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In this work, we analyze the thermodynamic states of the helium plasma and their influence on the

stopping power calculations which are needed for obtaining the energy loss of the iron beams

traversing them. The analysis is made in ranges of plasma free electron densities (1015–1019 cm�3)

and temperatures (1–10 eV) of experiments with iron beams at 6 and 4.3 MeV/u energies. For this

purpose, we use Saha-Boltzmann equations for local thermal equilibrium (LTE) and a collisional-

radiative model for non-local thermal equilibrium (NLTE) in steady-state situation implemented in

a computer code. For the highest temperatures and free electron densities, LTE and NLTE models

provide quite similar results for the average ionization and ion abundances. When the opacity

effects are taken into account in the NLTE simulations, the optically thick simulations provide

fairly similar results to those of the LTE model. The plasma thermodynamic states have a direct

impact on the calculation of the energy loss. The differences on the plasma stopping power between

considering it in LTE or in NLTE may entail a 10% of the total stopping for the experiments ana-

lyzed in the electron density region of 1018–1019 cm�3. These differences can be around 27% for

plasmas with smaller electron density of 1017 cm�3 and around 42% for plasmas with an electron

density of 1015 cm�3. New experiments would be appreciated to be made in a future to corroborate

the latest calculations. Published by AIP Publishing. https://doi.org/10.1063/1.5050528

I. INTRODUCTION

For the last few decades, the interaction of ion beams

and charged particles with plasmas has been an issue widely

studied. These interactions have opened a variety of fields in

physics to investigate, for example, production and diagno-

ses of warm dense matter (WDM),1 the target response in

accelerators, fast ignition,2,3 etc. The understanding of the

interactions of swift charged particles with plasmas is funda-

mental to determine the energy deposition of the beam inside

the plasma.4–7 Therefore, a full theoretical method is needed

to calculate correctly this energy deposition of projectile

ions in any kind of laboratory plasmas. The energy loss of

ions in local thermal equilibrium (LTE) plasmas has been

widely studied. However, the energy loss of ions in non-

local thermal equilibrium (NLTE) plasmas has not been con-

sidered so much. The thermodynamic state of the target

plasma is so relevant to know its ionization which is, at the

same time, crucial to establish the contribution of the plasma

free or bound electron to the projectile energy loss.8,9

Dielectric formalism can be used to study the free elec-

tron contribution based on dielectric functions of the plasma

target,10–12 for instance, the Random Phase Approximation

(RPA) dielectric function. This approximation considers the

effect of incident particles as perturbations, so the energy loss

is proportional to the square of its charge. RPA dielectric

function is interesting as it is valid for plasmas of all degener-

acies,13–15 although does not consider collisions between

target electrons. The Coulomb parameter of the analyzed

cases in this work is around g¼Q/vp¼ 1.35 – 1.68, and then,

it is in the limit of the applicability of the RPA, with Q and vp

being the charge and velocity of the projectile, respectively.

Mean excitation energies16 play an important role in the

bound electron stopping power. They have been obtained from

Hartree-Fock calculations17,18 instead of using complex oscilla-

tor strengths sums.8,19 Also, it is common to estimate the

atomic properties required for the calculation of the excitation

energies in the context of the average atom.20 However, in this

work, they have been obtained in the detailed atom description,

where all charge states of the chemical element are considered.

The projectile energy loss depends on plasma thermody-

namic state. In general, the laboratory plasmas can be found

in LTE or NLTE thermodynamic regimes. In NLTE, ions

abundances are calculated by using the so-called collisional-

radiative models (CR)21 which implies to solve a set of rate

equations with coupling of ion configurations, free electrons,

and photons. On the other hand, the LTE regime could be

reached when the collisional processes are dominant over the

radiative ones. The calculation of the ion abundances in LTE

is considerable simpler than in NLTE since the Saha-

Boltzmann (SB) equation can be used. The appropriate

knowledge of the thermodynamic regime is a rather impor-

tant point, since the differences in the ion abundances pro-

vided by CR and SB simulations can be considerably large.

We first analyzed the influence of the thermodynamic regime

in the numerical simulation of plasma properties such as the

average ionization, ion abundances, and stopping number.

For that purpose, we have made NLTE and LTE calculationsa)ManuelD.Barriga@uclm.es
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of those properties using the MIXKIP code,22 in which both

CR and SB equations are implemented. Furthermore, we

have also analyzed the opacity effects in the calculation of

the plasma level populations as they can be relevant for the

experiments analyzed. In the second part, we have compared

our numerical simulations of the energy loss of ion projec-

tiles in plasmas with the data obtained in two experiments.

This paper is organized as follows: In Sec. II, the theo-

retical models for the calculation of the energy loss and for

the thermodynamic states are shown. Afterwards in the same

section, the analysis of the influence of the thermodynamic

regime in the calculation of plasma properties is presented.

Finally, in Sec. III, the results for the energy loss obtained

with the theoretical models are discussed and compared with

experimental data.

II. THEORETICAL FRAMEWORK

A. Ion energy loss

In this subsection, atomic units were used, e ¼ �h ¼ me

¼ 1. The energy loss in a partially ionized matter can be esti-

mated through two contributions, free and bound

electrons8,23

dE

dx
¼ dE

dx free
þ dE

dxbound
¼ 4pQ2

v2
p

nat � q � Lfe þ Lbeð Þ: (1)

The atomic density of the plasma is nat and the mean plasma

ionization is q, resulting the free electron density, nfe¼ nat � q.

The free electron stopping number, Lfe, can be computed

using the dielectric formalism, through RPA dielectric func-

tion, �RPA,24,25 developed in terms of the wave number k and

the frequency x provided by quantum mechanics analysis.

