bandwidth real-time

embedded control-systems tasks.

Jeremy Jens Giesen León 11

Additional high-level features of the TC27x include:

• Efficient memory organization: instruction and data scratch memories, caches

• Serial communication interfaces – flexible synchronous and asynchronous modes

• Multiple channel DMA Controller – DMA operations and interrupt servicing

• Flexible interrupt system – configurable interrupt priorities and targets

• Hardware Security Module

• Flexible CRC Engine

• General-purpose timers

• High-performance on-chip buses

• On-chip debugging and emulation facilities

• Flexible interconnections to external components

• Flexible power-management

The TC27x is a high-performance microcontroller with three TriCore CPUs,

program and data memories, buses, bus arbitration, interrupt system, DMA controller and

a powerful set of on-chip peripherals. The TC27x is designed to meet the needs of the

most demanding embedded control systems applications where the competing issues of

price/performance, real-time responsiveness, computational power, data bandwidth, and

power consumption are key design elements.

The TC27x offers several versatile on-chip peripheral units such as serial

controllers, timer units, and analog-to-digital converters. Within the TC27x, all these

peripheral units are connected to the TriCore CPUs / system via the System Peripheral

Bus (SPB) and the Local Memory Bus (SRI). A number of I/O lines on the TC27x ports

are reserved for these peripheral units to communicate with the external world.

12 Jeremy Jens Giesen León

1.6.1.1 TC275 Blocks Diagram

Figure 1: TC27x Blocks Diagram. (taken from AURIX TC27x B-Step 32-Bit Single-chip

Microcontroller User’s Manual V 1.4.1 2014-02. Infineon Technologies AG. Page 78.)

Jeremy Jens Giesen León 13

1.6.1.2 CPU Cores of the TC275 (CPU)

The TC275 includes two high performance TriCore TC1.6P cores and one high

efficiency TriCore TC1.6E CPU Core. All processors implement the same version (V1.6)

of the TriCore Processor Architecture.

The TriCore TC1.6P and TC1.6E CPUs provide the following features:

TriCore Architectural Highlights

• Unified RISC MCU/DSP

• 32-bit architecture with 4Gbytes unified data, program, and I/O address space

• 32 general purpose registers with fast automatic context-switching

• Multiply-accumulate unit able to sustain 2 MAC operations per cycle

• Fully pipelined Floating point unit

• Saturating integer arithmetic

• Bit handling

• Packed data operations

• Dedicated integer divide unit.

• Precise exceptions

• Flexible power management

• Flexible memory protection system

High-efficiency TriCore Instruction Set

• Powerful instruction set

• Binary compatibility between TC16P and TC16E

• Freely mixable 16-bit and 32-bit instructions for reduced code size

• Data types include: Boolean, array of bits, character, signed and unsigned integer,

integer with saturation, signed fraction, double-word integers, and IEEE-754

single-precision floating point

• Data formats include: Bit, 8-bit byte, 16-bit half-word, 32-bit word, and 64-bit

doubleword

• Flexible and efficient addressing mode for high performance and code density

• IEEE-754 compatible floating-point unit.

o Single precision (denormalized numbers not supported for arithmetic

operations).

o Traps optionally generated on floating point exceptions.

o Selectable rounding mode.

TriCore 1.6P CPU

• High performance superscalar CPU executing up to three instructions per cycle

• Optimized for high throughput computation

• Zero overhead loop

14 Jeremy Jens Giesen León

• Instruction memory:

o 32Kbyte single cycle Program Scratch-Pad RAM (PSPR)

o 16Kbyte single cycle Program Cache (PCACHE)

• Data memory:

o 120Kbyte single cycle data Scratch-Pad RAM (DSPR)

o 8Kbyte single cycle data Cache (DCACHE)

• All memories are ECC protected

• Cacheability of memory regions is programmable.

• FPU

TriCore 1.6E CPU

• High efficiency scalar CPU executing a maximum of one instruction per cycle

• Optimized for low power operation

• Optimized peripheral connectivity

• Instruction memory:

o 24Kbyte single cycle Program Scratch-Pad RAM (PSPR)

o 8Kbyte single cycle Program Cache (PCACHE)

• Data memory:

o 112Kbyte single cycle data Scratch-Pad RAM (DSPR)

o Data read buffer

• All memories are ECC protected

• Cacheability of all memory regions is programmable.

• FPU

Jeremy Jens Giesen León 15

16 Jeremy Jens Giesen León

Chapter 2

PAPI: Performance Application Programming

Interface

2.1 Introduction to PAPI

2.1.1 What is PAPI?

PAPI is an acronym for Performance Application Programming Interface. The

PAPI Project is being developed at the University of Tennessee’s Innovative Computing

Laboratory in the Computer Science Department. This project was created to design,

standardize, and implement a portable and efficient API (Application Programming

Interface) to access the hardware performance counters found on most modern

microprocessors.

2.1.2 Architecture

The figure below shows the internal design of the PAPI architecture. In this figure,

we can see the two layers of the architecture.

Figure 2: Layers of PAPI architecture. (Taken from PAPI USER’S GUIDE Version

3.5.0)

Jeremy Jens Giesen León 17

The Portable Layer consists of the API (low level and high level) and machine

independent support functions.

The Machine Specific Layer defines and exports a machine independent

interface to machine dependent functions and data structures. These functions are defined

in the substrate layer, which uses kernel extensions, operating system calls, or assembly

language to access the hardware performance counters. PAPI uses the most efficient and

flexible of the three, depending on what is available.

PAPI strives to provide a uniform environment across platforms. However, this is

not always possible. Where hardware support for features, such as overflows and

multiplexing is not supported, PAPI implements the features in software where possible.

Also, processors do not support the same metrics, thus you can monitor different events

depending on the processor in use. Therefore, the interface remains constant, but how it

is implemented can vary.

2.2 Events

2.2.1 What are events?

Events are occurrences of specific signals related to a processor’s function.

Hardware performance counters are typically implemented as a small set of registers that

count events, such as cache misses and floating-point operations while the program

executes on the processor. Monitoring these events facilitates correlation between the

structure of source/object code and the efficiency of the mapping of events that are native

to that architecture. PAPI provides a software abstraction of these architecture-dependent

native events, as a collection of preset events that are accessible through the PAPI

interface.

2.2.2 Native Events

Native events compromise the set of all events that are countable by the CPU.

There are generally far more native events available than can be mapped onto PAPI preset

events. Even if no preset event is available that exposes a given native event, native events

can still be accessed directly. To use native events effectively you should be very familiar

with the particular platform in use. PAPI provides access to native events on all supported

platforms through the low-level interface. Native events use the same interface as used

when setting up a preset event, but since a PAPI preset event definition is not available

for native events, a native event name must often be translated into an event code before

it can be used.

18 Jeremy Jens Giesen León

2.2.3 Preset Events

Preset events, also known as predefined events, are a common set of events

deemed relevant and useful for application performance tuning. These events are typically

found in many CPUs that provide performance counters and give access to the memory

hierarchy, cache coherence protocol events, cycle and instruction counts, functional unit,

and pipeline status. Furthermore, preset events are mappings from symbolic names (PAPI

preset name) to machine specific definitions (native countable events) for a particular

hardware resource. For example, Total Cycles (in user mode) is PAPI_TOT_CYC. Also,

PAPI supports presets that may be derived from the underlying hardware metrics. For

example, Total L1 Cache Misses (PAPI_L1_TCM) might be the sum of L1 Data Misses

and L1 Instruction Misses on a given platform. A preset can be either directly available

as a single counter, derived using a combination of counters, or unavailable on any

particular platform.

The PAPI library names approximately 100 preset events, which are defined in the header

file, papiStfEventDefs.h. For a given platform, a subset of these preset events can be

counted through either a simple high-level programming interface or a more complete C

or Fortran low-level interface. Note that processors and software are revised over time.

The exact semantics of an event counter are platform dependent. PAPI preset names are

mapped onto available events so as to map as many countable events as possible on

different platforms. Due to hardware implementation differences, it is not necessarily

feasible to directly compare the counts of a particular PAPI preset events obtained on

different hardware platforms.

2.3 Event Sets

Event Sets are user-defined groups of hardware events (preset or native), which

are used in conjunction with one another to provide meaningful information. The user

specifies the events to be added to an Event Set, and other attributes, such as: the counting

domain (user or kernel), whether or not the events in the Event Set are to be multiplexed,

and whether the Event Set is to be used for overflow or profiling. Other settings for the

Event Set are maintained by PAPI, such as: what low-level hardware registers to use, the

most recently read counter values, and the state of the Event Set (running/not running).

Event Sets provide an effective abstraction for the organization of information associated

with counting hardware events. The PAPI library manages the memory for Event Sets

with a user interface through integer handles to simplify calling conventions. The user is

free to allocate and use any number of them provided the substrate can provide the

required resources. Only one Event Set can be in active use at any time in a given thread

or process.

Jeremy Jens Giesen León 19

20 Jeremy Jens Giesen León

Chapter 3

AURIX TC275 Performance Monitoring Counters

support

3.1 AURIX TC275 PMU

The AURIX TriCore TC275 includes a CPU Core Debug system that includes

five Performance Monitor Counters. Of the five PMCs, three are multiplexed and two

have a fixed configuration.

The performance counter sources from the AURIX TC275 hereafter, events (to

simulate the PAPI vocabulary), are a total of fourteen and are described below:

CCNT
CPU Clock Count Register.

ICNT
Instruction Count Register.

IP_DISPATCH_STALL
The counter is incremented on every cycle in which the Integer dispatch unit is
stalled
for whatever reason.

LS_DISPATCH_STALL
The counter is incremented on every cycle in which the Load-Store dispatch unit is
stalled for whatever reason.
LP_DISPATCH_STALL
The counter is incremented on every cycle in which the Loop dispatch unit is stalled
for
whatever reason.

