








ª AO OE LAS PALMAS OE GRAN CANARIA 
Instituto Universitario de Sistemas Inteligentes 
y Aplicaciones Numéricas en Ingeniería 

PÁGINA 1 / 1 

EDUARDO M. RODRÍGUEZ BARRER.A, CON DNI 437352427X. 
PROFESOR TITULAR DE UNIVERSIDAD Y SECRETARIO DEL 
INSTITUTO UNIVERSITARIO DE SISTEMAS INTELIGENTES Y 
APLICACIONES NUMÉRICAS EN INGEN IERÍA (SIANI) DE LA 
UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA, 

CERTIFICA 

Que el Consejo de Doctores del Instituto Universitario de Sistemas Inteligentes y 
Aplicaciones N uméricas en Ingeniería (SIAN~, en su sesión de fecha 8 de junio de 
2017, tomó el acuerdo de dar el consentimiento para la tramitación de la Tesis 
Doctoral titulada Modelo acoplado de Ele!!tenfos Finitos - Ele!!tenlos de Contorno para el 
análisis dinál!tico de estmctums la11Jinares enterradas, presentada por el doctorando D. 
J acob David Rodríguez Bordón, dirigida por el Dr. D. Juan José Aznárez González, 
a la vista de la idoneidad y calidad de su contenido, interés y relevancia del tema. 

Para que así conste, y a los efectos oportunos se expide el correspondiente 
certificado a 8 de junio de 2017. 

ID. DOCUMENTO mA'H FdW1ttoJet2W7zCVL $$ 
FIRMADO POR FECHA FIRMA ID. FIRMA 

43752427X EDUARDO RODA ÍGUEZ BARRERA 08/06/2017 
11 :01 :22 

MTlzNzg5 

Documento firmado d igitalmente. Para verificar la validez de la firma copie el ID del documento y acceda a/ Digitally 

signed document. To verity the validity of the signature copy the document ID and access to 

https://sede.ulpgc.es/VerificadorFirmas/ulpgc/VerificacionAction.action 





ª DAD DE LAS PALMAS 
DE GRAN CANARIA 

~ 
I NSTITUTO UN IVERS I TARIO 

SIQnl 
I NGENI ER IA COMPU T ACIONAL 

Coupled model of finite elements and 
boundary elements for the dynamic 
analysis of buried shell structures 

Jacob David Rodríguez Bordón 
NOMBRE 
RODRIGUEZ ~g;i~;,i~~~oe 

0AWl •NiF~221.'teY 

BORDON ~~~oi~~ 
JACOS DAVID !!'l.;:~~~A•.n. 
• NIF :,:: ... ~ª"'" .. """'º""ª 
4221 3493Y 

0JU2011.0&.1320U<M•O.jl)' 

Programa de doctorado 

Sistemas Inteligentes y 
Aplicaciones Numéricas en Ingeniería 

AZNAREZ Firmado d igitalmente 
porAZNAREZ 

GONZALEZ, GONZALEZ, JUAN JOSE 

JUAN JOSE (FIRMA) 
Fecha: 2017.06.13 Director: (FIRMA) 12,09,2s +-0,·oo· 

Juan José Aznárez González 

Las Palmas de Gran Canaria, June 2017 





To my parents and to María 
for their daily understanding, 
infinite patience and support. 





I hear and I forget. 
I see and I remember. 
Ido and I understand. 

Confucius 





Acknowledgements 

I am highl y grateful to my supervisor Prof. Juan José Aznárez for his constant encourage­
ment, advices, patience, support and for being sometimes a shoulder to cry on during these 
unforgettable years. lt would have been impossible to arrive at this point without his many 
"disquisiciones", which, in the end, are the core of this work. I am also highly grateful to 
Prof. Orlando Maeso for his invaluable advices, caring and support. Thank you for giving 
me the opportunity to be part of such an excellent research team. 

I wish to thank Prof. Luis A. Padrón for his encouragement, useful advices, support, and 
many conversations about almost everything. I would like to thank all the wonderful people 
I have had the pleasure to work with at our Continuum Mechanics and Structures Division, 
beginning from Prof. Francisco Chirino, Prof. José María Emperador, Prof. Fidel García, 
and continuing with Ariel Santana, Rayco Toledo, Cristina Medina, José María Zarzalejos, 
Guillermo Álamo, Francisco González, Lorenzo Baños, María Castro and Román Quevedo. 

I would also like to thank all the people involved in the SIANI University lnstitute for pro­
viding a very pleasant environment for work (and live). Especially Rafael Montenegro, José 
María Escobar, Gustavo Montero, David Greiner, Eduardo Barrera, Juan Ignacio González, 
Marina Brovka, José Iván González, Jabel Ramírez and Albert Oliver. 

I would like to deeply thank Prof. Geert Lombaert for allowing me to work alongside him 
and his research team at KU Leuven, and for his guidance and patience. I would also like to 
thank Prof. Mattias Schevenels and Cedric Van hoorickx for their support and advice during 
the stay. My initiation on gradient-based optimisation arose from this research stay. I would 
like to thank the Department, especially to my friends Manthos Papadopoulos and Dimitrios 
Anastasopoulos for such good moments. 

I would like to thank Prof. Subhamoy Bhattacharya for receiving and giving me the op­
portunity to be at his Department. I wish to thank Abhijith K. V., Daniele Cardente and loar 
Rivas for being a great support during my stay in Guildford. 

My sincere thanks to my friend Santiago Padrón. 
There is no way of expressing my gratitude to my parents, not only because they turned 

the light on, but they taught me a long time ago to keep it lighting against all odds. 
What can I say to María? Thank you for walking beside me. I love you. 

The author was recipient of the fellowship TESIS20120051 from the Program of predoctoral fel­
lowships of the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) 
of the Government of the Canary lslands from July 2013 until September 2014, and he is currently 
recipient of the research fellowship FPU 13/01224 from the Ministry of Education, Culture and Sports 
of Spain. He was also recipient of two research short stay grants EST14/00437 and ESTlS/00521 , 
both also from the Ministry of Education, Culture and Sports of Spain. 

This work was supported by the Subdirección General de Proyectos de Investigación of the Min­
isterio de Economía y Competitividad (M1NECO) of Spain and FEDER through research Projects 
BIA2010-21399-C02-01 and BIA2014-57640-R, and also by the ACIISI of the Government of the 
Canary lslands and FEDER through research Project ProID20100224. 

Las Palmas de Gran Canaria, June 2017. 
Jacob David Rodríguez Bordón 









CONTENTS ª'~ 
ri 

Contents iii 

List of Figures vii 

List of Tables xiii 

1 lntroduction and background 3 
1 .1 1 ntroduction 3 
1.2 Aims and objectives 5 
1.3 Framework. Research Project BIA2014-57640-R 6 
1.4 Published works derived from the Ph. D. Thesis 8 

1.4.1 Contributions in JCR journals 8 
1.4.2 Conference contributions 8 

1.5 Structure of the dissertation 9 

2 Dynamic model of buried shell structures 13 
2.1 1 ntroduction 13 
2.2 Basic equations 14 

2.2.1 Generalities 14 
2.2.2 Ideal fluid 14 
2.2.3 Elastic salid 16 
2.2.4 Biot's poroelastic medium 17 

2.3 Boundary Element Method for continua 19 
2.3.1 Boundary Integral Equations 20 
2.3.2 SBIE, HBIE and DBIEs for Biot's poroelastic media 21 
2.3.3 Discretisation, collocation techniques and integration 40 
2.3.4 Validation and convergence study 41 

2.4 Finite Element Method for shell structures 52 
2.5 DBEM- FEM model 53 

3 Two-dimensional dynamic model for shape optimisation 59 
3.1 lntroduction 59 
3.2 Optimisation 59 
3.3 Sensitivity analysis 60 
3.4 Parametrisation 62 
3.5 BEM applied to sensitivity analysis 64 
3.6 Generalities 65 
3.7 Laplace problem 68 

3. 7.1 8SBIE for non-boundary collocation points 68 
3. 7.2 8SBIE for boundary collocation points 70 
3.7.3 Discretisation, collocation techniques, integration and solution 76 

3.8 Helmholtz problem 81 
3.8.1 Ideal fluid 82 
3.8.2 Anti-plane elastodynamics 82 

Instituto Universitario SIANI iii 



,~ CONTENTS 
i 

3.9 Elastostatics 
3.9.1 8SBIE for non-boundary collocation points 
3.9.2 8SBIE for boundary collocation points 
3.9.3 Discretisation and solution 

3.1 O Elastodynamics 
3.11 Discretisation and collocation in multi-region problems 
3.12 Validation examples 

3.12.1 Ideal fluid problem 
3.12.2 Elastodynamic problem 

4 Numerical treatment of BEM integrals 
4.1 lntroduction 
4.2 Description of BEM integrals 
4.3 Evaluation of BEM integrals 
4.4 Integral of the Jacobian 
4.5 Weakly singular integrals 

4.5.1 Line integrals 
4.5.2 Surface integrals 

5 Application to wave barriers 
5.1 lntroduction 
5.2 Two-dimensional flexible noise barriers 

5.2.1 Complex noise barrier shapes 
5.2.2 Parametric study of a straight wall 

5.3 Two-dimensional wave barriers in poroelastic soils 
5.3.1 Open trench 
5.3.2 Simple barrier 
5.3.3 Open trench-wall 
5.3.4 Concluding remarks 

5.4 Three-dimensional wave barrier 
5.5 Optimisation of two-dimensional wave barriers 

5.5.1 Optimal single wall barriers 
5.5.2 Optimal double wall barriers 
5.5.3 Concluding remarks 

6 Application to bucket foundations 
6.1 1 ntroduction 
6.2 lmpedances of bucket foundations 
6.3 lmpedances of bucket foundations in elastic soils 
6.4 lmpedances of bucket foundations in poroelastic soils 
6.5 Final remarks and further research 

7 Conclusions 
7.1 Summary and conclusions 

83 
83 
85 
92 
96 
98 
101 
101 
103 

109 
109 
109 
116 
119 
122 
123 
126 

153 
153 
154 
154 
157 
162 
165 
165 
167 
169 
170 
174 
177 
184 
191 

195 
195 
195 
197 
199 
206 

211 
211 

iv Coupled model of FE and BE for the dynamic analysis of buried shell structures 



CONTENTS ª'~ 
ri 

7.2 Future research directions 212 

A Fundamental solution and its derivatives for Biot's poroelasticity 217 

B Decomposition of K,i(z) and ez functions 227 

C Vector identities used in the regularisation process 231 

D Decomposition of two-dimensional fundamental solution and its deriva-
tives for elastodynamics 235 

E Rayleigh waves on a permeable free-surface 241 

F Resumen en castellano 245 

Bibliography 257 

Instituto Universitario SIANI v 





LIST OF FIGURES ª'~ 
ri 

List of Figures 

1.1 Types of soil-structure mixed-dimensional models 5 
1.2 Types of foundation systems for offshore wind turbines 7 

2.1 Types of boundaries/ interfaces 15 
2.2 lntegration domain considered when x i E r 24 
2.3 Behaviour of sorne relevant geometrical terms near the collocation point 26 
2.4 lntegration domain when x i E r and risa crack-like boundary (exploded 

view) 32 
2.5 lntegration domain considered when x i E r 34 
2.6 Nodal Collocation (NC) versus Multiple Collocation Approach (MCA) for 

continuous Lagrange elements (a-e). NC for discontinuous Lagrange el­
ements (f-h). Red (singular integrals), orange (quasi-singular integrals) 
and yellow (non-severe quasi-singular integrals). 42 

2.7 Comparison between analytical and BEM numerical solutions 44 
2.8 Validation. Spherical cavity with r,(R

5
) = P and r(R

5
) = O (permeable). 45 

2.9 Validation. Spherical cavity with a,(Rs) = r,(Rs) + r(Rs) = P and U,(Rs) = 
u,(R

5
) (impermeable). 46 

2.10 Analytical solution of a sphere with Dirichlet B.C. (r,(R
5

) = O, u,(R
5

) = U) 
and Neumann B.C. (U,(R

5
) = U , r,(R

5
) = O) 47 

2.11 Spherical cavity with (impermeable B.C.). Case 8 = 0.01. 48 
2.12 Spherical cavity with (impermeable B.C.). Case 8 = 0.05. 49 
2.13 Spherical cavity with (impermeable B.C.). Case 8 = 0.15. 49 
2.14 Spherical cavity with (impermeable B.C.). Case 8 = 0.20. 50 
2.15 Spherical cavity with (impermeable B.C.). Case 8 = 0.225. 50 
2.16 Spherical cavity with (impermeable B.C.). Case 8 = 0.25. 51 
2.17 Spherical cavity with (impermeable B.C.). Case 8 = 0.30. 51 
2.18 Main hypothesis of the proposed DBEM- FEM model 53 
2.19 Exploded view of the BE- FE coupling 55 

3.1 Taylor's expansion of the shape parametrisation 63 
3.2 Taylor's expansion of the shape parametrisation 66 
3.3 lntegration path near boundary collocation points. Left: from the interior. 

Center: from the exterior. Right: criteria for angles 81 and 82 71 
3.4 Limiting behaviour of geometrical vectors around the collocation point 74 
3.5 Possible positions of a boundary element throughout a design mesh 77 
3.6 Boundary r k acting asan interface between BEM regions ni and Q j 99 
3.7 Problem layout (ideal fluid problem) 102 
3.8 Linear and quadratic meshes with L/4 and L/10 element sizes, and with 

and without a fictitious circular inclusion. 103 
3.9 Convergen ce of u 1 (L ) and 8u 1 (L ) for the ideal fluid problem 104 

Instituto Universitario SIANI vii 



,~ LIST OF FIGURES 
i 

3.10 Convergence of u1(L ) and 8u 1(L) for the ideal fluid problem (meshes with 
a fictitious circular inclusion) 104 

3.11 Problem layout 105 
3.12 Convergence of u 1(L ) and 8u 1(L ) for the elastodynamic problem 106 
3.13 Convergence of u1 (L ) and 8u 1 (L ) for the elastodynamic problem (meshes 

with a fictitious circular inclusion) 106 

4.1 Layout of the integration problem in the Boundary Element Method 11 O 
4.2 Colour maps of functions r 1, r 2 and f · d with a = 36º 112 
4.3 Behaviour of f · d along a straight element with end-nodes at (- 1, O) and 

(1 , 0). 113 
4.4 Behaviour off ·d along a quadratic curved element with mid-node at (O, O), 

and end-nodes at (- 1, - 0.2) and (1, - 0.2). 113 
4.5 Comparison between r 1, r 2, lfrP and sorne combinations of them along a 

straight element with end-nodes at (- 1, O) and ( 1, O). 114 
4.6 Comparison between numerical experiment results (salid lines) and esti-

mation provided by Equation (4.21) (dashed lines) 121 
4.7 Number of integration points N required for integrating J1n,- s1 with a pre-

scribed relative error e 125 
4.8 Degenerated mapping technique 127 
4.9 Subdivision pattern of triangular elements. The minimal subdivision pat-

tern is obtained as MTj = T2j _ 1 u T2j, J = 1, 2, 3. 128 
4.1 O Subdivision pattern of quadrilateral elements. The mini mal subdivision 

pattern is obtained as MTj = T2j _ 1 u T2j, J = 1, 2, 3, 4. 129 
4.11 Basic polar transformation 130 
4.12 Ouadratic quadrilateral elements used in the numerical experiment. Blue 

lines are ~1 and ~2 isolines. 138 
4.13 Required N P and N 9 for different locations of the collocation point ~ ¡. The 

integral is / 8 extended over the subdivision Sl = Tl of element POC, and 
evaluated by using the basic polar transformation. 139 

4.1 4 Required N 9 when integrating I A for plane elements with constant tangent 
vectors (PR1 , PR2, P01 , P02). Required N P is 1 in all cases (constant 
Jacobian J). 140 

4.15 Required NP and N 9 when integrating J A for elements POR, POC and OSS140 
4.16 Mapping of polar coordinates p and B to the physical space for elements 

P01 (a)-(b) and P02 (c)-(d) with collocation point ~ ¡ = (1/3 , 1/3). Blue lines 
are ~1 and ~2 isolines, and red lines are p and B isolines. 141 

4.1 7 Mapping of polar coordinates p and B to the physical space for elements 
POR (a)-(b) and POC (c)-(d) with collocation point ~ ¡ = (1/3 , 1/3). Blue 
lines are ~1 and ~2 isolines, and red lines are p and B isolines. 142 

4.18 Required N 9 when integrating / 8 for plane elements with constant tangent 
vectors (PR1 , PR2, P01 , P02). Required N P is 3 in all cases (constant 
Jacobian J). 143 

4.19 Required N P and N 9 when integrating / 8 for elements POR, POC and OSS 143 

viii Coupled model of FE and BE for the dynamic analysis of buried shell structures 



LIST OF FIGURES ª'~ 
ri 

4.20 Required N 9 when integrating l e for plane elements with constant tangent 
vectors (PR1 , PR2, P01 , P02). Required NP is 3 in all cases (constant 
Jacobian J). 144 