The expression for RPA dielectric function is10

�RPAðk;xÞ ¼ 1þ 1

p2k2

ð
d3k0

f ð~k þ ~k0 Þ � f ð~k0 Þ
xþ i� � ðE~kþ~k0 � E~k0 Þ

; (2)

where E~k0 ¼ k02=2, and temperature dependence is shown

through the Fermi-Dirac function

f ð~kÞ ¼ 1

1þ exp bðEk � lÞ½ � ; (3)

where b¼ 1/(kBT) and l is the chemical potential of the

plasma with an electron density nfe and temperature T, and

kB is the Boltzmann constant. If the absence of target elec-

tron collisions is assumed, the collision frequency �! 0. An

analytic RPA dielectric function for plasmas at any degener-

acy can be obtained from Eq. (2)24

�RPAðk;xÞ ¼ 1þ 1

4z3pkF
gðuþ zÞ � gðu� zÞ½ �; (4)

where u¼x/(k�F) and z¼ k/(2kF) are dimensionless varia-

bles10 and kF ¼ �F ¼
ffiffiffiffiffiffiffiffi
2EF

p
is the Fermi velocity. g(x) is

defined as

gðxÞ ¼
ð1

0

ydy

expðDy2 � blÞ þ 1
ln

xþ y

x� y

� �
; (5)

where D¼EFb is the degeneracy parameter. Finally, the free

electronic contribution can be calculated as

LfeðvpÞ ¼
1

2p2nfe

ð1
0

dk

k

ðkvp

0

xdx Im � 1

�RPAðk;xÞ

� �
: (6)

The bound electron contribution is obtained as the sum

of the bound stopping number of each plasma species8,9

Lbe ¼
X

s

ps � Lbe;sð Þ; (7)

where ps is the relative abundances of the plasma ions, being

the bound stopping number of any species s

Lbe;s ¼
X

i

Ns;iLbe;s;i; (8)

where Lbe,s,i and Ns,i are the stopping number and the number

of bound electrons in the i shell of the ion species s in the tar-

get, respectively. The total bound electron density of the

plasma is nbe ¼ nat �
P

sðps � NsÞ, where Ns ¼
P

i Ns;i.

The stopping number for bound electrons Lbe,s,i is

obtained from an interpolation between high and low projec-

tile velocity approximations, avoiding the logarithm negative

values for low velocities23,25

Lbe;s;iðvpÞ ¼
LH;iðvpÞ ¼ ln

2v2
p

Ii

 !
� 2Ki

v2
p

for vp > vint;i

LB;iðvpÞ ¼
aiv3

p

1þ Giv2
p

for vp � vint;i;

8>>>><
>>>>:

(9)

where ai ¼ 1:067K
1=2
i I�2

i is the hydrogenic approximation

friction coefficient for low velocities, and vint,i¼ (3Ki

þ 1.5Ii)
1=2 is an intermediate velocity that links both expres-

sions without discontinuity for an electron at the i shell. Gi is

obtained when LH,i(vint,i)¼LB,i(vint,i). The mean excitation

energy can be obtained from the following expression:16,26

Ii ¼
ffiffiffiffiffiffiffiffi
2Ki

hr2
i i

s
; (10)

where Ki is the electronic kinetic energy and hr2
i i is the qua-

dratic mean radius for an electron at the i shell, respectively,

using the Hartree-Fock method.17 This calculation method

has the advantage of estimating the stopping number shell by

shell, instead of consider it as a global average value. In Sec.

II C, it is shown that how the abundances of the different spe-

cies are calculated.

B. Ion charge state

If the ion projectile is considered point-like, the equilib-

rium charge state, Qeq, can be used in order to estimate the

theoretical energy loss. The equilibrium charge state is the

charge state that the ion projectile achieves after traveling

inside the target till the electron capture and loss processes

of the projectile are balanced. It is calculated as27,28

093113-2 Barriga-Carrasco et al. Phys. Plasmas 25, 093113 (2018)



QeqðvpÞ ¼ Z � NeqðvpÞ ¼ Z � Ze�vr=Z2=3

; (11)

where Z is the atomic number of the projectile, Neq(vp) is the

equilibrium number of bound electrons, Z2=3 is the velocity

of the electrons bound to the projectile in the Thomas Fermi

model (a.u.), and vr is the relative velocity of the projectile

to the electrons of the target. The equilibrium charge state of

the projectile increases together with its relative velocity,

unless it achieves the limit value Qeq(vp¼1)¼ Z when the

velocity is high enough.

If the projectile ion is not considered point-like, then the

Brandt-Kitagawa (BK) model can be used to describe its

charge distribution, using a generic orbital for electrons that

depends on the variational parameter K

qeBKðrÞ ¼
N

4pK3

K
r

e�
r
K; (12)

where N is the number of electrons bound to the projectile,

and r is the distance to the nucleus. The Fourier transform of

the BK electron charge density needed in Eq. (14) is

qeBKðkÞ ¼
N

1þ ðkKÞ2
: (13)

Instead of N, we can use the equilibrium number of electrons

bound to the projectile obtained just before, Neq(vp). Then,

the BK distribution can be replaced in the stopping number

LfeðvpÞ ¼
1

2p2nfeQ2

ð1
0

dk

k
Z � NeqðvpÞ

1þ ðkKðvpÞÞ2

" #2

�
ðkvp

0

xdx Im � 1

�RPAðk;xÞ

� �
: (14)