PCACHE_HIT
The counter is incremented whenever the target of a cached fetch request from the
fetch
unit is found in the program cache.
PCACHE_MISS
The counter is incremented whenever the target of a cached fetch request from the
fetch
unit is not found in the program cache and hence a bus fetch is initiated.

MULTI_ISSUE
The counter is incremented in any cycle where more than one instruction is issued.

DCACHE_HIT

Jeremy Jens Giesen León 21

The counter is incremented whenever the target of a cached request from the Load-
Store unit is found in the data cache.

DRB_HIT
The counter is incremented whenever the target of a cached request from the Load-
Store unit is found in the data read buffer. (Only on energy efficient).

DCACHE_MISS_CLEAN
The counter is incremented whenever the target of a cached request from the Load-
Store unit is not found in the data cache and hence a bus fetch is initiated with no
dirty
cache line eviction.

DRB_MISS
The counter is incremented whenever the target of a cached request from the Load-
Store unit is not found in the data read buffer and hence a bus fetch is initiated.
(Only on energy efficient).

DCACHE_MISS_DIRTY
The counter is incremented whenever the target of a cached request from the Load-
Store unit is not found in the data cache and hence a bus fetch is initiated with the
writeback of a dirty cache line.

TOTAL_BRANCH
The counter is incremented in any cycle in which a branch instruction is in a branch
resolution stage of the pipeline (IP_EX1, LS_DEC, LP_DEC).

PMEM_STALL
The counter is incremented whenever the fetch unit is requesting an instruction and
the
Instruction memory is stalled for whatever reason.
DMEM_STALL
The counter is incremented whenever the Load-Store unit is requesting a data
operation
and the data memory is stalled for whatever reason.

Except for the events identified by the names CCNT and ICNT, the events are obtained

via the multiplexed counters as described below:

TC1.6P (Performance efficient)

M1CNT COUNTER1 M2CNT COUNTER2 M3CNT COUNTER3

Not
multiplexed
Counters

IP_DISPATCH_STALL LS_DISPATCH_STALL LP_DISPATCH_STALL CCNT
PCACHE_HIT PCACHE_MISS MULTI_ISSUE

DCACHE_HIT DCACHE_MISS_CLEAN DCACHE_MISS_DIRTY ICNT

TOTAL_BRANCH PMEM_STALL DMEM_STALL

As the scope of this study only considers the Performance Efficient cores

(TC1.6P), events related to the Power Efficient cores (TC1.6E) like the ones related to

the DRB (Data Read Buffer) won’t be considered.

22 Jeremy Jens Giesen León

3.2 Mapping AURIX events to PAPI interface

As highlighted since the beginning of the document, we have taken PAPI as a term

of reference to investigate whether the generic (platform-independent) singled out by the

interface are relevant to multicore contention analysis.

The following table summarizes the results of our analysis of whether and how

current AURIX performance monitoring counters can support those PAPI events that are

relevant from the standpoint of multicore contention analysis. In consideration of the fact

that the AURIX exhibits a flat memory hierarchy (only one cache level), all PMCs

tracking cache events (hit and misses) are considered to be relative to L1 Caches.

The cell colors follow a precise color code. A first color convention is used to

identify the AURIX performance monitoring counter(s) that can be used to cover a

specific PAPI event: blue stands for the M1CNT (COUNTER 1), yellow for the M2CNT

(COUNTER 2), and green for the M3CNT (COUNTER 3). However, some PAPI events

can only be covered by combining the information from more than one PMC. If the events

are intercepted by activating more than one counter “at the same time”, the cell is colored

in purple. Finally, black will be used when the sub-events needed to cover a PAPI event

are constrained to be collected by the same multiplexed counter in the AURIX. In this

case more than one execution will be required to collect all necessary evidence from the

PMCs.

 Events captured by the M1CNT (COUNTER 1)

 Events captured by the M2CNT (COUNTER 2)

 Events captured by the M3CNT (COUNTER 3)

 Events captured by more than one counter

Events captured by more events tracked by the same counter (more than one
run needed)

A second color convention is used to assess relevance of a PAPI event (multicore

contention analysis) and implementability on the AURIX. Events that are not relevant for

multicore contention analysis (they can be relevant for timing analysis in general,

performance analysis, etc.) Rows of non-relevant events are made gray; relevant but not

implementable on the AURIX are colored in red; possibly relevant events that are not so

in the specific board, are colored in orange.

Jeremy Jens Giesen León 23

 Relevant but not captured in the AURIX

Relevant in general but not in the case of the AURIX (e.g., L3 cache
performance)

 Not supported but not relevant

The following analysis table uses a series of acronyms that are described below:

1 Timing and/or Energy Consumption Analysis.

2 Characterizing Multicore Contention

3 Average Performance Analysis

4 Contention analysis

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_BR_CN Conditional
branch
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_BR_INS Branch
instructions

Y (single
counter)

TOTAL_BRANCH The counter is
incremented in any
cycle in which a
branch instruction
is in a branch
resolution stage of
the pipeline
(IP_EX1, LS_DEC,
LP_DEC).

Relevant for
TECA1 but not
directly for CMC2.

PAPI_BR_MSP Conditional
branch
instructions
mispredicted

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_BR_NTK Conditional
branch
instructions not
taken

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_BR_PRC Conditional
branch
instructions
correctly
predicted

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_BR_TKN Conditional
branch
instructions taken

N - - Relevant for
TECA1 but not
directly for CMC2.

24 Jeremy Jens Giesen León

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_BR_UCN Unconditional
branch
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_BRU_IDL Cycles branch
units are idle

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_BTAC_M Branch target
address cache
misses

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CA_CLN Requests for
exclusive access
to clean cache
line

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CA_INV Requests for
cache line
invalidation

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CA_ITV Requests for
cache line
intervention

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CA_SHR Requests for
exclusive access
to shared cache
line

N -- Relevant for
TECA1 but not
directly for CMC2.

PAPI_CA_SNP Requests for a
snoop

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CSR_FAL Failed store
conditional
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CSR_SUC Successful store
conditional
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_CSR_TOT Total store
conditional
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FAD_INS Floating point add
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FDV_INS Floating point
divide
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FMA_INS FMA instructions
completed

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FML_INS Floating point
multiply
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FNV_INS Floating point
inverse
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

Jeremy Jens Giesen León 25

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_FP_INS Floating point
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FP_OPS Floating point
operations

N - - Relevant for
TECA1 but not
directly for
CMC2.contention

PAPI_FP_STAL Cycles the FP
unit(s) are stalled

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FPU_IDL Cycles floating
point units are
idle

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FSQ_INS Floating point
square root
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FUL_CCY Cycles with
maximum
instructions
completed

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_FUL_ICY Cycles with
maximum
instruction issue

N - Note: The
MULTI_ISSUE
counter in the
AURIX counts cycles
with multiple
instructions (not
necessarily
maximum number
thereof)

Relevant for
TECA1 but not
directly for CMC2.

PAPI_FXU_IDL Cycles integer
units are idle

N - - Relevant (if can
be reconducted
to activity on the
interconnect)

PAPI_HW_INT Hardware
interrupts

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_INT_INS Integer
instructions

N - - Relevant for APA3

PAPI_L1_DCA Level 1 data
cache accesses

Y
(compoun

d)

DCACHE_HIT +
DCACHE_MISS_C
LEAN +
DCACHE_MISS_DI
RTY

Descriptions found
in the details box.

Relevant

PAPI_L1_DCH Level 1 data
cache hits

Y (single
counter)

DCACHE_HIT The counter is
incremented
whenever the
target of a cached
request from the
Load-
Store unit is found
in the data cache.

Relevant

26 Jeremy Jens Giesen León

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_L1_DCM Level 1 data
cache misses

Y
(compoun

d)

DCACHE_MISS_DI
RTY +
DCACHE_MISS_C
LEAN

Descriptions found
in the details box.

Relevant

PAPI_L1_DCR Level 1 data
cache reads

N Can be loosely
upperbounded
by the number of
data cache
accesses

 Relevant

PAPI_L1_DCW Level 1 data
cache writes

N Can be loosely
upper-bounded
by the number of
data cache
accesses

 Relevant

PAPI_L1_ICA Level 1
instruction cache
accesses

Y
(compoun

d)

PCACHE_HIT +
PCACHE_MISS

 Relevant

PAPI_L1_ICH Level 1
instruction cache
hits

Y (single
counter)

PCACHE_HIT The counter is
incremented
whenever the
target of a cached
fetch request from
the fetch
unit is found in the
program cache.

Relevant

PAPI_L1_ICM Level 1
instruction cache
misses

Y (single
counter)

PCACHE_MISS The counter is
incremented
whenever the
target of a cached
fetch request from
the fetch
unit is not found in
the program cache
and hence a bus
fetch is initiated.

Relevant

PAPI_L1_ICR Level 1
instruction cache
reads

Y
(compoun

d)

PCACHE_HIT +
PCACHE_MISS

Descriptions found
in the details box.