4.21 Required NP and N 9 when integrating l e for elements POR, PQC and QSS 144 
4.22 Required NP and N 9 when integrating 10 for element QSS 145 

4.23 Numerical error E and error estimation E for the integral J:.2 sin' B coss B dB 
for all pairs r , s from p = r + s = 1 to p= 6 (B2 - B1 = K/5) 147 

4.24 Comparison between required N 9 obtained from numerical experiment 
(left) and from error estimator e(N9, 6, B1, B2) (right) when integrating 1 A 148 

4.25 Comparison between required N 9 obtained from numerical experiment 
(left) and from error estimator e(N9, 12, B1, B2) (right) when integrating l e 149 

5.1 Noise barrier problem studied by Jean [192] (thickness not to scale) 155 
5.2 Comparison between results from Jean [192] and DBEM- FEM model 155 
5.3 Layout for studying complex sound barrier shapes 156 
5.4 S 1 L for different barrier shapes and materials 156 
5.5 1 L for different barrier shapes and materials 158 
5.6 Problem layout 159 
5.7 Average relative pressure differences between elastic case and rigid case 160 
5.8 First natural frequencies ratio éó/w1 161 
5.9 Comparison with Beskos et al. [186] 163 
5.1 O Wave barrier topologies. Left: open trench. Center: simple wall. Right: 

open trench-wall. 163 
5.11 Wall cross-section 164 
5.12 AY response for open trench dlw = 2 166 
5.13 AY comparison between open trenches with different dlw ratios (vs = 0.30) 167 
5.14 AY comparison between simple barriers with different dlh and hit ratios 

(</J = 0.20, b* = 0.2, vs = 0.30) 167 
5.15 AY comparison between simple barriers using the dimensionless area in 

abscissas (</J = 0.20, b* = 0.2, vs = 0.30) 168 
5.16 AY comparison between open trench and open trench-wall for different </J, 

dlw and lid ratios (b* = 0.2, vs = 0.30, dlh = 20, hit= 1) 169 
5.17 AY comparison between open trench and open trench-wall for different 

dlh, lid and hit ratios (</J = 0.20, b* = 0.2, vs = 0.30, dlw = 2) 170 
5.18 Curved wall barrier (models with one-half symmetry) 171 
5.19 Amplitude Reduction of horizontal (ARx) and vertical (ARz) salid displace­

ments along the free-surface at y = z = O. Rayleigh incident wave with 
unitary vertical displacements at f = 50 Hz. 172 

5.20 Displacements ux and uz, fluid equivalent stress r, and salid tractions tx 
and tz along the outer tace of the wall. Rayleigh incident wave with unitary 
vertical displacements at f = 50 Hz. 173 

5.21 Problem layout 176 
5.22 Studied wave barrier topologies located inside a design domain of 5 m x 

8 m (in orange) 176 

Instituto Universitario SIANI ix 



,~ LIST OF FIGURES 
i 

5.23 Optimal vertical and centered single wall barriers for single-frequency 
sources 178 

5.24 Comparison between three approximately similar local minima working 
with ditferent isolation mechanisms (JºP1 = 50 Hz, Amax = 12 m2) 179 

5.25 lnsertion loss spectra of three approximately similar local minima working 
with ditferent isolation mechanisms (JºP1 = 50 Hz, Amax = 12 m2) 179 

5.26 lnsertion loss improvement of optimized design (see Fig. 5.23) with re-
spect to typical designs (a3 = - ..1R(fºp1 ), a4 = AmaJ..1R(fºP1

)) for each target 
frequency ¡ opi 180 

5.27 Optimal vertical and centered single wall barriers for broadband sources 
(JºP1 = [20, 80) Hz) 181 

5.28 Etfect of increasing width or depth for the optimal vertical and centered 
single wall barrier for broadband sources (fºP1 = [20, 80) Hz, Amax = 12 m2) 181 

5.29 Optimal vertical and centered single wall barriers for harmonic sources 
within a frequency range (JºP1 = [20, 80) Hz) 182 

5.30 lnsertion loss improvement of optimized single wall barriers with respect 
to optimized base cases for each target frequency ¡ opi 182 

5.31 Optimal single wall barriers for single-frequency sources 183 
5.32 Comparison between I L color maps of optimized base cases (top) and 

optimized single wall barriers (bottom) for f ºP1 = 50 Hz (left) and f ºP1 = 74 
Hz (right) when Amax = 8 m2 185 

5.33 Optimal single wall barriers for broadband sources (JºP1 = [20, 80) Hz) 185 
5.34 Optimal single wall barriers for harmonic sources within a frequency range 

(JºP1 = [20, 80) Hz) 186 
5.35 lnsertion loss improvement of optimized double wall barriers with respect 

to optimized base cases for each target frequency ¡ opi 187 
5.36 Optimal double wall barriers for single-frequency sources 188 
5.37 Comparison between ditfracted displacement field and J L color maps of 

optimized base case (top) and optimized double wall barrier (bottom) for 
f opt = 26 Hz and A = 8 m2 189 max 

5.38 Comparison between I L color maps of optimized double wall barriers for 
f ºP1 = 50 Hz (left) and f ºP1 = 74 Hz (right) when Amax = 8 m2. Top: wall on 
the left hand side. Middle: wall on the right hand side. Bottom: double 
wall barrier. 190 

5.39 Optimal double wall barriers for broadband sources (JºP1 = [20, 80) Hz) 191 
5.40 Optimal double wall barriers for harmonic sources within a frequency range 

(JºP1 = [20, 80) Hz) 191 

6.1 Bucket foundation 196 
6.2 Comparison between Liingaard et al. [41] and the present approach. From 

top to bottom: normalized horizontal, vertical , rocking, and horizontal-
rocking coupling impedances. 198 

X Coupled model of FE and BE for the dynamic analysis of buried shell structures 



6.3 

6.4 

6.5 

6.6 

F.1 

F.2 
F.3 

F.4 
F.5 

F.6 

F.7 

F.8 

LIST OF FIGURES ª'~ 
ri 

lmpedances of bucket foundations with LID = 1/4 in poroelastic soi ls. 
From top to bottom: horizontal, vertical, rocking, and horizontal-rocking 
coupling impedances normalized with respect to the corresponding quasi-
static stiffness. 200 
lmpedances of bucket foundations with LID = 1 in poroelastic soils and 
corresponding undrained elastic soi ls (dashed lines) . From top to bottom: 
horizontal, vertical, rocking, and horizontal-rocking coupling impedances 
normalized with respect to the corresponding quasi-static stiffness using 
the poroelastic soil. 201 
lmpedances of bucket foundations with LID= 2 in poroelastic soils. From 
top to bottom: horizontal, vertical, rocking, and horizontal-rocking cou-
pling impedances normalized with respect to the corresponding quasi-
static stiffness. 202 
lmpedances (absolute value) of bucket foundations of different LID ratios 
installed in sandy soils 204 

Vista explosionada del acoplamiento de un elemento de contorno tipo 
grieta con un elemento finito tipo lámina 247 
I L (pérdida por inserción) para diferentes tipos de barreras y materiales 248 
Topologías de pantallas consideradas: zanja abierta (izquierda), pantalla 
o pared enterrada (centro), y zanja entibada (derecha). 249 
Sección de pared equivalente a una tablestaca 249 
Pantallas de aislamiento de vibraciones consideradas en un dominio de 
diseño de 5 m x 8 m (en color naranja) 250 
Diseños óptimos de pantallas dobles ante fuentes pulsantes a una fre-
cuencia dada f ºP1 para distintas áreas máximas Amax 250 
Pantalla tridimensional curva (las mallas incorporan simetría un medio 
con respecto al plano xz) 251 
Descripción de la malla del vaso de succión instalado (LID= 1) 252 

Instituto Universitario SIANI xi 





LIST OF TABLES ª'~ 
ri 

List of Tables 

2.1 Convergence of the BEM numerical solution for permeable (p) and imper-
meable (i) boundary conditions. 47 

4.1 Types of integrals of dimension m and Y,...,@ (r- 11
) [153- 155] 119 

4.2 Quadratic quadrilateral elements used in the numerical experiment 137 
4.3 Values of H = max ict2N f ldB2NI for f(B) = sinP B and f(B) = cosP B 147 

5.1 Materials for the barrier considered by Jean [192] 155 
5.2 Studied values of each dimensionless parameter 159 
5.3 Computation times for solving the wave diffraction problem 17 4 

6.1 Properties of seabed soils taken from Buchanan [205]. Top: poroelastic 
medium. Bottom: undrained salid. 203 

6.2 Quasi-static stiffnesses of the studied bucket foundations and seabed soils 205 

Instituto Universitario SIANI xiii 









INTRODUCTION AND BACKGROUND ~, 1 

1.1 lntroduction 

The role of mathematics, physics and engineering was, has been and will be crucial in the 
progress of the humanity. lt is fascinating to see that mathematics is able to describe the 
physical world, and that this description facilitates the construction and operation of many 
extraordinary devices, machines and infrastructures. The success has been such that we are 
now aware of our potential to change the environment on a global scale, and that such changes 
may be irreversible and can potentially put in danger the humanity. Therefore, we have been 
forced probably for the first time to set sorne limits and to adapt our progress. In this sense, 
governments through the United Nations Framework Convention on Climate Change have 
been taking actions towards the stabilisation of greenhouse gas concentrations. The respon­
sibility of the scientific community is hence to conduct research in this direction. 

Computers have allowed mathematics, physics and engineering to further materialise their 
power, particularly through numerical methods that allow to solve the governing equations 
of many problems. One of the major exponents in this regard is the Finite Element Method 
(FEM), which has a very rich history [l ] where, through the years, the collaboration of sci­
entists of many fields have produced a numerical tool that has been used to design most of 
the objects that we use everyday. Another important numerical tool is the Boundary Element 
Method (BEM), which share many ideas with the FEM, but it has its own rich history [2-4] 
and its own range of applications where it excels. In the field of computational mechanics, 
both numerical methods have been largely used alone [5- 7] but also in combination. The 
main advantage of the FEM is perhaps its versatility, as it can handle many problems includ­
ing continuum or structural members (beams/arches, plates/shells), geometrical and material 
nonlinearities and anisotropy. When unbounded regions are present, however, it requires the 
truncation of the domain discretisation, and, in the case of wave propagation phenomena, it 
additionally needs sorne devices that help to impose the Sommerfeld radiation condition [8]. 
0n the other hand, this is in fact the main advantage of the BEM, which, furthermore, only 
requires the discretisation of the boundary. Also, the BEM is capable of dealing with cracks 
in a very accurate and efficient manner. Therefore, they can complement each other in many 
applications. Already in 1977, Zienkiewicz et al. [9] recognised that the intrinsic merits of 
the BEM should be used together with the FEM in exterior and crack problems in order to 
combine the best of both worlds. 

The Continuum Mechanics and Structures Division has been working on the numerical 
solution of wave propagation phenomena in continua for more than 20 years . The Boundary 
Element Method has been used to tackle many diff erent problems of Mechanical and Civil 
Engineering. lt was introduced in the group by Professor José Domínguez, and this has al­
lowed having two- and three-dimensional BEM codes where multi-region problems involving 
regions of different nature can be handled. Related to the present thesis, it must be mentioned 
sorne previous works within the group: 

• Chirino and Domínguez [ 1 O] presented a procedure for the evaluation of dynamic stress 
intensity factors using the sub-regioning approach with traction singular quarter-point 
boundary elements. 
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1 INTRODUCTION ANO BACKGROUND 

• Emperador and Domínguez [11) used an axisymmetric boundary element formulation 
to obtain dynamic stiffness functions of rigid foundations. 

• In line with a previous work of Sáez et al. [12) for static problems, Chirino and Abas­
cal [13) conducted static and dynamic analyses of two-dimensional cracks using the 
hypersingular formulation, more commonly known as the Dual Boundary Element 
Method (DBEM). 

• Maeso, Aznárez and Domínguez [14, 15) analysed the seismic behaviour of arch dams 
by using three-dimensional multi-region BEM models, which are inspired in a previous 
two-dimensional approach for the analysis of gravity dams developed by Medina and 
Domínguez [ 16) . 

• Maeso, Aznárez and García [ 17) investigated the dynamic impedances of piles and 
groups of piles in saturated soils . 

• Padrón, Aznárez, Maeso, Medina and Santana [1 8- 22) studied the dynamic behaviour 
of piled structures by using a coupled model of finite elements (pile) and boundary el­
ements (soil). More recently, Álamo, Padrón, Aznárez, Maeso, Martínez-Castro and 
Gallego [23) enriched this model by using a multilayered half-space fundamental so­
lution. 

• Toledo, Aznárez, Maeso and Greiner [24,25) performed the optimisation of two-dimen­
sional thick and thin rigid noise barriers by using Genetic Algorithms and the DBEM. 

The present thesis is closely related to the work of Padrón et al. [20) in the sense that it 
gi ves a further step in the idea of modelling soil-structure problems by using a coupled bound­
ary element and structural finite element model, but where the structure is a shell instead of 
a beam (pile). Figure 1.1 shows a comparison between both soil-structure ideas, on the left 
hand side a fully detailed geometry of a pile and a wall, while on the right hand side each 
simplified approach. Such models are also called mixed-dimensional models since elements 
of different dimensions are coupled, typically structural elements with continuum elements. 

The key idea for the present soil-shell simplified model is using the DBEM to obtain the 
displacement and traction fields of the soil on both faces of the shell considered as a null­
thickness inclusion, and coupling these to shell finite elements at the mid-surface level. This 
model has been called DBEM-FEM model. 

4 Coupled model of FE and BE for the dynamic analysis of buried shell structures 
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(a) Soil-pile (Padrón et al. [20)) 
\ 

(b) Soil-shell (present research) 

Figure 1.1: Types of soil-structure mixed-dimensional models 

1.2 Aims and objectives 

The aim of the present research is to formulate and implementa coupled model of finite ele­
ments and boundary elements for the dynamic analysis of soil-structure interaction problems 
involving structures where shell hypotheses are valid. 

In order to do so, two parallel developments are required: a) formulations for the Dual 
Boundary Element Method, and b) shell finite element suitable for the purposes of the model. 
The resulting code should be able to perform the analysis of problems of seismic wave prop­
agation phenomena of buried shell structures, dynamic response of walls and retaining struc­
tures, and dynamic characterisation (impedances and kinematic interaction) of foundations 
based on shell structures. The simplified methodology would ease the pre-processing stage 
since a fully detailed geometry of the shell structure is not required. Also, this would lead to 
a reduction of the number of degrees of freedom and computational resources. 

On the path towards the achievement of the main objecti ves, there are a number of partial 
objectives to be considered: 

l. Study of the theoretical and practica! framework, which includes linear elastodynam­
ics and poroelastodynamics, conventional boundary elements and finite elements in 
dynamics, and the codes already developed by the Research Team. This provides a 
solid foundation for the steps ahead. 
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2. Formulate and implement the coupled model for two-dimensional problems. The aim 
at this stage is to assess the possibilities of the model in a more simple setting. 

3. Select the appropriate shell finite element for the purposes of the model, and formulate 
and implement it. 

4. Formulate and implement the Dual Boundary Element Method for three-dimensional 
wave propagation through ideal fluids and elastic solids. 

5. Formulate and implement the three-dimensional coupled model. 

6. Extension of the DBEM and the coupled model for Biot's poroelastic medium. 

7. Application of the developed model to the study of dynamic interaction problems in­
volving shell structures. These include the analysis of vibration isolation problems, as 
well as the dynamic response of bucket foundations, which are being used as founda­
tions of offshore wind turbines . 

8. Diffusion of research results to the scientific community in the form of publications in 
referred journals and international conferences. 

1.3 Framework. Research Project BIA2014-57640-R 

The present Ph. D. Thesis is currently part of the Research Project BIA2014-57640-R sup­
ported by the Subdirección General de Proyectos de Investigación of the Ministerio de Econo­
mía y Competitividad (MINECO) of Spain and the European Regional Development Fund 
(ERDF) or, in Spanish, Fondo Europeo de Desarrollo Regional (FEDER). The project is en­
titled "Advances in the development of numerical models for the dynamic characterisation of 
wind turbines". 

The support structures of wind turbines must be designed so that natural frequencies of 
the whole system are kept far enough from frequencies where the most important dynamic 
excitations are generated [26). These excitations arise from rotor, rotor blades passing in front 
of the tower, wind and, in offshore locations, sea waves . One of the system components that 
involve higher level uncertainties and simplifications is the soil-foundation part, mainly in the 
case of deep foundations. As the number of offshore and land-based wind farms increases, 
the probability of being forced to install wind turbines on poorer soils gets higher. Standard 
shallow foundations might be unsuitable in such soils, and hence deep foundations such as 
piles and buckets (also called suction caissons) [27) should be considered. This is particularly 
true for off shore wind turbines. Figure 1.2 shows sorne of the types of foundation systems 
(foundation and submerged structure) that are considered for the installation of offshore wind 
turbines for shallow (below 30 meters) and moderately (between 30 and 60 meters) deep 
waters. 

