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INTRODUCTION AND BACKGROUND 1

1.1 Introduction

The role of mathematics, physics and engineering was, has been and will be crucial in the
progress of the humanity. It is fascinating to see that mathematics is able to describe the
physical world, and that this description facilitates the construction and operation of many
extraordinary devices, machines and infrastructures. The success has been such that we are
now aware of our potential to change the environment on a global scale, and that such changes
may be irreversible and can potentially put in danger the humanity. Therefore, we have been
forced probably for the first time to set some limits and to adapt our progress. In this sense,
governments through the United Nations Framework Convention on Climate Change have
been taking actions towards the stabilisation of greenhouse gas concentrations. The respon-
sibility of the scientific community is hence to conduct research in this direction.

Computers have allowed mathematics, physics and engineering to further materialise their
power, particularly through numerical methods that allow to solve the governing equations
of many problems. One of the major exponents in this regard is the Finite Element Method
(FEM), which has a very rich history [1] where, through the years, the collaboration of sci-
entists of many fields have produced a numerical tool that has been used to design most of
the objects that we use everyday. Another important numerical tool is the Boundary Element
Method (BEM), which share many ideas with the FEM, but it has its own rich history [2—4]
and its own range of applications where it excels. In the field of computational mechanics,
both numerical methods have been largely used alone [5-7] but also in combination. The
main advantage of the FEM is perhaps its versatility, as it can handle many problems includ-
ing continuum or structural members (beams/arches, plates/shells), geometrical and material
nonlinearities and anisotropy. When unbounded regions are present, however, it requires the
truncation of the domain discretisation, and, in the case of wave propagation phenomena, it
additionally needs some devices that help to impose the Sommerfeld radiation condition [8].
On the other hand, this is in fact the main advantage of the BEM, which, furthermore, only
requires the discretisation of the boundary. Also, the BEM is capable of dealing with cracks
in a very accurate and efficient manner. Therefore, they can complement each other in many
applications. Already in 1977, Zienkiewicz et al. [9] recognised that the intrinsic merits of
the BEM should be used together with the FEM in exterior and crack problems in order to
combine the best of both worlds.

The Continuum Mechanics and Structures Division has been working on the numerical
solution of wave propagation phenomena in continua for more than 20 years. The Boundary
Element Method has been used to tackle many different problems of Mechanical and Civil
Engineering. It was introduced in the group by Professor José Dominguez, and this has al-
lowed having two- and three-dimensional BEM codes where multi-region problems involving
regions of different nature can be handled. Related to the present thesis, it must be mentioned
some previous works within the group:

» Chirino and Dominguez [10] presented a procedure for the evaluation of dynamic stress
intensity factors using the sub-regioning approach with traction singular quarter-point
boundary elements.

Instituto Universitario SIANI 3
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INTRODUCTION AND BACKGROUND

Emperador and Dominguez [11] used an axisymmetric boundary element formulation
to obtain dynamic stiffness functions of rigid foundations.

In line with a previous work of Sédez et al. [12] for static problems, Chirino and Abas-
cal [13] conducted static and dynamic analyses of two-dimensional cracks using the
hypersingular formulation, more commonly known as the Dual Boundary Element
Method (DBEM).

Maeso, Aznarez and Dominguez [14, 15] analysed the seismic behaviour of arch dams
by using three-dimensional multi-region BEM models, which are inspired in a previous
two-dimensional approach for the analysis of gravity dams developed by Medina and
Dominguez [16].

Maeso, Azndrez and Garcia [17] investigated the dynamic impedances of piles and
groups of piles in saturated soils.

Padron, Azndarez, Maeso, Medina and Santana [18-22] studied the dynamic behaviour
of piled structures by using a coupled model of finite elements (pile) and boundary el-
ements (soil). More recently, Alamo, Padrén, Azndrez, Maeso, Martinez-Castro and
Gallego [23] enriched this model by using a multilayered half-space fundamental so-
lution.

Toledo, Azndrez, Maeso and Greiner [24,25] performed the optimisation of two-dimen-
sional thick and thin rigid noise barriers by using Genetic Algorithms and the DBEM.

The present thesis is closely related to the work of Padron et al. [20] in the sense that it
gives a further step in the idea of modelling soil-structure problems by using a coupled bound-
ary element and structural finite element model, but where the structure is a shell instead of
a beam (pile). Figure 1.1 shows a comparison between both soil-structure ideas, on the left
hand side a fully detailed geometry of a pile and a wall, while on the right hand side each
simplified approach. Such models are also called mixed-dimensional models since elements

of different dimensions are coupled, typically structural elements with continuum elements.

The key idea for the present soil-shell simplified model is using the DBEM to obtain the

displacement and traction fields of the soil on both faces of the shell considered as a null-

thickness inclusion, and coupling these to shell finite elements at the mid-surface level. This

model has been called DBEM-FEM model.

Coupled model of FE and BE for the dynamic analysis of buried shell structures



INTRODUCTION AND BACKGROUND 1

;

(L1717
Y 2 A 2 I 0

(b) Soil-shell (present research)

Figure 1.1: Types of soil-structure mixed-dimensional models

1.2 Aims and objectives

The aim of the present research is to formulate and implement a coupled model of finite ele-
ments and boundary elements for the dynamic analysis of soil-structure interaction problems
involving structures where shell hypotheses are valid.

In order to do so, two parallel developments are required: a) formulations for the Dual
Boundary Element Method, and b) shell finite element suitable for the purposes of the model.
The resulting code should be able to perform the analysis of problems of seismic wave prop-
agation phenomena of buried shell structures, dynamic response of walls and retaining struc-
tures, and dynamic characterisation (impedances and kinematic interaction) of foundations
based on shell structures. The simplified methodology would ease the pre-processing stage
since a fully detailed geometry of the shell structure is not required. Also, this would lead to
a reduction of the number of degrees of freedom and computational resources.

On the path towards the achievement of the main objectives, there are a number of partial
objectives to be considered:

1. Study of the theoretical and practical framework, which includes linear elastodynam-
ics and poroelastodynamics, conventional boundary elements and finite elements in
dynamics, and the codes already developed by the Research Team. This provides a
solid foundation for the steps ahead.
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2. Formulate and implement the coupled model for two-dimensional problems. The aim
at this stage is to assess the possibilities of the model in a more simple setting.

3. Select the appropriate shell finite element for the purposes of the model, and formulate
and implement it.

4. Formulate and implement the Dual Boundary Element Method for three-dimensional
wave propagation through ideal fluids and elastic solids.

5. Formulate and implement the three-dimensional coupled model.
6. Extension of the DBEM and the coupled model for Biot’s poroelastic medium.

7. Application of the developed model to the study of dynamic interaction problems in-
volving shell structures. These include the analysis of vibration isolation problems, as
well as the dynamic response of bucket foundations, which are being used as founda-
tions of offshore wind turbines.

8. Diffusion of research results to the scientific community in the form of publications in
referred journals and international conferences.

1.3 Framework. Research Project BIA2014-57640-R

The present Ph. D. Thesis is currently part of the Research Project BIA2014-57640-R sup-
ported by the Subdireccion General de Proyectos de Investigacion of the Ministerio de Econo-
mia y Competitividad (MINECQO) of Spain and the European Regional Development Fund
(ERDF) or, in Spanish, Fondo Europeo de Desarrollo Regional (FEDER). The project is en-
titled “Advances in the development of numerical models for the dynamic characterisation of
wind turbines”.

The support structures of wind turbines must be designed so that natural frequencies of
the whole system are kept far enough from frequencies where the most important dynamic
excitations are generated [26]. These excitations arise from rotor, rotor blades passing in front
of the tower, wind and, in offshore locations, sea waves. One of the system components that
involve higher level uncertainties and simplifications is the soil-foundation part, mainly in the
case of deep foundations. As the number of offshore and land-based wind farms increases,
the probability of being forced to install wind turbines on poorer soils gets higher. Standard
shallow foundations might be unsuitable in such soils, and hence deep foundations such as
piles and buckets (also called suction caissons) [27] should be considered. This is particularly
true for offshore wind turbines. Figure 1.2 shows some of the types of foundation systems
(foundation and submerged structure) that are considered for the installation of offshore wind
turbines for shallow (below 30 meters) and moderately (between 30 and 60 meters) deep
waters.

These facts explain the need for the development of computational models able to es-
timate, more accurately and efficiently than it is done today, the dynamic properties of the

6 Coupled model of FE and BE for the dynamic analysis of buried shell structures
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(d) Tripod on piles/buckets (e) Jacket on piles (f) Jacket on buckets

Figure 1.2: Types of foundation systems for offshore wind turbines

above-mentioned foundations types, which will contribute to the design of safer and more op-
timised wind turbine structures with longer service lifetimes (due to lower fatigue loading),
helping to reduce the cost per unit of energy.

In order to make a contribution in this direction, the aim of the Research Project is the
development of two computational models that will allow more accurate dynamic analysis of
the two types of foundations mentioned above:

1. A model for the dynamic analysis of pile foundations in layered soils, through the de-
velopment and implementation of a collocation methodology based on the integral for-
mulation of the problem for the soil and making use of an advanced three-dimensional
fundamental solution for the layered half-space.

2. A model for the dynamic analysis of buried thin flexible structures such as bucket

Instituto Universitario SIANI 7
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foundations, through the development and implementation of a dual formulation of
the Boundary Element Method coupled to shell Finite Elements.

Achieving the first goal will allow the analysis of pile foundations in stratified soils without
the need for meshing any soil boundaries or domains, in such a way that only the piles them-
selves will be discretised, using beam finite elements. This will allow to tackle problems
with complex stratigraphies that are computationally unapproachable using the formulations
and codes developed so far by the research team. The second goal implies the formulation
and implementation of boundary element codes that make use of a dual boundary element
formulation, combining the standard singular boundary integral equation for viscoelastic and
poroelastic media, with its hypersingular form. This allows the numerical treatment of prob-
lems involving thin inclusions with a reduced computational cost and improved accuracy.

Both models will be used to contribute to the scientific knowledge related to the dynamic
characterisation of wind turbine foundations, both land based and offshore in shallow and
moderately deep waters.

1.4 Published works derived from the Ph. D. Thesis

A portion of the work done during the past four years have resulted in a number of publications
and communications. These are detailed in the present section.

1.4.1 Contributions in JCR journals

« J.D. R.Bordon, J. J. Azndrez, and O. Maeso. A 2D BEM-FEM approach for time har-
monic fluid-structure interaction analysis of thin elastic bodies. Engineering Analysis
with Boundary Elements, 43:19-29, 2014

* J. D. R. Bordén, J. J. Azndrez, and O. Maeso. Two-dimensional numerical approach

for the vibration isolation analysis of thin walled wave barriers in poroelastic soils.
Computers and Geotechnics, 71:168-179, 2016

* J.D.R. Bordon, J. J. Azndrez, and O. Maeso. Dynamic model of open shell structures
buried in poroelastic soils. Computational Mechanics, (accepted), available online on
April 2017

« G. M. Alamo, J. D. R. Bordén, J. J. Azndrez, and O. Maeso. Relevance of soil-pile
tangential tractions for the estimation of kinematic seismic forces: a Winkler approach.
Bulletin of Earthquake Engineering, (under review), submitted on January 2017

1.4.2 Conference contributions

* J.D .R. Bordén, J. J. Azndrez, and O. Maeso. A 2D BEM-FEM model of thin struc-
tures for time harmonic fluid-soil-structure interaction analysis including poroelastic
media. In V. Mallardo and M. H. Aliabadi, editors, Advances in Boundary Element
and Meshless Techniques XV, pages 375-382, Florence, Italy, 15-17 July 2014
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* J. D. R. Bordon, J. J. Aznarez, and O. Maeso. Three-dimensional BE-FE model of
bucket foundations in poroelastic soils. In M. Papadrakakis, V. Papadopoulos, G. Ste-

fanou, and V. Plevris, editors, VII European Congress on Computational Methods in
Applied Sciences and Engineering, Crete Island, Greece, 5-10 June 2016. ECCOMAS

« G. M. Alamo, J. D. R. Bordén, F. Garcia, J. J. Aznérez, L. A. Padrén, F. Chirino,
and O. Maeso. Revision de modelos numéricos para el estudio del comportamiento
dindmico de cimentaciones profundas para el disefio y proyecto de aerogeneradores. In

Proceedings of 20th International Congress on Project Management and Engineering,
Cartagena, Spain, 13—15 July 2016

1.5 Structure of the dissertation

The dissertation is structured in seven chapters, where the first one is the present chapter and
the last one gives the conclusions and future research. Given the relatively heterogeneous con-
tent of the dissertation, it has been chosen to give a literature review in each chapter rather
than in this introductory chapter. The early chapters present the theoretical developments,
then a chapter presenting some advances on the numerical treatment of boundary element
integrals, and the last chapters contain the studied problems. The dissertation is comple-
mented by several appendices, where the last one is a summary in Spanish. A more detailed
description is given in the following.

The main contribution is presented in Chapter 2, where the coupled model of boundary
elements and finite elements for dynamic analysis of buried shell structures is described and
developed in detail. It begins reviewing the governing equations of isotropic and homoge-
neous ideal fluids, elastic solids and Biot’s poroelastic media, which constitute the considered
types of surrounding medium for the shell structures. Then, the core aspects of the Boundary
Element Method for continuum mechanics relevant to the present work are developed. In this
sense, the Singular, Hypersingular and Dual Boundary Integral Equations for two- and three-
dimensional Biot’s poroelastic medium are presented. Since the corresponding equations for
ideal fluids and elastic solids can be considered as limiting cases of Biot's poroelasticity,
these are not described in the text although they are used in some of the problems studied.
The shell finite element formulation used for modelling the shell structure is described next.
Once both ingredients have been described, the coupled model of boundary elements and fi-
nite elements (DBEM-FEM model) is presented. Finally, the boundary element formulation
is validated and a convergence study of the singular and hypersingular formulations is per-
formed. The validation of the DBEM-FEM model is performed through several problems in
Chapters 5 and 6.

Chapter 3 collects the first steps to further develop the same idea for gradient-based shape
optimisation. It gives an introduction to the subject of gradient-based shape optimisation,
and the role of shape sensitivity analysis. Then, the Boundary Element Method for shape
sensitivity analysis of scalar and elastic media in a two-dimensional multi-region setting is
described. The aim of this chapter is to describe this formulation, which is later used in
Chapter 5.
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Chapter 4 studies the problem of numerical integration in the context of the Boundary
Element Method, and describes the strategies used in the present work. Some advances on
the integration of weakly singular and nearly singular integrals are presented.

Chapter 5 collects the study of several problems related to wave barriers. In the first place,
a problem of flexible noise barriers is addressed, which makes use of the DBEM-FEM model
in its simpler fashion. Several multi-edge noise barriers made of different materials are stud-
ied. Also, a parametric fluid-structure interaction study is performed in order to assess the
relevance of using a fully coupled model in situations where simplifying hypotheses may be
used. The second problem is the study of two-dimensional wave barriers in poroelastic soils.
The effects of different poroelastic properties on the amplitude reduction ratio are studied for
several wave barrier topologies: open trench, simple barrier and open trench-wall. The third
problem is a three-dimensional curved wave barrier in a poroelastic soil, whose aim is study-
ing the applicability of the DBEM—-FEM model regarding near- and far-field variables, and
also its performance when compared to multi-region BEM models. Finally, the methodology
developed in Chapter 3 is used for optimising single and double wall barriers in elastic soils.

In Chapter 6, the three-dimensional DBEM-FEM model is used to study the impedances
of bucket foundations. It begins with a general overview of bucket foundations and its ap-
plicability to offshore wind turbines. Then, a comparison against already published results
regarding impedances of bucket foundations in elastic soils is made. Lastly, the impedances
of bucket foundations buried in several poroelastic soils are studied, and the relevance of the
hydraulic conductivity in this problem is analysed.

Finally, a summary with the most relevant conclusions derived from the present work is
given in Chapter 7. Also, a number of recommendations for future research in the short- and
medium-term are pointed out.

Following the main text, there are several appendices supporting the content of the main
text with auxiliary material. In particular, the last appendix contains a summary of the dis-
sertation in Spanish.

The document concludes with a section with the bibliographic references arranged by
order of appearance in the main text.
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DYNAMIC MODEL OF BURIED SHELL STRUCTURES 2

2.1 Introduction

The Finite Element Method (FEM) and the Boundary Element Method (BEM) are well known
numerical methods that can handle a wide variety of problems [5, 7]. Nevertheless, there are
problems where neither of those methods is capable of solving these problems in an efficient
manner. The main advantages of the FEM are its versatility in handling a huge collection of
problems that may include structural members (beams, arches, plates, shells), nonlinearities,
anisotropy and many other aspects, and its ability to manage large-scale problems. However,
when unbounded domains are present in a wave propagation problem, it requires a trunca-
tion of the volume mesh and the presence of some absorbing device that allow to impose the
Sommerfeld radiation condition [8]. Although this has been acceptably solved by Perfectly
Matched Layers [35], the BEM is more appealing as it requires only the discretisation of sur-
faces and it intrinsically satisfies the radiation condition. The BEM has other disadvantages
such as a more involved mathematical formulation and implementation, and more memory
and time computational complexity than the FEM. The latter disadvantage can be overcome
by using different techniques such as the Fast Multipole Method [36], the Panel Clustering
Method [37], or methods based on hierarchical matrices [38].

In the present research, both numerical methods are combined in order to efficiently solve
two- and three-dimensional linear Fluid-Structure and Soil-Structure Interaction problems,
where the fluid is ideal, the soil can be an isotropic and homogeneous elastic solid or a Biot
poroelastic medium [39], and the structure is an elastic shell structure immersed or buried in
such types of surrounding media.

A buried open shell structure is characterised by being in contact with the same surround-
ing region on both faces of the shell. On the other hand, a buried closed shell structure, such
as a tunnel or a box-like structure, is in contact with different regions on each side of the shell.
In both cases, a conventional multi-region BEM approach can be used to deal with the soil
and the structure, e.g. [6, 14, 17], but undoubtedly the structure would be more easily handled
if treated by the FEM. In the case of closed shell structures, conventional multi-region BEM
coupled with shell finite elements can be used [40]. In the case of open shell structures, it
can still be used by artificially transforming them into closed ones. However, fictitious (non-
physical) interfaces must be created, see e.g. [41], unnecessarily increasing the number of
degrees of freedom. In order to obtain a direct and efficient model, we propose a BEM-FEM
model where the key idea is using the Dual BEM (DBEM) [42—44], which is more commonly
used in crack analysis, to treat the interaction between the shell and its surrounding media.
Thus, the proposed model is denoted as DBEM-FEM model.

The rest of the chapter is organised as follows. In Section 2.2, the basic equations of the
types of media considered in this work are described. In Section 2.3, the main aspects of the
Boundary Element Method are described, and in particular, the Singular, Hypersingular and
Dual Boundary Integral Equations for two- and three-dimensional Biot’s poroelasticity are
derived. The modelling of the shell structure is described in Section 2.4, and the DBEM-
FEM model is described in Section 2.5.
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2.2 Basic equations

In this section, the basic equations for the time harmonic analysis of mechanical wave propa-
gation phenomena in different types of continua are described. Since the derivation of these
equations can be found in many references, a concise presentation is given. It serves as a
starting point regarding notation and general assumptions omitted in the rest of the text in
order to avoid repetition.

2.2.1 Generalities

Let @ € RNa (N4 = 2,3) be the domain (finite, semi-infinite or infinite) of interest where
a mechanical wave propagation phenomenon is taking place. The symbol I' denotes the
boundary of the domain, i.e. I" = 02, and its orientation is defined by the outward unit
normal vector n. In a more general setting, the domain Q is composed by N, regions
Q = U:V:“I Q|Q N = @,j # k. Also, aset of Ny boundaries/interfaces is defined
B={l,|b=1,....Ng|[; NI} = @,j # k}. Thus, the boundary of each region €2, can be
defined from a subset B, C B as 0Q, = U,p (2[}) |I; N[} = @,/ # k, where +I}; denotes
the required positive or negative orientation of I, in order to have an outward unit normal
vector with respect to €.

Figure 2.1 shows the types of boundaries and interfaces that are considered here. Figures
2.1a and 2.1b depict an ordinary boundary and interface, respectively. In the former case,
a Neumann, Dirichlet or Robin boundary condition must be imposed. In the latter case, a
contact condition between both regions must be established, typically a welded interface or a
smooth interface. Figures 2.1c depicts a crack where, given the small distance between both
faces, edges can be collapsed (crack tip or front) and the geometrical location of both faces
can be considered coincident when modelling it (crack bottom and top surfaces). Depending
on the real physical situation, each face can be treated as an ordinary boundary where some
boundary condition is established. On the other hand, there may be situations where both
faces are treated as an interface where some contact conditions are defined. The DBEM-—
FEM model proposed in this work exploits this peculiarity in order to give mass and stiffness
to the crack by coupling these faces to a shell finite element.

The mechanical behaviour of each region €2, is modelled according to the materials from
which they are made of, and the excitation levels, among others factors. In the present work,
only linear models of fluids, elastic solids and porous media are considered, whose basic
equations are described in the following sections.

2.2.2 |deal fluid

The propagation of small-amplitude mechanical waves through a homogeneous compressible
fluid with negligible viscosity and isotropic linear elastic behaviour (ideal fluid) is governed
by the Helmholtz partial differential equation. The governing equations can be derived from
physical principles, which is common in the field of Acoustics, see e.g. [45,46], but also from
elastodynamics, see e.g. [47]. In the time domain, the governing equation can be written in
terms of the dynamic pressure p = p(x,t), which is defined positive in compression (0, =
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Figure 2.1: Types of boundaries/interfaces

—péo;;), as primary variable:

v%-vx’:éﬁ (2.1)

where X' = X'(x,1) is the body load vector, ¢ = V K,/p is the wave propagation velocity,
K is the fluid bulk modulus and p is the fluid density. Assuming a time variation exp(ior),
where @ is the circular frequency, then p = p(x, 1) = p(X, @)-exp(iewt), and the time harmonic
governing equation becomes:

Vip+k’p=V:X (2.2)

where k = w/c is the wavenumber. In the following, exp(iwt) is omitted onwards when
writing equations in the frequency domain for the sake of brevity. Likewise, variables should
be understood as position and frequency dependent. The stress-strain relationship is:

p=-K,V-U 2.3)
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where U = U(x, @) is the fluid displacement. The secondary variable can be chosen as the
pressure flux ¢ = g(x, w):
ap

g=Vp-n=— (2.4)
on

or as the normal displacement U, = U (X, ®):

d
i et P

= 2.5
" pwton (2.3)

The solution of a boundary value problem containing an ideal fluid region requires ap-
propriate boundary and interface conditions resulting in a well-posed problem. These are
given in terms of prescribed pressures p (Dirichlet boundary conditions), pressure fluxes g or
normal displacements U, (Neumann boundary conditions), or relationships between pressure
and pressure flux ¢ = g(p) or normal displacements U, = U, (p) (Robin boundary conditions).
Also, if the region is in contact with another region, an interface contact condition must be
defined. In the case two ideal fluid regions are in perfect contact, say €2 and €2, are in contact
through an interface I';, the interface conditions at I, are:

Compatibility: U” -n®” = UY .n®¥ = U = -y (2.6a)

Equilibrium: — p”n®” — p¥n® =0 = p" —p =0 (2.6b)

The first condition establishes equal normal displacements of both regions throughout the
interface, and the second condition establishes the equilibrium of tractions.

2.2.3 Elastic solid

The propagation of small-amplitude mechanical waves through an isotropic, homogeneous
and linear elastic solid is governed by Navier’s system of partial differential equations, which
can be written in the time domain as [47]:

uVu+ A+ )V (V- -u)+ X = pii Q2.7

where u = u(x, 1) is the displacement vector (primary variable), X = X(x,7) is the body
load vector, A and y are respectively Lamé’s first parameter and Lamé’s second parameter (or
shear modulus), and p is the density. The stress-strain relationship (Hooke’s law) is:

o, = &, A€y + 2ue, (2.8)

where o, is the stress tensor and €;; = (4, ; + u; ;)/2 is the strain tensor. The traction vector
t; = o;;n; is the secondary variable. Assuming a time variation exp(iwf), the time harmonic
governing equation becomes:

uVu+ A+ ) V(V-u)+X=—pow’u (2.9)

This equation can be decoupled via Helmholtz decomposition (displacement potentials) [47],
or taking divergence and curl of the equation and expressing them respectively in terms of
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dilation € = V - u and rotation ® = V X u, see e.g. [48]. Decoupling process gives rise to one
scalar and one vector wave equation, which, in the absence of body loads, can be respectively
written as:

Vi +kie=0 (2.10a)

Vo +kio=0 (2.10b)

where kp, = w/cp is the wavenumber of the scalar wave equation governing the propagation
of irrotational/dilatational P (primary) waves which have phase velocity ¢, = /(4 + 2u)/p,
and kg = w/cg is the wavenumber of the vector wave equation governing the propagation of
divergence-free/equivolumial S (secondary) waves which have phase velocity ¢ = \/,qu
These are the two types of body waves present in this type of medium.

The solution of a boundary value problem containing an elastic solid region requires
appropriate boundary and interface conditions that produce a well-posed problem [48, 49].
Boundary conditions are given in terms of prescribed displacements u (Dirichlet boundary
conditions), tractions t (Neumann boundary conditions), or even an impedance kind of rela-
tionship between tractions and displacements t = t(u) (Robin boundary conditions). If the
region is in contact with another region, an interface contact condition must be defined. In
the case two elastic regions are in contact, say £, and €2_ are in contact through an interface
I, the bonded or welded interface conditions at [, are simply:

Compatibility: u” = u® (2.11a)

Equilibrium; t* +t% =0 (2.11b)
q

In the case an elastic region €2, and an ideal fluid region €2, are in contact through an interface
I, interface conditions at I, are:

Compatibility: u” - n® = U (2.12a)

Equilibrium: t* — p*'n"® =0 (2.12b)

2.2.4 Biot’s poroelastic medium

The theory of poroelasticity presented by Biot [39] is able to model the propagation of small-
amplitude mechanical waves in a two-phase medium consisting of an elastic solid frame sat-
urated by a compressible viscous fluid. The governing equations in the time domain for the
isotropic case can be written as:

puVu+VIN (V-u)+Q (V- U]+ X =p i+ p,U+b (0 -1) (2.13a)

VIQ(V-u)+ R(V-U)]+X = ppii+p,U—b(u-U) (2.13b)
and the stress-strain relationships as:
7, =6;[(N—p)(V-w+Q (V- -U)l + p(u,+u, (2.14a)

tj
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r=Q(V-u)+R(V-U) (2.14b)

where N = A+ u+ QEJ‘R, i,j =1,..., Ny u, and T,; are respectively the displacements
and stresses of the solid phase, U, and 7 the displacements and equivalent stress of the fluid
phase, and X and X’ the body loads of solid and fluid phases. The material properties 4 and
u are the Lamé’s parameters of the solid phase, Q and R are the Biot’s coupling parameters,
b is the dissipation constant, and p;; = (1 — d)p, + p,. P12 = =P, P2r = Pp; + p,. being
¢ the porosity, p, the solid phase density, p; the fluid phase density, and p, the additional
apparent density. The dissipation constant b is related to the hydraulic conductivity k by the
relationship b = pfgqbzf'k, where g is the gravitational acceleration [50]. The fluid equivalent

stress is related to the dynamic pressure by 7 = —¢p. Assuming a time variation exp(iwt),
Equations (2.13a-2.13b) become:
uVu+ VNV -w+0 (V- -Ul+X=-0(pu+p,U) (2.15a)
VIQ(V-w+R(V-U+X =—-o (pu+5,U) (2.15b)

where p,, = p,, — iblw, p,» = py» —iblwand p, = p;»+ iblw. By considering the Helmholtz
decomposition:
u=Ve, +Vxy, (2.16)
U=Vp,+V Xy, 2.17)

and considering null body loads, two decoupled sets of two equations are obtained from
Equations (2.15a-2.15b):

" (N +u) V3@, + 0V, = -0 ()@, + $129,) (2.18)
T OV, + RV, = 0 (D0, + )
Viy, = -’ (P y, + Pt
o 1 = (plllfll Pra¥) (2.19)
0=-w (ﬂlz% + ﬂzz%)

The first set is related with a irrotational/dilatational P (primary) displacement field due to
scalar potentials ¢, (solid phase) and ¢, (fluid phase), and the second set with a divergence-
free/equivolumial S (secondary) displacement field due to vector potentials y, (solid phase)
and y, (fluid phase). If a plane wave propagating along +x, is considered ¢, = P, exp(—ikpx,),
then P modes are obtained from:

—_— [0?py, — ki (N + )| P, + |04, — k30| P, =0
1++2 2 n 2 2 A 2 (220)
(@51, — k30| P, + [0y, — kpR] P, =0
where wavenumber kp is obtained from the characteristic equation:
. va?—4a0 4ﬁ||ﬁzz_ﬁ%°
kp = + , Q=0 —————
2 R(A+2pu) (2.21)
2 [ P Py +PnQP R — 5,20/R
a = +
R A+2u
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where two of the solutions are relevant incoming waves (Re(kp) > 0). Hence, two P modes
exist: the wavenumber associated with the fastest wave speed is kp,, while the wavenumber
associated with the slowest wave speed is kp,. If a plane wave propagating along +x, is
considered y; = S, exp(—ikgx,), then the S mode is obtained from:

8,54 1 Aw=Up| 5, ar g8, =0 (2.22)
T\ @508, + 05,8, = 0

and the wavenumber kg is obtained from the characteristic equation:

R (AT e (2.23)
J]
where only one solution is a relevant incoming wave (Re(kg) > 0). Biot theory of poroe-
lasticity was experimentally confirmed by Plona [51,52], who detected P2 waves for the first
time.

The solution of a boundary value problem containing a Biot poroelastic region requires
the appropriate boundary and interface conditions that lead to a well-posed problem. The con-
ditions for solution uniqueness were derived by Biot [53] and Deresiewicz and Skalak [54],
which lead to a set of possible boundary and interface conditions. Despite there has been some
debate [55, 56] regarding the validity of interface conditions formulated by Deresiewicz and
Skalak [54], these remain valid and hence widely used. Boundary and interface conditions
vary from open-pore (permeable) to closed-pore (impervious or impermeable), and also the
intermediate case of partially open pores.

2.3 Boundary Element Method for continua

The Boundary Element Method is nowadays used in many areas of the industry where its
advantages are exploited. The effort of numerous researchers and developers has allowed
the BEM to be a well established methodology [2—4]. In particular, the BEM is widely used
in Noise Propagation and Soil-Structure Interaction problems [6, 7], where the presence of
unbounded domains is very naturally treated.

The main ingredients of the BEM are the Boundary Integral Equations (BIE), which, after
a proper discretisation, are used to build a solvable linear system of equations where often
only boundary values are unknown. BIEs can be obtained from several starting points, typi-
cally from a weighted residual formulation of governing equations or directly from reciprocity
relationships [6,7,57]. Then, the solution of the governing equation for a point load (collo-
cation point), i.e. the fundamental solution or Green’s function, allows removing domain
integrals. Some domain integrals remain when body loads are involved, but they can later
be transformed into boundary integrals by using the Dual Reciprocity Method [58]. Since
detailed derivations of Singular BIEs for the types of media considered in this work can be
found elsewhere, e.g. [6,7,59], the starting point in the present text is directly the Singular
BIE for interior collocation points. In particular, we discuss the regularisation of the Singu-
lar BIE and the derivation and regularisation of the Hypersingular BIE when the collocation
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point is a boundary point, for two- and three-dimensional Biot’s poroelastic medium. We
use the approach of Sdez, Gallego and Dominguez [12, 60] in 2D and Ariza, Gallego and
Dominguez [61,62] in 3D, who solved the regularisation for potential and elastic problems.
Our final goal is obtaining the Dual BIEs [42] for Biot poroelasticity, which are used for
treating crack-like boundaries and eventually in the proposed DBEM-FEM model.

2.3.1 Boundary Integral Equations

Let x' € Q be an interior collocation point, then a Boundary Integral Equation relates the
value of a variable f (dynamic pressure, displacement, strain tensor or other meaningful one)
at the collocation point x', i.e. f' = f(x), as a function of the values of primary and secondary
variables along boundaries [' = dQ, and, if present, body loads throughout the region Q:

fi = /(...)dF+/(...)dQ (2.24)
r Q

In this case, the evaluation of the BIE usually presents no major mathematical difficulties
since all boundary integrals are non-singular and Riemann integrable despite their integrands
actually contain singular functions (the fundamental solution and derivatives). When proper
body loads are present, i.e. volume loads in 3D problems or surface loads in 2D problems,
domain integrals are singular but Riemann integrable (at least in the range of BIEs treated in
this work). When the collocation point is an exterior point (x' ¢ Q), the Boundary Integral
Equation simply relates the values of primary and secondary variables along boundaries I,
and, if present, body loads throughout the region £€2:

0:/(...)dF+/(...)dQ (2.25)
r Q

When the collocation point is near the boundary (distance(xi, Iy <« 1), numerical difficulties
related to the accurate evaluation of boundary integrals appear because singularities are near
the integration domain. This is further discussed in Chapter 4. When the collocation point is
a boundary point (x' € I'), boundary integrals contain singularities which may lead to non-
Riemann-integrable integrals. Solving this difficulty is usually the crucial step in any BEM
formulation. This process is commonly called regularisation, and there are many techniques
to address it. Tanaka, Sladek and Sladek [63] offer a comprehensive review (up to 1994)
about regularisation techniques.

The term “Boundary Integral Equation (BIE)” is often accompanied by some adjectives
or prefixes that try to emphasise some aspects of it and to be self-explanatory. However,
the terminology may sometimes be confusing and not consistent, hence some discussion is
given here. Probably, the most widespread adjectives are related to the most severe kind
of singularity the BIE can have: weakly singular (or regularised) BIE, strongly singular (or
Singular) BIE (SBIE), and Hypersingular BIE (HBIE). Other widespread prefixes refer to
the variable associated to the BIE: Displacement BIE (DBIE) or u-BIE, flux or Traction BIE
(TBIE) or g-BIE , tangential flux or traction BIE or g,-BIE, and others. There is a somewhat
widespread convention in the BEM community, although it is not always consistent. The
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SBIE corresponds to the BIE related to the primary variable (potential, displacement), and,
since it is the most used one, it is also often called Conventional BIE (CBIE). The HBIE
corresponds to the BIE related to the secondary variable (normal flux, normal traction). Note
that this convention holds despite the actual BIE is not singular or hypersingular when the
collocation point is an interior point. In this sense, it seems more appropriate to use the
variable of the BIE as a prefix. Nevertheless, the convention (SBIE, HBIE) is assumed in the
present work.

By differentiating the SBIE with respect to the coordinates of the collocation point, it is
possible to build other BIEs that allow obtaining other variables of interest at the collocation
point. A very important one is the BIE obtained after applying the constitutive law, which
allows obtaining the secondary variable, i.e. the HBIE. Another useful one is the HBIE for
calculating the tangential flux or traction [64—66].

Both the SBIE and the HBIE can be used together in order to overcome some difficulties
that may appear if only the SBIE or the HBIE is used. When using the SBIE or the HBIE to
solve some exterior problems, the uniqueness of the solution is not guaranteed, and it turns out
that this happens at the resonant frequencies of a complementary interior problem. A solution
of this issue was offered by Burton and Miller [67], which proposed to add appropriately
the SBIE and the HBIE to build a new kind of BIE which guarantees uniqueness. Another
difficult situation arises when dealing with a region that have a nearly or totally degenerate
geometry which encloses very small or no area or volume. This is the situation of crack-like
geometries, where exclusively using the SBIE or the HBIE lead to linear system of equations
with very bad conditioning, or even singular in the case of a completely degenerate geometry,
i.e. an idealised crack-like boundary. This is due to the relative closeness or even identical
locations of collocation points along the degenerate geometry. For idealised crack-like, it was
Hong and Chen [42] who apparently first proposed the simultaneous use of the SBIE and the
HBIE for solving this degeneracy, leading to a new pair of BIEs called Dual BIEs (DBIEs).
This is achieved because both are linearly independent, and hence, despite the primary and
secondary variables of both crack faces are geometrically coincident, the same number of
unknowns and linearly independent equations is obtained.

2.3.2 SBIE, HBIE and DBIEs for Biot’s poroelastic media

In the context of Biot poroelasticity, several BIEs have been proposed [68—73], which, among
other aspects, differ from each other in the selection of the variables. The pore pressure p is
often used instead of the fluid equivalent stress (or fluid partial stress) 7, being both related
by ¢ = —¢p. Likewise, the specific fluid flux q = —¢(u — U) or the specific normal fluid
flux g, = q - nis often used instead of the fluid displacements U or the normal displacement
U, = U - n. The choice is a matter of preference or convenience.

The Singular BIE (SBIE) proposed by Dominguez [ 70] is especially advantageous here as
ituses a reduced set of four variables (fluid normal displacement U, fluid equivalent stress r,
solid displacements u and solid tractions t) that leads to simple coupling equations, as it will
be seen later in Equations (2.134-2.135). Dominguez [74] presented the corresponding BEM
for two-dimensional problems, while Maeso et al. [14, 17] extended it for three-dimensional
problems. Another advantage is that, as done in [17], the fundamental solution can be written
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in a way that resembles the fundamental solutions of acoustics and elastodynamics, which
eases later developments by identifying similar terms. In fact, this strategy is particularly
useful in this work for presenting fully regularised two- and three-dimensional Hypersingular
BIE (HBIE) and Dual BIEs (DBIEs) for Biot poroelasticity valid for curved elements.

The regularisation process of these is an application of the developments done in the works
of Sdez, Gallego and Dominguez [12] for the two-dimensional problem and Dominguez,
Ariza and Gallego [61] for the three-dimensional problem, which deal with potential and
elastic problems. The two-dimensional procedure explicitly reduces all strongly singular and
hypersingular line integrals to regular integrals and analytical terms by using a careful in-
terpretation of some geometrical terms. The three-dimensional procedure explicitly reduces
all strongly singular and hypersingular surface integrals to weakly singular surface integrals
and line integrals by making use of some specific vector identities and the Stokes’ theorem.
Unlike the approach of Guiggiani et al. [75,76], itis all performed in the physical space rather
than in the reference space. For three-dimensional Biot poroelasticity, we must mention the
work of Messner and Schanz, who had already presented a regularised HBIE for collocation
BEM [72] and Galerkin BEM [73] following a similar philosophy.

2.3.2.1 Two-dimensional problem

Singular Boundary Integral Equation Let Q be a given region, and I = 9Q its boundary
with outward unit normal n. Using the weighted residual formulation proposed by Dominguez
[74], the SBIE for a collocation point X' & [ can be written as:

Rt o o
06, ] |« J -U,i0 U J o Y i

where body loads have not been considered, and indices /, k = 1, 2 with Einstein’s summation
implied after performing matrix operations. The scalar 6;1 takes the value 1 if the collocation
point is an interior point (x' € Q = §;, = 1), whereas it is zero if the collocation point
is an exterior point (x' € QU I = 6, = 0). The parameter J = lf(ﬁncoz) depends on
medium properties and frequency. The primary variables (field variables) are fluid equivalent
stress 7 = 7(X, w) and solid displacements u, = u,(x, w), and the secondary variables (field
variables derivatives) are the fluid normal displacement U, = U, (x,w) = U,n, and solid
traction 1, = t,(X,w) = 7,1, In particular, the primary variables at the collocation point
are denoted with the superscript i (' = 7(x', w), uik = uk(xi,a))). Unlike in Dominguez
[74], variables are arranged according to their mathematical role rather than by their physical
meaning. The SBIE can be written in a more concise form as:

i i " . i i 0 x'gQul
siliv' + [ Trudl = [ Utdl|x' ¢ T, 8} = . 2.27)
L r r 1 x'eQ

where here the vector u contains all the primary variables, while t contains all the secondary
variables. The fundamental solution matrix U* was obtained by Dominguez [74] using the
Kupradze procedure [49] for the full-space (infinite domain) problem, and it is written in a
very compact form. However, in order to ease the developments done here, we follow the
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approach of Maeso et al. [17] of writing the fundamental solution separately in a way that
resembles fundamental solutions of acoustics and elastodynamics:

ko L
7o = 51 (2.28)
| . .
n=— 2[“|Ko(‘k|”) - ,K, (1k2r)] (2.29)
ki —k;
2 H_ 2
a0, =ki-—E g2 (2.30)

¥ 1
uy = —5-0r, (2.31)
0] | 1 ; : ; ;
o=[=-z — | ikiK (ikir) = koK, (ikor) | (2.32)
R A+ 2u ki — k; < =
5 1 ;
T = 55 Or, (2.33)
i 1
W, = H(W% - 2rr) (2.34)
. K, (iksr) 1 P ; b .
=Ky (ikyr) + = - kf—kf[ik.rK' (k1) = 7K (:kzr)] (2.35)
1=K, (ikyr) = - I . [ﬁl K, (ik,r) - f,K, (szr)] (2.36)
1.
Kk
N B T (2.37)
Poa42ul K2
where r = |x — x'| is the distance between collocation and observation points, k;, = kp,,

ky = kpy ks = kg, J = U(prp0®), Z = p/pyy. and K, (z) is the modified Bessel function of
the second kind, order » and argument z. By doing so, the fundamental solution matrix U*
and derivatives are composed by four submatrices: 00, Ok, I0 and /k; where the first index is
associated with the load and the second index with the observation, being 0 associated with
the fluid phase and /, k with the solid phase:

O O
O = | —0 —0 (2.38)
[ Dm D:‘k l

The diagonal submatrices [, and [J;, are essentially similar and have the same kind of sin-
gularities as those of acoustics and elastodynamics problems, respectively. Therefore, their
treatment is fundamentally the same. On the other hand, the off-diagonal submatrices [, and
[}, associated with the coupling between phases are different, and they have one lower order
of singularity than the diagonal submatrices, as it will be seen later in this section. Using
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(a) Circular bump / limit from the interior ( ":_1 = 1): (b) Circular hole / limit from the exterior (5;1 = 0)
xeQ) - xel x'¢Qul) - (x' el

Figure 2.2: Integration domain considered when x' € T’

Egs. (2.14a), (2.14b) and (2.15b), the fundamental solution matrix T" is obtained from:

Uy + I X0, = —J 5l n, — Zuln, (2.39)
rzik = [Au:}m,mgk," +u (u?;k,j + u?}j,k) ]n'f + %T&)"k (240)
Uno = _Jffn,j"j — Zujn; (2.41)
= [ty o (i +50) |+ B 2.42)

where final results after performing the operations can be seen in Appendix A. So far, the
SBIE (2.27) for interior or exterior collocation points has been described. Itis commonly used
at a post-processing stage, where it is used to calculate the values of the primary variables at
the collocation point (', ”D once the solution throughout the boundary is known.

At this point, we are able to pose the SBIE for a boundary collocation point x' € I'. If
in Equation (2.27) the collocation point is taken to the boundary (x' — I'), integrals become
singular. In order to handle this, it must be further developed by considering an augmented
integration domain [" around the collocation point, which is taken as the following limit:

r=rR+y%_U*—é)+r1 (2.43)
where I'® is a portion of the I that contains the singularity, I'® is the complementary part of
IS, e is portion of 'S centred at the collocation point with radius e, and [ is an arc with
radius ¢ centred at the collocation point. The arc can be oriented to the outside (circular
bump) or to the inside (circular hole) with respect to 2. In the former, the collocation point
is an interior point (612 = 1), while, in the latter, it is an exterior point (6;) = (). This can be
visualised in Figure 2.2, where a general angular point is considered (I'(x') € €°). Integrals
over 'R do not contain any singularity and hence they do not require further treatment. On the
other hand, integrals over the integration domain under the limit, i.e. (FS - ei) Pt requires
that functions f multiplying the singular term 1/ must be Holder continuous f € €% [77].
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Therefore, a zero-order Taylor expansion of primary variables at the collocation point (7, )
is required:

r=1+0(r) (2.44a)

u, = u,_+ 0 (r) (2.44b)

Such requirement is not only physically mandatory, but also needed for the regularisation of
the SBIE, in particular for some integrals of T*. For the integration over (I' — e') + I'", the

limiting forms of U” and T* as r — 0 should be carefully handled. Considering a circular
bump, the only non-null integrals over the arc I'* are:

lim /(U;‘m +JX*n)rdl = J%Ti (2.45)
ri
Ag  sin(26,) —sin(26,)  cos (26,) —cos (26, )
: . _ |2 87 (1 —v) - 87 (1 —v) U
I / fpitgal = cos (20,) —cos (26,) A sin(26,) —sin (26,) { ) }
ri == A

8z (l—-v) 2 8x(l —v)
(2.46)

where 6, and 6, are respectively the initial and final angles of the arc such that 0 < Af < 2=z
with Af = 0, — 0, and v = A/(2(A + u)) is the drained (solid skeleton) Poisson’s ratio. If
a circular hole were considered, these integrals only differ in minor details. In both cases,
once these integrals (with the appropriate sign) are substituted in Equation (2.27) for 6}2 =1
(circular bump) or o, = 0 (circular hole), the same result is obtained:

[Jt‘m‘.’ ui+/T"‘udF+lir(1}1+ / T"‘udF:/U"‘tdF+ lim / U'tdl (2.47)
'k

1
0 ¢
S—gi 'R S —pi

oo = | — A8/(2x) is the classical free-term of potential problems, and cj . is the free-
term of elastic problems resulting from subtracting the matrix in Equation (2.46) from §,,,
which was first obtained by Ricardella [78]. In the particular case of a smooth boundary at
the collocation point (['(x') € €'), these simplify to c(i)ﬂ = 1/2 and cjk = 6,,./2.

Considering now the integrals over ['®—¢', it can be seen that all of them are at most weakly
singular, except some integrals related to 7, that are strongly singular. These are the only ones

where ¢!

requiring analytical treatment, which can be done by first segregating the problematic part !:‘;S)
from the rest:

w (W) H—- r\!'nk - r,knf (W) #(S)
=1t + e te +it, (2.48)
where ji = u/(A 4+ 2u). Taking into account that the unit tangent vector t and the unit normal

vector satisfy n = (n, n,) = (#,, —f,), it is possible to write [12]:

or

—ey ot (2.49)

Foy —r,n =
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Q x before x' Q x after x'
or T ar \! or r oar\1
—:—-t<0,(—)=—l —=--t>0,(—)=1
oI’ r ol’ ol' r al’
ﬂ=£—n—>0asr—)0
dn r
d_r.:_s_ni —0asr—0
ont r

n-n - lasr —0
Figure 2.3: Behaviour of some relevant geometrical terms near the collocation point

where ¢, is the two-dimensional Levi-Civita symbol (¢;;, = €, = 0, ¢, = —e,; = 1).
By using the Taylor expansion of solid displacements, Equation (2.44b), the corresponding
strongly singular integral is turned into a regular integral and an analytical term:

/ —r‘,nk ok (uk - ”L) dl'—

r

S () 780
H;” = lim t) u,dl'=—| lim
! e—(+ / lk "k 21 | e=0t
[S—gi IS i
€1k (ln r? —In rS') ui(] (2.50)
where 5! and r5* are the distances from the collocation point to respectively initial and final

extremes of %, see Figure 2.3. By substituting this result into Equation (2.47), the regularised
SBIE for a boundary collocation point can be written as:

. 0
C'u'+/T"‘udF+ lim / T %% dF+{H(S)} =/U*t dr'+ lim / Uttdl’ (2.51)
P ! e=0F
'R

[S—gi IR [S—ei

where C' is the free-term matrix from Equation (2.47). Usually, the SBIE is written more
concisely by hiding the details and using the Cauchy Principal Value integral notation ( f ):

Cu' + ][T"‘u dr = /U"‘t dr (2.52)
r r
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Hypersingular Boundary Integral Equation The HBIE is obtained by building the sec-
ondary variables at the collocation point from Equations (2.13b) and (2.14), which requires
the SBIE (2.26) and its derivatives with respect to the collocation point (I, = d(J/dx)):

U,=Uin, =-Jtin, — Zu;n, (2.53)

fy= i = [y e (a4, )] o i (2.54)

where n' is the unit normal at the collocation point. After performing all the operations, the
HBIE for an interior or exterior collocation point can be written as:

e AL TR

or more concisely:

i i 4i " " i i 0 xgQurl
SLt+ [Sudl= [ D'tdr|x ¢T. &, = . (2.56)
F r 1 xXe

Analogously to the SBIE, here the secondary variables at the collocation point are denoted
with the superscript i (Ufi = Un(xi, ), rik = :k(xi, w)), and t' = t(x', w) gathers both secondary
variables. The matrices D* and S can be found in Appendix A. It is used for calculating the
values of the secondary variables at the collocation point (U', IL) at a post-processing stage.

