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Abstract: Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. 
This research work presents a proof-of-concept on the use of HSI data to automatically detect 
human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral 
cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed 
with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of 
normal and tumor tissues was created and processed using three different supervised 
classification algorithms. Results prove that HSI is a suitable technique to automatically 
detect high-grade tumors from pathological slides. 
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1. Introduction 

Prior to the release of the 2016 World Health Organization (WHO) Classification of Tumors 
of the Central Nervous System (CNS), the diagnosis and classification of brain tumors were 
solely based on the histological analysis of tissue [1]. According to this criterion, the 
diagnosis relies in the examination of specimens by searching for microscopic features of 
tissue in Hematoxylin and Eosin (H&E) stained sections. Although the current WHO 
classification of tumors of CNS employs both the histological and the molecular analysis of 
tissue to provide a diagnostic, in this paper we explore the use of a novel technology in the 
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medical field, hyperspectral imaging (HSI), as a complementary tool for detecting tumor 
during the examination of pathological slides. 

Hyperspectral Imaging, also known as imaging spectroscopy [2], is a technology capable 
of acquiring hundreds of contiguous spectral bands for a given scene. The interest of this 
imaging technique is given by the fact that the interaction between the electromagnetic 
radiation of light with a certain material is singular for that specific material. The measured 
spectrum from a material is called spectral signature or spectral fingerprint. Through the 
analysis of this wavelength-dependent function it is possible to discriminate between different 
types of materials. The biological and pathological changes in tissues and organs have a close 
relationship with the spectra. Spectral characteristics in different wavelength regions yield a 
distinguishable spectral signature, making pathological changes identifiable. Therefore, the 
interaction between the electromagnetic radiation and tissue carries quantitative information 
about tissue pathology [3]. 

For these reasons, HSI is an emerging technology in the medical field. In the recent years, 
many researchers have explored this technology as a diagnostic aid tool for different 
applications. Compared to other existing technologies for assessing the diagnosis, one of the 
strengths offered by HSI is being completely non-invasive. In biomedical applications, this 
technology has been employed in a wide range of disciplines, including blood vessel 
visualization enhancement [4,5], intestinal ischemia identification [6], measuring the 
oximetry of the retina [7], estimating of the cholesterol levels [8] or cancer detection [9–12], 
among others. Regarding pathological analysis of hyperspectral (HS) data, the number of 
studies available in the literature is limited. Some examples are the identification of acute 
lymphoblastic leukemia [13], blood cell analysis [14] or mitotic cell detection and 
segmentation [15]. 

In this research work, HS data from pathological slides belonging to human brain tissue 
suffering high-grade gliomas have been analyzed. The main goal of this study is to analyze if 
it is possible to discriminate between normal and tumor tissue in pathological slides by 
processing only their spectral information. To this end, HS data have been processed using a 
supervised classification framework. Three different classifiers have been employed to 
automatically distinguish between tumor and normal tissue, using as features only the spectral 
information of the tissues. A qualitative description of this methodology has been recently 
published [16]. 

2. Materials and methods 

The experiments carried out in this research work were performed employing hyperspectral 
images obtained from in-vitro human brain tissue pathological slides, using a custom 
microscopic hyperspectral acquisition system. Then, data were processed with three different 
machine-learning algorithms to classify and identify the tissue samples. In this section, the 
materials and methodology employed to achieve the proposed goals of distinguishing tissue 
samples by its spectral characteristics are detailed. 

2.1. Biological samples 

The biological samples used in this research work consisted of biopsies of human brain tissue 
resected during surgery that followed a histological process, whereby tissue specimens were 
prepared for sectioning, staining and diagnosis. Twenty-one diagnosed pathological slides 
obtained from ten different patients affected by grade IV glioblastoma tumor were included in 
this study (Fig. 1(a)). The examination of the biopsy under a microscope is the conclusive 
way that a brain tumor can be trustworthy diagnosed by a pathologist. These pathological 
slides were provided by the Pathological Anatomy department of the University Hospital 
Doctor Negrín at Las Palmas of Gran Canaria (Spain). The study protocol and consent 
procedures were approved by the Comité Ético de Investigación Clínica-Comité de Ética en 
la Investigación (CEIC/CEI) of the same hospital. Once biopsy was diagnosed, tissue is 
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identified according to the World Health Organization (WHO) classification of tumors of the 
nervous system [17]. In order to facilitate the labelling process of the HS data, after 
pathologists determined the diagnosis of a certain tissue, the regions of interest in each slide 
were highlighted using a colored pen. Tumor tissue were marked using red color, while 
normal tissue were marked using blue color (Fig. 1(b) and 1(c)). 