Most authors evaluate the energy loss assuming that the

projectile ion does not change its charge state along its

travel inside the target. They use the equilibrium charge

value; however, it must be considered that although the ion

charge tends to it, depending on the target length maybe it

will be never achieved. Therefore, the theoretical energy

loss calculation should take into account the instantaneous

charge state of the projectile during its travel. In our model,

the charge state depends on the distance traveled by the pro-

jectile inside the target. If Q0 is the initial charge state of

the ion before entering the target, the charge dependence on

the distance is

Qðvp; xÞ ¼ QeqðvpÞ þ ðQ0 � QeqðvpÞÞ exp �x=xeq

� �
; (15)

where xeq is the equilibrium length which can be estimated

as the distance where the processes of electron capture and

loss are equal.29 Note that the evolution of the initial charge

state Eq. (15) does not depend on the ion velocity, but the

equilibrium charge state Qeq(vp) does. The parameter xeq is

very important as it determines all the evolution of the

charge state and the length that the ion must travel to reach

its equilibrium charge state. Then, the number of bound elec-

trons is obtained as N(vp, x)¼Z – Q(vp, x) and the new free

stopping number is

Lfeðvp; xÞ ¼
1

2p2nfeQ2

ð1
0

dk

k
Z � Nðvp; xÞ

1þ ðkKðvp; xÞÞ2

" #2

�
ðkvp

0

xdx Im � 1

�RPAðk;xÞ

� �
; (16)

and the one along the propagation in the target plasma is

obtained as

LfeðvpÞ ¼
1

Dx

ðDx

0

Lfeðvp; xÞdx; (17)

where Dx is the total plasma length. The effective charge

Qeff can be defined as the ratio between the energy loss of

the heavy ion and that of the proton for the same plasma con-

ditions.27,28 This effective charge Qeff is larger than the equi-

librium charge state Qeq due to the incorporation of the BK

charge distribution

Qeff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LfeðFeÞ=LfeðpþÞ

q
: (18)

This Qeff value is used to calculate the energy loss in Sec. III.

C. Plasma at different thermodynamic states

When the plasma approaches the LTE regime, the rela-

tive abundances of the different ionization stages, ps, can be

obtained by means of the Saha equation30,31

nfe
psþ1

ps
¼ Usþ1

Us

� �
2
ð2pkBTÞ3=2

h3

� �
e�
ðvs�DvsÞ

kBT ; (19)

where Us is the partition function of the ion s, h is the Planck

constant, vs is the ionization potential of the species s, and

Dvs is the depression of the ionization potential (continuum

lowering, CL) due to the plasma environment. The formula-

tion developed by Stewart and Pyatt32 was applied which is

valid for the range of densities and temperatures in which

ionization is appreciable.

However, for most cases, plasmas do not verify the con-

ditions needed to achieve the LTE regime, so they are in

NLTE. The atomic level abundances are then determined

from a system of collisional-radiative rate equations.21 This

set of kinetic rates equations is given by

dps;ið~r; tÞ
dt

¼
X
s0;i0

ps0;i0 ð~r; tÞRþs0;i0!s;i �
X
s0;i0

ps;ið~r; tÞR�s;i!s0;i0 ;

(20)

where~r is the position, t is the time, and ps,i is the abundance

of the atomic i level of the ion with ionization state s such

that ps ¼
P

i ps;i. Rþs0;i0!s;i and R�s;i!s0;i0 include all atomic

processes that contribute to populate or depopulate, respec-

tively, s, i state. Furthermore, the addition of the abundance

of all atomic ions, ps, must be equal to the atomic total den-

sity and also the plasma must be neutral regarding electric

charge. For optically thick plasmas, where the reabsorption

of photons plays an important role, these equations are cou-

pled to the radiative transfer equation

093113-3 Barriga-Carrasco et al. Phys. Plasmas 25, 093113 (2018)



1

c

@AIð~r; t; �;~eÞ
@t

þ~e � rAIð~r; t; �;~eÞ

¼ �jð~r; t; �ÞAIð~r; t; �;~eÞ þ jð~r; t; �Þ; (21)

where AI is the specific intensity of radiation, � is the photon

frequency,~e is an unitary vector in the direction where radia-

tion is propagated, and j and j are the absorption and emis-

sion coefficients, respectively, that couple Eqs. (20) and

(21). The CR model and the SB equations, used in this work,

are implemented in the MIXKIP code.22 For optically thick

plasmas, assuming stationary conditions for the radiative

transfer, the opacity effects are modeled in MIXKIP in an

approximate way using the escape factor formalism for the

bound-bound opacity33 which avoids the explicit resolution

of the radiative transfer equation. For a given line transition,

si$ sj, the escape factor, Kji, is an alternative way of writ-

ing the net rate of line emission leading to an effective reduc-

tion in the Einstein spontaneous emission coefficient. We

have adopted the technique described in Ref. 34 for the cal-

culation of the escape factors. For a uniform distribution of

emitting atoms and isotropic emission in the three basic

geometries (plane, cylindrical, and spherical), the escape fac-

tor is given by

Kji ¼
ð1

0

/ij

F sijð�Þ
	 

sijð�Þ

d�; (22)

where /ij is the line profile. MIKKIP considers a Voigt pro-

file accounting for natural, Doppler, and collisional34 broad-

enings. sij is the optical depth of the line transition and

F[sij(�)] is a functional of the optical depth whose particular

form depends on the geometry. In this work, we have consid-

ered plasmas with cylindrical geometry, and, in this case, the

functional is computed by interpolation over a numerically

defined function as described in Ref. 34.

Now, it will be shown a concrete analysis of the influ-

ence of the atomic kinetics model used to calculate the

plasma properties, such as the average ionization and the ion

abundances. The ranges of electron temperatures and densi-

ties considered are 1–10 eV and 1017–1019 cm�3, respec-

tively, which correspond to the plasma conditions obtained

in the experiments addressed in this work.35,36 This analysis

has been performed for a helium plasma in the context of the

detailed atomic description, as it is the plasma used for the

iron energy loss experiments analyzed in Secs. III A–III C,

and the same analysis can be performed for any kind of plas-

mas, although for low ionized and high-Z plasmas detailed

configuration accounting (DCA) description must be used.