The process of taking the collocation point to the boundary (x' — TI') is essentially similar
to the process followed for the SBIE. Differences lie in the severity of singularities, which lead
to up to hypersingular integrals, and in the requirements that these impose. Hypersingular
integrals require that first derivatives of functions f multiplying the singular term 1/#* must
be Holder continuous, i.e. f € &' [77]. Under such circumstances, primary variables at
the collocation point admit a first-order Taylor expansion:

r=7+1,r,+0(r°) (2.57)

w, =t +ur;+0(r') (2.58)

where here r'} and ”L ; should be understood as tangential gradients on ['(x)). An alternative
way or writing this expansion is:

r=17+ (%)im 0 () (2.59)
C fou )\
u, =i + (%) r+0 () (2.60)

where (dl/ar), = (aLJ/ol"),/(0r/dl),, see Figure 2.3. The case of a geometrically smooth
boundary point is considered here, i.e. I"' a semicircular arc, although non-smooth points
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could be considered at a considerably greater analytical cost, see Manti¢ [79] for the potential
case. Considering a circular bump, the non-null integrals over the arc I'' are:

1im/d(’;juﬂ dr' = —iu,i (2.61)

g=(t

ri

lim/d;‘rkdr‘: [23“+#(31—#)u; 5 4 At3m (i, +u,)+

o | O 4+ 2  meO T g amt Mk
ri
Atu Qs 1hs. (2.62)
2AA+2u) R M
. ‘ Jogf i 1 I 5
Elll'(l)l / Sp0T dl' = —;T (gl_l.r}}l-r E) - ZT,J-HJ- (263)
r
. . 2 g
E1_1.%1+ / Solty Al = I”k”k (2.64)
ri
lim f stedr=22_# iy (2.65)
e=0t 2 R /1 - 2,{{
rl
: . _ A+ A+u i i i
}ir(l;l S, Uy dI' = — [mum‘mﬁw + mﬂ (uk,j + uj\k)] nf.ﬁ!,k_

I

120A4p) . (., 1
© SEan % (Em ;) (260)

where Taylor expansions (2.58-2.57) has been used, as well as the limiting forms of D* and
S* as r — 0. Substituting these results back into Equation (2.56), the HBIE apparently turns
to be unbounded:

lig+ /S*u dr + lim / S*udl +M"u! (]im 1) -
2 e=0* e—=0" ¢

'R S i
/D"‘t dl” + lirgl+ / DtdlC (2.67)
rR ["S_ei
where:
_ 1 J 0
M = — 2u(A+ p) (2.68)
| 0 ———o,
A+2u
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The integration over 'S — ¢' is more involved that in the case of the SBIE. The integrals
related to d;y, d;, and d,;, are at most weakly singular, and thus no further analytical treatment
is required for them. On the other hand, some of the integrals related to d;; are strongly
singular, but fortunately their treatment is very similar to those of 7, of the SBIE, see Equation

(2.50). In this case, the problematic part d:;fs) segregated from the rest is:

2 i i
7L 1T

dy =dy =d)" +d (2.69)

2t r

where the only difference with respect to I:}ES} is that unit normal components are those at the
collocation point rather than at the observation point. By adding and subtracting unit normal
components at the observation point from those at the collocation point, it is possible to write:

e—= 0% r
[S—ei [S—gi

5 7 r(ni—n)—r (n—ni)
LE“:Iim/dI;S}zkdr:i[um/ Ty T oY e iy

; Elty — Falhy ; s2 S1) 4
lim / “— (i~ 1) AU = (I I )rk] (2.70)

where now all integrals are regular. The integrals related to s, and s, contain terms that lead

Ok
to strongly singular integrals. It is possible to segregate the problematic terms sgf} and s:}gS}

from the rest as:

- i
W) i Qr,k(“ n') _ W) )

Sor = Sox 5 R p Son  + 80z (2.71)
" # W) ﬁ Q .“’J(ﬂ ) ni) (W) #(S)
S0=50 T3 R 5 S e (2.72)

The key for regularising the corresponding integrals is using an expansion of », and n - n'
as r — 0 from each side of the singularity [12]. By examining Figure 2.3, it is possible to
establish that:

re= (j—l{)i i+ 0(r) 2.73)
n-n'=1+06@% (2.74)

where rik is the unit tangent vector at the collocation point, and (dr/0')' = lim,_, dr/ol" = +1
which sign depends on the side of the observation point. By using these expansions, and
taking only the zero-order part of expansions shown in Equations (2.57-2.58), it is possible
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to obtain the following regularised integrals:

) _ 1 «(S) i o ry(n-n') ;
M, = lim /.em u Al = — = lim / f(uk—uk) dl'+

[S—pi [S—e

(tim /7 (e o) () 4) ars

[S—el
. 1 ar\l  dr -
1 - — £ dr t' In 5% — In 5! ! 2.75
oy / p ((ar) ar) g e : ))”’f] &12)
rS_ei
S _ 4 #(8) MQ r:‘(n nl)
M = Ell)rnn+ i zdl= R gll.m / p (r— T ) dlr'+
[S—ei S —ei

; 1 or\' or
El_l%{/;((ﬁ) dl“)! dF+r(lnr — In#! ) ] (2.76)

MS—gi

which consist only of regular integrals and analytical terms. The regularisation of integrals
related to 55, and sj, is more involved because they lead to hypersingular integrals. In this
process, the key is the term |dr/0l"| and its geometrical interpretation from Figure 2.3. The
following Taylor expansion can be considered [12]:

—|=cosa=14+0(a?)=1+0 (r 277
5 (@) =140 (") am
where @ « ras r — 0. In the first place, the problematic part in s, is segregated as s*ném
o J ‘ : £ *
=g SRR o GO0y SO (2.78)

2x r?

Recalling expansions shown in Equations (2.74) and (2.77), and the expansion of r shown in
Equation (2.59), it is possible to obtain:

von [ =]y [ (o [%)
Mn Elir(r)l/ vdIl’ I}lﬂﬁl > (n n) T rdl'+
rS_el rS_el
; 1
L / Z

dr i ot \! 1 1 i
— (T—T—(E) ?‘) dl"—(ﬁ+m)r+
L

s2 S| dr) ii i l _ {Hb) ii . l
{Inr Inr )(dl" +—7 Elir(l}’1+€ =M, +Er E]irgle (2.79)
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In the case of s, the problematic part s:,'}EH} is obtained after some manipulation of its static
part, as done in [12] for the elastostatic case, and it turns out to be similar to that of s,:

e _ Wy, 2u(A4+ ). nem  aw) L )
Sp =8, A+ 2 O 3 =8, +5; (2.80)

Therefore, following a similar procedure as before, but taking into account that the integral
contains u, rather than r, it is possible to obtain:

H _ . #(H) 2u(A+ p) . 1 : or
M, =€l_1ﬁr}r)1+ / X, ”kdr=T2H5m 511,%1 r—z((non)— 30

S —pi I'S—el
) 1
lim =
e—0F re

or LAY 1 . Tha
or (“*«‘“R‘ (a_) ) (=) b
'S —ei

. ou \'l 2uA+py. .. 1
o T | k H k i 2 Vi
(Inr In ") (dl") ] + A+ 2u Oy, (Eli,r{r)l 6)

@y 2uA+p). .. 1
M, +Wamuk lim =~ ) (281)

) u, dI'+

Substituting results from Equations (2.70), (2.75), (2.76), (2.79) and (2.81), leads to a fully
regularised HBIE:

1. . _ MY L py®
—Lt + [ S*udl + lim S* Mu dr + 0. 0 -
2 / e=0 / -M® + M

rR

S —gi
0

/D*t dl" + lirgl / D*Wit dF+{ L® } (2.82)
e=0t i

IR [S—ei

because unbounded terms from Equations (2.79) and (2.81) cancel out with the term from
Equation (2.68). Usually, the HBIE is written more concisely by hiding the details and us-
ing the Cauchy Principal Value integral notation (f) and the Hadamard Finite Part integral
notation (f):

Liv+ 7£S”‘u dr = ][D“t dr (2.83)
2 r r

Despite the CPV and HFP concepts are the underlying abstractions behind the regularisation
of the SBIE and the HBIE, the process proposed in [12,61] does not rely on them since it deals
explicitly with the singularities and directly gives the finite parts by analytically cancelling
out all unbounded terms, as it has been shown in this case. Nevertheless, this notation is
convenient for the sake of clarity.
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Figure 2.4: Integration domain when x' € I" and I is a crack-like boundary (exploded view)

Dual Boundary Integral Equations The SBIE and HBIE previously derived are valid for
interior and exterior collocation points, and collocation points located at ordinary boundaries.
In order to incorporate crack-like boundaries in a problem, their own distinctive features must
be conveniently addressed. The corresponding BIEs are called Dual BIEs [42], and their
application to the BEM is usually called the Dual BEM [43, 44].

A crack-like boundary is composed by two sub-boundaries, denoted as positive + and
negative — faces. Hence, the integration domain associated with a crack-like boundary can
be divided into these two faces, which are geometrically coincident but have opposite orien-
tations, see Figure 2.1c. One of the faces is taken as the reference for the crack-like boundary
considered as a whole, in our case it is the positive face. This means that any integral over
one of the faces only differs in sign with respect to the same integral over the opposite face
depending on the sign changes of the kernels (U*, T*, D* and S*) with respect to n and n'.
Therefore, the previous developments have already solved the mathematical difficulties when
taking the SBIE and HBIE to a crack-like boundary. In this case, the only thing left to do
is to define the augmented integration domain around the collocation point. The considered
augmented integration domain is depicted in Figure 2.4, and can be expressed as:

[=T%+ lim [(T% =) + T + (I~ ¢7) + T (2.84)

The limit is taken from the exterior (from inside the crack void), and the arches surrounding
the collocation points are semicircular holes on each face. The resulting Dual BIEs are:

%lg (u™ +u') + ][T"‘u dl = /U"‘t dr (2.85)
r r

%IiH (tF—t7) + 7£S"‘u dl’' = ][D"‘t dr (2.86)
r r

where it has been assumed that F(Xi) € &' for both equations. In these equations, (u“’,t“’)
are the primary and secondary variables of the positive face at the collocation point, and
conversely for (ui', ti‘). Therefore, at a given collocation point we have four variables, from
which tractions are typically null in elastic crack analysis. It is hence clear that neither the
Dual SBIE (2.85) nor the Dual HBIE (2.86) is able to give independently enough conditions.
Therefore, both BIEs must be simultaneously used in order to have the same number of equa-
tions as unknowns [42].
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2.3.2.2 Three-dimensional problem

The development of Singular, Hypersingular and Dual BIEs for the three-dimensional prob-
lem follows the same path, although it is more involved. Thus, some steps in the process are
reduced or skipped.

Singular Boundary Integral Equation Using the weighted residual formulation proposed
by Dominguez [17, 70], the SBIE at a collocation point x' & I" can be written as:

O . . ; : 0 xX¢gQul
soliu' + [ T'udl = [ U'tdl|x' ¢T, &), = : (2.87)
) r r 1 x'eQ

All terms are similar to the two-dimensional case, with the obvious difference that funda-
mental solution matrices U* and T are different and /, k = 1, 2, 3. The fundamental solution
matrices U” and T" are fully described in Appendix A. When the collocation point is a bound-
ary point (x' € T), the integrals contain a singularity, and thus the integration domain is taken
as the following limit:

L=+ lim [(T°~¢) +T] (2.88)
where I'S is a portion of the I" that contains the singularity, I'® is the complementary part of
'S, ¢' is a circular surface of I'S with radius € centred at the collocation point, and Nisa
spherical surface with radius e centred at the collocation point. The spherical surface can be
oriented to the outside (spherical bump) or to the inside (spherical hole) with respect to €.
In the former, the collocation point is an interior point, while, in the latter, it is an exterior
point, see Figure 2.5. After carrying out the integration over the spherical surface I'', both
alternatives lead to the same SBIE:

[Jcmf_) ui+/T*udF+ lir{r}l+ / T*usz/U*tdF+lirt;;£ / U'tdl” (2.89)
rR

0 ¢
rS_el rR l—'R_el

Ik

For a collocation point located at a general non-smooth boundary point, the free-terms c(im and
¢, can be obtained from the closed analytical formulas provided by Mantic [80], being ¢, the
potential free-term, and ¢, the elastostatic free-term with drained properties. The integrals
over ['® are regular. The integrals over I’ S _ ¢' are at most weakly singular, except an integral
associated with #;, that is strongly singular. The fundamental solution #;, can be decomposed
in such a way that the term that leads to the strongly singular integral is isolated from the rest:
" g Pyl —Fplly (S

HEW} % = = in + I“E'“ (2.90)
where fi = u/(A+ 2u). Thus, by using Equation (C.1) and the Stokes’ theorem, the strongly
singular surface integral is turned into a weakly singular surface integral and a nearly singular
line integral over A® = oI'>:

Iy =1t

s _ H |, PR —F o h ; e -t i
H™ = Ax gll,rfl}l / 2 (uy —uy) AT+ ey, 5 dA Ju, (2.91)
[S_pi AS
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(b) Spherical hole / limit from the exterior (5}1 =0) (xi egQuUl) — (xi el)

Figure 2.5: Integration domain considered when x' € I"
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where ¢, ; is the Levi-Civita symbol, e; is the unit vector along x; axis, and t is the unit tangent
vector at the observation point. Finally, the regularised SBIE for a boundary collocation point
can be written as:

"y 0
C'u'+/T"‘udF+ lim / T*(“"‘udr+{H(s>} =/U*tdF+ lim /U”‘tdF
=t | e—(t
'R

IS —ci rr [S—pl
(2.92)

Hypersingular Boundary Integral Equation The HBIE is built by establishing the sec-
ondary variables at the collocation point:

I O i o i

U,=U;n, =—=Jtn;, — Zu.n; (2.93)

f =t = [y 0 (a4 )|+ i (2.94)

where Z = jp,/p,,, n' is the unit normal vector at the collocation point, and the comma

derivative notation denotes d/dx]. Hence, Equations (2.93-2.94) require a combination of

the SBIE and its derivatives with respect to the coordinates of the collocation point. This

fact imposes that the primary variables at the collocation point must have continuous first

derivatives, i.e. 7(x'), u, (x') € &'. After carrying out all the required operations, the HBIE
at a collocation point x' ¢ I” can be written as:

e % " ; : 0 x¢Qul
SIt+ [Sudl= [ Dtdl|x ¢TI, & = . (2.95)
I r 1 xXe

where the fundamental solution matrices D™ and S™ are fully written in Appendix A.

When the collocation point is a boundary point, it is again necessary to take the inte-
gration domain presented in Equation (2.88). The case of a geometrically smooth boundary
point is considered here, i.e. € is a circle and I'' a hemisphere. Non-smooth points could
be considered, as shown in Manti¢ [79] for the potential case, but this is considerably more
difficult. Given that r(xi),uk(xi) € @', the primary variables admit the expansion:

=14+ r‘ijrj +0 (rz) (2.96)
U, = uik + uik,jrj +0 (rz) (2.97)

where r'f and uiw. must be understood as tangential gradients on r(x'). By using these ex-

pansions and considering a spherical bump (Figure 2.5a), the integration over I lead to the
following integrals:

. . By
lim / iU, dT = ~=U, (2.98)

=

ri
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1507 + 2u(84 — 2u) . 64+ 16
lim [ d: 1 dl = [ +2UEA-2) i g g DA 10K ( )
e=0F 30(A + 2p) % T 30+ 2m) "
rl
34+ 2u
3A+2u Q 5, ]n 5y (2.99)
6(A+2u) R M
i of il =S | e Y= de (2.100)
I f Soprdl 2 S =0 € 37 %" '
Ii
lim / sty T = ;Zuknk (2.101)
["i
4 L
lim / strdr= —2 __2ig s, (2.102)
e=0* 6(A+2u) R
ri

WA +20) M W +2h)

34+ 4 Cal s
— E ﬂaﬁ( + Ln;nl‘k u}c lim l (2103)
4 | A4 2u A+2u e=07 €

2u(7A+2p) 94+ 14 : ; .
lirgl /s?kuk dl' = — [uu' 8y + —’u,u (u',w. + u},k)] n;6),
4

where only non-null integrals are shown. Once these integrals over I"' are obtained, they can
be substituted back into Equation (2.95), leading to an apparently unbounded HBIE:

lpe+ S*udF+hm/S"‘udF+Mr (Uml)z

2 'R =0t ¢

/ Dt dl" + lir{r)l / Dtdl’ (2.104)
IR bl

[S—ei

where:

i i O
MU= 2 N (2.105)
0 == |34+ 4p)8), + Anyn

The integral over I'S — ¢! in the right hand side of Equation (2.104) is essentially similar to
that of the left hand side of Equation (2.89). The term of d, leading to the strongly singular
integral can be treated in a similar way:

i rn, =

di =d™ + L=d M+ d (2.106)

= 4r r2
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where the regularised integral associated with d:,fS} is

. i r,n —n)—r, (0 —n)
LS =X lim/ Lk e e dr+
2

4r | e—0t
'S _pi
; Fly =1 ; €t i
Elir(l;L = (zk —rk) dl’ + | ey, . dA |7, | (2.107)
[S—et AS

The integral over 'S — ¢' associated with S* in Equation (2.104) is much more complicated.
The integrals associated with s, and s}, are hypersingular while the integrals associated with
Sy, and s, are strongly singular. For the latter integrals, s;;, and sy, can be split up into a term
leading to weakly singular integrals at most, and a term leadmg to qtrongly singular integrals:

. _ Wy, A Q"k(“ “) W) |, _#(S)
e Sl =t (2.108)
« _ oWy O (n-n) _ W), x(S)
o= s - B = s (2.109)

The integrals associated with s, (q) and s*(q’} are both similar in nature, and can be regularised

by using Equation (C.3) and the Stokes’ theorem:

r

e, xn')-t .
— lim /—"ﬁdr /um i | (2.110)

[S—¢l AS

e><11i o .
— lim / —’idr /Qdf\ ol @.111)

e=0t r on! r
[5—gt AS

The hypersingular integrals associated with s, and s}, can be treated in a similar way. The
fundamental solution s, can be split up in order to isolate the term leading to the hypersin-
gular integral:

. oawy Jment L s
S00 = S0 +Er—3—3m + 5o (2.112)
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The hypersingular integral associated with s:;ém can be regularised by using Equations (2.96),

(C.2) and (C.3), and the Stokes’ theorem:

€

n; e xn)-t ; ;
~ lim / =4 o dF+/MdA 7, =M{§H"‘+%f'(u%1) (2.113)

rS_ei AS

In order to treat the integral associated with s, it is split up into three parts: a partleading to
weakly singular integrals at most, a part leading to a hypersingular integral basically similar
to Equation (2.113), and a part leading to a much more involved hypersingular integral:

n-n' oyl [T oar i or ”,s".k(“‘“l)
: |+

7
s, =5 + —2p6, —— + — |34 -
% i 4 o r 4r r on r3 oni r3

ron e rim ar nn' - n,n ; . .
GQ(M__M__ 25— 42 (1- ) K I

r3on r® on r3 P3| ik
(2.114)
where 4 = A/(A+2u). The regularisation of the hypersingular integral associated with .‘;:}EH”
gives:
(HI) R AT Moy . n-n i i
M, = pjidyu, (511%1«* Z) + Eh{ém Ll_l.r(rlll+ / - (uk —u) _“If(,;"j) dl'+
[S—gi
. 3 or or (rxm)-t |,
-1 ———dr ——dA |4
0" Ponom & T / r i
S—el AS
— lim Eﬂ dar + wd,\ = ME® 4 oas d [ lim L
e—0* 2 on' r 2 O\ o &
rs—el AS
(2.115)

The regularisation process of the hypersingular integral associated with s:im} starts by using
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the expansion of u, given in Equation (2.97):

M;(HZ}zlim / s;}EH}(uk uk ”k; J) dl’+ | lim /SF}EHE]dl—' HL-I'

e=0"

[S—¢t [S—gi

g=0t
[S—gl

lim / rysyedr u, = MY+ MY+ M (2.116)

where the integral M(m” is weakly singular, M(sz} is hypersingular, and M(Hm is strongly

singular. The hypersingular integral M( 24 regularised by using Equations (C.4) and (C.5),
and the Stokes’ theorem, which gives:

(H22) H . ; or ar Fif 5 or ar Pk or or
M =41 3,1— — —n— 6i— — —np— | = 154= dr
! 4r {f—l']?)1+ / [ ( "1on dn') " K3 \Mean ~ " gy P onont *

rS_L,i

- ror, (rxn) -t . rxe)-t - . rxe.)-t .
3&/Ld}\+2ﬂn}c/id}\q.z(;{_ﬁ)n:/gd_}\}uk_k
] 3

3
AS AS AS

Bl AN o 1 H2b) | A4 o i i !
s (36 + nym, ) uy (Ellm —) =M, =5 (36 +nynl ) u (élll;l}l E) (2.117)

The strongly singular mtegral M(H“a’) is regularised by using Equation (C.6), then adding

and subtracting respectively n, (11 n ) and nL (11 . ni) from some of the n; and n, terms, and
eventually using Equation (C.3) and the Stokes’ theorem:

(H23) _ M 1], or ar ar or
MHP) = 1 — (3% £ - 6ji - -
] At {t_l,%k / i [ " ("r”kd e ) +our; ("k”;d rn kd;:')

ar r;nk; +;1(r ) — r,,n;)(rtk—nfk (n-n')) + 2ir; (nn), —nyn)) -

S i N i P ol G i (e; xm') -t
;1((om+n}n;()nj+(bjk—n}n:()n;) a—;]dl—‘+&[(mk+n:n;{)/¥d1&+

r
AS

o e, xn') -t (e, xn') -t )
(5jk—:1}nL)/¥dA+/MdA}}uLJ (2.118)

AS AS

After developing the integrals over I'® —¢' of Equation (2.104) throughout Equations (2.106-
2.118), these can be substituted back into Equation (2.104) to obtain a fully regularised HBIE:

(Hb) (S)
| ; -M + M
=T t'+/S*udF+ lim / S* Wy dr + P g =
H | (H1b) (H22b) | o(H23)

2 A e -MD + MT ¢ M 4 M|

* . (W) 0

D't dl'+ lim DMt dl + (S) (2.119)
e—=( L!
rR rS_ei
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due to the cancellation of all unbounded terms appearing in Equations (2.113), (2.115) and
(2.117) with the unbounded term appearing in Equation (2.104).

Dual Boundary Integral Equations The discussion given about DBIEs for the two-dimen-
sional problem is similar to that of the three-dimensional problem, except for the logical
changes regarding dimension. Abstract Dual BIEs shown by Equations (2.85) and (2.86) also
hold for three-dimensional problems.

2.3.3 Discretisation, collocation techniques and integration

In this section, the relevant aspects of the implementation of the BEM used in this work are
briefly described. The discretisation is performed using classical continuous isoparametric
Lagrange elements. Two classes of boundary elements are considered: ordinary (or con-
ventional) and crack-like. Crack boundary elements consider the crack as a whole, and thus
they incorporate both faces. As previously commented, all calculations are performed over
the reference face (positive face) and then the resulting integrals only differ in sign for the
negative face.

In order to build up a solvable linear system of equations, an appropriate collocation of
SBIEs and/or HBIEs is done throughout ordinary boundary elements, whereas the collocation
of DBIEs is done throughout crack-like boundary elements. The HBIEs impose one important
restriction on the choice of elements for the discretisation: the collocation point must be in
a point where the primary variables are differentiable, i.e. u(x') € &'. A typical solution
used in crack analysis is to make use of discontinuous elements [43, 44], where nodes are
located inside the elements and hence nodal collocation meets automatically this requirement.
However, the usage of continuous boundary elements is more appropriate in this work for two
reasons: they can be directly and efficiently coupled to most classical shell finite elements,
and the continuity requirement can be avoided by using the Multiple Collocation Approach
(MCA) proposed by Gallego et al. [60-62].

Consider a node « shared by N continuous boundary elements. For a given boundary
element e, the node « has the local index k. MCA consists in building a BIE associated with
k by adding several BIEs, one BIE per each element e containing the node with a collocation
point x' located towards inside the element at a local coordinate §L . The local coordinate Jjjc of
the interior collocation point can be controlled by the dimensionless displacement parameter
0 € (0, 1), which allows calculating x' as:

line elements: é;( =(1-0)¢&
x' = x'(§,) for { quadrilateral elements: £ = (1 —8) &, (2.120)
triangular elements: &j( =(1-06)§& +6/3
where &, is the local coordinate of the node k of the element. Therefore, the BIE for the node
K is obtained from:

e=N
BIE,_ = Z BIE; (xX'(&))) (2.121)
e=1
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For crack-like boundary elements, where MCA is applied on every node, appropriate values of
o are those that produce collocation points located near Gaussian points (6 = 0.423 for linear
elements and 6 = 0.225 for quadratic elements). This is often used in the literature related
to discontinuous and semi-discontinuous elements [7, 81, 82], and also leads to satisfactory
results in this case [62]. Section 2.3.4 contains a study of the convergence using the SBIE
with nodal and MCA collocation, and the HBIE with MCA collocation, for different values
of 4, which again demonstrates this.

Figure 2.6 shows a mesh portion with collocation points required for nodal collocation
and MCA approach for continuous elements, and also and the case of nodal collocation for
discontinuous elements. Different colours are used for denoting when an the integration over
an element is singular, quasi-singular or non-severe quasi-singular. It shows that nodal collo-
cation requires the evaluation or more singular integrals, and there is no severe quasi-singular
integrals unless thin geometries are present. The MCA approach not only requires the same
number of singular integrals, but also present several quasi-singular integrals. In the case
of discontinuous elements, only one singular integral is present in each case, but also quasi-
singularintegrals are present. The severity of the quasi-singular integrals depends on 6. These
difficulties in the numerical integration are addressed in Chapter 4.

MCA can also be used to solve the indeterminacy present when using multiple nodes,
being only used at those nodes. Although multiple nodes are not needed in many cases,
see e.g. [83], and also other approaches like the use of semi-discontinuous can be used, the
application of the MCA approach to solve this issue is particularly simple and effective. Subia
et al. [84] compared semi-discontinuous and an approach similar to the MCA in potential
problems, and concluded that both are reliable, but the former leads to better conditioning.
They also concluded that the collocation point shifting 6 has little influence over solutions
when 6 is between 0.1 to 0.6, and hence appropriate values of § in this case are not that clear.
If & is relatively big, e.g. 6 = 0.3, then the indeterminacy problem is clearly solved, but the
continuity of the primary variable across the multiple nodes is compromised. On the other
hand, if ¢ is relatively small, e.g. § = 0.001, the primary variable is nearly continuous, but the
condition number of the resulting linear system of equations could become too big, and also
numerical integration issues could appear due to highly quasi-singular integrals. For those
reasons, an intermediate value of 6 = 0.05 is considered in this work.

After the regularisation process shown in Section 2.3.2, numerically evaluated integrals
can be regular or weakly singular. The way these are treated in this work can be found in
Chapter 4.

2.3.4 Validation and convergence study

In this section, the three-dimensional regularised SBIE and HBIE for Biot’s poroelasticity
are validated. For this purpose, the problem of a spherical cavity of radius R, in a poroelastic
full-space and under harmonic radial excitation is considered. This problem has analytical
solution, and its curved geometry allows to test all the terms involved in the Boundary Integral
Equations.

The analytical solution is obtained by applying the Helmholtz decomposition to the ra-
dial displacements after expressing Equations (2.15a) and (2.15b) in spherical coordinates.
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(a) NC for vertex node (b) NC for edge node (¢) NC and MCA for face node

(e) MCA for edge node
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(f) NC for a corner node (2) NC for a lateral node (h) NC for a central node

Figure 2.6: Nodal Collocation (NC) versus Multiple Collocation Approach (MCA) for contin-
uous Lagrange elements (a-e). NC for discontinuous Lagrange elements (f-h). Red (singular
integrals), orange (quasi-singular integrals) and yellow (non-severe quasi-singular integrals).
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Taking into account that only outgoing P1 and P2 waves exist in this problem, solid and fluid
displacements in the radial direction can be written as:

j=2 —ikp.r
s 1y e ""w
U (r) = — ;:; D, (:kpj + ;) oy (2.122)
j=2 —ikp.r
, 1y e '"®
U,n=-) (:kpj+ ;) —o, (2.123)

j=1

where Df. = e;asjf%. = —(a;vzﬁ22 - ka,j)l(a:vzﬁ12 - Qkf,f.), and @s; and @y; are amplitudes of
solid and fluid displacement potentials. Solid stress in the radial direction and fluid equivalent
stress can be expressed as:

- . 1 ; e-ikpjr
() = . (tkpj+;)—(Dj/1u+Q) | e, (2.124)

j=1

=2

5 —ikpjr
2(r) == Y, (QD; + R) kj, “——ay, (2.125)

j=1

where 4, = N + p. The amplitudes ¢;; are obtained from the linear system of equations
formed by the boundary conditions at » = R,. The results presented in this work correspond
to the following two sets of boundary conditions: 7.(R;) = P and 7(R,) = 0 (permeable
cavity), and o.(R,) = 7.(R,) + (R,) = P and U,(R,) = u,(R,) (impermeable cavity).

The problem is solved for a spherical cavity of radius R, = 1 m, and the following proper-
ties of the poroelastic medium (Berea Sandstone [74]): p, = 1000 kg/m?, p. = 2800 kg/m?,
p, = 150 kg/m*, 1 = 4 GPa, u = 6 GPa, ¢ = 0.19, R = 0.444 GPa, Q = 1.399 GPa and
b=0.19:10° N - s/m*. In order to present the results in a dimensionless fashion, dimension-
less frequency a, = wR /cp is used, where ¢ = \/ﬂ,u;"(d)pf + (1 — ¢)p,) is the undrained P
wave propagation speed. Likewise, the quasi-static solid radial displacement u? =lim,_,u,
is used to normalise the displacements.

BEM numerical solutions are obtained by collocating the BIE (SBIE or HBIE) using the
MCA with 6 = 0.225. Only one-octant of the spherical cavity is discretised, and symmetry
conditions with respect to the xy, yz and zx planes are enforced by the classical mirroring
approach. Five isoparametric meshes of quadratic triangular elements are considered, in-
cluding a crude mesh of only 1 element. This is a demanding set of meshes from the point of
view of testing the BEM formulation for general curved elements. Since the solution is one-
dimensional in the radial direction, i.e. radial displacements and stresses are constant over the
cavity’s surface, numerical errors are mainly due to the geometric discretisation error. The
average geometric discretisation error E for a spherical surface can be defined as:

fAmﬂh |Xmesh == Xsurfacel fR'i dA
B, = 2t e (2.126)

where X,

arface 18 the nearest point of the spherical surface to a point of the mesh x

mesh*
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Figure 2.7: Comparison between analytical and BEM numerical solutions

Figure 2.7 shows analytical and BEM numerical solutions using the crude mesh of only
one triangular element, for the frequency range a, = (0, 16] and both sets of boundary con-
ditions. Figures 2.8 and 2.9 show BEM numerical errors and orders of convergence. BEM
numerical results are shown as average absolute errors:

f qu-numerical} o |f|HU| dA
e Ame-:.h E £
zR2[2

The experimental order of convergence eoc between results obtained from two different meshes
i and j is defined as:

E

(2.127)

eoc = (2.128)

where A denotes element size, and mesh j is finer than i. Table 2.1 shows a summary of mesh
data and results, where frequency-averaged errors and experimental orders of convergence are
denoted respectively as E and éoc. These averaged values are computed from the frequency
range (0, #/h], i.e. the range where there are at least two elements per wavelength.

Results show that the SBIE and the HBIE behave hand in hand regarding the error levels
for all meshes and frequencies. Convergence of the BEM using both the SBIE and the HBIE
is demonstrated since E reduces in the same way as E; does for each mesh, and within
the whole frequency range. The expected order of convergence for quadratic elements is 3.
However, the observed eoc within the relevant frequency range varies around 4, being very
similar to the order of convergence of the geometric discretisation eoc .

When observing the obtained experimental orders of convergence, it is possible to distin-
guish three zones within the frequency range. For frequencies where there are less than two
elements per wavelength, eoc is highly oscillatory. For frequencies where there are between
two and approximately four elements per wavelength, eoc is higher than expected. And fi-
nally, for frequencies where there are more than approximately four elements per wavelength,
eoc smoothly varies around eoc;.
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Figure 2.9: Validation. Spherical cavity with o,(R,) = 7,(R,) + 7(R,) = P and U,.(R,) = u,(R,) (impermeable).
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Mesh 1 2 3 4 5
Nelements 1 4 16 64 256
h[m] 1.41 0.77 0.39 0.20 0.10
Eg 23E-2 22E3 16E4 1.0E5 1.2E-6

E (p, SBIE) 1.3E-1  8.7E-3 2.7E4 1.1E-5 4.8E-7
E (p. HBIE) 79E-2 76E-3 40E4 22E-5 1.2E-6
E (i, SBIE) 1.3E-1 85E-3 26E4 1.0E-5 44E-7
E (i, HBIE) 8.1E-2 T74E-3 3.0E4 12E-5 3.7E-7
eocs N/A 3.73 4.06 4.01 4.03
eoc (p, SBIE) N/A 3.76 5.00 4.89 448
eoc (p, HBIE) | N/A 3.63 4.14 4.12 423
eoc (i, SBIE) N/A 3.76 5.04 4.88 453
eoc (i, HBIE) N/A 3.66 4.71 4.94 5.09

Table 2.1: Convergence of the BEM numerical solution for permeable (p) and impermeable
(i) boundary conditions.

Dirichlet: |U,|/|U?] —  Neumann: |u,|/|u}| — ‘

Normalised displacement

Figure 2.10: Analytical solution of a sphere with Dirichlet B.C. (7,(R,) = 0, u,(R,) = U)
and Neumann B.C. (U.(R,) = U, 7,(R,) =0)

Regarding the BEM numerical errors, several peaks are observed at different frequencies
for the SBIE and HBIE. They are related to the ill-conditioning of the exterior problem (spher-
ical cavity) near the natural frequencies of an interior problem (sphere), see e.g. [67]. These
natural frequencies correspond to the sphere with Dirichlet boundary conditions (z,(R;) and
u.(R,) prescribed) for the spherical cavity solved using the SBIE, and to the sphere with
Neumann boundary conditions (U,(R;) and 7,(R,) prescribed) for the spherical cavity solved
using the HBIE. Figure 2.10 shows the analytical solution of the Dirichlet and Neumann in-
terior problems, and the observed natural frequencies are indicated by vertical dashed lines.
For comparison purposes, they are also indicated in the bottom error graphs in Figures 2.8
and 2.9.

Figures 2.11 to 2.17 show results for the impermeable spherical cavity for different values
of 6, from 6 = 0.01 to 6 = 0.30. In all graphs, it has also been included the case of using
the SBIE with nodal collocation. As expected, the SBIE with MCA collocation tends to the
SBIE with nodal collocation as 6 — (. The peaks associated with the interior problem are
in the case of the SBIE with nodal collocation more pronounced. The order of convergence
is slightly better in the case of MCA collocation as frequency increases, but overall there is

Instituto Universitario SIANI 47



2 (- DYNAMIC MODEL OF BURIED SHELL STRUCTURES

little difference for the range of é studied. On the other hand, the convergence of the HBIE do
depend on the collocation point shifting. It is observed that the order of convergence is one
degree lower that in the case of the SBIE as § — 0. From é = 0.01 to 6 = 0.225 the order
of convergence improves until it reaches approximately that of the SBIE. From 6 > 0.225
onwards, it again starts to worsen. Therefore, optimal performance is achieved at 6 = 0.225.

We recognise that we are not in the position of fully explaining the obtained results regard-
ing the convergence of the HBIE. The only references we have so far found regarding conver-
gence of the HBIE are the works of Costabel and Stephan [85] and Amini and Kirkup [86],
where the Helmholtz Equation is considered. The former paper is very difficult to understand
for us, while the latter is more approachable. The results of Amini and Kirkup showed no
difference between the convergence of the SBIE and the HBIE for a two-dimensional circle
(interior problem) or cavity (exterior problem). The correspondence between their study and
our numerical study is limited since it is not only performed for another type of problem, but
is also uses constant elements, thus. The fact that we are able to achieve very small errors
with the HBIE, and that the order of convergence for very small ¢ keeps almost parallel and
one order lower than that of the SBIE, seems to indicate that either some subtle mistake is
present in the formulation or implementation, or that this behaviour is intrinsic of this prob-
lem. Therefore, this issue requires further investigation in the future.
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Figure 2.11: Spherical cavity with (impermeable B.C.). Case 6 = 0.01.
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Figure 2.12: Spherical cavity with (impermeable B.C.). Case o = 0.05.
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Figure 2.13: Spherical cavity with (impermeable B.C.). Case 6 = 0.15.
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Figure 2.14: Spherical cavity with (impermeable B.C.). Case 6 = 0.20.

| : Nt 5@95‘" & SBIE —

B HBIE —
SBIE (nodal) —

logy (E)

ot & koo
T
1

logy(E)

=T I S SO
T

logy (E)

log (E)

st & B b ook &M
T T TN T

log o (E)

b & kB &
'\

Mesh 5

) an

Figure 2.15: Spherical cavity with (impermeable B.C.). Case 0 = 0.225.
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Figure 2.16: Spherical cavity with (impermeable B.C.). Case 6 = 0.25.
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Figure 2.17: Spherical cavity with (impermeable B.C.). Case 6 = 0.30.
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2.4 Finite Element Method for shell structures

The shell structure is modelled using shell finite elements based on the degenerated solid
approach [87] for three-dimensional problems, and curved beam finite elements also based
on the degeneration from the solid [88] for two dimensional problems. In the latter case,
the two-dimensional shell conditions are achieved by considering a beam cross-section of
unit depth and a modified Young’s modulus E/(1 — v?). In the two-dimensional problems
addressed in Chapter 5, a simpler straight Euler-Bernoulli beam of three nodes [18] is used.

The structural elements degenerated from the solid are versatile and relatively easy to
handle. Their major drawback is the presence of shear and membrane locking, which are
due to the inability of the displacement interpolation to represent thin shell (vanishing out-of-
plane shear stresses in bending) and curved shell (vanishing in-plane stresses in inextensional
bending) situations, respectively. Locking can be improved by using selective or reduced in-
tegration [88—90]. This lead to a versatile curved beam (arch) finite element. However, the
resulting shell elements contain spurious zero-energy (hourglass) modes and hence are not
reliable [91]. There are several approaches to obtain shell elements free from locking and
spurious modes [92]. In this work, the family of Mixed Interpolation of Tensorial Com-
ponents (MITC) shell elements [88,93-96] developed by Bathe and co-workers is chosen
because of its robustness and predictive capability. The approach consists in using covariant
strains rather than local or global Cartesian strains, and different interpolation schemes for
each strain component. The MITC9 shell element [94] is used in the present work.

The equilibrium equation of a shell finite element e can be written as:

K©a© — Q©t© = ¢© (2.129)

where K = K — »*M is the stiffness matrix for time harmonic analysis, Q' is the
distributed mid-surface load matrix and q' is the vector of equilibrating nodal forces and
moments. The vector of element Degrees Of Freedom (DOF) a'® is composed of vectors of
nodal DOF:

a® = (2 a? a's )’ (2.130)

S : PO : DN
where N is the number of nodes of the shell finite element. Each node p has three DOF
associated with the displacement of the mid-surface, and two local or three global rotations
of the cross-section:

T
SDOFnode: ay’ = (uf) uf) ) o ) (2.131)

P Ip 2p ip

T
6DOF node: a” = ((uf) u$) u§) 0 6% 6 ) (2.132)

For efficiency reasons, nodes with 5 DOF are used by default. Nodes with 6 DOF are used only
when strictly required, e.g. folded shells, or when they facilitate the application of boundary
conditions, e.g. symmetry conditions. The vector of nodal values of the distributed mid-
surface load t'® can be written as:

T
Bl o F o WP af &) (2.133)

where tff} is expressed in global coordinates.
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2.5 DBEM-FEM model

Let Q. denotes the region occupied by the shell and €. .4 b€ the surrounding medium,
which can totally or partially cover the shell. The main hypothesis of the proposed model over
the reality is to assume that the interaction is established between the mid-surface of the shell
structure and the surrounding medium — shell interface idealised as a crack-like boundary.
Figure 2.18 illustrates this hypothesis by using a straight wall in a half-space. From the point
of view of the surrounding medium, the shell structure is hence geometrically seen as a null
thickness inclusion. From the point of view of the shell, the surrounding medium interacts
only on its mid-surface. Therefore, it leads to two approximations:

* Wave diffraction is produced over the mid-surface of the shell structure rather than
over its real boundaries, i.e. top-surface, bottom-surface, and edges are ignored. This
approximation gets worse as thickness increases, being more pronounced near the shell
edges, and also depends on the frequency, as it will be seen later.

» Stiffness and inertia are overestimated by the model if real elastic modulus and den-
sities are used for the shell and the surrounding medium. This can be observed on
the right part of Figure 2.18, where the shell region overlaps the surrounding medium
added when assuming a crack-like boundary. An analogous phenomenon occurs in
other soil-structure models, particularly in pile-soil interaction [18, 97]. Some au-
thors propose using corrected properties for the structure (fy,cqure
E =E — E_;) in order to compensate for them.

= Pstructure — Psoil»

structure structure

There are several methods of coupling boundary and finite elements in our context, see
e.g. the classical work of Zienkiewicz et al. [9] or the textbook of Brebbia et al. [98]. From
these, the most simple is the engineering direct approach where, from a conforming interface,

Q

surr. medium surr. medium

(a) Complete interaction (b) Assumed interaction

Figure 2.18: Main hypothesis of the proposed DBEM-FEM model
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it is possible to establish compatibility of displacements and equilibrium of tractions. One
of the ways of performing such coupling is the method called “nodal force matching™ [99],
where BEM tractions are considered as distributed loads of the FEM. This method is simple
and effective, and this is the method considered here. A more rigorous and more precise cou-
pling is that proposed by Belytschko et al. [100-102], where a global variational formulation
including both the boundary element and the finite element region is stated. However, despite
its potential benefits, we have chosen the direct approach as a cost effective solution.

Therefore, a direct BE-FE coupling after discretisation is considered, where both crack
boundary element mesh and shell finite element mesh must be conforming, see Figure 2.19.
There are hence three nodes at a given nodal position: a BE node related to the positive face
of the soil, a BE node related to the negative face of the soil, and a FE node related to the
shell. Let n/, U, u/, * and 1] be respectively the unit normal, fluid normal displacement,
solid displacement, fluid equivalent stress and solid traction of the BE node related to the
positive face of the soil. Similarly, negative superscripts indicate variables on the negative
face. The displacement of the shell mid-surface is denoted as u;, and the distributed mid-
surface load as ;. Although other contact conditions may be considered, in the following it
is assumed that the shell mid-surface and the soil crack-like boundary are in perfectly welded
and impermeable contact. Therefore, compatibility and equilibrium coupling conditions can
be written as:

Compatibility: u] = u}, u; =u}, U} = ujn:}', U, =un; (2.134)
Equilibrium: z*n} + 1 + 770, +1, +1, =0 (2.135)

where j = 1, ..., N,. Coupling equations (2.134) and (2.135) can easily be simplified for an
elastic solid as surrounding medium:

Compatibility: u} = u}, u; = u; (2.136)

Equilibrium: 7 +1; + 7, =0 (2.137)
And for an ideal fluid:

Compatibility: U,S = u;n;', U, =un; (2.138)

Equilibrium: — p*n —p™n; +1, =0 (2.139)

These coupling conditions are coherent with the location of all variables involved along
the interfaces, except shell rotations, which are not present as degrees of freedom along the
soil boundary. It means that there is not a complete displacement coupling because displace-
ment continuity is only guaranteed at nodes. Also, tangential loads acting along the top- and
bottom-surfaces of the shell that produce distributed bending moments are completely ig-
nored. Both deficiencies, however, have little significance in most applications. Given that
shell structures are almost always stiffer than soils, and the discretisation must be conforming,
the size of shell elements are likely to be smaller than required by the elements-per-wavelength
criterion, and thus the first deficiency is automatically alleviated. Because of the way most
buried shell structures are loaded, the second deficiency is unlikely to be appreciable except
for thick shells.

The proposed DBEM-FEM model has several advantages over other purely continuum
or mixed continuum - structural models, which can be grouped into two categories:
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Figure 2.19: Exploded view of the BE-FE coupling

Methodological advantages It combines the well known ability of the BEM to deal with
wave propagation phenomena in soils with the natural way shell structures are treated by the
FEM. Since the shape and thickness of shell finite elements are considered independently,
there is no need to define a fully detailed volume geometry. Consequently, the same surface
mesh of shell finite elements can be used for studying shell structures of different thicknesses.
Likewise, since the soil-shell interface is located at the shell mid-surface due to the use of the
DBEM, a surface mesh of crack boundary elements conforming to the shell finite element
mesh is all that is needed to model the soil in contact with the structure. Therefore, these
simple surface meshes are able to represent the buried open shell structure, being furthermore
thickness-independent.

Computational advantages Although it is difficult to quantify the computational advan-
tage of this model because it depends on its implementation and the particular problem at
hand, some comparative facts can be given:

* When compared to a multi-region BEM model (see e.g. [14, 17]) using the same ele-
ment sizes, the number of degrees of freedom per shell node is reduced from 14 to 13
(=7%).

* A reduction in the number of degrees of freedom is automatically achieved since the
edges of the shell structure are not discretised, and its thickness does not influence the
mesh generation.