 

Fig. 1. Biological samples. (a) Pathological slides overview. (b) and (c) Diagnosed 
pathological slides with the tumor and normal tissue surrounded by red and blue color 
respectively. 

2.2. Acquisition system 

In order to register HS images from pathology slides, a customized microscopic HS 
acquisition system was developed. The system is formed by a HS pushbroom camera coupled 
to an optical microscope with a customized scanning platform for the pathological slides 
based on a linear actuator (Fig. 2(a)). The HS camera employed is a Hyperspec VNIR A-
Series from HeadWall Photonics, which is based on a PGP (prism-grating-prism) [18] 
spectrometer coupled to a CCD (Charge-Coupled Device) sensor. This HS system works in 
the spectral range from 400 nm to 1000 nm (VNIR) with a spectral resolution of 2.8 nm, 
being able of sampling 826 spectral channels. This HS camera is based on a pushbroom 
scanning, so to capture a whole HS cube (containing both the spectral and spatial information 
from a scene) either the camera or the sample must be moved synchronously with the camera 
trigger. The microscope used is the Olympus BH2-MJLT. Using this microscope, it is 
possible to perform observations by transmittance or reflectance of light with magnifications 
of 5x, 10x, 20x, 50x and 100x. The microscope includes a light source that consists in a 
power adjustable halogen bulb (Philips CAPSUline PRO 13102) capable of bringing a 
broadband emission in the range between 400 nm to 1000 nm. 

 

Fig. 2. Microscopic HS acquisition system. (a) System overview modified for HIS acquisition. 
(b) Designed flat base of the scanning platform. (c) Scanning platform attached to the 
microscope. 

So as to obtain a HS cube from the pathological slides, a customized scanning platform 
based on a linear-movement mechanism with a resolution of 4.5 μm was developed. The 
scanning platform was attached to the microscope employing a customized 3D-printed flat 
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base, which replaces the original plate of the microscope (Fig. 2(b)). For a 5x magnification, 
each pixel represents an area of 1.32 × 1.32 mm, while the movement resolution of the linear 
mechanism is limited to 4.5 μm. The lower resolution of the linear mechanism compared to 
the pixel resolution of the optical system impose a limitation in the spatial information that 
can be collected to create a HS cube. This fact implies that a complete pathological slide 
cannot be captured in a single shot, because there is a spatial information gap between the 
contiguous lines that compose the HS cube. 

2.3. Hyperspectral database 

Employing the previously described microscopic HS acquisition system, the spectral database 
described in [19] was obtained. This database consists of 36 HS cubes collected using a 5x 
magnification. Each hyperspectral cube is composed by 826 spectral channels and 1004 × 600 
pixels. Figure 3(a) and 3(b) show the synthetic RGB representations of two different HS 
cubes captured from pathological slides presenting tumor and healthy tissue respectively. As 
previously mentioned, tissue inside red markers were diagnosed as tumor while tissue inside 
blue marker were diagnosed as normal tissue. 

As indicated in the description of the HS acquisition system, not all the full spatial 
information can be captured by this HS camera. If the full spatial information would be 
available, the morphological characteristics of the tissue could be exploited, employing 
similar criteria of that used by pathologists for diagnosing (i.e. cell proliferation and nuclei 
morphology). Figure 3(c) shows a typical histological image used by pathologist to diagnose 
brain tumor. Compared with Fig. 3(a) or 3(b), it can be seen that the histological image allow 
distinguishing cells, what is not possible in the acquired HS images. This spectral information 
consists of a mixture of all tissues inside a certain area of a pathological slide. Nevertheless, 
in real applications, different regions of a tissue could have different spectrum. Although we 
would like to isolate the different elements in a pathological slide, i.e. cells, our scanning 
system constraints the spatial resolution of the images. For this reason, in this research study 
all the tissue inside an area is macroscopically extracted for the classification. Due to this fact, 
in this study only the spectral information obtained from the HS cubes has been taken into 
account. Furthermore, the objective of this research work is to analyze if solely the spectral 
signature analysis is a useful complementary tool for detecting brain tumor in pathological 
slides, as the morphological analysis has been already proven to be appropriate to this end. 