These facts explain the need for the development of computational models able to es­
timate, more accurately and efficiently than it is done today, the dynamic properties of the 

6 Coupled model of FE and BE for the dynamic analysis of buried shell structures 



(a) Gravity-based 

(d) Tripod on piles/buckets 

INTRODUCTION ANO BACKGROUND ~~, 1 r~)' 

(b) Monopile (c) Monobucket 

(e) Jacket on piles (f) Jacket on buckets 

Figure 1.2: Types of foundation systems for offshore wind turbines 

above-mentioned foundations types, which will contribute to the design of safer and more op­
timised wind turbine structures with longer service lifetimes (dueto lower fatigue loading), 
helping to reduce the cost per unit of energy. 

In order to make a contribution in this direction, the aim of the Research Project is the 
development of two computational models that will allow more accurate dynamic analysis of 
the two types of foundations mentioned above: 

1. A model for the dynamic analysis of pile foundations in layered soils, through the de­
velopment and implementation of a collocation methodology based on the integral for­
mulation of the problem for the soil and making use of an advanced three-dimensional 
fundamental solution for the layered half-space. 

2. A model for the dynamic analysis of buried thin flexible structures such as bucket 
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foundations, through the development and implementation of a dual formulation of 
the Boundary Element Method coupled to shell Finite Elements. 

Achieving the first goal will allow the analysis of pile foundations in stratified soils without 
the need for meshing any soil boundaries or domains, in such a way that only the piles them­
selves will be discretised, using beam finite elements. This will allow to tackle problems 
with complex stratigraphies that are computationally unapproachable using the formulations 
and codes developed so far by the research team. The second goal implies the formulation 
and implementation of boundary element codes that make use of a dual boundary element 
formulation, combining the standard singular boundary integral equation for viscoelastic and 
poroelastic media, with its hypersingular form. This allows the numerical treatment of prob­
lems involving thin inclusions with a reduced computational cost and improved accuracy. 

Both models will be used to contribute to the scientific knowledge related to the dynamic 
characterisation of wind turbine foundations, both land based and offshore in shallow and 
moderately deep waters. 

1.4 Published works derived from the Ph. D. Thesis 

A portion of the work done during the pastfour years have resulted in anumber of publications 
and communications. These are detailed in the present section. 

1.4.1 Contributions in JCR journals 

• J. D. R. Bordón, J. J. Aznárez, and O. Maeso. A 2D BEM-FEM approach for time har­
monic fluid-structure interaction analysis of thin elastic bodies. Engineering Analysis 
with Boundary Elements, 43: 19- 29, 2014 

• J. D. R. Bordón, J. J. Aznárez, and O. Maeso. Two-dimensional numerical approach 
for the vibration isolation analysis of thin walled wave barriers in poroelastic soils . 
Computers and Geotechnics, 71: 168- 179, 2016 

• J. D. R. Bordón, J. J. Aznárez, and O. Maeso. Dynarnic model of open shell structures 
buried in poroelastic soils . Computational Mechanics, (accepted), available online on 
April 2017 

• G. M. Álamo, J. D. R. Bordón, J. J. Aznárez, and O. Maeso. Relevance of soil-pile 
tangential tractions for the estimation of kinematic seismic forces: a Winkler approach. 
Bulletin of Earthquake Engineering, (under review), submitted on January 2017 

1 .4.2 Conference contributions 

8 

• J. D .R. Bordón, J. J. Aznárez, and O. Maeso. A 2D BEM-FEM model of thin struc­
tures for time harmonic fluid-soil-structure interaction analysis including poroelastic 
media. In V. Mallardo and M. H. Aliabadi, editors, Advances in Boundary Element 
and Meshless Techniques XV, pages 375- 382, Florence, Italy, 15- 17 July 2014 
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• J. D. R. Bordón, J. J. Aznárez, and O. Maeso. Three-dimensional BE- FE model of 
bucket foundations in poroelastic soils . In M . Papadrakakis, V. Papadopoulos, G. Ste­
fanou , and V. Plevris, editors, VII European Congress on Computational Methods in 
Applied Sciences and Engineering, Crete lsland, Greece, 5- 10 June 2016. ECCOMAS 

• G. M . Álamo, J. D. R. Bordón, F. García, J. J. Aznárez, L. A. Padrón, F. Chirino, 
and O. Maeso. Revisión de modelos numéricos para el estudio del comportamiento 
dinámico de cimentaciones profundas para el diseño y proyecto de aerogeneradores . In 
Proceedings of20th International Congress on Project Management and Engineering, 
Cartagena, Spain, 13- 15 July 2016 

1.5 Structure of the dissertation 

The dissertation is structured in seven chapters, where the first one is the present chapter and 
the lastone gives the conclusions and futureresearch. Given the relatively heterogeneous con­
tent of the dissertation, it has been chosen to give a literature review in each chapter rather 
than in this introductory chapter. The early chapters present the theoretical developments, 
then a chapter presenting sorne advances on the numerical treatment of boundary element 
integrals, and the last chapters contain the studied problems. The dissertation is comple­
mented by several appendices, where the last one is a summary in Spanish. A more detailed 
description is given in the following. 

The main contribution is presented in Chapter 2, where the coupled model of boundary 
elements and finite elements for dynamic analysis of buried shell structures is described and 
developed in detail. lt begins reviewing the governing equations of isotropic and homoge­
neous ideal fluids, elastic solids and Biot's poroelastic media, which constitute the considered 
types of surrounding medium for the shell structures. Then, the core aspects of the Boundary 
Element Method for continuum mechanics relevant to the present work are developed. In this 
sense, the Singular, Hypersingular and Dual Boundary Integral Equations for two- and three­
dimensional Biot's poroelastic medium are presented. Since the corresponding equations for 
ideal fluids and elastic solids can be considered as limiting cases of Biot's poroelasticity, 
these are not described in the text although they are used in sorne of the problems studied. 
The shell finite element formulation used for modelling the shell structure is described next. 
Once both ingredients have been described, the coupled model of boundary elements and fi­
nite elements (DBEM- FEM model) is presented. Finally, the boundary element formulation 
is validated and a convergence study of the singular and hypersingular formulations is per­
formed. The validation of the DBEM- FEM model is performed through several problems in 
Chapters 5 and 6. 

Chapter 3 collects the first steps to further develop the same idea for gradient-based shape 
optimisation. lt gives an introduction to the subject of gradient-based shape optimisation, 
and the role of shape sensitivity analysis . Then, the Boundary Element Method for shape 
sensitivity analysis of scalar and elastic media in a two-dimensional multi-region setting is 
described. The aim of this chapter is to describe this formulation, which is later used in 
Chapter 5. 
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Chapter 4 studies the problem of numerical integration in the context of the Boundary 
Element Method, and describes the strategies used in the present work. Sorne advances on 
the integration of weakly singular and nearly singular integrals are presented. 

Chapter 5 collects the study of several problems related to wave barriers . In the first place, 
a problem of flexible noise barriers is addressed, w hich makes use of the DBEM-FEM model 
in its simpler fashion. Several multi-edge noise barriers made of different materials are stud­
ied. Also, a parametric fluid-structure interaction study is performed in order to assess the 
relevance of using a fully coupled model in situations where simplifying hypotheses may be 
used. The second problem is the study of two-dimensional wave barriers in poroelastic soils . 
The eff ects of different poroelastic properties on the amplitude reduction ratio are studied for 
several wave barrier topologies: open trench, simple barrier and open trench-wall. The third 
problem is a three-dimensional curved wave barrier in a poroelastic soil, whose aim is study­
ing the applicability of the DBEM-FEM model regarding near- and far-field variables, and 
also its performance when compared to multi-region BEM models. Finally, the methodology 
developed in Chapter 3 is used for optimising single and double wall barriers in elastic soils . 

In Chapter 6, the three-dimensional DBEM-FEM model is used to study the impedances 
of bucket foundations. lt begins with a general overview of bucket foundations and its ap­
plicability to offshore wind turbines. Then, a comparison against already published results 
regarding impedances of bucket foundations in elastic soils is made. Lastly, the impedances 
of bucket foundations buried in several poroelastic soils are studied, and the relevance of the 
hydraulic conductivity in this problem is analysed. 

Finally, a summary with the most relevant conclusions derived from the present work is 
gi ven in Chapter 7. Also, a number of recommendations for future research in the short- and 
medium-term are pointed out. 

Following the main text, there are several appendices supporting the content of the main 
text with auxiliary material. In particular, the last appendix contains a summary of the dis­
sertation in Spanish. 

The document concludes with a section with the bibliographic references arranged by 
order of appearance in the main text. 
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2.1 lntroduction 

The Finite ElementMethod (FEM) and the Boundary ElementMethod (BEM) are well known 
numerical methods that can handle a wide variety of problems [5, 7). Nevertheless, there are 
problems where neither of those methods is capable of solving these problems in an efficient 
manner. The main advantages of the FEM are its versatility in handling a huge collection of 
problems that may include structural members (beams, arches, plates, shells), nonlinearities, 
anisotropy and many other aspects, and its ability to manage large-scale problems. However, 
when unbounded domains are present in a wave propagation problem, it requires a trunca­
tion of the volume mesh and the presence of sorne absorbing device that allow to impose the 
Sommerfeld radiation condition [8]. Although this has been acceptably solved by Perfectly 
Matched Layers [35), the BEM is more appealing as it requires only the discretisation of sur­
faces and it intrinsically satisfies the radiation condition. The BEM has other disadvantages 
such as a more involved mathematical formulation and implementation, and more memory 
and time computational complexity than the FEM. The latter disadvantage can be overcome 
by using different techniques such as the Fast Multipole Method [36), the Panel Clustering 
Method [37), or methods based on hierarchical matrices [38). 

In the presentresearch, both numerical methods are combined in order to efficiently solve 
two- and three-dimensional linear Fluid-Structure and Soil-Structure Interaction problems, 
where the fluid is ideal, the soil can be an isotropic and homogeneous elastic solid or a Biot 
poroelastic medium [39) , and the structure is an elastic shell structure immersed or buried in 
such types of surrounding media. 

A buried open shell structure is characterised by being in contact with the same surround­
ing region on both faces of the shell. On the other hand, a buried closed shell structure, such 
as a tunnel ora box-like structure, is in contact with diff erent regions on each side of the shell. 
In both cases, a conventional multi-region BEM approach can be used to deal with the soil 
and the structure, e.g. [6, 14, 17), but undoubtedly the structure would be more easily handled 
if treated by the FEM. In the case of closed shell structures, conventional multi-region BEM 
coupled with shell finite elements can be used [40). In the case of open shell structures, it 
can still be used by artificially transforrning them into closed ones. However, fictitious (non­
physical) interfaces must be created, see e.g. [41), unnecessarily increasing the number of 
degrees of freedom. In order to obtain a direct and efficient model, we propose a BEM- FEM 
model where the key idea is using the Dual BEM (DBEM) [42-44], which is more commonly 
used in crack analysis, to treat the interaction between the shell and its surrounding media. 
Thus, the proposed model is denoted as DBEM-FEM model. 

The rest of the chapter is organised as follows. In Section 2.2, the basic equations of the 
types of media considered in this work are described. In Section 2.3, the main aspects of the 
Boundary Element Method are described, and in particular, the Singular, Hypersingular and 
Dual Boundary Integral Equations for two- and three-dimensional Biot's poroelasticity are 
derived. The modelling of the shell structure is described in Section 2.4, and the DBEM­
FEM model is described in Section 2.5. 
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2.2 Basic equations 

In this section, the basic equations for the time harmonic analysis of mechanical wave propa­
gation phenomena in different types of continua are described. Since the derivation of these 
equations can be found in many references, a concise presentation is given. lt serves as a 
starting point regarding notation and general assumptions ornitted in the rest of the text in 
order to avoid repetition. 

2.2.1 Generalities 

Let Q ~ !RNd (Nct = 2, 3) be the domain (finite, semi-infinite or infinite) of interest where 
a mechanical wave propagation phenomenon is taking place. The symbol r denotes the 
boundary of the domain, i.e. r = an, and its orientation is defined by the outward unit 
normal vector n. In a more general setting, the domain Q is composed by NR regions 
Q = u:R1 n, 1 Q j n Q k = 0, J =fa k . Also, a set of N 8 boundaries/interfaces is defined 
B = { ~ 1 b = 1, .. . , N 8 1 ~ n r k = 0, J =fa k} . Thus, the boundary of each region n , can be 
defined from a subset B, ~ Basan, = UbeB, (±r b) 1 ~ n r k = 0,J =J k, where ±rb denotes 
the required positive or negative orientation of r b in order to have an outward unit normal 
vector with respect ton, . 

Figure 2.1 shows the types of boundaries and interfaces that are considered here. Figures 
2.1 a and 2.1 b depict an ordinary boundary and interface, respecti vely. In the former case, 
a Neumann, Dirichlet or Robin boundary condition must be imposed. In the latter case, a 
contact condition between both regions must be established, typically a welded interface ora 
smooth interface. Figures 2. lc depicts a crack where, given the small distance between both 
faces, edges can be collapsed (crack tip or front) and the geometrical location of both faces 
can be considered coincident when modelling it (crack bottom and top surfaces). Depending 
on the real physical situation, each face can be treated asan ordinary boundary where sorne 
boundary condition is established. On the other hand, there may be situations where both 
faces are treated as an interface where sorne contact conditions are defined. The DBEM­
FEM model proposed in this work exploits this peculiarity in order to give mass and stiffness 
to the crack by coupling these faces to a shell finite element. 

The mechanical behaviour of each region n , is modelled according to the materials from 
which they are made of, and the excitation levels, among others factors . In the present work, 
only linear models of fluids, elastic solids and porous media are considered, whose basic 
equations are described in the following sections. 

2.2.2 Ideal fluid 

The propagation of small-amplitude mechanical waves through a homogeneous compressible 
fluid with negligible viscosity and isotropic linear elastic behaviour (ideal fluid) is governed 
by the Helmholtz partial differential equation. The governing equations can be derived from 
physical principles, which is common in the field of Acoustics, see e.g. [45,46), but also from 
elastodynamics, see e.g. [47]. In the time domain, the governing equation can be written in 
terms of the dynarnic pressure p = p(x, t), which is defined positive in compression (aij = 
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Figure 2.1 : Types of boundaries/interfaces 

-p8¡¡), as primary variable: 

V 2 V X ' - 1 .. p- . - -p 
c2 

-r;, 

r;, -

(2.1) 

where X' = X '(x, t) is the body load vector, e = ~ is the wave propagation velocity, 
K I is the fluid bulk modulus and p is the fluid density. Assuming a time variation exp(iwt), 
where w is the circular frequency, then p = p(x, t) = p(x, w) · exp(iwt), and the time harmonic 
governing equation becomes: 

(2.2) 

where k = wlc is the wavenumber. In the following, exp(iwt) is omitted onwards when 
writing equations in the frequency domain for the sake of brevity. Likewise, variables should 
be understood as position and frequency dependent. The stress-strain relationship is: 

(2.3) 
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where U = U (x, w) is the fluid displacement. The secondary variable can be chosen as the 
pressure flux q = q(x, w): 

dp 
q = Vp· n = - · 

iJn 

oras the normal displacement U
11 

= U,¡(x, w): 

u = _1_ap 
11 pw2 iJn 

(2.4) 

(2.5) 

The solution of a boundary value problem containing an ideal fluid region requires ap­
propriate boundary and interface conditions resulting in a well-posed problem. These are 
given in terms of prescribed pressures p (Dirichlet boundary conditions), pressure fluxes q or 
normal displacements U

11 
(Neumann boundary conditions), or relationships between pressure 

and pressure flux q = q(p) or normal displacements U
11 

= U¡¡(p) (Robin boundary conditions ). 
Also, if the region is in contact with another region, an interface contact condition must be 
defined. In the case two ideal fluid regions are in perfect contact, say Q

5 
and n, are in contact 

through an interface r b, the interface conditions at ~ are: 

Compatibility: u Cr) · n Cr) = u Cs) · n Cs) ~ U~r) = -U~s) 

Equilibrium: - p(r)n (r) - µCs )n (s ) = O ~ µCr ) - µCs ) = O 

(2.6a) 

(2.6b) 

The first condition establishes equal normal displacements of both regions throughout the 
interface, and the second condition establishes the equilibrium of tractions. 