For the analysis carried out, we have compared the average

ionization, the ion abundances, and the stopping number cal-

culated assuming both LTE (SB equations) and NLTE (CR

model) in both optically thin and thick approaches, using the

MIXKIP code. For the optically thick simulations, we have

considered the plasma with cylindrical symmetry with radii

of the order of those obtained in the experiments under

study, i.e., between 0.25 and 1 mm. In NLTE regime, we

have considered the collisional radiative steady state situa-

tion (CRSS) since the characteristic time of the evolution of

the plasma conditions of the experiments analyzed is around

1 ls, whereas the characteristic times of the collisional pro-

cesses are much shorter, around 0.1 ns. The atomic processes

included in the CRSS model22 were collisional ionization,

three body recombination, spontaneous decay, collisional

excitation and de-excitation, radiative recombination, auto-

ionization, and electron capture. For non-optically thin

NLTE simulations, the spontaneous decay is corrected by

the escape factor, as explained before.

Figure 1(a) shows the comparison of the average ioniza-

tion obtained with the LTE and optically thin NLTE models,

as a function of the temperature and for three representative

free electron densities of the plasma. We also present a com-

parison with the non-optically thin NLTE simulations for

two plasma radii (0.25 and 1 mm) but only for the lowest

free electron density, since for the density of 1018 cm�3 the

results obtained for the average ionization were quite similar

to those of the LTE calculation even for the lower radius. As

expected, we can observe that the average ionization

increases with the temperature and decreases with the free

electron density, the latter due to increase in the plasma

recombination which is more noticeable at the highest den-

sity showed. The differences between models decrease with

the increase in free electron density and with the decrease in

FIG. 1. Comparison of (a) the average ionization, (b) HeII relative abundances, and (c) HeI relative abundances, calculated assuming LTE and NLTE regimes.

For the average ionization, non-optically thin NLTE simulations at the free electron density of 1017 cm�3 for two plasma radii (0.25 and 1 mm) are also shown.

For the HeI and HeII relative abundances, the optically thick simulations for a plasma radius of 1 mm and for free electron densities 1017 and 1018 cm�3 are

displayed.

093113-4 Barriga-Carrasco et al. Phys. Plasmas 25, 093113 (2018)



the temperature, since both factors enhance the relevance of

collisional processes and then the LTE regime. The agree-

ment observed for the two lower free electron densities at

temperatures higher than 8 eV for NLTE and LTE average

ionizations is due to the prevalence of the fully stripped

helium ion. We can also detect an agreement for these two

densities at the temperature of 3 eV with a prevalence of the

HeII ion. A little plateau is observed between 3 and 4 eV

associated with the ionization of this ion.

When LTE regime is not achieved, SB model overesti-

mates the average ionization with respect to the NLTE opti-

cally thin model, whereas the optically thick simulation

always provides results between these two models [see Fig.

1(a)]. At the highest density, LTE and optically thin and

thick NLTE results are quite similar in the whole range of

temperatures and the plasma could be considered in LTE

regime. As the radius of the plasma increases, the opacity

effects become more relevant and the results from the opti-

cally thick simulations are closer to those of the LTE regime,

as the figure shows for the two radii considered. We detect

that for the free electron density of 1017 cm�3, there are

appreciable differences in the average ionization for the opti-

cally thick case with respect to both LTE and NLTE opti-

cally thin simulations for the electron temperatures range

4–7 eV.

Figure 1(a) also shows that the differences between the

average ionizations calculated at different free electron den-

sities in LTE are greater than those in NLTE optically thin

case. In LTE regime, the three body recombination is consid-

erable larger than two body processes. The former is more

sensitive to the free electron densities than the latter and this

could explain the result observed. The fact that the differ-

ences between the NLTE average ionizations also increases

with the free electron density, for example, between 1018 and

1019 cm�3 (i.e., as the relevance of the three body recombi-

nation increases and then NLTE results converge to those in

LTE), also endorses this conclusion.

The influence of the atomic kinetics models in the calcu-

lation of the abundances of ions HeII and HeI was also ana-

lyzed and the results are displayed in Figs. 1(b) and 1(c),

respectively. We have shown the optically thick simulations

for the free electron densities of 1017 and 1018 cm�3 and the

radius of 1 mm, since for the latter density differences in the

ion abundances with respect to the other two models are still

detected. Figure 1(b) shows that the importance of HeII ion

reaches its maximum at temperatures around 3–4 eV and for

the highest density this maximum value is retained until

almost the temperature of 6 eV. Figure 1(c) shows that the

abundance of HeI is noticeable only for the two higher densi-

ties, due to the increase in the plasma recombination and for

temperatures lower than 3 eV. For lower densities, its abun-

dance is very small (always lower than 10�2) and is almost

negligible for temperatures larger than 2.5 eV. For the two

lower densities, the abundances of both ions predicted by the

LTE simulations decay with the temperature faster than the

NLTE simulations, as expected, due to the larger average

ionization obtained in the former approach. For the free elec-

tron density of 1017 cm�3, we can detect noticeable differ-

ences between LTE ion abundances and those provided by

NLTE model, in both optically thin and thick approaches.

These differences decrease with the free electron density and

at 1019 cm�3 NLTE and LTE results are quite similar, as in

the case of the average ionization.

