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ABSTRACT 
 

 This work proposes a one–parameter distribution with a formulation that involves the 

double factorial. The new distribution is intended to be competitive with the Poisson, 

geometric and negative binomial distributions and, like these, belongs to the natural 

exponential family of distributions (EFD) and to power series distributions. The new 

distribution is over–dispersed and appears to be unimodal or multimodal depending of the 

value of its parameter. The behaviour of the rate of successive probabilities is different 

from that of traditional discrete distributions, in which this rate is always increasing or 

decreasing. Furthermore, the hazard rate function also presents unusual behaviour in 

comparison with the classical distribution types mentioned above. We establish the 

normal approximation to the distribution proposed here. Estimation methods are 

considered, and applications show that the distribution works well when the data sets 

considered present two or more modal values. 
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1. INTRODUCTION 
 

 A search of the scientific literature reveals that very little has been published on the 

subject of the double factorial (DF). The digital library JSTOR contains only a few 

papers in this respect. Some studies can be found in the web, but these are non–formal 

papers and contain little of interest. A more formal page has been developed by Weisstein 

(Double Factorial) in MathWorld. The only two journal–published papers concerning the 

term DF (also called semi–factorial; see Johnson and Kotz (2005, p. 2)) are those by 

Gould and Quaintance (2012) and by Meserve (1948). Nevertheless, these are published 

in divulgative journals and therefore not well known to mathematical researchers. 

References to the DF term also appear in specific pages of some books. 
 

 Merserve (1948) is the earliest reported use of the DF notation, which was used in 

order to simplify the expression of certain trigonometric integrals arising in the derivation 

of the Wallis product. Double factorials have many applications in number theory (in 

particular in enumerative combinatorics). In the present paper, initial consideration is 

given to the use of the DF operator in statistical distributions. 
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 This operator is defined as follows: for an odd number n N  
 

  (2 1)!!=1 3 5 (2 1)n n     
 

and for an even number n N  
 

  (2 )!!= 2 4 6 (2 ).n n   
 

 Furthermore, ( 1)!!= 0!!=1 , by definition (see Arfken, 1985, p. 547). The DF is 

implemented in Mathematica as !!n  or 2[ ]Factorial n . Although the DF can be extended 

to complex arguments, this subject is not addressed in the present paper. 
 

 Because the DF only involves about half the factors of the ordinary factorial, its value 

is not substantially larger than the square root of the factorial !n , and it is much smaller 

than the iterated factorial ( !)!n . Two interesting series representations involving the DF, 

and which appear in Gould and Quaintance (2012), are:  
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where ( )z  represents the cumulative distribution function of the standard normal 

distribution evaluated in z , i.e.  
 

  
21

( ) = exp .
22

z t
z dt



 
     

  

 

 A significant finding is that series (2) contains the cumulative distribution function of 

the standard normal distribution. 
 

 This series representation is now used to build a one–parameter discrete distribution, 

the properties of which are examined in Section 2. As we will see, this distribution 

belongs to the natural EFD and is a power series distribution (PSD); it is unimodal or 

multimodal and has a closed–form expression for the moment–generating function, the 

mean, the variance and the moments about the mean. The normal approximation to this 

distribution is also established. Some estimation methods are then presented in Section 3. 

In particular the new distributions seems to work well when the data sets chosen present 

more than one modal value. This feature is characteristic in inventory control, in 

biological data and also in modeling the days to recover from the injuries caused by 

collisions caused by traffic accidents, among others. Numerical applications are then 

developed in Section 4 and, finally, some conclusions are drawn in Section 5. 
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2. THE PROPOSED DISTRIBUTION 
 

 Min and Czado (2010) observed that the Poisson distribution is too simple to capture 

over–dispersion (variance greater than the mean). In this sense, it is possible to obtain a 

distribution with this characteristic by using the above–mentioned second series. 
 

 This is so, first, from expressions (1) and (2), see Gould and Quaintance (2012) and 

the MathWorld web page (shown without a proof), the following result is obtained.  
 

Theorem 1:  

 The equalities (1) and (2) are sustained.  
 