Relevant

PAPI_L1_ICW Level 1
instruction cache
writes

N - - Relevant (if
writes allowed)

PAPI_L1_LDM Level 1 load
misses

N - - Relevant

PAPI_L1_STM Level 1 store
misses

N - - Relevant

PAPI_L1_TCA Level 1 total
cache accesses

Y
(compoun

d)

DCACHE_HIT +
DCACHE_MISS_C
LEAN +
DCACHE_MISS_DI
RTY +
PCACHE_HIT +
PCACHE_MISS

 Relevant

Jeremy Jens Giesen León 27

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_L1_TCH Level 1 total
cache hits

Y
(compoun

d)

DCACHE_HIT +
PCACHE_HIT

 Relevant

PAPI_L1_TCM Level 1 cache
misses

Y
(compoun

d)

DCACHE_MISS_DI
RTY +
DCACHE_MISS_C
LEAN +
PCACHE_MISS

 Relevant

PAPI_L1_TCR Level 1 total
cache reads

N - - Relevant

PAPI_L1_TCW Level 1 total
cache writes

N - - Relevant

PAPI_L2_DCA Level 2 data
cache accesses

N - - Relevant (if L2
available)

PAPI_L2_DCH Level 2 data
cache hits

N - - Relevant (if L2
available)

PAPI_L2_DCM Level 2 data
cache misses

N - - Relevant (if L2
available)

PAPI_L2_DCR Level 2 data
cache reads

N - - Relevant (if L2
available)

PAPI_L2_DCW Level 2 data
cache writes

N - - Relevant (if L2
available)

PAPI_L2_ICA Level 2
instruction cache
accesses

N - - Relevant (if L2
available)

PAPI_L2_ICH Level 2
instruction cache
hits

N - - Relevant (if L2
available)

PAPI_L2_ICM Level 2
instruction cache
misses

N - - Relevant (if L2
available)

PAPI_L2_ICR Level 2
instruction cache
reads

N - - Relevant (if L2
available)

PAPI_L2_ICW Level 2
instruction cache
writes

N - - Relevant (if L2
available)

PAPI_L2_LDM Level 2 load
misses

N - - Relevant (if L2
available)

PAPI_L2_STM Level 2 store
misses

N - - Relevant (if L2
available)

PAPI_L2_TCA Level 2 total
cache accesses

N - - Relevant (if L2
available)

PAPI_L2_TCH Level 2 total
cache hits

N - - Relevant (if L2
available)

PAPI_L2_TCM Level 2 cache
misses

N - - Relevant (if L2
available)

PAPI_L2_TCR Level 2 total
cache reads

N - - Relevant (if L2
available)

28 Jeremy Jens Giesen León

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_L2_TCW Level 2 total
cache writes

N - - Relevant (if L2
available)

PAPI_L3_DCA Level 3 data
cache accesses

N - - Relevant (if L3
available)

PAPI_L3_DCH Level 3 data
cache hits

N - - Relevant (if L3
available)

PAPI_L3_DCM Level 3 data
cache misses

N - - Relevant (if L3
available)

PAPI_L3_DCR Level 3 data
cache reads

N - - Relevant (if L3
available)

PAPI_L3_DCW Level 3 data
cache writes

N - - Relevant (if L3
available)

PAPI_L3_ICA Level 3
instruction cache
accesses

N - - Relevant (if L3
available)

PAPI_L3_ICH Level 3
instruction cache
hits

N - - Relevant (if L3
available)

PAPI_L3_ICM Level 3
instruction cache
misses

N - - Relevant (if L3
available)

PAPI_L3_ICR Level 3
instruction cache
reads

N - - Relevant (if L3
available)

PAPI_L3_ICW Level 3
instruction cache
writes

N - - Relevant (if L3
available)

PAPI_L3_LDM Level 3 load
misses

N - - Relevant (if L3
available)

PAPI_L3_STM Level 3 store
misses

N - - Relevant (if L3
available)

PAPI_L3_TCA Level 3 total
cache accesses

N - - Relevant (if L3
available)

PAPI_L3_TCH Level 3 total
cache hits

N - - Relevant (if L3
available)

PAPI_L3_TCM Level 3 cache
misses

N - - Relevant (if L3
available)

PAPI_L3_TCR Level 3 total
cache reads

N - - Relevant (if L3
available)

PAPI_L3_TCW Level 3 total
cache writes

N - - Relevant (if L3
available)

PAPI_LD_INS Load instructions N - - Relevant for APA3

PAPI_LST_INS Load/store
instructions
completed

N - - Relevant for APA3

PAPI_LSU_IDL Cycles load/store
units are idle

N Relevant

PAPI_MEM_RCY Cycles Stalled
Waiting for
memory Reads

N Relevant

Jeremy Jens Giesen León 29

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_MEM_SCY Cycles Stalled
Waiting for
memory accesses

Y
(compoun

d)

DMEM_STALL +
PMEM_STALL

Descriptions found
in the details box.

Relevant

PAPI_MEM_WCY Cycles Stalled
Waiting for
memory writes

N Loosely upper-
bounded by
DMEM_STALL

 Relevant

PAPI_PRF_DM Data prefetch
cache misses

N - - Relevant for APA3

PAPI_RES_STL Cycles stalled on
any resource

N Can be loosely
upper-bounded
by summing up
the following
counters
IP_DISPATCH_ST
ALL +
LS_DISPATCH_ST
ALL +
LP_DISPATCH_ST
ALL +
PMEM_STALL +
DMEM_STALL
(they are
counting partially
overlapping
events)

- Relevant

PAPI_SR_INS Store instructions N - - Relevant

PAPI_STL_CCY Cycles with no
instructions
completed

N - - Relevant for APA3
Might be relevant
for CA4(if can be
reconducted to
activity on the
interconnect)

PAPI_STL_ICY Cycles with no
instruction issue

N - - Relevant for APA3
Might be relevant
for CA4(if can be
reconducted to
activity on the
interconnect)

PAPI_SYC_INS Synchronization
instructions
completed

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_TLB_DM Data translation
lookaside buffer
misses

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_TLB_IM Instruction
translation
lookaside buffer
misses

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_TLB_SD Translation
lookaside buffer
shootdowns

N - - Relevant for
TECA1 but not
directly for CMC2.

30 Jeremy Jens Giesen León

PAPI EVENT DESCRIPTION AURIX
PMU

support

Counter Source(s) Counter Source
Detail

Relevant for
multicore
contention
analysis?

PAPI_TLB_TL Total translation
lookaside buffer
misses

N - - Relevant for
TECA1 but not
directly for CMC2.

PAPI_TOT_CYC Total cycles Y (single
counter)

CCNT CPU Clock Count
Register

Relevant
(fundamental for
timing analysis in
general)

PAPI_TOT_IIS Instructions
issued

N Relevant for
TECA1 but not
directly for CMC2.

PAPI_TOT_INS Instructions
completed

Y (single
counter)

ICNT Instruction Count
Register

Relevant for
TECA1 but not
directly for CMC2.

PAPI_VEC_INS Vector/SIMD
instructions

N - - Relevant for
TECA1 but not
directly for CMC2.

Table 1: AURIX events to PAPI interface analysis.

As it can be concluded in the information found in the tables, an in-depth study

has been carried out on the compatibility of the events that the AURIX is able to monitor

and those collected in PAPI. While some events were easily mapped to the PAPI

specification, there was a subset of events that were rated as candidates to be upper

bounded. Finally, we decided not to add upperbounding events as we wanted to provide

ePAPI only with exact accuracy in the counts.

On the other hand, keeping in mind the idea of building a standardized library for

embedded systems, we made a study about the relevance of the events. In the study at

issue an explanation about whether or not an event was relevant was made for each one.

This helped us to divide the events in a series of groups. For example, the events related

to the different cache memory levels were considered relevant but not in the case of the

AURIX because of its topology that as we were able to see in the boards specification,

only had L1 caches.

Regarding the events captured by more events tracked by the same counter (those

that needed more than one run), the method designed to obtain them seeks to be the least

invasive and consists of carrying out the different measurements that make up the event

at issue separately to then treat them and obtain the result. For example, PAPI_L1_TCA

would be obtained by measuring first, the data cache misses (DCACHE_MISS_CLEAN

and DCACHE_MISS_DIRTY) together with DCACHE_HIT and then measuring both

PCACHE_HIT and PCACHE_MISS to end up adding all the results to obtain

PAPI_L1_TCA.

Jeremy Jens Giesen León 31

3.2.1 Detailed analysis of relevant events

In this section, it is disclosed the specification with a higher degree of detail, those

events that are considered the most relevant separating them into three groups, those that

are implementable, those that are not and those that are considered relevant but aren’t

defined in PAPI.

3.2.1.1 Implementable events

PAPI_L1_DCA

This event gives us the total number of L1 data cache accesses. It is relevant for both,

execution time and power consumption. A data cache access may result in three different

situations with different repercussion:

• A data cache hit: which is a separate-measurable event in this platform.

• A data cache dirty miss

• A data cache clean miss.

PAPI_L1_DCH

This event gives us the total number of L1 data cache hits. A cache hit is a state

in which data requested for processing by a component or application is found in the

cache memory. It is a faster means of delivering data to the processor, as the cache already

contains the requested data. As a logical conclusion of what was pointed out in the event

related to the data cache accesses, this event is relevant for both, execution time and power

consumption. This event is implementable and can be used by a programmer to measure

the performance of a program as far as cache memories are concerned.

PAPI_L1_DCM

This event gives us the total number of L1 data cache misses. A cache miss is a

state where the data requested for processing by a component or application is not found

in the cache memory. It causes execution delays by requiring the program or application

to fetch the data from other cache levels or the main memory. In the AURIX case, cache

misses may entail an access to the Flash or SRAM memories. If data caches implement a

write-back policy (as opposed to a write-through one) the data miss count includes both

clean and dirty misses although each one exhibits different behavior and latency. When

the CPU requests an address from memory, a translation is made to get the correspondent

32 Jeremy Jens Giesen León

cache line that is supposed to contain the information. If the information that is being

looked for isn’t found in the specified line, the dirty bit is checked.

• Clean miss: if the dirty bit is set to zero, the information requested is loaded from

the main memory to the cache together with the rest of the line.

• Dirty miss: if the dirty bit is set to one, the information contained in the line must

be written back to memory before loading the requested information to the cache.

Once the write back has finished, the information requested is loaded to the cache

together with the rest of the line and the dirty bit is set to zero.

As we can see, the delays incurred by the different kind of misses are pretty

different, as in the dirty miss an extra memory access is made. Despite the difference,

this event groups both misses in only one.

PAPI_L1_ICA

This event gives us the total number of L1 instruction cache accesses. It is relevant

for both, execution time and power consumption. An instruction cache access may result

in two different situations: an instruction cache hit and a miss, which are both separate-

implementable events on this platform.