The differences in the average ionization and the ion

abundances obtained from the different atomic kinetics mod-

els for some ranges of plasma conditions will influence the

theoretical calculations of the projectile energy loss in the

plasma, Eqs. (6) and (7). To analyze this, we have studied

the influence of the atomic kinetics model in the calculation

of the total stopping number, L

L ¼ q � Lfe þ
X

s

psNsLbe;s ¼ q � Lfe

þðpHeINHeILbe;HeI þ pHeIINHeIILbe;HeIIÞ: (23)

Figure 2 shows a comparison for the three free electron

densities of the contributions to the stopping number of HeI

and HeII ions and of free electrons, as a function of the tem-

perature and obtained with the three atomic kinetics models.

The results are closely related to those obtained in the analysis

of the ion abundances and the average ionization. Due to the

FIG. 2. Comparison of the contributions to the total stopping number, according to Eq. (24), from the stopping number due to free electrons qLfe, and the ones

due to HeI and HeII ions (psNsLbe,s), calculated with different atomic kinetics models, as a function of the electron temperature and for the free electron densi-

ties, ne: (a) 1017, (b) 1018, and (c) 1019 cm�3. For the free electron density, 1017 cm�3 NLTE optically thick, 0.25 and 1 mm, simulations are also shown. For

1018 cm�3 NLTE optically thick only with 0.25 mm radii is shown.

093113-5 Barriga-Carrasco et al. Phys. Plasmas 25, 093113 (2018)



LTE model predicts larger values of the average ionization,

the contribution due to the bound electrons is always lower in

this case than in NLTE simulations. At the highest density,

LTE and NLTE results are quite similar [see Fig. 2(c)]. On

the other hand, for the lowest density [see Fig. 2(a)], there are

noticeable differences between LTE and NLTE simulations,

in both optically thin and thick situations. Figure 2(b) shows

that for the free electron density of 1018 cm�3, NLTE opti-

cally thick simulations provide similar values of the stopping

number to those obtained in LTE. The figures also show that

the range of temperatures in which the contribution due to

bound electrons to the energy loss is not negligible spans as

the electron density increases due to the decrease in the aver-

age ionization. Thus, for the lowest density, the range is

1–6 eV. For the highest density, the range spans until 8 eV

and for temperatures up to 5 eV the bound and free contribu-

tions are of the same order of magnitude. For the free electron

densities of 1018 and 1019 cm�3, we can observe that the

bound electron contribution is larger than the free electron

one for temperatures lower than 2.5 and 3 eV, respectively.

III. COMPARISONS WITH EXPERIMENTS

A. Energy loss of Fe ions in He plasmas: Case I

The experiment of this first case35 was performed at the

Heavy Ion Medial Accelerator at Chiba (HIMAC) in the

National Institute of Radiological Sciences (NIRS), Japan.

The experiment measured the energy loss of iron projectiles

in a z-pinch discharge plasma. A helium gas is pressurized up

to 120 Pa in a quartz discharge tube, which has an inner diam-

eter of 27 mm and a length of 160 mm. First, a 2 ls preioniza-

tion is done with a peak current of 60 kA by a capacitor that

produces a plasma column with a 160 mm length. Then, the

6 MeV/u iron projectiles are shot. The ion beam consisted of a

number of micro bunches that deliver 2� 105 ions every

10 ns, which originate from 100 MHz radio frequency acceler-

ation. Figure 3(a) shows the experimental free electron density

and temperature time profiles. These were determined using

spectrometry assuming the plasma in the LTE regime. The

free electron densities ranged from 1018 to 2.5� 1018 cm�3

and the electron temperatures from 4.0 to 5.4 eV.

In Fig. 3(b), we have represented the average ionizations

calculated under LTE and optically thin NLTE assumptions.

The figure shows that the differences between both models

increase with time, due to the increase in the temperature

which enhances the NLTE regime as was commented in Sec.

II C. At 0.95 ls, the maximum difference is reached, with

average ionizations around 1.2 and 1.5 for NLTE and LTE

simulations, respectively. The most abundant ions in the

plasma are HeII and HeIII with a negligible abundance of HeI

ion as Fig. 3(c) shows. For times earlier than 0.8 ls, both the-

oretical simulations predict that HeII is the main ion in the

plasma. In later times, the relevance of HeIII ion increases,

overall in the LTE simulation, and at 1 ls the HeII ion abun-

dances provided by the NLTE and LTE simulations have

decreased to 0.8 and 0.6, respectively. The largest abundance

of HeII ion in the NLTE calculation implies that the contribu-

tion of the bound electrons to the stopping number will be

greater than in the LTE simulation, as Fig. 2(b) shows.

This analysis has been made assuming the plasma as opti-

cally thin. However, the plasma in the experiment can be

assumed to be thick, as an example, a cylinder with a radius of

1 mm. In Sec. II C, we presented NLTE simulations assuming

the plasma as optically thick with cylindrical symmetry and

with two possible radii, 0.25 and 1 mm. Figure 1(b) shows that

for the range of plasma conditions of this experiment, the HeII

ion abundances provided by the optically thick simulation were

quite similar to those of the LTE simulation. Furthermore, Fig.

2(b) shows that the stopping numbers obtained with the opti-

cally thick model agreed with those of the LTE simulation

even for the lower plasma radius. Therefore, we can conclude

that for the theoretical analysis of this experiment, the plasma

can be assumed to be in LTE regime.

For the range of plasma conditions of this experiment,

we have compared the values of the average ionization

obtained with our LTE model with those provided by Ref.

36 which assumes that the plasma is in LTE as well. The

agreement obtained with both models is quite good as Fig.

3(b) reveals. We have also compared our values with those

estimated from the SB equations using atomic data from

Moore database37 (with values of the partition functions, for

the three helium ions, U0¼ 3.46, U1¼ 2.00, and U2¼ 1.00)

obtaining similar results.