* The proposed model avoids common issues related to the BEM when dealing with thin
geometries, i.e. quasi-singular integration and bad conditioning issues. Both issues are
often alleviated by performing the integrals with a higher number of integration points
and/or decreasing the element sizes, consequently increasing computational costs.
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* When compared to a conventional multi-region BEM-FEM model applied to open shell
structures (see e.g. [41]), there is no need to create fictitious interfaces that produce
superfluous degrees of freedom.

* The main disadvantage of this model is the need of a regularised HBIE for the sur-
rounding medium, which has to be obtained, and is computationally costlier than the
SBIE. For homogeneous media, this is commonly affordable, but for inhomogeneous
(layered, anisotropic, etcetera) media this could be a formidable task.

Regarding the quantification of the computational advantage, a first look is given in Section
5.4, where the proposed DBEM-FEM model and a multi-region BEM model [14, 17] are
compared. It is observed that a relevant computation time reduction is achieved mainly due
to the decrease of the number of degrees of freedom. The DBEM-FEM model is validated
for two- and three-dimensional problems involving ideal fluids, elastic solids and poroelastic
media in Chapters 5 and 6.
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TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION 3

3.1 Introduction

In this chapter, the initial steps towards the development of a multi-region model are de-
scribed. The Singular Boundary Integral Equations for shape sensitivity analysis on Laplace,
Helmbholtz, elastostatic and elastodynamic two-dimensional problems have been formulated
and implemented in a multi-region code. The formulations were developed by Gallego and
Rus [103-107], although here they are again derived in a slightly different manner. The aim
is to describe the work done in this field, which is used to solve the shape optimisation of
wave barriers in Chapter 5.

The rest of the chapter is organised as follows. An introduction to the subject is given
through Sections 3.2, 3.3 and 3.4. A brief literature review about the BEM for shape sen-
sitivity is given in Section 3.5. From Section 3.6 to 3.10, the BEM formulation for shape
sensitivity is described for different problems. In Section 3.11, coupling conditions for shape
sensitivity are described. The chapter concludes with Section 3.12, where the formulation
and implementation is validated against simple problems with analytical solution.

3.2 Optimisation

Nowadays, design optimisation is a crucial field in engineering. When facing a design prob-
lem, the very first step is to come out with a solution or a concept that simply works, i.e. the
design does what is required. In our competitive environment this is not enough, and the de-
sign must fulfil several constraints and perform well under different conditions. Furthermore,
the main objectives are usually accompanied by other secondary objectives, which can even
be in conflict. In order to achieve such a task, it is necessary to define appropriately these
objectives and constraints, then select a suitable optimisation algorithm, which, eventually,
requires a numerical simulation of the problem.
The mathematical formulation of an optimisation problem can be written as [108]:

{gi(a) <0.ieg

min f; (a),i € F subject to ]
fi(a) 4 h(a)=0,ic&

acRr

3.1)

where f,, g; and h, are scalar valued functions of the variables a, and %, .¥ and & are sets
of indices. The variable a is the vector of design variables. The functions f, are the objec-
tive functions, g, the inequality constraints, and A, the equality constraints. Optimisation is a
very active field of research because of its complexity and usefulness. There are a plethora
of optimisation algorithms, each of one designed to target a range of problems. They can be
mainly divided into deterministic and heuristic approaches. The deterministic approach take
analytical properties of the problem to generate points that converge to optimal solutions.
The heuristic approach is more flexible than the deterministic one, but the quality of the ob-
tained solution cannot be guaranteed and the number of evaluations of the objective function
is usually greater. A good reference on deterministic algorithms is [108], and on heuristic
algorithms [109, 110].

The structural optimisation problem can be explained using the paradigm of three inter-
acting models [111]: the design model, the analysis model and the optimisation model. Here,
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we give a slightly broader definition of this paradigm in order to include other aspects than
geometry.

The design model is a subset of all possible designs. Thus, it is a decisive step that needs
some knowledge about the problem at hand. The description of a design model comprises
information about its geometry, materials and conditions. The most important piece of in-
formation is the geometrical one. All others are somehow supported on it. The geometric
description consists of information related to the topology, i.e. number of sub-domains and
their connectivity, and information related to the shape of each sub-domain. The material
information offers data about the type of material and its properties at each point of the do-
main. Each sub-domain is usually made of the same type of material with homogeneous
properties, but in general the properties could vary over it. The description about conditions
consists of support, interface and load information. All this information must be expressed in
a mathematical form as a set of equations, inequalities and variables (continuous or discrete).
Eventually, some of the variables become constants, parameters or design variables, being
these latter those that actually change during the optimisation process.

The analysis model allows evaluation of objective and constraint functions, and their gra-
dient or even Hessian if needed by the optimisation model. This model must be equivalent
to the design model, but ready to be used by an analysis procedure. The analysis procedure
can be a closed-form analytical solution, but more often is a semi-analytical or numerical
procedure.

The optimisation model selects the best design according to the objective and constraint
functions from the possibilities offered by the design model. For a multi-objective optimi-
sation, it gives a range of designs which defines the Pareto front. The model requires the
definition of the design variables and their domains, the objective and constraint functions,
and the optimisation algorithm. The optimisation model acts as the job manager in the opti-
misation process, i.e. it decides at each step what designs have to be analysed and then takes
further decisions using the analysis results.

3.3 Sensitivity analysis

Most of the analyses consist in obtaining the response of a given design, these are the usual
zero-order static, time harmonic, transient, modal, etc. analyses. In order to study the influ-
ence of some design parameters, it is possible to run several zero-order analyses with different
values of these design parameters, i.e. a parametric study. Itis appropriate when the engineer
would like to have a global idea of the performance of the design for a range of variation of a
small number of parameters. For other purposes like optimisation, identification or reliability
studies, zero-order analyses are usually not enough. Sensitivity analyses consist in obtaining
first- and second-order static, time harmonic, transient, modal, etc. analyses of a design with
respect to the variation of continuous design parameters [112].

Let a be a vector of continuous design parameters, and f = f (a) a field variable (dis-
placement, velocity, stress, etc.) or combination of field variables (performance, constraints,
etc.). If f is smooth enough (f € %?), it is possible to build a Taylor’s approximation of f
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near a given set of values of the design parameters a’:

£ @ =141 (0= ) + £ (0, — ) (e~ ) +0 [(8)] 32

where f" is obtained from a zero-order analysis, f ? from a first-order sensitivity analysis
(gradient), and ﬁ?k from a second-order sensitivity analysis (Hessian), all ata = a’. Note
that indicial notation, comma notation for derivatives with respect to the design parameters,
and Einstein summation convention are used in Equation (3.2). Most of the literature about
sensitivity analysis is focused on first-order analysis. Second-order analysis, although useful
for checking optimality conditions, is seldom performed because of its computational cost
and its comparatively narrow range of applications [112]. Therefore, in the following, the
term “sensitivity” is used as a synonym of “first-order sensitivity”.

There are four major methodologies for obtaining sensitivities [113]: overall or global fi-
nite differences, continuum derivatives, discrete derivatives and computational or automatic
differentiation. The last three methodologies can be formulated as direct and adjoint meth-
ods. In the direct approach, the derivatives of the entire structural response are obtained, and
then the performance functions can be obtained by using the chain rule of differentiation. In
the adjoint approach, an adjoint problem is formulated for each performance function, and
hence not all derivatives of the structural response are obtained. Roughly speaking, the direct
approach focuses on structural response, while the adjoint approach focuses on structural per-
formance. The former is appropriate for a small number of design variables and a big number
of performance functions, and the latter is appropriate for the opposite. In both approaches,
the obtained matrix of the linear system of equations (stiffness or influence matrix) is exactly
equal to that of the zero-order analysis, and thus its factorisation could be used for the sensi-
tivity analysis. The effort is employed in building the vector of the linear system of equations
(load vector). Van Keulen et al. [113] give a very complete review of methods of structural
sensitivity analysis. Next, a brief overview is given.

The Global Finite Differences (GFD) methodology is based on estimating the perfor-
mance sensitivity f 2 by using a finite difference formula which requires only zero-order anal-
yses:

f9~FD[f° Ad)] (3.3)
where the FD operator can represent a forward, central, 4-point central, etc. finite difference
formula with a perturbation Aa? on the j-th design variable. It is the easiest method to im-
plement. However, it is computationally inefficient and unreliable as an appropriate value
of the perturbation is needed. Furthermore, not always is possible to find a finite difference
formula and a value of the perturbation that lead to a sensitivity with the required precision.
Therefore, GED should be the last resort for computing sensitivities.

In the Continuum Derivatives (CD) approach, the sensitivities are obtained by differentiat-
ing the continuum governing equations (partial differential or integro-differential equations).
It leads to a set of continuum sensitivity equations which are then usually solved numerically.
For shape sensitivities, because the domain itself becomes a design variable, a material dif-
ferentiation approach or a control volume approach must be used [114].
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In the Discrete Derivatives (DD) approach, the sensitivities are obtained by differentiating
the discretised set of equations. Thus, in the DD approach the differentiation and discreti-
sation processes are reversed with respect to the CD approach. For some cases, if the same
numerical method and discretisation is used, it has been proven that both approaches lead to
the same solution [111]. The element-wise matrices obtained after differentiation involves
derivatives of the stiffness and load matrices. Although these derivatives can be evaluated an-
alytically, they are particularly involved and lengthy for shape sensitivities. Therefore, they
are usually approximated by finite differences, which not only is much more easy to imple-
ment, but also is cheaper computationally. In this case, the approach is called semi-analytical.

Automatic Differentiation (AD) approach consists in the differentiation of the computer
code itself. Although finite element codes are composed of many more or less complex sub-
routines and functions, they are basically a collection of elementary functions. AD approach
defines the partial derivatives of these elementary functions, and then the derivatives of com-
plicated subroutines and functions are computed using propagation and the chain rule of
differentiation. Although it may appear to be simple and straightforward, it is not. It requires
enough skills to apply the tools to the source code, and a judicious choice of where to apply it
in order to get an efficient code. Furthermore, it could require the modification of the original
code before applying the tools.

3.4 Parametrisation

Parametrisation (or parameterisation) is the process by which some entity is described in
terms of parameters. In our context, this is done over the description of the design model.
The parametrisation of a design is not unique nor trivial, it has a huge impact on the result of
an optimisation process. In fact, it materialises the design model by setting a set of parameters
and mathematical expressions that defines the geometry, material and conditions of a design
model. The parameters that are used in an optimisation process are the design variables.

In structural design, there are mainly five kinds of parameters [112]: material parameters
(Young’s modulus, fiber orientation, etc.), size parameters (thickness, cross-section, etc.),
shape parameters (length, radius, etc.), configuration parameters (orientation and location
of structural elements), and topological parameters (number and connectivity of structural
elements). Note that some of them are closely related, and, for example, the last four could
be grouped as geometrical parameters. These parameters can be also classified as discrete
(boolean or integer) or continuous (real) parameters.

The literature about geometric parametrisation is vast and specialised, particularly in
shape parametrisation, which is probably the most involved. Before going further, it is nec-
essary to define some concepts related to shape parametrisation and sensitivity analysis. For
first-order analyses, each shape parameter is studied independently from others, i.e. the sen-
sitivities are obtained without considering other shape parameters. Although several param-
eters could be linked through some constraints in order to obtain a feasible design, this is
something managed by the optimisation algorithm and does not influence the first-order sen-
sitivity analysis. For this reason, it is possible to build a Taylor’s expansion of the geometrical
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design with respect to the parameter a around a given state a = a’:

i=x+v(a—a0) + 0 [(a—aO)Z] (3.4)

where x is a point of the domain Q(ao), v = v(X, an) = (0x/da),p is the design velocity
field, and X = X (x, @) is the new location of the point x for a parameter value a. This is a
linear mapping of points of the domain Q(a") to Q, that approximates the domain for a small
variation of a, see Fig. 3.1. It must obviously be continuous, i.e. v € &°, otherwise the
mapping breaks the domain.

Figure 3.1: Taylor’s expansion of the shape parametrisation

For first-order shape sensitivity analysis, the design velocity field v of each design variable
has to be defined for all points of the domain. There are a large number of strategies to build
and update this mapping during optimisation processes [111, 112, 115-117]. Although it is
difficult to classify all these strategies, there are three main philosophies:

Based on geometry. In order to build the geometry, it is necessary to use a CAD (Com-
puter Aided Design) tool which can use a Boundary REPresentation (BREP), Function
REPresentation (FREP), Constructive Solid Geometry (CSG) or other representation.
Since the representation is based on a set of equations and parameters, these parameters
are available as design variables. Once the mesh is obtained from the CAD model by a
mesher, the design velocity field of each design variable can be inherited to the nodes
of the mesh by differentiation of the representation with respect to the design variable
at the position of the nodes.

Based on mesh. Instead of working with the representation given by the CAD model, it is
possible to use the representation provided by the mesh. The nodal coordinates are
used as design variables, which lead to a big set of design variables. It is also called
parameter-free or FE-based parametrisation.

Based on a free-form deformation. An auxiliary design mesh consisting of isoparametric
elements, B-splines or NURBS is defined in order to deform the CAD model or the
mesh. The points of the CAD model or the nodes of the mesh are connected to the
design mesh by position, i.e. there is a one-to-one correspondence (a mapping) between
the design model and the CAD model or mesh. The design mesh acts as a canvas
where the CAD model or the mesh is stuck, and any deformation applied to the canvas
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is accordingly done over them. The design variables can be the nodal coordinates or
control points of the design mesh.

None of the strategies are of general applicability. The strategies based on geometry are
useful for clearly defined shape optimisations, for example when the design variables are
radii, lengths or positions of straight or arc-like lines. If the CAD model allows patches
of variable order, then it would be possible to obtain more complicated shapes. A major
drawback is that CAD tools do not usually come with all the necessary features to apply these
strategies easily. The strategies based on mesh movement offer more freedom to the shape
optimisation. However, this freedom comes with some additional costs. Regularisation and
remeshing processes are needed after each optimisation step in order to obtain a feasible
design and a valid mesh. Furthermore, because of the number of design variables and the
post-processing stages after each iteration, they can be relatively expensive computationally.
The strategies based on a free-form deformation have characteristics of the latter two. They
offer a selective in-between flexibility with respect to shape variations, from very simple
and constrained shapes to very complex shapes. Moreover, they have much less problems
associated with the distortion of the mesh, and thus regularisation and remeshing are hardly
needed.

3.5 BEM applied to sensitivity analysis

The application of the BEM to sensitivity analysis is an active research field that started in
the early 1980s. Barone et al. [118] applied a special form of the BEM to the optimal arrange-
ment of holes in a two-dimensional domain. Meric used the BEM with the Adjoint Variable
Method (AVM) in order to study heat transfer and mechanical behaviour of solids [119-121].
Mota Soares et al. [122] applied the BEM to optimal shape design for minimum compliance.
Kane et al. [123] used implicit differentiation of the discretised equations for plane elastic-
ity. Barone et al. [124, 125] used the material derivative over the Boundary Integral Equa-
tions (BIE), including the Hypersingular (stress) BIE (HBIE), for three-dimensional elastic-
ity. Aithal and Saigal [126, 127] applied the AVM and the material derivative to obtain the
shape sensitivities for thermal and elasticity problems.

Besides being useful by itself or for shape optimisation, shape sensitivity analysis using
the BEM fits particularly well with inverse problems. Mellings and Aliabadi [128, 129] used
the BEM and the Dual BEM for identification of cavities and cracks on potential and elastic
problems. Also, Nishimura and Kobayashi [130] developed a BEM formulation for iden-
tification of cracks with complex shapes. Bonnet [131-134] covered almost all aspects of
shape sensitivity analysis using the BEM and a rigurous mathematical treatment. In particu-
lar, Bonnet [135] proved that material differentiation formulas for regular integrals still hold
true for strongly singular and hypersingular integrals, which demonstrated that material dif-
ferentiation can be applied to non-regularised as well as regularised BIEs. Gallego, Rus and
Suarez [103—107] used the BEM for cavities and crack identification on potential and elastic
problems using a free-form approach for the flaw parametrisation, and a sensitivity BIE de-
rived from the Taylor’s expansion of the shape perturbation. In the present work, the latter
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approach is used to obtain the sensitivity or variation BIE (6BIE) which is the fundamental
ingredient to build the BEM for sensitivity analysis. It is esentially similar to applying the
material differentiation formulas to the BIE.

3.6 Generalities

The superscript i over a symbol [] representing a position vector, unit normal, field variable,
etc., i.e. [\, is used to indicate if the object is associated with the collocation point, rather
than with the observation point. It is not an index, thus no summation is implied for it.

Let Q be a region in R? with boundary I' = dQ whose orientation is defined by the
outward unit normal vector n = (n,, n,). Following the usual convention, the orientation of I"
can be equally defined by the unit tangent vector t = (¢,,7,) = (—n,, n;). Consider a boundary
element ® C [ with N:’ nodes, then any point x of the boundary element is described by:

X; = ¢,x], (3.5)

where j = 1,2 is the coordinate index, p = 1,... ,N;" is the node index of the boundary
element, x?; is the j-th component of the position vector of the p-th node, ¢, = ¢,(&) is the
shape function of the p-th node, and & is the local curvilinear coordinate. The transformation
between the local curvilinear coordinate and the global cartesian coordinates is governed by
the Jacobian vector J:

L ox; dg, o
1= G = g Nir (:6)
0= o[ J;J, 48 = |F] d& (3.7)

where summation convention is implied for j. Thus, the unit tangent can be calculated as
t = J/|J| and the unit normal n = (1,, -1, ).

For first-order shape sensitivity analysis, the region Q = Q(a") is perturbed with respect
to a given design velocity field v = v(x, ") that is produced by a design variable a when
a = d’, see Figure 3.2. The following linear mapping builds the perturbed domain Q from
the reference domain Q = Q(a") for a small variation of a around a”:

X

x+v(a— an) (3.8)

The design velocity field acts basically as a displacement field, thus a constant design velocity
field throughout the domain does not produce any shape variation. It can be easily seen that
a material vector w, i.e. a vector whose origin and orientation are sticked to a point, follows
this linear mapping [136]:

W, = w, + v, ;w, (a— a) (3.9

where the comma notation for derivatives with respect to x is implied. The following notation
is going to be used for the vector sensitivity (or vector material derivative):

ow,; = v, W, (3.10)
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Figure 3.2: Taylor’s expansion of the shape parametrisation

Thus, the linear mapping of the vector length is:
W = W;W; = w;w; + Ww,v; W, (a = a”) =w+ow (a = a”) (3.11)

where only linear terms are retained, and summation convention is implied for / and j. With
this in mind, the linear mapping of an infinitesimal part of the boundary dI" is easily obtained
by using the length variation of the unit tangent considered as a material vector:

df =dl+1,v,,t,dl"(a—a") =dT'+6J d"(a—a") = (1 +6J (a—d")) dI' (3.12)

LY

The unit tangent and normal vectors are not material vectors. The unit tangent is only mate-
rial with respect to orientation, and the unit normal is completely dependant on the tangent
plane. Hence, the linear mapping of the unit tangent is similar to that of a material vector but
substracting the length increase:

=1+ (vt -t utt) (a—d) =1+ (v

it —8d1) (a—d°) =1,+6t, (a—a’) (3.13)
The variation of the unit tangent 6t can only be perpendicular to the unit tangent t. Hence, it
can further be simplified to:

o, = v ;t; —6Jt; = oum = nu, 1, = ot mn, = 0t; = nn o, t

(3.14)

J
The linear mapping of the unit normal is obtained by rotation of that of the unit tangent:

ei.jfj =€l + eu.ﬁrj (a o ao) =i, = n; + on, (a - ao) (3.15)

where ¢, ; is the two-dimensional Levi-Civita symbol, and then én, = —t,n,0, ;1.

The design velocity field v = v(x, a") throughout the domain is defined by using a design
mesh (auxiliary mesh) connected to the physical mesh by position, i.e. the so-called free-
form deformation approach (see Section 3.4). The geometry and the design velocity field of

a design element ¥ C Q with N ¥ nodes are interpolated similarly (isoparametric):

X =g (3.16)
v, =y, (3.17)
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where g = 1, ..., N,:P is the node index of the design element, and x;.l; and U:-l; are the j-th
components of the position vector and design velocity field of the ¢-th node, respectively. The
element can be a one-dimensional or a two-dimensional element, i.e. shape functions can be
v, = y,(n) ory, =y, (n,,n,), respectively. In general, they can be written as y, = y,(n).
As it will be seen later, shape functions (1) only appear in the calculation of the integrals.
Thus, for an integration point i with position vector x located within a design element ¥,
the calculation of the local curvilinear coordinate n*' is required:

n'" such that xf,.” =y, (q(”) x;!; (3.18)
which can be done by a simple iterative minimisation algorithm (convergent if x’ € ¥). The
connectivity between the physical mesh and the design mesh is built in the initialisation stage
of the solver, allowing a good initial guess for the minimisation algorithm.

Strictly speaking, the design velocity field must be at least continuous throughout the do-
main, i.e. €°, otherwise it breaks the domain. Hence, the design mesh should fill the whole
domain, should be conforming, and only elements with the same dimension as the ambient
space should be used. However, for shape sensitivity calculation using finite elements, the
design velocities are required only at the nodes of the finite elements. Thus, neither the design
mesh must fill the domain (by default a null design velocity field can be assigned to physical
nodes not connected to the design mesh) nor the elements must have the same dimension as
the ambient space. This fact justifies using the boundary layer technique as a way to reduce
the computational cost (elements with null design velocity fields have null matrices deriva-
tives with respect to the design variables) at the expense of a moderate but acceptable error
increase in unstructured meshes . As it will be shown later in this chapter, for shape sensi-
tivity calculation using boundary elements, the design velocity field at the collocation point
must be at least differentiable, i.e. €'. The same strategy as with finite elements can be fol-
lowed, although, in that case, a computationally expensive non-nodal collocation is required.
In order to use nodal collocation, an element with the same dimension as the ambient space
must be present at the collocation point. More details about these issues will be given later
in this chapter.

As shown above, the calculation of the gradient of the design velocity field is needed. For
a point located at a design element W, it means that the derivatives of shape functions with
respect to the global coordinates are required:

0, = v, 0" (3.19)

If the design element is a one-dimensional element, then the shape functions are y, = y, (&),
and their derivatives with respect to the global coordinates are:

dy, _ I v,
= = 3.20
WQ.J axj Ile a‘s ( )
where the Jacobian vector is:
dx. oy
J=—d=_—19" (3.21)
J aé ()é Jq
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If the design element is a two-dimensional element, then the shape functions are v, = lp'q(df] &),
and their derivatives with respect to the global coordinates are:

()I,Uq dl,u'q
=—=0G,— 522
Yo dxj Jjk 0&, ( )
where G = J~' and the elements of the Jacobian matrix J are:
0x oy,
gl i, S _‘?qu (3.23)
a9, 9§
The linear mapping corresponding to a field variable u is:
i=u+éu(a—a")=u+ O o s (a—d°) (3.24)
da ox; ') _,

where the sensitivity éu can be evaluated using the expression shown above only when u is
explicit. When used in the FEM or BEM sensitivity analysis, éu is a degree of freedom. Field
variables and their sensitivities are interpolated using the same shape functions as the geom-
etry, hence an isoparametric boundary element representation is considered. For a vector
variable u:

u, = qf;Puj; (3.25)

_ @
Suj = qbpéujp (3.26)
wherep=1, ..., Nf’ is the node index of the boundary element, and u;.t; and Suﬁ} are the j-th

components of the vector variable and its sensitivity of the p-th node, respectively.

3.7 Laplace problem

A problem governed by the Laplace equation is considered. The potential (primary variable)
is denoted by p, while the flux is the potential derivative in the n direction (secondary variable)
and is denoted by ¢ = Vp - n.

3.7.1 §SBIE for non-boundary collocation points

The Singular BIE (SBIE) for an interior or exterior collocation point with respect to the ref-
erence domain £ can be written as [6, 105]:

" . 1,x'eQ
5o+ [ gpdr= [ prqdr, si=4 % 3.27
P /‘”’ /” 2 {O,X'€QUF e

r r
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where:
= L (3.28)
2
" 11
p,j = —ﬂ;r_j (329)
1 1or
Y=ptn = ——=-— 3.30
¥ =ES ~ 2zron (3:39)
r=|x—x| (3.31)

and x and x' are the observation and collocation points, respectively. Likewise, for the per-
turbed domain Q:

s g . & . ,x e
6.p + [ gpdl = [ p*gdl, 6. = L 3.32
of /qp /pq 5 {O,X,Egur (3.32)
r r

As seen in the previous section, the relationships of geometrical objects and variables between
the reference domain Q and the perturbed domain Q are given by linear mappings:

p=p+6p(a—d°) (3.33)
p=p+ép(a—a°) (3.34)
pi=p,+6p,(a—d) (3.35)
i, =n;+6n, (a—a) (3.36)
g=p;i, =q+ (pJén +6p~jnj.) (a — ac') =q+0q (a - an) (3.37)
dl = [1 +6J (a—d")] dT (3.38)

where (a—a")? terms have been disregarded. Since the shape parametrisation does not change
the topology of the domain, i.e. an interior (or exterior) point remains interior (or exterior),
then 5}2 = 6;]. The fundamental solution p* depends on the observation and collocation points
p* = p*(x,x'), hence its linear mapping must be built from the Taylor’s expansion with respect
to both points:

P * ap* ap* i * * i
=p'+ dx.Uf (a— ao) 4 o v; (a - ao) =p +p; (UJ- - UJ-) (a— aﬂ) (3.39)
7 j
where []; = dll/dx; = —dD;’c}x; holds for any fundamental solution and its derivatives since

x and x' only appear inside of terms depending on the distance vectorr = x—x'. Furthermore,
from the linear mapping of observation and collocation points, it is possible to write:

(3.40)
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where it is obvious that 6r — 0asx — X, i.e. or = O (r). This important fact is used later to
study the integration of the SBIE for collocation points located at the boundary. Therefore,
p* can be written as:

pr=p"+pior;(a-d") =p*+6p" (a—ad°) (3.41)
The linear mapping of 4§ is built by using the linear mapping of its components:

G =By, = |+ p,0r, (a—a)| [n; + 6n; (a - a)] (3.42)
=g+ (p:}énj + pz.mérmnj) (a—a°) =q¢" +éq" (a—a) '

where only linear terms are kept. Note that p” is obtained differentiating Equation (3.29):

" 11
Pjm="5,72 (8m =27 1) (3:42)
where §;; is the Kronecker delta. Last, substituting all these linear mappings into Equation
(3.32), keeping only linear terms (a — a°), substracting Equation (3.27) from it, and dropping
out (a — a”) terms, give the sensitivity SBIE (or §SBIE):

Shﬁpi+/q*5p dF+/(5q*+q*5J)p dF:/p*aq dr+/(5p*+p*5.f)q dr’ (3.44)
I r r

The first and third integrals are analogous to the integrals of the SBIE, except that instead
of p and ¢, their sensitivities 6p and o¢g appear. The second and fourth integrals are new
integrals that depend on p and g, hence only once the zero-order solution is known they
can be evaluated. Since the integration domain I" does not contain the collocation point, all
integrals are regular but nearly singular if the collocation point is close to I'.

3.7.2 5SBIE for boundary collocation points

The 6SBIE presented in Equation (3.44) is valid only for interior or exterior collocation points.
In order to obtain the 6 SBIE for boundary collocation points (x' € I'), it is possible to perform
the integration of Equation (3.44) but along a modified path avoiding the collocation point:

= lim [(T~¢') + ] (3.45)

where ¢ is the radius of a circular arc I"' that substitutes a neighbourhood ¢' of the collocation
pointon I'. As seen in Figure 3.3, this limiting process can be done from the interior (6;1 = 1)
or from the exterior (6;1 = (), both leading to the same final result. In the following, the
former is used:
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Agt’.\l =0 ﬁgim

r.__Z—r92 r;—rH]

Figure 3.3: Integration path near boundary collocation points. Left: from the interior. Center:
from the exterior. Right: criteria for angles 6, and 6,

5p' + lir(l)'l+ / g opdl’ + lir(r}l+ /q*ép dI" + lir{r}l+ / (6g" + q*6J)pdl’
i i M—ei

—pl

+ 11%1/(@* +¢°6J)pdl’ = lim / p*8q dT" + lir(r}l/p*éq dr
ri M—el It

+ lim / (6p"* + p*6J) q AT + lirg/(ép*+p*6¢f)q dr' (3.46)
M=l i

Integration over I"  In order to evaluate the integrals along I'", a polar system of coordinates
(e, @) centered at the collocation point and oriented counterclockwise is considered. The polar
angle 6 is in the domain 8, < 8 < 6,, where 8, and 6, are shown in Figure 3.3. The main
geometrical terms along I'" are:

x =0 (3.47)

X = (ecosf, esin@) (3.48)
r=Xx, r=c¢ (3.49)
r;=rlr (3.50)

n; =r; n=(cosf,sinf) (3.51)

1, = ¢€;n;, t =(—sinb,cos ) (3.52)
arlon =r;n; =1 (3.53)
rit; =0 (3.54)
dl' = e df (3.55)

where ¢;; is the two-dimensional Levi-Civita symbol. The evaluation of the first integral over
I'! of Equation (3.46) gives:

f;

; 1 .. 1 . 9.,_91 . Aget
| opdll=——1i —-1(8p'+0 df =2 Tlggha
EH{L/‘? pd 5 m/g(p+ (e)) e 0P o

sp' (3.56)
T e=0t
ri ty

/g
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where a simple zero-order expansion 6p = 5p' + O (e) is required. The second integral over
I is:

1im/(5q +q¢*8)pdll= hm/(p on, + ptér,n +q*6J ) pdl
r‘l

L I I 1 ;
= - lim / |<nom, + = (6, = 2n,m,) Sr,m, + <187 | (5 + 0 (@) € a8

(3.57)

where a zero-order expansion p = p' + 0 () is used. In order to evaluate the integral, expan-
sions of several terms of the kernel around the collocation point are needed. For the sensitivity
of the unit normal 6n;, a zero-order expansion is required:

on; = —rjnmvimrk + 0 (e) (3.38)

]

Likewise, for the sensitivity of the boundary length 6J
8J =t U t. +0(e) (3.59)

m-m,j j

For the design velocity field, however, a first-order expansion is required:

v, = +Um(x x;)+@(r2)—v +Umfrje+@( ) (3.60)
and hence:
or, = v, — U\, —vmfrje+@( ) (3.61)

Therefore, since the gradient of the design velocity field at the collocation point Uin‘ ; is re-

quired, the design velocity field must be differentiable, i.e. v(x') € €'. Substituting these
expansions into Equation (3.57) leads to:

92 93
hm/(ﬁq +4q" SJ')de—i /n n-dﬂ—/i‘ t,do U p =b v p (3.62)
27{ m- " j m-j pnf m_’i
ri f) th
where b;n;
ioa | sin 26, — sin 26, - (cos 26, — cos 2.9,)
(By) = 4z ( — (cos26, —cos26,) - (sin26, — sin26),) (3:63)

which is null if the collocation point is located at a smooth point of the boundary, i.e ['(x') €
%' > b,,; = 0. The third integral over I'" is null:

£y

lim / piog dl’ = —Lﬁq (lim eln e) / dé|=0 (3.64)
e=0T 2r e=0t

ri o,
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where 6¢ must be bounded. The fourth integral over ' is also null:

t

lim /(5,0 +p*80)q dr=—2i um/(lnmuwen +(In€)5J)qe 49 =0 (3.65)
€

T e—=0*
&)

where g must be bounded. Substituting all these results into Equation (3.46) gives:

cigp' +b:wumjp +hm/q6pd[‘+hm/(6q +qg*6J)p dl’

| r—et

= 1ir(151+/p*5q I lirgl/(ép*+p"‘éj)q dr' (3.66)

el M-ei

where ¢! = AO™/2x is the free-term similar to that of the SBIE, and biﬂ ; is a new free-term
appearing in the 6SBIE. The integrals over I’ — ¢' are at most strongly singular, and their
evaluation requires additional work.

Integration over '—¢' The evaluation of the integrals in Equation (3.66) can be performed
in different ways, from a pure analytical approach (doable for straight elements) to a pure
numerical approach using special quadrature formulae (Kutt’s quadrature). In this work, an
analytical regularisation leading to at most weakly singular integrals is applied before any
numerical integration is done. By doing so, only regular and weakly singular integrals are
numerically managed, which are easily tractable and controllable.

The integrands are composed mainly of geometrical terms and field variables, thus their
behaviour near the collocation point must be studied. The behaviour of the relevant geomet-
rical terms is illustrated in Figure 3.4. The field variables are at least bounded, and hence
p.q.6p.6q are O(r"). The first integral of Equation (3.66) is regular:

\ " , . 1 1 or 0
H=1 ap dI i larrgf=—— - — =0 3.67
El.r(r)l+ / qop is regular *." g % r on (r ) ( )
e o(r1) 0(r')
The third integral is weakly singular:
G= lir[1}1 / p"oq dI' is weakly singular "' p* = —2i Inr=0(Inr) (3.68)
e—0t T
=i
The fourth integral can be split into two parts:
oG = llm / (6p* + p*6J)q dI' = 6G® + 6G’ (3.69)

F—ei
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x before x' x after x'
Q Q
£=5-t<o,(£)'=—1 £=5.t>0,(£)'=1
o' r ol o’ r oI
or r

—:——n—>0whenr—>0=>£=@(f‘)
on r on

Figure 3.4: Limiting behaviour of geometrical vectors around the collocation point

where:
SGR = ]ir(r}l / op*qdlis regular " 6p* = p'; or, =0 (ro) (3.70)
Ty o
5G* = Iir{r)l+ / p*6Jq dI' is weakly singular *;  p* @;f =0(nr) (3.71)
r—ei @E:r) 6(r°)
The second integral can be split into three parts:
6H = lim / (pon; + p*,06r,n,+q"6J) pdl = 6HN + SH® + 6 H’ (3.72)
r—egt
where:
N _ q: * . . - o —1
SHY = Elirgl / p’;6n;p dIis strongly singular *. fz {’2’ =0 (r") (3.73)
[—el o(r') a(r0)

SH® = lim /p}mﬁrmnjp dl"is strongly sing. = p’,, or, n, =0 (r") (3.74)

= o _L
e o(r2) 0(r') 6()
SH' = lir(r}l+ / g*6Jp dlisregular " ¢* 6J =0 (rc') (3.75)
‘ =gl @l‘(:‘:“) @(,nj
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Therefore, sH™ and 6 H® require further treatment. 6 H N can be regularised by substracting
and adding the limit when r — 0 of a part of the integrand:

Ne L [L ] Lor,
oH" = o Ell)r{rll+ rr’fr N, U b pdl = o Ell.%l peTe R, Uity pdl

r—el [—el

1 : 1 or i 5 i 1
5 lim / o (MUt P — iplh 2ip') T + 1,0 £ p! &r{g/ p dr| (3.76)
el el

leading to one regular integral and another integral f 1/r dr that can be solved analytically.
For 6 H®, first, it is necessary to expand the integrand:

SHR = —L lim / %(Sﬂn 2r,1,) (U = Uy,) mypdT

21w e-0F
=-e
I 1 2 or 1
= — | lim —— (v, — dl'— lim v, —U dI’ 3.77
2 s—-()"‘/ 2 an( m m) mp i / ."'“( m) n,p ( )
[=el [—ei

which gives one regular integral and another strongly singular integral. Then, taking into
account that:

v—v +vmfrj+("( )=>v—v g r—f(rz) (3.78)

mj'

and adding and substracting Umj i

g & |l 5 2 or B . 1 _ ;
oH =3 hm/r~dn(v v) W0 dl l1m/r2(v v vmjj) P dl

| e=0F g=(rt
r-ef =gt

e—07
=gl

_um/1 v, rn,pdl| (3.79)
r

a new regular integral and a new strongly singular integral appear. By checking out Figure
3.4, it is easy to see that:

r = (gl’;) 40 ) (3.80)

which can be used to add and substract a part of the integrand of the strongly singular integral:

1] 2 or 1 Py
5HR=_ hm/_aa_(vm_ m) mpdr—hm/‘rh (Um_vm_vmj J) mpdr

2r | e—0* rton e— 0+
I—el C—el
: 1 o[ Or\! 1 /ary
_Eli%/;(vmfrfn’”p (ar) i mp) dl“—nmvmfrp }1‘51/;(}) dr
[—ei ]

(3.81)
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leading to a new regular integral and another strongly singular integral. Finally, by adding
and substracting the limit of dr/0l" when r — 0 leads to:

5HR=L lim /%%(um—u;)r‘mpdf—lim f:—z(vfn—uin—uin,jrj)nmpdf

2}{ e—=07 e—0F
r-et el
. 1 ; : drnt .o i @ woE 1 or\t  or
:12&/ :(”%f’if”m‘“‘%(ﬁ) ‘}"1""') A=l U 15 E‘Lf&/ F((E) ‘E) a
¢t r—ei

_ninuin,jr}pi lim /%dr (3.82)

g—=0t
[—el

which is a set of regular integrals and an integral f I/r dr analytically solvable. It must be
noticed that terms involving the integral f 1/r dr cancel out when 6 H is evaluated using
Equation (3.72).

3.7.3 Discretisation, collocation techniques, integration and solution

The boundary I' is discretised using a set of NV, boundary elements: I = U:iv"*@{. where @, N
®; = @ wheni # j. As explained above, the discretisation is performed using isoparametric
elements. For a given boundary element ®@ with N;b nodes:

" e @
Geometry: x; = ¢,x;,

! (3.83)
Variables: p=¢,p%. g = ¢,q;. 6p=b,0p7. 6q=¢,5¢,

where p = 1,... ,Nf’ is the node index of the boundary element. The design domain is
discretised using a set of N, design elements: Y = U;:';V‘J"LPf where ¥, N, = @ wheni # j.

For a given design element ¥ with N;P nodes:

Geometry: x; = u/qx;?q (3.84)
Design velocity field: v, =y, U;.];

whereg =1, ..., N,:P is the node index of the design element. In the following, the indices p
and ¢ are exclusively related to node indices of boundary and design elements, respectively,
and any other index is related to a coordinate index.

It was shown in the previous section that the collocation point x' must be in a point where
v(x') € @'. Figure 3.5 shows a design mesh consisting of two two-dimensional design
elements (¥, and ¥,) with acommon edge, and two one-dimensional design elements (¥ and
¥,) with a common node. Design elements ¥, (two-dimensional) and ¥, (one-dimensional)
share a common node. By defining the values of the design velocity field at each node, a €%
design velocity field is built throughout the design mesh except at some locations where it is
guaranteed only to be €°. These locations are the edges and nodes shared by two or more
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i g & e e \»,
!
l’ & L 4
l & ® ¥, l

Figure 3.5: Possible positions of a boundary element throughout a design mesh

design elements. The existence of these locations conditions the collocation procedure of the
BIEs in the sensitivity analysis (and the required zero-order analysis). There are two ways of
dealing with it:

Fully isoparametric approach The design velocity field is interpolated also with the shape
functions of the boundary element ®:

Geometry: x; = qi)px%
Variables: p=¢,p5, ¢= 4,45, 6p = ¢,6p,, 5q = 645 (3.85)
Design velocity field: v, = ¢, U;.I;

where p,g =1, ..., Nf’ is the node index of the boundary element. The design velocity
field at nodes qu are calculated from the design mesh. This interpolation guarantees
differentiability along the boundary element except at the end nodes. Hence, a Multiple
Collocation Approach (MCA) is used [60], where the collocation is performed only in-
side the boundary element. This fully isoparametric approach using the MCA is simple
and applicable to all possible positions of the boundary elements shown in Figure 3.5.
It is even possible to consider the boundary element @ if a null design velocity field is
assigned to the node located outside the design mesh. Despite its versatility, it comes

with a big disadvantage: its computational cost.

Mixed approach Nodal collocation is used for boundary elements whose nodes are located
at points where v(x') € €'. For boundary elements where at least one node violates
this condition, the full isoparametric approach is used. This approach is versatile and,
at the same time, as computationally cheap as possible. The only disadvantage is the
implementation effort needed to automatically distinguise between both situations. In
Figure 3.5, nodal collocation is used on boundary elements @, ®,, ®, and ®,, while
the full isoparametric approach is used on boundary elements ®,, ®; and P,.

Once discretisation and collocation procedures have been described, it is possible to
present the discretised form of Boundary Integral Equations (3.44) and (3.66). For any col-
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location point x', both can be written in a generic way as:

Ne Ny, Npe & Ne ®
cidp' + b, v, p +Z (H,op,)"+Y (6H,p,)" =Y (G,84,)"+ Y (6G,4,)"
e=1 e=1 e=1

(3.86)
where:
« Ifx' €T, then:

' ={d,e=1,..,N,:x €D}
V=W d=t,.., Ny ixt e,

p=(4p,)°
op' = (¢L5pp)¢
U = (‘*”ni;.f”mq)qﬂ

and ¢' and binj. are calculated as shown previously according to the local geometry of
the boundary at the collocation point.

o Ifx! El"thenc—é' and b . = 0.

mj

For a boundary element ® associated with a design element W, two different situations must
be considered:

Exteriorintegration,x' ¢ ®. Allintegrals are strictly regular, and standard Gauss-Legendre
quadrature is able to approximate them numerically. However, the case of collocation points
near the element lead to quasi-singular integrals. More details are given in Chapter 4. The
contributions of a boundary element ® similar to those of the SBIE are:

H,= / q"¢,dr (3.87)
Lisd

G, = / ', dl (3.88)
L}

The contributions of the new integrals arising in the 6SBIE consider separately the design
velocity field along the boundary element (through the design element ¥) and the design
velocity field at the collocation point:

§H,=6H, vy, —S6HL U, = (6H v +5H,§;p+5ﬂ,i;p) vp, —OHSU,  (3.89)
6G,=6G,, vy, —6GL2U, = (6Ga, + 686G Y vy, —6Grov), (3.90)
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where:
6H,,, = = / PN te®, dU (3.91)
i}

5H gy = / Pyt Wy, dl (3.92)
Ll

SHL. = / Pt b, dT (3.93)
i}

SH,,,, = / g Wl ®, dl (3.94)
Lis}

6GE = / phw,p,dl (3.95)
L

8Gny = / P, dl’ (3.96)
L}

3G,y = / Pt gutih, dl (3.97)
L]

Interior integration, x' € ®. The integrals contain a singularity, which can be integrable
in the Riemann sense (regular or weakly singular) or in the more general Finite Part sense.
The regularisation performed in the previous section leads to a set of integrals integrable in
the Riemann sense, making explicit the Finite Part of the original integral. In any case, the
integrand is unbounded at the collocation point, and hence no integration point can lie at it.
Only regular and weakly singular integrals have to be integrated, which is done according to
Chapter 4. The contributions of @ similar to those of the SBIE are:

H, = lim / g'e,dr (3.98)
P—el

G, = lim / p' b, dl (3.99)
D—ei

Since X' € @, the contributions of the new integrals arising in the §SBIE consider only the
design velocity field along the boundary element (through the design element ¥):

6H,=6H. vy = (6H . +6Hn +6H ) v, (3.100)
6G, = 6GLl vy, = (6GR., +6GL. ) vy, (3.101)
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where:

e 1 1 or b i
OHmap = 57 1, / oF (n¥aiti®, = Moy ;) T (3.102)
b —el

R1 _ | 2r,m or i n i i
OH gp = "9 / 2 a(wq—wé)qbpdf— r_if(wq_wr:’_wr;-jrj)¢pdr_

[

—el b—ei
1 i i T W 1 (ror\' or
/ > [”m‘i’pwq,jr,j_(ﬁ) nm()bpwq‘j!j] dr—"m‘i’pwq‘ﬂj / = ((E) —E) dr
P—pl Pl
(3.103)
aHL = lim / 4t Wt , AT (3.104)
b—¢l
SGR! = lim % i dr 3105
LT A ——— P.m (Wq - Wq) b, (3.105)
b—pl
aan'qp— lim / Pt ®, dl (3.106)
b—pl

where the limit notation lim__, ;. before some integrals has been omitted for brevity. Note that
3 5 2 N1 R1

terms involving the integral f I/r dI" has been removed from 6 H,,,, and 6 H ,,, since they

cancel out when evaluating Squp

The solution of the sensitivity problem requires the solution of the zero-order solution.
As it is well known, the discretised form of the SBIE is:

Nhe N he

c'p'+z H,p,)® =Y (G,q,)™ (3.107)

il

which is somewhat a simplified version of the 6SBIE (3.86). Performing a suitable colloca-
tion of the SBIE throughout the discretisation leads to the influence matrices H and G, which
are built by assembling free-terms and H , integrals into H, and G, integrals into G. The dis-
cretised system is transformed into a system of linear equations once the boundary conditions
are applied:

boundary conditions

Hp=Gq ————— Ax=Bx=b (3.108)

where A is composed of components of H and G related to the unknown components of p
and q (gathered into x), and B is composed of components of H and G related to the known
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components of p and q (gathered into X). Following a similar procedure but using the 6SBIE
(3.86), the first-order discretised system is:

boundary conditions

Hép+6Hp = G6q+6Gq ————— Adx = B6x+5Gq—6Hp = b° (3.109)

where A and B is similar to that of the zero-order system (if the same discretisation and
collocation is used), and the components of 6X are related to the sensitivities of the boundary
conditions.

3.8 Helmholtz problem

The previous section deals with the Laplace problem, which, despite being the simplest case,
it is very useful to explain, discuss and understand in detail all the steps to obtain a BEM for-
mulation for sensitivity analysis. Furthermore, the crucial part already solved for the Laplace
problem is applicable with small modifications to other problems. A simple change of flux
variable f = —kgq, where f is the physical flux and k is the conductivity, make possible to use
the already developed formulation for heat transfer or electrostatics problems. By expanding
the fundamental solution, it is also possible to obtain the BEM formulation for the Helmholtz
problem, which with simple change of flux variables allows the study of wave propagation
within ideal fluids or the anti-plane wave motion in two-dimensional elastodynamics. In
the present section, the BEM formulation (SBIE and 6SBIE) for sensitivity analysis for the
Helmholtz problem is developed.

Concerning the BIEs, the only formal difference between the Laplace problem and the
Helmholtz problem is the fundamental solution [6], which represents a dynamic event with
a propagation speed c¢ in the frequency domain @w. Being k = w/c the wavenumber, the
fundamental solution p* and its derivatives are:

Pt = iKﬂ(fkr) = oo (3.110)
2r 2
1 0P 1
s 1oP 1, 3.111
B e+ (.10
1 [1oP *P 10P 1
I B i, Vg | = BB LR, 3.112
Pim= 5z |7 arom™ (dr3 r ar)"~f"~ml 23( 1Sy + Rar 1 ) ( )
o gy o OO0 L 08 (3.113)

A T 2p aron . 2m on

where i is the imaginary unit, and K, (z) is the modified Bessel function of the second kind
of order n and argument z. Terms Q, R, and R, depend exclusively on r and k:

Q = —ikK, (ikr) (3.114)
R, = %Q (3.115)
R, = (ik)*K, (ikr) (3.116)
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Bessel functions K, (z) can be decomposed as shown in Appendix B. By using this decom-
position, P, Q, R, and R, can be written is such a way that a part depending only on r is
segregated from another parts depending on r and k:

P=—lnr—ln%—y+l(§(fkr)=—lnr+@(rﬂ) (3.117)
2 2 :
0= —% + %rlnr+ % (ln % +y - %) r—.r'kl('f(r'kr) = —% + O (rlnr) (3.118)
.Y K2 [, ik 1\ ikyr,.,._ |
R, ——r—2+71nr+? (ln5+y—5) —?KI (rkr)_—r—2+@(lnr) (3.119)
2 kK K, k* (. ik 3\ 2 2uR 2 0
Ry= S+ - r lnr—§(1n5+y—1)r ~KKE (k) = 5 +0 () (3.120)
Therefore, the fundamental solution and its derivatives can be written as:
static dynamic
Pt = (p*) i (p*) (3.121)
z % static 5 dynamic
py= ()" +(r) (3.122)
. . static < dynamic
p,f'm = (p,jm) + (p,f'm) (3123)
statie dynamic
g = (q"‘) % (q*) (3.124)

where the static parts correspond to the Laplace problem. Dynamic parts lead to at most
weakly singular integrals, hence neither produce additional free-terms nor require further
treatment.