2.2.3 Elastic salid 

The propagation of small-amplitude mechanical waves through an isotropic, homogeneous 
and linear elastic solid is governed by Navier's system of partial differential equations, which 
can be written in the time domain as [47]: 

µV2u + (,1 +µ) V (V · u)+ X = pü (2.7) 

where u = u(x, t) is the displacement vector (primary variable), X = X (x, t) is the body 
load vector, A and µ are respectively Lamé's first parameter and Lamé's second parameter (or 
shear modulus), and pis the density. The stress-strain relationship (Hooke's law) is: 

(2.8) 

where aij is the stress tensor and eij = (ui,j + uj)/2 is the strain tensor. The traction vector 
t¡ = aijnj is the secondary variable. Assuming a time variation exp(iwt), the time harmonic 
governing equation becomes: 

µV2u + (,1 +µ) V (V · u)+ X= -pw2u (2.9) 

This equation can be decoupled via Helmholtz decomposition (displacement potentials) [47], 
or taking divergence and curl of the equation and expressing them respectively in terms of 
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dilation e = V · u and rotation m = V x u, see e.g. [48]. Decoupling process gives rise to one 
scalar and one vector wave equation, which, in the absence of body loads, can be respecti vel y 
written as: 

V 2e + kie = Ü 

V 2m + k;m = Ü 

(2.10a) 

(2.10b) 

where kp = wlcp is the wavenumber of the scalar wave equation governing the propagation 

of irrotational/dilatational P (primary) waves which have phase velocity Cp = y(J. + 2µ)/p , 

and ks = wlcs is the wavenumber of the vector wave equation governing the propagation of 

divergence-free/equivolumial S (secondary) waves which have phase velocity es = yµlp. 
These are the two types of body waves present in this type of medium. 

The solution of a boundary value problem containing an elastic solid region requires 
appropriate boundary and interface conditions that produce a well-posed problem [48, 49). 
Boundary conditions are given in terms of prescribed displacements u (Dirichlet boundary 
conditions), tractions t (Neumann boundary conditions), or even an impedance kind of rela­
tionship between tractions and displacements t = t (u) (Robin boundary conditions). If the 
region is in contact with another region, an interface contact condition must be defined. In 
the case two elastic regions are in contact, say n, and Q

5 
are in contact through an interface 

~ . the bonded or welded interface conditions at ~ are simply: 

Compatibility: u (r) = u (s) 

Equilibrium: t Cr) + t Cs) = O 

(2.1 l a) 

(2.llb) 

In the case an elastic region n, and an ideal fluid region Q 5 are in contact through an interface 
~ . interface conditions at rb are: 

Compatibility: u (r) · n Cs) = u Cs) 

Equilibrium: t Cr) - µCs)n (s ) = O 

2.2.4 Biot's poroelastic medium 

(2.12a) 

(2.12b) 

The theory of poroelasticity presented by Biot [39) is able to model the propagation of small­
amplitude mechanical waves in a two-phase medium consisting of an elastic solid frame sat­
urated by a compressible viscous fluid. The governing equations in the time domain for the 
isotropic case can be written as: 

µV2u + V [N (V · u)+ Q (V ·U)]+ X = p 11 ü + p 12Ü + b ( ú - ú) 

V [Q (V · u) + R (V · U)] + X' = p 12ü + p22 Ü - b ( ú - Ú) 
and the stress-strain relationships as: 

rij = oij [(N - µ)(V · u)+ Q (V · U)]+µ ( ui,j + uj,¡} 
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r = Q (V · u) + R (V · U) (2.14b) 

where N = ..1 + µ + Q2/R, i , j 1, ... , N ct, u; and r ij are respectively the displacements 
and stresses of the solid phase, U; and r the displacements and equivalent stress of the fluid 
phase, and X and X' the body loads of solid and fluid phases. The material properties ..1 and 
µ are the Lamé's parameters of the solid phase, Q and R are the Biot's coupling parameters, 
bis the dissipation constant, and p 11 = (1 - <MPs + Pa, p 12 = - p a, P22 = <PPr + Pa, being 
</J the porosity, Ps the solid phase density, Pr the fluid phase density, and Pa the additional 
apparent density. The dissipation constant bis related to the hydraulic conductivity k by the 
relationship b = Prg</J2/k, where gis the gravitational acceleration [50). The fluid equivalent 
stress is related to the dynamic pressure by r = - </)p. Assuming a time variation exp(iwt), 
Equations (2.13a-2.13b) become: 

µV2u + V [N (V · u)+ Q (V · U)]+ X = -w2 (P 11 u + P 12U) 

V [Q (V · u)+ R (V· U)]+ X' = -w2 (¡3 120 + P22U) 

(2.15a) 

(2.15b) 

where ¡3 11 = p 11 - iblw, ¡322 = p22 - iblw and ¡3 12 = p 12 + iblw. By considering the Helmholtz 
decomposition: 

u = V QJ 1 + V X l/11 

U = V QJ2 + V X t¡12 

(2.16) 

(2.17) 

and considering null body loads, two decoupled sets of two equations are obtained from 
Equations (2.15a-2.15b): 

{ 
(N + µ) V 2

QJ 1 + QV 2
<P2 = -w2 

(P11 <P 1 + P 12 <P2) 
<P1' <P2 2 2 2 ( A A ) QV <P 1 + RV <P2 = -w P 12 <P 1 + P22 <P2 

(2.1 8) 

{ 
µV

2
l/f1 = -w2 

(P11 l/11 + P 12l/12) 
l/11, l/12 o 2 ( A A ) = -w P 12l/11 + P22l/f2 

(2.19) 

The first set is related with a irrotational/dilatational P (primary) displacement field due to 
scalar potentials QJ 1 (solid phase) and QJ2 (fluid phase), and the second set with a divergence­
free/equivolumial S (secondary) displacement field dueto vector potentials t¡11 (solid phase) 
and t¡12 (fluid phase). If aplane wave propagating along +x I is considered QJ; = P; exp(-ikpx1 ), 

then P modes are obtained from: 

(2.20) 

where wavenumber kp is obtained from the characteristic equation: 

kp = ± 
(2.21) 
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where two of the solutions are relevant incoming waves (Re(kp) > 0). Hence, two P modes 
exist: the wavenumber associated with the fastest wave speed is kp1, while the wavenumber 
associated with the slowest wave speed is kP2 . If a plane wave propagating along +x1 is 
considered l/f; = S; exp(-iksx 1 ), then the S mode is obtained from: 

S S { [a/ fi11 - k;µ) S1 + w2fi 12S2 = O 
), 2 2A s 2A s o 

úJ P 12 1 + úJ P22 2 = 
(2.22) 

and the wavenumber ks is obtained from the characteristic equation: 

ks = ±W 
A A2 /A 
P 11 - P12 P22 

µ 
(2.23) 

where only one solution is a relevant incoming wave (Re(k5 ) > 0). Biot theory of poroe­
lasticity was experimentally confirmed by Plona [51 , 52), who detected P2 waves for the first 
time. 

The solution of a boundary value problem containing a Biot poroelastic region requires 
the appropriate boundary and interface conditions that lead to a well-posed problem. The con­
ditions for solution uniqueness were derived by Biot [53) and Deresiewicz and Skalak [54], 
which lead to a set of possible boundary and interface conditions . Despite there has been sorne 
debate [55 , 56) regarding the validity of interface conditions formulated by Deresiewicz and 
Skalak [54) , these remain valid and hence widely used. Boundary and interface conditions 
vary from open-pore (permeable) to closed-pore (impervious or impermeable), and also the 
intermediate case of partially open pores . 

2.3 Boundary Element Method for continua 

The Boundary Element Method is nowadays used in many areas of the industry where its 
advantages are exploited. The effort of numerous researchers and developers has allowed 
the BEM to be a well established methodology [2-4]. In particular, the BEM is widely used 
in Noise Propagation and Soil-Structure Interaction problems [6, 7), where the presence of 
unbounded domains is very naturally treated. 

The main ingredients of the BEM are the Boundary Integral Equations (BIE), which, after 
a proper discretisation, are used to build a solvable linear system of equations where often 
only boundary values are unknown. BIEs can be obtained from severa! starting points, typi­
cally from a weighted residual formulation of governing equations or directly from reciprocity 
relationships [6, 7, 57). Then, the solution of the governing equation for a point load (collo­
cation point), i.e . the fundamental solution or Green's function, allows removing domain 
integrals. Sorne domain integrals remain when body loads are involved, but they can later 
be transformed into boundary integrals by using the Dual Reciprocity Method [58). Since 
detailed derivations of Singular BIEs for the types of media considered in this work can be 
found elsewhere, e.g. [6, 7 , 59), the starting point in the present text is directly the Singular 
BIE for interior collocation points. In particular, we discuss the regularisation of the Singu­
lar BIE and the derivation and regularisation of the Hypersingular BIE when the collocation 
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point is a boundary point, for two- and three-dimensional Biot's poroelastic medium. We 
use the approach of Sáez, Gallego and Domínguez [12, 60) in 2D and Ariza, Gallego and 
Domínguez [6 1,62) in 3D, who solved the regularisation for potential and elastic problems. 
Our final goal is obtaining the Dual BIEs [42] for Biot poroelasticity, which are used for 
treating crack-like boundaries and eventually in the proposed DBEM-FEM model. 

2.3.1 Boundary Integral Equations 

Let xi E Q be an interior collocation point, then a Boundary Integral Equation relates the 
value of a variable f (dynamic pressure, displacement, strain tensor or other meaningful one) 
at the collocation point xi, i.e. f i = f (xi), as a function of the val u es of primary and secondary 
variables along boundaries r = an, and, if present, body loads throughout the region Q: 

f i = j ( ... ) ctr + fn e ... ) ctn (2.24) 

In this case, the evaluation of the BIE usually presents no major mathematical difficulties 
since all boundary integrals are non-singular and Riemann integrable despite their integrands 
actually contain singular functions (the fundamental solution and derivatives). When proper 
body loads are present, i.e. volume loads in 3D problems or surface loads in 2D problems, 
domain integrals are singular but Riemann integrable (at least in the range of BIEs treated in 
this work). When the collocation point is an exterior point (xi ~ Q), the Boundary Integral 
Equation simply relates the values of primary and secondary variables along boundaries r , 
and, if present, body loads throughout the region Q: 

o = j ( ... ) ctr + fn ( ... ) ctn (2.25) 

When the collocation point is near the boundary ( distance(xi, r) « 1 ), numerical difficulties 
related to the accurate evaluation of boundary integrals appear because singularities are near 
the integration domain. This is further discussed in Chapter 4. When the collocation point is 
a boundary point (xi E r), boundary integrals contain singularities which may lead to non­
Riemann-integrable integrals. Solving this difficulty is usually the crucial step in any BEM 
formulation. This process is commonly called regularisation, and there are many techniques 
to address it. Tanaka, Sladek and Sladek [63) offer a comprehensive review (up to 1994) 
about regularisation techniques . 

The term "Boundary Integral Equation (BIE)" is often accompanied by sorne adjectives 
or prefixes that try to emphasise sorne aspects of it and to be self-explanatory. However, 
the terminology may sometimes be confusing and not consistent, hence sorne discussion is 
given here. Probably, the most widespread adjectives are related to the most severe kind 
of singularity the BIE can have: weakly singular (or regularised) BIE, strongly singular (or 
Singular) BIE (SBIE), and Hypersingular BIE (HBIE). Other widespread prefixes refer to 
the variable associated to the BIE: Displacement BIE (DBIE) or u-BIE, flux or Traction BIE 
(TBIE) or q-BIE , tangential flux or traction BIE or q,-BIE, and others . There is a somewhat 
widespread convention in the BEM community, although it is not always consistent. The 
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SBIE corresponds to the BIE related to the primary variable (potential, displacement), and, 
since it is the most used one, it is also often called Conventional BIE (CBIE). The HBIE 
corresponds to the BIE related to the secondary variable (normal flux, normal traction). Note 
that this convention holds despite the actual BIE is not singular or hypersingular when the 
collocation point is an interior point. In this sense, it seems more appropriate to use the 
variable of the BIE as a prefix. Nevertheless, the convention (SBIE, HBIE) is assumed in the 
present work. 

By differentiating the SBIE with respect to the coordinates of the collocation point, it is 
possible to build other BIEs that allow obtaining other variables of interest at the collocation 
point. A very important one is the BIE obtained after applying the constitutive law, which 
allows obtaining the secondary variable, i.e. the HBIE. Another useful one is the HBIE for 
calculating the tangential flux or traction [64- 66). 

Both the SBIE and the HBIE can be used together in order to overcome sorne difficulties 
that may appear if only the SBIE or the HBIE is used. When using the SBIE or the HBIE to 
solve sorne exterior problems, the uniqueness of the solution is notguaranteed, and it turns out 
that this happens at the resonant frequencies of a complementary interior problem. A solution 
of this issue was offered by Burton and Miller [67) , which proposed to add appropriately 
the SBIE and the HBIE to build a new kind of BIE which guarantees uniqueness. Another 
difficult situation arises when dealing with a region that have a nearly or totally degenerate 
geometry which endoses very small orno area or volume. This is the situation of crack-like 
geometries, where exclusively using the SBIE or the HBIE lead to linear system of equations 
with very bad conditioning, or even singular in the case of a completely degenerate geometry, 
i.e. an idealised crack-like boundary. This is due to the relative closeness or even identical 
locations of collocation points along the degenerate geometry. For idealised crack-like, it was 
Hong and Chen [42] who apparently first proposed the simultaneous use of the SBIE and the 
HBIE for solving this degeneracy, leading to a new pair of BIEs called Dual BIEs (D BIEs ). 
This is achieved because both are linearly independent, and hence, despite the primary and 
secondary variables of both crack faces are geometrically coincident, the same number of 
unknowns and linearly independent equations is obtained. 

2.3.2 SBIE, HBIE and DBIEs for Biot's poroelastic media 

In the contextofBiot poroelasticity, several BIEs have been proposed [68- 73), which, among 
other aspects, differ from each other in the selection of the variables . The pore pressure pis 
often used instead of the fluid equivalent stress ( or fluid partial stress) r, being both related 
by r = -</>p. Likewise, the specific fluid flux q = -</>(ú - Ú) or the specific normal fluid 
flux q

11 
= q · n is often used instead of the fluid displacements U or the normal displacement 

U
11 

= U · n. The choice is a matter of preference or convenience. 
The Singular BIE (SBIE) proposed by Domínguez [70) is especially advantageous here as 

it uses a reduced set of four variables (fluid normal displacement U,¡, fluid equi valent stress r, 
solid displacements u and solid tractions t) that leads to simple coupling equations, as it will 
be seen later in Equations (2.134-2.135). Domínguez [74] presented the corresponding BEM 
for two-dimensional problems, while Maeso et al. [14, 17) extended it for three-dimensional 
problems. Another advantage is that, as done in [17) , the fundamental solution can be written 
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in a way that resembles the fundamental solutions of acoustics and elastodynamics, which 
eases later developments by identifying similar terms . In fact, this strategy is particularly 
useful in this work for presenting fully regularised two- and three-dimensional Hypersingular 
BIE (HBIE) and Dual BIEs (DBIEs) for Biot poroelasticity valid for curved elements. 

The regularisation process of these is an application of the developments done in the works 
of Sáez, Gallego and Domínguez [12) for the two-dimensional problem and Domínguez, 
Ariza and Gallego [61) for the three-dimensional problem, which deal with potential and 
elastic problems. The two-dimensional procedure explicitly reduces all strongly singular and 
hypersingular line integrals to regular integrals and analytical terms by using a careful in­
terpretation of sorne geometrical terms. The three-dimensional procedure explicitly reduces 
all strongly singular and hypersingular surface integrals to weakly singular surface integrals 
and line integrals by making use of sorne specific vector identities and the Stokes' theorem. 
Unlike the approach of Guiggiani et al. [75 , 76), itis all performed in the physical space rather 
than in the reference space. For three-dimensional Biot poroelasticity, we must mention the 
work of Messner and Schanz, who had already presented a regularised HBIE for collocation 
BEM [72] and Galerkin BEM [73) following a similar philosophy. 

