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Abstract

This work belongs to the framework of the interaction between an ion beam and a
plasma target, which is one of the main lines of work in the area of inertial con-
finement nuclear fusion, as this one of the best candidates to operate the ignition
of a future confinement nuclear fusion power plant. Thereby, the simulation of the
beam-plasma interaction process is necessary to obtain information about the energy
deposition of the beam particles in the plasma. In this work, we propose a physical
and numerical model to study the energy loss of the beam and the heating of the
plasma, where both processes depend on the stopping power magnitude, which ac-
counts the deceleration of the projectiles in the plasma. The physical and numerical
models have been implemented in a computational code called STOPBIN, which
simulates the beam-plasma interaction process. Thus, the spatial and temporal so-
lutions of the stopping power, the energy of the beam and the temperature of the
plasma are obtained. The results of the simulation are compared with the researches
of other authors under different conditions and physical parameters. Once the va-
lidity of the model is checked, we propose a set of experiments in order to illustrate
the capabilities of the model: first, it is studied the interaction between a proton
beam and an Aluminum plasma, in standard conditions of laboratory experiments;
secondly, it is simulated the interaction between a proton beam and a Deuterium-
Tritium plasma, which is usually studied for the fast ignition of a nuclear fusion
process. Finally, the results of this simulations are analyzed, the main conclusions
of the work and a brief description of future lines of work are presented.
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Chapter 1

Introduction

Studying the physical properties of matter has been one of the most important fields
of physics in the last centuries. Gas, liquid and solid states are the most familiar
kinds of matter, but since the second half of the XX century a lot of effort has been
employed in the study of the plasma state.

Plasma state is compound by both neutral (atoms, molecules, neutrons, pho-
tons...) and charged components (ions, free electrons, protons...). Unlike the other
three states, plasma does not exist freely on the Earth’s surface under normal con-
ditions, so it can only be artificially generated by heating or applying a strong elec-
tromagnetic field. In the nature, plasma is mostly associated with stellar interiors
and atmospheres, the rarefied intracluster medium and possibly in the intergalactic
regions. Moreover, matter in plasma state can be generated in laboratories or in
nuclear fusion facilities.

In figure 1.1 there is a graph were the different kinds of a plasma are displayed
depending on its temperature and the free electron density. This figure proves the
wide range of plasmas that are found in the nature and can be studied, as its
properties can vary significantly.

Fundamental research and modeling in plasma atomic physics, like radiative
properties and particle and laser beams-plasma interaction, continues to be essen-
tial for providing basic understanding and advancing on many different topics rele-
vant to high-energy-density systems, particularly for nuclear fusion and astrophysics
plasmas.

Thus, in the field of inertial confinement fusion the radiative properties are the
responsible of the absorption by the dopants in the fuel ablator of the thermal
radiation in the indirect drive scheme.

On the other hand, beam-plasma interaction experiments are one of the key
tools to investigate the physics properties of matter under extreme conditions, like
high-energy-density plasmas. A detailed theoretical description of the interactions
allows us to diagnose the temperature and density, obtain information about the
dynamic structure function, opacities and the equation of state of the plasmas.

This beam-plasma interaction is essential in the inertial confinement nuclear
fusion research area, as it is expected to be one of the best candidates to operate the
ignition of a future confinement fusion power plant, where a precise knowledge of
the energy deposition of the beam particles is required to design the fusion process.

1
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Figure 1.1: Graph showing the classification of a plasma depending on its temperature and free
electron density, [1].

Also, the researches in beam-plasma interactions are essential for providing basic
understanding of some astrophysics problems. Thus, the plasma emissivity is a key
quantity in the structure, behavior and stability of radiative shock waves which are
presented in many astrophysical scenarios. Therefore, the plasma properties are
essential to analyze and explain both experiments and observations and also the
radiative-hydrodynamics numerical simulations.

1.1 Background Work

This TFM (Trabajo de Fin de Master) has been developed under the idea of mix-
ing the computational and numerical knowledge acquired during the Master SIANI
(Sistemas Inteligentes y Aplicaciones Numericas en la Ingenieŕıa) course with the
researches of the GIRMA group. GIRMA (Grupo de Interacción Radiación MAte-
ria) is a research group with members from the Physic Department of the ULPGC
(Universidad de las Palmas de Gran Canaria) and from the Plasma Atomic Physics
Section of the IFN-UPM (Instituto de Fusión Nuclear de la Universidad Politécnica
de Madrid).

GIRMA has a long experience in the study and development of theoretical and
computational models, as well as simulations of various processes of plasma physics.
The ongoing research of GIRMA focuses on the implementation of numerical mod-
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els in computational codes intended to simulate the atomic structure and atomic
kinetics of plasma, aiming to obtain the abundances or populations of the charge
and quantum states present in the plasma, as well as its radiative properties. There-
fore, these studies serve as a framework for the development of the contents of the
Master SIANI, in particular learning Fortran, Matlab and various computational
calculation methods with engineering applications.

This works leans on one of the codes created by GIRMA, MIXKIP, that will
be necessary to calculate some data, so studying its code structure is considered as
a part of the TFM duties, therefore there will be an explanation of the operation
of this code in future chapters. Moreover, the code develop in this TFM, called
STOPBIN, will ultimately complement MIXKIP code.

1.2 Objectives

This work focus in developing a theoretical and computational model for the sim-
ulation of the stopping of a point-like ion beam in a high energy density plasma,
as well as the plasma heating process in a wide range of conditions. Space-time
dependence simulations of the beam-plasma interaction for different conditions are
presented, paying special attention to the stopping power, the energy loss of the
beam, the range of the ion beam in the plasma and the change of the temperature
field in the heating process.

The main objectives of this work, synthesized in a few points are:

• The introduction to the concepts and basic equations of the plasma physics
and ion beam-plasma interaction processes.

• The development of a physical-numerical model for the study of the interaction
of the ion beam with the plasma.

• The implementation of the proposed physical and numerical model in the
computational code STOPBIN, that will complement MIXKIP code.

• The simulation of the ion beam-plasma interaction processes in different phys-
ical situations, using STOPBIN code.

On the other hand, the didactic content of this works will teach the physical
concepts that explain the interaction between a beam and a plasma, the methodology
to model a physical system, the numerical techniques and computational capabilities
that the simulation uses and will improve the skill to handle programming languages
such as Fortan and Matlab.
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1.3 Work Structure

This document is organized as follows: first, in this chapter is found a brief introduc-
tion to plasmas as the fourth state of matter, the state of the art and its applications;
in the second chapter the plasma basic models are explained, the physical model is
built using the ideas of the previous chapter, including the expressions that will be
used to simulate the ion-plasma interaction; then, the numerical model selected to
solve the model is explained in the third chapter; in the fourth chapter the model
is tested, compared with other models and the results of our own experiments are
shown; in the last chapter, the main conclusions of this TFM and some future lines
of work are explained. Finally, there will be an Appendix with a proposed extension
of the MIXKIP code.



Chapter 2

Physical Model

This chapter collects the physical foundations to describe a beam-plasma interaction,
which is the main subject of this work. First, the concept of plasma is introduced,
as well as the basic considerations and equations to treat it. Then the interaction
between the plasma and the beam is studied, the beam behavior is described and
it is proposed a set of equations that govern the whole system, in order to built
the model that will be simulated in the next chapter. That is, the equation of the
stopping power of the plasma and the equations that govern the changes of the
kinetic energy of the beam and the temperature of the plasma.

2.1 Theoretical Background

As it is explain in the Introduction, a plasma is compound by neutral particles
(atoms, molecules, neutrons, photons, etc) and charged components (ions, elec-
trons, protons, etc), where collective effects i.e, large range interaction effects, are
important. In order to analyze a plasma from a physical point of view, it needs to
be studied from a microscopic and macroscopic perspective.

The microscopic description involves:

• The study of the internal atomic structure, in particular the energy levels
and wave functions of the ions under the influence of the surrounding plasma.
So, the Dirac equation is solved in a quantum relativistic scenario or the
Schrödinger equation in a non relativistic one.

• The analysis of the collisional and radiative processes occurred in the plasma,
such as the ionizations caused by electron/ions impacts or the excitation of
an ion by absorption of a photon, among others. This implies calculating the
cross sections (probabilities) and rates (number of processes per time) for each
possible process.

• A study of the populations of the different components of the plasma. Atomic
kinetic transport or collisional-radiative equations are applied to calculate the
space-time distribution of the ion and atoms populations both for each charge
state, ground and excited configurations. Moreover, the radiative transport
equations are applied to calculate the energy distribution for the photons.

5
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A macroscopic description involves:

• The study of the radiative properties of the plasma, from the magnitudes
determined in the microscopic description.

• An analysis of the state equations of the plasma as a function of the temper-
ature and density, using statistical physics.

• It is studied the space-time evolution of some fields, such as temperature, den-
sity, pressure, etc, under initial and boundary conditions. Fluid mechanics are
applied among the hydrodynamics equations in interaction with electromag-
netic radiation.

All the previous points show the wide complexity of this problem. Moreover,
some of the equations mentioned above are coupled because the system is compound
of a huge number of particles that interact with each others. So, the simulations
of plasma properties at high energy density require the development of complex
theoretical models and their computational implementation for the generation of
large plasma properties databases in a wide range of plasma conditions. These
plasma properties involve the calculation of a huge number of atomic levels (around
105) and atomic processes (around 107). It is also necessary, to solve a very large
set of coupled rate equations to obtain the average ionization of the plasma and
the populations of the atomic levels. Moreover, this set must be solved for each
plasma condition, i.e. density and temperature, the system must be resolved, and
in a hydrodynamic simulation the profile of plasma conditions could involve around
103 of them. Therefore, it is necessary to use some approximations to uncouple this
equations.

GIRMA research group tackle this problem separating it in two steps. First,
the microscopic equations are solved and then, its solutions are applied to the cal-
culations of the radiative properties of the plasma. The MIXKIP code mentioned
in the previous chapter 1, is used in this work to characterize the plasma, as its
physical model will be explained in section 2.4 and its computational structure will
be presented in the future chapter, in the section 3.3.



2.2. BEAM-PLASMA INTERACTION 7

2.2 Beam-Plasma Interaction

This section contains a physical description of the projectile-target system. First,
it will be presented the hamiltonian of the system, which governs the dynamic
evolution of its particles. Secondly, some appropriate approaches to the dynamic
model are explained, in order to choose a proper description of the system. Then,
there are presented the expressions that govern the interaction between the beam
and the previously explained plasma, as the behavior of both in time and space.

2.2.1 Beam-Plasma Hamiltonian

The starting point to model and simulate the interaction between a plasma and an
ion beam (considering a single projectile) is the hamiltonian of the system. This
hamiltonian is compound by a plasma target term HT , a non relativistic projectile
term HP and the its projectile-target interaction VP−T , which is switched at a certain
time with a step function (θ(t− t0)). The hamiltonian is written as:

H = HT + HP + θ(t− t0) · VP−T (~R, {~S,~s,~s}) (2.1)

HP =
P2

2mP

; HT = HCM +Hbound +Hfree +Hint;

Where ~R, ~P and mP are the position, the momentum and the mass of the
projectile respectively, t0 is the instant when the interaction begins.