PAPI_L1_ICH

This event gives us the total number of L1 instruction cache hits. A cache hit is a

state in which an instruction requested for processing by a component or application is

found in the cache memory. It is a faster means of delivering instructions to the processor,

as the cache already contains the requested instructions. As a logical conclusion of what

was pointed out in the event related to the instruction cache accesses, this event is relevant

for both, execution time and power consumption. This event is typically provided by

standard PMUs and can be used by a programmer to measure the performance of a

program, as far as cache memories are concerned.

PAPI_L1_ICM

This event gives us the total number of L1 instruction cache misses. A cache miss

is a state where the instruction requested for processing by a component or application is

not found in the cache memory. It causes execution delays by requiring the program or

application to fetch the instructions from other cache levels or the main memory as in this

case.

PAPI_L1_ICR

This event gives us the total number of reads that have taken place in the L1

instruction cache. This event is relevant only in case the program code can be modified

(which is typically not the case). This event when analyzed together with PAPI_L1_ICH,

PAPI_L1_ICM, gives us information about how the cache is doing in terms of hit and

misses taking into account the total number of reads. In this platform this event is

Jeremy Jens Giesen León 33

equivalent to the total cache accesses as the instruction cache. This event is relevant for

both, execution time and power consumption.

PAPI_L1_TCA

This event is the sum of both, PAPI_L1_ICA and PAPI_L1_DCA, representing

the total L1 cache accesses. This event is relevant for many reasons; some examples are

the verification of PAPI_L1_ICA and PAPI_L1_DCA in the early stages of the

implementation to check if the values separately are coherent and, once the

implementation is finished, to get the total cache accesses if we don’t want to perform a

deep analysis of accesses.

PAPI_L1_TCH

This event is the sum of both, PAPI_L1_DCH and PAPI_L1_ICH, representing

the total L1 cache hits. This event is relevant for many reasons, some examples are the

verification of PAPI_L1_DCH and PAPI_L1_ICH in the early stages of the

implementation to check if the values separately are coherent and, once the

implementation is finished, to get the total cache hits if we don’t want to perform a deep

analysis of them.

PAPI_L1_TCM

This event is the sum of both, PAPI_L1_DCM and PAPI_L1_ICM, representing

the total L1 cache misses. This event is relevant for many reasons; some examples are the

verification of PAPI_L1_DCH and PAPI_L1_ICH in the early stages of the

implementation to check if the values separately are coherent and, once the

implementation is finished, to get the total cache misses if we don’t want to perform a

deep analysis of them.

PAPI_MEM_SCY

This event gives us the number of cycles stalled waiting for memory accesses.

This value is the sum of both PAPI_MEM_RCY and PAPI_MEM_WCY. This event

is strongly relevant when assessing the interference between cores, and hence, for timing

analysis. When a core is accessing to a position, the other cores can’t access to that

position, leading to stalls and slowing down the program executions. On the downside,

the event does not discriminate between reads/writes and the memory device (on which

the stall occurs).

PAPI_TOT_CYC

This event gives us the number of total cycles. This measure is very relevant for

the timing analysis, if not the most. If used in a correct way, it gives us information on

the execution time of a program. This value can be also correlated to other aspects, like

power consumption, and is critical in determining the worst-case response time in real-

time systems.

34 Jeremy Jens Giesen León

3.2.1.2 Non-implementable events

PAPI_L1_DCR

This event gives us the total number of L1 data cache reads. This event when

analyzed together with PAPI_L1_DCH and PAPI_L1_DCM, gives us information

about how the cache is doing in terms of hit and misses taking into account the total

number of readings. Having separate information on reads and writes is relevant in that

each operation may exhibit different latency as well as support different communication

mechanisms (e.g., buffers) on the interconnect. As all the events related to cache, this

event is relevant for both, execution time and power consumption.

PAPI_L1_DCW

This event gives us the number of L1 data cache writes. This event when analyzed

together with PAPI_L1_DCM, gives us information about how the cache is doing in

terms of allocation and replacement taking into account the size of the cache. Similarly

to PAPI_L1_DCR, having separate information on reads and writes is relevant in that

each operation may exhibit different latency as well as support different communication

mechanisms (e.g., buffers) on the interconnect. As all the events related to cache, this

event is relevant for both, execution time and power consumption.

PAPI_L1_LDM

This event gives us the total number of L1 cache load misses. This is referring to

when the processor needs to fetch data from main memory, but data does not exist in the

cache. So whenever the processor wants some data from the main memory, it checks the

cache, and if the data is already loaded you get load-hit and otherwise you get a load-

miss. As all the events related to cache, this event is relevant for both, execution time and

power consumption.

PAPI_L1_STM

This event gives us the total number of L1 cache store misses. A store-miss is

related to when the processor wants to write back the newly calculated data to the main

memory. When writing-back the data to the main memory, the processor has to make sure

that the content of the cache and main memory are in sync with each other. It can happen

with two different policies, write-through and write-back. So no matter what policy is

implemented, you first need to check whether the data is already in the cache so you can

store it to cache first (since it's faster), and if the data block you are looking for has been

evicted from the cache, you get a store-miss related to that cache. As all the events related

to cache, this event is relevant for both, execution time and power consumption.

Jeremy Jens Giesen León 35

PAPI_L1_TCR

This event gives us the total number of L1 cache reads. Making use of this event

entails obtaining information with a lower level of granularity than measuring the

readings to the L1 data cache (PAPI_L1_ICR) and instruction cache (PAPI_L1_DCR)

separately, since this event is the sum from both. As all the events related to cache, this

event is relevant for both, execution time and power consumption.

PAPI_L1_TCW

This event gives us the total number of L1 cache writes. Making use of this event

entails obtaining information with a lower level of granularity than measuring the writings

to the L1 data cache (PAPI_L1_ICR) and instruction cache (PAPI_L1_DCR)

separately, since this event is the sum from both. As all the events related to cache, this

event is relevant for both, execution time and power consumption.

 PAPI_LSU_IDL

This event gives us the number of cycles when the load/store units are idle. In

general, the degree of occupation of the load/store units is relevant, but when analyzing

the degree of interference that occur in buses which are shared among several cores, the

relevance of the degree of occupation becomes critical. If there are periods without

load/store instructions, the only source of interference would be the instruction fetch.

PAPI_MEM_RCY

This event gives us the number of cycles stalled waiting for memory reads. This

event is strongly relevant when assessing the interference between cores, and hence, for

timing analysis. When a core is reading a position in memory, the other cores cannot write

on it, leading to stalls and slowing down the program executions. On the downside, the

event does not discriminate between memory devices/targets of the memory operation.

PAPI_MEM_WCY

This event gives us the number of cycles stalled waiting for memory writes. This

event is strongly relevant when assessing the interference between cores, and hence, for

timing analysis. When a core is writing into a position, the other cores can’t write or read

from it, leading to stalls and slowing down the program executions. On the downside, the

event does not discriminate between memory devices/targets of the memory operation.

PAPI_RES_STL

This event gives us the number of cycles stalled on any resource. Although

catching separately the cycles stalled on every individual resource would be more precise

for an analysis, this event could be still useful in case we do not want to do a deep analysis

of each one or if the platform’s PMC’s aren’t able to catch them separately.

36 Jeremy Jens Giesen León

3.2.1.3 Relevant events not defined in PAPI

Since PAPI is limited to supporting a specific group of conventional high-

performance processors, the PAPI selected events do not contemplate those events that

are relevant as far as embedded systems are concerned. It is for this reason why this set

of events that are considered relevant in this domain, have been added to the library.
ePAPI_PMEM_STL

 This event gives us the number of cycles stalled waiting for program memory

accesses. This event together with ePAPI_DMEM_STL is equivalent to

PAPI_MEM_SCY. When a core is accessing to a position, the other cores can’t access

to that position, leading to stalls and slowing down the program executions. Unlike

PAPI_MEM_SCY, the event does discriminate between reads/writes but not the

memory device on which the stall occurs (as in the AURIX there are two PFlash

interfaces).

ePAPI_DMEM_STL

This event gives us the number of cycles stalled waiting for program memory

accesses. This event together with ePAPI_PMEM_STL is equivalent to

PAPI_MEM_SCY. When a core is accessing to a position, the other cores can’t access

to that position, leading to stalls and slowing down the program executions. Unlike

PAPI_MEM_SCY, the event does discriminate between reads/writes and the memory

device on which the stall occurs.

ePAPI_MULTI_ISSUE

 This event gives is the number of cycles where more than one instruction is issued.

It differs from PAPI_FUL_ICY because the latter gives us the cycles with maximum

instruction issue which in this board isn’t the same amount of cycles. This event is

strongly relevant when assessing the interference between cores, and hence, for timing

analysis.

ePAPI_IPDISP_STL

 This event gives us the number of cycles in which the Integer dispatch unit is

stalled for whatever reason. This event is a clear indicator of the quality of the code in

terms of structural hazards which are the result of a hardware resource that cannot be

accessed in any given stage of the pipeline, by more than one instruction.

ePAPI_LSDISP_STL

This event gives us the number of cycles in which the Load/Store dispatch unit is

stalled for whatever reason. This event is a clear indicator of the quality of the code in

Jeremy Jens Giesen León 37

terms of structural hazards which are the result of a hardware resource that cannot be

accessed in any given stage of the pipeline, by more than one instruction.

ePAPI_LPDISP_STL

This event gives us the number of cycles in which the Loop dispatch unit is stalled

for whatever reason. This event is a clear indicator of the quality of the code in terms of

structural hazards which are the result of a hardware resource that cannot be accessed in

any given stage of the pipeline, by more than one instruction.

38 Jeremy Jens Giesen León

Chapter 4

Embedded Performance Application Programming

Interface (ePAPI): Design and implementation

4.1 Design requirements for an embedded PAPI

When studying the design requirements, we conclude that there are several points

to consider.

First, we start from the idea that the library has been developed by mimicking a

reference library and that seeks to give support to a type of processors that the standard

version of the library does not contemplate. This leads to the need to channel the

implementation of the new library in a way that would allow the end user to use it as the

standard PAPI, preventing the users from going through a relearning process.