2.3.2. 1 Two-dimensional problem 

Singular Boundary Integral Equation Let Q be a given region, and r = an its boundary 
with outward unit normal n. Using the weighted residual formulation proposed by Domínguez 
[74), the SBIE for a collocation point xi ~ r can be written as: 

where body loads have notbeen considered, and indices/, k = 1, 2 with Einstein's summation 
implied after performing matrix operations. The scalar 8h takes the value 1 if the collocation 
point is an interior point (xi E Q ~ 8h = 1 ), whereas it is zero if the collocation point 
is an exterior point (xi ~ Q u r ~ 8h = 0). The parameter J = l/(p22oi) depends on 
medium properties and frequency. The primary variables (field variables) are fluid equivalent 
stress r = r(x,w) and solid displacements uk = uk(x,w), and the secondary variables (field 
variables derivatives) are the fluid normal displacement Un = U,¡(x, w) = Uknk and solid 
traction t1 = t1(x , w) = r 1knk . In particular, the primary variables at the collocation point 
are denoted with the superscript i (ri = r(xi,w), u~ = uk(xi,w)). Unlike in Domínguez 
[74) , variables are arranged according to their mathematical role rather than by their physical 
meaning. The SBIE can be written in a more concise form as: 

(2.27) 

where here the vector u contains all the primary variables, while t contains all the secondary 
variables. The fundamental solution matrix U* was obtained by Domínguez [74] using the 
Kupradze procedure [49) for the full-space (infinite domain) problem, and it is written in a 
very compact form. However, in order to ease the developments done here, we follow the 
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approach of Maeso et al. [17) of writing the fundamental solution separately in a way that 
resembles fundamental solutions of acoustics and elastodynamics: 

" i e r10 = -- r 1 2nJ · 

(2.28) 

(2.29) 

(2.30) 

(2.3 1) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

where r = lx - xil is the distance between collocation and observation points, k1 = kp1, 

k2 = kP2, k3 = ks, J = l/(p22úi), Z = p1if p22 , and K
11 

(z) is the modified Bessel function of 
the second kind, order n and argument z . By doing so, the fundamental solution matrix U* 
and derivatives are composed by four submatrices: 00, Ok, lO and lk; where the first index is 
associated with the load and the second index with the observation, being O associated with 
the fluid phase and /, k with the solid phase: 

(2.38) 

The diagonal submatrices 0 00 and 07k are essentially similar and have the same kind of sin­
gularities as those of acoustics and elastodynamics problems, respectively. Therefore, their 
treatmentis fundamentally the same. On the other hand, the off-diagonal submatrices q;k and 
070 associated with the coupling between phases are different, and they have one lower order 
of singularity than the diagonal submatrices, as it will be seen later in this section. Using 
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. . . . . . . . . . . . 
(a) Circular burnp / lirnit from the interior (óh = 1): (b) Circular hole / limit from the exterior (óh = O): 
(xi E Q) --+ (xi E f') (xi ~ Q u f') --+ (xi E f') 

Figure 2.2: Integration domain considered when xi E r 

Eqs. (2.14a), (2.14b) and (2.15b), the fundamental solution matrix T* is obtained from: 

U"00 + J X '."n . = - J r 00" .n . - Zu0" .n . 
n J J ,Ji Ji 

t~k = [ ,1u~111,,,/\j + µ ( u~k.j + u~j.k ) ] nj + ~ r~ nk 

u;,0 = - Jr1~.jnj - Zu7j nj 

t~k = [ AU~111•111ókj + µ ( u~k.j + u~j.k ) ] n j + ~ r1~nk 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

where final results after performing the operations can be seen in Appendix A. So far, the 
SBIE (2.27) for interior or exterior collocation points has been described. lt is commonly used 
ata post-processing stage, where it is used to calculate the values of the primary variables at 
the collocation point ( r i, u~) once the solution throughout the boundary is known. 

At this point, we are able to pose the SBIE for a boundary collocation point xi E r . If 
in Equation (2.27) the collocation point is taken to the boundary (xi ~ r), integrals become 
singular. In order to handle this, it must be further developed by considering an augmented 
integration domain r around the collocation point, which is taken as the following limit: 

(2.43) 

where r s is a portion of the r that contains the singularity, r R is the complementary part of 
r s, ei is portion of r s centred at the collocation point with radius e, and r i is an are with 
radius e centred at the collocation point. The are can be oriented to the outside (circular 
bump) orto the inside (circular hole) with respect to Q . In the former, the collocation point 
is an interior point (ó~ = 1), while, in the latter, it is an exterior point (ó~ = 0). This can be 
visualised in Figure 2.2, where a general angular point is considered (r(xi) E <&º). Integrals 
over r R do not contain any singularity and hence they do not require further treatment. On the 
other hand, integrals over the integration domain under the limit, i.e. crs - ei) + r i, requires 
that functions f multiplying the singular term 1/r must be Holder continuous f E <&º·ª [77). 
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Therefore, a zero-order Taylor expansion of primary variables at the collocation point ( r, uk) 
is required: 

r = ri + @(r) 

uk =u~ + @(r) 

(2.44a) 

(2.44b) 

Such requirement is not only physically mandatory, but also needed for the regularisation of 
the SBIE, in particular for sorne integrals of T ". For the integration over (r s - e¡) + r ¡, the 
limiting forms of U* and T " as r ~ O should be carefully handled. Considering a circular 
bump, the only non-null integrals over the are r i are: 

lim (U* + JX'"n .)r dr = J -r• ¡ !::,.() . 

e->O+ nOO J J 2:n 
(2.45) 

f i 

-+ - i 
lim t" U dr = - 2:n 8:n (1 - V) 8:n (1 - V) U I 

[ 

t::.B sin ( 202 ) - sin ( 2() 1 ) cos ( 202) - cos ( 2() 1 ) ] 

, ~o· [ " ' _ cos (202) - cos (20i) M _ sin (202) - sin (20i) { uJ 
8:n( l -v) 2:n 8:n (l -v) 

(2.46) 

where () 1 and 02 are respectively the initial and final angles of the are such that O < !::.() < 2:n 
with !::.() = 02 - 0 1, and v = . .V(2(A +µ))is the drained (solid ske leton) Poisson's ratio. If 
a circular hole were considered, these integrals only differ in minor details. In both cases, 
once these integrals (with the appropriate sign) are substituted in Equation (2.27) for 8~ = 1 
(circular bump) or 8~ = O (circular hole), the same result is obtained: 

[ JOcbo ? ] u¡ + / T"u dr + lim / T"u dr = / U"t ctr + lim / U"t ctr (2.47) 
c1k e->O+ e-,O+ 

fR f S-ei fR f S-ei 

where cbo = 1 - !::.B/(2:n) is the classical free-term of potential problems, and c)k is the free­
term of elastic problems resulting from subtracting the matrix in Equation (2.46) from 81k, 

which was first obtained by Ricardella [78). In the particular case of a smooth boundary at 
the collocation point (r(xi) E ~ 1

), these simplify to cbo = 1/2 and c)k = 81/2. 
Considering now the integrals over r s-ei, it can be seen that all of them are at most weakly 

singular, except sorne integrals related to t~k that are strongly singular. These are the only ones 

requiring analytical treatment, which can be done by first segregating the problematic part t~?) 
from the rest: 

(2.48) 

where µ = µ!(A.+ 2µ) . Taking into account that the unit tangent vector t and the unit normal 
vector satisfy n = (n1,n2) = (t2 , -t1), it is possible to write [12): 

(2.49) 
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Q x before x i Q x after x i 

ar r ( ar )i 
ar = -;: · t < o, ar = - l 

ar r ( ar )i 
ar = -;: · t > o, ar = 1 

ar r 
-=-· n ~Oasr~O an r 

ar r . - . = - - · n1 ~ O as r ~ O 
an• r 

n · ni ~ 1 as r ~ O 

Figure 2.3: Behaviour of sorne relevant geometrical terms near the collocation point 

where e1k is the two-dimensional Levi-Civita symbol (e11 = e22 = O, e12 = - e21 = 1). 
By using the Taylor expansion of solid displacements, Equation (2.44b), the corresponding 
strongly singular integral is turned into a regular integral and an analytical term: 

e1k (ln r82 
- ln r 81

) u~] (2.50) 

where r 81 and rs2 are the distances from the collocation point to respectively initial and final 
extremes ofrs, see Figure 2.3. By substituting this resultinto Equation (2.47), the regularised 
SBIE for a boundary collocation point can be written as: 

where Ci is the free-term matrix from Equation (2.47). Usually, the SBIE is written more 
concisely by hiding the details and using the Cauchy Principal Val u e integral notation (f ): 

(2.52) 
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Hypersingular Boundary Integral Equation The HBIE is obtained by building the sec­
ondary variables at the collocation point from Equations (2.13b) and (2.14 ), which requires 
the SBIE (2.26) and its derivatives with respect to the collocation point (D,k = ao iax~): 

(2.53) 

(2.54) 

where n i is the unit normal at the collocation point. After perforrning all the operations, the 
HBIE for an interior or exterior collocation point can be written as: 

or more concisely: 

(2.56) 

Analogously to the SBIE, here the secondary variables at the collocation point are denoted 
with the superscripti (U,; = Un(xi, w ), t~ = t k(xi, w)), and t i = t (xi, w) gathers both secondary 
variables. The matrices D* and S* can be found in Appendix A. lt is used for calculating the 
values of the secondary variables at the collocation point (U,;, t~) ata post-processing stage. 

The process of taking the collocation point to the boundary (xi ~ r) is essentially similar 
to the process followed for the SBIE. Differences lie in the severity of singularities, which lead 
to up to hypersingular integrals, and in the requirements that these impose. Hypersingular 
integrals require that first derivatives of functions f multiplying the singular term llr2 must 
be Holder continuous, i.e. f E ~ 1·ª [77). Under such circumstances, primary variables at 
the collocation point adrnit a first-order Taylor expansion: 

(2.57) 

(2.58) 

where here r.~ and u ~,j should be understood as tangential gradients on r (xi). An alternative 
way or writing this expansion is: 

(2.59) 

(2.60) 

where (aO!ar); = (aO!ar)J(ar!ar);, see Figure 2.3. The case of a geometrically smooth 
boundary point is considered here, i.e. r i a semicircular are, although non-smooth points 
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could be considered ata considerably greater analytical cost, see Man tic [79) for the potential 
case. Considering a circular bump, the non-null integrals over the are r i are: 

(2.6 1) 

l. f d " ctr [2,f +µ(3,1-µ) i <;: A+3µ ( i i ) 
lffi lktk = um m0 k1· + µ uk · +u · k + 

e-,o+ 4(,1 + 2µ) ' 4(,1 + 2µ) ·1 1• 
r ; 

l. / " ctr J Í ( 1· 1 ) J Í i 1m s00r = --r 1m - - -r
1
.n

1
. 

-~ K -~ € 4 ' 
(2.63) 

r ; 

(2.64) 

l. / ,, ctr 1 Q µ Í i 1m s10r = -- r n1 e-,O+ 2 R A+ 2µ 
(2.65) 

r ; 

1. / " ctr [ µ ( A + µ) ¡ <;: A + µ ( ¡ ¡ ) ] ¡ <;: 1m s,kuk = - ummºk1· + µ uk . + u . k n1·º 1k-
e ... o+ 4(,1 + 2µ) · 4(,1 + 2µ) ·1 1• 

r ; 

where Taylor expansions (2.58-2.57) has been used, as well as the limiting forms of D" and 
S" as r ~ O. Substituting these results back into Equation (2.56), the HBIE apparently turns 
to be unbounded: 

/ 
D"t ctr + lim / D"t ctr (2.67) 

e-,O+ 

fR f S-e; 

where: 

(2.68) 
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The integration over r s - e¡ is more involved that in the case of the SBIE. The integrals 
related to d~, d~k and d1~ are at most weakly singular, and thus no further analytical treatment 
is required for them. On the other hand, sorne of the integrals related to d,: are strongly 
singular, but fortunately their treatment is very similar to those of t~k of the SBIE, see Equation 
(2.50). In this case, the problematic part d;?) segregated from the rest is: 

- r ni - r ni 
d * - d *(W) + !!:_ ,/ k ,k I - d *(W) + d *(S) 

lk - lk 2:n r - lk lk (2.69) 

where the only difference with respect to (?) is that unit normal components are those at the 
collocation point rather than at the observation point. By adding and subtracting unit normal 
components at the observation point from those at the collocation point, it is possible to write: 

(2.70) 

where now all integrals are regular. The integrals related to s~k and s~0 contain terms that lead 

to strongly singular integrals. lt is possible to segregate the problematic terms s~ks) and s~cis) 
from the rest as: 

(2.7 1) 

(2.72) 

The key for regularising the corresponding integrals is using an expansion of r k and n · ni 
as r ~ O from each side of the singularity [12). By examining Figure 2.3, it is possible to 
establish that: 

(ar)¡ · 
r,k = ar t~ + @(r) 

n · ni = 1 + @(r2) 

(2.73) 

(2.74) 

where t~ is the unit tangent vector at the collocation point, and (ar/ar)¡ = lim, ... 0 arlar= ± 1 
which sign depends on the side of the observation point. By using these expansions, and 
taking only the zero-order part of expansions shown in Equations (2.57- 2.58), it is possible 
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to obtain the following regularised integrals: 

}~W+ / ~ ((!~Y -:~) t~ ctr+ t~ (lnrs
2 

- lnrs
1
) )u~] (2.75) 

r s-ei 

lim / ! ((ar)¡ - ar) ri ctr + ri (1nrs2 
- lnrs1

) )r¡] (2.76) 
e-,o+ r ar ar / / 

r s-ei 

which consist only of regular integrals and analytical terms. The regularisation of integrals 
related to s;'io and s~k is more involved because they lead to hypersingular integrals. In this 
process, the key is the term 1ar1ar¡ and its geometrical interpretation from Figure 2.3. The 
following Taylor expansion can be considered [12): 

l!~I =cos a= 1 +@ (a2
) = 1 +@ (r2

) (2.77) 

where a ex: ras r ~ O. In the first place, the problematic part in s;'io is segregated as s~H): 

,, *CW'> J n · ni »(W) »(H) 
soo = Soo + 2n--;::¡- = Soo + Soo (2.78) 

Recalling expansions shown in Equations (2.74) and (2.77), and the expansion of r shown in 
Equation (2.59), it is possible to obtain: 

lim / _!_ 1 ar 1 (r - r i - (ªr ) ¡ r) ctr - ( -
1 

+ _l ) r i+ 
e-,O+ r2 ar ar r Sl r S2 

fS- ei 

(1nrs2 
- lnrs1

) - + -r1 lim - = M + -r1 lim -( ar ) i ] J . ( 1 ) (Hb) J . ( 1 ) 
ar 1C e-,O+ € O 1C e-,O+ € 

(2.79) 
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In the case of s~k' the problematic part s ~t) is obtained after sorne manipulation of its static 
part, as done in [12) for the elastostatic case, and it turns out to be similar to that of s~: 

,, _ *(W) + 2µ(,1 + µ) 
8 

n . ni _ ,, (W) + *(H) 
s,k - s,k A+ 2µ lk , 2 - s,k s,k (2.80) 

Therefore, following a similar procedure as before, but taking into account that the integral 
contains u k rather than r, it is possible to obtain: 

/ 11ª'1 ( . (ªuk)i ) (1 l) · lim - - u k - u• - - r ctr - - + - U
1 + 

e-.O+ r2 ar k ar ,SI r S2 k 
r s-e; 

Substituting results from Equations (2.70), (2.75), (2.76), (2.79) and (2.81), leads to a fully 
regularised HBIE: 

-
2
1
I~t¡ + / S"udr + lim / 

e-.O+ 
fR fS - e; 

/ D"t dr + !~~ ¡ D *(W)t dr + { L1S) } (2.82) 
fR f S-e; 

because unbounded terms from Equations (2.79) and (2.81) cancel out with the term from 
Equation (2.68). Usually, the HBIE is written more concisely by hiding the details and us­
ing the Cauchy Principal Value integral notation (/) and the Hadamard Finite Part integral 
notation (f ): 

.!1~ti + iS"udr = i D*t ctr 
2 r r 

(2.83) 

Despite the CPV and HFP concepts are the underlying abstractions behind the regularisation 
of the SBIE and the HBIE, the process proposed in [ 12, 6 1] does not rely on them sin ce it deals 
explicitly with the singularities and directly gives the finite parts by analytically cancelling 
out all unbounded terms, as it has been shown in this case. Nevertheless, this notation is 
convenient for the sake of clarity. 
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ni+ = - ni- = ni 

_º_r_s_-.. -_ ei_-__ r __ ;-~;: t.;-____ n_+-1=- n--... , -w-~- ó .. 

Q 

Figure 2.4: Integration domain when x i E r and risa crack-like boundary (exploded view) 

Dual Boundary Integral Equations The SBIE and HBIE previously derived are valid for 
interior and exterior collocation points, and collocation points located at ordinary boundaries . 
In order to incorporate crack-like boundaries in a problem, their own distinctive features must 
be conveniently addressed. The corresponding BIEs are called Dual BIEs [42) , and their 
application to the BEM is usually called the Dual BEM [ 43, 44]. 

A crack-like boundary is composed by two sub-boundaries, denoted as positive + and 
negative - faces . Hence, the integration domain associated with a crack-like boundary can 
be divided into these two faces, which are geometrically coincident but have opposite orien­
tations, see Figure 2. l c . One of the faces is taken as the reference for the crack-like boundary 
considered as a whole, in our case it is the positive face. This means that any integral over 
one of the faces only diff ers in sign with respect to the same integral over the opposite face 
depending on the sign changes of the kernels (U ' , T", D" and S") with respect to n and ni . 

Therefore, the previous developments have already solved the mathematical difficulties when 
taking the SBIE and HBIE to a crack-like boundary. In this case, the only thing left to do 
is to define the augmented integration domain around the collocation point. The considered 
augmented integration domain is depicted in Figure 2.4, and can be expressed as: 

(2.84) 

The limit is taken from the exterior (from inside the crack void), and the arches surrounding 
the collocation points are semicircular holes on each face. The resulting Dual BIEs are: 

! 1~ ( ui+ + ui- ) + i T"u dr = ( U"t ctr (2.85) 
2 r lr 
! 1~ (ti+ - ti- )+ is"u dr = i D"t ctr (2.86) 
2 r r 

where it has been assumed that r (xi) E ~ 1 for both equations . In these equations, (ui+, ti+) 
are the primary and secondary variables of the positive face at the collocation point, and 
conversely for (ui- , ti- ). Therefore, ata given collocation point we have four variables, from 
which tractions are typically null in elastic crack analysis . lt is hence clear that neither the 
Dual SBIE (2.85) nor the Dual HBIE (2.86) is able to give independently enough conditions . 
Therefore, both BIEs must be simultaneously used in order to have the same number of equa­
tions as unknowns [42]. 
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2.3.2.2 Three-dimensional problem 

The development of Singular, Hypersingular and Dual BIEs for the three-dimensional prob­
lem follows the same path, although it is more involved. Thus, sorne steps in the process are 
reduced or skipped. 