Figures 4(a) and 4(b) show comparisons of experimental

and theoretical values of the energy loss of Fe21þ and Fe25þ

ions in the helium plasma, respectively, as a function of

time. Although we stated before that the plasma can be

assumed to be in LTE, we have also represented in the figure

the results obtained from the NLTE simulations to illustrate

the values that could be obtained in an optically thin plasma.

FIG. 3. (a) Free electron temperature and density time profiles of the first experiment. (b) Plasma average ionizations as a function of time calculated with

MIXKIP under NLTE optically thin and LTE assumptions and with the LTE model proposed in Ref. 36. (c) Comparison of the abundances of the helium ions

as a function of time calculated under NLTE optically thin and LTE assumptions.
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We can observe that the energy loss predicted by the opti-

cally thin calculations is slightly greater than those obtained

from the LTE simulation. This fact implies that the lower

free electron contribution to the stopping number in the opti-

cally thin situation [see Fig. 2(b)] is offset by the bound elec-

tron contribution. Both NLTE and LTE curves of the energy

losses have a similar behavior, decreasing in time for almost

the whole range, and they are very similar to the free elec-

tron density pattern shown in Fig. 3(a) as the energy loss is

almost proportional to the density. Figures 4(a) and 4(b)

show that the energy loss is larger as the charge of the pro-

jectile increases as is expected according to Eqs. (6) and (8)

for the free and bound electron contributions, respectively.

The agreement between the theoretical simulations and the

experimental data is better for beams of Fe25þ ions than for

Fe21þ. Furthermore, the agreement is also better for times

later than 0.8 ls. This could be due to two factors: first, the

errors in the free electron density obtained from the Stark

broadening of a HeI line are greater at the earliest times;35

second, the error bars in the experimental energy loss are

also greater for times between 0.70 and 0.75 ls.

We have also presented in Figs. 4(a) and 4(b) the theo-

retical values for the energy loss obtained in Hasegawa

et al.35 In that work, the energy loss is obtained from the fol-

lowing equation:

� dE

dx
¼ 4pQ2

v2
p

nat q Lfe þ P ln
2cv2

p

�I

� �� �
; (24)

where P ¼
P

sðps � NsÞ is supposed to be the averaged elec-

tronic population for an average atom in the plasma and

c ¼ ð1� v2
p=c2Þ�1=2

is the Lorentz factor, which is approxi-

mately one for the projectile energies. The stopping number for

free electrons, Lfe, is defined with the following expression:

Lfe ¼ min ln
cv3

p

Qxp

 !
; ln

2cv2
p

xp

 !( )
; (25)

where xp¼ (4pnatq)1=2 is the plasma frequency, assuming

the plasma to be in LTE. The figures show small differences

between the energy losses obtained with both LTE models.

Hence, the ratio of the observed energy losses of Fe25þ to

Fe21þ ions was about 1.6, whereas the ratio obtained from

the theoretical model used in Ref. 36 was around 1.1 and the

ratio provided by our model is 1.12. The first thing we real-

ize is that the experimental energy ratio cannot be possible,

because the ratio between the charge of the two ions has to

diminish at the same time the ions deepen in the plasma

approaching to equilibrium value, so this ratio must be always

less than the initial one, (25/21)2¼ 1.42. In our model, the

effective charge is used Eq. (18) where, besides the BK

charge distribution, the equilibrium charge state is also

included. Our calculated energy loss is nearly the same for the

Fe25þ to Fe21þ ions; it means that both ions tend rapidly to

the equilibrium charge state although this charge state is not

reached at the end of their travel in this kind of low density

plasmas. The effect of the BK charge distribution is always to

increase the value of the effective charge. Both theoretical

models, Hasegawa and ours, slightly differ in the energy loss

because of how it was calculated: They use Bethe logarithm

for high projectile velocities for free and bound electron stop-

ping number Eq. (24), while we use the dielectric formalism

for free electrons and an interpolation between a more exact

adjustment for high and low velocities in the case of bound

electrons. Furthermore, they use an average atom model for

the calculation of the mean excitation energies, whereas in

this work a detailed description is employed.

B. Energy loss of Fe ions in He plasmas: Case II

The second work36 was conducted on the same facility as

the previous one. The quartz tube used had an inner diameter

of 30 mm and contains a 300 Pa helium gas. The gas was pre-

ionized with a discharge that reached 70 kA, and a plasma

column of 160 mm length was produced 1 ls after the dis-

charge ignition. The 4.3 and 6 MeV/u iron projectiles were

shot afterwards. The authors carried out numerical analysis

about the plasma state using a magneto-hydrodynamic code.

Spectroscopy and hydrodynamic simulations showed that the

plasma was uniform around the z-pinch setup axis for a 2 mm

diameter. Figure 5(a) shows the free electron density and tem-

perature time profiles, which were obtained from the spectro-

scopic analysis assuming the plasma to be in LTE. Free

electron density ranged from 2.0� 1018 to 1.4� 1019 cm�3

and the temperature from 4.5 to 6.5 eV.

According to the analysis presented at the end of Sec.

II C for the lower free electron densities of the experiment

range, around 2.0� 1018, there are some differences between

NLTE and LTE results for the average ionization and the ion

abundances, as Figs. 5(b) and 5(c) reveal. For example, it can

be observed that the maximum differences in the average ion-

ization are around 5%. However, as in the previous experi-

ment, the helium plasma has a radius of 1 mm, and therefore,

opacity effects should be included in the NLTE simulations.

FIG. 4. Energy loss of 6 MeV/u projec-

tiles of (a) Fe21þ and (b) Fe25þ ions as

function of plasma evolution time.