 

Fig. 3. Synthetic RGB representations of a HS cube acquired from a pathological slide of (a) 
tumor tissue and (b) normal tissue. (c) Histological image of a brain tissue sample (100x). 

As it will be detailed next in the pre-processing chain description section, a region of 
interest (ROI) of each HS cube were defined to extract a spectral signature data set. In this 
study, two different classes of tissue have been defined: tumor tissue and normal tissue. Table 
1 summarizes the labelled data set of spectral signatures available for each patient per tissue 
class after defining the ROI and extracting the spectral data from each hypercube. The 
spectral signatures for both classes and all patients are shown on Fig. 4. These spectral 
signatures have been calculated as the mean spectrum of each tissue type for each patient. The 
spectral signatures depicted in blue lines belong to normal tissue and the ones depicted in red 
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lines belong to tumor tissue. After a visual inspection of these spectral signatures, it can be 
noticed that there are significant differences between the signatures of normal and tumor 
tissue, especially in the spectral range between 550 nm and 700 nm. 

Table 1. Spectral signature labelled data set summary 

#Patient 
#Total of spectral samples 
Normal Tumor 

P1 36,648 36,685 
P2 36,923 37,826 
P3 35,159 35,181 
P4 36,821 37,800 
P5 37,321 35,230 
P6 35,366 37,379 
P7 36,605 37,718 
P8 36,736 38,242 
P9 - 38,325 

P10 - 39,399 

 

Fig. 4. Average spectral signatures of tumor tissue (red) and normal tissue (blue) and their 
respective standard deviation. 

2.4. Processing framework 

The proposed processing framework is based on a supervised classification scheme. Although 
it has been proven that combining both the spatial and spectral features of the hyperspectral 
images can improve the accuracy in the predictions [20], in this research work only the 
spectral characteristics of the data have been taken into account. In future works it will be 
interesting to combine both sources of information once the suitability of the spectral analysis 
has been proven. The inputs of the classifiers are the measured spectral signatures from 
healthy and tumor pixels. Figure 5 shows an overview of the processing framework employed 
in this study. The first stage of the proposed framework consists of a pre-processing chain that 
aims to compensate the effects produced by the environmental conditions and the sensor 
response of the acquisition system during the capture procedure of the HS cubes. Then, a 
supervised classification is performed using three different classification methods. Finally, the 
performance of the classifiers is evaluated using standard metrics for assessing a classifier 
performance. 
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Fig. 5. Processing framework block diagram. 

2.4.1. Data preprocessing 

The pre-processing chain proposed in this research work is based on four steps: 1) selection 
of the ROI; 2) image calibration; 3) spectral band reduction; and 4) removal of the 
microscope light inside the pathological slide where there is no tissue sample. Following, 
each step of the pre-processing chain is explained. 

1) ROI selection: First, due to the high dimensionality of the HS cubes, which extremely 
slows down the processing of the data, a manual ROI selection is applied. In this 
procedure, the ROI selection is carefully performed taking a ROI that is a balanced 
solution between selecting a reduced area (that involves decreasing the 
computational cost) and choosing enough relevant data inside each area. 

2) Calibration: The second stage of the preprocessing chain is related to the calibration 
of the image. Through the calibration, the acquired image is transformed from 
radiance observation to absorbance. The absorbance image ( )absI  is calculated by 

taking the ratio between the raw HS image ( )rawI  with respect to a reference image 

( )refI  Eq. (1). This is a standard procedure for hyperspectral images [21]. The 

reference material provides a measure of the instrument response function from the 
resultant optical density image set [22]. Figure 6(a) shows a single spectral signature 
extracted from the raw data acquired by the HS camera while Fig. 6(b) shows the 
reference spectrum of the microscope light, passing through an empty pathological 
slide, acquired by the HS camera. Finally, the calibrated spectrum in absorbance 
mode is shown in Fig. 6(c). 

 raw
abs

ref

I
I log

I
= −  (1) 

 