Proof:  

 The first equality is obtained straightforwardly from the identity (2 )!!= 2 !xx x . For 

the second equality, we have  
 

  
2 2 1

=0 =0 =0

= .
!! (2 )!! (2 1)!!

n k k

n k k

y y y

n k k
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


    

 

 Here, the first summand is obviously (1). For the second summand, consider 

expression 4.1 in Albano et al. (2011), which establishes that  
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where ( )erf u  is the error function. Now, because  / 2 = 1 2 ( )erf u u    the result 

follows after some elementary algebra.  
 

 Now, it can readily be seen that  
 

  Pr( = ) = = ( ) , = 0,1, , > 0,
!!

x

xX x p x
x


            (3) 

where ( )   is a normalization constant given by  

   
1

( ) = 2 ( ) 1 1 2 ( ) ,
2


  

        
  

 

 

and where ( )u  and ( )u , representing the probability density function and the 

cumulative distribution function of the standard normal distribution evaluated in u , 

respectively, define a genuine probability function (pf) for lattice data. 
 

 By using (2 )!!= 2 !xx x , it is straightforward to see that from series (1) the Poisson 

distribution with parameter > 0  can be defined. For this reason, we shall now consider 

only series (2) and the pf (3) obtained from it. 
 

 Since pf (3) can be written as  
 

   = ( )exp log ( ) ,xp q x x       
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where ( ) =1/ !!q x x , = log    and 
 

1
( ) =

exp( )
 

 
, and where < <   , it can 

be seen that the new distribution is a member of the natural EFD. Furthermore, pf (3) can 

also be rewritten as  
 

  = ,
( )

x
x

x

a
p

g




 

where = 1/ !!xa x  and 
1

( ) =
( )

g 
 

 and therefore it is also a PSD (see Johnson et al. 

(2005), p.75). Thus, we have a new distribution, together with the Bernoulli, binomial, 

geometric, negative binomial, Poisson and logarithmic series, within this interesting class 

of distributions. 
 

 The moment–generating function of a random variable following the pf (3) is  

given by  
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and it is easy to see that the relation 
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which involves the DF only once. 
 

 Using two expressions from Gould and Quaintance (2012), we obtain: 
 

 When x  is even, it is verified that  

   
 /2
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  where   is the circular constant and ( )z  the gamma function. 
 

 When x  is odd, it is verified that  
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 It is not difficult to see that both (6) and (7) are decreasing functions on x . 

Nevertheless, the behaviour of (5) is different from that of this rate in traditional discrete 

distributions, where 1x xp p   is always increasing or decreasing. This rate is constant for 

the geometric distribution, decreasing for the Poisson distribution and can be increasing 

or decreasing for the negative binomial distribution according to whether the dispersion 

parameter is smaller or larger than 1, respectively. Figure 0 shows (5) for selected values 
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of  . It can be seen that the rate is always decreasing for even values of x  and also for 

odd values of x , but when we consider all the values of x  the rate changes, to be 

alternatively increasing and decreasing.  

 

 
Figure 1: Plot of  1 1

/x x x
p p  

 for Selected Values of the Parameter   

 

 Since ( ) < e   the distribution takes a lower value in = 0x  than the Poisson 

distribution with parameter  . 
 

 Bardwell (1960) – see also Amidi (1973) – discussed discrete probability density 

functions  Pr = ;X x   which fit the relation  
 

   
Pr( = ; )

= ( ) ( ) Pr( = ; ).
d X x

B x D X x
d


   


         (8) 

 

 It is shown that in this case the mean is = ( )D   and the variance is 

  2 = / 1/ ( )d d B    . It is also shown that in this case  
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where i  is the i th moment about the mean. 
 

 Expression (8) is verified for the pf (3). In this case we have  
 

  

1 ( )
( ) = , ( ) = .