Singular Boundary Integral Equation Using the weighted residual formulation proposed 
by Domínguez [17, 70), the SBIE ata collocation point xi ~ r can be written as: 

8i l i ui+ ( T"udr = fu"tdr l xi~ r ,8i = {º x:~ nur (2.87) 
0 s lr lr O 1 x• E Q 

All terms are similar to the two-dimensional case, with the obvious difference that funda­
mental solution matrices U" and T " are different and /, k = 1, 2, 3. The fundamental solution 
matrices U" and T" are fully described in Appendix A. When the collocation pointis a bound­
ary point (xi E r), the integrals contain a singularity, and thus the integration domain is taken 
as the following limit: 

(2.88) 

where r s is a portion of the r that contains the singularity, r R is the complementary part of 
r s, ei is a circular surface of r s with radius e centred at the collocation point, and r i is a 
spherical surface with radius e centred at the collocation point. The spherical surface can be 
oriented to the outside (spherical bump) orto the inside (spherical hole) with respect to Q. 
In the former, the collocation point is an interior point, while, in the latter, it is an exterior 
point, see Figure 2.5. After carrying out the integration over the spherical surface r i, both 
alternatives lead to the same SBIE: 

[ JOcbo ? ] ui + / T"u dr + lim / T"u dr = / U"t dr + lim / U"t dr (2.89) 
c,k e ... o+ e ... o+ 

fR fS- ei fR f S- ei 

For a collocation point located ata general non-smooth boundary point, the free-terms cbo and 
c)k can be obtained from the closed analytical formulas provided by Mantic [80), being cbo the 
potential free-term, and c)k the elastostatic free-term with drained properties. The integrals 
over r R are regular. The integrals over r s - ei are at most weakly singular, except an integral 
associated with t~k that is strongly singular. The fundamental solution t~k can be decomposed 
in such a way that the term that leads to the strongly singular integral is isolated from the rest: 

" *(W) µ r,1nk - r,knl = t"(W) + t"'(S) 
t,k = t,k + 4.n r2 lk lk (2.90) 

where µ =µ/(J.+ 2µ) . Thus, by using Equation (C. l ) and the Stokes' theorem, the strongly 
singular surface integral is tumed into a weakly singular surface integral and a nearly singular 
line integral over As = ar 8: 

(2.91) 
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where e1kj is the Levi-Civita symbol, ej is the unit vector along xj axis, and t is the unit tangent 
vector at the observation point. Finally, the regularised SBIE for a boundary collocation point 
can be wri tten as: 

(2.92) 

Hypersingular Boundary Integral Equation The HBIE is built by establishing the sec­
ondary variables at the collocation point: 

t i _ i i _ [ 1 i <;: + ( i + i ) ] i + Q i i 
1
-r

1
.n . - AU

111111
u11. µ u

1
. u .

1 
n

1
. -rn

1 J J , ,1 J, R 

(2.93) 

(2.94) 

where Z = p1if p22 , n i is the unit normal vector at the collocation point, and the comma 
derivative notation denotes aiax~. Hence, Equations (2.93-2.94) require a combination of 
the SBIE and its derivatives with respect to the coordinates of the collocation point. This 
fact imposes that the primary variables at the collocation point must have continuous first 
derivatives, i.e. r(xi), uk(xi) E ~ 1. After carrying out all the required operations, the HBIE 
ata collocation point x i ~ r can be written as: 

(2.95) 

where the fundamental solution matrices D" and S" are fully written in Appendix A. 
When the collocation point is a boundary point, it is again necessary to take the inte­

gration domain presented in Equation (2.88). The case of a geometrically smooth boundary 
point is considered here, i.e. ei is a circle and r i a hernisphere. Non-smooth points could 
be considered, as shown in Mantic [79) for the potential case, but this is considerably more 
difficult. Given that r(xi), uk(xi) E ~ 1

, the primary variables admit the expansion: 

(2.96) 

(2.97) 

where r.~ and u~.j must be understood as tangential gradients on r (xi). By using these ex­
pansions and considering a spherical bump (Figure 2.5a), the integration over r i lead to the 
following integrals: 

(2.98) 
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r / ,, ctr [ 15J.2 +2µ(8J. - 2µ) i 8 6J.+ 16µ ( i i ) 
e~VJ. d ,kt k = 30(). + 2µ) u m,m kj + 30(). + 2µ)µ u k,j + u j,k 

r ; 

3). + 2µ Q i ~ ] i ~ (2 99) 
+ 6(). + 2µ) R r º kj n j u lk . 

l. / ,, ctr 1 J Í ( 1. 1) 1 J . Í 1m s00r = - -
2 

r 1m - - -
3 

r
1
.n

1
-

e ... o+ e-,O+ € ' 
(2.100) 

r ; 

(2.101) 

(2.102) 

r / " ctr- [2µ(7J.+2µ) i º 9J.+14µ ( i i )] ¡º 
e~VJ. s,ku k - - 30(). + 2µ) um,m kj + 30(). + 2µ) µ u k,j + u j,k n j lk 

r ; 

where only non-null integrals are shown. Once these integrals over r i are obtained, they can 
be substituted back into Equation (2.95), leading toan apparently unbounded HBIE: 

( D"t ctr + lim ( D"t ctr (2.104) J fR e-,O+ J rs- e; 

where: 

(2.105) 

The integral over r s - e¡ in the right hand side of Equation (2.104) is essentially similar to 
that of the left hand side of Equation (2.89). The term of d ;k leading to the strongly singular 
integral can be treated in a similar way: 

- r n i - r n i 
d " = d * (W) + ..!:!:_ ,/ k ,k I = d " (W) + d *(S) 

lk lk 4.n r 2 lk lk 
(2.106) 
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where the regularised integral associated with d;¡8) is: 

(2.107) 

The integral over r s - ei associated with S" in Equation (2.104) is much more complicated. 
The integrals associated with s~ and s~k are hypersingular, while the integrals associated with 
s~k and s~0 are strongly singular. For the latter integrals, s~k and s~0 can be split up into a term 
leading to weakly singular integrals at most, anda term leading to strongly singular integrals: 

(2.108) 

(2.109) 

The integrals associated with s~ks) and s~cis) are both similar in nature, and can be regularised 
by using Equation (C.3) and the Stokes' theorem: 

r ,1 ( n · ni) ( .) 
2 

r - r 1 ctr+ 
r 

The hypersingular integrals associated with s~ and s~k can be treated in a similar way. The 
fundamental solution s~ can be split up in order to isolate the term leading to the hypersin­
gular integral: 

*(W) J n · ni ,,(W) *(H) 
s" = s + --- = s + s oo oo 4.n r3 oo oo (2.112) 
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The hypersingular integral associated with s~H) can be regularised by using Equations (2.96), 
(C.2) and (C.3), and the Stokes' theorem: 

In order to treat the integral associated with s~k' it is split up into three parts: a part leading to 
weakly singular integrals at most, a part leading to a hypersingular integral basically similar 
to Equation (2.113), anda part leading to a much more involved hypersingular integral: 

(2.114) 

where .X = . .V(...t + 2µ). The regularisation of the hypersingular integral associated with s~t' ) 
gives: 

M1(HJ ) = µµ8 ,ku~ ( }~?J. ~) + ,:: 2µ8¡k [}!~+ / n ;ti ( uk - u~ - u~/¡ ) dí+ 

f S-ei 

(
. / 3oror . /(rxni)· t J i 

- hm . - 3 -;--. dí + 3 dA uk+ 
e-,o+ r un on• r 

rs- e; 11s 

(
- lim / 

e-,O+ 
f S-ei 

n¡or . /(e¡ xni)· t l i l (HJb) - i ( . 1) 
-

2 
- . dí + dA uk . = M 1 + µµ81kuk hm -

r on• r ,J e-,O+ € 
AS 

(2.115) 

The regularisation process of the hypersingular integral associated with s ~t2
) starts by using 
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the expansion of uk given in Equation (2.97): 

( 
li 

/ 
*(H2)ctr) i _ M ctt21 ) + M ctt22) + M (H23) 

m r1.s1k uk1· - ' ' ' e-,O+ ' 
(2.116) 

r s-ei 

where the integral M t 21) is weakly singular, Mt 22
) is hypersingular, and M t 23) is strongly 

singular. The hypersingularintegral Mt 22
) is regularised by using Equations (C.4) and (C.5), 

and the Stokes' theorem, which gives: 

M (H22) µ { )" / [3{,k ( i or or ) 6 _r,1 ( i or or ) lS{,1r,k or or] dí 
/ = -4 un - 3 n, -a - n, -a. + µ -3 nk-a - nk -a· - - 3 -a -a· + 

1t e-,O+ r n n' r n n' r n n' 
f S-ei 

-¡r,1r,k(rxni) ·t - i ¡ (rxe1) ·t (- _ i / (rxek) ·t } i 
3,1. 

3 
di\+ 2µnk 

3 
dA + 2 ,l - µ) n1 3 

dJ\. uk+ 
r r r 

¡\S ¡\S ¡\S 

¡a (3ó i i ) i ( 1· I ) M (H22bl ¡a (3ó i i ) i ( 1· I ) (2 117) - lk + n1nk uk un - = 1 + - lk + n1nk uk un - . 4 · e-,o+ € 4 e-,o+ € 

The strongly singular integral M t 23) is regularised by using Equation (C.6), then adding 
and su btracting respecti vely n; ( n · ni) and n~ ( n · ni) from sorne of the n1 and nk terms, and 
eventually using Equation (C.3) and the Stokes' theorem: 

(2. 118) 

After developing the integrals over rs - ei of Equation (2.104) throughout Equations (2.106-
2.11 8), these can be substituted back into Equation (2.104) to obtain a fully regularised HBIE: 

/ / { 

(Hb) (S) } 

!1~ti + S*u df' + lim S*(W)u df' + (S) - (~g) + ~22b) (H23) = 
2 e-,o+ . - M 1 + M 1 + M 1 + M 1 

fR f S-e• 

/ 
D*t df' + lim / D*CW)t df' + { ~S) } (2.119) 

e-,o+ L
1 

fR fS - ei 
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dueto the cancellation of all unbounded terms appearing in Equations (2.113), (2.115) and 
(2.117) with the unbounded term appearing in Equation (2.104). 

Dual Boundary Integral Equations The discussion given about DBIEs for the two-dimen­
sional problem is similar to that of the three-dimensional problem, except for the logical 
changes regarding dimension. Abstract Dual BIEs shown by Equations (2.85) and (2.86) also 
hold for three-dimensional problems. 

2.3.3 Discretisation, collocation techniques and integration 

In this section, the relevant aspects of the implementation of the BEM used in this work are 
briefly described. The discretisation is performed using classical continuous isoparametric 
Lagrange elements. Two classes of boundary elements are considered: ordinary (or con­
ventional) and crack-like. Crack boundary elements consider the crack as a whole, and thus 
they incorporate both faces. As previously commented, all calculations are performed over 
the reference face (positive face) and then the resulting integrals only differ in sign for the 
negative face. 

In order to build up a solvable linear system of equations, an appropriate collocation of 
SBIEs and/or HBIEs is done throughout ordinary boundary elements, whereas the collocation 
ofDBIEs is done throughout crack-like boundary elements. The HBIEs impose one important 
restriction on the choice of elements for the discretisation: the collocation point must be in 
a point where the primary variables are differentiable, i.e. u(xi) E '67 1• A typical solution 
used in crack analysis is to make use of discontinuous elements [43, 44], where nodes are 
located inside the elements and hence nodal collocation meets automatically this requirement. 
However, the usage of continuous boundary elements is more appropriate in this work for two 
reasons: they can be directly and efficiently coupled to most classical shell finite elements, 
and the continuity requirement can be avoided by using the Multiple Collocation Approach 
(MCA) proposed by Gallego et al. [60--62). 

Considera node K shared by N continuous boundary elements. For a given boundary 
element e, the node K has the local index k . MCA consists in building a BIE associated with 
K by adding severa! BIEs, one BIE per each element e containing the node with a collocation 
point x i located towards inside the element ata local coordina te ~!. The local coordina te~! of 
the interior collocation point can be controlled by the dimensionless displacement parameter 
8 E (O, 1), which allows calculating x i as: 

{

line elements: ~! = ( 1 - 8) ~k 

xi = xi(~!) for quadrilateral elements: ~! = (1 - 8) ~k 

triangular elements: ~~ = (1 - 8) ~k + 813 

(2.120) 

where ~ k is the local coordina te of the node k of the element. Therefore, the BIE for the node 
K is obtained from: 

e= N 

BIEK = L, BIE~ (xi(~!)) (2.121) 
e= I 

40 Coupled model of FE and BE for the dynamic analysis of buried shell structures 



DYNAMIC MODEL OF BURIED SHELL STRUCTURES ~, 2 

For crack-like boundary elements, where MCA is applied on every node, appropriate values of 
8 are those that produce collocation points located near Gaussian points (8 = 0.423 for linear 
elements and 8 = 0.225 for quadratic elements). This is often used in the literature related 
to discontinuous and semi-discontinuous elements [7, 81, 82), and also leads to satisfactory 
results in this case [62). Section 2.3.4 contains a study of the convergence using the SBIE 
with nodal and MCA collocation, and the HBIE with MCA collocation, for different values 
of 8, which again demonstrates this. 

Figure 2.6 shows a mesh portion with collocation points required for nodal collocation 
and MCA approach for continuous elements, and also and the case of nodal collocation for 
discontinuous elements. Different colours are used for denoting when an the integration over 
an element is singular, quasi-singular or non-severe quasi-singular. lt shows that nodal collo­
cation requires the evaluation or more singular integrals, and there is no severe quasi-singular 
integrals unless thin geometries are present. The MCA approach not only requires the same 
number of singular integrals, but also present several quasi-singular integrals. In the case 
of discontinuous elements, only one singular integral is present in each case, but also quasi­
singular integrals are present. The severity of the quasi-singular integrals depends on 8. These 
difficulties in the numerical integration are addressed in Chapter 4. 

MCA can also be used to solve the indeterminacy present when using multiple nodes, 
being only used at those nodes. Although multiple nodes are not needed in many cases, 
see e .g. [83), and also other approaches like the use of semi-discontinuous can be used, the 
application of the MCA approach to solve this issue is particularly simple and effecti ve. Su bia 
et al. [84) compared semi-discontinuous and an approach similar to the MCA in potential 
problems, and concluded that both are reliable, but the former leads to better conditioning. 
They also concluded that the collocation point shifting 8 has little influence over solutions 
when 8 is between 0.1 to 0.6, and hence appropriate values of 8 in this case are not that clear. 
If 8 is relatively big, e.g. 8 = 0.3, then the indeterminacy problem is clearly solved, but the 
continuity of the primary variable across the multiple nodes is compromised. On the other 
hand, if 8 is relatively small, e.g. 8 = 0.00 1, the primary variable is nearly continuous, but the 
condition number of the resulting linear system of equations could become too big, and also 
numerical integration issues could appear due to highly quasi-singular integrals. For those 
reasons, an intermediate value of 8 = 0.05 is considered in this work. 

After the regularisation process shown in Section 2.3.2, numerically evaluated integrals 
can be regular or weakly singular. The way these are treated in this work can be found in 
Chapter 4. 

2.3.4 Validation and convergence study 

In this section, the three-dimensional regularised SBIE and HBIE for Biot's poroelasticity 
are validated. For this purpose, the problem of a spherical cavity of radius Rs in a poroelastic 
full-space and under harmonic radial excitation is considered. This problem has analytical 
solution, and its curved geometry allows to test all the terms involved in the Boundary Integral 
Equations. 