3.8.1 Ideal fluid

Consider an ideal fluid with density p and bulk modulus K. The wave propagation speed
is then ¢ = m Within the small perturbation hypothesis, the wave propagation in this
medium follows the Helmholtz equation with the dynamic pressure p as the primary variable
[6]. The flux variable (secondary variable) is the fluid normal displacement u,:

_ Lop_ 1
" opwton  pw?*

(3.125)

Thus, simply by making the change of variable ¢ = pcozuﬂ, the formulation can be used to
study this problem.

3.8.2 Anti-plane elastodynamics

Consider an elastic solid with density p and shear modulus y. The shear wave propagation
speed is then ¢, = \/m The two-dimensional analysis of the anti-plane motion is governed
by the Helmholtz equation with the anti-plane displacement u; = p as the primary variable,
and ¢, = ¢ as the wave propagation speed [6]. The flux variable is now the anti-plane traction:

Iy = 03,1, = MUy N, = Uq (3.126)
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where ¢ = 1,2, and summation convention is implied. Hence, by making the change of
variable g = t,/u, the formulation can be used to study this problem.

3.9 Elastostatics

Consider the static analysis of an elastic solid with Poisson’s ratio v and shear modulus (or
Lamé’s second parameter) . Lamé’s first parameter is then 4 = 2uv/(1 — 2v). The primary
variable of the governing differential equations for the in-plane problem are the displacements
u,, and the secondary variables are the tractions #, = o,;n;, where the stress tensor is o;; =
Aty 04 + pluy ; +u; ), and k, j,m = 1,2, In the present work, the plane strain problem is

considered, although the plane stress problem can be obtained easily from it [137].

3.9.1 §SBIE for non-boundary collocation points

The Singular BIE (SBIE) for an interior or exterior collocation point with respect to the ref-
erence domain €2 can be written as [137]:

o . LxeQ
b+ [ thu dl' = ultt,dl, oL = . 3.127
o /uck /uck Q {O,X'EQUF ( )
r r
where the body loads have been discarded, ! = 1,2 is the live index related to the load

direction, k = 1, 2 is the dummy index related to the observation direction, and:

" 1
u”(’: m[—ﬁm(3—4v)lnr+r.,r,k] (3128)
. 11
= m;[— 61 B =41+ 8,1+ 81, =2 ryr | (3.129)
G?km = ’lu?j,f'akm +u (u:k.m + u?m,k) (3130)
. 1 1
Olkm = “dxd—-wr [2",3",k’,m +(1-2v) (5sk"’,m Tl = akm’.f) ] (3.131)
r?k = Gn:kkmnm (3132)
. 1 1 (or

Likewise, for the perturbed domain Q:

sk e g i ; Lx e
5L, + /qkuk dF:/u;kzk af, 8= {0, e BUT (3.134)
r r
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As seen in previous sections, the relationships of geometrical objects and variables between
the reference domain  and the perturbed domain Q are given by linear mappings:

i, = u, + 6u, (a—a°) (3.135)
i, = u, +éu, (a—a’) (3.136)
iy ;= uy; +ou,; (a—a°) (3.137)
fi,=n; +én; (a—a’) (3.138)
By = Ally By + Uy ; +11,) = 0y + 66y, (a— o) (3.139)
i, =6, = o,n, + (0,,6n, + 60,,n;) (a—a°) =1, + 61, (a —a) (3.140)
di' = [1468J (a=d")] dr (3.141)

where only linear terms (a — a°) are kept. The fundamental solution u,, depends on the
observation and collocation points u;, = u?‘k(x,xi}, hence its linear mapping must be built
from the Taylor’s expansion with respect to both points. As seen with the Laplace problem,
this means that the linear mapping can be written as:

iy, =y + 1, ,0r; (a— ) = uj, + 6uy (a - a°) (3.142)

The linear mapping of 7, is built by using the linear mapping of its components:

U = Oliomlim = [G?Lm + G0 (a - aﬂ)] [nm +on, (a - an)]
=0y, N+ (a;"kménm + af‘km‘jﬁrjnm) (a - an) (3.143)
=1, +6t) (a—a°)

and keeping only linear terms (a — a”). Note that o,

"‘m’j is obtained by differentiation of
Equation (3.131):

1 1

Shns = G A=) ry=2(1=2v) (8wt + Sil k¥ 3 = Syl aT ;)

[ - Sr.fr,kr,m 5

+ 2 (8 4P g+ O+ Bt yr i) + (1 = 2) (6,6

mj mj

+ 8,084) = Bind )] (3.144)

km™1 j

Finally, substituting all these linear mappings into Equation (3.134), keeping only linear terms
(a — a°), substracting Equation (3.127) from it, and dropping out (a — a°) terms, give the
sensitivity SBIE (or 6SBIE):

555u5+/r;‘k5uk dF+/ (817, 41,8 ) u, dF=/u}"k51de+/(Su;"k+u:‘k5j)rk dr
r 1 r r

(3.145)

The first and third integrals are similar to the integrals of the SBIE, except that now the
sensitivities ou, and 6r, appear. The second and fourth integrals are new integrals that depend
on u, and t,, thus they can be evaluated only once the zero-order solution is known.
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3.9.2 §SBIE for boundary collocation points

The process to obtain the 6SBIE for boundary collocation points is analogous to the process
performed for the Laplace problem, so many aspects are skipped and assumed similar here.
The limiting process is also done from an interior collocation point (5;] = 1). The integration
path of the integrals of Equation (3.145) is modified according to Equation (3.45), then:

/(...) dr = ur{g/(...) dr + lir{g/(...) dr (3.146)
r ri —ei

Integration over [ In order to perform the integration over the arc I a polar system of
coordinates centered at the collocation point is used, see Section 3.7.2. Assuming that the
displacement sensitivity is continuous, i.e. ou, = 6ui,( + O (e), the evaluation of the first
integral of Equation (3.145) leads to:

t;
i x * 1 ex i
SH! + }_12} f f”ﬁuk dl’ = 5& - m (1 =i 214’) 'SHCAS : + 2/??!?’1;6 dg Suk (314?)
ri &,

el
= ¢, 0u,

where cj . is the well-known elastic free-term:

iy A 1 sin 20, — sin 26, —(co0s 28, —cos 26,
R
T g \T) 8x(1—v) \ — (cos26, —cos26,) —(sin26,—sin26,)
(3.148)

Given that the displacement is continuous: u;, = uL + O (¢); and the design velocity field is
differentiable: v, = v}, + v}, . ;€ + O (€?); the second integral of Equation (3.145) can be
written as:

e—0* e—(*

ri i

lim / (667, +17,8J ) u, dT" = lim / (g;manm - G OF My + 13,8 ) AT = By, 0 it

(3.149)

Instituto Universitario SIANI 85



3 TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION

i
where bwm is

0, 0,
b:,kjm = —ﬁ —6/n‘.nkn n,dd — (1 -2v) 6!k/nfnmd9
0, 0,
t, t
+ (1 +2v) 51;/%’% df + (3 — 2v) §,; / nn,,do — (1 — 2v)/t ngn;t,, do
8, 9,
0, 0,

+ (1 — 2U)/ mten;t, dé + Z/n nt;t,,d6 + (1 — 2v) 6, /rjrm de| (3.150)
BI
and its evaluation can be found in Appendix D. The new free-term bi‘kjm is null if the col-

location point is located at a smooth boundary point. Assuming that traction 7, and traction
sensitivity 67, are bounded, the third and fourth integrals of Equation (3.145) are null:

El_i.r(g/u;“katk dl’ =0 (3.151)
ri

lirgl_/ (6uj, +uj,6J )1, dl =0 (3.152)
ri

Therefore, after performing the integration over I', the §SBIE for boundary collocation points
can be written as:

¢i\ S, + bV Jmuk+llrt]}"1 / £ 0u, dU + lim / (615, + 15,6 ) u, dT”
¢ ¢

zflirél/ Srde+Elir51/(5u:.°‘k+u:‘k5J)zde (3.153)
| - [—¢

Integration over I' — ¢' The first integral of Equation (3.153) is clearly strongly singular:

H, = lir(r)l+ / 1), 6u, dI is strongly singular " t;, = 0 (r") (3.154)
C—el

The term leading to the strongly singular part can be segregated:

1 ; 1 or
H, = T4n(1—-v) gll.rflml/ Fie [5ak(1 2v) +2rr, ]Suk drr

r=¢t

. 1
+(1—2v)£1113/;(n!r = nr,) 6u, dlCp (3.155)

[=el
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Because the displacement sensitivity is continuous, one can add and substract 6u:c from ou,
in order to further segregate the strongly singular term:

1 . 1 or

H=-——11 -6, (1 =2 2 ou, dI’

. 4 (l —v) {Eld.r(r}a / rdn[ e € V)t r,!.r,k] “
M—ei

+ (1 = 2v)| lim /1(n;rk—nkrla)(6uk—6uik) dr + su), limfl(n,rk—nkr;) dr
o (I : R :

£ =0
[—ei [—ei
(3.156)
It is easy to see that:
dar ar

Hence, the regularised integral can be written as:

1 . 1198
Bmpe = ——[5 1—2v +2rr]6 dr
P s—.o+/rdn e (1= 20)2rr | Ouy
[—ei

. 1 i ¢ 1
+(1-2v) Ell.r(r)l / = (mr g = ner ) (8uy — 6uy) dU + €60 Elfgl / p dr
[—¢i r-e!

(3.158)

where f 1/r dr is analytically solvable. The second integral of Equation (3.153) can be split
into three integrals:

§H, = lim / (815, +13,6J ) u, dT" = lim / (afmﬁnm+G:‘km,jérjnm+r:‘k64')uk dr

e—=0*
r—et ri

=86HY+6HY +5H)

(3.159)
SH?I is a strongly singular integral:
&H’iq = lir{r)l+ / O Oty A is strongly singular *. o, = (r") (3.160)

r-ei
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If its integrand is expanded, two integrals are obtained:

5H§“=—€l_i.r(1;1+/ ot nv, ., dT
r—et
1 : 1 or ()
[—el
=1 (1 —2v) lim l(rr —ir)nv tu, dI’
43—(1 - U) o, F 1"k D) et est stk
[—ei

+ 1im/l§—r 2k, + (1 - 2v)61.k]nrvmrsukdl“ (3.161)

where the first integral is regular because 1, — t,#;, = O(r). In the second integral, it is
possible to add and substract n.v ‘r fromn,v, tu

SHY = ﬁ (l—2v)glirg1+/%(r,r‘k—r,{r,‘,)nr”n dr’
[—=ei
+1im/l£l2r,rk+(1—2u)aml (n,0, 1,4, — niv, o) dT°
=0t | rol| " gl
+ il Ay hmflﬂ[zrr +(1=2v)§,[dl'¢ (3.162)
e R B BT Ak Ik

—el

where new regular and strongly singular integrals are obtained. In the new strongly singular
integral, one of its terms lead to an integral f l/r dr:

1 ; 1
HY=—— {1 -=-2vlim [ = (t,r, —t,r tu, dC
| 4:&_(1_“) ( V)s—e()*‘/'r(x’k k.)rrsx‘
| =
. 1 or
+Elir(1}’1+ ~ar 2r 1+ (1= 2v) 8, | (n,0,51 1, n,v”r,:u ) dl’
|

4 : 1 1 or
+ vl u, (1—2v)5,k€lir£/—dr+211m /;ﬁr,,r‘de (3.163)

et
r=et r=et
and the other term can be expanded as:
oar or
=(— r r O(r) = r O 3.164
Hl (ar) (ar) OO =4+ 00) (e
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which leads to:

1 . 1
e
et | 22 b +(1=2v) 8, | (nv, tu, —niv: fu,) dT
0t rol 4k 1k rrststk rrst sk
[—el

0 . 1 or i BT 3 1
+n.v, Hu 2€llr{1;1+ / P (r,l,ch - f.'fk) dl' + [(1 =2v) o, + 2fs‘k] Elir(r}l+ / - dr
[—ei [—el

(3.165)

Hence, SH?I can be written as a set of regular integrals and one integral f 1/r dr. The integral
SHF is also strongly singular:

SHY = lim / O iom,;OF ity AT is strongly singular *.* o}, 6r; =0 (r™')  (3.166)

g=(t /

g

e o(r2) 00)

If the following part of the integrand is expanded:
o, N, = . {lﬂ
tmjmm = 4z (1= v) \r2 on
+ rlz[ —2(U =207 (mr = myry) + 21+ (1= 20) (8, + 3m, = 8m) | |

= &), + &), (3.167)

[— 8r 1 o1, —2(1 = 20)8,r, +2 (8,7, + 6,r)) ]

It is easy to see that &j‘@. leads to a regular integral while &!bkf leads to a strongly singular
integral:

e=0t e—=(0+

[=et el

SHY = lim / &}, (v, —vy) u dl + lim /6:’kj(vj — ) u, dl’ (3.168)

Given that the design velocity field is differentiable, i.e. v; — v;. = U;,S?‘S =0 (rz), one can

add and substract v, r_from or; leading to new regular and strongly singular integrals:

s

e=0t e—=(0+

[=et el

SHF = lim / E.rj‘kj (vj —v;)uk dI’ + lim /&:’M (Uj - U; - v},srs) u, dI”

Fes Ot 5 .S

F—et

+ lim / réf, vl o i dU - (3.169)
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This new strongly singular integral can be further reduced by adding and substracting lim, _, (r‘su ,C) =
(0r/oD) tiuj to r u,:

R _ i ~a ( _ i) : ~b ( e )
oH, Ell,r(rﬁ/qkf v; — U, ”kdr-"sl%l/g!kf v; — U, = U, 5r,) u dl
—ei —ei

: ~b i i (Or\ o A b [ Or)
+€lirfr)1+~/raw (Uj,s”,s”k—vj,s(ﬁ) tou, | dI” + Uj.s’s”k}l_%{ mfkf(ﬁ) dI’

[—ei [—ei
(3.170)

The latter integral can be expanded and written as:

= 3 5b E)i 1 l(a_”)i[_ _ _
A_El_l.%/mw(ar ar= - lim [ ~(5E) [-20-20r, (wrs = mer)

[—ei el

+2nr 1+ (1= 2v) (8, + 8,1, — 8,1, ] dr’ (3.171)

By adding and substracting the following, already used, expansions: r ; = (dr/al)! r} + 0 (r),
rary = IZIL + O (r) and n; = ni,. + @ (r); it can be written as:

1 . 1 /or\ ar\! ;
AS ~mm 5 }i%l/F(ﬁ) [‘2“‘2") (”f‘(ﬁ) ’f) (rurx = nery)

[=¢i

+ 2(njr,l,r,k _";’SIL) +(1-=2v) (5”( (nj - n}) + 6kj (n! —n;) — 51;‘ (nk - n'k))] dI’

—-2(1-2v)f, lim / % (myry —ner,) dU°

|

e—0" r Aol
[=gt

+ [2ntdid 4 (1= 20) (8,0 + S,,m) — 6] um/l(ﬁ) ari (3.172)

where the second integral is similar to the strongly singular integral appearing in the regular-

isation process of H,. Also, it is easy to see by inspection that 5, ,.n, — 6,,n, = €,1,. The third

90 Coupled model of FE and BE for the dynamic analysis of buried shell structures



TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION 3

integral can be regularised by adding and substracting dr/dl" to (0r/oD):

1 ) 1 /or\ or\!
A= 61%1/;(5) [—2(1—2v) (r_j—(ﬁ) :j) (mry = mer,)

[—et

e2 g, — ) €0 =29 (5, () — ) + 85, [y — H) — 8y (A nL))I ar

i i i 2RT 1 or\! or
+ [2rgrty + 00— 20) (B +et})] i / r ((ﬁ) B ﬁ) 4

et

+[nl (268 + (1 - 2v)8),) — (1 - 2v) ey 1] El_i,rg/ % drg (3.173)
e
Therefore, 6 H F can be written as a set of regular integrals and an integral f I/r dr. The

integral SH{ can be easily regularised. If, in the first place, the expansion of 6J = 1}, t,v, t =

) g ¥
il g ; ¢ .
t,v; t; + O (r) is considered:

5H':=€1_i_l'(];1/f:‘k6¢fuk drzgl_i‘%l‘/t:‘krjvj,slsukdr

el —¢l

= lim / 8 (tjvj.srs—I;U},S{i‘)ukdl"+li,.v;,sri€lirfr}1+ / fru, dU (3.174)

r=et [=¢l

then the resulting strongly singular integral is similar to H,. Hence, the regularised form of
5H{ can be written as:

SH| = lim / tr (8041, —!;U;.,sri) u, dT”

=0t
r—el
1 i i) 1 or

=el

g—(t

—¢t ¢t

+(1 —2v) ]im/i(n,rk—nkr;) (u, —u,) AT + €, 11%1/1[1;» (3.175)
r ’ ’ e—0% r

Eventually, we are in the position to evaluate 6 H, = 6H?] + 5HF + SH{ by simply adding
the three contributions. It is easy to see that all terms related to the integral f 1/r dr cancel
out when adding all the contributions.

The third integral of Equation (3.153) is weakly singular:

G, = ]ir(r)l+ / u;, ot dI'is weakly singular " u;, = @ (Inr) (3.176)

=gl
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The fourth integral of Equation (3.153) can be split into two integrals:

oGy =1, / (8], +uj87) 1, dT = 6G]' + 66 (3.177)

['—el
where:
R

SG = Eli%l / mﬁr 1, dl'is regular * m 6r =0 ( ) (3.178)
s o(r ) 6

SGj = Lrl_i.rgl / u, 6J1, dI"is weakly singular " @ 'fs,,‘i' =0 (nr) (3.179)
—el @{lnr) 6(r0)

3.9.3 Discretisation and solution

The discussion done in Section 3.7.3 about discretisation, collocation, numerical integration
and solution of the Laplace BEM sensitivity problem holds for the elastostatic case. The
difference is in the length of the formulation, which is also more involved as it has been

shown in the previous section.
The discretised form of Boundary Integral Equations (3.145) and (3.153) for any collo-
cation point x' can be written in a generic way as:

NI)e Nhe Nhe ® Nhe D
Ch B b O Y (Hyp 8uy,) P+ Y (8H i) % = D (Grty,) P+ Y (8G i)™
e=1 e=1 e=l1 e=1

(3.180)
where:
» Ifx' €T, then:
O ={®,e=1,.,N,:x €D}
V=¥, d=1,..,N,: X €%}
= (i)™
Suk (¢ 6u,)”

Jm (]’qu Jt]‘)

and c:k and bik jm are calculated as shown previously according to the local geometry of
the boundary at the collocation point.

« Ifx' ¢ I, then ¢;, = 5,6, and by, ,,

=0.

For a boundary element ® associated with a design element ¥, two different situations must
be considered:
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Exterior integration, x' & ®. When x & O, the contributions of a boundary element ®
similar to those of the SBIE are:

Hmp=/rj:k¢pdr (3.181)
D

Gy, = / u',p,dl (3.182)
P

The contributions of the new integrals arising in the 6SBIE consider separately the design
velocity field along the boundary element (through the design element W) and the design
velocity field at the collocation point:

T1I W g N1 RI Jl p R2 i
6H, = 6H ) Uy —0H , U, = (5H!kmqp +OH gpt 5Hskmqp) Upg = OH o U,
(3.183)
5G“(.p - 5G:‘};Ifnqpviq = 563"&2:‘!?;)”125 = (5G|‘F§c:nqp + 6G:‘fk|mqp) Uﬁq o 5fo§npuim (3184)
where:
N1 _ i
H:‘kmqp - / gikjtjnmu‘fq,srs¢p dr (3185)
@
Rl _ “
lkmgp — /J!kj,;nnqud)p dr’ (3186)
@
SHIL,, = / O} mM; b, T (3.187)
@
SH gy = / bWy it s, AT (3.188)
@
6G!RkL:qp = / u?k,quqbp dr’ (3189)
@
G oy = / e b, AT (3.190)
@
SGfLmqp = / up Wy st @, dl’ (3.191)
@
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Interior integration, x' € ®. Whenx' € @, the contributions of ® similar to those of the
SBIE are:

! lim / Lo [5“6(1 —2v)+2r,l,r‘k]gbpd[‘

e = T2z —v) |e=0r | ronm
P—el

: 1 ; - 1
+(1-2v) hm/;(n!,r,,(—nkr,,) (¢, — ) dF+e!kd>p€]ir(r}1/;dr (3.192)

gt
(R P—gl

Gy = lim / u, ¢, dT (3.193)
D —gl

Since x' € @, the contributions of the new integrals arising in the SSBIE consider only the
design velocity field along the boundary element (through the design element ¥):

_ Tl v N1 Rl J1 Wy
SH“CP = 'SH!kmqumq = (SH!kmqp + SHa’kmqp + SHIkmqp) Umf} (3194)
_eTl W _ Rl J1 p
6(}'”@ = SG!,kmqpvmq = (SG:‘kmqp + SG!kmqp) Yo (3.195)
where:
NI 1 1
Hins = amii =y 102 [ 5 (hre= 1)) mavry tyb, U
P—gi

1 or { oo
+ / ;E[Zrﬂ,r,k+(l —2u)5ml (nquisrsff;p—nm%.sgd}p) dr

D¢

{4 1 or i
+ znqu,srsqbp / ;E ("’,.‘"’,k - I‘;fk) dr (3196)
D —gi
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SHFktnqp = / &jlkm (I,U I‘UG‘) d) d" + / O-”(, (]‘ufi‘ - ]‘Utli - ]‘Ufii‘,ﬁr-") d)f? dr

[=¢! r-¢

= i P far\ o
+ / ro—rfcm (Wq,sr,s¢p_wq,s (ﬁ) '{s¢p) dl’

et

1 ; 1 /or\ or\! .
_4?.':(1 —v)qu ‘gb /;(f) [_2(1_2v) (r,m_(ﬁ) Im) (”;"ﬂk—nk{;)

—gl

m" .l

+2 (e r o — it ) + (1= 2v) (8 (m,, — 1) + 8y (1, — 1)) — 8, (1 ‘"L))] dr

oo i i L ((or\' or
+ [2nh i+ (1= 2v) (8, + €11 / F((ﬁ) _ﬁ) aré (3.197)
|

SH s = / 1 (0wt — s fh) ¢, dT

D—pl

1 6 1 dr
-ty [ S| - 20+ 2r |, ar
mast] [ 5lma-mr e,

—pl

+(1 —2v) / %(n,r_k—nkr,,) (p,—¢,) dl ¢ (3.198)
D—pl

6G ing, = lim / Wy, (W, — i) ¢,dr (3.199)
i

8G gy = lim / Uyt W, st @, dl (3.200)
el

where the limit notation lim__ ,. before some integrals has been omitted for brevity. Note that
terms involving the integral f 1/r dI" has been removed from 6 H mﬂ o OH i‘mqp and o H {LW
since they cancel out when evaluating SH?;C' s

The solution of the sensitivity problem requires the solution of the zero-order solution.

As it is well known, the discretised form of the SBIE is:

Npe
C.‘kuk + Z r‘kpukp % Z (G;kpfkp)‘b‘“ (3.201)

e=1

Performing a suitable collocation of the SBIE throughout the discretisation leads to the in-
fluence matrices H and G, which are built by assembling free-terms and H), , integrals into
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H, and G, integrals into G. The discretised system is transformed into a system of linear
equations once the boundary conditions are applied:

boundary conditions
Hu=Gt —— Ax=Bx=b (3.202)
where A is composed of components of H and G related to the unknown components of u
and t (gathered into x), and B is composed of components of H and G related to the known
components of u and t (gathered into X). Following a similar procedure but using the 6SBIE
(3.180), the first-order discretised system is:

boundary conditions
Héu + 6Hu = Got + 6Gt e i i S MO Béx + 6Gt —5Hu = b’ (3.203)
where A and B is similar to that of the zero-order system, and the components of 6x are
related to the sensitivities of the boundary conditions.

3.10 Elastodynamics

In the present section, the time harmonic counterpart of the elastostatic problem is studied.
The formulation is completely analogous to the elastostatic problem, except that the funda-
mental solution is more involved. However, it can be split into a part similar to the elastostatic
one, and another part that leads to at most weakly singular integrals. This splitting process
was also applied to the Helmholtz problem in Section 3.8.

Consider the time harmonic analysis of an elastic solid with density p, Poisson’s ratio
v and shear modulus . Lamé’s first parameter is then 4 = 2guv/(1 — 2v). As it is well
known [6], two body modes exist: the longitudinal mode (primary wave or P-wave) with a
propagation speed ¢; = 1/(4 + 2u)/p, and the transversal mode (secondary wave or S-wave)
with a propagation speed ¢, = m The P and S wavenumbers are denoted as k;, = w/e,
and k, = w/c,, respectively, where w is the circular frequency.

The fundamental solution and its derivatives can be written as [6]:

1
. 1 . k .
Uy = K, (ikyr) + it [KI (ikyr) — k_;Kl (‘kl"’)l (3.204)

k
U, =K, (ik,r) — k—;Kz (ikr)

-

. 1
Wi = _[ 1Ol + Vor rr, + V5 (6e’mr,k + 5@::*",;)]

27 b
U,

Vl -_-—
or (3.205)
7] ou,

Vj = _U') =

S oor C dar
1
V'; = __U‘j
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O lim = 2_11_ [Tlr,:’.k"’,m +T, (afkr + Oy, ) + T38,1
ou,
3 d (3.206)
ou, 1
T'> ——— ity
= or P
A [oU, dU, 1 2
Tn==\—-—--U,)-=U,
ST ( ar or r r
(=g n = % ll']r,,r g L (5,kg FEr, ) + Tgnkr,Jl (3.207)
; 1
A R, (%rmrk S TP A I )+ Ryr (81t + Ot 1)
+ Ryr ror o r; + Ry8,,. 8, + Rs6y,r v + Re (8,8, + 8,6, j)l
R, = l:"‘1
r
R’Zd‘Ul_l oU, 2_2
B or? or or r (3.208)
R =2 0*U, 5 1 dUa
3T a2 r a
R, = l1"
Caale
2 (0°U, U, 10U, 2 20U, 4
R,=~— — = —— +=U, | -=—=+-U,
2 ( or? or? r or r2 2 r or rz -
1
R - _Tq
6= 242

where terms U,, V,, T, and R, depend on distance r, frequency @ and material properties. By
using the decomposition of Bessel functions presented in Equation (B.1), the non-frequency
dependant part (static) of each term can be segregated. Their full decomposition can be found
in Appendix D. Terms U,, V,, T, and R, can be written as:

U=t 6 ()

( 1_ 2 (3.209)
U2=—4(l_v)+(9“(r“lnr)
Vi =_431 v l+f(4r'ln.r')

(f” (3.210)
Vy=~— Liow

2T 2=

Instituto Universitario SIANI 97



3 TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION

T|=—ll Liow

—-Vvr
1-2v 1
==Y 4+ 6(rl
2= " d—nr (rlnr) (3.211)
1-2v 1
= -+ 0 (rl
3= 3a—wr FORN
1-2v 1 0
R‘)= — @
= l—'u;r'2+ (r)
_. 4 1 0
R; = " +0 () (3.212)
1-2v 1 0
R5=—l_vr—2+@(r)

where terms V;, R,, R, and R, have been omitted for brevity, see Equations (3.205) and
(3.208). Also, in order to be able to verify that the static parts lead to the elastostatic funda-
mental solution, the following relationships have been used:

c? _
<= A-2v (3.213)
2 2(1-v)

CZ
A =—1_2 (3.214)
H c;

By substituting these decompositions into Equations (3.204-3.208), it is very easy to see that
the static parts lead to the elastostatic fundamental solution and its derivatives, and that the
“dynamic residues” lead to at most weakly singular integrals:

static dynamic
= (H}"k) + (H}'}C) (3.215)
static dynamic
u?k,m = (u:‘k.m) a+: (urk.m) (3216)
" % stalic . dynamic :
T = (tHc) + (IH() (3.217)
static dynamic
G:‘km = (O-;km) + (J?km) (3218)
. . stalic . dynamic
O-:'km,j = (gn‘km,j) T (O-ka,j) (3219)

3.11 Discretisation and collocation in multi-region problems

The boundary of a region 0€2, is split into several boundaries I', in order to assign a different
boundary or interface condition to each one of them. Also, it is split at sharp corners in or-
der to have a better representation of tractions there. Since it has been established that each
boundary has its own nodes, double nodes appear at points where different boundaries meet.
If standard nodal collocation is applied at these nodes, then a singular system of linear equa-
tions could be obtained. There are several ways to overcome this difficulty, for example using
discontinuous elements, special corner elements, alternative BIEs, or additional equations. In
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the present work, non-nodal collocation is used at these nodes, where the collocation points
are located inside the elements but near the nodes. This approach not only solves the degen-
eracy problem with an acceptable error, but is also quite simple. The meshes obtained from
standard pre-processors do not require modifications. Furthermore, it can be fully automated
without much difficulty.

Coupling is directly performed by establishing compatibility and equilibrium along both
faces of the interface at the level of discretised equations. Consider two BEM regions €2, and
Q; (i # j) connected through an interface boundary I} with orientation defined by its unit
normal n, see Figure 3.6. Relative to region Q., I, has positive orientation, hence n'’ = n.
However, relative to region Qj, [, has negative orientation, and thus nY) = —n. Following
this notation, coupling conditions between BEM regions are described next.

BEM (Q;: elastic solid) - BEM (€2;: elastic solid) The compatibility and equilibrium at
the interface in a nodal fashion can be written as:

u® = aq@
gl (3.220)
su’” = su?
. : 3.221
5t 4 5t9) = 0 -220

where it must be noticed that displacements and tractions and their sensitivities have the
same coupling equations. In the following, we denote u; and t, as vectors of displacements
and tractions in all boundaries of £2; except I, and ui” and tf} as vectors of displacements
and tractions of I}, with respect to €2,. Also, we denote u; and t; as vectors of displacements
and tractions in all boundaries of €, except I, and uf} and tij " as vectors of displacements
and tractions of I} with respect to Q.. The equations obtained after collocating the SBIE for

both regions are:

H, H, ; i . t; 0.
ii ({{k} “(i) _ Gn G(!:C} (;} = ' (3222)
H, H, u, Gy Gy, t 0,

Q Q,
- o
D oo = (T N ‘
| n =-n
n” =n
I = e T T
= %
Q Q

Figure 3.6: Boundary [, acting as an interface between BEM regions €2, and Q,

Instituto Universitario SIANI 99



3 TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION

H. H. u, G. G. t. 0
( . z’ﬁ){ d}}—( Y z’ﬁ){ a})}={ ’} (3.223)
H, H; u; G, G, L, 0,

which reduce to:

H, H, G, 0:,:' u, G, 0;; 0,
(i 0) (i)
H), Hu}c G, ﬂkj u, G, 0, j t; _ 0,
) () N = (3.224)
oki Hkk _Gkk ij £, oki Gk i tj ok
0, Hy G, H, L 0, Gy 0,

once coupling conditions are applied maintaining ugj} and tf} as active degrees of freedom
along the interface. The final system of linear equations is obtained after applying the bound-
ary conditions:

i He Gy 0, X B, 0; b,
Au Hy G 0 uy _| Bu O { X, }z b, (3.225)
0, HE:; —foz Ay tg} 0 By % bg} |
0, Hy Gy Ay Xj 0, B b,

where x; and x; gather unknown displacements and tractions, and X; and X; gather known
displacements and tractions. Matrices A and B combine terms of H and G matrices according
the known and unknown displacements and tractions. Once this system of equations is solved,
all displacements and tractions are known.

Therefore, in order to solve the sensitivity problem, we proceed following a similar pro-
cess but collocating the 6SBIE instead of the SBIE:

A; Hy Gy 0 0X; B;

ij i Vij

Ay HY GY ooy || sul | | By 0y { 5%, }

0, HY -G Ay || st? [ | 0 By 5%,

Oﬁ Hﬂc Gﬂc AJ‘J‘ 5xj Oﬂ' BJ‘J‘
oH; oHy 0y 0;‘; u; 0Gy; oGy 0y 0:‘; L

| om,, oW, 0, o0, “,E::} +| %G 8Gy, Oy 0y tff]
0, 0, oHY sH, || v 0, 0y 8GY G, |] ¢
{]J-,- Ojk 5ij SHJ-J- u; {]J-‘- ﬂjk §Gﬂc éGJ-J- t;

where the left hand side matrix is exactly the same as before.

BEM (€;: ideal fluid) - BEM (€2;: ideal fluid) The nodal compatibility and equilibrium
at the interface can be written as:
ug}nm = uf{nn(‘” = HS} = —ug}

()i} ()

N (3.227)

100 Coupled model of FE and BE for the dynamic analysis of buried shell structures



TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION 3

Bu’ = — bt 3.228
sp? = gp (. )

where, as in the previous case, normal displacements and pressures and their sensitivities
have the same coupling equations. The procedure to obtain the final system of equations is
analogous to the process followed in the previous case.

BEM (Q;: ideal fluid) - BEM (Q ;¢ elastic solid) In this case, the nodal compatibility and
equilibrium is:

uyn =u? = H;(«“ =—u”.nY 3.229
D 4D =0 = (D = HPOp® (3.229)
sul = —su? . n¥ —u? . §nV¥ (3.230)

at(f'] e 5p(i}n(i) 4 p(i}an(fl

where, unlike the previous cases, the sensitivities do not follow exactly the same coupling
equations due to an additional term that takes into account the variation of the unit normal.
This, however, does not lead to difficulties. The only difference with respect to the previous
cases is a new term in the right hand side of the system of equations.

3.12 Validation examples

In this section, some examples with analytical solution are used to validate the formulation
and its implementation. Only dynamic problems are considered since their static counter-
parts can be checked by simply making @ — 0. In the same line as in the previous chapter,
the example is a square domain with boundary conditions such that a one-dimensional wave
phenomenon occurs. However, in order to validate the formulation for curved geometries,
the domain is divided into two regions with the same material properties but with curved
interfaces.

3.12.1 Ideal fluid problem
3.12.1.1 Analytical solution

Consider a rectangular domain €2 with the geometry and boundary conditions shown in Figure
3.7. The domain €2 contain an ideal fluid with density p, and bulk modulus K. The solution of
the related Helmholtz equation consists of two pressure waves travelling in opposite directions
along x,:

p(x,) = Ae™*1 + Bex (3.231)

where A and B are the amplitudes of the waves, k = w/c is the wavenumber, w is the circular
frequency, and ¢ = 4/K/p is the wave propagation speed. Once boundary conditions are
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X2

p=0 p=P

A

=t

Design velocity field: v,(x)=x/L, v5(x)=0

Figure 3.7: Problem layout (ideal fluid problem)

considered, the pressure p and fluid displacement in the x, direction (¢, = lf(pcoz)p‘l) can be
written as:

Py )= e sin kx, (3.232)
Pk
i (JC') = mCOS kx| (3233)

If L is taken as the shape design variable with a design velocity field v = (x/L, 0), then the
sensitivities are:

Pk coskL . Xy
ép (x,) = s (_sinkL sinkx, + Icoskxl) (3.234)
P’ coskL Xy
ou, (x,) =— ( cos kx; + — sinkx ) 3.235
u (x1) 202 sinkL \sinkL T ! (3.233)

3.12.1.2 BEM solution

The problem is solved numerically by using the BEM sensitivity analysis with the 6SBIE
developed in this chapter. The domain is a square with side length L, and is meshed using
different element sizes ( L/4, L/10) and different element order (linear, quadratic). By doing
so, h and p convergence can be tested. Also, a fictitious circular inclusion filled with the
same material is considered in order to demonstrate that the formulation works well also for
curved elements. All meshes used here are shown in Figure 3.8. Dimensionless frequency
a, = wlL/e is used, which is in the range (0, 6].

The design velocity field is defined by a design mesh containing one 4-node quadrilateral
element covering the domain €, and appropriate values of v are assigned to the four nodes in
order to define v = dx/d L = (x,/L,0).
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O 1O 10O

Figure 3.8: Linear and quadratic meshes with L/4 and L/10 element sizes, and with and
without a fictitious circular inclusion.

Figure 3.9 shows the normalised displacement u; and sensitivity ou, at x, = L, and their
relative errors with respect to the analytical solution. These results are obtained for the up-
per meshes in Figure 3.8. Figure 3.10 shows the same results but using the meshes with the
fictitious circular inclusion, i.e. the lower meshes in Figure 3.8. In all cases, error levels
are so small that the differences between numerical and analytical solutions can only be seen
in the relative error graphs. These graphs clearly demonstrate the A and p convergence of
the developed BEM sensitivity analysis for plane and curved boundary elements. The error
levels at low frequencies are higher when using the meshes with the fictitious circular inclu-
sion. However, the same phenomenon is seen in both the displacement and the displacement
sentitivity, and hence it seems to be related to the discretisation itself.

3.12.2 Elastodynamic problem
3.12.2.1 Analytical solution

Consider an elastic two-dimensional rectangular domain €2 with the geometry and boundary
conditions that Figure 3.11 shows. The domain € has a density p, shear modulus u and
Poisson’s ratio v. Despite being a two-dimensional domain, boundary conditions lead to
a one-dimensional behaviour. The solution of the time harmonic elastodynamic governing
equations consists of two waves travelling in opposite directions along x,:

u; (x;) = Ae™™ 1 4+ Bei*™ (3.236)

where A and B are the amplitudes of the waves, k = w/c, is the wavenumber, @ is the
circular frequency, and ¢p = /(4 + 2u)/p is the P-wave propagation speed. Once boundary
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Figure 3.10: Convergence of u,(L) and ou,(L) for the ideal fluid problem (meshes with a
fictitious circular inclusion)
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X2
A H2:O, r‘p:O
(] @] (8] (@] (@] [ @) >
Iflf:O t‘f=P
1220 s fz—O
0
e Xy
.
T 7 7 I (@) @) J . -
u2=O, f‘f:O
L

Design velocity field: v,(x)=x/L, v5(x)=0

Figure 3.11: Problem layout

conditions are considered, the displacement u, and stress o, can be written as:

sin k
u (x,) = —— qukaI (3.237)
pCp COS
P
i (i) = 7 coskx, (3.238)

If L is taken as the shape design variable with a design velocity field v = (x/L,0), then the
sensitivities are:

P sinkl . 1 x4
ou, (x;) = ( sin kx, + — cos kx ) 3.239
u'( ') pci cos? kL LY coskL L ' ( )
' X
80 (x,) = Pk( Smjkki cos kx; — lkLEI sin kxl) (3.240)
cos? cos

where § = d/dL = d/dL +(d/0x;)uv, is the simplified notation for the field variable sensitivity
(or material derivative).

3.12.2.2 Numerical solution

The numerical solution is obtained using the same configuration and the same set of meshes
as in the previous section. Poisson’s ratio is assumed to be v = 1/4. In this case, the dimen-
sionless frequency is a, = wL/c,, where c, is the P-wave propagation speed.

Figure 3.12 shows the normalised displacement u, and sensitivity éu, at x; = L, and their
relative errors with respect to the analytical solution. Figure 3.13 shows the same results but
using the meshes with the fictitious circular inclusion. As in the previous section, A and p
convergence can be seen in these graphs for straight and curved boundary elements.
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NUMERICAL TREATMENT OF BEM INTEGRALS 4

4.1 Introduction

In previous chapters, two- and three-dimensional non-standard BEM formulations such as
the Dual BEM and the Geometric Sensitivity BEM have been studied. These lead to the
numerical evaluation of a greater number, more difficult and costlier integrals when compared
to the conventional BEM. Therefore, there is a strong need to explore safe, systematic and
economical numerical treatments of these integrals.

In this chapter, the main aspects related to the numerical evaluation of BEM integrals are
reviewed, and some practical improvements are proposed. Since any attempt to provide a
literature review in this field is inevitably incomplete because it is quite vast, a broad classi-
fication including the most relevant techniques is considered. Our effort is directed towards
using simple algorithms where little or no tuning regarding the required number of integration
points is needed. We propose some simple estimators of the required number of integration
points as a function of the required error, and other measurable magnitudes of the element
and collocation point. In particular, a strategy to obtain formulas for the numerical evaluation
of weakly singular integrals by using polar coordinates with angular In tan f (@) transforma-
tion [138] and conformal mapping [139] is proposed.

The rest of the chapter is organised as follows. BEM integrals are described in Section
4.2, while the main issues related to their evaluation are presented in Section 4.3. In Section
4.4, the evaluation of the integral of the Jacobian is studied, while in Section 4.5 different
methods for evaluating weakly singular integrals are analysed.

4.2 Description of BEM integrals

The basic structure of integrals arising in the Boundary Element Method is:

I:/YdX:/F*@JdE (4.1)
X E

where F™ corresponds to a fundamental solution term, € to a shape function/s term, J to
the Jacobian of the element transformation between reference = (local) and real X (global)
spaces, and d=" to a differential length (d= = d¢&), area (d= = dé&,d&,) or volume (d= =
dé dé,dé,) in the reference space. Figure 4.1 depicts some boundary and body load elements
that may be present in two-dimensional and three-dimensional BEM problems. The most
important objects influencing the integrand are also shown: position vector x and unit normal
vector n at the observation point (integration point), position vector x' and unit normal vector
n' at the collocation point (singularity) x', and the distance vectorr = x — X..

Fundamental solution (F*)

The fundamental solution F™ is the most challenging part of the integrand. Time harmonic
fundamental solutions can generally be expressed as the following linear combination of N .
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line element surface element line element surface element volume element

{(a) Two-dimensional problems (b) Three-dimensional problems

Figure 4.1: Layout of the integration problem in the Boundary Element Method

terms:

Npe
F* = F'“® (@, properties) - Z [Fa('“d} (r,w, properties) - F.= (x,m,x, ni)] 4.2)

a=1

where, for given frequency @ and material properties, FG(CIE} are constants, Fém‘n are radial
functions with respect to the distance r between observation x and collocation point x' ( =
|x—x'|), and FE are functions of geometric nature depending on position and unit normal
vectors at the observation and collocation points. Each radial function Fémm can be further
decomposed as:

NFa
FF =Y FY9 (@, properties) - F™Y (r, , properties) ()
4 prop ab prop
b=1

. " . g (cte) (rad)
where again, for given frequency @ anc% Taterlal properties, £ are constants, and F
are radial functions. Radial functions F," ' can be classified as:

Singular. The radial function is one of the following types:

1
re’

Inr (4.4b)

p=12,... (4.4a)

. ad) .
where lim,_, F;*" is unbounded.
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Regular. The radial function is one of the following types:

1 (4.5a)
rPInr, p=1,2... (4.5b)
rf,p=1,2... (4.5¢)
Ky (ikr
L. 00 =0 (0"’ In (cor)) ,n=0,1,2 (4.5d)
rﬂ
ER (—ikr)
=0 (e"'r),n=0,12,... (4.5¢)
rﬂ
where lim,_, ng:‘d} is bounded. Note that k is a wavenumber, K& (z) is the rest after

decomposing a modified Bessel function of the second kind of order n, and EX (z)is the
rest of order n after decomposing the exponential function. These decompositions are
described in Appendix B. In most cases, Bessel functions are related to 2D fundamental
solutions, while exponential functions are related to 3D fundamental solutions.

Each function Fégm} contains one or several factors of the following types:

Distance gradient components: r ;. The gradient of the distance r between observation and
collocation points is:
i

X—X r

=r.e. (4.6)
r

r =grad(r) =

o

which is an unit vector with direction pointing from the collocation point to the obser-
vation point, and will be called unit distance vector. In the 2D case, by applying a polar
coordinates (p, #) transformation centred at the collocation point (x, = xiI + pcosB,
X, = X, + psin ), each component becomes:

r,=cosé (4.7a)
r,=sin@ (4.7b)

In the 3D case, by applying a spherical coordinates (p, 8, ¢) transformation (x; = JciI 4
pcos@cosh, x, = xy + peos@sinb, x; = x; + psin @), each component becomes:

ry=cosg@cost (4.8a)
r,=cos@sinf (4.8b)
ry=sing (4.8¢)

They are thus purely angular functions centred at x', bounded within [—1, 1], and con-
tinuous everywhere except at x = x', where they have a jump discontinuity. Despite
their relative simplicity in polar or spherical coordinates, they have a number of pecu-
liarities in Cartesian coordinates. Algebraically, they are the quotient of a polynomial
of order p and the square root of a polynomial of order 2p, where p is the element order
and both polynomials are in terms of reference coordinates.
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ry ra a = 36°

-1 0 1

i i i
Ei—y X =X, X = X,

Figure 4.2: Colour maps of functions r ;, r, and r - d with « = 36°

In order to show how these components behave along an integration domain, instead
of showing r ,, the more general directional derivative dr/od = r - d is shown, where
d is a unit direction vector. Figure 4.2 shows colour maps of r ;, r, and r - d, where
the unit direction vector is d = (cos a, sin &) with @ = 36°. The jump discontinuity can
clearly be seen at x = x', and it is present at any line through point x' except for a line
perpendicular to d, where the function is zero.

Figure 4.3 shows the values of the directional derivative ¥ - d along a straight ele-
ment with end-nodes at (—1,0) and (1,0), and collocation points at (0,1), (0,0.1)
and (0,0). The unit direction vector is again taken as d = (cos a, sin a), and angles
a = {0", 18°,36°,54°,72°, 90°} are considered. Figure 4.4 shows the same results but
for a quadratic curved element with mid-node at (0, 0) and end-nodes at (— 1, —0.2) and
(1,0.2). Note that £ is the element local coordinate. When the collocation point is
relatively far from the element, the integrand varies smoothly. When the collocation
point is relatively near the element, the integrand has a smooth but abrupt step for an-
gles less than approximately 45°, and a peak for angles greater than approximately 45°.
When the element contains the collocation point, a discontinuity is present in the inte-
grand. However, the integrand is very smooth at both sides of the discontinuity. In the
case a = 90° for a straight element, the discontinuity disappears and the integrand is
zero. When the curved element is considered, the discontinuity becomes a kink point
(discontinuous derivative) and the integrand is zero at it.

Figure 4.5 shows r |, r,, 1/r’ and some combinations of them for a straight element
similar to that of Figure 4.3, and different minimum distances r,,;, between element
and collocation points. It is observed that the behaviour of r, (¢ = 90°) is similar to
1/r, except for the sign. The behaviour of r; (&« = 0°) is very different from 1/r because
at & = 0 it goes to zero, and it has a stronger variation around that zone. A similar
behaviour is observed between r ,/r and 1/r*, except again for the sign. In the case of
r/r, two sharp peaks are present at both sides of £ = 0, where the function is zero.