Secondly, in addition to develop the library considering that it is aimed at

embedded systems, the avoidance of introducing event count errors to the counters when

using the library has been stablished as a maxim.

Last of all, keeping always the functionality in mind, the library has been

developed in a platform-independent way, leading to a portable library that can be used

in other boards from the same family and others.

4.2 Analysis of the PAPI subset of functions to be

included in ePAPI

4.2.1 Introduction to the analysis

In this section it is going to be exposed the analysis carried out in order to discern

which functions are going to be part of the subset of functions that will compose the

library that is going to be implemented and ran on top of the AURIX TriCore.

Jeremy Jens Giesen León 39

4.2.2 High level API functions analysis

Name of the function Description Supported? Motivation for supporting it or
not

int PAPI_accum_counters add current counts
to array and reset
counters

Y This function is supported since
it gives the user the possibility of
accumulating values to the array
that contains the event results.

int PAPI_num_counters get the number of
hardware counters
available on the
system

Y This function is supported since
it is highly probable that the user
requires to know the number of
PMCs that the system has.

int PAPI_num_components get the number of
components
available on the
system

N Reason2. Description found at the

table caption.

int PAPI_read_counters copy current
counts to array
and reset counters

Y It is a basic function to be
included in the library since it is
the main way to read the PMC.

int PAPI_start_counters start counting
hardware events

Y It is a basic function to be
included in the library as it
configures and starts the
counters.

int PAPI_stop_counters stop counters and
return current
counts

Y It is a basic function to be
included in the library since it is
responsible of stopping the
counters.

int PAPI_flips simplified call to
get Mflips/s
(floating point
instruction rate),
real and processor
time

N Reason3. Description found at the

table caption.

int PAPI_flops simplified call to
get Mflops/s
(floating point
operation rate),
real and processor
time

N Reason3. Description found at the

table caption.

int PAPI_ipc gets instructions
per cycle, real and
processor time.

Y This function is supported since
the platform is able to measure
both, total cycles and
instructions completed. Only
instructions per cycle is
obtained.

int PAPI_epc gets (named)
events per cycle,
real and processor
time, reference
and core cycles

Y This function is supported since
the platform is able to measure
both, total cycles and total
events (the last one is measured
by adding all the values of the
values array). Only instructions
per cycle is obtained.

40 Jeremy Jens Giesen León

4.2.3 Low level API functions analysis

Name of the function Description Supporte
d?

Motivation for supporting it or not

int PAPI_accum accumulate and
reset hardware
events from an
event set

Y Reason4. Description found at the

table caption.

int PAPI_add_event add single PAPI
preset or native
hardware event
to an event set

Y This function is implemented since
it is highly probable that the user
requires to include new events to
the eventSet.

int PAPI_add_named_event add an event by
name to a PAPI
event set

Y This function is implemented for
the same reasons as
PAPI_add_event and for the
possibility it offers to add trough
the name of the event.

int PAPI_add_events add array of PAPI
preset or native
hardware events
to an event set

Y This function is implemented for
the same reasons as
PAPI_add_event and for the
possibility it offers to add more
than one event to the eventSet
each time.

int
PAPI_assign_eventset_comp
onent

assign a
component index
to an existing but
empty eventset

N

Reason2. Description found at the

table caption.

int PAPI_attach attach specified
event set to a
specific process
or thread id

N Reason5. Description found at the

table caption.

int PAPI_cleanup_eventset remove all PAPI
events from an
event set

Y This function is implemented since
it is highly probable that the user
requires to clean up the eventSet.

int PAPI_create_eventset create a new
empty PAPI event
set

Y This function is implemented since
the user needs to create an
eventset in order to store the
events that he wants to measure.

int PAPI_detach detach specified
event set from a
previously
specified process
or thread id

N

Reason5. Description found at the

table caption.

int PAPI_destroy_eventset deallocates
memory
associated with
an empty PAPI
event set

N This functions ins’t implemented
since the the eventsets are created
since the initialization of the
library.

int PAPI_enum_event return the event
code for the next
available preset
or native event

N This function isn’t implemented
since it isn’t considered relevant in
the scope of this project.

int PAPI_enum_cmp_event return the event
code for the next
available
component event

N Reason2. Description found at the

table caption.

Jeremy Jens Giesen León 41

Name of the function Description Supporte
d?

Motivation for supporting it or not

int
PAPI_event_code_to_name

translate an
integer PAPI
event code into
an ASCII PAPI
preset or native
name

N Reason1. Description found at the

table caption.

int
PAPI_event_name_to_code

translate an ASCII
PAPI preset or
native name into
an integer PAPI
event code

Y This function is implemented since
it allows the user to know the PAPI
event code for further uses.

int PAPI_get_dmem_info get dynamic
memory usage
information

N This function isn’t implemented
since the hardware isn’t able to
monitor the dynamic memory
usage.

int PAPI_get_event_info get the name and
descriptions for a
given preset or
native event code

N Reason1. Description found at the

table caption.

const PAPI_exe_info_t*
PAPI_get_executable_info

get the
executable's
address space
information

N Reason6. Description found at the

table caption.

const PAPI_hw_info_t*
PAPI_get_hardware_info

get information
about the system
hardware

N Reason6. Description found at the

table caption.

const PAPI_get_multiplex get the
multiplexing
status of specified
event set

N This function isn’t implemented
since multiplexing isn’t supported
in the AURIX the way PAPI needs it
to be.

int PAPI_get_opt query the option
settings of the
PAPI library or a
specific event set

N Reason6. Description found at the

table caption.

int PAPI_get_cmp_opt query the
component
specific option
settings of a
specific event set

N Reason2. Description found at the

table caption.

long long PAPI_get_real_cyc return the total
number of cycles
since some
arbitrary starting
point

N This function isn’t implemented
since getting the total number of
cycles as an event, gives the same
functionality.

long long PAPI_get_real_nsec return the total
number of
nanoseconds
since some
arbitrary starting
point

N Reason6. Description found at the

table caption.

42 Jeremy Jens Giesen León

Name of the function Description Supporte
d?

Motivation for supporting it or not

long long PAPI_get_real_usec return the total
number of
microseconds
since some
arbitrary starting
point

N Reason6. Description found at the

table caption.

const PAPI_shlib_info_t*
PAPI_get_shared_lib_info

get information
about the shared
libraries used by
the process

N Reason5. Description found at the

table caption.

int PAPI_get_thr_specific return a pointer
to a thread
specific stored
data structure

N Reason5. Description found at the

table caption.

int
PAPI_get_overflow_event_in
dex

decomposes an
overflow_vector
into an event
index array

N This function isn’t implemented
since the size of the eventsets are
already the maximum size possible.

long long PAPI_get_virt_cyc return the
process cycles
since some
arbitrary starting
point

N Reason5. Description found at the

table caption.

long long PAPI_get_virt_nsec return the
process
nanoseconds
since some
arbitrary starting
point

N Reason5. Description found at the

table caption.

long long PAPI_get_virt_usec return the
process
microseconds
since some
arbitrary starting
point

N Reason5. Description found at the

table caption.

int PAPI_is_initialized return the
initialized state of
the PAPI library

N Reason1. Description found at the

table caption.

int PAPI_library_init initialize the PAPI
library

N This function isn’t implemented
since the PAPI library is initialized
automatically.

int PAPI_list_events list the events
that are members
of an event set

Y This function is implemented since
it is highly probable that the user
requires to print the events found
in an eventset and for the need of
this functions during the
development of the library.

int PAPI_list_threads list the thread ids
currently known
to PAPI

N Reason5. Description found at the

table caption.

int PAPI_lock lock one of two
PAPI internal user
mutex variables

N Reason5. Description found at the

table caption.

Jeremy Jens Giesen León 43

Name of the function Description Supporte
d?

Motivation for supporting it or not

int PAPI_multiplex_init lock one of two
PAPI internal user
mutex variables

N Reason5. Description found at the

table caption.

int PAPI_num_cmp_hwctrs return the
number of
hardware
counters for a
specified
component

N Reason2. Description found at the

table caption.

int PAPI_num_events return the
number of events
in an event set

Y This function is implemented since
it is highly probable that the user
requires to print the number of
events found in an eventset and for
the need of this functions during
the development of the library.

int PAPI_overflow set up an event
set to begin
registering
overflows

N Reason6. Description found at the

table caption.

void PAPI_error Print a PAPI error
message

N Reason1. Description found at the

table caption.

int PAPI_profil generate PC
histogram data
where hardware
counter overflow
occurs

N Reason6. Description found at the

table caption.

int PAPI_query_event query if a PAPI
event exists

N Reason1. Description found at the

table caption.

int
PAPI_query_named_event

query if a named
PAPI event exists

N Reason1. Description found at the

table caption.

int PAPI_read read hardware
events from an
event set with no
reset

Y Reason4. Description found at the

table caption.

int PAPI_read_ts read from an
eventset with a
real-time cycle
timestamp

Y This function is implemented since
it is relevant for timing analysis.

int PAPI_register_thread inform PAPI of
the existence of a
new thread

N Reason5. Description found at the

table caption.

int PAPI_remove_event remove a
hardware event
from a PAPI event
set

Y This function is implemented since
it is highly probable that the user
requires to remove events from
the eventSet.

int
PAPI_remove_named_event

remove a named
event from a PAPI
event set

Y This function is implemented since
it is highly probable that the user
requires to remove events from
the eventSet.

int PAPI_remove_events remove an array
of hardware
events from a
PAPI event set

Y This function is implemented since
it is highly probable that the user
requires to remove events from
the eventSet.

44 Jeremy Jens Giesen León

Name of the function Description Supporte
d?