The hamiltonian of the target plasma HT is split in four parts: the first two terms
represent each ion system, which is divided in its mass center (usually approached
as the nucleus) and the bound electrons per each ion; the third term represents
the free electrons of the plasma; the fourth term takes into account the interaction
between the other three hamiltonians. Thus, the plasma coordinates {~S,~s,~s} =

{~S1...~SNi ; ~s1,1...~s1,Nb,i ... ~sNi,1...~sNi,Nb,i ; ~s1...~sNe} can be associated to the ions mass
centers, the bound electron of this ions (position respect to its mass center) and the
coordinates of the free electrons, respectively. Furthermore, Ni is the number of ions
in the plasma, Nb,j is the number of bound electrons of the jth ion and Ne is the
number of free electrons.

2.2.2 Dynamic Equations of the System

Once the hamiltonian has been introduced, the purpose of this section is to find
approach to describe the dynamic of the system. Because of the large number of
components of the plasma, the problem is highly complex, so there are different
possible approximations to solve the 2.1 hamiltonian.

On one hand, the hamiltonian could be treated in a molecular dynamic context,
i.e, solving the newtonian or hamiltonian equations of each component of the plasma
and the beam simultaneously, as the equations are coupled due to the interactions.
In this description, the dynamic equations of the ith component of the system (either
the ions of the beam, ions of the plasma or the free electrons) are given in the
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hamiltonian formalism by:

~̇ri =
∂H

∂~pi
; ~̇pi = −∂H

∂~ri
(2.2)

Or, in the newtonian formalism by:

~Fi =
d~pi
dt

; ~Vi =
d~ri
dt

; (2.3)

Where ~ri and ~pi are the position and momentum either for beam or plasma particles,
where ~Fi represents the force over the ith component due to the interaction with the
rest of particles of the system. This is a very detailed description in time and space
for each component, however it requires an enormous computational cost, due to
the great number of coupled equations to solve.

On the other hand, an alternative consist in using a statistical description, which
consist in solving the Liouville equation of the system. Thereby, it is possible to
derive, from the hamiltonian 2.1, the probability density ρ({~r, ~p}, t) in the phase
space {~r, ~p} of the system. Thus, in a statistical context, the average of a magnitude
A({~r, ~p}, t) in a volume Ω of the phase space, could be calculated as:

〈A〉{~r,~p} =

∫
Ω

d~r1...d~rn d~p1...d~pn dt ρ ({~r, ~p}, t) A({~r, ~p}, t); (d~r = d3r) (2.4)

Expression 2.4 can be expressed in terms of the distribution function in the phase
space of one particle, f(~r, ~p, t), and it is defined as the integral of ρ({~r, ~p}, t) over
all the coordinates except one. It can be also determined in an approximated way
when is calculated from the kinetic or Boltzmann equations, where the correlations
between three or more particles are despised. In the last case, the average of a
magnitude could be calculated as:

〈A〉~r,~p =

∫
Ω

d~r d~p dt f(~r, ~p, t) A(~r, ~p, t) (2.5)

Once several descriptions have been explained, it is possible to choose different
treatments for each component of the system, which, as the hamiltonian shows, is
compound by the projectile, the plasma components and its interaction.
In this work, we focus in analyzing the dynamic of the ion beam within the plasma.
We will study the projectile under a classical deterministic dynamic description
in the newtonian formalism. Moreover, it is considered that the particles of the
beam do not interact with each other, and therefore, its behavior is ruled by its
interaction with the plasma particles. This interaction yields a force (FT−P = ~Fi)
from the plasma over the projectile ith , given by:

FT−P ≡ ~Fi = −~∇Vi, with Vi =
∑
j

VT−P ij (2.6)

Being VT−P ij the potential that suffers the particle ith of the ion beam, due to its

interaction with a jth particle of the plasma.
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In our model, this force is considered an statistical average over the plasma co-
ordinates, in the context of the expression 2.5, but in the phase space of the plasma.
With this description for the problem all the contributions of the plasma components
to the interaction are averaged and large computational works are avoided.

In the study of the dynamic of the projectil we will center in the change in its
kinetic energy as it dives in the plasma, as it will be seen in the next section, the
variation of this energy is related with the averaged force previously commented.

2.2.3 Energy Loss and Stopping Power Definition

In the experiments that explore the interaction between an ion beam and a plasma,
the ion projectiles lose its energy gradually as they dig in the target plasma. Con-
sidering a point-like projectile (internal structure is despised), a key observable to
quantify is the kinetic energy loss ∆Ek of the projectile, which difference is empiri-
cally determined by comparing the energy of the projectile before and after passing
through the plasma.

A much more detailed magnitude to measure is the stopping power Sp, defined
as the energy loss of the projectile per path-length unit:

dEk

ds
= −Sp (2.7)

If the projectile has sufficiently high kinetic energy and/or mass, it can be con-
sidered that travels along a straight line. For low energies the projectile shows a
Brownian motion with stochastically changing momentum, so in the trajectory will
appear transverse and longitudinal fluctuations which are defined as spreading and
straggling respectively. In this work the beam will have enough energy to consider
that the movement of the projectiles across the plasma is straight and the problem
is one-dimensional. Under this approximations the stopping power can be described
as:

dEk

dx
= −Sp = −

~V

V
· ~FT−P (2.8)

Where ~FT−P represents the decelerating force that the ion suffers due to the inter-
action with the plasma in a ds space region, as it was explained in the end of the
previous section 2.2.2. Also, ~V is the velocity of the projectile before entering the
ds region.

The most general expression for the stopping power has a dependence in its
projectile and plasma set of coordinates and momentums.

Sp (~R, ~P, {~r, ~p}, t) =
~V (t)

V (t)
· ~F T−P (~R, ~P, {~r, ~p}, t) (2.9)

Where {~r} = {~S,~s,~s} represents the coordinates of each particle of the plasma and

{~p} are its associated momentum. Also, ~R and ~P is the coordinate and momentum
of the projectile.

However, as it is explained in the previous section 2.2.2, the projectile will be
consider under a classical deterministic approximation, so both projectile coordi-
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nates and momentum will be time dependent (~R(t), ~P(t)) and expression 2.9 can be
rewritten as:

Sp ({~r, ~p}, t) =
~V (t)

V (t)
· ~F T−P ({~r, ~p}, t) (2.10)

This expression provides the stopping of the projectile in a t instant, when it
has a V speed and the plasma is in the {~r, ~p} state. Now, our interest is to express
the stopping power as a magnitude where the plasma variables have been averaged,
as it is pointed in the previous section 2.2.2. Thereby, the stopping power in a t
instant where the plasma parameters are averaged over {~r, ~p}, is given by:

Sp (t) = 〈Sp ({~r, ~p}, t)〉{~r,~p} =
~V (t)

V (t)
·
〈
~F T−P ({~r, ~p}, t)

〉
{~r,~p}

(2.11)

Finally, applying the expression 2.5 to calculate 2.11, we can find the desired average
over all the plasma:

Sp (t) =
~V (t)

V (t)
·
∫
V

d~r1...d~rn

∫ ∞
0

d~p1...d~pn f({~r, ~p}, t) ~FT−P ({~r, ~p}, t) (2.12)

After averaging over the plasma coordinates, the stopping power will have a para-
metric dependence on certain macroscopic parameters that represent the averaged
plasma: Sp(t) = Sp (t;nef , nat, T ), where nef is the free electron density, na is the
atomic density and T is the temperature of the plasma. This procedure is used to
find the expressions of the stopping of the beam with free electrons, bound electrons
and ions. A great number of stopping power models have been proposed in the
last decades under different approximations [2, 3, 4, 5]. The free electrons and ion
stopping will be consider under a classical context, while bound electrons stopping
is obtained in a quantum formalism, as it is explained in the coming section 2.2.4.

2.2.4 Stopping Power Expressions of the Model

In this work the stopping power of the ion projectile is considered to be the sum
of the stopping with the target free electrons, the target bound electrons and the
target ions (mass centers) [6].

Sp = Spfree + Spion + Spbound (2.13)

The Spfree and Spion are calculated by using the Peter and Meyer-ter-Vehn
(PMV) model [7]. This stopping power model was develop in a classical statistic
context, in the framework of the kinetic theory. In our work we use the analytical
approximation of the PMV model, as it is shown below for both free electrons and
ions:

Free electron stopping, shows the contributions of the free electrons to the
stopping power, valid when ZP/(nefλ

3
De

) < 1:

Spfree (V, T, nef ) =
Z2
P e

4

4πε20me

· nef
V 2
· (Ge · Le +He · log(Xe)), with : (2.14)
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Xe = V/Ve

Le = log(λDe/be)

Ge = erf(Xe/
√

2)−
√

2/π ·Xe · e−(X2
e )/2

He = (−X3
e · e−(X2

e )/2)/(3
√

2π) +X4
e/(X

4
e + 12)

Ion electron stopping, shows the contributions of the mass centers of the
atoms to the stopping power, valid when ZP/(naλ

3
Di

) < 1:

Spion (V, T, nat) =
Z2
PZ

2
T e

4

4πε20APmP

· nat
V 2
· (Gi · Li +Hi · log(Xi)), with : (2.15)

Xi = V/Vi

Li = log(λDi/bi)

Gi = erf(Xi/
√

2)−
√

2/π ·Xi · e−(X2
i )/2

Hi = (−X3
i · e−(X2

i )/2)/(3
√

2π) +X4
i /(X

4
i + 12)

On the other hand Spbound, is develop by us in the context of a rapid and linear
ion-ion collision in Born approximation, following the ideas of X. Garbet [3].

Bound electron stopping:

SpBound (V, T, nat) =
Z2
P e

4

4πε20me

· nat
V 2
· (ZT − Z̄T ) · Lb, with : (2.16)

Lb =

(
log

(
2meV

2

Ib

)
− 4Ekb

2meV 2

)
, if V > Vint

Lb =

(
V 3 · α

1 +G · V 2

)
, if V < Vint

and α = 1.067

√
Ekb
I2
b

; G = V −1
int ·

(
V 3
int · α

log(2V 2
int/Ib)− (2Ekb/Vint)

− 1

)
In the last three equations, e is the electron charge, me is the electron mass, mP is
the proton mass, ε0 is the vacuum permitivity, ZP is the charge of the projectiles
of the beam, ZT is the charge of the plasma element, Z̄T is the plasma average
ionization or mean charge, nef is the free electron density, nat is the atom density,
V is the velocity of the projectiles of the beam, Ve is the thermal velocity of the
free electrons, Vi is the thermal velocity of the ions (mass centers), λD is the De-
bye length and b is a impact parameter for a minimum collision distance (both for
electrons and ions), Ib is the mean excitation energy of the bound electrons of the
plasma ions, Ekb is the average kinetic energy of bound electrons of the plasma and
Vint =

√
3Ekb + 1.5Ib. The magnitudes Z̄T , Ekb and Ib are calculated using the

collisional-radiative model, which is explained in the section 2.4 of this chapter.
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At this point, it is important to highlight that in our stopping expression the
parameters have an spatial dependence, so, when a beam is interacting within a
plasma of length L, equation 2.8 can be written as:

dEk(x)

dx
= −Sp (Ek(x);T (x), ρ(x), Z̄T (x)) (2.17)

2.3 Heating of the Plasma

This section will cover the physical model used to simulate the heating of the plasma
as the beam yield its energy in it. The equation that governs the change in the energy
of the plasma per volume (E) is given by:

∂E(x, t)

∂t
+ ~V ~∇E(x, t) =

=
dEcond(x, t)

dt
+
dErad(x, t)

dt
+
dEdif (x, t)

dt
+
dEbeam(x, t)

dt
+
dEw(x, t)

dt

(2.18)

Where is taken into account the heat conduction, the radiation energy, the diffu-
sion, the convection processes, the mechanical work and, in this case, the energy
transferred by interaction process with a beam.