Calculations (Grey solid line) and

experimental data (Blue solid line)

from Hasegawa et al.35 Our calcula-

tions: LTE (Black line) and NLTE

(Red dotted line).
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In that case, the results provided by the LTE and NLTE mod-

els are quite similar for both the average ionization and the

ion abundances and also for the energy loss as concluded in

the analysis of the previous experiment. For the range of

higher densities of this experiment, around 1.4� 1019 cm�3,

the differences between the optically thin NLTE and the LTE

simulations are lower and when the opacity effects are taken

into account the agreement obtained between the non-

optically thin NLTE and the LTE calculations is even better

than in the range of lower free electron densities. Therefore,

the assumption in this experiment of LTE regime for the

plasma is appropriate.

In this experiment, the free electron densities reached are

higher than in the previous one. The increase in the density leads

to a larger recombination and lower average ionizations, as Fig.

1 shows. This fact implies that the relevance of the bound elec-

tron contribution to the energy loss will be strengthened with

respect to the previous experiment. From the time profiles, we

can observe that, in general, the ranges of lower (2� 1018 cm�3)

and higher free electron densities (1� 1019 cm�3) coincide with

the ranges of lower (4.5–5.2 eV) and higher temperatures

(5.5–6.5 eV). This fact makes that the bound and free electron

contributions to the stopping number have values, between 5–3

and 12–15, respectively [see Figs. 2(b) and 2(c)], for the range

of plasma conditions of the experiment. Therefore, the relative

contribution, in percentage, of the bound electron to the stopping

number in this experiment is between 42% and 20%, whereas

for the previous experiment the range was 40%–10%.

In Fig. 6, we have represented the comparison of the

experimental data with our simulations performed in LTE

and in NLTE optically thin approach, calculated with the

effective charge state of the projectiles Eq. (18). The initial

charge states in each experiment were Fe21þ and Fe23þ for

6 MeV/u energy and Fe20þ and Fe22þ for 4.3 MeV/u energy.

We observe that the NLTE and LTE simulations provide

quite similar results. We have obtained that the NLTE opti-

cally thick calculations present an excellent agreement with

the LTE ones, as expected according to the analysis pre-

sented in Sec. II C. In this case II, there is not a theoretical

curve provided by the experimentalists to compare with. As

in the previous experiment, all the curves of the energy loss

reproduce the pattern of the time profile of the free electron

density. The figures show that the energy loss is higher for

slower projectiles, what is expected according to Eqs. (6)

and (8). We can observe that, in general, calculations carried

out with different initial charge states but with the same

FIG. 5. (a) Electron temperature and density time profiles of the second experiment. (b) Plasma average ionizations as a function of time calculated with

MIXKIP under LTE and NLTE assumptions. (c) Comparison of the abundances of helium ions as a function of time calculated under LTE and NLTE

assumptions.

FIG. 6. Energy loss of 6 MeV/u Fe21þ,

Fe23þ ions and 4.3 MeV/u Fe20þ, Fe22þ

ions as function of plasma evolution

time. Experimental data from Hasegawa

et al.36 (Blue solid line). Our calcula-

tions with initial projectile charge state:

LTE (Black line) and NLTE (Red dot-

ted line).
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velocity show a similar energy loss. This means that the pro-

jectiles reach their equilibrium charge state very soon inside

this kind of plasma which is more dense than in the case I;

this equilibrium charge state is the same for all iron ions

with the same energy, Eq. (11). We can also realize that our

simulations fit better to the lower energy ions than for higher

energy ions. This is because our calculated charge state at

higher energies is smaller than the real value, meaning that

actually the capture of electrons must be lower than it is con-

sidered in our model.

C. Energy loss of Fe ions in He plasmas: Optimal case

Once analyzed the previous cases, Secs. III A and III B, it

is seen that for plasma densities used in these experiments the

differences in energy loss are very small between considering

the plasma in LTE or NLTE states, see Fig. 2(b). Obviously,

this is because at these plasma densities, the plasma would

not have such a large different ionization considering it was at

LTE or NLTE, see Fig. 1(a). On the other hand, it is observed

that the temperatures of the two experiments are in the zone

of greater ionization difference between considering the

plasma in the one or in the other state. Therefore, in this sec-

tion, the temperature will be constant at 5 eV and the ioniza-

tion and the stopping power of the plasma will be analyzed in

more detail according to its density and its thermodynamic

state. This would help us to establish what the most ideal

plasma conditions to distinguish in what thermodynamic state

the plasma is, by the energy loss of ion projectiles.

Figure 7(a) presents the plasma ionization as a function

of its total electron density at 5 eV considering the plasma to

be in LTE or NLTE. It is easily seen that the difference in

ionization according to the plasma state increases with

decreasing density. It must be borne in mind that for very

low plasma densities it can no longer be considered in LTE

and must be considered in the corona regime (corona equilib-

rium, CE). In any case, for a temperature of 5 eV, it is ana-

lyzed that for the whole range of densities studied here, it is

valid to differentiate between the plasma in LTE and NLTE.

Figure 7(b) shows the relative stopping between the case

that the plasma is considered in LTE or in NLTE as a func-

tion of the total electron density of the plasma at a tempera-

ture of 5 eV. It can also be seen the contribution to the total

stopping of the bound and free electrons. In all three cases,

the relative differences in absolute values become greater at

smaller densities. The stopping of free electrons in the case

of considering the plasma in LTE state is always greater than

the stopping of free electrons in the case of considering the

plasma in the NLTE state, as would be expected since the

stopping of free electrons is proportional to the ionization.

On the other hand, the stopping of bound electrons in LTE is

always lower than in NLTE, since the stopping of bound

electrons is contrary to ionization. All this means that the

total stopping is always higher in the LTE state than in the

NLTE, but not as much as in the case of considering only the

stopping of free electrons. The greater difference for free

electrons is reduced by the bound electron contribution.