( )
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  
  

  
 

 

 Thus, the mean of the variate following (3) is given by  
 

   
( )

= ( ) = = ( ) ,
( )

E X
  

      
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and the variance is  
 

    2 = ( ) = ( ) 1 ( ) ( ) ,var X                         (11) 
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 Additionally, see Noack (1950) and Johnson et al. (2005), the following recurrence 

relations between the moments about the origin and the central moments (about the 

mean), respectively, are satisfied,  
 

  1 1= ,r
rr r

d

d

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 
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 Furthermore, relation connecting the cumulants [ ]rk  and the moments r  about the 

origin can be obtained using expression (8) in Noack (1950). Relations between 

factorial–cumulants and cumulants can also be given using results in Khatri (1959). See 

also Johnson et al. (2005), p.77. 
 

 Observe that because  
 

  
 2
1 ( )( ( )

= 1 > 0,
( )

       


    
                (12) 

 

the pf (3) is over–dispersed. Thus, it can be seen that the new distribution is an alternative 

of equi–dispersed Poisson distribution, but only to an over dispersed distribution. 
 

 In Figure 1 the mean and variance of the distribution are shown as a function of  . 

Both are increasing functions on this parameter, and the difference between 2  and   

increases when   increases.  

 

 
Figure 2: Mean and Variance as a Function of   

 

 Since pf (3) is a member of the family discussed by Bardwell (1960) we have the 

following result.  
 

Theorem 2  

 If X  follows the pf (3), then it is verified that:  
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1.    2= | |= 2 1 [ ],Mean deviation E X F


     
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 Here,   [ ]
=0[ ], = Pr( = ; )xF X x   , where [ ]  represents the integer part and   is a 

constant of normalization.  
 

Proof:  

 The results follow directly, using Theorems 2 and 3 in Bardwell (1960).  
 

 Examples of pf (3) for special cases of parameter   are shown in Figure 2. This 

Figure also shows that the new pf is, as the Poisson distribution, versatile in the sense that 

different values of the parameter   provide a different value of the modal value. It seems 

that for < 0  the pf has a zero vertex moving the mode(s) to the right as   increases.  

 

 
Figure 3: Examples of pf (3) for Special Cases of Parameter   



A Power Series Distribution Involving the Double Factorial 464 

 

 Thus, the proposed distribution can be unimodal or multimodal. 
 

 According to Bardwell (1960), a characteristic of the family of functions satisfying 

(8) is that each has a unique maximum. That is, the modal value is achieved at 

= [ ] 1modex   . The behaviour of the value of the probabilities also seems to be 

completely different from that found in classical discrete distributions belonging to the 

natural EFD and to PSD. We can see that, as the parameter   increases, the shape rapidly 

tends towards the familiar bell of the normal distribution. This is established in the 

following result.  
 

Theorem 3  

 The limiting distribution of the pf (3) as   tends to infinity is normal.  
 

Proof:  

 Let X  follow the pf (3). From (4)  
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 Then, after some algebra the above limit can be written as  
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 Finally, taking into account that  
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and that the other summands in (13) are also zero, we obtain  
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which is the moment generating function of a standard normal distribution and therefore 

the theorem is proved.  
 

 Additionally, the entropy is found to be  
 

   
=0

log !!
= log ( ) ( ) log ( ) .

!!
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x
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x






              

 

 To end this section, observe that since the pf (3) belongs to the EFD, there is a 

conjugate family of priors, which is given by  
 

      0 0 0 0( ) = exp log ( ) log , ,g x n d n x       

 

where the normalization constant is given by  
 

      0 0 0 0, = exp log ( ) .d n x x n d



                  (14) 

 

 In terms of parameter   this prior distribution can be rewritten as  
 

   
1
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which has a non–closed form. Nevertheless, the prior distribution is reminiscent of the 

gamma distribution. 

 

2.1 Skewness, kurtosis and hazard rate 

 Some important indices of the shape of the distribution, apart from the mean and the 

variance, are the skewness   3/2

1 3 2=    and the kurtosis   2

2 4 2=   . 

Expressions for these two indices can be given in closed form using (9) but they are very 

large and therefore not presented here. In Figure 3, these two indices are used to show the 

skewness and kurtosis of the proposed distribution versus that of the Poisson distribution. 