In our heating plasma model, the ion beam duration ∆tbeam is considered short
enough in comparative with the characteristic hydrodynamic time of each one of
the plasma processes commented above: ∆tbeam << ∆tH . Therefore, it can be
assumed that during the interaction time between the plasma and the beam (or
heating time), there is no energy change by conduction, diffusion or radiation in the
volume. Moreover, we assume an isochoric heating where the plasma is in rest, so
there is no mechanical work and convection. Under this conditions, equation 2.18
can be reduced to:

dE(x, t)

dt
=
dEbeam(x, t)

dt
; with (0 < t < ∆tbeam) and (0 < x < L) (2.19)

Now, admitting an ideal state equation, the energy per volume of the plasma is
given by:

E(x, t) = ρ(x, t) CV (x, t) T (x, t) (2.20)

Where the matter density ρ is consider in isochoric conditions during the beam-
plasma interaction so it has only spatial dependence ρ(x), the temperature represents
a field T (x, t) and the heat capacity at constant volume CV (ρ(x, t), T (x, t)) = CV is
consider fixed [8] during the interaction time as the process is isochoric.

So, equation 2.19 is written as:

ρ(x) CV
dT (x, t)

dt
=
dEbeam(x, t)

dt
(2.21)
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On the other hand, the beam interaction term is defined as a flux of particles
per time db(t)/dt, multiplied by the energy variation of the plasm per ion and path
length:

dEbeam(x, t)

dt
=
db(t)

dt

dEion(x, t)

dx
(2.22)

Aiming to evaluate the energy deposited by the ion beam in the plasma, it is
considered that the beam interaction time (or heating time) ∆tbeam must be larger
or equal to the projectile deceleration time or flight time, ∆tflight ≤ ∆tbeam, at the
path length in the plasma.

Thus, there are two time scales, ∆tflight and ∆tbeam that allow to determine how
the projectile yields energy in the plasma:

∆tflight ≤ ∆tbeam << ∆tH (2.23)

When t ε ∆tbeam, we can calculate the energy variation of the plasma per ion and
length considering the stopping power as a field. This field Sp(x, t), is obtained as
the energy loss of the projectile through the plasma for each instant of time.

dEion(x, t)

dx
= Sp(x, t), where t ε ∆tbeam (2.24)

These stopping power values are given by expressions 2.14, 2.15 and 2.16. Finally,
expression 2.21 can be written in terms of equation 2.22, using the change of 2.24:

dT (x, t)

dt
=

1

ρ(x) CV

db(t)

dt
Sp(x, t) (2.25)

Evaluated in a plasma of length 0 < x < L, during the beam interaction heating
time 0 < t < ∆tbeam.

Moreover, as it has been seen in section 2.2.4, Spfree, Spion and Spbound have a
dependence with the velocity of the projectile, the temperature, the density and the
mean charge of the plasma. This section shows that the temperature changes when
a flux of projectiles enter the plasma, thus stopping power equation 2.17 will have
a time dependence.

dEk(x(t))

dx
= −Sp ( Ek(x), T (x, t), ρ(x), Z̄T (x, t) ) (2.26)

Equation 2.25 can be written taken into account all the dependences of the stopping
power:

dT (x, t)

dt
=

1

ρ(x) CV

db(t)

dt
Sp ( Ek(x), T (x, t), ρ(x), Z̄T (x, t) ) (2.27)
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2.4 Atomic Kinetic Equations Plasma

As have been explained in the previous section 2.2.4, certain parameters needed to
calculate the stopping power are externally calculated. For example, the populations
per volume of the plasma components Pq,i corresponding to the qth state charge
(neutral, once ionized...) and the ith atomic state (ground state, first excited state...).
This involves the calculation of the atomic structure of each quantum level and the
cross sections of the atomic processes in the plasma by solving Dirac equations.
Finally it is necessary, to built and solve the collisional-radiative equations to obtain
the populations of the plasma.

The physical model that characterizes the plasma and calculates the populations
will be explained in this section and the computational implementation of this model
(MIXKIP code) is explained in the next chapter 3.

Collisional-Radiative model

In a plasma, its components are constantly suffering processes that will define its
microscopic state of the plasma. To describe this processes of the plasma, each cross
section and rate is necessary: the cross section (σi→f (V )) gives the probability of a
process between an initial and final states and the rates (ri→f ) give the corresponding
number of reactions per volume and time.

Once the rates of all processes are determined, the system of equation that gives
the temporal variation of the population of any ion or atom, for each q (0, ..., Z) and
i level, is:

dPq,i(~r, t)

dt
=
∑
q′,j

Pq′,j(~r, t)R+
(q′,j)→(q,i) −

∑
q′,j

Pq,i(~r, t)R−(q,i)→(q′,j) (2.28)

Where R+ is the matrix with all the rates of processes that increase the population
of Pi,q, and R−, is the matrix with all the rates that depopulate Pi,q. Moreover,
this system of equations is calculated, for a given free electron density nef and
temperature T and under the restrictions of particle number (nat) conservation,
given by: ∑

q,i

Pq,i = nat (2.29)

And considering a neutral plasma:∑
q,i

qPq,i =
nef
nat

(2.30)

The most significant processes that account populating and depopulating mech-
anisms are:
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Direct process Inverse process
Spontaneous decay Absortion
Collisional ionization 3-Body recombination
Collisional excitation Collisional deexcitation
Photo-ionization Radiative recombination
Self-ionization Electronic capture
Bremsstrahlung Inverse Bremsstrahlung

Equation 2.28 describes a general thermodynamic state of the internal structure
of the ions of the plasma. In a plasma in which the rate of the ionizations is larger
than the rate of recombinations, is called ionizing plasma, on the other hand, in a
plasma where the rate of recombinations is larger than the rate of ionizations, it
is called a recombining plasma. Additionally, a steady state is attained when both
rates are equal, then the variation of the populations is null and the atomic level
populations are time independent. All this regimes are described as Non Equilibrium
Thermodynamical Regimens (NLTE).

Among the various steady states of a plasma, the Local Thermodynamical Equi-
librium (LTE) state is the closest to the complete Thermodynamical Equilibrium
(TE). In TE conditions the rates of each process, of the three types of particles
(ions, electrons and photons), equals exactly the rate of the inverse.

Then, LTE occurs in plasmas whose dimensions are significantly smaller than
the mean free path of the photons emitted from the plasma, but are much longer
than the collisional length of the electron and the ions. In LTE, the electrons and
the ions are in equilibrium among themselves, whereas the photons are not. So, the
electrons and ions haves its corresponding temperatures [9].

In this work the NLTE situations considered correspond to a system were the
electrons are in equilibrium, but the internal structure of the ions is in non-equilibrium.
Then, we assume that the ions have the same temperature as the electrons.

Additionally, in this section we show how the values of the populations Pij are
used to calculate the average ionization Z̄T , the average excitation Ib and the average
kinetic energies of the bound electrons Ekb. This parameters are used to calculate
the bound electron stopping power of section 2.2.4:

Z̄T =
∑
qi

qPqi (2.31)

Ekb =
1

ZT − Z̄T

∑
q,i

PqiNqKqi;

(
Kqi =

1

Nq

∑
k

wqikKqik

)
(2.32)

Ib =
∏
qi

I

PqiNq

ZT−Z̄T
qi ;

(
Iqi =

∏
k

I
wqik
Ni

qik ; Iqik =

√
2Kqik

〈r2〉qik

)
(2.33)

Where Nq is the number of bound electrons of an ion of charge q; wqik denotes the
number of electrons in the k monoelectronic state of the ion in the q, i state; 〈r〉qik
is the mean radius and, finally, Kqik and Iqik are the monoelectronic kinetic and the
mean excitation energies.
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When a beam interacts with the plasma, the collisional-radiative must be ex-
panded. Then, the rate equations corresponding to the atomic level populations of
the beam are included. Moreover, new ion beam-ion plasma interaction processes
must be taken into account, in particular the ion-ion collision and charge transfer.

This two processes are not included in MIXKIP yet, however have been studied
in the Appendix, because its computational implementation is considered as a future
work line.

2.5 Summary of the Physical Model

The equations that our numerical model has to solve to simulate the plasma-beam
interaction are 2.26 and 2.27:

dEk(x)

dx
= −Sp ( Ek(x);T (x, t), ρ(x), Z̄T (x, t) )

dT (x, t)

dt
=

1

ρ(x) CV

db(t)

dt
Sp ( Ek(x);T (x, t), ρ(x), Z̄T (x, t) )

However, for the experiments that we will study the plasma has constant density
and mean charge, so the previous expressions can be reduced to:

dEk(x)

dx
= −Sp (Ek(x), T (x, t)) (2.34)

dT (x, t)

dt
=

1

ρ CV

db(t)

dt
Sp (Ek(x), T (x, t)) (2.35)

Where 0 < x < L and 0 < t < ∆tbeam



Chapter 3

Numerical and Computational
Models

Once the physical model of the beam-plasma interaction process has been explained,
we can tackle the numerical approaches to the problem and the computational im-
plementation in the STOPBIN code. Moreover, the structure of MIXKIP code and
the method to solve the collisional-radiative equations are explained, which provides
input parameters to the STOPBIN code.

3.1 Numerical Approaches to the problem

In this section we show the numerical approaches based in finite differences, used to
solve the differential equations that define the problem. A brief description of the
Euler method and Runge-Kutta method are presented, where the first one is used
to solve equation 2.35 and the second one to solve equation 2.34. Then, there is an
explanation of the error is estimated and how an adaptive mesh is implemented to
solve the equation 2.34.

3.1.1 Euler method

The Euler method is a first order numerical procedure for solving ordinary differen-
tial equations [10]. Given a differential equation and its initial values:

dy(x)

dx
= f(x, y) , y(x0) = y0 (3.1)

the Euler method, in the forward difference form, computes the solution of y in the
mesh x1...xN , as:

ŷn+1 = ŷn + hf(xn, yn) (3.2)

Where h = xn+1 − xn = ∆xn is the step for each iteration and N is the total
number of nodes used in the discretization. In the Euler method the local error is
proportional to the square of the step size, and the overall error is proportional to
the step size.