Fig. 6. Spectral signatures of a single tumor pixel in each calibration step. (a) Raw spectrum. 
(b) Reference spectrum. (c) Calibrated spectrum. 
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3) Band reduction: The next stage in the pre-processing chain performs a band 
reduction of the HS cube since there are spectral channels that do not carry any 
relevant information. In the reference spectrum presented in Fig. 6(b), it can be seen 
that the measured intensity is almost zero for the extreme wavelengths (mainly 
produced because the microscope is not optimized to be employed beyond the limits 
of the visible spectral range), so these bands can be removed to avoid the inclusion 
of meaningless information in the machine learning scheme. The selected operating 
bandwidth covers the spectral range from 419 nm to 768 nm (Fig. 7(a)), which has 
demonstrated to be a meaningful range across all the spectra. Furthermore, the 
measured spectral signatures present high redundancy between contiguous bands due 
to the high resolution of the HS camera sensor related with the diffraction capability 
of the optical grating. The spectral resolution of the HS camera is 2.8 nm, obtaining 
826 spectral bands, so each contiguous band is sampled at 0.6 nm approximately, 
thus producing redundant information. In order to avoid this redundancy and to 
reduce the dimensionality of the HS cubes (to accelerate the processing of the 
samples), the spectral bands were averaged in a similar way as proposed in [23]. The 
spectral signature generated after applying the band average can be observed in Fig. 
7(b). It can be observed that the overall shape of the spectral signature does not 
change compared with the full-spectra signature, with 826 spectral channels (Fig. 
6(c)). 

 

Fig. 7. Spectral signatures of a single pixel in the band reduction step. (a) Selected operating 
bandwidth in the reference spectrum. (b) Calibrated spectral signature after the spectral band 
reduction. 

4) Microscope light removal: Finally, in order to process only the useful information of 
the HS cube, a method to discriminate between pixels that belong to the microscope 
light were developed. This method is based on a binarization process performed over 
the synthetic RGB image extracted from the HS cube, taking advantage of the white 
color of the measured light. After a manual selection of the suitable threshold for 
binarizing the image, it is possible to isolate the microscope light to avoid processing 
light pixels without relevant information. Figure 8(a) shows the synthetic RGB 
representation of a HS cube acquired from a healthy pathological slide before the 
binarization process. Figure 8(b) shows the binarized images and Fig. 8(c) the 
synthetic RGB representation after removing the pixels associated with the 
microscope light. 

 

Fig. 8. Synthetic RGB representations of a HS cube acquired from a healthy area of 
pathological slide. (a) Synthetic RGB image without light pixels removal. (b) Binarized image. 
(c) Synthetic RGB image after the binarization process application to remove light pixels. 
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2.4.2. Supervised classification 

An extensive literature about pixel-wise classification of HS images is available in the current 
state-of-the-art. When using this technique, each pixel of a HS cube is assigned to a certain 
class based exclusively on its spectral signature analysis. For this purpose, approaches based 
on decision trees, neural networks and kernel-based methods have been widely used. These 
algorithms have to face two main problems: the high dimensionality of data and the limited 
size of sample data [24]. The supervised algorithms employed in this research work have 
been Support Vector Machines (SVMs), Artificial Neural Networks (ANNs) and Random 
Forest (RF). In a recent review article [25], these classifiers have been highlighted among 
others, such as Multinomial Logistic Regression (MLR) or Deep Learning techniques, for the 
pixel-wise classification of hyperspectral images. Nevertheless, in this study we only analyses 
SVM, ANNs and RF as they have been shown to be more computationally efficient. 

SVMs are kernel-based supervised classifiers that have been widely used in the 
classification of HS images. In the literature, it is shown that SVMs achieve good 
performance for classifying HS data, even when a limited number of training samples are 
available [26]. Due to its strong theoretical foundation, good generalization capabilities, low 
sensitivity to the curse of dimensionality, and ability to find global classification solutions, 
many researchers usually prefer SVMs instead of other classification algorithms for 
classifying HS images [27]. In this research work, the LIBLINEAR [28] integrated software 
for support vector classification has been used. 