Finally, as it has been seen that for an approximate den-

sity of ne¼ 1� 1017 cm�3 and a temperature of 5 eV, the dif-

ference between the total stopping of the plasma between

considering it in LTE or in NLTE is sufficiently large; it will

be analyzed for this case the dependence of the total stopping

with the incident energy of the ion projectile. Figure 7(c)

shows how the relative difference between the two stoppings

increases very slightly as the projectile energy decreases. The

relative values goes from 27% at the highest energies, around

6 MeV/u as in the experiments in Secs. III A and III B, to 32%

at the smallest energies studied. This indicates that the relative

stopping has little dependence on the projectile, since it does

not depend so much on its incident energy and not also on its

charge state, since the relative stopping does not depend on

the projectile’s charge.

IV. CONCLUSIONS

In this work, we have first carried out an analysis of the

thermodynamic states (LTE and NLTE) of the helium

plasma which are needed for obtaining the energy loss of ion

beams traversing them. The analysis was made in ranges of

free electron densities (1017–1019 cm�3) and temperatures

(1–10 eV) of experiments with iron beams.35,36 For this pur-

pose, we have made comparisons of those properties calcu-

lated with Saha-Boltzmann equations and a collisional-

radiative model in steady-state situation implemented in the

MIXKIP code, in order to reproduce LTE and NLTE

regimes, respectively. Since the opacity effects influence in

the calculation of the plasma level populations, NLTE opti-

cally thick numerical simulations were performed assuming

the plasma with cylindrical symmetry with two possible

radii, 0.25 and 1 mm. In the CRSS model, the photon self-

absorption was modeled through the escape factor formal-

ism. For the free electron density of 1019 cm�3, LTE and

FIG. 7. (a) Plasma ionization as a function of its total electron density considering the plasma in LTE or NLTE. (b) Relative stopping between the plasma con-

sidered in LTE or in NLTE as a function of the total electron density. (c) Difference between the total stopping of the plasma in LTE or in NLTE as a function

of the incident projectile energy.

093113-9 Barriga-Carrasco et al. Phys. Plasmas 25, 093113 (2018)



NLTE models provide quite similar results for the average

ionization and ion abundances in the whole range of plasma

temperatures. On the other hand, noticeable differences are

obtained for the lowest density although for the average ioni-

zation for temperatures larger than 8 eV both simulations

agree but due to the prevalence of the fully stripped ion. For

the free electron density of 1018 cm�3, similar results are

obtained for temperatures up to about 4 eV. When the opac-

ity effects are taken into account in the NLTE simulations, it

is obtained that for the density of 1018 cm�3 the optically

thick simulations provide fairly similar results to those of the

LTE model. On the other hand, for the lowest density consid-

ered, although the optically thick results are closer to the

LTE ones than in the optically thin case, differences between

both models are still detected.

The theoretical model used in this work to calculate the

energy loss is based on the dielectric formalism, through a

RPA dielectric function, for the contribution of the free elec-

trons and on an interpolation between high and low projectile

velocity approximations for the bound electron contribution.

We have obtained that the relevance of this last contribution

increases with the density due to the increase in plasma

recombination and the resulting decrease in the average ioni-

zation. We have obtained that this contribution may entail a

40% of the total stopping number for ranges of plasma con-

ditions reached in the experiments analyzed in this work. We

have also obtained that the abundance of HeI ion is only rele-

vant for temperatures lower than 4 eV. Since in the experi-

ments analyzed the temperatures achieved are always

greater, the bound electron contribution to the stopping num-

ber will be due mainly to HeII ion. The influence of the

atomic kinetics models in the average ionization and ion

abundances has a direct impact on the calculation of this

property and, for this reason, the same conclusions before

commented were obtained for the stopping number. Since

the free electron densities of the two experiments analyzed

are between 1018 and 1019 cm�3, the plasma can be assumed

to be in LTE.

We have used these results to address the theoretical

analysis of two experiments performed for the purpose of

studying the energy loss of iron projectiles with different

charges in helium plasmas. Both experiments were con-

ducted on the same facility where z-pinch discharge helium

plasmas were obtained, with a length of 160 mm and radius

of 1 mm, and, then, iron projectiles were shot. The free elec-

tron densities reached in the case II were higher than in the

case I. In any case, we obtained in both experiments that the

NLTE optically thick simulations provide quite similar

results to those obtained in LTE calculations and, therefore,

the helium plasmas could considered in LTE regime. In gen-

eral, our theoretical calculations showed a good agreement

for the energy loss with the experimental values, although

the agreement was better for the second experiment ana-

lyzed, especially a lower energies. In the first experiment,

the authors also provided a theoretical simulation of the

energy loss, but the agreement with the experimental results

was not so fair, but it is similar than our simulation. The sim-

ulations are less sensitive to the change of the projectile

charge than those provided by the experimental data, which

means that the simulations consider both ions tend rapidly to

their equilibrium charge state although this state is not

reached at the end of their travel in this kind of low density

plasmas. In the second experiment, we have shown that the

experimental and our calculations on the energy loss are just

a little sensitive to the initial value of the projectile charge.

This means that the projectiles reach their equilibrium charge

in the plasma range as in the second experiment the plasma

density is higher.

Finally, a more detailed study has been made to analyze

the dependence of the projectile energy loss, or the plasma

stopping, in LTE or in NLTE with the density of the plasma.

It has been seen that the difference in energy loss between

the two thermodynamic cases of the plasma is significantly

larger as the plasma density is lower, but it would be much

larger if we did not consider the energy loss with the plasma

bound electrons. At the same time, it has been seen that the

difference in the energy loss of the projectile according to

the plasma state depends very lightly on the characteristics

of the projectile, that is, to say, on its energy and its charge.
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