17



18 CHAPTER 3. NUMERICAL AND COMPUTATIONAL MODELS

3.1.2 Runge Kutta method

The Runge Kutta method of nth order gives approximate solutions to ordinary
differential equations [11]. Given a differential equation and its initial conditions:

dy(x)

dx
= f(x, y) (3.3)

this method, in the 4th order, computes the solution of y in the mesh x1...xN , as:

ŷn+1 = ŷn +
h

6

4∑
i=1

ki (3.4)

k1 = f(xi, ŷi)

k2 = f(xi +
1

2
h, ŷi +

1

2
k1h)

k3 = f(xi +
1

2
h, ŷi +

1

2
k2h)

k4 = f(xi + h, ŷi + k3h)

Where h = xn+1−xn = ∆xn is the step for each iteration and ki are the halfway
approximation terms, evaluated in f locally.

In the Runge-Kutta method ki represent the estimated slopes using the midpoints
of the interval. Thereby, k1 is the slope at the beginning of the interval, k2 is the
slope at the midpoint of the interval, using k1 to determine the value of y at the
point xn + h/2 with the Euler method. Then, k3 is again the slope of the midpoint,
but now using k2 to determine the value of y; k4 is the slope at the end of the
interval, with the value of y determined by k3. Averaging the four slopes, greater
weight is assigned to the slopes at the midpoint:

slope =
k1 + 2k2 + 2k3 + k4

6

As this is a fourth order method, its associated error per step is of the order of
O(h5), the total error is of the order of O(h4) and so, the order of convergence of
the method is O(h4).

3.1.3 Error Estimation

The absolute error (e) of both Euler and Runge-Kutta methods depends on the size
of the step and is given by:

ei(h) = |ŷi − y(xi)| (3.5)

As the analytical solution (y) of our differential equations is unknown, we estimate
the error of the approximated solution obtained with step h (ŷ[h]), comparing it
with those obtained using a refined mesh. In particular, in our analysis of the error
estimation, the refined mesh is built with a half sized step (h/2). The relative error
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is calculated as the difference between the solution points shared in both mesh.

errori =
|ŷi[h]− ŷi[h/2]|

ŷi[h/2]
(3.6)

3.1.4 Adaptive Mesh

Solving a differential equation with an adaptive mesh provides an approximated
solution with a non uniform mesh, which adapts dynamically the step size [12],
evaluating the error.

In our model, given an initial step size h, this method calculates ŷi[h] and ŷi[h/2].
If the relative error given by equation 3.6 is lower than a tolerance threshold (τ), the
method keeps the solution ŷi[h/2] and proceeds to calculate the solution in the next
node (ŷi+1[h]). If the tolerance threshold condition is not fulfill, the step is divided
again and this procedure is repeated until the tolerance condition is reached.

Using this method, the solution has a refined mesh in the regions where is needed
and a more rough mesh in the regions where the error among the solutions is lower.
This procedure can be synthesized as:

errori =
|ŷi[h]− ŷi[h/2]|

ŷi[h/2]

if errori > τ : evaluation with h′i =
hi
2

if errori < τ : next node, i = i+ 1

(3.7)
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3.2 Discretization of the Physical Model

The differential equations of section 2.5 are solved using numerical methods, so it is
necessary to present a discrete form of this expressions.

3.2.1 Discretization of the Plasma and the Energy Loss

The stopping power governs the variation of the kinetic energy of the beam per length
unit. It depends on the velocity of the projectile, in each position and instant, and
the temperature of the plasma, as it was shown in equation 2.34, written as:

dEk(x)

dx
= −Sp (Ek(x);T ) (3.8)

with:
Ek(x0) = Ek0 and 0 < x < L

This monodimensional problem is discretized in a set of Nx nodes, where the step is
∆x = L/Nx and the mesh is given xn = n ·∆x. Then, the solution using the Euler
method is:

Ekn+1 − Ekn
∆x

= −Spn
or:

Ekn+1 = Ekn − Spn ·∆x (3.9)

Taken into account that the stopping power is defined positive, the stopping
power reduces the kinetic energy (Ek) of the ion beam in each nth point of the
mesh. This equation is solved with an adaptive mesh, as the results show in section
4.1.2.

Another magnitude to define is the range, which is the maximum depth reached
by the projectile in the plasma. It is calculated as the point where the projectile
has lost all its energy:

range = xn, where Ekn = 0 (3.10)

Equation 3.9 works when the beam is made up of one single projectile. So, a
more convenient way to express the interaction between the beam and the plasma
requires the presence of an index that indicates the instant of time, in which the
associated bin suffers the energy loss in a given plasma state. Following this ideas,
equation 3.9 is expressed for the mth bin that enters the nth node of the plasma as:

Ekn+1,m = Ekn,m − Spn,m ·∆x (3.11)

Although, this equation is written in the Euler method formalism it will solved using
a Runge-Kutta method. Also, it is important to highlight the dependence of the
stopping power with the kinetic energy of the projectile and the temperature of the
plasma:

Spn,m = Sp (Ekn,m, Tn,m)

The Figure 3.1 shows how the mth bin enters the plasma.
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Figure 3.1: Discrete model of the plasma with a projectile beam.
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3.2.2 Discretization of the Temperature Equation

The stopping power governs the heating of the plasma and so, the value of the
temperature, as shown in equation 2.35:

dT (x, t)

dt
=

1

ρ CV

db(t)

dt
Sp(x, t) (3.12)

In this equation, db(t)/dt represents the flux of particles per time that enter the
plasma and in this work it is considered constant B. Moreover, for the nth node the
expression 2.35 is written as:

dT (xn, t)

dt
=

B

ρ CV
Sp (xn, t) (3.13)

Then, the solution applying the Euler method is:

Tn,m+1 − Tn,m
∆t

=
B

ρ CV
Spn,mTn,m+1 = Tn,m +

B

ρ CV
Spn,m ∆t

Or:

Tn,m+1 = Tn,m +
B

ρ CV
Spn,m ∆t (3.14)

Now, taken into account the following relations:

db(t)

dt
= B → db = B dt → ∆b = B ∆t;

Then, equation 3.14 is now written:

Tn,m+1 = Tn,m +
1

ρ CV
Spn,m ∆b (3.15)

Where ∆b is a partition of the beam flux, which is called bin. If the the flux b is
discretized in Nb nodes, then the ion beam flux is considered split into Nb bins that
are successively passed through the plasma. Each bin is compound as group particles
that move in the plasma together, at the same time. This change (time→bin) is
very useful, because allows to tackle the problem without treating explicitly the time
and the particle flux [8]. Therefore, equation 3.15 shows the change in the plasma
temperature due to mth bin in the nth spatial node.

Moreover, the value of the beam discretization ∆b is usually described as:

∆b =
Q

NbEk0

(3.16)

Where Q is the energy flux of the beam and Ek0 is the initial kinetic energy of the
projectiles, so ∆b units are number of projectiles (nP ) in a bin per surface unit.
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3.2.3 Summary of the Discrete Problem

Here is presented a discretized form to solve the differential equation 2.34 which
depends on the results of another differential equation, 2.35, both with defined
initial and boundary conditions.

• Ekn+1,m = Ekn,m − Spn,m∆x;

• Tn,m+1 = Tn,m + Spn,m
1

ρ CV
∆b;

With: Nx∆x = L and Nb∆b = Q/Ek0

Initial conditions: Ek(x = 0) = Ek0 and T (x, t = 0) = T0.
Boundary conditions: x ε [0, L] and b ε [0, Q/Ek0].
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3.3 MIXKIP Code

This section is devoted to the explanation of MIXKIP code, as well as to comment
some computational aspects related to the resolution of the equations.

MIXKIP [13] is a Fortran computational package that calculates the atomic
structure and atomic kinetic of the ions in the plasma by solving the set of rate
equations in collisional-radiative formalism. This computational package combines
a set of theoretical and numerical approximations which yield a substantial sav-
ing in computing running time, but are still reliable enough compared with more
elaborated codes and experimental data.

To tackle the problem explained in the previous section, MIXKIP code solves
the microscopic problem in stationary situation for a cylindrical, spherical or a
planar geometries, for different chemical elements (H,.., He,.., C.., Al.., Fe,.., Xe,..,
Au,...), under a large set of macroscopic conditions of density and temperature.
Also, it has application in plasmas in thermodynamic local equilibrium and outside
of it. MIXKIP code can solve the rate equations or Saha-Boltzmann equations
to calculate the ion populations of the plasma for different conditions. However,
Saha-Boltzmann equations are only valid when the plasma is in the LTE regimen,
and in this situations, rate equations and Saha equations provide the same results.
In this analysis, the calculations to determine the ion populations obtained from
rate equations are labeled as NLTE while those obtained from Saha-Boltzmann
equations, as LTE.

MIXKIP will obtain the values of the ion populations of the plasma, the mean
ionization, average charge and average energy. MIXKIP needs an input with the
selected atomic configurations of the ions, the geometry of the problem, its tem-
perature and matter density or free electron density. In this work it is assumed
that the plasma is optically thin, i.e, electromagnetic radiation or photons are not
reabsorbed by matter, so the set of rate equations do not depend on the geometry
and are uncoupled.

The MIXKIP code is composed by two main modules: atomic structure module
and atomic kinetic (collisional-radiative) module. Once the atomic structure data
and the atomic level populations have been calculated, MIXKIP code launches the
radiative properties module, in which are obtained the spectroscopy magnitudes that
characterize the plasma. Below are explained the two main modules of MIXKIP and
it is shown a flowchart of the code in figure 3.2.

Atomic Structure module

MIXKIP has a built-in model to obtain all atomic data required to characterize the
internal structure of the ions, to calculate the cross section of the collisional and
radiative processes and for the atomic kinetic calculations. For each single-electron
level of each atomic configuration defined in the input, the Dirac equation is solved
by a fourth order Runge-Kutta method in a linear or exponential radial mesh. There
are many atomic equations, the order of configurations considered (around 103−105).
They are coupled with atomic kinetic equations by means of the average ionization
of the plasma, and therefore, they must be solved iteratively. At high temperature
and low density, the effective potential tends to the isolated one, and the atomic
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and atomic kinetic equations became uncoupled.
On the other hand, although the number of atomic levels for a given isolated

ion is infinite, due to the coulomb interaction between the bound electrons and the
surrounding plasma, this number should be finite to obtain a satisfactory simulation
of their radiative properties. Therefore, it is necessary to make a previous selection
of the atomic configurations and levels. However, there is not a priori criterion to
determine which configurations should be included in the model. In general, the
kind of configurations to include depends on the plasma conditions, the presence
of external radiation fields or the interaction with particle beams. The experience
achieved, based on the large number of cases studied during the development of the
computational package, took us to choose a proper complete enough set of configu-
rations which allow us to obtain reasonable average ionization and ion abundances
or populations. This set of configuration must be wide enough to obtain reasonable
radiative properties of the plasma. In this case, the criterion employed was based
on a rule of thumb, in which the configurations included for each ion are those with
energies up to twice the ionization energy of the ground configuration.