Components of the unit normal vector at the observation point: #,. It is bounded inside
[—1, 1], and it is continuous on a given element. For Lagrange elements of order p, it
is generally the quotient of a polynomial of order p — 1 (line and triangular elements)
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element with end-nodes at (—1,0) and (1, 0).

or 2p— 1 (quadrilateral elements) and the square root of a polynomial of order 2(p — 1)
(line and triangular elements) or 2(2p — 1) (quadrilateral elements). Polynomials are
in terms of reference coordinates. Nonetheless, if a line element is straight or a surface
element is planar, n, is simply constant.

Components of the unit normal vector at the collocation point: nL. Itis merely a constant
for a given collocation point.

Distance derivative with respect to n: dr/on. This is a particular case of the first case stud-
ied, where the direction d is now the unit normal at the observation point n:

L —Fon=r, 4.9)

Therefore, it behaves always in a very similar fashion as the case ¢ = 90° shown in
Figures 4.3 and 4.4. When the element contains the collocation point, one important
property is dr/on = O(r), and thus lim,_, dr/dn = 0.

Distance derivative with respect to n': dr/on'. Thisis a particular case of the first case stud-
ied, where the direction d is now the unit normal at the collocation point n':

or o
_— = —-Ir -n
ont

and the negative sign is due to differentiation with respect to the coordinates of the
collocation point. It behaves in a similar fashion as the case ¢ = 90° only when the
element contains the collocation point, because n'is in fact associated with the element.
However, for collocation points outside the element, n' can have any direction a.

s (4.10)

JJ

When the element contains the collocation point, one important property to keep in
mind is dr/on' = O(r), and hence lim,_, dr/dn' = 0.
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Scalar product between n and n': n-n'. Given that nis continuous within an element, and
n'is a constant vector, this scalar product is also continuous. When the element contains
the collocation point, one important property is lim,_,n-n' = 1.

As a summary, for given @ and material properties, I'* can be decomposed as:

Ngu Nr;,
F* = F@e ., Z Z [ F9. F rdd}( )] il x,n,xi,ni) (4.11)
a=1 | b=l
where:
[ .. re,p=12,...
Singular { —_—
1
F5* (r) = one of ; Plnr p=1,2... (4.12)
Regular P,p=12...
KR (ikr)/r",n =0,1,2
| ER | (=ikr) /¥, n=0,1,2, ...
Fa(gm} (x, n, xi, ni) = a product of { 1,r,n., ni., ﬁ, ﬁ n- ni} (4.13)
' " on on

Each fundamental solution is then a linear combination of products of F‘E;“d} and F;ge”}, which
are purely geometric. This systematic way of decomposing the fundamental solution is well
known [6], and allows to apply a divide and conquer strategy to the evaluation of BEM inte-
grals.

The presence of the collocation point in the integration domain or not leads to the main
division of BEM integrals: potentially singular integrals (x' € X) and regular integrals
(x' ¢ X). In the former case, only singular F;L“d} may lead to singular integrals, all other
combinations lead to regular integrals. In the latter case, although all integrals are regular,
their evaluation may be quite difficult when the collocation point is near the element. This is
due to the presence of abrupt steps and peaks in the integrand, as illustrated in Figures 4.3,
4.4 and 4.5.

Shape function (®)

The shape function @ commonly comes from a Lagrange basis ¢ (E), thus it is often a poly-
nomial function. When dealing with singular integrals, it may be absent, or transformed into
one of the following forms appearing after performing the regularisation:

P(2)=¢(2)-9¢ (=) (4.14)
?(2) =6 (5) -6 (5) - 64 () (5~ %) @15

where Z' is the position of the collocation point in the reference coordinates, and ¢ k=
d¢p/ox, is the tangential gradient. In the former case, @ remains as a polynomial since ¢ ( )
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is a constant. In the latter case, it also remains as a polynomial since ¢, (Ei) and xik are
constants and x, is obtained from a Lagrange interpolation.

In the case of integrals arising in Geometric Sensitivity BEM, & consists of the product
between a shape function coming from field variable interpolation, and a shape function com-
ing from design velocity interpolation or its gradient. Therefore, high-order polynomials and
also rational polynomial functions can also be present.

Jacobian (J)

The Jacobian J represents the relationship between infinitesimal lengths, areas or volumes in
the transformation 7, from a reference space =' to the real space x (T, : = — x). Elements
must be valid, i.e. min (J) > 0, and preferably of good quality, i.e. J approximately constant.
The Jacobian of boundary elements comes from the transformation 7',: R™! - R™

ox

n=2:dl'=Jdé J=|—|=|T| (4.16a)

ox _ ox
RN X A
0§, 0d&
The Jacobian of a line element embedded in a three-dimensional ambient space (7,: R — R*)

follows also Equation (4.16a). The Jacobian of domain elements comes from the transforma-
tionT,: R" — R™

n=3:dl=JddE, T = =|T, x T,| = IN| (4.16b)

n=2: dQ = J d&dg, (4.17a)

n=3: dQ = J d&,d&,dg, (4.17b)

which is the usual determinant of the Jacobian matrix J = det (J), where J;; = 9dx,/dE;,
i,j = 1,...,n. For Lagrange boundary elements, J is the square root of a polynomial of
order 2(p — 1) (line elements), 2(2p — 2) (triangular elements) or 2(2p — 1) (quadrilateral
elements), where p is the order of the geometric interpolation. When a line element is straight
(constant direction of the tangent vector) or a surface element is planar (constant direction of
the normal vector), it reduces to a polynomial of order p— 1 (line elements), 2p—2 (triangular
elements) or 2p — 1 (quadrilateral elements). This polynomial can further reduce its order
depending on the location of the higher-order nodes within the line or plane. For Lagrange
domain elements, J is a polynomial of order 2p—2 (triangular elements), 2p— 1 (quadrilateral
elements), 3p — 3 (tetrahedral elements), or 3p — 1 (hexahedral elements).

4.3 Evaluation of BEM integrals

BEM integrals as those represented by Equation (4.1) can be evaluated analytically only in
certain cases, usually for planar and low-order elements, and simple fundamental solutions,
see e.g. [140-142]. Integrals associated with free-terms for non-smooth points can also be
evaluated analytically for typical fundamental solutions [79, 80]. Nonetheless, most of BEM
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integrals are generally evaluated by numerical integration [143]. Before performing the nu-
merical integration, some analytical transformation (change of variables, integration by parts)
may be applied in order facilitate the computation. The number of developed techniques for
handling BEM integrals is quite large, and brief reviews are given in later sections for the type
of integrals managed in this work. In this section, some general aspects regarding numerical
integration are described.

When facing the numerical evaluation of an integral, the first question that arises is what
method is able to approximate the integral with a given prescribed error and a reasonable
computational cost. In this sense, Gaussian quadratures are commonly used due to its ef-
ficiency in most cases [143, 144], and the BEM is not an exception [6]. One-dimensional
Gaussian quadratures are directly applied to line integrals after possibly performing a linear
coordinate transformation to a normalised coordinate, typically ina [0, 1] or [—1, 1] domain.
For surface integrals, a Gaussian quadrature product rule can be used for both quadrilateral
and triangular elements. For triangular domains, besides the well-known low-order sym-
metric quadrature rules used in finite elements [145-147], there exists high-order Gaussian
quadrature rules [148, 149]. These are more appropriate than product rules since integration
points are symmeftrically distributed over the triangle, and the number of points is consid-
erably lower. Wandzura [149] obtained rules' up to order 30, all with positive weights and
interior integration points, unlike older rules of Dunavant [148].

The second question that arises is what quadrature order and/or integration domain subdi-
vision are required. To answer this question one can explore two main possibilities: automatic
integrator algorithms with a posteriori local or global error estimators, or adaptive algorithms
with a priori error estimators based on a study of the integral. Clearly, the former is expensive
since much more integrand evaluations than strictly needed are necessary in order to obtain
an integral approximation and an error estimation. It should only be used in general-purpose
environments where a wide spectrum of integrals are expected. When the integral class is
known beforehand, and it is possible to obtain an error estimator, the latter should be used.
This is the case of BEM integrals, where, in addition to that, a large number of them have to
be evaluated. A priori error estimators allow a prediction of the required quadrature order,
which leads to a reliable and efficient evaluation of the integrals. The more accurate and
adaptive the error estimator is, the less quadrature points need to be evaluated. Nonetheless,
it does not directly lead to computational savings as it also depends on the ratio between error
estimator and quadrature point evaluation costs.

An analytical upper bound of the error of Gauss—Legendre quadratures may be obtained
from Stroud and Secrest’s book [144]. For one-dimensional integrals, the absolute error E is
bounded by:

d2Nf

dm2N

L% e
BN@QN)!' T ©

(4.18)

| N
E= / fm dn—Zf(n”‘)) w®| <eH, e
-1 k=1

In the paper [ 149] only some quadratures are shown. We would like to thank Stephen Wandzura for pro-
viding us with several scripts for a symbolic computation program which were used to build all quadrature rules
from order | to order 30.
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where #'* and w'™® are respectively the k-th quadrature point and weight of the quadrature
rule with N points. For two-dimensional integrals:

Ny N, (k
‘// ’?p’?v dn,dn, — Z Zf( (k} ))w Dyptk)

ky=1 k=1

<22€H
j=1

4 azNj
€ R T H,; Nf
2% (2N) ! on

=
=00
J

(4.19)

where 7%/, w"*”, k and N; correspond to the quadrature rule applied to the j-th dimension.
These inequalities are able to show the relationship between error, number of quadrature
points and integrand. Despite leading to useful error estimators, these are often very conser-
vative and quite complex since they require high-order derivatives. Furthermore, they usu-
ally are obtained as E = E (N, integrand parameters) functions rather than as more practical
N = N(E,integrand parameters) functions. Within the BEM context, these facts can be ob-
served in many works, see e.g. [150-152]. Therefore, comprehensive numerical experiments
with curve fitting can also be used in order to provide these estimators.

From the description of BEM integrals given in Section 4.2, itis concluded that integrands
contain linear combinations of products of several rational polynomial and radical functions.
That means that a purely analytical approach for the study of numerical integration errors of
the whole integral is quite difficult. Fortunately, focusing only in the most problematic terms,
particularly those that contain radial functions Fi;ﬂd) of singular nature (Inr, 1/r"), is often
enough to provide good answers. These terms require to consider two different situations
for evaluating the integral: the collocation point is present in the integration domain, and the
collocation point is outside the integration domain.

If the element contains the collocation point (x' € X), integrals may be singular. In any
case, for these integrals it must be guaranteed that no integration point is located at the col-
location point. This can be assured by cutting the integration domain at the collocation point
when Gaussian quadratures are used. Singular integrals can be classified into weakly singu-
lar (integrable in the Riemann sense), strongly singular (integrable in the Cauchy Principal
Value), hypersingular (integrable in the Hadamard Finite Part) or supersingular [153]. This
classification depends on the singularity order @ (s (r)), where s is a function of the distance r
between the collocation point and any element point, and the dimension m of the integration
domain. In the context of the BEM, one can find functions s(r) of thetype s = Inrors = r™".
For the case s = Inr, integrals are weakly singular irrespective of the dimension of the in-
tegration domain. For the case s = r™", integrals are classified according to Table 4.1. In
this work, however, only weakly singular integrals are numerically treated since strongly sin-
gular and hypersingular integrals are transformed into regular and weakly singular integrals.
As Riemann integrals, weakly singular integrals can be evaluated by any classical numerical
integration scheme. Although not strictly needed, additional transformations or specialised
quadratures should be used in order to reduce the required number of integration points.

If the element does not contain the collocation point (x' & X), integrals are regular. In
principle, plain Gaussian quadratures are able to evaluate these integrals. However, a costly
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Condition Type of integral

n<0 regular
0<n<m weaklysingular
n=m strongly singular

n=m+1 hypersingular
n>m+1 supersingular

Table 4.1: Types of integrals of dimension mand Y ~ @ (r™") [153-155]

and even prohibitive quadrature order would be needed when the collocation point is near the
element, say 0 < min (r)/diameter (X ) < 1, and hence they are generally referred as nearly-
or quasi-singular integrals. In order to keep a moderate computational cost, additional treat-
ment is required for this situation. When min (r) /diameter (X) > 1, there still is some quadra-
ture order dependency with respect to r, but no further treatment is needed. Depending on the
element order and curvature, shape function and Jacobian may instead determine the quadra-
ture order required for these integrals. The numerical evaluation of quasi-singular integrals
by using subdivision with quadrature order selection methods [150, 151] (hp strategy), and
cubic polynomial (Telles) or sinh non-linear coordinate transformation methods [156—158]
(peak smoothing strategy) have been proposed. Granados and Gallego [159] developed a dif-
ferent technique based on a regularisation in the complex plane. In this work, we use curves
like those obtained by Jun et al. [151] but for the Telles’ transformation, and then we apply a
recursive algorithm based on a uniform refinement at each level when the required order of
quadrature is not available.

Radial functions Fé:‘d] of regular nature always lead to regular integrals. When considered

together with Fégem, shape functions and Jacobian, they are of second importance. Their
only difficulty is that terms like those of Equations (4.5d) and (4.5e) are oscillatory with
wavelengths related to medium properties and frequency. However, given that the maximum
size of elements must be chosen according to the element order and wavelengths, i.e. at
least six linear or three quadratic elements per wavelength [160], these regular parts can be
considered within the element as polynomials of lower order than element order.

4.4 Integral of the Jacobian

In this section, the numerical evaluation of the integral of the Jacobian J (Tg 12 = X)is
studied:

Lm:/ dX:/J’dE (4.20)
X =

This elementary integral gives the size (length, area or volume) of an element, and its nu-
merical evaluation does not have any particular difficulty. However, its study is interesting
since the Jacobian J is always present in the integrand. The Jacobian may be the leading
component of the integrand together with the shape function when the fundamental solution
is smooth (min (#) /diameter (X) > 1) and the element has some distortion. This can also
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be the case in weakly singular and quasi-singular integrals when a transformation or quadra-
ture which completely cancels out the singularity is used. Another cases are those regular
integrals arising when the collocation point is in the integration domain.

The aim is obtaining simple formulas for the estimation of the required quadrature order
as a function of the desired relative error. Some alternatives to such formula would be obtain-
ing a rigorous error bound [143, 144], or using an iterative numerical integration procedure.
Because of their costs, results should be obtained at a pre-processing stage and stored for
later usage. The formulas, however, can be inexpensively used inside monolithic integration
procedures. We have only been able to obtain a reliable formula for quadratic line elements,
which can also be used for higher-order line elements. Nevertheless, the main ideas developed
in this case should be useful for obtaining similar formulas for other elements.

The Jacobian is the square root of a polynomial when the element has a lower dimension
than the ambient space, which is the case of boundary elements. The Jacobian is a simple
polynomial when the dimension of the element and the dimension of the ambient space are
equal, and also when, although dimensions are not equal, the element is planar. In the latter
case, by the very definition of Gaussian quadratures, the integral can be integrated exactly
by a quadrature rule of equal order than the polynomial. In the former case, however, an
appropriate quadrature rule achieving the desired error should be chosen. It is intuitive to
state that it is related to the deviation of the curved element from the planar configuration.

In order to assess the effect of such deviation, a numerical experiment using a quadratic
line element with end-nodes located at (—1/2,0) and (//2,0), and mid-node located at (0, s,)
is considered. A dimensionless measure of the deviation can be defined as ¢ = s/l, where
[ is the distance between end-nodes and s = s, is the distance between the mid-node and
the mid-point between end-nodes. For a set of values of relative error € and deviation ¢, the
required number of integration points (Gauss-Legendre quadrature) for calculating I;,. has
been obtained. Figure 4.6a shows the obtained results together with the following estimation:

N(e,¢) = nint [(0.7 — 0.25log,y€) — (5 +4log,g€) c] (4.21)

which is valid for ¢ € [0,1/2] and € € [107°,107%]. Figure 4.6a shows that a fast change
occurs in N between ¢ = 0 and ¢ = 0.1, especially for the lowest errors. Equation (4.21)
provides a conservative estimation in that range and does not converge to the theoretical N at
¢ = 0. Therefore, the particular case of a straight element should be handled separately. For a
more general configuration with the mid-node located at (s, , 5,), and defining s = (s7 +53)"/*,
Equation (4.21) still provides a very good estimation when |s,| < /6. Figure 4.6b shows
a comparison between numerical experiments and Equation (4.21) where the mid-node is
located at (//6, s,) and s = ((1/6)* + .s*%)”z. The fast change occurs now near ¢ = 1/6, and
it is more abrupt than before, showing that the curvature produced by mid-nodes located far
from the mid-length point is more critical from the integration point of view. For locations
of the mid-node nearer to the quarter point, i.e. the well-known point where the element
degenerates, the formula considerably underestimates the required N. Thus, we propose the
following predictive formula:
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(a) Mid-node at (0, 5,) and ¢ = s,/ (b) Mid-node at (I/6, s,) and ¢ = ((1/6)* + s3)"/1

Figure 4.6: Comparison between numerical experiment results (solid lines) and estimation
provided by Equation (4.21) (dashed lines)

3)
S=X(3}_x(|);x(2) 1=x?®_x® c/ﬁ\"J
(1) ; (2)
x| N
Rl €=7 domain of validity of (3) ‘/
1, p=0
NEP-O=9 int [07-025logge) — (5+4logpe) c]. p>0,c< §+ é (4.22)

where x'" and x® are the position vectors of end-nodes, x® the position vector of the mid-
node, and it is valid for e € [107"°,1073].

This formula virtually covers all quadratic line elements that may be encountered in a
mesh. It can obviously be used for a subdivision [5(”‘5,5‘2)'5] of an element by using
x(EV5), x(£975) and x((EV 75 + £@75)/2) instead of respectively x, x® and x©. By using
an appropriate subdivision strategy, the required N for higher-order line elements can also
be estimated.

When the curvature radius of an element is approximately constant, s represents the sagitta
and / the chord length of an arc. In that situation, the ratio s/I* = ¢/l is approximately constant
for any subdivision of the element, and p ~ 1. The required N for a subdivision can be
estimated in that case as:

S

A
N(e,c, A% = int [(0.7 — 0.25 log,,€) — (5 + 4log,, e) Téc ,c < (4.23)

1
2
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where Aés = 5(2}'5 - 5“)'5, and ¢ are obtained from the parent element, i.e. by using xV,
x'% and x**’. This assumption avoids obtaining x(&V75), x(£*~%) and x((£"5 + &@75)/2) for
each subdivision.

4.5 Weakly singular integrals

Weakly singular integrals are those that despite containing a singularity, the integral can be
understood in the Riemann sense, i.e. the integrand is absolutely integrable. As previously
stated, any standard numerical integration scheme is able to perform the evaluation as long
as the integrand at the collocation point is not evaluated. A coordinate transformation that
smooths out the weak singularity is highly recommended in order to reduce the number of
integration points. This is done by finding a transformation whose Jacobian is at least null at
the weak singularity. An optimal coordinate transformation would be such that the Jacobian
completely cancels out the singularity behaviour all over the integration domain. Another
option is using specialised quadratures which somehow include the singularity as a weighting
function. It is a less flexible but more straightforward approach. Different strategies work
better for line integrals (weak singularity Inr), for surface integrals (weak singularities Inr
or 1/r), and for volume integrals (weak singularities 1/r or 1/¢%).

Coordinate transformations are performed over subdivisions of the original integration
domain. Within each subdivision, the weak singularity is located at one of the two extremes
of the subdivision (in line integrals) or at a vertex of the subdivision (in surface and volume
integrals). By doing so, the integrand is never evaluated at the collocation point. There are
mainly three families of coordinate transformations that are used:

One-dimensional non-linear transformations In this family, one can include Telles’ cu-
bic polynomial transformation [156, 161], sigmoidal transformation [157] and many
others [162]. These transformations are able to produce a null Jacobian at the colloca-
tion point, and thus are effective for weakly singular integrals. One of the advantages
of these transformations is its versatility, as they can be applied to a wide variety of
situations including integrals of any dimension.

Degenerated mapping The idea is using a coordinate mapping with some points at locations
where the resulting Jacobian is null at the collocation point. The main idea behind this
transformation is similar to that of well-known quarter-point quadratic elements pro-
posed by Barsoum [163], where mid-nodes are moved so that the resulting Jacobian
becomes of order \/; In the present case, however, the degeneration is produced by
locating two or more vertices (corner nodes) at the same position. Duffy [164] probably
was the first using such an idea for evaluating weakly singular volume integrals over
pyramids or cubes in a purely mathematical context. Li et al. [165] proposed a simi-
lar technique for surface and volume integrals arising in the BEM, which is known as
triangle/tetrahedron polar coordinates. It consists in mapping a quadrilateral/hexahe-
dron into a degenerated quadrilateral/hexahedron with two/four of the vertices located
at the collocation point, in such a way that it resembles a triangle/tetrahedron. The re-
sulting Jacobian is null at the collocation point, and varies linearly/quadratically along
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rays from the collocation point, and hence smoothing out the weak singularity in sur-
face/volume integrals. The main advantages of this transformation are its simplicity
and effectiveness.

Polar/spherical coordinate transformations This family of transformations uses a polar/-
spherical coordinate transformation centred at the collocation point for managing sur-
face/volume weakly singular integrals. The basic polar/spherical transformation pro-
duces a null Jacobian at the collocation point, which is besides linear/quadratic with
respect to the radial coordinate in the reference space. It is the most natural approach as
it incorporates the polar/spherical nature of fundamental solutions. However, the trans-
formation from these coordinates to normalised coordinates, where Gaussian quadra-
tures are applied, introduces new difficulties as the Jacobian has a quasi-singularity
when the collocation point is near edges/faces. Fortunately, there exists a transfor-
mation proposed by Khayat et al. [138] which completely cancels out it for surface
integrals.

Coordinate transformations are probably the most flexible and powerful way of evaluating
these integrals. As it will be seen later, in order to produce such integrands more than one
are usually required.

There are many specialised quadratures for managing weakly singular integrals. These
methods provide algorithms for the calculation of quadrature points and weights and/or di-
rectly give tables of quadrature rules for some assumed weighting function. Anderson [166]
contributed with tables of quadrature rules for evaluating integrals of the type — fnl In(x) f (x) dx,
which is the most common type of one-dimensional weakly singular integral encountered
in BEM. Crow [167] proposed a quadrature scheme for the more general integrals of the
type fnl [a+bIn(x)] f (x) dx, where a and b are polynomials. Following the same idea,
Smith [168] obtained ad hoc quadratures for logarithmic singularities within isoparamet-
ric elements. For two-dimensional weakly singular integrals with 1/r kernels, Cristescu
and Laubignac [169] offered a direct Gaussian scheme for integrating over triangular and
quadrilateral domains. Schwab and Wendland [170] presented a comprehensive paper where
they proposed and discussed several methods for the evaluation of weakly singular as well as
strongly and hypersingular integrals, including error estimation.

4.5.1 Line integrals

Weakly singular line integrals of logarithmic type are generally encountered in the SBIE as
well as in the HBIE for two-dimensional problems. Taking into account Equation (4.11), this
type of integrals appear as:

1
1= / FOF 1n () FEp de (4.24)
e
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where a reference space ¢ € [—1, 1] is assumed. Since Fa(gem and ¢ may appear in a number
of different forms, it is useful to segregate the evaluation of the weakly singular integral as:

I I e I I

I, = F©9 & [ / In () [FE“‘”@ - (Fe0) I J dg+ (FE0) / In(r)J dgl
=1 -1

(4.25)

where (F;ge“}@)l = lim,_, (Ffem@). Now, the first integral is regular, and the weak singu-

larity is concentrated in the second one. In order to evaluate the weakly singular integral, the
original integration domain is cut at the collocation point:

& 1 2 1
S 2/ In(r)J d‘f"‘/ In(r)J d& = Z/ In(r)JJs, d&" = 1, s, +1),, 5o (4.26)
s éi d=1 0

where Jy, = d&/d&’, and &' is the reference coordinate &' € [0, 1] of each subdivision: for
d = 1 the transformation is & = —1 4+ (1 + £)& , and for d = 2 the transformation is
E=E 4 (1—EYE. In this form, the weak singularity is always located at an extreme of each
integration domain.

The direct integration of these weakly singular integrals using Gauss—Legendre quadra-
tures is very ineflicient since the convergence is very slow. The two main ways of appropri-
ately dealing with it are using a non-linear transformation [156—158] which smooth out the
singularity, or using specialised Gaussian quadratures [166—168] which include a logarithmic
weighting function. Despite all these methods are powerful, they have their own advantages
and disadvantages in terms of analytical effort, efficiency and availability. Non-linear trans-
formations do not require to modify the integrand, and since simple Gauss—Legendre quadra-
ture are used, high-order quadrature rules are available. Gauss—Anderson quadrature [166]
need an expansion of r in terms of the quadrature reference coordinate in order to isolate
and remove the weighting function from the integrand [171]. High-order Gauss—Anderson
quadrature rules are available from several sources [6, 144,172, 173]. Gauss—Crow quadra-
ture [167] does not require isolating the weighting function, but unfortunately only quadrature
rules of low-order (up to 7 points quadrature) are available since obtaining them is problem-
atic. The quadrature proposed by Smith [168] gives a further step by establishing single
quadrature rules for several positions of the collocation point for quadratic elements. It in-
herits the difficulty of obtaining high-order quadrature rules, but it is the most efficient as
it is able to evaluate a set of integrals with the position of the collocation point at different
locations with the same quadrature rule. All these specialised quadratures deal with the loga-
rithmic singularity in an optimal way while non-linear transformations do it in a approximate
way.

In order to illustrate the efficiency of some of the methods described above, the required
number of integration points N for evaluating I, , ¢, with a prescribed relative error ¢ =
|I|';“r"15|f]|':£_5| — 1| is calculated. The reference value of each integral II’:LSI is obtained
using a Gauss—Anderson quadrature of 32 points. Three different integration domains defined
by a quadratic element are considered: a straight element, a curved element along a quarter
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Figure 4.7: Number of integration points N required for integrating /,,, g, with a prescribed
relative error e

of a circumference, and a curved element along a half of a circumference. The location of
the collocation point in the reference space & varies from —1 to 1. Figure 4.7 depicts the
results for several relative errors ¢ = {107,107° 107"}. It shows the ineflicacy of Gauss-
Legendre quadratures for dealing with this type of integral. Telles’ transformation is effective
in reducing the number of integration points, but only when moderate errors are demanded.
The two specialised quadratures Gauss—Anderson and Gauss—Crow are the best methods for
obtaining accurate evaluations, being Gauss—Anderson slightly better. However, in the latter
case it must be noticed that the number of function evaluations are greater since I, , g, is
further split into a weakly singular part evaluated using the Gauss—Anderson quadrature, and a
regular part evaluated using a Gauss-Legendre quadrature. Gauss—Crow quadrature does not
need this splitting process, but the available quadrature is limited up to a 7 integration points
rule. The complete cancellation of the weak singularity provided by the Gauss—Anderson
quadrature is confirmed by observing that N is similar to that obtained by Equation (4.23),
which is the N required by the integral of the Jacobian. In this work, the Gauss—Anderson
quadrature is used due to its robustness, efficiency and the availability of high-order rules.
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4.5.2 Surface integrals

Weakly singular surface integrals contain singularities of order 1/r, and they appear in two-
dimensional problems (in body load elements) and three-dimensional problems (in boundary
elements and surface loads). Unlike weakly singular line integrals, they appear in a number
of different forms. For example, up to five different integrals appear in the three-dimensional
potential problem:

I = /E %du dé, dé, (4.272)
7 /:rl%w dz, d, (4.27b)
L= [ 224 a5 @4270)
7 e /_ %g—;;)—nrdu de, dg, (4.27d)
= /_ “;_,,“i (b= @' — ¢i,r,) J d&,de, (4.27¢)

where integrals I,, I; and I, become null for a planar element since dr/dn = 0 and dr/dn’' =
0. In the elastic and poroelastic cases, a much greater number of different weakly singular
integrals appear, where numerators contain several factors of the type n,, nL, r ;. or/dn and
drlon'.

As in the case of weakly singular line integrals, Gauss-Legendre quadratures or other
numerical integration schemes for regular integrals may be used to evaluate these integrals,
but they are extremely inefficient. One-dimensional non-linear transformations, for example
Telles’ transformation [ 156, 161], can be used for each direction, which improves the perfor-
mance. However, there are much better ways of dealing with them. The two main families
of efficient methods are the degenerated mapping [165] (also known as triangle polar co-
ordinates) and the polar coordinates. In their basic form, both methods perform similarly.
However, polar coordinates can easily be improved after some transformations, leading to a
very robust integration technique.

4.5.2.1 Degenerated mapping

The degenerated mapping for surface integrals is a straightforward technique, but repeated
here using a different convention from the original paper [165] for the sake of completeness
and later comparison. It requires a preliminary stage where, depending on the location of
the collocation point, the element is subdivided into a number of triangular regions in the
reference space &£. Each triangular subdivision is mapped as a degenerated bilinear quadri-
lateral element where nodes 3 and 4 of the quadrilateral are located at the collocation point,
ie. £375 = g®-5¢ — £ and nodes 1 and 2 are located at the boundary of the element,
see Figure 4.8. The minimal and usual subdivision pattern takes up to three subdivisions for
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4 L1 : 3: (1, 1)

4: (0, 1) 3: (1, 1)

g = g5 = g (2)-Sd
< < Ts,
% £ &
1: (=1,-=1) 2: (1,=1) 1: (0,0) 2: (1,0)
Element reference space Subdivision reference space

Figure 4.8: Degenerated mapping technique

triangular elements and four subdivisions for quadrilateral elements. From the adaptability
point of view, it will be demonstrated later that a better subdivision pattern is obtained when
each triangular subdivision is further subdivided into two right-angle triangular regions, see
Figures 4.9 and 4.10. The contribution of each subdivision d is obtained by using two trans-
formations:

1. Transformation from the element reference space to the real space T, : & — x:

Nn
N Z R E) . x (4.28)
k=1

where ¢ are the geometric interpolation shape functions, and the Jacobian J is that of
Equation (4.17a) for a two-dimensional ambient space or Equation (4.16b) for a three-
dimensional ambient space.

2. Transformation from the subdivision reference space to the element reference space

Ty 58—
E=0E+ (1-8) [(1-¢) &V +¢,£@-%] (4.29)
where the Jacobian Jg, = |9(&;, &)/0(¢,, &)| is:
o= (87 -6 (- 8) - (£ -8 ) @ -d) @0

The Jacobian is a plane in the element reference space, and is null at the collocation
point. A Gauss—Legendre product rule of N, X N, points is used in the region n €
[0, 1] x [0, 1].

Therefore, for a weakly singular integrand f, the integral is evaluated as:

Ng N, N,

I =/de =Y X Y (6 G) g Ty (4.31)
X

d=1 k;=1 ky=1
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Collocation point Subdivision d
atelement & 'I §i2 Ng 1 2 3 4 5 6
Vertex | 1 0 2 T3 T4
Vertex 2 0 | 2 T5 Te
Vertex 3 | 0 2 TI T2
Edge 1-2  (0,1) 1—& 4 T3 T4 TS T6
Edge 2-3 0 ©, 1) 4 T5 T6 TI T2
Edge 3-1 (0,1) 0 4 T1I T2 T3 T4
Interior 01 @©O1-£) 6 TI T2 T3 T4 TS T6

(a) Subdivisions (triangular regions) to be integrated

‘:gl}-Sd §;I )=5d ‘552}—551 552)—50‘
TT 1 0 b 14+
™ ! +¢i—¢5 I —:‘5 +& 0 1
3 0 1 0 S+d
™ 0 H+& 0 0
TS 0 0 &+% 0
6 &+2 0 ! 0 3 e 0
(b) Vertices of triangular regions except .;’i (c) Subdivision pattern of the element

Figure 4.9: Subdivision pattern of triangular elements. The minimal subdivision pattern is
obtained as MTJ. = sz._I U sz, j=1,2,3.

4.5.2.2 Basic polar transformation

The transformation to polar coordinates is the most natural approach since it incorporates the
symmetric nature of fundamental solutions. Itis more involved than the degenerated mapping
technique, but it is considerably more powerful, as it will be seen in the following.

As in the previous methodology, a subdivision pattern of the element into triangular re-
gions is required, see Figures 4.9 and 4.10. It can be formulated in several ways, typically
directly in the element reference space &, i.e. (§,,&,) = (é} ] §i2) +p-(cos @, sin #). In that case,
it is necessary to handle a piece-wise definition of the (p, #) domain, with different equations
between edges of triangular and quadrilateral elements. A more systematic approach can
be achieved by rotating and scaling each triangular region such that the opposite side of the
collocation point is horizontal and normalised, and the collocation point has positive vertical
coordinate. After this simple linear transformation, the remaining transformations for each
subdivision are similar, and thus eases later developments. Figure 4.11 shows the complete
transformation. The contribution of each subdivision d is obtained after five transformations:

1. Transformation from the element reference space to the real space T, : & — x, which
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Collocation point

Subdivision d

atelement &) L Ny I 2 3 4 5 6 7 8
Vertex | -1 -1 2 T4 T5
Vertex 2 | -1 2 Te T7
Vertex 3 | 1 2 T8 TI
Vertex 4 -1 | 2 T2 T3
Edge -2 (=1,1) -1 4 T4 TS5 Te T7
Edge 2-3 | -L1 4 Te T7 T8 TI
Edge 3-4 (-1,1) | 4 T8 TI T2 T3
Edge 4-1 | (—=1,1 4 T2 T3 T4 TS5
Interior (=L (-L1) 8 TI T2 T3 T4 T5 Te T7 T8
(a) Subdivisions (triangular regions) to be integrated
1)—Sd 1)-Sd 2)-Sd 2)-Sd
a7t g™t g g
Tl —_l -1 :’,"I -1
T2 . -1 1 -1
T3 1 -1 1 «:5
T4 1 .{,"'2 1 1
TS l_ 1 & 1
1
T6 & 1 -1 l.
T7 =1 1 =1 ::'2
T8 -1 .{,"'2 -1 -1 1 MTI1 2

(b) Vertices of triangular regions except fi (c) Subdivision pattern of the element

Figure 4.10: Subdivision pattern of quadrilateral elements. The minimal subdivision pattern
is obtained as MTj = sz_, UTZj,j =1,2,3,4.
is similar to the previous case.

2. Transformation from subdivision reference space to element reference space T, : { —

£

E=E+8%¢ (4.32a)

(D-Sd _ 4i  2(D-Sd _ i
S84 — ( ¢ . _§{ 512__ _‘52 ) (4.32b)

z(l) '%d_gz 5;}5:}_52
Ja =@ =& ™ -8 - @ - e T - &) (432¢)
3. Transformation from the subdivision space to subdivision reference space T, : n — {:
£=C¥(n-n) (4.33a)

1 (g5 = 1)yiS

C = L st id 4.33b
( 1 _nl Sa‘!r??2 Sd ( )
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)
4: (-1,1 3: (1:1
L - o3 D
()-Sd _ gi “_““‘* -
¢ ¢ @~ T, T,
c' : é(l)—Sd
1: (=1, -1) 2: (1,-1) 3:(0,0) 1:(1,0)
Element reference space Subdivision reference space
TRd
o' 0
_Sd
2r p
9{2)—Sd ‘/ Tpd
9(1)_Sd ——
T P
_—
1: (0,0) 2:(1,0)
Polar coordinates reference space Polar coordinates space Subdivision space

130

Figure 4.11: Basic polar transformation

where the Jacobian J, = |d(§,’l, &)lo(n, r;t)| is simply:

Jog = 1™ (4.34)

The location of the collocation point in # space, i.e. #'=3_ is such that the resulting
triangle is similar to that in the element reference space. This leads to:

. (gi _ é(])—sd) . (g(z)-Sd _é(l)—Sd)

1 "6{2}—59' _ g(”'Sdllz (4353)

sd {5(1)—5:1 _éi) % (5(2)—34 _ §i)
v [e@-s4 — gm-se|?

(4.35b)

Transformation from polar coordinates to subdivision coordinates Ty, : (p,8) — 7:

i pcosf
n=n +{ G } (4.36)

where the Jacobian Jp,, = |6(n] 1) 9(p, 6‘)| is:
Jpg=p (4.37)
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The Jacobian is proportional to the radial coordinate p in the reference space, and thus
cancels out the weak singularity very well. The domain of polar coordinates is (p, ) €
[0, ﬁSa‘] s [g(l}—Sd, 9(2)-55]’ soherp:

i=Sd

=0 (4.38a)
sin @
i—Sd
V=34 — r + arccos i (4.38b)
V 75) 2+ (%)
oz ??:_Sd

0@-54 = 21 — arccos (4.38¢)

V= + (%)’

5. Transformation from polar coordinates reference space to polar coordinates space 1, :
(0',0") = (p,0):

0 =Sd 0 '
{ g }:{ 9()-Sd }‘l‘ ( pO p-Sd _ g(1)-Sd ){ g; } (4.39)

where the Jacobian J, = |d(p, 8)/d(p’,08')] is:

i-Sd

JUd s ﬁSd (9(2}-50‘ _ g(l}-Sa‘) = _:;W (9(2)-5@‘ _ 9(”'5“’) (440)
A Gauss-Legendre product rule of N, X N, points is used in the region (p',0") €
[0, 1] x [0, 1]. The normalisation of p introduces a peak-like Jacobian with respect to §
due to the term 1/sin @. It becomes problematic when the triangular region is flat, i.e.
when niz'Sd < 1 and thus 8% ~ 7 and/or 0P34 ~ 27. Quasi-singularities occur at
those extremes. If 8 — 03¢ ~ 7, then 1/sinf ~ 1/(x — 6). If 8 — 8PS ~ 27,
then 1/sin@ = 1/(8 — 2x). Therefore, they are strong quasi-singularities with respect
to the angular coordinate.

Since transformations 7%, and 7}, are linear, it is possible to directly combine both transfor-
mations into T}, and build a straightforward transformation Ty, : (p.0) — &:

— g sa ) pcosd
E=¢+R { i D } (4.41a)

(2) (1) 2) (1)
we- (478 88 ) @t
2 T = 1 7%l

5(2}—30‘ = é(l}—S‘d” (441{3)

JRd=p|
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which reduces the complete transformation to three transformations. Therefore, for a weakly
singular integrand f, the integral is evaluated as:

Ns N, N,

I = / de _ Z Z Z f (pr(kﬂ}’gr[kn}) o J - JRd . JUd . M,’(kf’} . L{,‘(k‘?} (4.42)
X

d=1k,=1k,=1

In this basic form, the polar transformation is not better than the degenerated mapping tech-
nique, as it will be seen in Section 4.5.2.5.

4.5.2.3 Polar transformation without the main angular strong quasi-singularity

The Jacobian Jy;, from Equation (4.40) induces a quasi-singularity in the basic polar trans-
formation when the collocation point is near an edge. There are many ways to mitigate it.
Partheymiiler et al. [174] proposed a self-adaptive hp strategy for the angular coordinate.
Other authors use some non-linear coordinate transformation, e.g. Hayami [175] used a pro-
posed angular transformation and Rong et al. [139] used a sigmoidal transformation. Khayat
et al. [138] proposed a transformation of the type In tan f(#) that produces Jacobians of the
type siné, cos 8 or (sinf +cos ). It seems that their work is unknown within the BEM com-
munity, except Rong et al. [139] who did not use it because “(...) our numerical experience
indicates a better overall performance by using sigmoidal transformation (...)”". However, it
seems unreasonable to us since there is no better way to deal with that term than cancelling
it analytically. Therefore, Khayat’s type of transformation is used in this work.

Based on the basic framework shown in Figure 4.11, it is necessary to deal only with
one kind of J;;, due to the use of transformations T, and T,-,. Otherwise, one would have
to find several Intan f(f) transformations, which are different for each edge of triangular
and quadrilateral elements. For the complete cancellation of the quasi-singularity, the last
transformation of the basic polar transformation should be replaced by the following two
transformations:

5. Transformation from altered polar coordinates to polar coordinates Ty, : (p,0) —

(p,0):
6 5 _ . i-Sd —
@ = & + 2 arctan exp P @ =n, " Intan > (4.43)
where the Jacobian J,, = 36/d4 is:
sind
Taa = =54 (4.44)
(b
and the domain @ € [9(”‘5"“, 9(2}‘5d] is:
} _ (1-sd _ _
g5 = 59 Intan 5 (4.45a)
. _ @-sd _ _
03¢ = 7> Intan (4.45b)

132 Coupled model of FE and BE for the dynamic analysis of buried shell structures



NUMERICAL TREATMENT OF BEM INTEGRALS 4

6. Transformation normalised polar coordinates to the altered polar coordinates T{,,, :
(0',0") = (p,0):

p '0 ﬁSd 0 p’
{ 0 }={ dh-sd }+( 0 §-sd _ j-sd ){ Y } (4.46)

where the Jacobian J,,, = |c3(p, 0)1o(p’, .9’)| is:
i~Sd

JUAd = ,an (9[2)—5‘&' _ g“}—Sd) = _ffng (9(2}—563 _ g(H—Sd) (44?)

A Gauss—Legendre product rule of NP X N, points is used in the region (p’,0’) €
[0,1] x [0, 1].

The complete cancellation of the quasi-singularity is obtained from the product of Jacobians
present in Equations (4.44) and (4.47). Then, the integral is evaluated as:

Ny N, N

] = / fdX = Z Z Z f (p’(kf’),g’(kﬂ)) 5 % JRQ‘ o JAd : JUAd ) L ke (4.48)
X

d=1 k,=1 ky=1
where the product of Jacobians introduced by the polar transformation:
JRd 1 JAa‘ ; JUAa‘ =p ”5(2)-50‘ _ é(l}—Sd" (g(E)—Sd _ g(l)—Sd) (449)

is now strictly proportional to p.

4.5.2.4 Polar transformation with ,° conformality at the collocation point

In the seminal works of Guiggiani et al. [75, 76] about CPV and HFP surface integrals, a
Taylor expansion of the distance between observation and collocation points with respect to
the radial coordinate is performed. They used this expansion to properly regularise these
integrals from the reference space, where a polar transformation is used. They observed that
in general any circular neighbourhood around the collocation point in the real space is an
ellipse in the reference space when r — (). Conversely, any circular neighbourhood around
the collocation point in the reference space is in general an ellipse in the real space. Therefore,
this expansion allows measuring the goodness of the mapping of polar coordinates from the
reference space to the real space. The expansion of the distance components r, = x, — xL at
the collocation point can be written as:

ax, \' 1/*x\' 5, 1/x\ . 1 (9%, i . 5
=(==%) p+= 2y (=) P+ (=) *+06 (s
% ( op ) #E5 ( 272 ) rre\or ) PG ) ) s

=p|A +Bp+Cp’ + Do’ + 0 ()]

where, following our usual convention, ((J)' indicates that [J is evaluated at the collocation
point. Assuming that polar coordinates are established at the reference space &, ie. & =
& + p(cos B, sin§)T, the first two terms of the expansion can be expressed as:

ox, \' ox, \' .
A, =|— ] cosO+ sin @ (4.51a)
J¢, s
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azxk | cos’ 0 azxk : g f)zxk | sin® @
B &= sin@ cos @ 4.51b
f ( déf ) > + (d§|d§2 sinf cos 0 + o2 > ( )

which contains trigonometric functions and tangent vectors (and higher-order derivatives)
with respect to the reference coordinates at the collocation point. Hence, the distance r =

ATty is:

o= p\/AkAk +2A,Bp+ (24,C, + B,B,) p* + 0 (p3) = pM (p,0) (4.52)

where the function M (p, @) is the key ingredient for measuring the quality of the mapping.
The first two terms under the square root are:

e () () oo () () o (3) () s 5
A = 3z, 32, cos™ 0 + 3, E sin~ @ + 3%, 3%, sinf cos (4.53a)

. ; _ : | |
iy (78 3 _dx [ 9%x ox, \' [ &*x o) :
AkBk=(_“") - 0&: 00:9_'_(_ ‘f) k sin900829+(—k) . :c S 520059
9§, 0y < 9&, 0,08, 3z, o2 >
—— - : i . : ; i - 3 9 i
e} () B g oxg\' [ o'x ax, \' [(*x,\ sin’
+( k) 1& sin @ cos 9+(_ k) h -fi sinzﬂcas€+( k) ,,k sin- @
05, 2 2 s} 0E10& 92, oz 5

(4.53b)

The limit of M (p,0) when p — 0is y/A, A,. Therefore, Equation (4.53a) indicates that
the shape of the neighbourhood in the limit p — 0 is an oblique ellipse, as already shown by

Guiggiani and Gigante [75]. Furthermore, when p — 0, elements with aspect ratios far from
1 produces \/A, A, = Ksinf or \/A, A, = Kcos#, and hence 1/r ~ 1/(pK sin®) or 1/r ~

1/(pK cos 8), where K is aconstant. Likewise, for skewed elements 1/r = 1/(pV/ K sin @ cos 8).
Therefore, as it happened with the Jacobian J;;,; of Equation (4.40), this is another source of
quasi-singularities when the collocation point is close to the edges of the element. If we
were able to make A, A, constant, a perfect cancellation of the 1/r weak singularity would be
achieved in the limit p — 0.

These facts were already identified by Hayami [175], and partially enforced by using the
polar coordinates over triangles obtained from the projection of the element. Despite produc-
ing only an approximately constant A, A, it is a very effective strategy. Rong et al. [139] pro-
posed a methodology for obtaining a rigorous constant A, A, for triangular elements. From
Equation (4.53a), it is straightforward to see that if the following conformality conditions are

met:
. ox, \' [0x,;\' dx, \' [ ox,\'
Condition I (equal length): e — ] = (4.54a)
0¢, 0¢, 0&, 0&,
Gondition I (orthiogomalit): [ Y (4.54b)
ondition II (orthogona : —_ = ;
g y 3¢, 9,

then:

P ox, \' c]xki_ ox, \' /ox, \' _
= () () - (G2) () —
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In order to enforce these, they make a linear transformation of the triangle in the reference
space & to another triangle in a parametric space #. One vertex of the triangle in the para-
metric space is chosen such that conformality conditions are met. This is a p° conformality,
i.e. conformality is guaranteed only at the collocation point. Depending on the actual ele-
ment geometry, approximate conformality is also present in certain neighbourhood around
the collocation point.