Recent remote sensing literature has shown that SVM methods generally outperform 
traditional statistical analysis based on ANN methods in classification problems involving HS 
images. Nevertheless, ANNs have been also successfully employed in the classification of HS 
images [26,29]. Some studies have applied ANNs as classifiers over HS images in the 
medical field [30,31]. The ANN used in this research work is a feed forward Multilayer 
Perceptron (MLP) network, trained using a backpropagation algorithm. The MATLAB 
Neural Network Toolbox has been selected to test the quality of these algorithms in the 
classification of in-vitro hyperspectral brain tissue. 

Finally, the third algorithm tested in this supervised classification approach is Random 
Forest. RF is an ensemble classification algorithm that builds a set of classifiers and classify 
new data by performing a voting of their predictions [32]. Several studies have demonstrated 
that these ensemble methods can provide a classification result as accurate as other traditional 
classifiers, like ANNs [33]. In order to test this supervised ensemble algorithm in the 
classification of HS pathological data, the MATLAB Machine Learning Toolbox has been 
employed. 

2.4.3. Evaluation metrics 

The results obtained by the supervised classifiers were evaluated using the standard 
sensitivity, specificity and overall accuracy (OA) metrics. These are frequently employed as 
statistical measures of the performance of hyperspectral image classification [34–36]. 
Sensitivity is related to the tests ability to identify a condition correctly. It is obtained as the 
number of true positives (TP) divided by the total number of true positives and false negatives 
(FN) in a population Eq. (2). Specificity is related to the tests ability to exclude a condition 
correctly. It is obtained as the number of true negatives (TN) divided by the total number of 
true negatives and false positives (FP) in a population Eq. (3). Finally, overall accuracy is 
calculated by dividing the total number of successful results by the total population Eq. (4). 
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TP FN

=
+

 (2) 
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Specificity
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=
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2.5. Experiment description 

In order to validate supervised classification algorithms for discriminating between normal 
and tumor tissue, three different case studies (CSs) have been proposed. This approaches 
differs in which patients are included as subject of study. These scenarios are described 
below: 

• Case study 1 (CS1): The goal of this CS is to check if the discrimination between 
normal and tumor tissue can be performed using the available labelled data, avoiding 
the inter-patient variability of data. The data sets explored in this CS include HS 
cubes from pathological slides where both type of tissue, normal and tumor, are 
present. In order to avoid the inter-patient variability of data, data from each patient 
is used independently for training and testing the supervised classifiers. Patients #9 
and #10 are not included in this CS because no normal samples are available from 
these two patients. 

• Case study 2 (CS2): In CS2, all the available labelled data are merged into a unified 
data set, taking into account the inter-patient variability in this scenario. All the 
samples for the ten patients have been included in this CS. 

• Case study 3 (CS3): This case study is the most realistic one in a diagnosis context. In 
this scenario, each patient data are used independently as a test set for the 
classification algorithm. The classifier model is trained by using the information 
from the rest of the HS labelled data that belong to the remaining patients. This CS 
represents a real case where new samples arrive to the pathological laboratory and 
the classification must be performed using a classifier trained with data from 
previous patients. 

In this research work, a 10-fold cross-validation (CV) was used as model validation 
scheme for CS1 and CS2, randomly partitioning the data set in 10 folds and using only one 
fold for training the classifier (10% of data) and the remaining data are used to assess the 
classifier performance. The process is repeated until each fold has been used to train the 
classifier, and finally the classifier performance is calculated as the average of the 
performance obtained in each iteration. In CS3, it is not possible to apply cross-validation, so 
the model was evaluated using hold-out validation, where the test set corresponds to the 
spectral samples from one patient, and the classifier is trained using all the available spectral 
signatures from the remaining patients. 

3. Experimental results 

This section presents the results achieved after applying the supervised classification 
framework described in section 2 to the in-vitro human brain hyperspectral data set. These 
results present the performance estimation of each classifier for each CS. In addition, the 
computational cost of each classifier is shown as a measure of the time required to train and 
evaluate the performance of each classifier, employing a computer with Intel Core i7-4770k 
at 3.5GHz. 

Three different supervised classifiers were evaluated: SVMs, ANNs and RF. A linear 
kernel has been tested in the SVM classifier. Several ANN topologies were tested, (varying 
the number of hidden layers, the number of neurons inside each layer and the activation 
function selected for each layer). The selected ANN topology consists of a multilayer neural 
network with two hidden layers composed by 36 and 16 neurons respectively (employing a 
logistic activation function for these layers) and using a hyperbolic tangent sigmoid activation 
function for the output layer. After simulating the classifier using different network 
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topologies, it has been experimentally determined that this architecture is the most suitable for 
this application. Finally, an ensemble of 50 different classification trees composes the RF 
configuration. It has been detected that the use of an increased number of classification trees 
does not improve the classification accuracy. 