Population Kinetics module

This module gives the population or abundance distribution, by solving a rate equa-
tion system, which describes the population density of atomic configurations or
states. It follows the standard non equilibrium modeling approach, based on the con-
sideration of the microscopic collisional-radiative processes between different atomic
configurations (or levels).

Given a T temperature and a nef free electron density, the MIXKIP code solves
the collisional radiative model to obtain the populations of the plasma Pij. When
the electron density is take into account as an input parameter, the set of the rate
or atomic kinetic equations constitutes a linear system of M equations, where M
is the total number of atomic states included in the atomic module. Also, the
matter density ρ can be used as an input with the temperature, and in this case,
the equation system is non-linear and it is solved an iterative procedure.

The collisional-radiative atomic processes in the plasma only connects levels that
belong either to same charge state or to adjacent ones, which leads to sparse linear
system. Thus, in order to keep memory requirements to a minimum, MIXKIP uses
sparse techniques to store and operate on only non zero matrix elements. Addition-
ally, in an atomic kinetic problem the number of level can easily reach the order
of 103 − 105 ; hence, the code uses and iterative method to perform the matrix
inversion, because it typically computes the solution faster than direct (standard)
method. In the time dependent problems, the forward pass Euler method is used to
discretized the first order temporal derivative.
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Figure 3.2: Flowchart of MIXKIP code.

3.4 Computational Implementation: STOPBIN

The interaction between an ion beam and a plasma is settled in section 2.5 as a
pair of differential equations, and then discretized in the section 3.2.3. To solve this
problem a set of codes were developed and brought together in the program called
STOPBIN. In the code are implemented the stopping power expressions from sec-
tion 2.2.4. This expressions are solved with the set of input values that STOPBIN
requires to simulate the interaction and obtain the values of the temperature and
the kinetic energy.

The inputs of STOPBIN include the following parameters:

- Atomic beam composition (AP , ZP ).

- Range of initial kinetics energies of the beam for every ’m’ projectile (Ek0).

- Number of bins in which is divided the beam (Nb).

- Flux of the energy per particle that enters the plasma (∆Q)

- Atomic plasma composition (AP , ZP ).

- Initial temperatures of the plasma for all ’n’ (Tn,0).

- Free electron density (nef ) or matter density (ρ).

- Average ionization (Z̄T ).

- Average kinetic energy of the bound electrons (Ekb).

- Average excitation energy of the bound electrons (Ib).

- Heat capacity of the plasma (CV ).

- Length if the plasma (L).

- Points of the mesh that discretize the plasma (Nx).
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Solving Procedure

STOPBIN solves pair of differential equations given in section 3.2.3. As both equa-
tions are coupled by the dependences of the stopping power function, the procedure
alternates solving the kinetic energy equation and the temperature equation.

First, the kinetic energy equation is solved using a Runge-Kutta 4th algorithm
and the values of the stopping power and the kinetic energy are obtained in all n
points, in a certain mth.

Then, this solutions will be used to solve temperature equation with an Euler
method and calculate the new values of the temperature (m+1)th in all the n points.

This new temperature will be introduce in the first equation to calculate the
kinetic energy and the stopping power in all the n points for the next mth bin.
Later, this solutions will be introduced in the temperature equation again.

This procedure will continue until all the bins have dig in the plasma i.e, all the
kinetic energy, stopping and temperature values have been obtained for every bin and
position node. In figure 3.3 there is graphic example of this procedure. Moreover,
the following pseudocode and the example below will clarify the calculation process.

Pseudocode

STOPBIN MAIN function launches the rest of functions:

1. Data Set with Physical Constants, that will be used in the rest of the functions.

2. Input values for both plasma and beam parameters

3. Numerical procedure:

for m=(1:N_b)

for n=(1:N_x)

RK4: Ek(n+1,m)=Ek(n,m)-Sp(Ek(n,m),T(n,m))*dx

end

Euler: T(n,m+1)=T(n,m)+Sp(Ek(n,m),T(n,m))/(rho Cv)*db

(Solved vectorizing for all ’n’ between 0 and N_x)

end

4. Output values of the kinetic energy (Ek), the stopping power (Sp) and the
temperature (T).

It is important to highlight that the temperature calculation does not need a solution
procedure in the lengthwise dimension (n → n + 1), because the solution in each
spatial node does not depend directly of its neighbors and exploiting the vectorizing
capabilities of Matlab, it is not necessary to use any loop.
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The kinetic energy equation is solved using a Runge-Kutta method because its
solutions show sharper slope changes, so it will require a more precise solution. The
temperature equation uses a Euler method instead of a Runge-Kutta because its
results are smoother and computational time is saved.

Below is shown an example with the calculation of the results and its related
figure 3.3:

Initial known values: Ek0,0 ... Ek0,Nb; T0,0 ... TNx,0

First:
Ekn+1,0 = Ekn,0 − Sp(Ekn,0, Tn,0) is solved in all the spatial nodes n ε[0, Nx]

Second:
T0,1 = T0,0 + Sp(Ek0,0, T0,0)
T1,1 = T1,0 + Sp(Ek1,0, T1,0)
...
TNx,1 = TNx,0 + Sp(EkNx,0, TNx,0) independent equations, parallel procedure

Third:
Ekn+1,1 = Ekn,1 − Sp(Ekn,1, Tn,1) is solved in all the spatial nodes n ε[0, Nx]

Fourth:
T0,2 = T0,1 + Sp(Ek0,1, T0,1)
T1,2 = T1,1 + Sp(Ek1,1, T1,1)
...
TNx,2 = TNx,1 + Sp(EkNx,1, TNx,1) independent equations, parallel procedure

Fifth:
Ekn+1,2 = Ekn,2 − Sp(Ekn,2, Tn,2) is solved in all the spatial nodes n ε[0, Nx]

...

Nb-th:
Ekn+1,Nb = Ekn,Nb − Sp(Ekn,Nb, Tn,Nb) is solved in all the spatial nodes n ε[0, Nx]

Nx-th:

T0,Nb = T0,Nb−1 + Sp(Ek0,Nb, T0,Nb−1)

T1,Nb = T1,Nb−1 + Sp(Ek1,Nb, T1,Nb−1)

...

TNx,Nb = TNx,Nb−1 +Sp(EkNx,Nb−1, TNx,Nb−1) independent equations, parallel procedure

3.4.1 Additional Features

Furthermore, taken advantage vectorizing capabilities of Matlab, the code obtains
simultaneously the solutions of the kinetic energy, the stopping power and the tem-
perature, for a range of different initial kinetic energies (Ek0 = [Ek′0, Ek

′′
0 , Ek

′′′
0 ...]),

without using additional loops. Thereby, the outputs of STOPBIN will consist in
three tensors with the values of the kinetic energy of the beam, its stopping power
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and the temperature of the plasma, for every spatial point, every initial kinetic en-
ergy of the beam and every bin that goes through the plasma. Figure 3.4 illustrates
properly the storage procedure of the solutions as they are calculated.

Also, the range of each bin is calculated searching in the kinetic energy tensor the
position of the first value where the bin has lost all its kinetic energy. Some Matlab
functions have been exploited for quickly calculating the range values (x(Ek = 0)).
In order to do this an equality condition is applied on the E matrix so that if the
element is null, it will return a 0 and if it is not null, it will return 1. As the the
kinetic energy solutions will be positive until the bin has stopped, all the zeros and
ones are arranged consecutively. Adding all the ones it is obtained the last position
of each column of the matrix E that is different from 0. This value multiplied by
the distance of the step gives the vector with the ranges that are obtain for each
initial energy different from E(0) and each m bin: range = sum(Ek = 0) ∗ dx.

Finally, the error in the kinetic energy is calculated as the difference between its
solution values for a mesh with step ∆x and the following mesh with step ∆x/2, in
the points shared by both mesh. Similarly, the error in the temperature is calculated
as the difference in the beam discretization between the points shared by a mesh
with ∆b and a mesh with ∆b/2. Both expressions are presented below:

|Ekn,m[∆x]− Ekn,m[∆x/2]|
Ekn,m[∆x/2]

< τEk

|Tn,m[∆b]− Tn,m[∆b/2]|
Tn,m[∆b/2]

< τT

(3.17)
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Figure 3.3: Example of the STOPBIN solving procedure.
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Figure 3.4: Processing and storage of the solutions in STOPBIN.





Chapter 4

Simulation and Results

Once the physical and numerical models have been implemented in the computa-
tional code STOPBIN, this chapter is organized as it follows: first, the numerical
approach implemented in the code is internally tested; then, we check the validity
of our model with external results; finally, we will present our own research of the
behavior of a beam-plasma interaction, for different conditions.

4.1 Simulation Test

First, it is necessary to perform an internal test to acknowledge the limitations of
our model and its error.

4.1.1 Numerical Model Test

In sections 3.1.3 and 3.4, it is explained that the mesh can be refined until the error
in the kinetic energy and the temperature is lower than a threshold tolerance. The
mesh is defined with the spatial discretization and the beam discretization (bins), if
the error calculated between two different mesh is higher than the tolerance threshold
settled for the experiment, the mesh will be refined.

In figure 4.1 it is shown the mean relative error of the kinetic energy and the
temperature as a function of the number of nodes, both spatial and beam discretiza-
tions. Each error value is calculated as the difference between the actual mesh and
the previous one, following expression 3.17. The relative error decreases when the
mesh duplicate its nodes Nx and Nb. Also, the table 4.1 includes the computational
times required using each number of nodes.

Moreover, it is observed that the kinetic energy error is always higher than the
temperature error, although both are of the same magnitude order. This justifies
choosing a Runge-Kutta method to solve the kinetic energy equation, since with an
Euler method the expected error would be even greater. This behavior is understood
taken into account that the kinetic energy have steeper slope changes than the
temperature ones, as will be shown in this chapter.

In this work it is consider a proper tolerance threshold τEk = τT ∼ 0.004, i.e,
0.4%. Therefore, following the results of figure 4.1, the number of nodes to use in all
experiments will be Nx ≥ 1000 and Nb ≥ 1000 and thus, the error of the simulations

33
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is approximately, for the range of physical conditions that will be studied, lower
than ∼ 0.004.
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Figure 4.1: Mean relative error of the kinetic energy and temperature solutions when duplicating
the number of nodes in both spatial (Nx) and beam (Nb) discretizations. Experiment with a
Deuterium-Tritium plasma at 1 keV and ρ = 300 g/cm3, with a proton beam of Ek0 = 3 MeV
and Q = 0.75 GJ/cm2

Nx = Nb : 250 500 1000 2000
Time (s) 16 65 320 1335

Table 4.1: Computational time required using each number of nodes

On the other hand, in figure 4.2 it is shown the final temperature (of the heating
process) as a function of the depth, with different discretizations of the beam (Nb).
This allows to observe how the discretization of the temperature equation influences
the results. It can be observed that when the number of bins is increased the solution
converges, however, when the number of bins is not enough, the solution oscillates
and has a peak for every bin.