The proposed framework shown in Figure 4.11 lets us to easily generalise their method
also to quadrilateral elements. For each subdivision d, we have to calculate ni'Sd that fulfil
the conformality conditions:

Condition I (equal length): T/ T/ =T, - T) (4.56a)
Condition II (orthogonality): T T, =0 (4.56b)
where:
' 1 0¢ 0 _
= (9% 2 96 96 =8, 1k I=1,2 (4.57)
4 on; dé, d¢, on, 4

which leads to the following solution:

< é 2 &
o ap, (Tf.Tk) » b,b, (T; —Tk) o
iy 7 e —e——— W T = ——————= (?ﬁ ¢ ) (4.58)

where a; = 5(2}_5‘3’ ém_Sd and b, § 1) §' Therefore, the only modification that

J g
is necessary is the new conformahty position of 7~ “sd instead of that indicated by Equation

(4.35). In order to use the straightforward transformation Ty, : (p, 6) — &, instead of using
Equation (4.41), it is necessary to use the following:

: =§i+RSd{ x;z?;g } (4.59)
. 52)—5:3‘ _ En-sa [{l —??ide) (1)-Sd i 55’5( 2)-Sd é'] M._qd
R =1 orst  irsd i-8d\ £(1)-Sd | _i-Sd o(2)-Sd i—Sd (4.290)
é') _g') (1_??] )ég +’h gg §'> "'??
(1)-Sd @-Sd i 2)-Sd (1)-8d 4
(df -G =) - (¢ -8 T - 8)
Jra = p— T Sd I - (4.59¢)
M
For a weakly singular integrand f, the integral is evaluated as:
§ N NO
1 =/de 2 E Z F(p%,0" %) . T Joy - Tug - Jyng - 0 - 0 (4.60)
X =1 k,=1 ko=
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The resulting polar transformation is free from any source of quasi-singularities. Due to con-
formality at the collocation point, angles measured at that point in the » space are equal to
those measured in the physical space. Also, r and p becomes proportional as r — 0, which
guarantees a perfect cancellation of the weak singularity. Incidentally, approximate confor-
mality is also achieved in some neighbourhood around the collocation point, and, for mod-
erately curved elements, in the whole element. Thus, purely angular terms like r , becomes
approximately independent of p and resemble trigonometric functions of . This makes nu-
merical integration very insensitive to the aspect ratio and the skewness of elements.

4.5.2.5 A comparison between methodologies

The aim of this section is comparing the methodologies for evaluating weakly singular surface
integrals presented in previous sections:

DM Degenerated mapping.
PTB Basic polar transformation.
PTQ Polar transformation without the strong angular quasi-singularity.

PTC Polar transformation without the main angular strong quasi-singularity, and without
the angular quasi-singularity due to shape aspect ratio and skewness of elements (o°
conformality).

The comparison is made in terms of the number of integration points required along each co-
ordinate for achieving a desired relative error, which is assumed e = abs((I™™ — I"")/[™") =
107°. Reference solutions are calculated using a N, X N, = 32 X 32 quadrature rule, while
numerical solutions are limited up to rules of N, x N, = 30 X 30. According to Figures 4.8
and 4.11, the number of integration points NV, used by the degenerated mapping technique
assumes the role of N, of polar transformations, and similarly N, with respect to N,. Hence,
this is assumed in all graphs. Seven nine nodes quadratic quadrilaterals are considered in
the numerical experiment, see Table 4.2 and Figure 4.12. These elements allow studying the
influence of shape aspect ratio, skewness, curvature in the plane and spatial curvature. Four
different integrals A, B, C and D are considered:

IA=/ lJ dé,dé&, (4.61a)

s1”

IBz/ lq,f:u‘r d& dé, (4.61b)
s1 I

I =/ lr’lr,zqf)‘f d&,dé, (4.61c)
sp F

I —/ l@gb.! dé,dé (4.61d)

D= < 72 0n 1der -

which are all expressed in terms of the reference coordinates, but later solved using each one
of the four methodologies. These integrals are evaluated only over the first subdivision S1,
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Id Description N1 N2 N3 N4 N5 N6 N7 N8 N9
Sauare x,  0.000 1.000 1.000 0.000 0.500 1000 0500 0000 0.500
PRI | qx ) x,  0.000 0.000 1.000 1.000 0.000 0500 1.000 0500 0.500

x;  0.000 0.000 0.000 0.000 0.000 0000 0.000 0000 0.000
x, 0000 2.000 2.000 0.000 1.000 2000 1.000 0000 1.000

PR SCPEIC  0000 0000 1000 1000 0000 0500 1000 0500 0.500
: x; 0000 0000 0000 0000 0000 0000 0000 0.000 0.000
obfcee ™ 0000 1000 1707 0707 0500 1354 1207 0354 0854

poi OO x, 0000 0000 0707 0707 0000 0354 0707 0354 0354

x; 0000 0000 0000 0000 0000 0000 0000 0.000 0.000
obicue ™ 0000 2000 3414 L4l4 1000 2707 2414 0707 1707

po2 DM x, 0000 0000 0707 0707 0000 0354 0707 0354 0354
: x; 0000 0000 0000 0000 0000 0000 0000 0000 0.000
Stmight  x, 0000 1000 0750 0250 0500 0875 0500 0.125 0.500

PQR sides x, 0000 0250 1000 1250 0.125 0625 1125 0625 0.625
~1x 1 x; 0000 0000 0000 0000 0000 0000 0000 0.000 0.000
Curved x 0000 1000 0750 0250 0500 0938 0500 0068 0.500

PQC  sides x, 0000 0250 1000 1250 0068 0625 1198 0625 0.625
~1x 1 x; 0000 0000 0000 0000 0000 0000 0000 0000 0.000

x; 0.000 0707 0577 0000 0368 0686 0303 0.000 0367
QSS  Spherical x,  0.000 0000 0577 0707 0000 0244 0.674 0368 0.367

x; 1000 0707 0577 0707 0930 0686 0.674 0930 0.855

Table 4.2: Quadratic quadrilateral elements used in the numerical experiment

and for a set of collocation points located at a regular grid of 100 x 100 points in the interior
of the element & € [—0.999, 0.999] X [—0.999, 0.999]. Therefore, this numerical experiment
is a comprehensive testing of the capabilities of each methodology.

The first task is to choose the appropriate subdivision pattern which will later offer a reli-
able and efficient way of selecting the required quadrature rules. The subdivision pattern of
triangular and quadrilateral elements was shown in Figures 4.9 and 4.10, respectively. The
minimal subdivision pattern make use of the triangles MT,, with j = 1,2,3 for triangu-
lar elements and j = 1,2, 3,4 for quadrilateral elements. Each triangle MTJ. can be further
subdivided into two right-angle triangles T,, ; and T,;. For an arbitrary location of the col-
location point within the element, the minimal subdivision pattern produces a small set of
triangular regions of very different shapes. The subdivision pattern of right-angle triangles
has a bigger set of triangular regions, but all with that feature in common. For locations of
the collocation points near the corner of elements, two very unequal right-angle triangles are
produced, which indicates that a very different quadrature rule may be needed for the radial
coordinate of each right-angle triangle. Hence, the subdivision into right-angle triangles is
chosen.

In order to describe the type of graphs where the comparison is made, a full example is
shown in Figure 4.13. The integral I extended over the subdivision SI = T1 of the element
PQC is considered, and it is evaluated by using the basic polar transformation. Figure 4.13a
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Figure 4.12: Quadratic quadrilateral elements used in the numerical experiment. Blue lines
are &, and &, isolines.

shows two colour maps of the required N, and N, for each location of the collocation point
&' They reveal that the required N, mainly depends on the length of the hypotenuse h of
the triangle T1, and the required N, mainly depends on the angle A# of triangle T1 at the
collocation point. Both facts are reasonable since they are the maximum lengths of p and 0
paths measured in the reference space. Preferably, these lengths should be given in the real
space, which produces graphs more independent from shape aspect ratio and skewness of the
actual element. However, for the sake of comparison between all methodologies, the former
lengths are used in the present section. Figure 4.13b synthesises these maps as N, = N ,(A#8)
and NF = Np(h) filled curves between maximum and minimum values of the ordinate. They
clearly show the correlation in both cases. Note how N, = N,(Af) reflects the presence of
the quasi-singularity as A8 — x/2, which is intrinsic to the basic polar transformation due to
the Jacobian Jy, (Equation (4.40)).

Figure 4.14 shows the required N, when integrating the most simple integral I, for plane
elements with constant tangent vectors (PR1, PR2, PO1, PO2), and for all methodologies.
The required N, is 1 as the weak singularity is perfectly cancelled along the radial coordi-
nate in all methodologies, and hence the integrand does not depend on p. On the other hand,
there is dependence of N, with respect to A# for all methodologies, except for the PTC be-
cause it enforces a constant A, A, (Equation (4.53a)). In the particular case of the square
element, PTQ also has angular independence because A, A, is already constant. DM and
PTB present the strong quasi-singularity in all cases. PTQ presents the quasi-singularity due
to A, A,, which emerges only when the element has a shape aspect ratio different from 1 or
some skewness. The insensitivity of PTC methodology with respect to shape aspect ratio and
skewness can be seen in Figure 4.16, where p and @ isolines are drawn in the physical space.
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(a) Colour maps of required N, and Ny.
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(b) Filled curves Ny = Ny(A0) and N, = N (h) between their maximum and minimum

Figure 4.13: Required N, and N, for different locations of the collocation point & The
integral is I; extended over the subdivision S1 = T1 of element PQC, and evaluated by using
the basic polar transformation.

Figure 4.15 shows the required N, and N, when integrating the integral I, for elements
where the Jacobian is not constant (PQR, PQC and QSS). Figure 4.17 shows the mapping
of polar coordinates for planar elements PQR and PQC, where it can be seen that PTC is no
longer capable of producing a perfect mapping of polar coordinates to the physical space.
Results related to N, show that all methodologies are equally efficient when managing the
radial coordinate. N, = N (h) can be approximated by a linear function, which for all these
three elements are quite similar. The Jacobian of the planar elements PQR and PQC is a bi-
variate polynomial of degree 6 when expressed in terms of reference coordinates &,, &,. Once
the polar transformation is applied, it becomes a linear combination of terms p”sin” 8 cos® 8
where r + s = p and p < 6. Therefore, if the other terms of the integrand are ignored, the
required N, is 4 since p = 2N, — 1 for the Gauss-Legendre quadrature. The maximum of
N, = N (h) is approximately 6, which is greater than 4 but not too far from it. The Jaco-
bian of the spherical element QSS is the square root of a bivariate polynomial of degree 12,
which in general can not be integrated exactly by a Gauss-Legendre quadrature. However, re-
sults show that the required N, for this spherical element is close to that of planar elements.
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Figure 4.14: Required N, when integrating [, for plane elements with constant tangent vec-

tors (PR1, PR2, PO1, PO2). Required N, is | in all cases (constant Jacobian J).
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Figure 4.15: Required N, and N, when integrating I, for elements PQR, PQC and QSS
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(c) PTB or PTQ

Figure 4.16: Mapping of polar coordinates p and 6 to the physical space for elements PO1
(a)-(b) and PO2 (c)-(d) with collocation point & = (1/3, 1/3). Blue lines are £, and &, isolines,
and red lines are p and @ isolines.

Regarding the angular coordinate, PTC shows some dependence of N, with respect to Af
due to the loss of a perfect mapping of polar coordinates to the physical space. Unlike the
other methodologies, PTC shows a stable N, = Ny(A#) curve even when A8 — 90°. It is
remarkable that all methodologies have virtually the same efficiency for A8 < 60°.

Figures 4.18 and 4.19 show the required N, and N, when integrating the integral I, for all
elements and methodologies. The difference between I; with respect to 1, is the presence of
shape functions. In the case of nine node quadrilateral elements, shape functions are bivariate
polynomials of degree 4, which after the polar transformation lead to a linear combination
of terms p”sin" @cos* @ where r + s = pand p < 4. As explained before, the Jacobian
for planar elements is a linear combination of terms p” sin” @ cos®* @ where r + s = p and
p < 6. Therefore, if only the shape function is considered (elements with constant J), then
the required N, is 3. If both shape function and Jacobian are considered, then the required N,
is 6. As observed in Figure 4.19, the maximum of N, = N (h) is approximately 9 in all cases,
which is greater than 6 but not too far from it. For elements with constant J, the required N, is
no longer constant for the PTC methodology due to the presence of trigonometric functions.
For elements with non-constant J, the behaviour of N, = N,(A#) is similar to the integral
1, except that slopes are slightly higher due to the presence of trigonometric functions.

Figures 4.20 and 4.21 show the required N, and N, when integrating the integral I for
all elements and methodologies. The difference between I~ with respect to I is the presence
of distance gradient components r ;r ,, which are purely angular terms in the physical space.
Results show that in fact N, = N (h) curves for elements with a non-constant J remain

Instituto Universitario SIANI 141



4 NUMERICAL TREATMENT OF BEM INTEGRALS

‘é-'
/g

=

RS

%
,l

W
%

_;;{'Jrll
| Lo

INA ‘ 7
£ NS |

s

=
1-"-;_(’/
0

=%
5

(c) PTB or PTQ (d) PTC

Figure 4.17: Mapping of polar coordinates p and 6 to the physical space for elements PQR
(a)-(b) and PQC (c)-(d) with collocation point & = (1/3, 1/3). Blue lines are &, and &, isolines,
and red lines are p and @ isolines.

approximately equal. Obviously, N, remains equal to 3 for elements with constant J (not
shown in Figure 4.20 for brevity). On the other hand, N, = N,(A#) curves have a higher
slope. This is due to the additional factors r ;r,, which, considering only the linear terms of
expansions shown in Equations (4.52) and (4.50), can be expressed as a linear combination of
terms sin” @ cos® @ where r+ s = 2. This effect can be clearly observed by comparing Figure
4.20 and Figure 4.18 for elements with constant J. In the case of elements with non-constant
J, the effect is still present, but is less pronounced.

Figure 4.22 shows the required N, and N, when integrating the integral Iy, for the spher-
ical element QSS, which is the only with one where I, # 0. The difference between I, with
respect to the previous ones is that now the fundamental solution term contains dr/on. As
previously discussed, this term has the peculiarity that lim,__ , dr/dn = 0, and vanishes every-
where for planar elements. Taking into account that it can be expressed as dr/dn = (r/r) - n,
it becomes clear that is a smooth function for moderately curved elements. Results show that
N, and N, maintain the same behaviour as in previous integrals.

142 Coupled model of FE and BE for the dynamic analysis of buried shell structures



NUMERICAL TREATMENT OF BEM INTEGRALS . 4

PR1 element
DM
20 | PTB
= PTQ mmmm
4 PTC mmmm
=1
=

0 30 60 900 30 60 90
A0 [*] A0 [*]
Figure 4.18: Required N, when integrating I, for plane elements with constant tangent vec-
tors (PR1, PR2, PO1, PO2). Required N, is 3 in all cases (constant Jacobian J).
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Figure 4.19: Required N, and N, when integrating Iy for elements PQR, PQC and QSS
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Figure 4.20: Required N, when integrating /- for plane elements with constant tangent vec-
tors (PR1, PR2, PO1, PO2). Required N, is 3 in all cases (constant Jacobian J).
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Figure 4.21: Required N, and N, when integrating .. for elements PQR, PQC and QSS
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Figure 4.22: Required N, and N, when integrating I, for element QSS

In summary, all methodologies perform with a similar efficiency regarding the radial co-
ordinate. The same occurs for the angular coordinate when the angle of the triangular region
at the collocation point is approximately A9 < 60°. When Af > 60°, both the degenerated
mapping technique and the basic polar transformation perform equally bad. Polar transfor-
mation with the angular strong quasi-singularity removed virtually allow treating triangular
regions with A@ — 90°. If additionally p” conformality conditions are forced in the polar
transformation, the efficiency becomes practically independent from shape aspect ratio and
skewness of element.

4.5.2.6 Adaptive non-iterative algorithm

In the previous section, results show that the subdivision pattern of the element into right-
angle triangular regions in the reference space £ leads to certain N, = N, (h) and N, =
N,(A0) relationships, which, in the case of the polar transformation without any source of
quasi-singularities (PTC) are highly independent from the actual element geometry. This is
due to a mapping of polar coordinates to the physical space of a very good quality, and also
to the analytical removal of the angular strong quasi-singularity arising in the normalisation
of the radial coordinate. Therefore, it allows using a simple adaptive non-iterative numeri-
cal integration algorithm based on a priori error estimation of simple functions in a reliable
manner.

The required N, can be related to the problem of the numerical integration of product of
trigonometric functions:

o
Lo o= [} sin” @ cos® 0 df (4.62)
1

where @ is the angular coordinate in the physical space. Since PTC methodology enforces
conformality at the collocation point, the angular coordinate # can be taken as that of the 5
space, where 8, and 0, is directly provided by Equations (4.38b), (4.38¢c) and (4.58). An error
estimation can be provided by Equation (4.18):

ESeHzE,ez;(

d?Nf
22N (2N)! Hz

- ’dgzN

2N+1
ﬁ) , (4.63)

2
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where f = sin” f cos’ 6. Given the nature of f, H can be obtained by finding the maximum
absolute value of the 2N -th derivative of f. A tighter value would be to find the maximum
within 6, and 6,, but it seems rather complicated to obtain a closed-form expression of H in
that situation. For the cases f = sin’# (and f = cos’ #), the maximum absolute value of
the 2N -th derivative can be obtained by using elementary trigonometric power and addition
formulas. Table 4.3 shows the obtained H from p = 1 to p = 8, their asymptotic values when
N — oo, and the general formulas obtained by generalisation. For all other r, s pairs we have
not obtained general formulas of I, but at least for pairs with odd r+ s, it is easy to verify that
H < H_ . ,=Hg,,,. Therefore, H shown in Table 4.3 provide a conservative estimator
for all other r, s pairs when p = r + s is used. Error estimator £ can be further simplified by
using the asymptotic value of H, and the Stirling’s formula for the factorial, leading to a very
compact equation:

E(N,.p.6,.0) = 0= 6,) - p (4.64)

2 /N, \8N,

Figure 4.23 shows numerical errors E and error estimations provided by Equation (4.64) for
anumber of r, s cases. It can be seen that E is conservative, but care must be taken for higher
values of p and small values of N, since the asymptotic H is assumed in Equation (4.64). In
terms of relative error, the following estimator can be used:

- E(N95p9|9|997) = 33 .

&N, p.0,.6,) = — 2. I(p.6,.0,) = abs sin” 9 d@ (4.65)

e 1+.%2 122
I(pa gpgz) t,

where [ is calculated by a simple 2-point Gauss—Legendre quadrature.

Figures 4.24 and 4.25 show a comparison between previous results and required N, pro-
vided by Equation (4.65). The comparison is made against results when integrating /, and
I- for PQR, PQC and QSS elements. The angle measured in the reference space is still used
in abscissas, see Figure 4.13a, which is now indicated as A% in order to avoid confusion.
According to the discussion given in the Section 4.5.2.5, for the integral I, it is appropriate
to consider p = 6, and for I it is appropriate to consider p = 12. Results show that the
estimator provides an acceptable estimation of the required N, for different relative errors,
and different integrands. However, it underestimates the required N, for low values of N,
and high values of p. This can be explained from the fact that the asymptotic value of H is
used in the estimator.
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Figure 4.23: Numerical error E and error estimation E for the integral f;:z sin” @ cos’ 6 d@ for
all pairsr,sfromp=r+s=1top=6(0,— 0, = n/5)

Table 4.3: Values of H = max |d*" f/d6*" | for f(6) = sin” 6 and f(6) = cos” 8

p H limy_ H
11 1
2 22N) 12 22N /2
3 §32N +3) /2° oy
4 #N 4.2V 12 42N’
5 5Y +5.3*N +10) 2* 5
6 6'" +6-4V +15.2°V)/2° 62
7 Y475 42132 +35) 28 aalok
8 8N +8.6N +28.4°N +56.2°V) 127 8N/2’
k=p/2
peven Y ( . ) (p — 2k)2N N -
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Figure 4.24: Comparison between required N, obtained from numerical experiment (left)
and from error estimator €(Ny, 6, 0,,0,) (right) when integrating I,
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Figure 4.25: Comparison between required N, obtained from numerical experiment (left)
and from error estimator €(N,, 12,6, 6,) (right) when integrating /-
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5.1 Introduction

In this chapter, the methodologies described in previous chapters are used for studying some
aspects of wave barriers. A wave barrier is a passive method of reducing the amplitude of
mechanical waves at certain areas (receivers) produced by some sources of vibrations. The
vibrations produced by overground or underground machinery or vehicles can travel through
the air, ground and structures to places where they can annoy people or cause the failure or
malfunction of equipment. A wave barrier is an appropriate discontinuity installed at a point
of the transmission path which produces such reduction. The design of each wave barrier
depends on the source of vibrations, the properties of the transmission path, costs, and the
isolation requirements imposed by regulations, customers or manufacturers.

A clear distinction must be made between overground and underground wave barriers.
The former case refers to sound waves barriers, most commonly known as sound or noise
barriers, and their aim is reducing the dynamic sound pressure up to certain limits such that
these are acceptable by human auditory perception in our activities. For defining such limits,
regulations take into account, among other things, the average human hearing capabilities:
a typical frequency range of f = [20,20000] Hz, and a typical dynamic pressure between
threshold of hearing and pain of p = [20 - 107, 63] Pa (frequency dependent) or sound pres-
sure levels L, = [0, 130] dB (A-weighted) [176]. The latter case refers to elastic waves
barriers, in the following simply “wave barriers”, and their aim is reducing the acceleration
up to certain limits in order to guarantee health and comfort and to avoid perception and mo-
tion sickness, particularly in buildings (ISO 2631-1:1997 [177]). The range of frequencies
of interest is within f = [0.1, 80] Hz, and acceleration limits are defined such that accelera-
tion perception is avoided. Typical acceleration perception thresholds vary between (.01 and
0.02 m/s%, although recommended maximum accelerations are also frequency-weighted and
depend on multiple factors.

Another relevant difference between overground and underground wave barriers is their
costs and feasibility. Noise barriers are relatively easy to install, and their designs can a
priori reach some level of complexity. In this sense, there have been many developments,
mostly at the top of the barrier. Hothersall et al. [178, 179] considered T-, Y-, and arrow
profile barriers, Crombie et al. [180] studied multiple-edge barriers, and Watts and Morgan
[181] used an interference based device at the top of the barrier. Okubo and Fujiwara [182]
considered a waterwheel cylinder installed on the top, while Monazzam and Lam [183] used
a quadratic residue diffuser. An exhaustive study about noise barriers can be found in Maeso
and Azndrez [46]. Toledo et al. performed a comprehensive study of optimised noise barriers
of many different topologies [24,25]. On the other hand, underground wave barriers tend
to be simple designs because of installation costs. Their effectiveness mostly depends on
the ratio between the Rayleigh wavelength and barrier depth. Simple open trenches provide
considerable vibration reduction because their stress-free boundaries act as perfect reflectors
of elastic waves [184]. However, a pure open trench can not be excavated to any desired depth
for soil stability reasons. Therefore, alternative systems such as open trenches reinforced
with retaining sheet piles or concrete walls [ 185], in-filled trenches with soft or stiff materials
[186—188], or the installation of sheet piles [189] or rows of piles [190, 191], have also been
considered.
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The aim of this chapter is present several contributions in this field, mostly in a two-
dimensional setting. In the case of noise barriers, we study to what extent to common as-
sumption of rigidity is valid for this kind of problems in Section 5.2. In the case of wave
barriers, we study the effect of considering a poroelastic soil for several topologies in Section
5.3. In Section 5.4, a three-dimensional curved wave barrier buried in a poroelastic soil is
studied for the purpose of studying the fidelity of the DBEM-FEM model. In Section 5.5, we
study the optimisation of single and double wall barriers buried in elastic soils.

5.2 Two-dimensional flexible noise barriers

In this section, the DBEM-FEM model is used for the analysis of two-dimensional flexible
noise barriers. Also, in order to quantify Fluid-Structure Interaction (FSI) in this type of
problems, a parametric study of a wall is performed. Therefore, this is the simplest case from
those explained in Chapter 2, where the shell is modelled as an equivalent beam (E, ., =
E/(1 = v*)) surrounded by an ideal fluid.

As a first step, the DBEM-FEM model has been validated against results published by
Jean [192], where a simple noise barrier is studied. The problem description is outlined in
Figure 5.1. The fluid Q is air with p = 1.3 kg/m? and ¢ = 340 m/s. The thin elastic body
€2 is a simple noise barrier 3 m high and 0.01 m thick, and it is clamped to the ground.
Three different materials are considered for the barrier Q (see Table 5.1). The ground is a
perfectly reflecting surface, i.e. fluid displacement and pressure flux are null at the ground,
for which the half-plane fundamental solution based on the method of images is used [6]. A
point source located at x, = (—2.3,0.5) is used. The point source is easily added to the BEM
equations, see e.g. [17].

A comparison between results from Jean [192] and results from the proposed model is
shown in Figure 5.2. The results from [192] are shown as a coloured background image from
the original paper. The figure shows three graphs, one for each material. The y axis of each
plotis the difference between pressures absolute values at a point x when using a rigid barrier
(U, = 0) and when using a flexible barrier. The natural frequencies f, of each case are plotted
as vertical lines, and they are calculated using the cantilever beam equations [193].

The model used in [192] takes into account the real geometry of the barrier, while the
proposed model uses a null thickness barrier. The slenderness is L/t = 333, so from the
barrier behaviour point of view, the Euler-Bernoulli hypotheses are valid. Thus, the proposed
model should be able to reproduce the results from [192].

Figure 5.2 shows excellent agreement between Jean’s model and the proposed model.
Peak frequencies and amplitudes are very well reproduced, although some small discrepan-
cies appear in the wood case at frequencies around 850 Hz.

5.2.1 Complex noise barrier shapes

Jean [192] made a broad study comparing results between flexible and rigid simple noise
barriers when varying material, thickness, damping coefficient, receiver and source position,
and barrier height. In this section, some more complex barrier shapes are considered.
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Figure 5.1: Noise barrier problem studied by Jean [192] (thickness not to scale)

Q. p [kgf'm3] E [GPa] v &

Wood 650 12.0 0.01 0.0100
Glass 2400 87.0 0.24  0.0005
Paraglass 1190 3:3 0.40 0.0150

Table 5.1: Materials for the barrier considered by Jean [192]
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Figure 5.2: Comparison between results from Jean [192] and DBEM-FEM model
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Figure 5.3: Layout for studying complex sound barrier shapes
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Figure 5.4: S 1L for different barrier shapes and materials

The layout of the numerical experiments is depicted in Figure 5.3. Two simple screen
barriers (simple barrier and double simple barrier) together with three multi-edge barrier
shapes (Y barrier, U barrier and E barrier) are considered. For each shape, all materials from
the Table 5.1 are used, the thickness is w = 0.01 m for all pieces, and the effective height is
3 m. The point source is located at ground level and 10 m ahead the barrier [17,178,194]. A
grid of 3 x 11 receivers covering 6 x 60 m” is considered. A thousand frequencies uniformly
distributed in log,,( f) space from f;, = 20Hz to f,,, = 4000 Hz are used.

Instead of taking the pressure as the variable of interest, the Insertion Loss I L is used [17].
The IL is the difference between pressures (in dB) when there is no barrier and when the
barrier is placed, so it measures the effectiveness of the barrier. We also consider the average
Spectral Insertion Loss .S 1 L, which is simply the average I L in the spectrum, leading to a
frequency-independent indicator. The I L and the S I L are averaged values over all receivers.

In the literature, it is often assumed that noise barriers are rigid, so it is interesting to find
when this hypothesis is valid or not. A first step is using the ST L, Figure 5.4 shows the SIL
for all considered barrier shapes and materials, including the rigid case. It is seen that the
rigid case is not conservative when using the S I L as an indicator. However, the maximum
difference between the rigid case and any case is below 2 dB, being 1 dB for the simple
barrier and double simple barrier, and 2 dB for the Y barrier. Thus, when a global indicator
such as the S 1L is going to be studied, the rigid assumption seems to be valid.

As Jean [192] showed for the simple barrier, when considering the elastic nature of the
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barrier there is a widespread pressure increment at low frequencies. Although this behaviour
seems reasonable, it is interesting to analyse what happens when barriers more complex than
the simple one are used. Figure 5.5 shows the I L spectrum for all studied barrier shapes and
materials, including the rigid case.

For low frequencies ( f < 200 Hz) appreciable differences between rigid and flexible bar-
riers are obtained. The simple barrier behaves as Jean described, with increments of pressure
below 5dB, i.e. I L decrements below 5dB. The other barrier shapes have I L decrements
below 10dB. For very low frequencies (f < 80 Hz) there is virtually no noise attenuation.
The considered complex barrier shapes strongly influence the I L spectrum, especially at low
frequencies.

For mid-high frequencies (f > 500 Hz) the I L spectrum is very similar to a rigid barrier.
For simple and double simple barriers, the differences are very small. For Y, U and E barriers,
the differences are more noticeable, reaching up to 5 dB at some frequencies. Nevertheless,
these differences seem to be irrelevant for noise propagation problems.

The human ear is less sensitive at low frequencies than at high frequencies, so, at first, this
behaviour at low frequencies could be neglected. However, high frequencies are attenuated
by losses in the air and on the absorbing surfaces, while low frequencies are not. Furthermore,
when a building with windows closed is near the noise barrier, low frequency noises may be
amplified inside the building. Therefore, depending on the context, the elasticity of a barrier
similar to those studied should be considered.

5.2.2 Parametric study of a straight wall

The present problem consists of a straight wall (beam) (2L, w, p, E,,. v, &) with its centre
clamped, surrounded by a fluid (g, &), where a pressure plane wave is propagating with unity
amplitude, perpendicular direction, and angular frequency @, see Figure 5.6. The problem
parameters can be reduced to six dimensionless ones:

» Wave velocity ratio: ¢/c, where ¢ = 1/ E, /p is the beam axial wave velocity.

» Densities ratio: p/p.

Geometrical slenderness: L/w.

Dimensionless frequency: a, = (wL)/¢.
» Damping coefficient: &
» Poisson’s ratio: v

Table 5.2 shows the studied values of the dimensionless parameters. The wave velocity
ratio and the densities ratio have ranges that include the most extreme fluid-structure combi-
nations. The geometrical slenderness starts from L/w = 10 to L/w = 1000, which are within
the validity interval. The dimensionless frequency range has been chosen so that at least the
first natural frequency is clearly captured in all cases.
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Pincident Qg: 2L w,p, Em, v €

ﬂf:p,&
Figure 5.6: Problem layout
Parameter Studied values

& 0.05

v 0.30

éle {1/50, 1/20, 1/10, 1/5,1/2, 1/1,2/1}

plp {1/10°,1/10%, 1/10%, 1/10%, 1/10, 1/1, 10/1 }
Liw {10, 20, 50, 100, 200, 500, 1000}

a, [107%,10]

Table 5.2: Studied values of each dimensionless parameter

This parametric study is oriented to know the FSI coupling degree. It seems obvious that
a decoupled model could be used for extreme cases, e.g. a thick steel wall in air. In these
extreme cases, the pressure field in the air is calculated considering a rigid obstacle, and if
needed, the pressure field can be used as the obstacle load. However, there are cases like a
thin wall in water, or a thin steel wall in oil, or other similar cases where interaction relevance
is not so clear. All dimensionless parameters combinations of Table 5.2 are studied.

Figure 5.7 shows the average relative pressure difference at nodes between a given case
and the rigid case. The relative pressure difference is averaged over frequencies. It has been
built in order to know if a wall could be considered rigid or not when one is interested in
the pressure field. It has been found that the wave velocities ratio has a small influence over
it. The densities ratio and the geometrical slenderness strongly influence the average relative
pressure differences. The contour lines clearly show that, for a given pressure difference,
there is a region where the straight beam can be considered rigid. A rule of thumb can be
established: for L/w < 1000, if g/p < 1/1000, the straight beam can be considered rigid.

Figure 5.8 shows the @,/w, ratio, where @, is the first natural frequency of the fluid-
structure system, and ), is the first natural frequency of the structure in vacuum [193]. It has
been built in order to know if the fluid must be taken into account when one is interested in
the straight beam behaviour. Analogously to the previous analysis, the wave velocity ratio
has a small influence over @,/w,. The densities ratio and the geometrical slenderness are the
main influences over the variable of interest. The @,/w, ratio is < 1, so the fluids roughly
acts as an added mass, as it is well known. The obtained @,/w, contour lines can be used to
quantify the fluid influence over the FSI problem.
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Figure 5.7: Average relative pressure differences between elastic case and rigid case
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5.3 Two-dimensional wave barriers in poroelastic soils

In this section, the vibration isolation effectiveness of two-dimensional totally or partially
buried thin walled wave barriers in poroelastic soils is studied. Ground vibrations are con-
sidered to be Rayleigh waves propagating on a permeable free-surface, see Appendix E. As
in the previous case, the shell is modelled as an equivalent beam (E,,,,, = E/(1 — v?)), but
it is now surrounded by a poroelastic medium. Two different types of coupling of the beam
with the surrounding medium appear: with an ordinary boundary (BEM-FEM), and with a
crack-like boundary (DBEM-FEM).

Firstly, some results from the classical vibration isolation paper by Beskos et al. [186]
are compared to our models as a way of verification of our models. Beskos et al. studied the
vibration isolation of open and filled trenches using a two-dimensional conventional elastody-
namic BEM model. The problem under consideration is a trench, open or filled with concrete,
with a depth to width ratio d/w = 10, impinged by waves coming from a footing 5d behind
the trench, vibrating with a frequency corresponding to a Rayleigh wavelength A equal to
the depth d. The elastic soil has a density p = 1785 kg/m®, shear modulus x4 = 132 MPa,
Poisson’s ratio v = 0.25 and hysteretic damping £ = 0.03. The equivalent poroelastic soil
used in our model has a porosity ¢ = 0.001, fluid density p; = 0.001 kg/m?, solid density
p, = 1785 kg/m?, null additional aparent density, solid Lamé’s parameters y = A = 132 MPa,
solid phase hysteretic damping & = 0.03, Biot’s parameters R = Q = 0.1 MPa, and null dis-
sipation coefficient. The concrete for the filled trench barrier has a density p = 2449 kg/m3,
shear modulus p = 4.52628 GPa, Poisson’s ratio v = 0.25 and hysteretic damping & = 0.15.

Fig. 5.9 shows a comparison between their results and our results using the vertical dis-
placement amplitude reduction ratio A,

uwilh barrier (x’ y= 0)'

A (X)) = e
¥ |u’\}-:f|lh0ul barrier (x, y= O)|

(5.1)

For the open trench, we have used an open trench with d/w = 10 using a conventional BEM
model, but also an open trench with the null width assumption (d/w — o0) using the Dual
BEM. For the filled trench, we have used a filled trench with d/w = 10 using a conventional
multidomain BEM model, and also a filled trench using our DBEM-FEM model, i.e. from
the soil point of view the trench has null thickness but preserves its structural behaviour.
There exist differences between the results of Beskos et al. and our results, although the
main tendencies are similar. It is probably due to the fact that they used constant boundary
elements and an important truncation of the free-surface mesh, which was also noticed by
Ahmad et al. [187]. In both problems, the differences between the results using the real
geometry (conventional BEM) and the results using the null width assumption (DBEM) are
very small. Therefore, itis justified using the proposed DBEM-FEM model for thin structures
(d/w < 10) in these kinds of problems.

In the following sections, three kinds of wave barrier systems are studied: open trench,
simple wall and open trench-wall; see Fig. 5.10. An open trench system is defined by its
depth d and width w. Qualitatively, it acts as a perfect reflector where surface waves having
a wavelength less than its depth are filtered out. A pure open trench is the perfect solution,
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Figure 5.10: Wave barrier topologies. Left: open trench. Center: simple wall. Right: open
trench-wall.

however, systems using walls are needed in situations where the soil stability is compromised.
In this study, we consider a wall characterized by its top view cross-section per unit length,
see Fig. 5.11. It is defined by the total width &k and the wall thickness ¢, being t < h.
Hence, the cross-section area is A = t and the inertia is I = 1*/12 + t(h/2 — t/2)*>. When
t = h, it represents exactly a plate with uniform cross-section. When ¢ < h, it represents a
two-dimensional simplified version of a sheet pile, whose three-dimensional geometry and
structural behaviour as a transversely isotropic plate are neglected. This simplification is valid
as long as we are interested in far-field variables. A simple wall barrier system is defined by
its depth d and wall cross-section. An open trench-wall system is defined by its trench depth
d, trench width w, wall cross-section, and wall burial depth /. Hence, these problems are
defined by their geometry: d, w, I, h and ¢, by the properties of their regions: poroelastic soil
(@, pps s Hes A Es O, R, p,, b) and wall (py,, E,, v, &,); and by the frequency w.

For elastic soils, the open trench and the simple wall problems have been extensively stud-
ied, whereas the open trench-wall system has been rarely studied [185]. In these cases, each
problem is easily nondimensionalized to a small set of parameters of general applicability.
Basically, ratios of lengths (d/w, d/h, etc.), Poisson’s ratios of the soil v, and wall v, ratios
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Figure 5.11: Wall cross-section

of densities p/p, and Young’s modulus E,/E, between soil and wall, and a dimensionless
frequency w” defined by using the Rayleigh wave velocity and some length, for example d.
However, such a broad study for poroelastic soils is difficult due to the number of properties
involved, and the question if a set of values for these properties represents an existing soil or
not.

Therefore, in order to obtain realistic results of practical usage, we limit our study to
water-saturated sandstones whose properties are based on experimental data. The poroelastic
approximation of water-saturated sandstones is taken from [195], although a more general
dissipative soil (b # 0) is considered here. The main hypothesis is the linear relationship
between porosity ¢ and solid dry bulk modulus K:

K =k (1 _E) (K, - K.,) (5.2)

where K, = 200MPa is the critical bulk modulus for the dry frame, ¢, = 0.36 is the critical
porosity and K, = 36000MPa is the bulk modulus of a solid grain. The critical porosity ¢,
is the point where the porosity is too large to form a sustainable dry frame. Several porosities
and Poisson’s ratios are considered: ¢ = {0.10,0.20,0.30} and v, = {0.20,0.30,0.40}. Thus,
Lamé parameters are A, = (3v,)/(1 + v)K, and p, = [3(1 — 2v)J/[2(]1 + v)]K,. The density
of the solid phase is p, = 2650kg/m’, and the damping ratio is null (&, = 0). The fluid phase
(water) properties are K; = 2000MPa and p; = 1000kg/m?®. The Biot’s coupling parameters
Q and R are:

1-¢-KJ/K, ¢’

0= ¢(1 — ¢ — K/K,) + oK /K, kg A= (1-¢—KJK,) + d)Kngng (2:3)
Berryman’s model for the additional aparent density [52] is used assuming spherical grains:
p, = (1—¢)p;/2. The dissipation coeflicient is b = pi-gqbzhc, where « is the hydraulic conduc-
tivity. In order to present a dimensionless problem, a dimensionless dissipation coeflicient
b = bd/y\/pp is defined, where p = ¢p; + (1 — )p, is the bulk density. Also, it is necessary
to use a dimensionless frequency w”. One representing the ratio between the barrier system
depth and the Rayleigh wavelength ™ = d/Ay, = (wd)/(27rcy,) is defined, where ¢y, is the
wave velocity of the Rayleigh waves assuming b = (). Assuming a typical barrier depthd ~ 5
m, and taking into account that ¥ € [107°, 1072] m/s (see [195, Fig. 1]), ¢ € [0.10,0.30] and
v € [0.20,0.40], an appropriate set of values for the dimensionless dissipation coefficient is
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b* ={0,0.2,5,100,2000}. For the dimensionless frequency, a suitable range @™ € [0.5, 1.5]
is used. The thin walls are considered made of steel: p, = 7850kg/m*, E, = 210GPa,
v, = 0.30, &, = 0.05.

All the boundaries in contact with air are considered permeable, and given that the bulk
modulus of the air is much more lower than any of the porous media, the fluid dynamic stress
7 and the solid stresses 7,; can be considered null at those boundaries. Specifically, these
boundaries are the free-surface of the half-space and the bottom of the open trench-wall.

The isolation effectiveness of each configuration is measured by using the average vertical
displacement amplitude reduction ratio fi},:

A L e A d 54
-m/ 0 dx O4

where a = w for the open trench and open trench-wall, and @ = 0O for the simple barrier. It
synthesizes the behaviour of A (x) along the shadow zone of the wave barrier up to 104z,
as suggested by Ahmad et al. [187].

5.3.1 Open trench

Three geometrical configurations of the open trench are studied: d/w = {1,2,10}; which
correspond to a very wide, wide and narrow open trenches, respectively. Although it does
not use any of the new features proposed here, it seems mandatory since, to the authors’
knowledge, previous results about this problem does not exist in the literature.

Fig. 5.12 shows ,fi}_, response for the ranges of variation of porosity ¢, Poisson’s ratio
v,, dimensionless dissipation coeflicient b*, and dimensionless frequency w”, for the wide
trench (d/w = 2). The main behaviour of open trenches in poroelastic soils are similar to
those in elastic soils. The dimensionless frequency @™ = d/Agz = 1 is a key point. Below this
frequency, the effectiveness gets worse increasingly, and above it, the effectiveness improves
up to a maximum effectiveness, approximately constant for @* > 1.2. In most cases, the
Poisson’s ratio has a small influence on fi}, when w* > 0.8. It becomes more important
when the porosity is near ¢, and the dimensionless dissipation coeflicient is b* < 1. The
dimensionless dissipation coefficient b* has a very small influence on fi}_. for b > 5. For
b* < 5, b* becomes more influential when the porosity approaches ¢, .

Fig. 5.13 shows A responses for the different d/w ratios, when v, = 0.30 and b* < 5. In
general terms, the qmaller d/w ratio the more efficient is the open trench, which is physically
obvious. The influence of d/w increases as @* decreases, especially when @™ < 0.6. When
w” > 1.2, although differences exist, they are less important given the high effectiveness
(fi}, < 0.05) of all the studied d/w ratios. The influence of the porosity ¢ and the dissipation
coeflicient b is similar for the different studied d/w ratios.

5.3.2 Simple barrier

The simple barrier is studied for three depth to cross-section width ratios: d/h = {10, 20, 100};
and each of them for four cross-section width to wall thickness ratios: h/t = {1,6,10,20}.
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Figure 5.12: Ay response for open trench d/w = 2

Except for the average effectiveness level, which is much more lower, the influence of soil
properties over the A}, response for simple barriers are similar to those of open trenches.
Therefore, in order to compare the influence of the wall configuration, the soil properties
are fixed to: ¢ = 0.20, b = 0.2, v, = 0.30. These problems are solved using the proposed
DBEM-FEM coupling. Hence, the soil sees a null thickness barrier which maintains its effec-
tive structural response. Additionally, the real three-dimensional behaviour of cross-sections
with A/t # 1 is approximated by a two-dimensional behaviour, which is a valid assumption
as long as we are not concerned about near-field variables.

Fig. 5.14 shows fiy response for different d/h and h/t ratios. For the studied range of
w™, the effectiveness of the simple barrier is much more lower than the effectiveness of any
open trench. While the open trench acts as a perfect reflector, the simple barrier partially
converts surface waves into body waves. As pointed out by Ahmad et al. [187, Fig. 12],
the effectiveness of this type of barriers depends mostly on the wall area d - ¢. In order to
show this relationship for the present study, Fig. 5.15 has been built using the ziy analysis
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Figure 5.13: A}, comparison between open trenches with different d/w ratios (v, = 0.30)
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Figure 5.14: ji}_, comparison between simple barriers with different d/h and h/t ratios (¢p =
0.20, b = 0.2, v, = 0.30)

points of all cases shown in Fig. 5.14 in ordinates, and a dimensionless area (d/Ag,)(t/Agy) =
(m”‘)z(hfd)(z!h) in abscissas. The left graph shows a global picture of the results, and the right
graph shows a detailed view of the results for smaller cross-sections. Although the observed
slope is different for each specific cross-section, it is shown that, as found by Ahmad et al., a
roughly linear relationship exists between the effectiveness and the dimensionless area.

5.3.3 Open trench-wall

The open trench-wall is studied for three depth to width ratios: d/w = {1, 2, 10}; three wall
burial depth to trench depth ratios: I/d = {0,0.25,0.50}; three trench depth to cross-section
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Figure 5.15: f{y comparison between simple barriers using the dimensionless area in abscis-
sas (¢ = 0.20, 6" = 0.2, v, = 0.30)

width ratios: d/h = {10,20,100}; and four cross-section width to wall thickness ratios:
hit = {1,6,10,20}. The influence of the dimensionless dissipation coefficient ™ and the
Poisson’s ratio v, is similar to that of the open trenches, i.e. their influence is relatively small,
thus b = 0.2 and v, = 0.30 are assumed. These problems are solved using both the BEM-
FEM and DBEM-FEM couplings, being the BEM-FEM coupling applied to the retaining part
of walls, and the DBEM-FEM coupling applied to the buried part of the walls.

Fig. 5.16 has been built in order to assess the influence of the wall and its burying in
the soil over /i},. For all cases, the depth to cross-section width ratio is d/h = 20, and the
cross-section width to wall thickness ratio is A/t = 1. The figure contains 3 X 3 graphs, where
each column corresponds to a different porosity ¢, and each row to a different depth to width
d/w ratio. Each graph contains four curves corresponding to the open trench case and the
open trench-wall case with three different wall burial depth to trench depth //d ratios. For a
given ¢ and d/w ratio, the differences between the open trench and the open trench-wall for
I/d = 0 are small for ™ > 1, but for ®* < 1 the open trench-wall is slightly more efficient.
For the other values of the //d ratio, ﬁ}, gets worse, especially for @* < 1. The smaller the
porosity, the smaller A differences between the open trench and the open trench-wall for any
I/d ratio. Likewise, the smaller the d/w ratio, the smaller the A}, differences between both
kinds of wave barriers.

Fig. 5.17 contains graphs comparing the x‘i}, response of configurations with different //d
ratios and different cross-sections. For all cases, the porosity is ¢ = 0.20, and the depth
to width ratio is d/w = 2. Each column corresponds to a different d/h ratio, and each row
correspond to a different //d ratio. Four curves are drawn on each graph, one corresponding
with the open trench, and three corresponding with A/t = {1,6,20}. It is seen that the open
trench-wall converges to the open trench as d/h and h/t increase, as it should be. The cross-
sections corresponding with a plate with uniform thickness (#/f = 1) have a considerable
impact on fi},, increasing the effectiveness for ™ < 1 and //d = 0, but decreasing it in the
rest of the cases. The cross-sections associated with the sheet pile idealization have a small
influence on the effectiveness when compared with the open trench.
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Figure 5.16: Ay comparison between open trench and open trench-wall for different ¢, d/w
and //d ratios (b* = 0.2, v, = 0.30, d/h = 20, hit = 1)

5.3.4 Concluding remarks

The open trench, simple wall and open trench-wall are studied varying their geometry, soil
properties and frequency. The soil is assumed to be a sandstone following a linear relationship
between porosity and solid dry bulk modulus. In the study, several values of porosity ¢,
Poisson’s ratio v, and dimensionless dissipation coefficient b* are considered. From the point
of view of isolation efliciency of all wave barriers, it is found that the porosity ¢ is relevant
when is near the critical porosity ¢, and the dimensionless dissipation coeflicient is ™ < 5.
Also, results do not vary significantly beyond »* > 5, and Poisson’s ratio v, becomes relevant
only for dimensionless frequency w* < 0.8. Qualitatively, the open trench and the simple
wall (thin in-filled trench) behave similarly to those in elastic soils, except for high porosities
and small dimensionless dissipation coeflicients. For the evaluation of the isolation efficiency
of an open trench-wall, it is found that the influence of the walls can be ignored if they are
typical sheet piles, and if the dimensionless frequency @* lies between 0.5 and 1.5. Thisis not
the case when walls with bigger cross-sections are used, leading in general to an efficiency
loss. Wall burial depths //d > 0 lead to efficiency losses, especially for high porosities and
low dimensionless frequencies w* < 1.
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Figure 5.17: z{}, comparison between open trench and open trench-wall for different d/h, I/d
and A/t ratios (¢p = 0.20, b" = 0.2, v, = 0.30, d/w = 2)

5.4 Three-dimensional wave barrier

In this section, the three-dimensional DBEM-FEM dynamic model is used in a wave diffrac-
tion problem, and compared against a multi-region BEM model [14,17]. A curved vibration
isolation wall buried in a poroelastic half-space under a Rayleigh wave field is considered.
The wall has a radius of 6 m, a depth of H = 4 m, covers an angle of 90°, and different thick-
nesses t = {0.80,0.40,0.08,0.04} m are studied. Thus, slendernesses ranging from H/f = 5
to H/t = 100 are analysed. The wall is considered to be made of concrete with density
p = 2400 kg:’m3, shear modulus u = 6.5 GPa, Poisson’s ratio v = (.15, and hysteretic damp-
ing ratio ¢ = 0.05, where the complex shear modulus used is y* = (1+i2&)u. The poroelastic
half-space has the following properties taken from Kassir et al. [196]: p; = 1000 kg/m?,
p, = 1425 kg/m®, A = u = 32.18 MPa, ¢ = 0.35, p, = 0 kg/m’, R = 248 MPa,
QO = 461 MPa, b = 1.1986 - 10" N - s/m*; and the free-surface is permeable,ie. 7 =17, =0
at z = 0. As a source of vibrations, an incident Rayleigh wave field with unitary vertical dis-
placements is impinging along the x-axis at f = 50 Hz, see Appendix E. Since the zx-plane
is a symmetry plane, only one-half of the domain is discretised and appropriate symmetry
conditions are thus enforced.