It can be seen that for the proposed distribution both values can be smaller or larger those 

for the Poisson distribution.  

 

 
Figure 4: Skewness and Kurtosis of the Proposed Distribution (solid line)  

and POISSON Distribution (dashed line) 
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 The cumulative distribution function, ( ) = Pr( )F x X x , which is not presented here, 

is obtained in closed form but it is too large. The survival function is obtained from the 

cumulative distribution function, by ( ) =1 ( 1)F x F x  , from which we obtain the 

failure rate given by ( ) = ( )xr x p F x . This function also presents a strange behaviour 

pattern, being simultaneously increasing and decreasing. 

 

3. METHODS OF ESTIMATION 
 

 Assume a sample of n  independent observations given by 1 2, , , nx x x  from the pf 

(3). Expression (10) can be used estimate the parameter   by the method of moments 

and it is obvious that the solution of the equation involved cannot be expressed in closed 

form. A numerical search of the equation can be performed by directly solving the 

equations involved using Mathematica. Since expression (10) is an increasing function 

from 0 to infinity, a unique solution is guaranteed for > 0x , where x  is the sample 

mean. Furthermore, the moment estimator of   can also be obtained directly from Table 

0, where the exact value of the mean is shown for different values of the parameter  .  

 

Table 1 

Mean Value of the pf for Selected Values of the Parameter 

        

0.1 0.482434 2.0 4.123240 

0.2 0.725114 3.0 6.054560 

0.3 0.936829 4.0 8.023050 

0.4 1.135280 5.0 10.009500 

0.5 1.326860 6.0 12.003800 

0.6 1.514640 7.0 14.001500 

0.7 1.700300 8.0 16.000600 

0.8 1.884860 9.0 18.000200 

0.9 2.068960 10.0 20.000100 

1.0 2.253020 20.0 40.000000 

 

 A numerical interpolation method can then be used to derive, in an exact form, the 

estimator of  . 
 

 However, instead of moment estimation we can also use the fact that  
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= ,

( 1)!!

X
E

X

 
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a result which is obtained by taking into account that from the PSD it is verified  

(see Papathanasiou (1993)) that  
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a
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 Then, if we can use the sample value =1

!!1
=

( 1)!!

n i
i

i

x
p

n x 
  the estimator of the 

parameter   is just p . 
 

 Let us now consider the maximum likelihood method. The log–likelihood equation is 

proportional to  
 

  
 

2

1 2, , , ; log ( ) log( ),
2

n

n
x x x n nx


                   (15) 

 

where =1= (1/ ) n
iix n x  is the sample mean. By deriving (15) we obtain the equation  

 

  
( )

= 0.
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'

x
  

 
 

                    (16) 

 

 Hence, the maximum likelihood estimator of   coincides with the moment estimator 

and therefore is also unique. This was established by Patil (1962). Since the new 

distribution belongs to the family of PSD, it is verified (see Johnson et al. (2005) that the 

maximum likelihood estimator of   is a function of =1= n
iiT x  and therefore T  is 

sufficient for  . 
 

 Some algebra provides  
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Proposition 1  

 The unique maximum likelihood estimator ̂  of   is consistent and asymptotically 

normal and therefore  
 

     1ˆ 0, ( ) ,
d

n N I      

 

where ( )I   is the Fisher information about  .  
 

Proof:  

 The distribution satisfies the regularity conditions provided in Lehmann and Casella 

(1998, p. 449) and Krishna and Pundir (2009), under which the unique maximum 

likelihood estimator ̂  of   is consistent and asymptotically normal. These conditions 

are verified as follows. Firstly, the parameter space (0, )  is a subset of the real line and 

the range of x  is independent of  . Now, it is easy to show that 
log

= 0xp
E

 
 

 
 and 
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due to the uniqueness of the maximum likelihood estimator, 
2

2
ˆ=

< 0

 




, the Fisher 

information is positive. Some algebra provides that  
 

  

 
  

3

3 2 3

( ) ( ) ( ) 2
= 2 ( ) ( ) ( ) 2 ( ) ,

( ) ( )

x
n
         
               
     

     (17) 

 

and, since ( ) > 0, ( ) < 0, ( ) > 0        and ( ) < 0  , by taking ( )M x  the positive 

summands of (17) we have that 

3

3

log
( )xp

M x





, where obviously  ( )E M x  is finite. 