3.1. Case study 1 

As commented before, CS1 implies the classification of data that only belongs to a single 
patient. For this reason, due to the absence of normal tissue for patient #9 and #10, these 
patients were not included in this experiment. The estimation of the model performance was 
obtained using 10-fold cross-validation. Table 2 shows the classification results obtained for 
each classifier per patient in this CS. 

It can be seen that the results achieved employing the SVM classifier offers a competitive 
discrimination between normal and tumor tissue with high sensitivity and specificity (higher 
than 90% in any case). On the other hand, the results obtained using ANNs outperform 93% 
of overall accuracy for every patient, being the most suitable classifier for this CS. In terms of 
specificity and sensitivity, these results show a good discrimination rate between the different 
classes, being the sensitivity and specificity values also higher than 93% in all the cases, 
achieving an average OA of 97.88%. Regarding the computational cost, ANNs show a higher 
computational cost compared with the SVM classifiers for this CS. Finally, RF also offers 
accurate results to differentiate between normal and tumor tissue, achieving results that 
outperform 89.5% of specificity and sensitivity. 

Table 2. Supervised classification results in CS1 

Classifier 
Type 

#Patient 
OA 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Time – 1 Fold 
(s) 

Time – 10 Fold
(s) 

SVM Linear 
Kernel 

P1 98.84 99.06 98.63 16.59 165.96 
P2 99.99 99.99 99.98 1.89 18.97 
P3 97.83 97.49 98.17 11.02 110.22 
P4 96.89 96.41 97.35 12.54 125.42 
P5 97.32 97.07 97.58 12.27 122.74 
P6 90.55 91.02 90.11 30.08 300.84 
P7 91.61 90.30 92.89 26.28 262.87 
P8 97.24 96.67 97.79 20.81 208.11 

Avg. 96.28 96.00 96.56 16.44 164.39 

ANN 

P1 98.79 99.00 98.58 84.35 843.57 
P2 99.99 99.99 99.99 30.05 300.56 
P3 98.94 98.93 98.95 74.71 707.19 
P4 99.05 98.71 99.38 70.66 706.62 
P5 98.23 98.33 98.12 83.07 830.75 
P6 93.75 93.11 94.37 84.41 844.17 
P7 94.37 94.49 94.26 86.04 860.47 
P8 99.91 99.89 99.93 66.64 666.43 

Avg. 97.88 97.81 97.95 72.49 719.97 

RF 

P1 97.76 98.20 97.32 27.76 277.62 
P2 99.93 99.92 99.93 16.01 160.12 
P3 96.91 96.04 97.78 27.00 270.08 
P4 98.54 98.03 99.03 23.40 234.07 
P5 95.88 95.47 96.31 28.79 287.98 
P6 91.73 91.67 91.79 38.29 382.98 
P7 90.48 89.50 91.43 39.86 398.61 
P8 99.76 99.68 99.84 20.87 208.79 

Avg. 96.37 96.06 96.68 27.75 277.53 

The results achieved in the CS1 scenario shows that all the classification algorithms can 
reach significant classification results. The behavior measured for all the classifiers is very 
similar in this CS, having close averaged metrics around 96% of overall accuracy, specificity 
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and sensitivity. It can be observed that the classification quality also depends on the subject of 
study, i.e. patients #6 and #7 show lower accuracy than the other patients whatever classifiers 
is employed. The worst results in terms of overall accuracy are higher than 90% of success, 
and the values of sensitivity and specificity outperform 89.5% in all the cases. As far as 
computational cost is concerned, it can be seen that SVM and RF can perform the training 
and classification tasks more efficiently. 