The analytical solution is obtained by applying the Helmholtz decomposition to the ra­
dial displacements after expressing Equations (2.15a) and (2.15b) in spherical coordina tes. 
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(a) NC for vertex node (b) NC for edge node (c) NC and MCA for face node 
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(d) MCA for vertex node (e) MCA for edge node 
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(f) NC for a comer node (g) NC for a lateral node (h) NC for a central node 

Figure 2.6: Nodal Collocation (NC) versus Multiple Collocation Approach (MCA) for contin­
uous Lagrange elements (a-e). NC for discontinuous Lagrange elements (f-h). Red (singular 
integrals ), oran ge ( quasi-singular integrals) and yellow (non-severe quasi-singular integrals ). 
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Taking into account that only outgoing P 1 and P2 waves exist in this problem, so lid and fluid 
displacements in the radial direction can be written as: 

j=2 ( . 1 ) e- ikp¡r 
u, (r) = - ~ D . tkp-+ - --(f)r· 

~ 1 1 r r 1 
J= I 

(2.122) 

j=2 ( 1 ) e- ikp¡r 
U, (r) = - L ikpj + - - .-cpfj 

j = I r r 
(2.123) 

where Dj = cps/cprj = -(w2 p22 - R ki}l(w2 p12 - Qki}, and cpsj and (f)rj are amplitudes of 
solid and fluid displacement potentials. Solid stress in the radial direction and fluid equivalent 
stress can be expressed as : 

j=
2 

[4µD . ( l) ] e- ikp¡r 
r,(r) = L --1 ikpj + - - (D/,,,, + Q) kij --cp fj 

j = I r r r 
(2.124) 

j=2 - ikp-r 
r(r) = - L (QDj + R ) kij-e _1 (f)rj 

j = I r 
(2.125) 

where A,, = N + µ . The amplitudes (f)rj are obtained from the linear system of equations 
formed by the boundary conditions at r = Rs- The results presented in this work correspond 
to the following two sets of boundary conditions: r,(R

5
) = P and r(R

5
) = O (permeable 

cavity), and a,(R
5

) = r,(R
5

) + r(R
5

) = P and U,(R
5

) = u,(R
5

) (impermeable cavity). 
The problem is solved for a spherical cavity of radius R s = 1 m, and the following proper­

ties of the poroelastic medium (Berea Sandstone [74]): Pr = 1000 kg/m3
, Ps = 2800 kg/m3, 

Pa = 150 kg/m3, A = 4 GPa, µ = 6 GPa, </J = 0.19, R = 0.444 GPa, Q = 1.399 GPa and 
b = 0.19 · 109 N · s/m4 . In order to present the results in a dimensionless fashion, dimension­
less frequency a0 = w R/c~ is used, where e~ = ,VA,/(<PPr + (1 - </J)ps) is the undrained P 
wave propagation speed. Likewise, the quasi-static solid radial displacement u~ = limw_,o u, 
is used to normalise the displacements. 

BEM numerical solutions are obtained by collocating the BIE (SBIE or HBIE) using the 
MCA with ó = 0.225. Only one-octant of the spherical cavity is discretised, and symmetry 
conditions with respect to the xy, yz and zx planes are enforced by the classical mirroring 
approach. Five isoparametric meshes of quadratic triangular elements are considered, in­
cluding a crude mesh of only 1 element. This is a demanding set of meshes from the point of 
view of testing the BEM formulation for general curved elements. Since the solution is one­
dimensional in the radial direction, i.e. radial displacements and stresses are constant over the 
cavity's surface, numerical errors are mainly dueto the geometric discretisation error. The 
average geometric discretisation error EG for a spherical surface can be defined as: 

/A lx mesh - Xsurface l /Rs dA E _ _ ,_- _11 ________ _ 

G - nR~/2 
(2.126) 

where x surface is the nearest point of the spherical surface to a point of the mesh x mesh · 
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Figure 2.7: Comparison between analytical and BEM numerical solutions 

Figure 2.7 shows analytical and BEM numerical solutions using the crude mesh of only 
one triangular element, for the frequency range a0 = (O, 16) and both sets of boundary con­
ditions. Figures 2.8 and 2.9 show BEM numerical errors and orders of convergence. BEM 
numerical results are shown as average absolute errors: 

/A lu~numerical) - u,l/lu~I dA 
E= """h 

nR~/2 
(2.127) 

The experimental order of convergence eoc between results obtained from two different meshes 
i and j is defined as: 

log E (i) - log E U) 
eoc = (2.128) 

log hCi) - log hU) 

where h denotes element size, and mesh j is finer than i . Table 2.1 shows a summary of mesh 
data and results, where frequency-averaged errors and experimental orders of convergence are 
denoted respectively as E and éoé. These averaged values are computed from the frequency 
range (O, n/h], i.e. the range where there are at least two elements per wavelength. 

Results show that the SBIE and the HBIE behave hand in hand regarding the error levels 
for all meshes and frequencies. Convergence of the BEM using both the SBIE and the HBIE 
is demonstrated since E reduces in the same way as EG does for each mesh, and within 
the whole frequency range. The expected order of convergence for quadratic elements is 3. 
However, the observed eoc within the relevant frequency range varies around 4, being very 
similar to the order of convergence of the geometric discretisation eocG. 

When observing the obtained experimental orders of convergence, it is possible to distin­
guish three zones within the frequency range. For frequencies where there are less than two 
elements per wavelength, eoc is highly oscillatory. For frequencies where there are between 
two and approximately four elements per wavelength, eoc is higher than expected. And fi ­
nally, for frequencies where there are more than approximately four elements per wavelength, 
eoc smoothly varies around eocG. 
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DYNAMIC MODEL OF BURIED SHELL STRUCTURES 
:~~, 

?<i 2 

Mesh 1 2 3 4 5 

Nelemencs 4 16 64 256 
h [m) 1.41 0.77 0.39 0.20 0.10 
Ea 2.3E-2 2.2E-3 l.6E-4 l .OE-5 l .2E-6 
E (p, SBIE) l .3E-1 8.7E-3 2.7E-4 l.lE-5 4.8E-7 
E (p, HBIE) 7.9E-2 7.6E-3 4.0E-4 2.2E-5 l .2E-6 
E (i, SBIE) l .3E-1 8.SE-3 2.6E-4 l.OE-5 4.4E-7 
E (i, HBIE) 8.lE-2 7.4E-3 3.0E-4 l .2E-5 3.7E-7 
eocG N/A 3.73 4 .06 4.01 4.03 
éoé (p, SBIE) N/A 3.76 5.00 4.89 4.48 
éoé (p, HBIE) N/A 3.63 4.14 4.12 4.23 
éoé (i, SBIE) N/A 3.76 5.04 4.88 4.53 
éoé (i, HBIE) N/A 3.66 4 .71 4.94 5.09 

Table 2.1 : Convergence of the BEM numerical solution for permeable (p) and impermeable 
(i) boundary conditions. 

Dirichlet: IUrl/ lU91 - Neumann: l11rl/ l11~I -

Figure 2.10: Analytical solution of a sphere with Dirichlet B.C. ( r,(R
5

) = O, u,(R
5

) = U) 
and Neumann B.C. (U,(R

5
) = U , r,(R

5
) = O) 

Regarding the BEM numerical errors, severa! peaks are observed at different frequencies 
for the SBIE and HBIE. They are related to the ill-conditioning of the exterior problem (spher­
ical cavity) near the natural frequencies of an interior problem (sphere), see e.g. [67). These 
natural frequencies correspond to the sphere with Dirichlet boundary conditions ( r,(R

5
) and 

u,(R
5

) prescribed) for the spherical cavity solved using the SBIE, and to the sphere with 
Neumann boundary conditions (U,(R

5
) and r,(R

5
) prescribed) for the spherical cavity solved 

using the HBIE. Figure 2.10 shows the analytical solution of the Dirichlet and Neumann in­
terior problems, and the observed natural frequencies are indicated by vertical dashed lines. 
For comparison purposes, they are also indicated in the bottom error graphs in Figures 2.8 
and 2.9. 

Figures 2.11 to 2.17 show results for the impermeable spherical cavity for different values 
of 8, from 8 = 0.01 to 8 = 0.30. In all graphs, it has also been included the case of using 
the SBIE with nodal collocation. As expected, the SBIE with MCA collocation tends to the 
SBIE with nodal collocation as 8 ~ O. The peaks associated with the interior problem are 
in the case of the SBIE with nodal collocation more pronounced. The order of convergence 
is slightly better in the case of MCA collocation as frequency increases, but overall there is 
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little difference for the range of 8 studied. On the other hand, the convergence of the HBIE do 
depend on the collocation point shifting. lt is observed that the order of convergence is one 
degree lower that in the case of the SBIE as 8 ~ O. From 8 = 0.0 1 to 8 = 0.225 the order 
of convergence improves until it reaches approximately that of the SBIE. From 8 > 0.225 
onwards, it again starts to worsen. Therefore, optimal performance is achieved at 8 = 0.225. 

We recognise that we are not in the position of fully explaining the obtained results regard­
ing the convergence of the HBIE. The only references we have so far found regarding conver­
gence of the HBIE are the works of Costabel and Stephan [85) and Amini and Kirkup [86), 
where the Helmholtz Equation is considered. The former paper is very difficult to understand 
for us, while the latter is more approachable. The results of Amini and Kirkup showed no 
difference between the convergence of the SBIE and the HBIE for a two-dimensional circle 
(interior problem) or cavity (exterior problem). The correspondence between their study and 
our numerical study is limited since it is not only performed for another type of problem, but 
is also uses constant elements, thus . The fact that we are able to achieve very small errors 
with the HBIE, and that the order of convergence for very small 8 keeps almost parallel and 
one order lower than that of the SBIE, seems to indicate that either sorne subtle mistake is 
present in the formulation or implementation, or that this behaviour is intrinsic of this prob­
lem. Therefore, this issue requires further investigation in the future. 
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2.4 Finite Element Method for shell structures 

The shell structure is modelled using shell finite elements based on the degenerated solid 
approach [87] for three-dimensional problems, and curved beam finite elements also based 
on the degeneration from the solid [88) for two dimensional problems. In the latter case, 
the two-dimensional shell conditions are achieved by considering a beam cross-section of 
unit depth and a modified Young's modulus E/(1 - v2) . In the two-dimensional problems 
addressed in Chapter 5, a simpler straight Euler-Bernoulli beam of three nodes [1 8) is used. 

The structural elements degenerated from the solid are versatile and relatively easy to 
handle. Their major drawback is the presence of shear and membrane locking, which are 
dueto the inability of the displacement interpolation to represent thin shell ( vanishing out-of­
plane shear stresses in bending) and curved shell (vanishing in-plane stresses in inextensional 
bending) situations, respectively. Locking can be improved by using selective or reduced in­
tegration [88- 90). This lead to a versatile curved beam (arch) finite element. However, the 
resulting shell elements contain spurious zero-energy (hourglass) modes and hence are not 
reliable [91]. There are several approaches to obtain shell elements free from locking and 
spurious modes [92). In this work, the family of Mixed Interpolation of Tensorial Com­
ponents (MITC) shell elements [88, 93- 96) developed by Bathe and co-workers is chosen 
because of its robustness and predictive capability. The approach consists in using covariant 
strains rather than local or global Cartesian strains, and different interpolation schemes for 
each strain component. The MITC9 shell element [94) is used in the present work. 

The equilibrium equation of a shell finite element e can be written as: 

(2.129) 

where K (e ) = K (e) - a/M (e) is the stiffness matrix for time harmonic analysis, Q (e) is the 
distributed mid-surface load matrix and q Ce) is the vector of equilibrating nodal forces and 
moments. The vector of element Degrees Of Freedom (DOF) a Ce) is composed of vectors of 
nodal DOF: 

(2.130) 

where N is the number of nodes of the shell finite element. Each node p has three DOF 
associated with the displacement of the rnid-surface, and two local or three global rotations 
of the cross-section: 

5 DOFnode: 

6 DOFnode: 

3 (e) = ( u(e) 
p lp 

a ~e) = ( u~~ 

(e) 
u2p 

(e) 
U2p 

(e) 
u3p 

(e) 
aP 

(e) ()(e) 
U3p lp 

/J~e) 

()(e) 
2p 

)T 
()(e) 

3p 
)T 

(2.131) 

(2.132) 

For efficiency reasons, nodes with 5 DOF are used by default. Nodes with 6 DOF are used only 
when strictly required, e.g. folded shells, or when they facilitate the application of boundary 
conditions, e.g. symmetry conditions. The vector of nodal values of the distributed rnid­
surface load t Ce) can be written as: 

t (e) = ( t (e) t (e) t (e) )T t (e) = ( t(e) 
1 ··· P ••• N ' P lp (2.133) 

where t ~e) is expressed in global coordinates. 
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2.5 DBEM-FEM model 

Let Q shell denotes the region occupied by the shell and Q surr. medium be the surrounding medium, 
which can totally or partially cover the shell. The main hypothesis of the proposed model over 
the reality is to assume that the interaction is established between the mid-surface of the shell 
structure and the surrounding medium - shell interface idealised as a crack-like boundary. 
Figure 2.1 8 illustrates this hypothesis by using a straight wall in a half-space. From the point 
of view of the surrounding medium, the shell structure is hence geometrically seen as a null 
thickness inclusion. From the point of view of the shell, the surrounding medium interacts 
only on its mid-surface. Therefore, it leads to two approximations: 

• Wave diffraction is produced over the mid-surface of the shell structure rather than 
over its real boundaries, i.e. top-surface, bottom-surface, and edges are ignored. This 
approximation gets worse as thickness increases, being more pronounced near the shell 
edges, and also depends on the frequency, as it will be seen later. 

• Stiffness and inertia are overestimated by the model if real elastic modulus and den­
sities are used for the shell and the surrounding medium. This can be observed on 
the right part of Figure 2.1 8, where the shell region overlaps the surrounding medium 
added when assuming a crack-like boundary. An analogous phenomenon occurs in 
other soil-structure models, particularly in pile-soil interaction [1 8, 97). Sorne au­
thors propose using corrected properties for the structure (Pstructure = Pstructure - Psoil• 

.Estructure = Estructure - Eso¡1) in order to compensate for them. 

There are several methods of coupling boundary and finite elements in our context, see 
e.g. the classical work of Zienkiewicz et al. [9] or the textbook of Brebbia et al. [98). From 
these, the most simple is the engineering direct approach where, from a conforming interface, 

., ... , . ., 
···,., .. 

···, 
'·,. 

·,.,. 

!º surr. medium 

(a) Complete interaction 

.. ·, , ....... 

·, .. 

Q surr. medium 

····., .. 

! 

··,.,., .. J.,.·· 

(b) Assumed interaction 

Figure 2.1 8: Main hypothesis of the proposed DBEM-FEM model 

Instituto Universitario SIANI 

····,., .. 

/ 

53 



2 ~ DYNAMIC MODEL OF BURIED SHELL STRUCTURES 

it is possible to establish compatibility of displacements and equilibrium of tractions. One 
of the ways of performing such coupling is the method called "nodal force matching" [99), 
where BEM tractions are considered as distributed loads of the FEM. This method is simple 
and effective, and this is the method considered here. A more rigorous and more precise cou­
pling is that proposed by Belytschko et al. [100-102), where a global variational formulation 
including both the boundary element and the finite element region is stated. However, des pite 
its potential benefits, we have chosen the direct approach as a cost effective solution. 

Therefore, a direct BE-FE coupling after discretisation is considered, where both crack 
boundary element mesh and shell finite element mesh must be conforming, see Figure 2.19. 
There are hence three nodes ata given nodal position: a BE node related to the positive face 
of the soil, a BE node related to the negative face of the soil, and a FE node related to the 
shell. Let n;, u;;, u;, r+ and t; be respectively the unit normal, fluid normal displacement, 
solid displacement, fluid equivalent stress and solid traction of the BE node related to the 
positive face of the soil. Similarly, negative superscripts indicate variables on the negative 
face. The displacement of the shell mid-surface is denoted as ut, and the distributed mid­
surface load as tt. Although other contact conditions may be considered, in the following it 
is assumed that the shell mid-surface and the soil crack-like boundary are in perfectly welded 
and impermeable contact. Therefore, compatibility and equilibrium coupling conditions can 
be written as: 

Compatibility: u;= ut, u; = ut, u:= u}n;, U,~= u}n1 (2.134) 

Equilibrium: r+n; + t; + r-n; + t; + t1 = O (2.135) 

where j = 1, ... , Nct. Coupling equations (2.134) and (2.135) can easily be simplified for an 
elastic solidas surrounding medium: 

Compatibility: u; = u1, u; = u1 
Equilibrium: t! + t; + t1 = O 

And for an ideal fluid: 

(2.136) 

(2.137) 

Compatibility· u+ = u~n: u- = usn-: (2.138) 
º 11 j J' 11 J J 

Equilibrium: - p+n+ - p-n- + ts = O (2.139) ' k . k k 

These coupling conditions are coherent with the location of all variables involved along 
the interfaces, except shell rotations, which are not present as degrees of freedom along the 
soil boundary. It means that there is nota complete displacement coupling because displace­
ment continuity is only guaranteed at nodes. Also, tangential loads acting along the top- and 
bottom-surfaces of the shell that produce distributed bending moments are completely ig­
nored. Both deficiencies, however, have little significance in most applications . Given that 
shell structures are almost always stiffer than soils, and the discretisation must be conforming, 
the size of shell elements are likely to be smaller than required by the elements-per-wavelength 
criterion, and thus the first deficiency is automatically alleviated. Because of the way most 
buried shell structures are loaded, the second deficiency is unlikely to be appreciable except 
for thick shells . 