Thus, the proposition is proved.  
 

 In conclusion, by using Corollary 3.11 in Lehmann and Casella (1998, p.450), we 

conclude that the unique root of equation (16) is asymptotically efficient. 

 

4. APPLICATIONS 
 

 In this section, the distribution described above is illustrated by three sets of data. 

Two of them in the biological field and the other in inventory control. The first data set 

concerns distributions of Microcolanus nauplii in samples of marine plankton, considered 

by Bliss and Fisher (1953), and the second refers to haemacytometer yeast cell counts, 

discussed in Bardwell and Crow (1964). Biological data is generally concerned with plant 

or animal counts obtained for each of a set of equal units of space or time. These kind of 

count data can be fitted initially by the Poisson distribution, but in practice they present 

over–dispersion phenomena. Ross and Preece (1985) pointed out that over–dispersion 

arises when the organisms are clumped, clustered or aggregated in space or time. Similar 

arguments are employed by Clapham (1936). The third set of data appears in (Cardós  

et al. (2013) and corresponds to the daily demand of a class of item. The Poisson 

distribution with parameter > 0 , the negative binomial (Poisson–Gamma distribution) 

with paramters > 0r  and 0 < < 1p  and the geometric distribution (a special case of the 

Poisson–Gamma distribution) with parameter > 0r  are also fitted to the empirical 

distributions for comparison. The maximum likelihood estimates were calculated using 

Mathematica package. The data and the fitted values are shown in Tables 1, 2 and 3, 

together with the rest of distributions, fitted by maximum likelihood. In parenthesis 

appear the standard errors.  
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Table 2 

Observed and Fitted Distributions of Microcolanusnauplii  

in Samples of Marine Plankton (Bliss and Fisher (1953)). 

Counts 

Observed Fitted 

Poisson Geometric 
Negative 

Binomial 

New 

Distribution 

0 0 0.01 14.15 0.14 0.55 

1 2 0.09 12.81 0.76 1.70 

2 4 0.46 11.60 2.14 2.64 

3 3 1.49 10.51 4.33 5.45 

4 5 3.59 9.52 7.09 6.33 

5 8 6.90 8.62 9.95 10.46 

6 16 11.04 7.81 12.38 10.13 

7 13 15.14 7.07 14.03 14.34 

8 12 18.17 6.40 14.72 12.14 

9 13 19.38 5.80 14.49 15.27 

10 15 18.61 5.25 13.51 11.64 

11 15 16.24 4.75 12.02 13.31 

12 9 12.99 4.31 10.26 9.30 

13 9 9.59 3.90 8.45 9.82 

14 7 6.58 3.53 6.75 6.37 

15 4 4.21 3.20 5.23 6.27 

16 4 2.52 2.90 3.91 3.81 

17 6 1.42 2.62 2.92 3.54 

18 2 0.76 2.37 2.11 2.03 

19 0 0.38 2.15 1.50 1.78 

20 2 0.18 1.95 1.05 0.97 

21 1 0.08 1.76 0.72 0.81 

22 0 0.03 1.60 0.48 0.42 

AIC  888.259 998.649 860.307 856.474 
2

 
 > 40  > 40  7.78 8.54 

d.f.  13 13 13 13 

p -value  0.00% 0.00% 80.19% 80.65% 

r̂    0.094 (0.07) 11.128 (2.890)  

p̂
    0.536 (0.065)  

̂  
 9.60 (0.252)    

̂  
    3.096 (0.057) 
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Table 3 

Observed and Fitted Yeast in 400 Squares of Haemacytometer  

(Bardwell and Crow (1964)) 