3.2. Case study 2 

This CS aims to introduce some inter-patient variability in the classification task by merging 
all available data from all patients in a single data set. The model evaluation was 
accomplished through 10-fold cross-validation. The results achieved by all the classifiers for 
this CS are shown in Table 3. Although the discrimination rate in all the supervised classifiers 
present good discrimination capabilities to distinguish normal and tumor tissue (higher than 
80% in terms of overall accuracy, sensitivity and specificity), the results have worsened 
compared to CS1 results. In this CS, RF and ANNs show the most competitive classification 
results, with values of overall accuracy, sensitivity and specificity higher than 90%. It can be 
also observed that the results achieved using SVM have the lowest accuracy, which metrics 
around 80%. The computational cost in this CS has extremely increased compared with CS1 
time results due to the higher amount of data that compose the CS2 data set (more than 
665,000 spectral signatures). In this CS, the computational time required for ANNs is much 
higher than the one required for SVM or RF. The time consumed by ANNs is almost twice 
than RF or SVM for training the classifier and evaluating its performance. For these reasons, 
RF provides more competitive prediction results, having significantly lower computational 
cost. Although the SVM classifier performs the classification with a lower computational cost 
compared to ANNs, the classification performance is slightly worst. 

Table 3. Supervised classification results in CS2 

Classifier Type 
OA 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Time – 1 Fold 
(s) 

Time – 10 Fold 
(s) 

SVM Linear Kernel 82.94 86.33 79.14 418.53 4185.4 
ANN 91.71 92.45 90.78 795.16 7951.6 
RF 93.25 93.97 92.35 467.95 4679.6 

3.3. Case study 3 

This experimental setup reproduces a realistic situation where a pathological slide, belonging 
to a new patient, arrives to the Pathological Anatomy department and the prediction of the 
disease is performed based only on the information from previous patients. In this CS, the 
model evaluation is performed following a hold-out method, where the samples from a certain 
patient are used as a test set to evaluate the performance of the classifier model generated 
employing the remaining patients of the database. Patients #9 and #10 only have tumor tissue 
samples, so the measurement of the specificity cannot be obtained due to the impossibility of 
getting neither false positives nor true negatives. Therefore, the overall accuracy and the 
sensitivity are the same for these two patients. 

Table 4 shows the classification results of each classifier per patient in the CS3 as well as 
the computational time results for the hold-out process. It can be seen that the classification 
results of this CS are not as accurate as in the other two cases. Furthermore, as it can be 
observed, the sensitivity and specificity values are not balanced as occurs in the other CSs. 
Unlike the results obtained in CS1, the prediction accuracy strongly varies between the 
different patients. There are some success subjects in this study, such as patients #1, #2, #3, 
#9 and #10, where the classification results are higher than 80% of overall accuracy. Some 
patients even show a classification accuracy similar to the one obtained in CS1, for instance 
patient #2 using the SVM classifier. Nevertheless, the models cannot be generalized enough 
to produce quality prediction about tissues diagnosis in the rest of the patients. 
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The best classification results are obtained for patient #9 where the overall accuracy and 
sensitivity are higher than 98% whatever classifier is employed. According to Table 4, it is 
possible to see that there could be chance for cross-fertilization between the different 
classifiers. For instance, the results obtained using SVM for patient #1 are better than 90% of 
overall accuracy, whereas the results for the patient #3 using this same classifier are near to 
80%. Analogously, the results obtained for patient #1 in ANN is about 80% of overall 
accuracy, while the results for patient #3 are better (90%). Moreover, ANN achieves the best 
average overall accuracy (78.02%), SVM achieves the best average sensitivity (75.69%) and 
RF achieves the best average specificity (79.33%), demonstrating that none of the analyzed 
classifiers is optimum for all the patients. This fact can motivate an ensemble of supervised 
classifiers where the misclassifications from one classifier are compensated with the correct 
classification of another. Following the same trend as in the other CSs, ANNs are the 
classifier with the higher computational load. 

Table 4. Classification results in CS3 

Classifier Type #Patient OA (%) Sensitivity (%) Specificity (%) Time (s) 

SVM Linear 
Kernel 

P1 90.65 92.19 89.12 468.73 
P2 96.75 99.97 93.62 492.41 
P3 80.37 63.26 97.46 457.00 
P4 66.62 66.93 65.54 426.61 
P5 57.18 62.27 51.78 381.72 
P6 38.75 21.81 54.77 349.74 
P7 81.10 74.62 87.40 428.12 
P8 58.82 90.80 28.11 413.94 
P9 99.48 99.48 - 410.59 