This figure makes allusion to the section 3.2.2, where is explained that if the re-
finement of the beam discretization in bins is not precise enough, it will not simulate
the beam smoothly, instead of separated projectiles.
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Figure 4.2: Spatial distribution of the temperature of the plasma when the beam has been
discretized in a number of bins. Experiment with a Deuterium-Tritium plasma of ρ = 300 g/cm3

at 1 keV and a Vanadium beam with Ek0 = 5.1 GeV and Q = 1 GJ/m2.

4.1.2 Adaptive Mesh

In this work, the adaptive mesh method presented in section 3.1.4 has been imple-
mented in STOPBIN code only to solve the kinetic energy equation. The numerical
experiment is done with an Aluminum plasma at 50 eV and and a proton beam with
1 MeV of initial kinetic energy.

In the left frame of figure 4.3 is shown how an adaptive mesh solves the kinetic
energy equation. The initial mesh had 50 nodes and was refined until the relative
error per node is lower than τ = 1e−5. After the refinement process the number of
nodes has augmented as it can be observed in the figure. Moreover, in the regions
where the slope increases the number of nodes is higher, as it is observed when the
beam has low kinetic energy values.

In the right frame, the stopping power is evaluated in the same adaptive mesh.
The results found corroborate the mesh discretization of the kinetic energy, for
instance, in the region where the stopping falls straightly, the adaptive needs more
nodes to fulfill the threshold condition. The nodal jump found in this frame comes
from the fact that the adaptive mesh is calculated over the error in the kinetic
energy Ek, not with the stopping power values. On the other hand, the stopping
power drops straightly when the projectiles have lost its energy so there is truly
unnecessary to find nodes in this region.
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Figure 4.3: Kinetic energy (left) and stopping power (Spfree + Spbound) (right) vs. depth for an
Aluminum plasma at T = 50 eV , nat = 1016 cm−3 and a proton beam of Ek0 = 1 MeV , in LTE
and NLTE plasma conditions. The initial mesh has 50 nodes and the tolerance threshold for the
error per node is τEk = 10−5.

4.2 Behavior and Comparative with other models

An external physical test is necessary to ensure that the expressions selected in
section 2.2.4 to calculate the stopping have been implemented correctly and are
adequate to solve the problem, i.e, making an external test. In order to check the
validity of each single kind of stopping, the expressions will be solved separately
(shown with solid lines) and compared with the results of other research groups
(shown with dotted lines).

First, the validity of the free electron stopping power is checked. In our model an
analytical approximation of the PMV free electron stopping has been selected and it
is valid for classical or non degenerated plasmas, i.e, when the plasma temperature is
larger than the Fermi temperature (T > TF ). The PMV free electron model is tested
in a comparative with the RPA model [14]. Random Phase Approximation (RPA)
stopping power model is valid for degenerated and non degenerated (quantum and
classical, respectively) plasmas. In the left part of the figure 4.4, for an Aluminum
plasma at 1019 cm−3 free electron density, it is shown the ratio between the stopping
power calculated at temperature T and those calculated at reference temperature
T0 = 50 eV . This ratio is presented for PMV and RPA models, and it can be
seen that both ratios have similar behavior in the temperature interval between
50 − 500 eV , in function of the proton energy. This results provides a satisfactory
test for our free electron stopping model.

In the right part of the figure 4.4, also for Aluminum plasma, we compare our
bound electron stopping power model with the Local-Density-Approximation-bound
(LDA-bound) stopping model [15], for a density of atoms nat = 4.45 · 1020 cm−3 and
a temperature of T = 4.5 eV . Taking into account that the atomic number of
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aluminum is 13, then, at this condition, there is an important contribution of the
bound electrons to the total stopping power. As it can be seen in the figure, the
comparison between both stopping models shows good agreement in all range of
proton energies. Moreover, this same plasma is studied in [15] with a stopping
model based on the relativistic average ion-sphere model, that is more rigorous than
the LDA-bound model. So, it is important to highlight that the figure 3 of this
reference confirms that the behavior shown by our model in 4.4, fits suitably with
the average ion-sphere stopping power model.

Figure 4.4: Left: PMV-RPA validation with the Stopping Ratio, for nef = 1019 cm−3 and
Spt0 : T = 50 eV . Right: Bound electron model-LDA validation with the Stopping Power, for
T = 4.5 eV and nat = 4.45 · 1020 cm−3.

Then, we test the free electron and ion stopping models analyzing the stopping
of protons in full ionized mixture of Deuterium-Tritium (DT) plasma. The matter
density and the temperature of the DT plasma are ρ = 300 g/cm3 and T = 1 keV ,
considering the same proportion of deuterium and tritium. Additionally, the mixture
of DT plasma is considered with dopant elements such as Aluminum and Copper,
following the ideas developed in the reference [16]. The presence of the dopants
modifies the ion stopping expression as Spion = Spion(DT ) + Spion(Dop), as well as,
the free electron density nef = nef(DT ) + nef(Dop) = (1 + 0.5ZT ξ)nef , where ξ is
the dopant percentage respect to the Deuterium-Tritium abundance, that in this
study is fixed at ξ = 0.005. In figure 4.5 the ion stopping (left) and the electron
stopping (right) are shown, both for our stopping model (solid line) and the one
used in the reference (dotted line), for the commented conditions above. First of
all, it can be seen that the ion and free electron stopping power of protons grows
up when the DT mixture has a dopant, being the growth higher when the atomic
number of the dopant increases. On the other hand, the maximum value of the ion
stopping is achieved at low proton energies, while for the free electron stopping it is
achieved at higher energies. Moreover, this last behavior do not change when DT
plasma has a dopant. Secondly, in figure 4.5 it is observed that both models share
the same behavior, although, there are differences between our stopping model and
the other one. The relative differences between them are at the order of 15-20 %



38 CHAPTER 4. SIMULATION AND RESULTS

where the stopping is maximum, which is an acceptable discrepancy when stopping
power models have been obtained under different approximations.
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Figure 4.5: Left: Ions Stopping Power Stopping. Right: Electron Stopping Power. Both experi-
ments for a DT plasma at a 1 keV temperature, ρ = 300 g/cm3, the dopant portion respect to the
DT is ξ = 0.005, with different kinds of dopant and a proton beam.

Next, we check the validity of the solutions of the stopping power and the energy
loss with the spatial evolution, following the expressions from the section 3.2.3.
Remaining with the same DT plasma mixture at ρ = 300 g/cm3, in the figure 4.6
is shown the stopping power in function of the spatial position x, of a full ionized
carbon ion beam with an initial energy of Ek0 = 440 MeV entering in a DT plasma
at different temperatures. In the figure is shown the stopping power calculated by us
(solid line) and the calculated in article [17] (dotted line). The result show numerical
differences but the same functional behavior. This numerical discrepancies in the
curves are a result of the different stopping power expressions that our model and
the authors from the reference use. A singular example of this differences, is the
sharp peak that is found in the figure 4.6, which appears because the ion stopping
power (Spion) is included in our model but not in [17]. Moreover, the peak appears
in the final part of each curve because the values of the ion stopping power are
higher at low projectile velocities. Afterwards, we study the heating of the plasma
after interacting with a certain number of projectiles. Keeping the same DT plasma
(ρ = 300 g/cm3), the results of our model (solid lines) are compared with the results
of the article [8] (dotted lines). The figures show the temperature of the plasma as
a function of the distance multiplied by the density ρx for the last instant of the
beam.

The figure 4.7 shows the change in the temperature, respect to the initial temper-
ature of the plasma T0 = 1 keV , after the interaction with NBins = 2000 successive
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Figure 4.6: Stopping power of a bin as it deepens in the plasma. Experiment with a carbon
beam with Ek0 = 440 MeV in a DT plasma with ρ = 300 g/cm3 and a T of 1, 5, and 10 keV

bins with Q = 0.75GJ/cm2 of carbon ion beam at various initial ion energies. As
expected, the plasma temperatures are higher than the initial one, moreover, the
temperature distribution is not constant and it is found that the first regions of the
plasma have higher temperatures than the final regions. This is a consequence of the
bin not depositing the same energy in each position, and indicates that its energy
drops while traveling through the plasma, as the temperature is lower in the regions
where the projectile has less energy.

Similarly, in figure 4.8 there are shown the results of the spatial distribution of
the temperature, when a vanadium ion beam enters the plasma with an initial kinetic
energy of Ek0 = 5.1 MeV and several energy flux values Q. Unlike the previous
case, in this figure it is found that the plasma has the maximum temperature at
ρx = 1.45 g/cm2 for all the three curves. This indicates that in the experiment, the
mayor deceleration of the bin happens in this region, so the projectile loses more
energy and the temperature of the plasma rises higher.

In figure 4.7 the three curves calculated with our model show differences with
the curves of the reference. This discrepancies appear because of using different
stopping power models, but a similar behavior is found among them. In figure 4.8
the reference results and our curves fit satisfactorily, so in this range of energies,
both models approximate the stopping similarly. After comparing the results of the
final temperature of the plasma, we can conclude that the heating model of section
3.2.3 works properly.

In general, we can conclude that the results of our model in comparative with
the different experiments of other authors share the same functional behavior but
show numerical differences. This numerical discrepancies in the curves are due to
the different stopping power expressions that each author uses.
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Figure 4.7: Temperature increment ’∆T ’ after a heating by a carbon ion beam of specific energy
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Figure 4.8: Heat-up by a vanadium ion beam of energy E0 = 5.1 GeV at various specific energy
flux values Q = 0.4, Q = 1, and Q = 1.8 GJ/cm2, with a DT plasma of ρ = 300 g/cm3 and T0 = 1
keV .

4.3 Experiments

Once the physical and numerical model proposed in this work has been tested, in
this section we propose a set of experiments to simulate using the STOPBIB code.
This allow us to show the capabilities of the code and to study the behavior of
the ion beam interaction processes for some situations of interest in the field of the
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laboratory experiments or in the fast ignition. In the figure 4.9 is shown the range
of conditions used to frame our experiments.

Figure 4.9: Range of temperature and electron density where the experiments are performed.

4.3.1 Proton Beam in an Aluminum Plasma

Aluminum plasma is a common target in the theoretical and experimental researches
of this field [18]. Analyzing the interaction between a proton beam and an Aluminum
plasma target, is a good starting point to understand the general behavior of the
interaction between an ion beam and a plasma, so there will be an study of the
stopping power and the kinetic energy as a function of the depth, as well as, the
range of the beam. This last one, is defined as the maximum depth achieved by the
ions in the plasma, according to the deposition of the energy.

In these simulations, we have focused in the study of the influence of the thermo-
dynamic regime in the beam-plasma interaction processes. MIXKIP code can solve
the rate equations or Saha-Boltzmann equations to calculate the ion populations
of the plasma for different plasma conditions. However, Saha-Boltzmann equations
are only valid when the plasma is in the LTE thermodynamic regimen, and in this
situations, rate equations and Saha equations provide the same results. In this anal-
ysis, the calculations to determine the ion populations obtained from rate equations
are labeled as NLTE while those obtained from Saha-Boltzmann equations, as LTE.
Same criteria is used with the stopping power or energy deposition calculation when
the output data from MIXKIP code are required.