Motivation for supporting it or not

int PAPI_reset reset the
hardware event
counts in an
event set

Y This function is implemented since
it is considered a basic feature
from the library.

int PAPI_set_debug set the current
debug level for
PAPI

N Reason6. Description found at the

table caption.

int PAPI_set_cmp_domain set the
component
specific default
execution domain
for new event
sets

N Reason2. Description found at the

table caption.

int PAPI_set_domain set the default
execution domain
for new event
sets

N Reason6. Description found at the

table caption.

int PAPI_set_cmp_granularity set the
component
specific default
granularity for
new event sets

N Reason2. Description found at the

table caption.

int PAPI_set_granularity set the default
granularity for
new event sets

N Reason6. Description found at the

table caption.

int PAPI_set_multiplex convert a
standard event
set to a
multiplexed event
set

N This function isn’t implemented
since the library only works with
standard eventsets.

int PAPI_set_opt change the option
settings of the
PAPI library or a
specific event set

N Reason6. Description found at the

table caption.

int PAPI_set_thr_specific save a pointer as
a thread specific
stored data
structure

N Reason5. Description found at the

table caption.

void PAPI_shutdown finish using PAPI
and free all
related resources

N

int PAPI_sprofil generate
hardware counter
profiles from
multiple code
regions

N Reason6. Description found at the

table caption.

int PAPI_start start counting
hardware events
in an event set

Y Reason4. Description found at the

table caption.

int PAPI_state return the
counting state of
an event set

Y This function is implemented since
it is important from the user’s
point of view to know the state of
an event set.

Jeremy Jens Giesen León 45

Name of the function Description Supporte
d?

Motivation for supporting it or not

int PAPI_stop stop counting
hardware events
in an event set
and return
current events

Y Reason4. Description found at the

table caption.

int PAPI_sterror return a pointer
to the error name
corresponding to
a specified error
code

N Reason1. Description found at the

table caption.

int PAPI_thread_id get the thread
identifier of the
current thread

N Reason5. Description found at the

table caption.

int PAPI_thread_init initialize thread
support in the
PAPI library

N Reason5. Description found at the

table caption.

int PAPI_unlock unlock one of two
PAPI internal user
mutex variables

N Reason5. Description found at the

table caption.

int PAPI_unregister_thread inform PAPI that
a previously
registered thread
is disappearing

N Reason5. Description found at the

table caption.

int PAPI_write write counter
values into
counters

N Reason4. Description found at the

table caption.

int
PAPI_get_event_component

return which
component an
EventCode
belongs to

N Reason2. Description found at the

table caption.

int
PAPI_get_eventset_compone
nt

return which
component an
EventSet is
assigned to

N Reason2. Description found at the

table caption.

int
PAPI_get_component_index

Return
component index
for component
with matching
name

N Reason2. Description found at the

table caption.

int PAPI_disable_component Disables a
component
before init

N Reason2. Description found at the

table caption.

int
PAPI_disable_component_by
_name

Disable, before
library init, a
component by
name.

N Reason2. Description found at the

table caption.

Table 2: PAPI functions supported in ePAPI. Key:

Reason1: This function isn’t implemented since there is no screen to print the result. (Nor

isn’t mappable to memory).

46 Jeremy Jens Giesen León

Reason2: The function isn’t supported due to the nonexistence of components to

add/remove.

Reason3: The function isn’t supported since the platform used doesn’t include the

possibility of counting floating point events.

Reason4: The function is implemented since it is one that is called by its highlevel

equivalent and for its relevance when using PAPI at low level.

Reason5: The function isn’t implemented because the scope of the project only includes

one core of the AURIX TriCore and doesn’t run an operating system to attach an

execution to a process.

Reason6: The function isn’t implemented since it isn’t considered relevant in the scope of

this project.

4.2.4 Functions analysis conclusions

Since the project focuses on the study of execution in a single core, the number of

PAPI functions to be included in ePAPI is limited as can be seen in the section of reasons

that lead to including a function or not. Another important reason that defines the

inclusion of a function is the lack of an operating system. This fact leads us not to support

functions related to processes or threads handling.

The data output which includes the results of the counts and other relevant

information, uses a linker script label to map the information into the AURIX memory,

more precisely, to the DSPR which is 120KB big. This aspect gives us a certain rigidity

when it comes to data output as we only have the ability to map numeric results.

One relevant aspect that must be pointed out, is the lack of support for the

monitoring of events related to floating point units, forcing us not to contemplate the high-

level functions related to their measurement (PAPI_flips and PAPI_flops).

4.3 ePAPI implementation

In this section, the implementation of the library object of this project will be

presented. For doing so, a series of aspects will be specified, such as the events supported

by the library as well as the interface of the counters and the two APIs that use it.

 Since ePAPI has been designed for a bare-metal environment, the results are

being mapped into a specified direction in the memory because of the lack of ways to

print out the information in a common way such as tty or console. The functionality in

which the implementation relies in order to allow mapping the results to memory are the

linker script labels.

Jeremy Jens Giesen León 47

4.3.1 Events and counter interface

ePAPI has a system of event codes that allows the user to refer to them when using

the library. The event codes that ePAPI supports are the following;

1. ePAPI_BR_INS

2. ePAPI_L1_DCH

3. ePAPI_L1_ICH

4. ePAPI_L1_ICM

5. ePAPI_L1_DCA

6. ePAPI_L1_DCM

7. ePAPI_L1_ICA

8. ePAPI_L1_ICR

9. ePAPI_MEM_SCY

10. ePAPI_TOT_CYC

11. ePAPI_TOT_INS

12. ePAPI_PMEM_STL

13. ePAPI_DMEM_STL

14. ePAPI_MULTI_ISSUE

15. ePAPI_IPDISP_STL

16. ePAPI_LSDISP_STL

17. ePAPI_LPDISP_STL

The exact meaning of the events, as well as a detailed description, is provided in

Chapter 3: AURIX TC275 Performance Monitoring Counters support, section 3.2.

The listed events can be used in conjunction by using Event Sets, which are user-

defined groups of hardware events. This means that the user can specify the events to be

added to an Event Set which makes the library much easier to use. It is the user’s

responsibility to choose events that can be counted simultaneously by reading the

processors documentation.

In addition to the described advantage, the event set provide us with information

related to the set at issue, such its state and the number of events it contains among others.
As you can see in the previous list, ePAPI only supports events known as preset events,

also known as predefined events, which are a common set of events deemed relevant and

useful for application performance tuning. The ePAPI library names 17 preset events,

which are defined in the header file, ePAPI.h.

 When it comes to the counter interface, it must be clarified that ePAPI is written

in C. The function calls are defined in the header file, papi.h and consist of the following

form:

<returned data type> ePAPI_function_name (arg1, arg2, …)

48 Jeremy Jens Giesen León

 The functions implemented in ePAPI are divided into two distinct groups, the

high-level API and the low-level API. As it is normal in this type of topologies, the high-

level API makes use of the low-level API for its operation.

When it comes to describe the differences between the standard PAPI and ePAPI,

it is imperative to talk about the differences as far as events are concerned. The standard

PAPI includes two types of events, the preset and the native ones, while ePAPI only

considers the preset. When we go deeper into the study of the supported preset events,

the standard PAPI names approximately 100 preset events, while ePAPI only 17. This is

due to the limited PMC support that the AURIX offers for being an embedded system.

Both libraries support the use of Event Sets. The difference that exists between

both implementations is that in the standard PAPI the user has the ability to configure

attributes, such as: the counting domain, whether or not the events are to be used for

overflow or profiling while in ePAPI that kind of attributes aren’t supported because in

the scope of the project only one core is brought to study.

On the other hand, when it comes to describe the differences between the counter

interfaces, the first point to clarify is that although written in C, the standard PAPI offers

the user the ability to use the library in Fortran as well as in C.

4.3.2 High-level API

The high-level API (Application Programming Interface) provides the ability to

start, stop, and read the counters for a specified list of events. Some of the benefits of

using the high-level API rather than the low-level API are that it is easier to use and

requires less setup (additional calls). This ease of use comes with somewhat loss of

flexibility.

It should also be noted that the high-level API can be used in conjunction with the

low-level API and in fact does call the low-level API. However, the high-level API

by itself is only able to access those events countable simultaneously by the

underlying hardware.

There are seven functions that represent the high-level API that allow the user to

access and count specific hardware events.

• void ePAPI_accum_counters

• void ePAPI_num_counters

• void ePAPI_read_counters

• void ePAPI_start_counters

• void ePAPI_stop_counters

• void ePAPI_ipc

• void ePAPI_epc

Jeremy Jens Giesen León 49

4.3.2.1 Execution rate calls

Two ePAPI high-level functions are available to measure total instruction rates.

These two calls are shown below:

void ePAPI_ipc ()

void ePAPI_epc(int *EventSet, long long *values, int

NUM_EVENTS)

Arguments

int *EventSet It is an array of codes for events such as ePAPI_TOT_CYC.

int NUM_EVENTS It is the number of items in the events array.

long long *values It is an array where to put the counter values.

The first execution rate call sets up the counters to monitor ePAPI_TOT_INS and

ePAPI_TOT_CYC (depending on the call) as well as the events found in the specified

Event Set (in the case of epc), and starts the counters. Subsequent calls to the same rate

function will read the counters and return the instructions per cycle together with the real

time, when calling ipc, and the appropriate rate of execution together with the real time

when calling epc. A call to ePAPI_stop_counters will reinitialize all values to 0 and stop

the counters.

The simultaneous use of both rate calls is incompatible with each other as well as

with the rest of the functions described below.