Figure 5.18 shows an example of multi-region BEM and DBEM-FEM meshes, where it
can be observed the simplicity of the latter, At the wall, there are two conforming meshes
in the DBEM-FEM model: a BE mesh with crack boundary elements representing the soil-
wall interface, and a FE mesh with shell finite elements representing the wall. For each
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Figure 5.18: Curved wall barrier (models with one-half symmetry)

thickness, the multi-region BEM model requires a new discretisation, while the DBEM-FEM
model only requires changing the shell thicknesses. The multi-region BEM model requires
some control of the element size with respect to the thickness in order to avoid integration
and conditioning problems. Also, due to the presence of the geometrical details of the wall,
more degrees of freedom are required for the wall edges and the free-surface near the wall,
especially for small thicknesses. Since the DBEM—-FEM model does not require different
meshes for different wall thicknesses, they can be changed without needing to build the whole
linear system of equations for each case, but only the stiffness and mass matrices.

Figures 5.19 and 5.20 show respectively far-field and near-field results for all thicknesses,
which are arranged in columns. Figure 5.19 shows Amplitude Reduction ratios in x and
z directions (AR; = abs(uj.fu;"‘"‘id""‘)) along the x-axis for y = z = 0. Figure 5.20 shows
displacements, fluid equivalent stress and tractions along the depth of the outer face of the
wall, i.e. along the z-axis for y = 0 and x = #/2 (multi-region BEM) and x = 0* (DBEM—
FEM).

Multi-region BEM meshes are similar to that shown in Figure 5.18, where a mesh of
11 x 11, 8 x 8, 8 x 8 and 8 X 8 nine-node quadrilateral boundary elements are used for the
faces of the wall with respectively ¢ = 0.04, 0.08, 0.4 and 0.8 m. The criteria to mesh the wall
and its surroundings have been: a) at least six elements per wavelength, and b) elements of
lengths up to ten times the wall thickness. Two DBEM—-FEM meshes are considered: (1) soil
and wall discretised with a mesh of 8 X 8 nine-node quadrilateral crack boundary elements
and MITC9 shell finite elements, and (2) with a coarse mesh of only 4 X 4 elements.

Results show the convergence of the DBEM-FEM model when H/t — oo, having excel-
lent agreement for slendernesses H/t > 10. Nevertheless, the DBEM-FEM model is able
to roughly capture the response even for the case of slenderness H/f = 5. Results regarding
Amplitude Reduction ratios clearly show that in the DBEM—-FEM model interaction is hap-
pening on the wall mid-surface rather than on the real boundaries of the wall. It is able to
reproduce the displacement field, although with a spatial shift that depends on the thickness of
the shell structure. This approximation may or may not be acceptable depending on the appli-
cation at hand. Results along the outer face of the wall demonstrate that even near-field results
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Figure 5.19: Amplitude Reduction of horizontal (AR,) and vertical (AR.) solid displacements along the free-surface at y = z = 0.
Rayleigh incident wave with unitary vertical displacements at f = 50 Hz.
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Mesh NDOF 1‘I}uild [S] i‘smlw:' [S] zlf.}lal [S]
BEM /1 =0.04 m | 39851 207 175 382
BEM /¢ =0.08 m | 35729 175 128 303
BEM /1t =040 m | 34177 158 113 271
BEM /1t =0.80 m | 34161 158 112 270
DBEM-FEM (1) | 32935 151 101 252
DBEM-FEM (2) | 29623 125 75 200

Table 5.3: Computation times for solving the wave diffraction problem

are in good agreement with those of the multi-region BEM model. Differences are mainly
found near the edges, although these become appreciable only for the smaller slendernesses.
Coarse DBEM-FEM mesh (2) gives almost identical results than the ine DBEM-FEM mesh
(1) regarding results along the free-surface. However, there are small differences on the fluid
equivalent stress and solid tractions along the wall, being appreciable near the edges for the
smaller slendernesses.

Table 5.3 shows computation times when solving the problem for each wall thickness
and mesh using a 28 x 2.6 GHz workstation. Computation times for DBEM-FEM meshes
correspond to the solution of the problem for one individual thickness. Despite the additional
costs of evaluating the HBIE, the building time of DBEM—-FEM models is only moderately
affected when comparing multi-region BEM and DBEM-FEM meshes. More important is
the fact that the DBEM-FEM intrinsically leads to a considerable reduction of the number of
degrees of freedom, which is what greatly decrease the total computation time. This is clearly
more advantageous as the wall thickness reduces, where the approximation introduced by the
DBEM-FEM model is also less relevant.

5.5 Optimisation of two-dimensional wave barriers

In this section, the problem under consideration is the shape optimization of a wave barrier
system located within a square design domain [dlmi", d™]x [d;”i", dy"*]. The design domain
is between a point source located at x* and a point receiver located at x', both of them at
the half-plane free-surface, see Fig. 5.21. The half-plane (soil) and the barrier system are
homogeneous, isotropic, linear elastic solids with bonded contact conditions. Time harmonic
analyses are used to measure the performance of the wave barrier, which is given in terms of
insertion losses at the receiver location:

Vi oo + g ¢ xof
[L(f.x") = 20log,, (5.5)

\/ juy® (F x| + [ (. x0)

where u, denotes displacement components, superscript wob stands for “without barrier”,
superscript wb stands for “with barrier”, and f is a frequency (in Hz).
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The problem at hand is a non-convex non-linear constrained optimization which can be
formulated as:

m}}n X (5.6a)
(bounds) (5.6b)

v

s.t. aTi" <a; < a;.'“", i=1...,Ny

dit £ p@ g k=12, g=1,.... N (design domain) (5.60)
£, 50, m=1,...,N_ (compatibility) (5.6d)

A< A™ (economic) (5.6e)

Ep

where three different types of objective functions are considered:

2 =1 =—IL(f"x) (5.7)
i &

p=r=— B IL(f%x) = —IL([ ) Kf:_l],x’) (5.8)
[ =1

p=am™= max —IL(f™x) =T (" f1.%) (5.9)

Four types of constraints are defined: Eq. (5.6b) establishes the design variables bounds, Eq.
(5.6¢) limit the parametrized geometry points within the design domain, Eq. (5.6d) estab-
lishes the geometric compatibility constraints, and finally Eq. (5.6e) imposes an economic
constraint by limiting the barrier area (amount of material). Regarding objective functions,
the first type of objective function defined by Eq. (5.7) is the insertion loss at a receiver point
x' for a given frequency f°P', where a change in sign is used in order to formulate a minimiza-
tion problem. This objective function focuses on obtaining an optimized wave barrier for a
very well defined single-frequency source. The second type of objective function defined by
Eq. (5.8) is an average insertion loss for a given set of N, frequencies, which aims obtain-
ing an optimized wave barrier for a broadband source. The third type of objective function
defined by Eq. (5.9) represents the worst insertion loss within a a given set of frequencies,
whose aim is to obtaining a wave barrier appropriate for a harmonic source within a frequency
range.

In order to solve the considered optimization problem, MATLAB®© [197] is used. For
objective functions of Egs. (5.7) and (5.8), the function £mincon with the sqp algorithm is
used, i.e. a Sequential Quadratic Programming method. For objective function indicated by
Eq. (5.9), the function fminimax is used. The gradient of the objective function is supplied
by using the the chain rule and the displacements sensitivities obtained from the Geometric
Sensitivity BEM analyses.

In this problem many local minima may appear, and it is not possible to guarantee that the
best local minima found is in fact the real global minima. To overcome this issue, a simple
multi-start procedure [198] is used. To do so, randomly generated feasible starting points
are studied until the difference between the number of expected local minima (Proposition 2
in [198]) and the number of different local minima found is below a tolerance (0.2 is chosen),
or until the number of starting points studied is greater than an established maximum (50 is
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Figure 5.21: Problem layout
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Figure 5.22: Studied wave barrier topologies located inside a design domain of 5 m X 8 m
(in orange)

chosen). As Rinnooy Kan et al. [198] discussed, it is very interesting to note that, based on
Bayesian analysis, the number of starting points to be studied depends on previously found
local minima, and not on the dimension of the problem.

Two wave barrier topologies are studied: a single wall barrier, and a double wall bar-
rier. Figure 5.22 shows the general setting and the wave barrier topologies together with the
corresponding design variables.

Source and receiver are 15 meters apart (x* = (—=7.5,0), x' = (7.5,0)), and the design
domain is 5 meters wide and 8 meters deep (di“i" = =25,d™ =25, d;’i“ = =8, d™ = 0).
The soil region €, has a shear modulus gy, = 80 MPa, Poisson’s ratio v, = 1/3 and density
p, = 2000 kg - m~>. Regions Q,, Q,, and Q,, represent elastic regions of the barrier with
shear modulus g, = 605 MPa, Poisson’s ratio v, = 1/4 and density p, = 2000 kg -m™. A
conventional hysteretic damping ratio of 5% is considered for all regions, i.e. & = & = 0.05.
Any value between 0% and 7% has a limited influence in this type of problems [187]. The
range of frequencies of interest is f € [20,80] Hz, and a set of eleven frequencies [ =
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{20, 26,32, ...,80} Hz are considered for objective functions.

The shear wave velocities are ¢, = 200 m-s™! and ¢y, = 550 m - s™! for the soil and
barrier regions, respectively. The ratio of cg/cg, = 2.75 is greater than the minimal value of
2.5 suggested by Ahmad et al. [187]. The Rayleigh wave velocity in the soil is ¢z, = 186.4
m - s~'. Since the range of frequencies of interest is f € [20, 80] Hz, Rayleigh wavelengths
Ags vary from 2.33 m to 9.32 m. Therefore, for the lowest frequencies, the design domain
limits the barrier depth up to approximately one Rayleigh wavelength. In that situation, the
optimization search for solutions that increases the insertion loss without going deeper. For
higher frequencies, there is a compromise between depth and width. Ahmad et al. offer an
explanation of the related physical phenomena for a vertical wall barrier. An optimal depth to
width ratio is present in such wall barriers when the dimensionless area is AME{S > (.2, and
varies between 1.2 and 2.8. These conclusions of Ahmad et al. give very useful design rules
for single vertical wall barriers, and serve as a starting point for the more complex designs
studied in the present work.

5.5.1 Optimal single wall barriers

The simplest wave barrier topology corresponds to a single wall barrier with wall top and
bottom position, and thickness freedoms, see Figure 5.22a. It is defined by four design vari-
ables (N,, = 4): a, is the horizontal coordinate of the wall top (2.5 < a, £ 2.5), a, and a,4
are respectively the horizontal and vertical coordinates of the wall bottom (-2.5 < g, < 2.5,
—8 < a; £ —0.1), and a, is the wall thickness (0.1 < a, < 5). There are four parametrized
geometry points (ng = 4), which can be be obtained from:

p" = (a, + (ay/2)/c0s0,0), p® = (a, + (a,/2)c0s b, ay + (a,/2)sin )

P® = (a, — (a,/2)cos 0, a5 — (a,/2)sinf) , p¥ = (a, — (a,/2)/cos ,0) -
where # = arctan ((aI — az)fa?,). These points correspond respectively to the top right, bot-
tom right, bottom left and top left corner points of the wall. The bounds established previously
for design variables are less strict than those of points p'? (Eq. 5.6¢), in such a way that the
design space allows any barrier within the design domain. This is also done for the rest of
topologies.

5.5.1.1 Optimized base cases

The first optimization problem is a simplified one from the general case stated above by doing
a, = a, = 0. The aim is to study to what extent the design rules of design of stiff vertical wall
barriers are optimal. Also, since these are the simplest single wall barrier designs to install, it
is appropriate to compare the performance of more involved designs with such simple ones.
Because of that, these are referred as optimized base cases in the following. Optimization is
performed for four different maximum area constraints A, = {2,4,8,12} m?, and thus the
dimensionless area is within 0.025 < A, /A% < 2.22.

For the objective function in Eq. (5.7) related to single-frequency sources, the obtained
global minima are depicted in Fig. 5.23 together with their insertion loss spectra. Three
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Figure 5.23: Optimal vertical and centered single wall barriers for single-frequency sources

types of optimal designs with different aspect ratios are found: deep walls (optimal for low
frequencies), floors (optimal for mid frequencies in some cases), and thick walls (optimal
for high-frequencies). Results show that there is no smooth transition between these types
of optimal designs as the target frequency increases. In fact, these are more or less similar
within a frequency interval, and only small changes take place in order to achieve optimal
performance at each target frequency. The frequencies at which the type of optimal design
shifts are different depending on the amount of material available (A,,). For A, = 8 and
A, = 12 m?, there is a sudden shift from deep walls to a thick walls at approximately 50
Hz (A = 3.728 m). For A__=2and A___ = 4 m?, there is a shift from deep walls to floors
at approximately 30 Hz, and then from floors to thick walls at approximately 50 Hz. Despite
being very practical, it is clear that the rule of thumb of limiting the depth of the barrier at
one Rayleigh wavelength is generally not optimal for a given amount of material.

In order to compare the differences between all three kinds of designs, Fig. 5.24 shows
color maps of the magnitude of the real part of displacements and insertion losses within a
domain of interest (=20 < x;, < 20x -20 < x, £ 0 mz) for the three local minima of
the case f°" = 50 Hz, A,_,, = 12 m”: floor-like design (a;, = @, = 0 m, a; = —1.05 m,
a, = 5m, I'L = 477 dB), thick wall design (a; = a, = O0m, a; = —3.288 m, a, = 2.642
m, I L = 5.1 dB), and deep wall design (¢, = @, = 0 m, a; = —6.785 m, a, = 1.769 m,
Il = 5.2 dB). Fig. 5.25 shows the insertion loss spectrum for each local minima. This
case is interesting because all three minima have insertion losses around 5 dB at the receiver
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Figure 5.24: Comparison between three approximately similar local minima working with
different isolation mechanisms (f" = 50 Hz, A, = 12 m?%)
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Figure 5.26: Insertion loss improvement of optimized design (see Fig. 5.23) with respect to
typical designs (ay = —Ag(f™), a, = A, /A (f°")) for each target frequency f°™

location, as can be see in Fig. 5.25. In Fig. 5.24, it can be seen that the floor is a fast path
for incoming waves, which produces inclined transmitted body waves. The overall effect is
a significant insertion loss near the surface along the receiver side. The thick wall partially
converts incoming Rayleigh waves into body waves by reflecting them on the wall and also
sending body waves through the bottom of the wall into the half-space. The deep wall also
makes both types of conversion, but reflection is predominant in this case. Despite having
close insertion losses at the receiver point, the thick wall design have better insertion losses
along all the receiver side whereas the floor-like design has a more localized effect. Fig. 5.25
also shows that floor-like design is effective only in a narrower range of frequencies than thick
or deep walls.

Fig. 5.26 shows the difference between optimized designs and typical designs with a
depth of one Rayleigh wavelength for a given target frequency. It shows that optimization is
irregularly effective within the range of target frequencies studied. Improvements are small
for low frequencies, and increase as frequencies get higher. This behavior is reasonable since
the available dimensionless area increases with the frequency, and also the design domain is
larger in dimensionless terms. Improvements between 1 and 2 dB are achievable, which are
significant 11% to 21% better Amplitude Reduction ratios.

For the objective function in Eq. (5.8) related to optimization for broadband sources,
the obtained global minima are depicted in Fig. 5.27 together with their insertion loss spec-
tra. Since the objective function is an average of insertion losses within a given frequency
range, optimization improves insertion losses where they can be easily increased, i.e. at high-
frequencies. In fact, optimal designs for this objective function are very similar to those of
high frequency sources. There is a clear improvement as the maximum area is increased,
except for A_ = 12 m’>. The optimal solution in this case does not make use of all the
available area, which is something that also happened when dealing with some of the pre-
vious high frequency single-frequency sources. The reason behind this is that, compared to
the optimal design, insertion losses in the high frequency range decrease considerably and in
the low frequency range slightly increase when the depth of the barrier is increased to reach
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Figure 5.28: Effect of increasing width or depth for the optimal vertical and centered single
wall barrier for broadband sources (" = [20,80] Hz, A, = 12 m?)

A = A_,. see Fig. 5.28. Conversely, when the width of the barrier is increased to reach
A = A, insertion losses in the high frequency range increase and in the low frequency
range decrease.

For the objective function in Eq. (5.9) related to optimization for harmonic sources within
a frequency range, the obtained global minima are depicted in Fig. 5.27 together with their
insertion loss spectra. There are no practical design rules for this objective function, and
thus optimization is quite necessary in this case. However, since lowest insertion losses are
usually but not always located at the lowest frequency, good starting points are those barri-
ers designed for single-frequency sources at the lowest frequency. Results show that optimal
designs are indeed similar to those obtained for single-frequency sources at the lowest fre-
quency. Nevertheless, another minimum insertion losses are located at approximately 70 Hz.
Since the objective function is evenly sampled from 20 to 80 Hz in steps of 6 Hz, minimum
insertion losses used during the optimization are only approximated ones, as can be seen in
Fig. 5.27. As expected, it can be observed that optimal designs for each A, achieve better
minimal insertion losses as A, increases.
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Figure 5.30: Insertion loss improvement of optimized single wall barriers with respect to
optimized base cases for each target frequency f°F

5.5.1.2 Optimized single wall barriers

In this section, single wall barriers with all four design variables are optimized. Compared
to the previous case, the horizontal position of the top and bottom parts of the wall are now
included in the optimization, which gives freedom to the horizontal position and angle of the
wall.

For the objective function in Eq. (5.7) related to single-frequency sources, the improve-
ment of the obtained global minima with respect to the optimized base cases is depicted in
Fig. 5.30. It is observed that the improvement is negligible for low frequencies, and becomes
significant as the frequency increases, although it is quite irregular. For frequencies higher
than 40 Hz, an improvement roughly between 1 and 2 dB can be achieved.

The optimal designs for single-frequency sources of 20, 26, 44, 50, 74 and 80 Hz are
shown in Fig. 5.31. As in the case of vertical and centered single wall barriers, there is
no clear and smooth transition between maximum depth reached by optimal designs and
wavelengths associated with the frequency of the source. For low frequency sources, optimal
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walls have a small inclination and reach the maximum depth. These changes, however, do
not improve significantly the corresponding optimized base cases, as shown in Fig. 5.30. For
mid frequency sources, optimal walls are highly inclined towards the receiver and cover the
available width of the design domain. For sources of 38 and 44 Hz and the highest values
of A, slightly inclined deep walls are obtained as optimal designs. Depths reached for the
former cases are around 2 meters, which is much less that one wavelength. In this sense,
these designs can be seen as an evolution of floor designs obtained in several optimized base
cases. A more sophisticated version of this type of design was also obtained by Van hoorickx
et al. [199] via topology optimization. For high frequency sources, optimal walls are highly
inclined towards the source and cover almost all the available width of the design domain. In
some cases, nearly squared blocks also appear as optimal designs. In the former cases, the
depth reached by walls is approximately of 4 meters, more than one Rayleigh wavelength.
This type of design also appears in a more complicated fashion in [199]. Most of the designs
for the same frequency and different A,,, have very similar inclination and position, showing
that these are key factors for tuning the design for the single-frequency source. For mid and
high frequency sources, insertion loss spectra show a clearly defined peak at the optimized
frequency.

Fig. 5.32 shows the insertion loss color maps for optimized base cases and optimized sin-
gle wall barriers for single-frequency sources of 50 and 74 Hz, with A, =8 m?, and within
a given domain of interest (—20 < x;, < 20 x —20 < x, < 0 m?). For both single-frequency
sources, the optimized single wall barriers relocate insertion loss maxima occurring along
the receiver side such that one maximum is placed at the receiver point. Despite that opti-
mization is performed for the receiver point, insertion losses are also significantly improved
along all the receiver side. The optimized single wall barrier inclined towards the receiver
side (P = 50 Hz) reflects incoming waves and also acts as a waveguide redirecting waves
away from the surface. The insertion loss map of the optimized single wall barrier inclined
towards the source side (f° = 74 Hz) behaves essentially similar to a deep wall, see e.g.
Fig. 5.24, but inclination improves insertion losses behind the wall.

For objective functions in Egs. (5.8) and (5.9) related to optimization for broadband
sources and for harmonic sources within a frequency range respectively, the obtained global
minima are depicted in Figs. 5.33 and 5.34 together with their insertion loss spectra. Im-
provements with respect to the optimized base cases (Figs. 5.27 and 5.29) are less that 0.5
dB for both objective functions, which is a relatively small gain.

5.5.2 Optimal double wall barriers

The second barrier topology is a double wall barrier with position, orientation, length and
thickness freedoms for both walls, see Figure 5.22b, and thus it has eight design variables
(Ng4, = 8). Design variables a, to a, are the same as those of the single wall barrier, and they
are associated with the left wall (). Analogously, design variables a; to ag are related to
the right wall (©,,). There are eight parametrized geometry points (N, = 8), which can be
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Figure 5.34: Optimal single wall barriers for harmonic sources within a frequency range
(f°P* = [20, 80] Hz)

be obtained from:

p(” = (a; +(ay/2)/cos 0,,0), p® = (a, + (a,/2) cos 0, as + (a,/2) sin b,

( —(ay/2)cos 0y, ay — (a,/2) sin 9|) , p¥ = (al — (a,/2)/ cos |9|,0) 5.11)
(5? = (as +(ag/2)/ cos 0,,0) , p© = (aq + (ag/2) cos 0,, a; + (ag/2) sin 6,) '
p? = (% — (ag/2) cos 6,, a; — (ag/2) sin 192) , p® = (a — (ag/2)/ cos 6%,0)
where @, = arctan ((a, — a,)/a;) and 6, = arctan ((as — a¢)/a;). In order to preserve the

topology during the optimization, three additional constraints (N, = 3) between points of
both walls are imposed:

p(ln <P(|8}=>81 —p(”—p, +e<0 (5.12a)
AT > 0=, =-A"" 4650 (5.12b)
AB2T 5 0= g = —AB2T e <0 (5.12¢)

where A"/ denotes the signed area of the triangle formed by points p”’, p*’, and p*’, and
€ is a small constant that guarantees the original strict inequality. Constraints indicated by
Egs. (5.12a-5.12¢) guarantees that the quadrilateral formed by points p"’, p‘*, p” and p®
is convex, thus collision between walls is completely avoided.

For the objective function associated to single-frequency sources, the improvement of the
obtained global minima with respect to the optimized base cases is shown in Fig. 5.35. It
is observed that the improvement is small (< 0.5 dB) for the lowest frequency (20 Hz), but
it is roughly proportional to the frequency and the available area A, ,, and reaches remark-
ably high gains with respect to the optimized base cases. Unlike single wall barriers (see
Fig. 5.30), which exhibit an irregular improvement within the considered range of single-
frequency sources, one can always expect that optimization would achieve relevant improve-
ment.

The optimal designs for single-frequency sources of 20, 26, 44, 50, 74 and 80 Hz are
shown in Fig. 5.36. Most optimal designs for low and mid frequency sources, i.e. from
[P = 20 to f°" = 50 Hz, share several characteristics with the corresponding optimal
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Figure 5.35: Insertion loss improvement of optimized double wall barriers with respect to
optimized base cases for each target frequency f°™

single wall barriers (see Fig. 5.31). For 20 and 26 Hz sources, walls on the left hand side
have similar angle and position regardless of A .. and the same happens with the walls on the
right hand side for 44 and 50 Hz sources. The opposite walls are located at the boundary of
the design domain, and are approximately 5 meters deep, i.e. 1.184, for 44 Hz and 1.34 4 for
50 Hz. Some cases seem not to completely follow this description, but this is simply because
those designs are suboptimal solutions and are not shown. For high frequency sources, there
are also some characteristics similar to the corresponding optimal single wall barriers. The
depth reached by the walls on the left hand side are around 2 meters, i.e. 0.8 4y for 74 Hz and
0.864; for 80 Hz, and they are thin walls or very thick walls (nearly squared blocks). The
depth reached by walls on the right hand side are around 2 meters or 4 meters, and they all
are relatively thin walls.

Except for a 20 Hz harmonic source, optimized double wall barriers lead to significant
improvements with respect to optimized single wall barriers. In the following paragraphs,
we are going to discuss in more detail what is happening physically for optimized designs for
low (26 Hz), medium (50 Hz) and high (74 Hz) frequency sources.

Fig. 5.37 shows a comparison between the optimized base case and optimized double
wall barrier for a single-frequency source of f° = 26 Hz. A modest 1.2 dB improvement
is achieved by the optimized double wall barrier (/L = 4.4 dB) with respect to the opti-
mized base case (I L = 3.2 dB) at the receiver point. The comparison between diffracted
displacement fields shows that optimized double wall barrier relies less on reflection, and
instead transmitted waves carry most of the energy towards the inside of the half-space and
away from the receiver. The overall effect is a better insertion loss along the receiver side,
and incidentally less insertion gain along the source side.

Fig. 5.38 shows insertion loss maps for optimized double wall barriers for /" = 50
Hz and f°" = 74 Hz when the available areais A_, = 8 m”. It is shown individually the
insertion loss maps for walls on the left and right hand side, and finally the complete double
wall barrier. The idea is to observe the contribution of each wall, and their combined effect.
For the case f°P' = 50 Hz, the wall on the left hand side acts as a deep wall (depth is 1.254y),
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Figure 5.36: Optimal double wall barriers for single-frequency sources
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Figure 5.37: Comparison between diffracted displacement field and I L color maps of op-
timized base case (top) and optimized double wall barrier (bottom) for f°* = 26 Hz and
A= 8

ma

and the individual insertion loss at the receiver point is 1.31 dB. The wall on the right hand
side is a highly inclined thick wall that partly reflects incoming waves, but also acts as a
waveguide taking transmitted waves towards the inside of the soil. The insertion loss of the
latter wall alone is 6.15 dB at the receiver point. Since the insertion loss of the double wall
barrier is 9.65 dB, they nicely work together in a synergic way. For the case f** = 74 Hz, the
wall on the left hand side is a deep and thick wall (depth is 0.864) which is partly reflecting
incoming waves but also producing inclined transmitted waves away from the source. The
insertion loss at the receiver point of this wall alone is 6.77 dB. The wall at the right hand side
is a very deep wall (depth is 1.784), and the individual insertion loss at the receiver point is
only 2.7 dB. The complete double wall barrier works by partly reflecting incoming waves on
the wall on the left hand side, which also produces inclined transmitted waves that are partly
reflected on the wall on the right hand side. Both walls work in a very productive manner
producing an insertion loss of 15.9 dB, which is much higher than individual contributions.

For objective functions related to optimization for broadband sources and for harmonic
sources within a frequency range the obtained global minima are respectively depicted in Figs.
5.39 and 5.40 together with their insertion loss spectra. As in the case of single wall barriers,
optimal designs for broadband sources are very similar to those for high frequency harmonic
sources, and optimal barriers for harmonic sources within a frequency range are quite similar
to those of low frequency harmonic sources. In the case of optimizing for broadband sources,
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Figure 5.38: Comparison between I L color maps of optimized double wall barriers for P =
50 Hz (left) and f°" = 74 Hz (right) when A,,,, = 8 m®. Top: wall on the left hand side.
Middle: wall on the right hand side. Bottom: double wall barrier.
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Figure 5.40: Optimal double wall barriers for harmonic sources within a frequency range
(f°"' = [20,80] Hz)

the improvements with respect to the optimized base cases shown in Figs. 5.27 and 5.29) are
greater than 1 dB, and increase with the available area reaching up to 3 dB for A, = 12 m>
In the case of optimizing for harmonic sources within a frequency range, the improvements
hardly reach 0.5 dB for all values of A_,.

5.5.8 Concluding remarks

In this section, we have examined the possibilities of shape optimization of two wave barrier
topologies: a single wall barrier, and a double wall barrier. In the former case, we have also
studied the vertical and centered particular case, which has been taken as the optimized base
case. Despite the relative simplicity of these topologies, they offer room for improvement
with respect to the conventional design rules.

When the depth of the design domain is limited up to approximately one Rayleigh wave-
length, the optimization of the studied barrier topologies does not lead to significant improve-
ments. Once the depth of the design domain is greater than 1.14; (f > 26 Hz in our case
study), relevant room for optimization is observed, especially for double wall barriers.

For the simplest case of a vertical and centered single wall barrier, it is observed that
the typical design rule of having a wall depth of A; and width A, /Ay is far from optimal.
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Optimized designs fall into one of three types of barriers: a) deep walls, b) floors, or ¢) thick
wall of nearly unitary aspect ratio. Each one of these may become optimal depending on the
frequency and the available material.

For general single wall barriers, it is found little room for optimization in the low fre-
quency range ( f > 38 Hz in our case study). For greater frequencies, improvements of 1 to 2
dB with respect to optimized base cases can be achieved. However, these seem to be irregular
along the frequency range.

For double wall barriers, small improvements with respect to optimized base cases are
found at low frequencies. However, they increases significantly with the frequency and the
available area (A,,,, ), reaching quite remarkable gains between 2 and 13 dB.

In the optimization for broadband sources, designs very similar to those of the highest
frequency are consistently obtained. This conclusion is reasonable because the objective
function is a simple average of insertion losses within the frequency range. Therefore, for this
particular objective function, it is appropriate to start with a single-frequency optimization of
the highest frequency, and then use the results as initial points.

In the optimization for harmonic sources within a frequency range, designs very similar
to those of the lowest frequency are obtained. Analogously to the optimization for broadband
sources, this conclusion should be used to establish better initial points.
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APPLICATION TO BUCKET FOUNDATIONS 6

6.1 Introduction

Bucket foundations (or suction caisson foundations) are used as anchors and foundations of
offshore platforms, and more recently as foundations of offshore wind turbines when suit-
able water depths and soil conditions are encountered [200]. Foundations of offshore wind
turbines experience important horizontal and moment loadings, which are larger for deeper
waters. Single bucket or monopod foundations are used for wind turbines installed at mod-
erate water depths. When monopod foundations are not enough to carry these loads, three or
four small buckets can be combined to form what are known as tripod or tetrapod foundations.
In general, wind turbines with bucket foundations are well suited for water depths between
20 to 50 meters [201].

Despite the experience gained from oil and gas industries, their application to wind tur-
bines face several new challenges [200, 202]. They must be designed to withstand large hor-
izontal forces and overturning moments, and in addition these are of dynamic nature. These
loads mainly comes from steady-state operation of the machine (rotor rotation), wind field,
water current field, water waves, tidal effects, and earthquakes. Furthermore, the installation
process and the soil conditions of the seabed near the foundation introduce several uncertain-
ties. These designs should be able to operate under such conditions for a number of years in
order to be economically viable. Therefore, it is necessary to advance towards the develop-
ment of rigorous models able to take into account realistic conditions.

Many aspects of the installation and design of bucket foundations have been studied, and
the literature is large. A very complete review about bearing capacity and installation was
published by Foglia and Ibsen [203]. In the context of dynamics, a recent work of Kourkoulis
et al. [204] uses a non-linear FEM model to study the behaviour of bucket foundations of
offshore wind turbines under lateral monotonic, cyclic, and earthquake loading. They give an
interesting discussion about the interface conditions between soil and foundation. Liingaard
etal. [41] studied the impedances of bucket foundations in elastic soils, including the variation
of these under changes of geometry and soil properties. The aim of the present chapter is to
perform a preliminary exploration into the influence of poroelastic soils on the impedances
of bucket foundations.

The chapter is organised as follows. Section 6.2 briefly describes the problem and the
main aspects of the model used to analyse it. In Section 6.3, a comparison between previous
results and results obtained with the proposed model is made, where soils are considered
elastic. In Section 6.4, impedances are studied for a range of poroelastic soils. Finally, Section
6.5 gives some final remarks and further research.

6.2 Impedances of bucket foundations

A bucket foundation has two main parts: the lid, which is a stiffened circular steel plate in
contact with the mudline, and the skirt, which is a cylindrical steel shell buried into the seabed
soil. Due to the stiffening, the lid can be considered rigid for the present analysis. Therefore,
the geometry is defined by the bucket diameter D (or radius R), the skirt length L, and the
skirt thickness .

Instituto Universitario SIANI 195



6 (. APPLICATION TO BUCKET FOUNDATIONS

(a) Picture of a bucket foundation (monobucket).
Source: all-at-sea.org
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Figure 6.1: Bucket foundation

The impedances are calculated with respect to the displacements and rotations at the cen-
tre of the rigid lid. In order to obtain them, unitary displacement and rotations are given to
the lid, and then resultant forces and moments are evaluated. Given that the foundation is
axisymmetric, the 6 DOF impedance matrix S is composed of 5 different impedances: sway-
ing Sy . vertical Sy, rocking S,,,,, rocking - swaying coupling .5, and torsional S;;;
which can be arranged in a dimensionless fashion as follows:

(Fhe ) [ Syy O 0 0 Syy 0 T(Ur)
2 0 Sggr 0 =Sz 0 0 Us/k

J e | |0 0 S, 0 0 0 |foum| i
Mify R0 0 —Syw 0 Sy 0 0 0,
Mofyo S 0 0 0 Syy O 0,

My ) |0 0 0 0 0 Sy 1l 6
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In the following, the bucket foundation is considered massless (p = 0 kg/m"’), with a
Young’s modulus E = 210 GPa, Poisson’s ratio v = 1/4 and hysteretic damping ratio & = 0.01
(E* = E(1 +i2&)). The diameter is D = 10 m, and the thickness r = 0.05 m. Because of the
nature of the DBEM-FEM model, the mass distribution through the soil-structure interface
is continuous according to the density of the soil despite the structure is considered massless.

It is assumed that the bucket is installed in an elastic or poroelastic half-space, with per-
fectly bonded (non-relaxed) interface conditions. Figure 6.1 depicts the layout of the prob-
lem and an example mesh, including the considered coordinate reference system. Symmetry
properties of the problem are exploited and only a quarter of the domain is discretised.

The soil region Q_; has three BE boundaries: the seabed free-surface I5,.._, raes the
soil-skirt interface I, _g;., (a crack-like boundary), and the bucket lid I};;. The skirt region
€2, is a mesh of degenerated shell FE. The seabed free-surface I}, ... 15 @ permeable
traction-free boundary, i.e. ¢ = 0 and r, = 0. The bucket lid I;; has prescribed fluid and solid
displacements according to the impedance that is being being calculated. Shell FE nodes in
(x >0,y> 0,z =0)and in zx and yz symmetry planes are 6 DOF shell nodes, while
the rest are 5 DOF nodes. By doing so, it is easy to establish the prescribed displacements
and rotations to the 6 DOF nodes according to the impedance that is being calculated and the
symmetric/anti-symmetric conditions imposed by the displacement field. Both I ;_,;, and
Q. are discretized with conforming meshes of 8-noded quadrilateral elements. Boundaries
[,gand I .. .. ;.. are discretized with 6-noded triangular elements. The size of the elements
of the foundation and its surroundings is at least of 6 elements per wavelength, while at least

4 elements per wavelength is used beyond it.

6.3 Impedances of bucket foundations in elastic soils

In order to check the validity of the DBEM-FEM model, a comparison between several results
of Liingaard et al. [41] and the present model is done. Figure 6.2 shows impedances (nor-
malized magnitude and angle) for bucket foundations with several length to diameter ratios
L/D = {1/4,1,2}. The given elastic soil properties are ¢ = 1 MPa, v = 1/3 and & = 0.025.
In the present model, it is used a poroelastic soil with the same properties for the solid phase,
air properties for the fluid phase, and a small porosity ¢ — 0. Figure 6.2 demonstrates very
good agreement between results. Although not shown here for the sake of conciseness, all
other static and dynamic results presented in [41] also agree with results obtained by our
model.

Liingaard et al. [41] give a detailed physical interpretation of the results. In particular,
the location of anti-resonance and resonance peaks observed in the vertical impedances are
related to those of an infinite long cylinder under axial excitation. Likewise, the location of
anti-resonance and resonance peaks observed in the horizontal impedance are related to those
of an infinite hollow cylinder.
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Figure 6.2: Comparison between Liingaard et al. [41] and the present approach. From
top to bottom: normalized horizontal, vertical, rocking, and horizontal-rocking coupling
impedances.
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6.4 Impedances of bucket foundations in poroelastic soils

Elastic soils can be defined by a small set of properties, for example shear modulus yu, Pois-
son’s ratio v, density p and a hysteretic damping ratio & (u* = u(1 + i2£)). Hence, fully
dimensionless studies can be carried out by defining some shape factors of the structure, a
dimensionless frequency a, with the help of a length of the structure and a wave velocity of
the soil, and setting the Poisson’s ratio and damping ratio of the soil. In the case of poroe-
lastic soils, this task becomes impractical due to the number of properties involved, and the
difficulties of knowing if a given set of values of the properties represents a realistic soil or
not. For these reasons, we have decided to use realistic seabed soils taken from Buchanan
and Gilbert [205], see Table 6.1. All results are shown using a dimensionless frequency
a, = wR/cg, where R is the radius of the bucket, and ¢ = \/,uf(qbpj- + (1 —¢)p,) is the
undrained S-wave velocity.

Seabed soils taken from Buchanan and Gilbert [205], see Table 6.1, cover a wide range of
possible realistic soils, from gravels, sands, silts, to clays. These soils are denoted as “sb1” to
“sb5” in the following tables and graphs. Three length to diameter ratios L/D = {1/4,1,2}
are studied. Table 6.2 shows the dimensionless quasi-static stiffnesses for all cases, where
they are calculated for a small dimensionless frequency a, = 10™°. Nondimensionalization
of impedances is performed using the shear modulus p of the soil and the radius R of the
bucket. Figures 6.3 to 6.5 show the impedances for all cases, where in the low-frequency
range (a, = [107%, 1]) only their magnitudes are analysed, and in a broader frequency range
(ay = [0, 6]) also their angles are shown. Taking into account the definition of the dimension-
less frequency a,, the low-frequency range corresponds approximately to frequencies below
1 — 6 Hz depending on the seabed soil. Also, the broader frequency range corresponds ap-
proximately to frequencies between 1 — 6 Hz and 40 Hz depending on the seabed soil.

Dimensionless quasi-static stiffnesses are similar in magnitude to those obtained by Li-
ingaard et al [41] for elastic soils, considering the seabed as a drained elastic soil. In fact,
Table 6.2 includes the results using an elastic solid with the drained conditions of the porous
medium, and the discrepancy is small. Differences are due to a not sufficiently small dimen-
sionless frequency for the calculation of the quasi-static stiffness.

As can be seen in the left hand side graphs of Figures 6.3 to 6.5, impedance functions are
almost constant and approximately equal to the quasi-static value in the low-frequency range.
This is characteristic of any elastic soil, which is even more smooth. In the case of poroelastic
soils, the smaller length to diameter ratio the less regular behaviour at low-frequencies. In
the case of buckets with L/D = 1/4, it is very noticeable the variation of impedances when
a, — 0. The effect is due to the permeability of the porous medium, the smaller permeability
the more pronounced variation. It is more relevant for buckets with smaller length to diameter
ratios because of the relevance of the compressional interaction of the bucket lid with respect
to the total impedance.

In Figure 6.4, results of the corresponding undrained elastic soils are included, and they
are normalized with respect to the quasi-static stiffnesses of the correspoding porous media.
Along the low-frequency range (except when a, — 0), it is quite clear that neither the drained
nor the undrained elastic soil is able to reproduce the real poroelastic behaviour.

The right hand side and central graphs of Figures 6.3 to 6.5 show impedance functions
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responding undrained elastic soils (dashed lines) . From top to bottom: horizontal, vertical,
rocking, and horizontal-rocking coupling impedances normalized with respect to the corre-
sponding quasi-static stiffness using the poroelastic soil.
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Figure 6.5: Impedances of bucket foundations with L/D = 2 in poroelastic soils. From
top to bottom: horizontal, vertical, rocking, and horizontal-rocking coupling impedances
normalized with respect to the corresponding quasi-static stiffness.
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Coarse

Property, symbol and units sand and Coarse Eine Silty Silty

A — sand sand clay sand

(sbh1) (sh2) (sh3) (sh4) (sh5)
Frame shear modulus Re [,u*) [MPa] 12.50 74.00 7.12 0.79 41.00
Frame shear modulus Im (,u*) [MPa] 4.50 4.70 0.23 0.03 7.90
Frame bulk modulus Re (K*) [MPa] 27.10 52.00 9.49 3.67 29.00
Frame bulk modulus Im (K*) [MPa] 0.90 0.74 0.30 0.12 1.30
Poisson’s ratio v [—] 0.30 0.02 0.20 0.40 0.02
Porosity ¢ [-] 0.30 0.38 0.43 0.68 0.65
Fluid bulk modulus K; [GPa] 2.38 2.40 2.39 2.38 2.40
Biot’s coupling paramater Q [GPa] 1.666 1.488 1.362 0.762 0.840
Biot’s coupling paramater R [GPa] 0.714 0.912 1.028 1.618 1.560
Fluid density py [kg/m?] 1000 1000 1000 1000 1000
Solid density p, [kg/m’] 2680 2710 2670 2680 2670
Tortuosity a [—] 1.25 1.25 1.25 3.00 3.00
Additional apparent den. p, [kg/m®] 75 95 107.5 1360 1300
Fluid viscosity n [mPa - 5] 1.01 1.01 1.01 1.01 1.01
Permeability & [m?] 261079  gsoar 3p.mc® sz g3LapR
Hydraulic conductivity k [m/s] 25,107 7300t 30.10077 &1L 52.100
Disipation constant b [N - s/m*] 352-10°  195-10° 599-10° 898-10° 6.74-10"
Undrained Poisson’s ratio v" [—] 0.4992153  0.4942119 0.4993609 0.4998878 0.4945113
Bulk density p [kg/m’] 2176 2060 1952 1538 1585
Undrained S-wave velocity c; [m/s] 75.8 189.5 60.4 22.6 160.9

Table 6.1: Properties of seabed soils taken from Buchanan [205]. Top: poroelastic medium.
Bottom: undrained solid.

for a broader frequency range (a, = [0, 6]). By comparing these graphs and those obtained
by Liingaard et al. [41] for elastic soils, the same qualitative behaviour is observed. For
small length to diameter ratios, results tend to the solution of a disc foundation, while for
larger ratios results tend to the solution of an infinite hollow cylinder. As shown in Figure
6.4, the behaviour is not only qualitatively similar, but also numerically if the correspond-
ing undrained elastic soil is used. The difference between the real poroelastic soil and the
undrained elastic soil is very small.

Figure 6.6 shows the absolute values of impedances for bucket foundations of different
L/D ratios buried in “fine sand” (sb3 in Table 6.1) with different hydraulic conductivities. The
bucket has the same geometry and properties as previous results, except that the considered
L/D ratios now range from 0 (bucket without skirt), 0.5, 1 and 2. According to Linetal. [195],
for a fine sand and within the area where Biot’s theory is applicable, the hydraulic conductivity
k can range between 1072 and 10™® m/s. Therefore, five different hydraulic conductivities
ranging from drained, partially drained and undrained soils are considered: k — oo (drained
elastic soil), k = 1072, k = 107, k = 107°, and k — 0 (undrained elastic soil) m/s. The
frequency range and scaling shown in Figure 6.6 has been chosen so that the transition from

drained to undrained conditions can be clearly seen for each impedance and bucket geometry.
It is well known that for a, — 0 the response using a poroelastic model with finite hy-
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Figure 6.6: Impedances (absolute value) of bucket foundations of different L/D ratios in-

stalled in sandy soils
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Quasi-static stiffness Seabed

=2
(porous: ay = 107%) soil

=l

Sl
]
H_
o=y
S~

Porous Porous Drained Porous
shl 7.774 13.073 13.116 (0.3%) 16.137
sh2 6.186 8.900 8.892 (0.1%) 9,385
Kun sh3 7.445 13.198 12.175 (7.8%) 17.754
sh4 8.065 14.516 14.069 (3.1%) 21.614
sh5 7.216 11.525 9.956 (13.6%) 12.723
shl 7.557 11.288 11.336 (0.4%) 15.502
sh2 5.822 8.954 8.946 (0.1%) 11.952
Kyvy sh3 7.483 11.662 10.124 (13.2%) 16.013
sh4 8.403 12.321 11.58 (6.0%) 16,731
sh5 7.904 11.849 9,283 (21.7%) 15.407
shl 8.739 47.368 47.48 (0.2%) 131.429
sh2 7.066 28.100 28.096 ((L0%) 44571
Ky sh3 8.003 46.973 46.246 (1.5%) 153.538
sh4 8.993 53.106 52.728 ((L7%) 217.156
sh5 7.581 35.139 34.53 (1.7%) 68.016

sbl =2.778 -—15.539 -15.572(0.2%) —30.881
sb2 -2.464 -8.816 -8.806 (0.1%) —10.950
Kym sb3 =2.729 -16.036 -15.307 (4.5%) -—=37.250
sb4 =2.700 -17.923 -17.561 (2.0%) —51.545
sb5 -2.550 -—-11.751 -11.112(5.4%) —17.182

Table 6.2: Quasi-static stiffnesses of the studied bucket foundations and seabed soils

draulic conductivity k tends to a drained elastic soil, while for a, — oo the response of
a poroelastic model tends to the undrained elastic soil. However, the difference between
impedances under drained and undrained conditions, and the location where the transition
takes place in the frequency domain, depends on several factors.