As is well known, a plasma achieves the LTE when the density increase or the
temperature decrease. For this reason, we have selected relatively low values of
the atomic density (1016 − 1020 cm−3) and temperature in the range given by 10−
50 eV , because in this ranges the aluminum plasma can be found in LTE and NLTE
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thermodynamic regime. On the other hand, at these plasma conditions, the average
ionization of the Aluminum plasma goes from 2.5 to 13, i.e, the bound electrons in
the plasma go from 11.5 to fully ionized aluminum plasma. Therefore, it can be
analyzed the stopping power contribution of the bound electrons, free electrons and
ions.

This contributions are shown in the figure 4.10 (top) for an ion proton beam with
initial kinetic energy of 0.05 MeV and an Aluminum plasma with ρ = 1016 cm−3

and T = 10 eV . At this plasma condition, MIXKIP code provides an average
ionization of 3.06 (or an average number of bound electrons of 12.06) and a mean
excitation energy of the bound electrons of 350 eV , calculated with 5786 atomic
levels for the collisional-radiative simulation. In figure 4.10 (top) it is observed that
the stopping power value is mainly determined by the stopping of free electrons (so
it is taken as a reference). Meanwhile, the bound electrons make small contributions
to it, and the ion stopping does only happen at low energies or velocities, but with
a stopping power peak that stops the projectile at a sudden. Therefore, the main
effect of the ion and bound electrons is to reduce the range of the proton in the
plasma. In the figure 4.10 (bottom) it is shown the kinetic energy of the projectile,
and as expected, the proton decelerates as dives in the plasma, so its kinetic energy
will fall with the distance traveled. In the figure 4.11 , which is similar to figure
4.10 , the temperature of the Aluminum plasma is T = 50 eV , and it is observed a
similar behavior than at T = 10 eV . In this case, the average ionization increases
Z̄T (T = 50) > Z̄T (T = 10), and therefore, the bound electron stopping contribution
decreases and the free electron stopping rises. Thus, comparing figures 4.10 and 4.11,
it is found that the bound electron stopping power has a larger contribution to the
free electrons stopping when the plasma has a temperature of T = 10 eV . However,
in spite of finding a greater number of free electrons at T = 50 eV , in the figures
it is observed that the stopping power at 50 eV is lower than at 10 eV , while the
range or maximum distance traveled is greater. This results are found because, in
general, the stopping power (as a function of the energy of the projectile) decreases
when the temperature arises.

In the figure 4.12 (top) it can be observed the influence of the thermodynamic
regime of the target plasma in the stopping and energy deposition of the projec-
tile. It has been simulated the proton beam with an initial energy of 0.5 MeV ,
entering in an aluminum plasma with an atomic density of 1016 cm−3 and temper-
atures of 10 and 50 eV . Due to the low density, the aluminum plasma is in NLTE
thermodynamic regime. For example, at 10 eV , the average ionization from NLTE
and LTE calculations are 3.07 and 4.47, respectively. Therefore, LTE calculation
overestimates the number of free electrons in the plasma. Now, taking into account
that the free electron stopping is the more important contribution to the total stop-
ping, it can be understood that the stopping from LTE calculation is major than
the NLTE one, and the corresponding range is minor. As a consequence, reverse
behavior is observed in the kinetic energy of the ion, as it is shown in the figure 4.12
(bottom), where the kinetic energy of the ions is deposited in a shorter portion of
plasma when it is in LTE. Similar behavior is observed for 50 eV .

In figure 4.13 it is shown how the density of a plasma at T = 50 eV affects the pro-
jectile. As the atomic density increases the range is reduced and the stopping power
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values increases, specially the ion stopping, which, as expected, increases when the
beam has more atoms to collide with. Moreover, the influence of the thermodynamic
regime in the beam-plasma interaction processes is found when the atomic density
increases, so at 1020 cm−3, i.e, where both LTE and NLTE calculations provide the
same results and the Saha equations are a good approximation.

We finish the study of the proton ion beam in an aluminum plasma, focusing on
the behavior of the stopping and the range when the initial kinetic energy of the
projectile varies. If the initial kinetic energies of the projectile are high, the beam
will dig deeper in the plasma, as it is shown in the bottom frame of the figure 4.14.
Moreover, in this figure we found a non-linear behavior, where not only the range
increases with energy, but the slope increases too. This result indicates that at low
energies the beam is more sensitive to the stopping than at high energies. This idea
is proved analyzing the stopping power curves from the top frame of figure 4.14,
where the stopping for low initial energies falls shortly after the beam has entered
the plasma. Meanwhile, the stopping power for higher energies is constant until its
value rises before completely dropping. At high energies the projectile deceleration
does not change while traveling through the plasma, its velocity is slowed until the
interaction with the plasma particles is significant, then the beam losses its energy
sharply.
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Figure 4.10: Addition of the different Stopping Power contributions (top). Behavior of the
kinetic energy of the beam with the stopping power contributions. Both for a fixed atomic density
nat = 1016 cm−3, temperature T = 10 eV (NLTE) and a beam of Ek0 = 0.05 MeV .
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Figure 4.11: Addition of the different Stopping Power contributions (top). Behavior of the
kinetic energy of the beam with the stopping power contributions. Both for a fixed atomic density
nat = 1016 cm−3, temperature T = 50 eV (NLTE) and a beam of Ek0 = 0.05 MeV .
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4.3.2 Proton Beam in a Deuterium-Tritium Plasma

The heating by an ion beam of high energy is one of the promising methods for
fast ignition of a precompressed deuterium-tririum (DT) target, in the inertial con-
finement fusion context. Plasma heating in fast ignition is a nonlinear process with
strong feedback: an increase in temperature up to values of 10 or 20 eV results in
a significant decrease of its stopping power and increase of the ion range, and the
deposition of energy of the ion beam in the plasma is affected. Also, in the com-
pression process, the matter density of the DT plasma can change from density of
solid to 1000 g/cm3, and the temperature from 1 to 104 eV . Therefore, the study of
the inertial confinement fusion with fast ignition by an ion beam requires a precise
knowledge of the beam-plasma interaction.

In this simulations we have focused in the study of the proton beam in a DT
plasma. Thereby, following the conditions of the articles [8, 17], we propose a
Deuterium-Tritium plasma and a proton beam partitioned in 2000 bins, with an
initial kinetic energy of Ek0 = 3 MeV and Q = 0.75 GJ/cm2.

A detailed analysis of the figures 4.15 and 4.16, allow us to obtain detailed
information about the stopping and heating process.

The first figure 4.15 shows the stopping power, the kinetic energy and the tem-
perature in function of the distance or in function of the bins that have entered
the plasma. Initially the plasma is homogeneous at T = 1 keV and the density is
constant with ρ = 200 or 500 g/cm3. In the frame F of this figure, is shown the tem-
perature vs. the number of bins at different points of the plasma, is observed that
in a more dense plasma, the temperatures reach higher values and the projectiles
have lower ranges.

The second figure 4.16 also shows the stopping power, the kinetic energy and
the temperature in function of the distance or the bins. In this case, we propose an
experiment applying the same beam in two equal plasmas with ρ = 300 g/cm3, with
different initial temperatures T0 = 0.5 and 1.5 keV . In frames E and F, is found that
both plasmas reach the same temperature when all the bins have traveled through
it although having different initial temperatures. This behavior indicates that, with
the parameters used in this experiment, the temperature equation of section 3.2.3
and the stopping power function, are convergent for different initial values. Further
study is required to broadly justify this behavior.

Moreover, the figures 4.15 and 4.16 share a great amount of information about
the general behavior of the plasma and the beam. Among the results in function of
the distance, it is found that the kinetic energy, the temperature and the stopping
power of the first bin fall with the depth, but the stopping power of the last bin
shows a constant deceleration except in its final values. On the other hand, the
curves as a function of time (or number of bins), show an increase of the kinetic
energy and the temperature, while the stopping power descends.

As expected, we found that the temperature of the plasma increases as the
projectiles dives in it, as it is shown in the frames F and E of both figures. Moreover,
it is observed a uniform increase in the temperature in most of the plasma, except in
the final region, where the temperature falls to the initial temperature. Therefore,
the properties of the plasma will change with the temperature and the deceleration of
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the projectiles will vary. Thus, when the plasma is heated the stopping power values
descends with the time, as it is observed in the graphics D. This last result is also
observed in the figures C, where the first bin (plasma at initial temperature T0) has
more stopping than the last one (heated plasma T > T0). This behavior indicates
that under this conditions, the stopping power is descends when the temperature
rises.

As the stopping power is higher for low temperatures the projectile will have a
shorter ranges. For instance, in graphic A it is shown the energy loss of the beam
and we can observe that the first bin has a much shorter range (the plasma is at T0)
than the last bin (T > T0).

In figures B, D and F it is found that a certain number of the first bins that enter
the plasma have null values in the L/4 region of the plasma. This happens because
neither of these bins has deepen that far. However, as the plasma heats up, the
range of the bins increases and at some point they will reach the L/4 region. Thus,
when a bin reaches a region that is still at the initial temperature, the stopping is
large. But, once the region is heated by the successive bins, the stopping power
decreases in this region. That justifies why the stopping power of the first bin that
enter a region at T0 is higher than the stopping of the last one.

In figure D it is observed that when a large numbers of bins have traveled through
the plasma, the stopping power value of all the curves reaches a similar value and
that the slope is low, i.e, when the plasma has been already heated up, the stopping
power does not vary significantly. This result is related with curve of the last bin
of the figure C, where the stopping power shows a constant behavior in the regions
of the plasma that had been heated up, and a sharp peak where it is still at lower
temperatures

In figures B, it is found that all the bins at x = 0 have the same energy, although
the plasma has been heated up. This result is observed again in the graphic A, where
the kinetic energy does not vary for the first bin in the positions nearby positions
to x = 0 of the plasma.
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Chapter 5

Conclusions

This work focus in developing a theoretical and computational model for the simu-
lation of the interaction of an ion beam in a plasma in a wide range of conditions.
The simulation return space-time results of the stopping power, kinetic energy of the
beam and temperature of the plasma. Simulations of the beam-plasma interaction
for different conditions have been presented, studying the behavior of the stopping
power, the energy loss of the beam, the range and the change of the temperature
field.

The main goals of this work that have been achieved are:

• It has been learned the main concepts of the plasma physics necessary to study
the ion beam-plasma interaction process and the methodology to approach a
physical problem from a computational point of view.

• The principal approaches to the description of a plasma have been studied.
Among them, it has been studied the collisional-radiative model and how it is
simulated in the MIXKIP code in Fortran programming language.