4.3.2.2 Starting, numbering, reading, accumulating and stopping counters

In ePAPI counters can be started, numerated, read, accumulated and stopped by

calling the following high-level functions, respectively:

void ePAPI_start_counters (int *Events, int NUM_EVENTS)

void ePAPI_num_counters()

void ePAPI_read_counters(long long *values, int NUM_EVENTS)

50 Jeremy Jens Giesen León

void ePAPI_accum_counters(long long *values, int

NUM_EVENTS)

void ePAPI_stop_counters(long long *values, int array_len)

Arguments

int *Events It is an array of codes for events such as ePAPI_TOT_CYC.

int NUM_EVENTS It is the number of items in the events array.

long long *values It is an array where to put the counter values.

ePAPI_num_counters returns the number of hardware counters available on

the system. On the other hand, ePAPI_start_counters starts counting the events

named in the *Events array. This function implicitly stops and initializes any counters

running as a result of a previous call to ePAPI_start_counters. It is the user’s

responsibility to choose events that can be counted simultaneously by reading the

processors documentation. The size of NUM_EVENTS shouldn’t be larger than the value

returned by ePAPI_num_counters.

ePAPI_read_counters, ePAPI_accum_counters and

ePAPI_stop_counters all capture the values of the currently running counters into

the array *values, although each of them behaves somewhat differently.

ePAPI_read_counters copies the current counts into the elements of the *values

array, resets the counters to zero, and leaves the counters running.

ePAPI_accum_counters adds the current counts into the elements of the *values

array, resets the counters to zero, and leaves the counters running.

ePAPI_stop_counters stops the current counts and writes the current counts into

the elements of the *values array.

4.3.2.3 Differences between the high-level APIs of PAPI and ePAPI

In the following section the differences between PAPI and ePAPI are described

as far as the high-level API is concerned.

Execution rate calls

When it comes to the execution rate calls, the standard PAPI includes two more

functions that aren’t supported in ePAPI. The functions at issue are called PAPI_flips

and PAPI_flops. The reason why they haven’t been implemented in ePAPI is because

of the lack of support on floating point operations in the AURIX. As their names indicate,

Jeremy Jens Giesen León 51

these functions are able to return the Mflips/s (floating point instruction rate) and the

Mflops (floating point operation rate) and worked similar to ePAPI_ipc and

ePAPI_epc functions.

Starting, numbering, reading, accumulating and stopping counters

On the other hand, regarding the starting and numbering functions, known as

ePAPI_num_counters and ePAPI_start_counters, it should be noted that

when used in the standard PAPI, they have an additional function which is initializing the

library. This functionality hasn’t been added in ePAPI because it is unnecessary to

initialize the library because of the way it has been implemented.

4.3.3 Low-level API

The low-level API (Application Programming Interface) manages hardware

events in user-defined groups called Event Sets. It is meant for experienced application

programmers and tool developers wanting fine-grained measurement and control of the

PAPI interface. Other feature of the low-level API is the ability to obtain information

about the executable. Some of the benefits of using the low-level API rather than the high-

level API are that it increases efficiency and functionality.

4.3.3.1 Creating, adding, removing, and emptying (to) an event set

As described above, the low-level API manages hardware events in groups called

Event Sets. These structures can be created, emptied and can be added and removed

events. This operations give the user the ability to split hairs as far as event sets are

concerned.

Creating an Event Set

 An event set can be created by calling the following low-level function:

void ePAPI_create_eventset (int *EventSet)

Argument

int *EventSet Address of the location where the EventSet identifier is.

Once it is created, the user may add hardware events to the EventSet by calling

ePAPI_add_event or ePAPI_add_events.

52 Jeremy Jens Giesen León

Adding events to an Event Set

 Hardware events can be added to an event set by calling the following low-level

functions:

void ePAPI_add_event (int EventSet, int EventCode)

void ePAPI_add_events (int EventSet, int *EventCode, int

size)

Arguments

int EventSet An integer handle for an Event Set created by

ePAPI_create_eventset.

int EventCode A defined event such as ePAPI_TOT_CYC

int *EventCode Addres of an array of defined events.

size An integer that indicates the number of events in the array

*EventCode

ePAPI_add_event adds a single hardware event to an Event Set, while

PAPI_add_events does the same as ePAPI_add_event, but for an array of

hardware event codes. Implicitly, ePAPI_add_event calls ePAPI_add_event to

do the addition.

Removing and emptying events in an Event Set

 A hardware event and an array of hardware events can be removed from an Event

Set by calling the following low-level functions, respectively:

void ePAPI_remove_event (int EventSet, int EventCode)

void ePAPI_remove_events(int EventSet, int *EventCode, int

size)

Arguments

int EventSet An integer handle for an Event Set created by

ePAPI_create_eventset.

int EventCode A defined event such as ePAPI_TOT_CYC

int *EventCode Addres of an array of defined events.

size An integer that indicates the number of events in the array

*EventCode

Jeremy Jens Giesen León 53

ePAPI_remove_event removes a single hardware event to an Event Set, while

PAPI_remove_events does the same as ePAPI_remove_event, but for an array

of hardware event codes. Implicitly, ePAPI_remove_event calls

ePAPI_remove_event to do the removal.

 In addition, all the events in an event set can be emptied by calling the following

low-level function:

void ePAPI_cleanup_eventset (int EventSet)

Argument

int EventSet An integer handle for an Event Set created by

ePAPI_create_eventset.

Starting, reading, adding and stopping events in an Event Set

 Hardware events in an Event Set can be started, read, added, and stopped by

calling the following low-level functions, respectively:

void ePAPI_start (int EventSet)

void ePAPI_read (int EventSet, long long *values)

void ePAPI_accum (int EventSet, long long *values)

void ePAPI_stop (int EventSet, long long *values)

Arguments

int EventSet An integer handle for an Event Set created by

ePAPI_create_eventset.

long long *values An array to hold the counter values of the counting events.

ePAPI_start starts counting the events of a previously defined Event Set.

ePAPI_read copies the current counts into the elements of the *values array. The

counters are left counting after the read without resetting.

ePAPI_accum adds the current counts into the elements of the *values array. The

counters are left counting after the read without resetting.

ePAPI_stop stops the current counts and writes the current counts into the elements

of the *values array.

54 Jeremy Jens Giesen León

Resetting events in an event set

 The hardware event counts in an event set can be reset to zero by calling the

following low-level function:

void ePAPI_reset (int EventSet)

Argument

int EventSet An integer handle for an Event Set created by

ePAPI_create_eventset.

4.3.3.2 State of an Event Set

The counting state of an Event Set can be obtained by calling the following low-

level function:

void ePAPI_state (int EventSet)

Argument

int EventSet An integer handle for an Event Set created by

ePAPI_create_eventset.

The functions maps to memory a 1 if the Event Set is running or a 0 if the Event

Set isn’t running.

4.3.3.3 Differences between the low-level APIs of PAPI and ePAPI

In the following section the differences between PAPI and ePAPI are described

as far as the low-level API is concerned.

Initialization of the low-level API

 In the same way as in the high-level API, in the low-level API the standard PAPI

needs to be initialized. For doing so, PAPI uses a function named

PAPI_library_init. This previous step is not required by ePAPI for its operation.

Jeremy Jens Giesen León 55

Destroying an Event Set

 The standard PAPI gives the user the ability to destroy an Event Set by calling the

function named PAPI_destroy_eventset. This function is not contemplated in

ePAPI because they are automatically destroyed by the end of the execution.

State of an Event Set

 The standard PAPI uses a different prototype function to get the state of an Event

Set:

PAPI_state (int EventSet, *status)

This is because in PAPI the state of an Event Set can be more than two. While in

ePAPI an Event Set can be either running or not running, in the standard PAPI are

considered all the states described below which aren’t contemplated in ePAPI because of

the scope of the project.

PAPI_STOPPED EventSet is stopped

PAPI_RUNNING EventSet is running

PAPI_PAUSED EventSet temporarily disabled by the library

PAPI_NOT_INIT EventSet defined, but not initialized

PAPI_OVERFLOWING EventSet has overflow enabled

PAPI_PROFILING EventSet has profiling enabled

PAPI_MULTIPLEXING EventSet has multiplexing enabled

PAPI_ATTACHED EventSet is attached to another

thread/process

56 Jeremy Jens Giesen León

Chapter 5

ePAPI verification and validation

5.1 Methodology

When it comes to the methodology followed, two aspects of it must be

highlighted. The test environment and the followed procedure.

5.1.1 Test environment

The test environment of the verification and validation of the library includes all

the resources of the project environment. A brief summary of them is found below:

• Cygwin and Tricore-gcc: that allowed us to compile the sources that

contained the library and the test programs.

• Universal Debug Engine UDE: that allowed us to upload the binaries and

execute them on the selected cores as well as check the results obtained

after the execution.

• A translation script: that let us translate the mapped-to-memory results into

readable text.

• Remote access to a PC found at the BSC to which the AURIX TriCore

platform is connected.

5.1.2 Followed procedure

The procedure followed has been focused in both, verifying and validating the

developed library. On the one hand, it consisted in the design and implementation of test

programs that seeked to stress certain components of the AURIX that are directly related

to the events of the library to be validated. On the other hand, regarding the verification,

a selection and test of possible use scenarios of the library was studied.

The implemented stress programs were developed to prove the ePAPIs

consistency and accuracy with respect to bare-metal PMC readings. So the validation

consisted in executing the stress programs both, in bare-metal and with ePAPI separately

to check if ePAPI introduced count errors to the counters.

Jeremy Jens Giesen León 57

5.2 Verification of ePAPI functions

In the following section we will describe the verification process carried out in

order to verify the correct functioning of the resulting library of this project. To do this, a

method that would allow us to study the possible use cases was selected in order to verify

the correct functioning of the library and its uses.

The selected method was the recreation of the most common use cases from the

library. In order to get those common use cases, we looked for examples in the user’s

guide of the standard PAPI (found in the ePAPI user’s guide as well). In addition to these

tests, we performed independent verifications of each of the functions that compose

ePAPI.

Both, the high-level API and the low-level API were verified together and

separately. When verifying the high-level API, some of the examples included calling to

a big set of the functions that ePAPI supports. —i.e, numbering the events together with

the call that list them, starting the counters followed by several reads that were interleaved

by pieces of benchmarks or stress programs, alternating resets and accumulations of the

counters and finally stopping the counters.

 On the other hand, when it comes to the low-level API, similar examples were

executed but adding Event Set manipulation functions as well as information obtaining

functions about the executable.