The most important factor influencing the difference between impedances under drained
and undrained conditions is the presence of P waves. Due to the bucket geometry and the
absence of P waves in the torsional mode, the torsional impedance shown in Figure 6.6 does
not depend on hydraulic conductivity, and any poroelastic soil behaves as the undrained elastic
one. All other impedances imply P waves and hence are sensitive to hydraulic conductivity,
although their origin and relevance are different. In the vertical mode, P waves are mostly
originated from the lid, and thus, for a given diameter D, the difference between drained and
undrained impedances does not depend on the length L nor L/D ratio. However, in relative
terms, this difference is more important for small L/D ratios because the impedance values
are smaller. In the swaying mode, P waves are mainly originated from the skirt, and then the
difference between drained and undrained impedances does depend on both diameter D and
length L. Inrelative terms, however, these differences are equally significant for different L./D
ratios because they increase as the impedance values increase. The rocking mode produces
P waves from the lid and the bucket, and hence both diameter D and length L influence
the difference between drained and undrained impedances. The difference of impedances
measured in relative terms is considerable for all L/D ratios studied, being more important
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for smaller L/D ratios. Rocking-swaying impedances have significant differences between
completely drained and undrained impedances. They are approximately constant in relative
terms for all L/D ratios, except for the case /D = 0 of a bucket without skirt (circular
footing). The influence of this coupling impedance in the impedance matrix is negligible
for very small L/D ratios because its magnitude is much smaller than swaying and rocking
impedances, but as L./ D increases the coupling impedance becomes appreciable.

For all impedances except the rocking impedance, soils are virtually behaving in undrained
conditions for dimensionless frequencies a, > 1,i.e. f > 2 H z for the considered soil. For
the rocking impedance, soils start behaving in undrained conditions at higher frequencies,
especially for small L/D ratios. As expected, the drained to undrained transition frequency
decreases as the hydraulic conductivity decreases.

This type of foundations is now very important because of its potential as foundations of
Offshore Wind Turbines. The range of frequencies of interest depends on the type of analysis,
the site environmental conditions and the wind turbine [206]. For dynamic loading analysis,
one could take a range from about 0.05 Hz to a few Hertz typically. This corresponds to
dimensionless frequencies greater than @, = 1072 for the soil properties used in this exam-
ple. It can be seen in Figure 6.6 that, for hydraulic conductivities greater than 10~* m/s, the
drained/undrained transition takes place within the range of frequencies of interest. The im-
portance of this fact depends on multiple factors: soil properties, foundation design, wind
turbine, etc.; but it should certainly be taken into account.

6.5 Final remarks and further research

In this chapter, a preliminary study on impedances of bucket foundations in poroelastic soils
has been carried out. The main conclusion is finding that impedances of bucket foundations
depends significantly on the hydraulic conductivity. The relevance of this dependence vary
from impedance to impedance, and it also depends on the length to diameter ratio.

As a preliminary study, there are several aspects missing, and they are going to be con-
sidered in future research. The main aspects to be developed are:

» Perform a parametric study for a wider set of soil properties. One of the main challenges
when considering such a study for poroelastic soils is choosing the sets of properties
to be analysed. In this sense, three possibilities might be explored. The first one could
be using an extensive set of realistic soils collected from the literature. The second
possibility could be using an approximate model with a reduced set of properties, in the
same spirit of the model for water-saturated sandstones used by Lin, Lee and Trifunac
[195], which has actually been used in Chapter 5. The third choice could be using
judiciosly selected sets of constant and variable properties.

e Study the influence of the water layer above the mudline and the interface condition
between soil and water. Due to the nature of the resulting problem, an appropriate
absorbing boundary condition must be included in the water layer.

« Study of the influence of the contact conditions between bucket and soil.
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» Study of interaction factors for seismic SSI response.

» Study the relevance of the previous aspects on the response of Offshore Wind Turbines
founded on bucket foundations (monobucket or multiple bucket foundations).
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CONCLUSIONS 7

7.1 Summary and conclusions

This dissertation proposes a simplified fluid- and soil-structure dynamic model for the anal-
ysis of immersed or buried buried shell structures [28—30], which is tackled in Chapter 2. It
makes use of the Dual Boundary Element Method (DBEM), which is more commonly used
for crack analysis, in order to produce an approximate but natural and direct coupling between
the shell structure and its surroundings.

The shell structure is modelled with shell finite elements based on the degeneration from
the solid. The shear and membrane locking intrinsic of this type of elements is avoided by
using the Mixed Interpolation of Tensorial Components (MITC) proposed by Bathe [93],
which is also free from spurious modes.

The resulting DBEM-FEM model has been developed for two- and three-dimensional
problems, where curved shell structures can be coupled to ideal fluid, elastic solid or Biot’s
poroelastic medium. It has been implemented in a code based on previous BEM-BEM multi-
region codes of the Research Team, and hence it essentially enriches the previous capabilities.

The main difficulty of the model lies in the development of one of the ingredients of
the Dual BEM, the Hypersingular Boundary Integral Equation. In order to do so, we have
used the regularisation techniques proposed by Saéz, Gallego, Dominguez and Ariza [12,
60-62, 207], which had been used for potential and elastic problems. We have extended it
to the Biot’s poroelastic medium, for which Singular Boundary Integral Equations had been
proposed by Dominguez, Maeso and Aznarez [14,15,70,74].

We have also explored the extension of the model to gradient-based shape optimisation.
Its completion is still underway, but the already explored branches are collected in Chapter
3. Its contents are limited to two-dimensional formulations, and structural finite elements
have not been yet considered. The approach for the BEM for geometric sensitivity is based
on previous works of Gallego, Suiarez and Rus [103—-107], and it is used in a BEM-BEM
multi-region setting.

The implemented BEM formulations lead to the numerical evaluation of a greater num-
ber, more difficult and costlier integrals when compared to the conventional BEM. Therefore,
Chapter 4 collects a recapitulation of the subject, and shows some advances regarding eco-
nomical and robust numerical integration algorithms.

The proposed models have extended the range of problems that the Research Team is able
to tackle. These have been applied to a number of problems in this thesis:

» Two-dimensional flexible noise barriers. Usually, noise barriers are considered as rigid
obstacles. In this study, the effect of considering their flexibility is taken into account.
The main conclusion is that insertion losses predicted by rigid models may be too op-
timistic, specially at low frequencies.

» Two-dimensional wave barriers in poroelastic soils. In this study, the amplitude reduc-
tion ratio (or insertion loss) of three different wave barriers buried in poroelastic soils
is studied.

» Three-dimensional curved wave barriers in poroelastic soils. This problem is used
to study the range of applicability of the DBEM—-FEM model by observing near- and
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far-field variables for a number of wave barriers of different thicknesses. The DBEM—
FEM model is compared against a multi-region BEM model. The main conclusion
is that the DBEM—-FEM model have excellent agreement for slendernesses (length to
thickness ratio) beyond 10, but it also shows acceptable results for slendernesses of 5
and coarse meshes.

* Optimisation of two-dimensional wave barriers in elastic soils. In this research, the
optimisation of insertion losses of single and double wall barriers is performed. Three
different objective functions corresponding to three different types of sources are con-
sidered: harmonic single frequency source, broadband source and harmonic sources
within a frequency range. In this problem, we have found that the resulting optimal
designs greatly improves conventional design rules, especially when the relevant part
of the frequency spectrum is relatively high with respect to the depth of the design do-
main. In this sense, for the same amount of material, the double wall barrier outperform
the single wall barrier.

» Impedances of bucket foundations in poroelastic soils. Since bucket foundations are
installed on the seabed, we have considered the calculation of impedances using a more
realistic Biot’s soil than in previous works. In this sense, we have used a set of realistic
seabeds taken from the literature, an for one of them we have varied the hydraulic
conductivity. It has been found that impedances significantly depends on the hydraulic
conductivity, except the torsional one.

For these problems, more specific conclusions are given in their corresponding chapters.

7.2 Future research directions

The proposed DBEM-FEM model has been developed for a wide range of situations: two-
and three-dimensional problems, ideal fluid, elastic solid or Biot’s poroelastic medium; and
integrated in a code based on a previous multi-region BEM code of the Research Team. Like-
wise. the BEM for shape sensitivity analysis, only for two-dimensional problems, has also
been integrated in that code. This means that the number of potential problems that may be
considered from the present Ph. D. Thesis is large. At the same time, the experience gained
from the developments done in this work put us in a better position to be able to propose new
models and to face new problems. Some of the possible future research directions are:

+ Short-term

— Bucket foundations. The proposed DBEM—-FEM model can directly be used to
tackle a number of problems regarding bucket foundations and their application
to offshore wind turbines:

* Impedances. Since for an appropriate design of offshore turbines the first and
second natural frequencies should avoid the most energetic part of wave and
wind loading spectrum [206], it is very important to accurately estimate the
foundation impedances. For elastic soils, there are several works proposing

212 Coupled model of FE and BE for the dynamic analysis of buried shell structures



CONCLUSIONS 7

formulas for their calculation [208,209]. Our results suggest that there may be
relevant differences between impedances under drained and undrained con-
ditions which might affect the first natural frequency. Therefore, it is impor-
tant to study and predict this transition frequency, or at least to know in what
conditions this is important.

* Kinematic interaction factors. Current recommendations suggest performing
seismic analyses of the wind turbine. Therefore, it is of interest to study
the kinematic interaction factors for a number of geometrical and material
properties.

* Group effect. Foundations of offshore wind turbines come in two fashions:
monobucket (a large bucket), or supporting a three or four legged jacket (three
or four small buckets). For the latter, buckets operate with a push-pull mech-
anism, and thus mainly vertical impedances are relevant. In this situation,
for design purposes it is relevant to know if fully coupled direct models are
required, or if simplified sub-structuring procedures may be used.

* Influence of water depth and contact conditions. Incorporate absorbing bound-
ary elements for a three-dimensional water layer, and study the influence of
water depth and contact conditions between the seabed and water.

— Inclined seismic waves in multi-layered poroelastic soils. Formulation and imple-
mentation of more general incident field for the poroelastic half-space [195,210].
The aim is to further study the Kinematic Interaction Factors of buckets founda-
tions and the insertion losses of wave barriers in multi-layered half-spaces.

- Poroelastic cracks. Given that in this work we have developed the Dual BEM
for the Biot’s poroelastic medium, we can use it for the study of Stress Intensity
Factors (SIFs) of poroelastic cracks. In fact, after developing the two-dimensional
version, we performed a comparison against already published analytical results
[211,212], with no success. We suspect that the relatively small but significant
discrepancies are due to the SIF definition or the stress incident field used.

s Medium-term

— Optimisation of wave barriers. The optimisation of wave barriers performed in the
present work is somewhat limited by the problem configuration considered. A fur-
ther optimisation study should include a more general excitation, like a Rayleigh
incident field, and also consider a more general receptor area. Also, soil stratifi-
cation may play a relevant role and hence it should also be studied.

= Pile-soil mixed dimensional model for porous medium. Given that in the present
work the HBIE has been studied, it may be used together in some combination
with the SBIE in order to propose a BEM-FEM model like that of Padrén et
al. [ 18] but for poroelastic soils.

— Public software release. We would like to make a public release of software de-
veloped in the course of this work. This could be in form of open source libraries
or programs, or directly executables.
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FUND. SOL. AND ITS DER. FOR BIOT'S POROELASTICITY . A

Let x and n be the position and unit normal vectors of the observation point, while x' and n'
are those of the collocation point. The distance vector between both points is r = x — X', its
norm is r = |r|, and the distance derivative is denoted as r ; = dr/dx;. The partial derivatives
of the distance with respect to the unit normal vectors are dr/on = r;n; and or/on' = —r;n,.
For the sake of brevity, the wavenumbers are rewritten as k; = kp; and k; = kg, and the
following frequency-dependent parameters are defined:

Kk
g

_ _ 53 H 2 H
J=—— = ,a.—kj

K2, B, =
J » b A+2u

.- k2 —
Pary@” P2 A+2u - :

(A.1)

The matrices IiS and liH appearing respectively in SBIE and HBIE are:
i | J 0 i |1 0
15_[0 %],IH_[O 5&] (A2)

A.1 Two-dimensional problem

The complex function K, (z) is the modified Bessel function of the second kind, order n and
complex argument z.

A.1.1 Singular Boundary Integral Equation

The fundamental solution matrix U™ is:

U= [ ~F0 Yok ] (A3)
Ty Uy
where:
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The fundamental solution matrix T™ is:
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A.1.2 Hypersingular Boundary Integral Equation

The fundamental solution matrix D™ is:

D* = l —dy o I (A.22)
_dm dsk
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A.2 Three-dimensional problem

A.2.1 Singular Boundary Integral Equation

The fundamental solution matrix U™ is:
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0 1
W, = Zy— (———e)
I A =
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f = ;[Tl”,s",kg_;'FTz (5“( +rknl.)+Tr nk]
ox 2

T‘=_2(E‘F*)
Tﬁ_a_"”_l

S oodr r

d 0

ro A (% _dx 2\, 01,

' U\ 0 or RJ

A.2.2 Hypersingular Boundary Integral Equation

The fundamental solution matrix D™ is:

v = [l %]

—dyy dy
where:
1 or
d, =
0 4z "0 on
« 1 or
= 417: ( Wi, *oni +Wan )
4 1 ar
o= 427 ( LW +T"2")
4 | or or ;
dy = Ar [Tlr,tr,kﬁ -1 ( a”‘dn ¥ ”k) = T?,’”,k”s]

The fundamental solution matrix S is:

* *
S* = —Soo Sok
= =8 st
10 Sik
where:

. 1 or or
0= 77 [Q'ana ;+0, (n- )]

2 9’ 0

7 ror or:  ror
0, = Z“w+2zle glon
7 ror

2 1 or or or , or ¢
Sox = 31 {Sm",kﬁg + S(R”k@ + Sy, [nka +r,(n-n )]}

oy 2 70 3,00 1
O e N T +—(———e)
" (dr I) [dr2 r\or r l
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(A.63)

(A.64)

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

(A1)

(A.72)

(A.73)

(A.74)
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Q(z, oy Afoy oy 2 2
Bl [ 2. B1) o Af W 8. 2, ), 2
02 R(J dr)+ [,u £) =7

2[7242(B 1§ ol @0 1oy
or- or ar r
S LY 5L (781
B ar rr ¢ ar r

s: H f)." ar ar l'_')." i
S”‘=E{S'[ Pl e ) +r.r, (11-11)]+

oni*ononi
, or dar dr or
S, (r‘knfa - ",;”kﬁ) + S_,’r,:r.kaﬁ

S [ (m- ') + ] + Ss”:c"i}

r ur ar or
Pl oy Fx 2f op  _ox 1
bt Rt O I s il O R S -4
y2[6r2+dr2+r dr+dr+r’¥ )
01 A(de 2
== |-22 (=24 e —e+—
R7 | "n o 1
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DECOMPOSITION OF K (Z) AND EZ FUNCTIONS | B

B.1 Modified Bessel functions of the second kind

Modified Bessel functions of the second kind K,;, K, y K, appear in two-dimensional funda-
mental solutions, and they can be decomposed by using the limiting form for small arguments
z— 0[213] as:

Ko(2)=-InZ -y + KX (2)

2
1 =z Z 1 R

Km@=5+5(m5+y—§)+K4@ B.1)
2. 1 z 3

K,.=—————O-— —-) R (7

=2z -(nisy-2)rki@

where KX (z) = 0 (z”"'2 In z). Argument z has the general form of z, = ik,r, and thus,
when substituting decomposed K,, in the fundamental solution components, it is possible to
decomposed these in terms of order @O[r”(Inr)?] with p > —2 and g = 0, 1. Note that this
decomposition differs from that proposed in Dominguez [6] for K, (z), in order to handle
more appropriately two-dimensional hypersingular formulations.

B.2 Exponential function

Three-dimensional fundamental solutions are composed by a linear combination of terms of
the type:

ﬁ@ﬂ=%f%’ (B.2)

where k, is the wavenumber m, in general a complex number, n € N, and » = |x — x'| is the
distance between observation and collocation points. Each wavenumber and coefficient of the
linear combination is constant for a given frequency and properties. Therefore, for a given
problem and frequency of analysis, these terms only depends on the distance r. When r — 07,
then e~ — 1, r™ — 400, and f,,(r) = 4+0c0. When r = +o0 and Im(k,,) < 0, then e~**»"
is oscillating but evanescence, " — 0%, and f,,(r) — 0. For small k,r, it is necessary
to segregate the different parts of the exponential function. This admits the following power
series expansion:

k=oco
ch

é:}lg (B.3)
k=0 **
where if we define the residue of order [ as:

k=

8

k

5]

E(z)= el (B.4)
k=1
the / first terms of the expansion can be segregated:
e%ﬂ+z+§+m+gu) (B.5)
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Then, each term f,,(r) can be segregated in several terms of different degrees of singularity
O(r') with respect to r:

| (—ik, )" '1 (=ik,)" 1
e e e T T
= O™ + ... + 6¢°) + 6(+)) (B.6)

Fod®) =ik
rﬂ
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VECTOR IDENTITIES USED IN THE REGULARISATION PROCESS C

The idea of regularising singular integrals in the context of the Boundary Element Method
by using a form of the Stokes’ theorem can be traced back to the seminal work of Cruse [214,
Appendix 2] almost 50 years ago. In fact, the identity shown by Equation (C.1) is already
present in that paper. In all these years, many authors have been using the idea in one way
or another. Although a little bit old, a review of the subject was presented by Tanaka, Sladek
and Sladek [63] back in 1994.

We base our work for three-dimensional formulations in the developments done by Dominguez,
Ariza and Gallego [61], who presented an elegant and explicit regularisation process. They
clearly demonstrate the cancellation of all unbounded terms at the Boundary Integral Equa-
tion level. One of the difficulties is finding the appropriate identities that allow using the
Stokes’ theorem to turn strongly singular and hypersingular surface integrals into weakly sin-
gular surface integrals and nearly singular line integrals. The identities used in the present
work are:

ron,—r.n e.
Mzew (Vx—")—n (C.1)
r2 r
n-n 3 or or r xn'
=== 4 fyix ‘n ok
r r3 on ont ( r ) 2
r. (n-n n e xXn
L,)=——fa—".+(V>< £ )—n (C.3)
r? r? ont r
Firg (nemt) S5rifs or ar  PiflH P o rxn'
: sl ROLET, Pk e W Aoy | c4
r3 r3 onodn r3 on + Pl r3 n (C4)
n, 3r‘kar+(v rxek) s
e X . .
r3 r? on r n (€)
rorgr;(n-m) 1 ronny 17, (n-n') 1, (n-n')
r2 T3 2 3 2 ik r? ik 3 r
Pt or 1 e xn'
— 4+ = |V | r,r, -n (C.6
2 oni 3 ( d0 » )] ( )

where r = x — x' is the distance vector between observation and collocation point, r =
[r], ry = or/ox,, n is the unit normal at the observation point, n' is the unit normal at the
collocation point, €; is the unit vector of the Cartesian axis j, 6, is the Kronecker delta
and ¢, is the Levi-Civita symbol. Equations (C.1-C.4) are equal to those shown in [61,
62]. However, Equations (C.5) and (C.6) differ from respectively Equations (B17) and (B20)
because it seems that they contain some errata. In the former case, it seems that some indices
are misplaced. In the latter case, it lacks two terms. In the following, we demonstrate these
identities.
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Proof of Equation (C.5) Using tensor notation, the vector field in the rotational term is:

rxe, r
73 = em‘m__v,amk (C.7)
Applying the rotational:
rxe, 9 Fro r
VX 3 - eijngeﬂimﬁamk - Eijﬂeﬂim (E)‘j amk (CS)

]

where the derivative is:

(_;) = B kY (C.9)
FF -
which results in:
rxe Oy —3ryr, 6. 3r,r,
_';k = eijﬂeﬂ!mgmk—g‘J = _{:C = ‘{-a, (C.10)
- - i i

after applying some properties of the Levi-Civita symbol and the Kronecker delta. Finally,
doing the dot product by the unit normal, n on the left and », on the right:

rxe, Syn; 3rpring on, o 3ry o
(Vx . ).n_ R (C.11)
which demonstrates the identity shown in Equation (C.5).
Proof of Equation (C.6) Using tensor notation, the vector field is:
€, x ni eimnamknii : r,r'r.j
r,!r,j r = r,fr._,:' r = eimn mkn:‘i (C]-z)
The rotational of this vector field is:
e, X' 2 I WAL
Vx (.“'J!"‘j = ) = epqia_xqeimﬂamk n:’i = = epqiefmngmkn:*z # . (C13)
where the derivative is:
Fir Sl.qr,j 5,@",; 3r,;r,jr,q
( p ) = = + pR— (C.14)
q
which results in:
e, X n . _ O ri Oty 3mrr,
V x (rJr‘J. - ) = (Spkn:? - qun;,) ( 2 4 7 T g (C.15)

after applying some properties of the Levi-Civita symbol and the Kronecker delta. Lastly,
doing the dot product by the unit normal, n on the left and », on the right:

e, xXn' . O, Oy 3ryrr
le(r“,rJ ¢ )] ‘n= (nkn;—é’qk(n-n'))( et “?) (C.16)

r rl

which results in Equation (C.6) once the right hand side is expanded.
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DECOMPOSITION OF TWO-DIMENSIONAL FUNDAMENTAL SOLUTION AND
ITS DERIVATIVES FOR ELASTODYNAMICS D

D.1 Fundamental solution

The elastodynamic fundamental solution and its derivatives were presented in Equations
(3.204-3.208). In the present appendix, their main terms U,, V,, T; and R, are decomposed
by using the decomposition of Bessel functions shown in Equation (B.1). Note that terms V5,
R,, R, and R, have been omitted for brevity, see Equations (3.205) and (3.208).

U ! k$+1 | L e fk2+l+kf i +KR (ik,r)
=—\| = nr— — n——+ —+ — n—— — ikyr
T2\ 2 [P 2T e\t T T2 o (12

> (D.1)
ki 1 gy, R [;
_k_g_ka‘Kl (ikyr) +r 5 KT (ikyr)
2 4
1 [k 1 k
U2=E(k—é—l)+§(kg——é)r21nr
(D.2)

kz
— ik, KR (ikyr) + k—]%KR (ikyr) — ~KR (ikyr)
K> 1 1 k? k?
V2=(—%—l);+§(k—%—kg r—fhk—%l([f(ik,r)+ik2K$(5k2r)
= = e (D4)
k:f4 R R ;
— — =KX (ikyr) +4K5 (ikyr)
Br © S
k2 ke K2
To=2( 2 -1 ) 24 (2 k2 ) r -2k, —LKR (ikyr) + 20k,KR (ikyr)
k3 roo4\ k2 2 - -
E : ’ (D.5)
18 R 8 R
_k_%—]r{, (rk]r) -+-;l'{2 (rkzr]
2 e 3
111 I 1| A 1 3 5 Ky 1
—— 4= +ks )rinr+ = |—=(y+In— == ) +k(y+In——-
T2 4(k2 )rnr 4[k3(y 2 4) “(y i 4]r
:, ’ (D.6)
k12 E 2 B
— ik, KR (ikyr) + F—Kz (ikyr) = =K3 (ikyr)
«r
2
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D . DECOMPOSITION OF TWO-DIMENSIONAL FUNDAMENTAL
SOLUTION AND ITS DERIVATIVES FOR ELASTODYNAMICS

1 2 2 1
= ——+4 | 2k k5 -3— |rl
3 kg" 4( 1 2 k% Ty

1 2 ik, 1
— |2k In——--=-]-k%
+4[ I(y+n2 2) >
k

SR N
P
-~
+
=N
w"i-
2
|
F 2
S
I
|?¢-
b b= s
N

-

+

=3
| F

I

=]
M
| I

~

o~

o

~]

—

i K i
s 1 F 2 2R (: L) =R P
R, = 2?72 g (P +k2) — k3K (ikyr) — 2sk|F;K] (ikyr) +4iky—K] (ikyr)
= 4 C (D.8)
8L LR (k1) + 8L KR (ikyr)
22 2Vl 2 2AT2
K2 K} k?
_ [ N ! 1R {; 2R [
R,=38 (1 - k—) S (kz - kz) —ZFKG (ikyr) +2k5Kg (ikqr)
2 2 2
k2 % L
+ 16k, k—;%kﬂf (ikyr) = lﬁka%K'f (ikyr) + 48k_;l21(§ (ikyr) —48él(§ (ikyr)
2 2
K2 k i}
11 | 1 2 2 1 2 ;
Ry = _2??2 +3 (—3P +2k% — kz) + (2F —kl)Kg (ik,r)
2 A 2 2 ) (D.10)
kT | R ) | R kl | R | R
+2iky | 1 =3— ) =KF (ikyr) +2ik, =K} (ikyr) —8?—,1(, (ikir) +8=K5 (ikyr)
E r ¥ ‘2-."" - re -

D.2 Free-term b, ,,

The values of the free-term bf, xjm CXisting in the elastostatic (and elastodynamic) 6SBIE for
boundary collocation points are presented, see Equation (3.153).

1

B= g7y (D.11)
bil = % sin(f; — 6‘2J[ —4(v —1)cos(8; + 0,) + cos(30, + 6,) + cos(8; + 362)] (D.12)
xt‘:vim2 = —g [005(261) - 005(262)] [005(26‘1) + cos(26,) — 2v + l] (D.13)
bi]m = —g [005(26]) - 005(292]] [005(261) +cos(20,) — 2v + 3] (D.14)

:!)i”22 = —g sin(f; — 6‘2)[ —4(v—1)cos(@ + 0,) + cos(30, + 0,) + cos(0; + 392)] (D.15)
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ITS DERIVATIVES FOR ELASTODYNAMICS D
i B
bl = —5[005(26‘]) - 005(26‘2)] [COS(ZHIJ + cos(26,) — 2v + l] (D.16)
by, = g[-fw $in(26,) — sin(46,) — 4v sin(26,) + sin(482)] (D.17)
bi|22| = —g sin(d, — 0,) [ —=4(v—1)cos(0; +0,) + cos(30; + 0,) + cos(8, + 30,) (D.18)
bi]nz = g[cos(%") — 005(292)] [005(260 + cos(20,) — 2v + l] (D.19)
b;m = —g[cos(%}') - 005(262)] [005(26") + cos(20,) + 2v — l] (D.20)
bi‘:nz = —g sin(0; — 0,) [4(v — Dcos(0; + 6,) + cos(30, + 0,) + cos(0, + 36‘2)] (D.21)
By = g[ — 4vsin(26,) — sin(46,) + 4vsin(26,) + sin(492)] (D.22)
arf:vizl22 = %[cos(%ﬁ) - 005(292)] [005(21.‘?]) + cos(26,) + 2v — l] (D.23)
by, = —g sin6; — 6,) [4@ — 1) cos(B; + 0) + cos(36, + 0,) + cos(d + 392)] (D.24)
bizzjz = g [cos(26‘|) — 005(292)] [005(290 + cos(26,) + 2v — 3] (D.25)
: B
b5y = 5[005(26\) - 005(26‘2J] [005(29|) + cos(20,) + 2v — l] (D.26)
B, = gsin(ﬁ‘l - 92)[4(v — 1)cos(8; + 0,) +cos(30, + 0,) + cos(0; + 3.92)] (D.27)
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RAYLEIGH WAVES ON A PERMEABLE FREE-SURFACE | E

The Rayleigh waves are surface waves that exist when a half-space is in contact with the vac-
uum through its free-surface. For a half-space y < 0, three different cases can be considered
at the free-surface y = (: permeable (r{.jnj = 0, r = 0), impermeable (TU + réu)nj. =0,
(U; —u;)n; = 0) or partially permeable. In this work, only the permeable case is considered.

The potentials for the surface mode are composed by unknown functions R, = R,(y) and
a wave propagating in the positive x direction:

(p{. — Rgp}e—ik-kx, w(. —_ RES)Q—{'RRX (E].)

Once substituted into the governing equations, a set of four ordinary differential equations
are obtained. It can be converted into a fourth order equation in terms of R(P}, and a second

order equation in terms of R(IS}. The solution of the fourth order equation leads to:
R = P e*wn? 4 Py ek (E2)
RY) = Py efwnr 4 Py okwny = D, P, ekwnY 4 D, P, kv
A+ 2wk~ @ (B — QIRpy,) (E.3)

@’ (ﬁlz - QfRﬁzz)
where the wavenumbers kgp; are obtained from:

ke = £/ kg — ki (E-4)

being physically meaningful only those with Re(kgp;) > 0, i.e. those producing evanescent
displacements when y — —oo. The solution of the second order equation leads to:

D

J

RES} T Slekns}’ (ES)

RS = S,e"%7 = —p,/p,,ekrs” (E.6)

where the wavenumber kg is:

kgs = +1/ k. — k% (E.7)

being meaningful only that with Re(kgg) > 0. Therefore, the potentials are:
@, = (_Pneknpl}’ e inzekkpz}’) e'fka, W, = Siekksye‘fklz-“ (E.8)

At this point, displacements and stresses can be written as functions of three amplitudes ( P,
P, and 5) and the Rayleigh wavenumber k. Applying the permeable boundary conditions
T, = 0, T, = 0 and = = 0 to the free-surface at y = 0, one obtains the following set of three
equations:

[ - 2,u£kRkRP|]P” + [— 2mkkkm]g2 + [,u (2k2 - K2) ]S, -0
[2,uk§ - (N+0D,) kf,I]P” 4 [2,{¢k§ - (N +0D,) kéZ]Plz ¢ [2,ufkRkRS]S, =0 (E9)

[— (Q+RD,) k?,l]P” + [— (O + RD,) kf:z]f’m =0
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where N = A+ 2u + Q*/R. After some algebraic manipulations using the relationships be-
tween wavenumbers given by Eqgs. (2.21), (2.23), (E.4) and (E.7), the characteristic equation
associated with this homogeneous set of equations can be written in a similar fashion than
that of the elastic case [47, Eq. (5.95)]:

(2—r2)2—4\/1—rz(HQ\/l—Glrz—Hl l—Ggrz)sz (E.10)

where:

_ [u/(A +2p0)] k3 — k3, kg

r:k—, Hj-z k2 kz N Gj:k_z (E].].)
R P~ "p2 s

Eq. (E.10) is arranged in a new way which is more tractable than others previously obtained,
e.g. [215,216]. In fact, all terms are dimensionless, well behaved, and depend only on the
bulk wavenumbers and Lamé’s parameters. It is direct to verify that this equation collapse
into the elastic equation; if ¢ — 0, then kp; — 0, kpy — ko™ kg — k™' and (A+2u)/u —
(kglasliclk;lasliC)E.
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RESUMEN EN CASTELLANO F

Titulo de la Tesis Doctoral: Modelo acoplado de
elementos finitos y elementos de contorno para el analisis
dinamico de estructuras laminares enterradas:

F.1 Objetivos

El objetivo principal de la Tesis es la formulacion e implementacién de un modelo aco-
plado de Elementos Finitos (EF) y Elementos de Contorno (EC) para el andlisis dindmico
de problemas de interaccion suelo-estructura que implica a estructuras donde las hipétesis
laminares son validas.

Para llevar a cabo dicha tarea, se requieren dos desarrollos paralelos: a) el Método Dual de
los Elementos de Contorno, b) elemento finito tipo ldmina curva adecuada para los objetivos
del modelo. El modelo resultante debe ser capaz de llevar a cabo el andlisis the problemas de
propagacion de ondas de cardcter sismico en estructuras enterradas de tipo laminar, la res-
puesta dindmica de muros y estructuras de retencion, y la caracterizacion dinamica (impedan-
cias y factores de interaccion cinemadtica) de cimentaciones basadas en estructuras laminares.
La metodologia simplificada podria facilitar la etapa de pre-proceso dado que la geometria
detallada de la estructura laminar no se require. Asimismo, ello podria conllevar la reduccion
del numero de grados de libertad y, por consiguiente, de los recurso de computacion.

En el camino para alcanzar dichos objetivos principales, existe una serie de objetivos
parciales a considerar:

» Estudio de las bases tedricas necesarias: elastodindmica y poroelastodindmica lineal,
elementos de contorno y elementos finitos en problemas dindmicos, asi como los mo-
delos y programas desarrollados por el Grupo que servirdn de base para la consecucion
del objetivo propuesto.

» Formulacion e implementacion de un modelo acoplado EF-EC bidimensional para el
anilisis de estructuras laminares. Se pretende con ello ajustar las posibilidades de la
estrategia que se propone sobre un problema mas sencillo dimensionalmente.

» Extension del modelo a problemas tridimensionales. En primera fase, estudio del ele-
mento finito lAmina mas adecuado a los propositos del modelo.

* Desarrollo e implementacion de un cddigo de elementos de contorno basado en la
Formulacién Dual del Método. Formulacion e implementacion del modelo acoplado
EF-EC para problemas tridimensionales de propagacién de ondas en medios fluidos
y viscoelasticos. Aplicacion del modelo desarrollado sobre problemas patron y vali-
dacion de los resultados con los obtenidos de la aplicacién del modelo acoplado de

'En este apéndice se presenta un breve resumen en castellano de la Tesis Doctoral de entre 5 y 20 pdginas,
de acuerdo con la Resolucidén del Vicerrector de Coordinacién y Proyectos Institucionales de la Universidad de
Las Palmas de Gran Canaria de fecha 10 de febrero de 2017, relativa a los plazos de registro, depdsito y defensa
de las Tesis Doctorales desarrolladas en los Programas de Doctorado a extinguir, regulados por el Real Decreto
1393/2007 de 29 de octubre.

Instituto Universitario SIANI 245



F |~ RESUMEN EN CASTELLANO

elementos de contorno preexistente ya mencionado. Esta fase permitird calibrar el pro-
grama, estudiar su sensibilidad a los parametros del problema (geometria, frecuencia,
discretizacion, etc.) y establecer sus limites de aplicacion.

* Extension del modelo a la interaccion entre ldminas y medios de naturaleza poroeldstica
(modelo de Biot, [39]). Implementacion y validacion con el software disponible

* Aplicacion del modelo desarrollado al estudio de problemas de interaccion dindmica de
interés: difraccion de ondas sismicas por estructuras laminares enterradas (ello implica
la obtencion de la respuesta de la estructura: desplazamientos, esfuerzos y la influencia
sobre éstos de las caracteristicas del suelo o la presencia de estructuras cercanas), el
cdlculo de impedancias de cimentaciones resueltas a base de vasos de succion (muy
habituales estructuras off-shore), la respuesta sismica de estructuras/muros de conten-
cion, silos, etcétera, y, muy relacionado con el problema de difraccién mencionado al
principio, la evaluacion de la eficacia en el aislamiento de vibraciones (de cualquier
origen) en determinado emplazamiento, provocado por el enterramiento en cercanias
de estructuras de estas caracteristicas.

= Difusion de los resultados obtenidos en articulos y ponencias en congresos internacio-
nales de primer nivel.

F.2 Modelo DBEM-FEM

En este trabajo se propone un modelo dindmico simplificado fluido- y suelo-estructura
para el andlisis de estructuras laminares enterradas o sumergidas [28—30]. Este hace uso del
Método Dual de los Elementos de Contorno, o Dual Boundary Element Method (DBEM)
en inglés, que es mas comunmente usado para el andlisis de grietas, pero que este modelo
permite obtener un acoplamiento aproximado pero natural y directo de la estructura laminar
y del medio circundante. Véase Figura F.1.

La estructura laminar se modela con elementos finitos tipo [dmina basados en la degene-
racion del solido tridimensional. El bloqueo de cortante y membrana intrinsecos en este tipo
de elementos se evita usando la Interpolacion Mixta de Componentes Tensoriales, o Mixed
Interpolation of Tensorial Components (MITC) en inglés, propuesta por Bathe [93], que a su
vez también carece de modos espiireos.

El modelo resultante se ha denominado modelo DBEM-FEM, y ha sido desarrollado para
problemas bidimensional asi como tridimensionales, donde estructuras laminares, en general
curvas, pueden acoplarse con medios fluidos (fluido ideal), eldsticos o poroelasticos basados
en la teoria de Biot. Ello ha sido implementado sobre un cédigo basado en un cédigo BEM
multidominio desarrollado previamente por el grupo. Por tanto, este nuevo método enriquece
las habilidades ya existentes en el codigo.

La principal dificultad del modelo se sittia en el desarrollo de uno de los integredientes del
DBEM, esto es la Ecuacion Integral Hipersingular en el Contorno, o Hypersingular Boundary
Integral Equation (HBIE) en inglés. Para enfrentarnos a dicha ecuacion, hemos hecho uso de
las técnicas de regularizacion propuestas por Saéz, Gallego, Dominguez y Ariza [12, 60—
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Figura F.1: Vista explosionada del acoplamiento de un elemento de contorno tipo grieta con
un elemento finito tipo ldmina

62, 207], los cuales la aplicaron a problemas de potencial y eldsticos. Nosotros la hemos
extendido para tratar también medios porosos de Biot, cuya formulacion singular habia sido
propuesta previamente por Dominguez, Maeso y Aznarez [14, 15, 70, 74].

F.3 Sensibilidad geométrica usando el MEC

Se ha explorado también la extension del modelo para optimizacion de forma (geométri-
ca) basada en métodos de gradiente. El alcance de dicha investigacion se limita a modelos
bidimensionales, en donde sélo elementos continuos (no estructurales) han sido tratados. El
enfoque para el andlisis de sensibilidad haciendo uso del BEM se basa en trabajos previos
de Gallego, Sudrez y Rus [103-107], y son utilizados para la solucion de problemas multi-
dominio, como se vera en los siguientes apartados.

F.4 Problemas bidimensionales estudiados

F.4.1 Pantallas acusticas flexibles bidimensionales

Normalmente las pantallas acusticas se consideran rigidas. En este problem se estudia la
cudl es la relevancia de considerar la verdadera flexibilidad haciendo uso del modelo DBEM—
FEM propuesto. Para ello, se consideran cinco tipos de barrera, todos con la misma altura
efectiva, pero con diferentes configuraciones en la cabeza de la barrera: barrera simple, ba-
rrera doble, barrera en Y, barrera en U, y barrera en E. Asimismo, se consideran tres tipos de
materiales con propiedades tipicas. La Figura F.2 muestra resultados de pérdida por insercion
para las configuraciones estudiadas.
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X X

Figura F.3: Topologias de pantallas consideradas: zanja abierta (izquierda), pantalla o pared
enterrada (centro), y zanja entibada (derecha).

Figura F.4: Seccion de pared equivalente a una tablestaca

F.4.2 Pantallas de aislamiento de vibraciones bidimensionales en sue-
los porosos

En este problema se estudian distintos tipos de pantallas o barreras de aislamiento de vi-
braciones en suelos porosos: zanja abierta, pantalla o pared enterrada, y zanja entibada a base
de tablestacas; véase Figura F.3. Las secciones de las paredes se consideran en equivalencia
a tablestacas, véase Figura F.4.

F.4.3 Optimizacién geométrica de pantallas de aislamiento de vibra-
ciones

Se estudia la optimizacion geométrica de pantallas de aislamiento de vibraciones en suelos
eldsticos homogéneos. Se consideran hasta tres tipos de funciones objetivo dependiendo del
tipo de fuente: fuente a frecuencia fija, fuente con espectro relevante en un cierto rango de
frecuencias y fuente armoénica cuya frecuencia puede estar entre ciertos valores minimos
y méximos de frecuencia. Se considera asimismo una restriccion de cardcter econémico al
imponer un area (seccion) maxima de pantallas.

La Figura F.5 muestra los dos tipos de pantallas consideradas: pantalla simple, y pantalla
doble; asi como la configuracion de fuente y receptor. La Figura F.6 muestra los disenos
6ptimos de barreras dobles para fuentes pulsantes a una tinica frecuencia f°"', y también
muestra el espectro de pérdidas por insercion en un rango de frecuencias dado. Se observa
como la optimizacion produce disefios que maximizan la pérdida por insercion a la frecuencia
de la fuente.
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F.5 Problemas tridimensionales estudiados

F.5.1 Pantalla de aislamiento de vibraciones en suelos porosos

Este problema consiste en una pantalla de aislamiento de vibraciones curva y tridimen-
sional enterrada en un suelo poroso. La excitacion es una onda de Rayleigh, que incide en la
parte concava de la pantalla. El objetivo de este problemaes la verificacion y estudio del rango
de aplicabilidad del modelo DBEM-FEM tridimensional. Para ello los resultados the campo
cercano y lejano obtenidos con dicho modelo se comparan con resultados de un modelo BEM
multi-region. Se comparan varios espesores de la pantalla, asi como varias discretizaciones
de la misma.

LaFigura F.7 muestra un ejemplo comparando las mallas requeridas para el modelo multi-
region BEM vy para el modelo DBEM-FEM. A pesar de la aproximacién geométrica y fisica
que este modelo produce, los resultados muestran que es posible utilizarlo en programas de
difraccion para estructuras de esbeltez (longitud médxima / espesor) 5, e incluso utilizando
mallas gruesas.

F.5.2 Impedancias de vasos de succion en suelos porosos

Se estudian las impedancias de vasos de succion de diferentes relaciones de longitud y
didmetro, asi como distintas propiedades del suelo poroso saturado. Mientras que para los
suelos eldsticos el nimero de propiedades es reducido, para los suelos poroeldsticos mode-
lados con la teorfa de Biot es necesario definir multitud de propiedades. Por ello, se decidi6é
tomar propiedades de lecho marino realistas disponibles en la literatura [205]. Asimismo, se
tomo uno de éstos suelos y se estudio la influencia de la conductividad hidraulica en particu-
lar.

LLa Figura F.8 muestra una de las mallas usadas para los cdlculos, en donde se pueden
observar las distintas partes del modelo DBEM-FEM contemplado. En la figura, el dominio

, T e e
; @ Superficie libre: EC

M -\_\_"*‘_" I_ =N
£Superficie libre: E

X X
Suelo - pantalla: EC - EC acoplados Suelo - pantalla: EC grieta - EF ldmina acoplados
(a) Ejemplo de malla BEM multi-region (b) Ejemplo de malla con modelo DBEM-FEM

Figura E7: Pantalla tridimensional curva (las mallas incorporan simetria un medio con res-
pecto al plano xz)
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Figura E8: Descripcion de la malla del vaso de succion instalado (L/D = 1)

€4, correspondiente a la estructura laminar se ha desplazado de su localizacion real, que
es coincidente geométricamente con el contorno tipo grieta I, 4., para visualizar la idea
principal del modelo DBEM-FEM. En cuanto a resultados, la conclusion principal de este
estudio ha sido que la conductividad hidraulica influye de manera significativa en las distintas
impedancias, excepto en la impedancia de torsion.

F.6 Conclusiones y desarrollos futuros

En esta Tesis se ha desarrollado un modelo numérico simplificado pero riguroso y ven-
tajoso desde el punto de vista metodolégico y computacional para el andlisis dindimico de
estructuras laminares enterradas. Dicho modelo hace uso del Método Dual de Elementos de
Contorno, lo cual permite un acoplamiento natural y directo entre el suelo y el elemento finito
tipo lamina. De no utilizar la metodologia propuesta, seria necesario crear interfases artifi-
ciales [41]. El modelo ha sido usado en problemas de aislamiento de vibraciones asi como
en el célculo de impedancias de vasos de succion.

En la misma linea, se ha comenzado ha desarrollar dicho modelo para aplicarlo a pro-
blemas de optimizacién basados en informacion de tipo gradiente. Para ello se hace uso del
Meétodo de Elementos de Contorno para anilisis de sensibilidad geométrica. El resultado ob-
tenido en esta linea es un modelo BEM multi-region para su uso en andlisis de sensibilidad
geométrica o de forma. Este modelo ha sido usado para la optimizacion de pantallas de ais-
lamiento de vibraciones con éxito, resultando en mejoras significativas de las pérdidas por
insercion con respecto a las reglas de disefio mas habituales.

Dado que el modelo DBEM-FEM ha sido desarrollado para problemas bi- y tridimensio-
nales, para medios tipo fluido ideal, sélido eldstico y medio poroelastico de Biot, y ademds ha
sido integrado en el c6digo BEM multi-region existente en el grupo, el niimero de problemas
abordables por el grupo ha incrementado significativamente. Algunas de las lineas de trabajo
futuro que se plantean son:

» Corto plazo
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- Vasos de succion. El modelo DBEM-FEM puede directamente abordar diversos
problemas relacionados con vasos de succién y su aplicacion a aerogeneradores
marinos:

* Impedancias. Dado que para el apropiado disefio de los aerogeneradores ma-
rinos es necesario que los primeros modos estén localizados lejos de las prin-
cipales frecuencias de las excitaciones asociadas al oleaje y al viento [206],
es importante determinar correctamente las impedancias de la cimentacion.
Dado que los aerogeneradores marinos descansan fundamentalmente en un
medio poroeldstico por naturaleza, excepto si se trata quizds de un lecho ro-
coso, es necesario determinar ante qué condiciones es necesario utilizar pro-
piedades drenadas o no drenadas, en caso de utilizar un modelo elastico, o si
resulta ser importante usar un modelo poroelastico como el de Biot.
Factores de interaccion cinemadtica. Las recomendaciones y normativas ac-
tuales sugieren el andlisis sismico de los aerogenerados. Por lo tanto, es de
interés la determinacion de los factores de interaccion cinematica para diver-
sas configuraciones y propiedades.

Efecto de grupo. Los vasos de succion utilizado en el contexto de aerogene-
radores marinos han sido utilizados de dos maneras: utilizando un vaso de
succién de gran tamano, o bien utilizando tipicamente tres o cuadro vasos
mds pequefios conectados a un jacket.

— Campo incidente con dngulo de incidencia variable en medio poroeldstico estra-
tificado. Se propone la formulacion e implementacion de un campo incidente de
angulo de incidencia variable en medio poroelastico estratificado basado en traba-
joprevios como los de Lin etal. [195] y Feng et al. [210]. Ello permitiria analizar,
por ejemplo, el efecto que tiene el nivel fredtico sobre la respuesta dinamica de
las cimentaciones y por ende de las superestruturas.

— Grietas en medio poroso. Dado que para el desarrollo del modelo DBEM-FEM se
ha tenido que desarrollar el Método Dual de Elementos de Contorno para los me-
dios poroelasticos, resulta claro que se tiene una buena oportunidad para avanzar
en el andlisis de grietas en este tipo de medios. En particular, la variable de interés
es el Factor de Intensidad de Tensiones. Hay muy pocos trabajos en este campo,
en donde cabe destacar los trabajos de Phurkhao [211, 212]. En el momento en
el que se desarrollo la formulacion dual, se traté de reproducir los resultados de
Phurkhao sin éxito. Sospechamos que la causa puede estar en la definicion del
problema, ya sea en la definicion del factor the intensidad de tensiones, o bien en
el campo incidente utilizado.

* Medio plazo

— Optimizacion de pantallas de aislamiento de vibraciones Se propone incluir una
excitacion de cardcter mds general, como puede ser un campo incidente de ondas
de Rayleigh. Asimismo, estudiar las consecuencias en el proceso de optimizacién
cuando se varia el nimero y posicion de los receptores. Por iiltimo, se propone
estudiar el efecto de la estratigrafia.
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- Modelo BEM—-FEM para pilotes en medio poroso En la misma linea del trabajo de
Padrén [18], la disponibilidad ahora de la formulacion hipersingular para medios
poroeldsticos puede permitir la confeccion de un modelo pilote-suelo poroso.

— Publicacion de software en abierto. Se contempla la posibilidad de la publicacién
en abierto de software derivado del presente trabajo, ya sea en forma de librerias
y cédigo fuente, o en forma de ejecutables.
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