• It has been developed a physical and numerical model for the study of the
beam-plasma interaction in a wide range of conditions of densities and tem-
peratures, plasmas with different chemical components (monocomponent, mul-
ticomponent and dopants), as well as ion beams with a large range of initial
energies and various chemical components for the beam.

• The physical and numerical model have been implemented in the computa-
tional code STOPBIN. The code is written in Matlab environment, taking
advantage of its computational features, in order to reduce the computational
cost and exploit the possibilities in the calculation. Moreover, STOPBIN code
includes an adaptive mesh and the estimation of the error.

• STOPBIN code is capable of solving the equations that govern the kinetic
energy projectile and the heating of the plasma. Moreover, STOPBIN code
has been develop to carry out a multiparametric analysis.
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• Using STOPBIN code, it has been performed numerous simulations of the
ion beam-plasma interaction for different physical conditions. The results
of the simulation are compared with the researches of other authors under
some conditions, finding a good agreement between them. The results of the
simulation have been analyzed in order to understand the behavior of the
beam-plasma interaction.

5.1 Future Lines of Work

This TFM leaves open the possibility to extend the work in the future. To begin
with, it would be of interest to perform a deep parametric analysis of experiments
in the range of values that are used in the fast ignition process of nuclear fusion
plant. Thus, the ignition process could be characterized for different ion beams and
plasma conditions.

On the other hand, in this work was studied a beam with a short pulse time.
STOPBIN code could be extended to study a beam with a pulse time similar to the
hydrodynamic time of each process, so it will be necessary to modify the plasma
heating model in order to include this plasma processes. If the conduction process is
included, it will be possible to simulate the heat propagation due to the interaction
with the beam. This simulation could be performed in two or three dimensions,
in that case the problem will be studied with a finite elements method. Also, the
internal structure of the projectile ions could be considered, i.e, studying a non
point-like beam. This would lead to find a new, more accurate, expression for the
stopping power function in the case of a multielectronic ion beam.

Besides, the STOPBIN and MIXKIP codes could be connected by using the
temperature outputs of STOPBIN as inputs of MIXKIP, therefore studying the
change in the populations as the plasma heats up. This a very tough task from a
computational point of view, so a deep previous analysis must be performed. Also,
STOPBIN code could be improved by implementing the adaptive mesh method in
the calculation of the temperatures. Finally, the rate equations explained in the
Appendix, which have been develop particularly to be included in the MIXKIP
framework, could be implemented computationally in a future work.



Appendix

In this appendix are explained the rate processes that must be included in the
collisional-radiative model when a beam interacts with the plasma, in particular for
the MIXKIP code. The ion beam-ion plasma interaction processes must be taken
into account, in particular the ion-ion collision and charge transfer. The list of index
that is used in this Appendix follows:

Index List
- i, j: initial and final state of the projectile (P)
- l,m: initial and final state of the target (T)
- ε: (kinetic) energy of a free electron
- K: Relative kinetic energy of the projectile mass center
- ζ, q: charge of the target and the projectile, respectively
- E: Energy of a state
At first, the i, j or l,m subscripts will be accompanied with a P or T superscript

to help the reader remember the association between the projectile and target in-
dexes.

Ionization by Ion-Ion collision

One of the first process to study is the removing of an electron from the nth shell of
ion of the beam, by target ion impact. The energy balance equation of this process
is:

EP
i,q + ET

l,ζ +KP
i = EP

j,q+1 + ET
m,ζ +KP

j + ε

And the reaction:
Xq
i + Y ζ

l ↔ Xq+1
j + Y ζ

m + e−

The initial idea to approach the rate expression is taken from the article [2],
which takes both, projectile and target clouds, as a average atom approximation.
So, the cross-section is expressed as:

σIIC =
∑
n

Nnσn(ZT , Un, Vp)

where Nn is the number of electrons in the last (nth) shell of the projectile, Un is
their binding energy (for each one of the shells of the single configuration of the
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projectile average atom), Vp is the average velocity of the projectile and ZT is the
charge of the target average atom. Moreover, as the target is static in this model,
it is possible to consider a distribution for the different velocities of the projectile
f(V ) to calculate the rate:

ωIIC = nT
∫ V2

V1

σICC(V ) · V · f(V ) dV

Being nT the total ion density of the ion plasma. If f(V ) = δ(V − Vp), the rate will
be:

ωIIC = Vp n
TσIIC(Vp)

This work proposes a detailed description of the ions, considering different charge
states and atomic levels, i.e, neglecting the average atom approximation. Therefore,
it will be necessary to rewrite the previous cross-section equation. First, the density
of the plasma target nT will be different for each (initial) ion charge and atomic level,
expressed with the ζ and l indexes, so it is necessary to write the expression in terms
of the level population nTl,ζ and the charge ZT

ζ , both of the target ions. Moreover,
Nn is rewritten as Ni and Un will be substituted by Eij,q, i.e, the energy difference
between the energy of the initial and the final ionized state, Eij,q = Iq−Ei,q +Ej,q+1

of the projectile. Therefore, the previous rate expression now is expressed for each
consider transition as:

ωIIC,(i,q)→(j,q+1) = Vp
∑
ζ

nTζ σIIC(ZT
ζ , Eij,q, Vp)

That can be written using an averaged rate coefficient as:

ωIIC,(i,q)→(j,q+1) = nT
∑
ζ

nTζ
nT
· Vp σIIC(ZT

ζ , Eij,q, Vp) = nT 〈VpσIIC〉

So now, the cross-section is described as:

σIIC = Niπ
ZT
ζ e

2

Eij,q
·G(

Vp
Vij,q

)

with:

G(V ) =
α3/2

V 2
· {α + 2/3(1 + β)Ln(2.7 + V ) · (1− β)(1− β(1+V 2))}; for V > 0.206

or

G(V ) =
4V 4

15
; for V > 0.206

where Vij,q =
√

2Eij,q/m, α = V 2/(1 + V 2) and β = 1/(4V (1 + V )).
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Charge transfer

In partially ionized targets, a bound electron can jump from a target ion to the
projectile, i.e, capture of bound target electrons. The energy balance equation of
this process is:

EP
i,q + ET

l,ζ +KP
i = EP

j,q−1 + ET
m,ζ+1 +KP

j

And its associated reaction:

Xq
i + Y ζ

l ↔ Xq+1
j + Y ζ−1

m

Again, the idea is taken from the article [2], which takes both, projectile and
target clouds, as a average atom approximation and using the OBK Theory [19] in
first Born approximation for the Coulomb potential −e2/r and hydrogenlike wave
functions (Laguerre polynomials), over the (l,m) initial and final states. The cross
section is expressed as:

σCT = 4.1 · 104
∑
ni

∑
nf

Niaeik
(Ze2)2E

5/2
i E

3/2
f E4

k

(E2
k + 2Ek(Ei + Ef ) + (Ei − Ef )2)5

where Ei and Ef are the binding energies of the electron initial (target) and final
(projectile), Z is the charge state of the projectile, which has Ek = mV 2

p /2, then
aiek is taken as one, but generally is defined between 0.1 < aeik < 0.4.

Again, this work proposes a detailed description of the ions, considering different
charge states and atomic levels. Instead, Ei of the target will be fixed and will be
expressed as ET

lm,ζ , such as there is a sum over the energies of EP
l,ζ and EP

m,ζ+1 for
each charge number ζ. Then, the expression for the cross-section will be:

σCT = 4.1 · 104Nl,ζaeik
(ZP

q,ie
2)2E

5/2
lm,ζE

3/2
ij,qK

4

(K2 + 2K(Elm,ζ + Eij,q) + (Elm,ζ − Eij,q)2)5

The rate is:
ωCT,(i,q)→(j,q−1) =

= Vp
∑
ζ

∑
l(ζ)

∑
m(ζ+1)

nTl,ζ4.1 · 104Nl,ζaeik
(ZP

q,ie
2)2E

5/2
lm,ζE

3/2
ij,qK

4

(K2 + 2K(Elm,ζ + Eij,q) + (Elm,ζ − Eij,q)2)5


And the rate expressed as an average of the rate coefficients is:

ωCT,(i,q)→(j,q−1) = nT
∑
ζ

∑
l(ζ)

∑
m(ζ+1)

nTl,ζ
nT
〈VpσCT 〉


Where:

〈VpσCT 〉 = nT · 4.1 · 104Nl,ζaeik
(ZP

q,ie
2)2E

5/2
lm,ζE

3/2
ij,qK

4

(K2 + 2K(Elm,ζ + Eij,q) + (Elm,ζ − Eij,q)2)5
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Reverse ion-ion collision: Detailed balance

The detailed balance equations are found considering the microscopic reversibility
of the atomic processes. Therefore, the inverse expression of the Ion collision can be
found through the expression:

nPi,qn
T
l,ζωIIC,(i,q)→(j,q+1) = nPj,q+1n

T
m,ζneωRIIC,(j,q+1)→(i,q)

Using the Saha-Boltzmann equations, after some straightforward manipulations,
the reverse ion-ion collision is expressed as:

ωRIIC,(i,q+1)→(j,q),ζ =

[
2

(
2πmeT

h2

)3/2 gPj,q+1gm,ζ

gPi,qg
T
l,ζ

e(El,ζ−Em,ζ) · e−Eij ,q/kT
]−1

·ωIIC,(i,q+1)→(j,q),ζ

Where the energies are Eij,q = Iq − Ei,q + Ej,q+1.

Inverse charge transfer: Detailed balance

Again, the detailed balance equations are found considering the microscopic re-
versibility of the atomic processes. The inverse process of the charge transfer con-
sist in the target capture of bound electrons from the projectile ions. Therefore, the
inverse charge transfer can be found through the expression:

nPi,qn
T
l,ζωCT,(i,q)→(j,q−1) = nPj,q−1n

T
m,ζ+1ωICT,(j,q−1)→(i,q)

Then using the Saha-Boltzmann equation, with some straightforward manipulations,
the inverse charge transfer is expressed as:

ωICT,(i,q)→(j,q+1) =
gTl,ζg

P
i,q+1e

−Eji,q/kT

gTm,ζ+1g
P
j,qe
−Elm,ζ/kT

· ωCT,(i,q)→(j,q−1)

Where the energies are Eji,q = Iq − Ej,q + Ei,q+1 and Elm,ζ = Iζ − El,ζ + Em,ζ+1.



Bibliography

[1] Anthony L Peratt. Advances in numerical modeling of astrophysical and space
plasmas. In Advanced Topics on Astrophysical and Space Plasmas, pages 92–
163. Springer, 1997.

[2] Claude Deutsch and Gilles Maynard. Ion stopping in dense plasmas: A basic
physics approach. Matter and Radiation at Extremes, 1(6):277–307, 2016.

[3] Gilles Maynard. Interaction of heavy ions beams with hot and dense plasmas.
application to inertial fusion. 1987.

[4] Günter Zwicknagel, Christian Toepffer, and Paul-Gerhard Reinhard. Stopping
of heavy ions in plasmas at strong coupling. Physics reports, 309(3):117–208,
1999.

[5] Witold Cayzac. Ion energy loss at maximum stopping power in a laser-generated
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