Counts 

Observed Fitted 

Poisson Geometric 
Negative 

Binomial 

New 

Distribution 

0 213 202.14 237.74 214.15 212.94 

1 128 137.96 96.44 122.79 128.14 

2 37 47.08 39.12 45.019 38.55 

3 18 10.71 15.86 13.40 15.47 

4 3 1.83 6.43 3.53 3.49 

5 1 0.25 2.61 0.85 1.12 

AIC  904.999 914.857 905.046 896.385 

2
 

 10.20 16.12 3.26 0.56 

d.f.  3 3 3 3 

p -value  1.69% 0.10% 19.53% 90.60% 

r̂     3.586 (1.750)  

p̂
   0.594 (0.019) 0.840 (0.066)  

̂  
 0.682 (0.041)    

̂  
    0.601 (0.033) 
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Table 4 

Observed and Fitted Distributions of Daily Demand of a class of item  

(Cardós et al. (2013)) 

Counts 

Observed Fitted 

Poisson Geometric 
Negative 

Binomial 

New 

Distribution 

0 18 2.36 130.98 15.86 21.36 

1 53 14.06 112.15 45.65 51.87 

2 81 41.88 96.02 77.51 63.00 

3 95 83.13 82.22 101.08 102.00 

4 88 123.77 70.39 111.91 92.88 

5 105 147.40 60.27 110.68 120.31 

6 107 146.30 51.61 100.75 91.31 

7 92 124.46 44.18 86.05 101.37 

8 76 92.64 37.83 69.85 67.31 

9 60 61.30 32.39 54.42 66.43 

10 42 36.50 27.73 40.96 39.70 

11 37 19.76 23.75 29.96 35.62 

12 21 9.80 20.33 21.37 19.51 

13 11 4.49 17.41 14.92 16.16 

14 8 1.91 14.90 10.22 8.22 

15 8 0.75 12.76 6.89 6.35 

16 3 0.28 10.92 4.57 3.03 

17 3 0.09 9.35 3.00 2.20 

18 0 0.03 8.01 1.94 0.99 

19 1 0.01 6.86 1.24 0.68 

20 0 0.00 5.83 0.79 0.29 

21 2 0.00 5.02 0.49 0.19 

22 0 0.00 4.30 0.31 0.07 

23 0 0.00 3.68 0.19 0.05 

24 0 0.00 3.15 0.11 0.02 

AIC  5034.32 5224.75 4759.77 4754.50 
2   > 100  > 100  13.75 16.35 

d.f.  15 15 15 15 

p -value  0.00% 0.00% 46.81% 35.91% 

r̂    0.143 (0.004) 5.574 (0.531)  

p̂     0.483 (0.024)  

̂   5.955 (0.080)    

̂      2.428 (0.023) 
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 These Tables also show the estimators (obtained by the maximum likelihood method), 

the 
2  statistics, the p –values and the AIC (Akaike Information Criteria). With respect 

to all examples considered, it should be emphasized that this new and more versatile 

distribution allows us to accommodate the change of monotony in the value of the 

probabilities. The proposed pf provides a good fit in the three cases presented, on the 

basis of the AIC, 
2  statistics and the corresponding p –values. 

 

 In order to complete this work, we have fitted the previous models to the data 

included in Ayuso et al. (2013) and corresponding to the days to recover from the injuries 

caused by collisions caused by traffic accidents. The results obtained are similar to the 

previous ones, and are available by the authors on request. 

 

5. CONCLUSIONS 
 

 This paper offers a new discrete distribution, belonging to the EFD and also to the 

PSD. The new distribution is competitive with the Poisson distribution, with respect to 

which it is over–dispersed, which is a feature of most data sets to be found in the 

literature. A novel contribution of this distribution is that the expression of the pf 

involves the DF function, which has not previously been considered in this setting. The 

behaviour of the rate of successive probabilities is different from that of traditional 

discrete distributions, where this rate is always increasing or decreasing. As occurs with 

the Poisson distribution, the proposed distribution is approximately normal when the 

parameter tends to infinity. Moment and maximum likelihood estimators are easy to 

compute. We conclude that the proposed distribution is better than the Poisson 

distribution for fitting discrete data sets.  
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