5.3 Validation of ePAPI

As described above, the validation of ePAPI consisted in the design of specific

stress programs that were executed separately in bare-metal and using the library, with

the objective of checking if the library introduced count errors to the counters whilst

running the programs and counting the events.

5.3.1 Experiment set-up

As it has been described in chapter 4, ePAPI supports 17 monitoring events.

Checking if ePAPI introduces count errors to the counters is mandatory for each of them,

so this section will describe the experiment set-up that includes tests for each event.

For each event a stress program was designed in assembly. The stress programs

were embedded into two programs per event, in one of them the counters were configured

and used in bare-metal. In the other one, ePAPI was used to perform the count. The used

programs are found in the annex to this document.

58 Jeremy Jens Giesen León

5.3.2 Results

In the following table, we can find all the results obtained from the tests carried

out to verify that the developed library does not introduce count errors to the counters in

order to be qualified as a useful dependable performance hardware counter measurement

tool.

ePAPI_BR_INS Total branches Total cycles Total instructions

Bare-metal 4.001.001 6.355.019 6.009.010

ePAPI 4.001.004 6.019.042 6.009.021

ePAPI_L1_DCH Data cache hits Total cycles Total instructions

Bare-metal 5.999 187.028 32.010

ePAPI 5.999 187.051 32.021

ePAPI_L1_DCM Data cache misses Total cycles Total instructions

Bare-metal 6.001 187.029 32.010

ePAPI 6.001 187.051 32.021

ePAPI_L1_DCA Data cache accesses Total cycles Total instructions

Bare-metal 12.000 187.028 32.010

ePAPI 12.000 187.051 32.021

ePAPI_L1_ICH Instr. cache hits Total cycles Total instructions

Bare-metal 499.000 11.028.024 1.017.010

ePAPI 499.000 11.028.048 1.017.021

ePAPI_L1_ICM Instr. cache miss Total cycles Total instructions

Bare-metal - - -

ePAPI - - -

ePAPI_L1_ICA Data cache misses Total cycles Total instructions

Bare-metal 499.002 11.028.021 1.017.010

ePAPI 499.002 11.028.052 1.017.021

ePAPI_L1_ICR Data cache misses Total cycles Total instructions

Bare-metal 499.002 11.028.021 1.017.010

ePAPI 499.002 11.028.054 1.017.021

ePAPI_MEM_SCY Memories stall Total cycles Total instructions

Bare-metal 197.007 289.014 156.010

ePAPI 197.007 289.040 156.021

ePAPI_DMEM_STL Data mem. stall Total cycles Total instructions

Bare-metal 126.001 181.015 47.010

ePAPI 126.001 181.037 47.021

ePAPI_PMEM_STL Progr. mem. stall Total cycles Total instructions

Bare-metal 17.005 53.015 31.010

ePAPI 17.006 53.040 31.021

ePAPI_MULTI_ISSUE Multi issues Total cycles Total instructions

Bare-metal 100.013 120.039 230.050

ePAPI 100.016 120.062 230.061

Jeremy Jens Giesen León 59

ePAPI_IPDISP_STL Instr. Disp. stall Total cycles Total instructions

Bare-metal 1.000 17.015 17.010

ePAPI 1.000 17.037 17.021

ePAPI_LSDISP_STL L/S Disp. stall Total cycles Total instructions

Bare-metal 2.002 17.015 17.010

ePAPI 2.006 17.037 17.021

ePAPI_LPDISP_STL Loop Disp. stall Total cycles Total instructions

Bare-metal - - -

ePAPI - - -

As we can see in the results contained in the table, ePAPI allows the users to use

the PMCs of the AURIX to count events without adding count errors to them.

In addition to the values corresponding to the events that have been sought to be

measured while stressing certain parts of the AURIX, in each comparison the values of

total cycles as well as of total instructions have been obtained. This allows us to have a

deeper insight as far as the comparative between bare-metal counting and the count done

with ePAPI is concerned. By using this information, we get the possibility to check further

relevant information — e.g. the striking fact that ePAPI always executes 11 instructions

more than its equivalent in bare-metal, regardless of the total number of instructions. This

is logical due to the differences in the transmission, start and end of both systems. In any

case, the constancy of these 11 instructions is a negligible, assumable, and if critical,

correctable difference.

 As a direct consequence of the increase in the number of instructions, the number

of cycles is affected by their duration. This is reflected in turn in a constant difference of

around 25 cycles.

 As we can see for the values corresponding the ePAPI_LPDSIP_STL and

ePAPI_L1_ICM events, the fields are null. This is due to the impossibility of obtaining

the results, although favorable, of the experimental system found at the BSC due to a

connectivity problem that had place in the final phases of the project. Once the issue is

solved, the results will be collected and sent to the academic tribunal as an erratum

addendum if allowed.

60 Jeremy Jens Giesen León

Chapter 6

Main contributions, achieved objectives, and future

directions

6.1 Main contributions and achieved objectives

One of the main investigation lines of the Barcelona Supercomputing Center

works in the context of several industrial and research projects in collaboration with some

of the main tools, components and OEM industries in the automotive, avionics and space

domains. As part of those projects, a number of ARM, NVIDIA, Zynq and Infineon

boards, among others, need to be set up and interfaced through debug interfaces and/or

low-level software to monitor the execution of programs, either with or without an OS

layer. Porting applications from the critical real-time systems domains (namely

automotive, avionics and space) for their evaluation on top of the identified target

platforms, are a necessary step to provide industry with information on how to use those

platforms reliably for the execution of their most critical software, such as that responsible

of navigation in planes/satellites, and autonomous driving in cars.

This project seeks to interface one of the boards supported by the CAOS group to

make possible the monitoring of the execution of programs ran on top of it in a simpler

way, since the modus operandi so far consisted in making measurements in bare-metal.

One of the premises of the project has been the implementation of the functionality

at issue in a platform-independent way, which has led to a synergy that has allowed us to

obtain a library that can be exported to other platforms, such as one of those described at

the beginning of this section.

By the end of this project, I have become familiar with a current and representative

platform of the automotive domain such as the AURIX TriCore TC275, as well as have

achieved a deep knowledge of the PMC support specially in relation with the PAPI

organization. I have worked scientifically to obtain verifiable results and have obtained

the ability to present and explain the different techniques, evaluations and results with

clarity and scientific rigor.

6.2 Critical assessment

When a project of these characteristics is developed, we find that some desirable

characteristics are not covered by certain limitations added by the selected hardware as

well as by the scope of the project itself. In this section, we will analyze and discuss the

limitations at issue.

Jeremy Jens Giesen León 61

When we study the limitations introduced by the board, we can highlight some

that are typical of the embedded systems domain and that include premises on which their

design is based, such as energy saving among others. e.g., the limited number of PMCs

and the lack of support that these give to monitor FPU events. Regarding the number of

PMCs, these are considered to be scarce, mainly when differentiated with the amount

found in conventional processors which is the common amount with which PAPI works

with. This idea is strengthened when we remember that three of the five PMCs that the

system has, are multiplexed, what introduces certain rigidity to its use. Following the

same line, it is worth highlighting the need to make use of the high efficient core (core 0)

to govern the high-performance ones (cores 1 and 2), which is the type of core taken to

study, what again introduces rigidity to the use of the system.

On the other hand, when we study the limitations introduced by the scope of the

project, since it has been carried out around a development board, it has lacked a way of

displaying the results of the count apart from the UDE. What led us to have to map the

result to a certain memory address to be able to consult the obtained values. In addition,

the lack of operating system led us to develop the library in bare-metal which among

other aspects, prevented us from having a user interface.

6.3 Future directions

As it happens in the closure of most projects, we can list a series of possible

extensions or related future studies. Next, we highlight some that may be interesting:

• Since the scope of this project has only considered the performance efficient cores,

it could be interesting to extend the present study taking into account the energy

efficient one;

• There are certain aspects that have not been appreciated in the validation process,

such as the in-depth study of the different ways that ePAPI offers to read the

counters such as ePAPI_accum/ePAPI_accum_counters, ePAPI_read_ts, etc.,

although being all based originally on the same method.;

• The real-time operating system (RTOS) layer was not considered in the scope of

the project. A subset of PAPI only makes sense in the presence of an RTOS (e.g.,

per task counters support). It could be interesting to extend this study by

considering an automotive RTOS (e.g., Erika Enterprise RTOS).

62 Jeremy Jens Giesen León

Bibliography

[1] PAPI USER’S GUIDE Version 3.5.0

[2] PAPI 5.6.0.0: The High-Level API. http://icl.cs.utk.edu/papi

[3] PAPI 5.6.0.0: The Low-Level API. http://icl.cs.utk.edu/papi

[4] AURIX TC27x B-Step 32-Bit Single-chip Microcontroller User’s Manual V 1.4.1

2014-02. Infineon Technologies AG

[5] TriCore V1.6 Core Architecture 32-bit Unified Processor Core User Manual

(Volume 1) V1.0, 2012-05. Infineon Technologies AG 81726 Munich

[6] TriCore V1.6 Core Architecture 32-bit Unified Processor Core User Manual

(Volume 2) V1.0, 2012-05. Infineon Technologies AG 81726 Munich

[7] TriCore ™ Compiler Writer’s Guide 32-bit Unified Processor Edition 2003-12.

Infineon Technologies AG D-81541 München, Germany

[8] TriCore ™ 1 Pipeline Behavior & Instruction Execution Timing TriCore ™ 1

Modular (TC1M). Infineon Technologies AG 81726 Munich

[9] Can Hardware Performance Counters be Trusted? Vincent M. Weaver and Sally A.

McKee. Computer Systems Laboratory Cornel University.

	Portada
	TFT04-v12
	Cuerpo

		2018-05-31T11:24:01+0100
	GIESEN LEON JEREMY JENS - 42228282Y

		2018-05-31T11:29:09+0000
	FERNANDEZ GARCIA ENRIQUE - 43253427H