P10 85.58 85.58 - 474.33 
Avg. 75,53 75.69 70.97 430.31 

ANN 

P1 86.51 79.87 93.14 788.04 
P2 82.48 99.95 65.42 778.60 
P3 92.48 86.60 98.35 781.80 
P4 70.36 67.23 73.40 774.45 
P5 61.20 38.72 85.02 781.99 
P6 53.67 24.67 81.10 786.06 
P7 72.84 68.36 77.18 771.44 
P8 69.91 98.23 42.70 776.62 
P9 98.73 98.73 - 824.74 

P10 92.04 92.04 - 830.83 
Avg. 78.02 75.44 77.03 789.45 

RF 

P1 80.54 70.35 90.72 426.62 
P2 92.18 99.39 85.15 506.75 
P3 8i6.46 73.62 99.28 489.01 
P4 66.46 57.11 75.56 466.18 
P5 58.87 41.64 77.13 443.80 
P6 60.69 39.74 80.51 437.98 
P7 70.93 60.26 81.29 444.93 
P8 69.59 95.18 45.01 461.59 
P9 99.42 99.42 - 526.78 

P10 92.70 92.70 - 513.57 
Avg. 69.13 72.94 79.33 471.72 

4. Conclusions and discussion 

This research work proposes and validates several supervised classification methods to obtain 
an automatic diagnostic tool based on HSI to assist pathologist in the task of distinguishing 
between tumor and normal human brain tissue using pathological slides. For this purpose, a 
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customized microscopic HS acquisition system capable of capturing HS images of 
pathological slides in the VNIR range (from 400 nm to 1000 nm) was employed. 
Furthermore, a processing framework to label and classify the HS samples was established. A 
total of 21 diagnosed pathological slides belonging to ten different patients affected by Grade 
IV Glioblastoma tumor were included in this study. From these biological samples, 36 HS 
cubes were obtained, being labelled more than 665,000 spectral signatures of tumor and 
normal human brain tissue. Employing this labelled database, three different supervised 
classification algorithms (SVMs, ANNs and RF) were evaluated using three different case 
studies depending on which patients were included as subject of study. 

It should be emphasized that the automatic classification of tissue will be possible once a 
library of spectral signatures from the different tissues have been collected according to the 
current diagnosis of the tissue, which have to be accomplished manually by a pathologist. 
This means that a lot of work is necessary to be accomplished prior to provide a real 
automatic diagnostic using hyperspectral image analysis. The proposed methodology is just a 
step forward in the achievement of automatic diagnosis tools. 

The results obtained in the CS1 and CS2 experiments show competitive results in the 
discrimination between normal and tumor tissue, regardless of the classifier employed 
(achieving results above 80% of OA). The best classification results in such CSs were 
obtained using ANNs and RF algorithms. Comparing the results of these CSs, it is noticeable 
the effect of the inter-patient variability. 

In the case of CS3, the classification results do not follow the same trend as in CS1 and 
CS2, indicating some dependence of the spectral signature with the characteristics of the 
patient. In half of the patients, the results are promising, while for the others the prediction 
error is high. The reduced number of patients involved in this study possibly causes the 
inaccurate results reached in CS3, since the classifier is built employing only the information 
from nine patients. For these reasons, it is possible that the classifiers have not enough 
information to build a model with higher generalization, so the model is highly biased by the 
patients. In future works the number of patients will be increased in order to avoid this effect. 
Nevertheless, this last CS delivers some promising results: for some unseen patients, it is 
possible to detect the tumor tissue inside pathological slides using the spectral information 
from previously diagnosed patients. 

Regarding the computational cost of the different classifiers, ANNs is the most complex 
algorithm while RF and SVM have similar complexity, providing approximately a speed 
factor of 2x over ANNs. 

In summary, HSI has proved to be a suitable technique to develop a future automatic 
diagnostic tool for pathological slides. Although a more exhaustive study must be carried out, 
including more patients and HS images with higher spectral and spatial resolution that will 
allow to employ more sophisticated classification schemes, this study presents promising 
results in the discrimination between normal and tumor brain tissue in pathological slides. 
Moreover, it will be possible to combine these spectral analyses with morphological ones in 
order to improve the overall diagnosis accuracy. In the near future, this kind of tools could 
help pathologist to analyze slides, speeding up the examination process of each sample. 
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