The proposed DBEM-FEM model has several advantages over other purely continuum 
or mixed continuum - structural models, which can be grouped into two categories: 
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U,;, ut, -r+, tt" 

crack BE (+ face) crack BE (- face) 

shell FE (mid surface) 

Figure 2.19: Exploded view of the BE-FE coupling 

Methodological advantages lt combines the well known ability of the BEM to deal with 
wave propagation phenomena in soils with the natural way shell structures are treated by the 
FEM. Since the shape and thickness of shell finite elements are considered independently, 
there is no need to define a fully detailed volume geometry. Consequently, the same surface 
mesh of shell finite elements can be used for studying shell structures of different thicknesses. 
Likewise, since the soil-shell interface is located at the shell mid-surface due to the use of the 
DBEM, a surface mesh of crack boundary elements conforming to the shell finite element 
mesh is all that is needed to model the soil in contact with the structure. Therefore, these 
simple surface meshes are able to represent the buried open shell structure, being furthermore 
thickness-independent. 

Computational advantages Although it is difficult to quantify the computational advan­
tage of this model because it depends on its implementation and the particular problem at 
hand, sorne comparative facts can be given: 

• When compared to a multi-region BEM model (see e.g. [14, 17)) using the same ele­
ment sizes, the number of degrees of freedom per shell node is reduced from 14 to 13 
(-7%). 

• A reduction in the number of degrees of freedom is automatically achieved since the 
edges of the shell structure are not discretised, and its thickness does not influence the 
mesh generation. 

• The proposed model avoids common issues related to the BEM when dealing with thin 
geometries, i.e. quasi-singular integration and bad conditioning issues. Both issues are 
often alleviated by performing the integrals with a higher number of integration points 
and/or decreasing the element sizes, consequently increasing computational costs . 
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• When compared to a conventional multi-region BEM-FEM model applied to open shell 
structures (see e.g. [4 1)), there is no need to create fictitious interfaces that produce 
superfluous degrees of freedom. 

• The main disadvantage of this model is the need of a regularised HBIE for the sur­
rounding medium, which has to be obtained, and is computationally costlier than the 
SBIE. For homogeneous media, this is commonly aff ordable, but for inhomogeneous 
(layered, anisotropic, etcetera) media this could be a formidable task. 

Regarding the quantification of the computational advantage, a first look is given in Section 
5.4, where the proposed DBEM-FEM model and a multi-region BEM model [14, 17) are 
compared. lt is observed that a relevant computation time reduction is achieved mainly due 
to the decrease of the number of degrees of freedom. The DBEM-FEM model is validated 
for two- and three-dimensional problems involving ideal fluids, elastic solids and poroelastic 
media in Chapters 5 and 6. 
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3.1 lntroduction 

In this chapter, the initial steps towards the development of a multi-region model are de­
scribed. The Singular Boundary Integral Equations for shape sensitivity analysis on Laplace, 
Helmholtz, elastostatic and elastodynamic two-dimensional problems have been formulated 
and implemented in a multi-region code. The formulations were developed by Gallego and 
Rus [103- 107), although here they are again derived in a slightly different manner. The aim 
is to describe the work done in this field, which is used to solve the shape optimisation of 
wave barriers in Chapter 5. 

The rest of the chapter is organised as follows. An introduction to the subject is given 
through Sections 3.2, 3.3 and 3.4. A brief literature review about the BEM for shape sen­
sitivity is given in Section 3.5. From Section 3.6 to 3.10, the BEM formulation for shape 
sensitivity is described for different problems. In Section 3.11 , coupling conditions for shape 
sensitivity are described. The chapter concludes with Section 3.12, where the formulation 
and implementation is validated against simple problems with analytical solution. 

3.2 Optimisation 

Nowadays, design optimisation is a crucial field in engineering. When facing a design prob­
lem, the very first step is to come out with a solution or a concept that simply works, i.e. the 
design does what is required. In our competitive environment this is not enough, and the de­
sign must fulfil severa! constraints and perform well under different conditions. Furthermore, 
the main objectives are usually accompanied by other secondary objectives, which can even 
be in conflict. In order to achieve such a task, it is necessary to define appropriately these 
objectives and constraints, then selecta suitable optimisation algorithm, which, eventually, 
requires a numerical simulation of the problem. 

The mathematical formulation of an optimisation problem can be written as [108): 

{
g:(a) < O, i E ..Y 

min J¡ (a), i E g; subject to 1
. -

ae lR• h¡ (a) = O, i E g' 
(3 .1) 

where J¡, g¡ and h¡ are scalar valued functions of the variables a, and g;, ..Y and g' are sets 
of indices. The variable a is the vector of design variables. The functions J¡ are the objec­
tive functions, g¡ the inequality constraints, and h¡ the equality constraints. Optimisation is a 
very active field of research because of its complexity and usefulness. There are a plethora 
of optimisation algorithms, each of one designed to target a range of problems. They can be 
mainly divided into deterministic and heuristic approaches. The deterministic approach take 
analytical properties of the problem to generate points that converge to optima! solutions. 
The heuristic approach is more flexible than the deterministic one, but the quality of the ob­
tained solution cannot be guaranteed and the number of evaluations of the objective function 
is usually greater. A good reference on deterministic algorithms is [108) , and on heuristic 
algorithms [109, 110). 

The structural optimisation problem can be explained using the paradigm of three inter­
acting models [ 111]: the design model, the analysis model and the optimisation model. Here, 
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we give a slightly broader definition of this paradigm in order to include other aspects than 
geometry. 

The design model is a subset of all possible designs. Thus, it is a decisive step that needs 
sorne knowledge about the problem at hand. The description of a design model comprises 
information about its geometry, materials and conditions. The most important piece of in­
formation is the geometrical one. AH others are somehow supported on it. The geometric 
description consists of information related to the topology, i.e. number of sub-domains and 
their connectivity, and information related to the shape of each sub-domain. The material 
information offers data about the type of material and its properties at each point of the do­
main. Each sub-domain is usually made of the same type of material with homogeneous 
properties, but in general the properties could vary over it. The description about conditions 
consists of support, interface and load information. All this information must be expressed in 
a mathematical formas a set of equations, inequalities and variables ( continuous or discrete ). 
Eventually, sorne of the variables become constants, parameters or design variables, being 
these latter those that actually change during the optimisation process. 

The analysis model allows evaluation of objective and constraint functions, and their gra­
dient or even Hessian if needed by the optimisation model. This model must be equivalent 
to the design model, but ready to be used by an analysis procedure. The analysis procedure 
can be a closed-form analytical solution, but more often is a semi-analytical or numerical 
procedure. 

The optimisation model selects the best design according to the objective and constraint 
functions from the possibilities offered by the design model. For a multi-objective optimi­
sation, it gives a range of designs which defines the Pareto front. The model requires the 
definition of the design variables and their domains, the objective and constraint functions, 
and the optimisation algorithm. The optimisation model acts as the job manager in the opti­
misation process, i.e. it decides at each step what designs have to be analysed and then takes 
further decisions using the analysis results . 

3.3 Sensitivity analysis 

Most of the analyses consist in obtaining the response of a given design, these are the usual 
zero-order static, time harmonic, transient, modal, etc. analyses. In order to study the influ­
ence of sorne design parameters, itis possible to run several zero-order analyses with different 
values of these design parameters, i.e. a parametric study. ltis appropriate when the engineer 
would like to have a global idea of the performance of the design for a range of variation of a 
small number of parameters. For other purposes like optimisation, identification or reliability 
studies, zero-order analyses are usually not enough. Sensitivity analyses consist in obtaining 
first- and second-order static, time harmonic, transient, modal, etc. analyses of a design with 
respect to the variation of continuous design parameters [112). 

Let a be a vector of continuous design parameters, and f = f (a) a field variable (dis­
placement, velocity, stress, etc.) or combination of field variables (performance, constraints, 
etc.). If f is smooth enough (f E ~ 2

), it is possible to build a Taylor's approximation off 
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near a given set of values of the design parameters a0
: 

(3 .2) 

where Jº is obtained from a zero-order analysis, f.~ from a first-order sensitivity analysis 
(gradient), and f.~k from a second-order sensitivity analysis (Hessian), all at a = a0

. Note 
that indicia! notation, comma notation for derivatives with respect to the design parameters, 
and Einstein summation convention are used in Equation (3 .2). Most of the literature about 
sensitivity analysis is focused on first-order analysis. Second-order analysis, although useful 
for checking optimality conditions, is seldom performed because of its computational cost 
and its comparatively narrow range of applications [112). Therefore, in the following, the 
term "sensitivity" is used as a synonym of "first-order sensitivity". 

There are four major methodologies for obtaining sensitivities [113): overall or global fi­
nite differences, continuum derivatives, discrete derivatives and computational or automatic 
differentiation. The last three methodologies can be formulated as direct and adjoint meth­
ods. In the direct approach, the derivati ves of the en tire structural response are obtained, and 
then the performance functions can be obtained by using the chain rule of differentiation. In 
the adjoint approach, an adjoint problem is formulated for each performance function, and 
hence not all derivatives of the structural response are obtained. Roughly speaking, the direct 
approach focuses on structural response, while the adjoint approach focuses on structural per­
formance. The former is appropriate for a small number of design variables anda big number 
of performance functions, and the latter is appropriate for the opposite. In both approaches, 
the obtained matrix of the linear system of equations (stiffness or influence matrix) is exactly 
equal to that of the zero-order analysis, and thus its factorisation could be used for the sensi­
tivity analysis . The effort is employed in building the vector of the linear system of equations 
(load vector). Van Keulen et al. [1 13) give a very complete review of methods of structural 
sensitivity analysis. Next, a brief overview is given. 

The Global Finite Differences (GFD) methodology is based on estimating the perfor­
mance sensitivity f.~ by using a finite difference formula which requires only zero-order anal­
yses: 

f~ ~ FD [Jº, t::.a0
] 

,j J 
(3 .3) 

where the FD operator can representa forward, central, 4-point central, etc. finite difference 
formula with a perturbation !::.a~ on the j -th design variable. lt is the easiest method to im­
plement. However, it is computationally inefficient and unreliable as an appropriate value 
of the perturbation is needed. Furthermore, not always is possible to find a finite difference 
formula and a value of the perturbation that lead to a sensitivity with the required precision. 
Therefore, GFD should be the last resort for computing sensitivities. 

In the Continuum Derivatives (CD) approach, the sensitivities are obtained by differentiat­
ing the continuum governing equations (partial differential or integro-differential equations ). 
lt leads to a set of continuum sensitivity equations which are then usually solved numerically. 
For shape sensitivities, because the domain itself becomes a design variable, a material dif­
ferentiation approach ora control volume approach must be used [114). 
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In the Discrete Derivatives (DD) approach, the sensitivities are obtained by differentiating 
the discretised set of equations. Thus, in the DD approach the differentiation and discreti­
sation processes are reversed with respect to the CD approach. For sorne cases, if the same 
numerical method and discretisation is used, it has been proven that both approaches lead to 
the same solution [111). The element-wise matrices obtained after differentiation involves 
derivatives of the stiffness and load matrices. Although these derivatives can be evaluated an­
alytically, they are particularly involved and lengthy for shape sensitivities. Therefore, they 
are usually approximated by finite differences, which not only is much more easy to imple­
ment, but also is cheaper computationally. In this case, the approach is called semi-analytical. 

Automatic Differentiation (AD) approach consists in the differentiation of the computer 
code itself. Although finite element codes are composed of many more or less complex sub­
routines and functions, they are basically a collection of elementary functions. AD approach 
defines the partial derivatives of these elementary functions, and then the derivatives of com­
plicated subroutines and functions are computed using propagation and the chain rule of 
differentiation. Although it may appear to be simple and straightforward, it is not. lt requires 
enough skills to apply the tools to the so urce code, and a judicious choice of w here to apply it 
in order to get an efficient code. Furthermore, it could require the modification of the original 
code before applying the tools. 

3.4 Parametrisation 

Parametrisation (or parameterisation) is the process by which sorne entity is described in 
terms of parameters. In our context, this is done over the description of the design model. 
The parametrisation of a design is not unique nor trivial, it has a huge impact on the result of 
an optimisation process. In fact, it materialises the design model by setting a set of parameters 
and mathematical expressions that defines the geometry, material and conditions of a design 
model. The parameters that are used in an optimisation process are the design variables . 

In structural design, there are mainly five kinds of parameters [112): material parameters 
(Young's modulus, fiber orientation, etc.), size parameters (thickness, cross-section, etc.), 
shape parameters (length, radius, etc.), configuration parameters (orientation and location 
of structural elements), and topological parameters (number and connectivity of structural 
elements). Note that sorne of them are closely related, and, for example, the last four could 
be grouped as geometrical parameters. These parameters can be also classified as discrete 
(boolean or integer) or continuous (real) parameters. 

The literature about geometric parametrisation is vast and specialised, particularly in 
shape parametrisation, which is probably the most involved. Before going further, it is nec­
essary to define sorne concepts related to shape parametrisation and sensitivity analysis. For 
first-order analyses, each shape parameter is studied independently from others, i.e. the sen­
sitivities are obtained without considering other shape parameters. Although severa! param­
eters could be linked through sorne constraints in order to obtain a feasible design, this is 
something managed by the optimisation algorithm and does not influence the first-order sen­
sitivity analysis. For this reason, it is possible to build a Taylor's expansion of the geometrical 
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design with respect to the parameter a around a given state a= a0
: 

x = x + v ( a - a0
) +@ [ ( a - a0 )2] (3.4) 

where x is a point of the domain Q(aº), v = v(x, a0
) = (ax!aa)ªo is the design velocity 

field, and x = x (x, a) is the new location of the point x for a parameter value a. This is a 
linear mapping of points of the domain Q( a0) to ñ, that approximates the domain for a small 
variation of a, see Fig. 3. l. lt must obviously be continuous, i.e. v E ~o, otherwise the 
mapping breaks the domain. 

ñ 
t 

-~ 

Figure 3.1: Taylor's expansion of the shape parametrisation 

For first-order shape sensitivity analysis, the design velocity field v of each design variable 
has to be defined for all points of the domain. There are a large number of strategies to build 
and update this mapping during optimisation processes [111 , 112, 115- 117). Although it is 
difficult to classify all these strategies, there are three main philosophies: 

Based on geometry. In order to build the geometry, it is necessary to use a CAD (Com­
puter Aided Design) tool which can use a Boundary REPresentation (BREP), Function 
REPresentation (FREP), Constructive Solid Geometry (CSG) or other representation. 
Since the representation is based on a set of equations and parameters, these parameters 
are available as design variables. Once the mesh is obtained from the CAD model by a 
mesher, the design velocity field of each design variable can be inherited to the nodes 
of the mesh by diff erentiation of the representation with respect to the design variable 
at the position of the nodes. 

Based on mesh. Instead of working with the representation given by the CAD model, it is 
possible to use the representation provided by the mesh. The nodal coordinates are 
used as design variables, which lead to a big set of design variables. lt is also called 
parameter-free or FE-based parametrisation. 

Based on a free-form deformation. An auxiliary design mesh consisting of isoparametric 
elements, B-splines or NURBS is defined in order to deform the CAD model or the 
mesh. The points of the CAD model or the nodes of the mesh are connected to the 
design mesh by position, i.e. there is a one-to-one correspondence (a mapping) between 
the design model and the CAD model or mesh. The design mesh acts as a canvas 
where the CAD model or the mesh is stuck, and any deformation applied to the canvas 
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is accordingly done over them. The design variables can be the nodal coordinates or 
control points of the design mesh. 

None of the strategies are of general applicability. The strategies based on geometry are 
useful for clearly defined shape optimisations, for example when the design variables are 
radii, lengths or positions of straight or arc-like lines. If the CAD model allows patches 
of variable order, then it would be possible to obtain more complicated shapes. A major 
drawback is that CAD tools do not usually come with all the necessary features to apply these 
strategies easily. The strategies based on mesh movement offer more freedom to the shape 
optimisation. However, this freedom comes with sorne additional costs. Regularisation and 
remeshing processes are needed after each optimisation step in order to obtain a feasible 
design and a valid mesh. Furthermore, because of the number of design variables and the 
post-processing stages after each iteration, they can be relatively expensive computationally. 
The strategies based on a free-form deformation have characteristics of the latter two. They 
offer a selective in-between flexibility with respect to shape variations, from very simple 
and constrained shapes to very complex shapes. Moreover, they have much less problems 
associated with the distortion of the mesh, and thus regularisation and remeshing are hardly 
needed. 

3.5 BEM applied to sensitivity analysis 

The application of the BEM to sensitivity analysis is an active research field that started in 
the early 1980s. Barone et al. [ 11 8) applied a special form of the BEM to the optimal arrange­
ment of holes in a two-dimensional domain. Meric used the BEM with the Adjoint Variable 
Method (AVM) in order to study heat transfer and mechanical behaviour of solids [119-121). 
Mota Soares et al. [122) applied the BEM to optimal shape design for minimum compliance. 
Kane et al. [123) used implicit differentiation of the discretised equations for plane elastic­
ity. Barone et al. [124, 125) used the material derivative over the Boundary Integral Equa­
tions (BIE), including the Hypersingular (stress) BIE (HBIE), for three-dimensional elastic­
ity. Aithal and Saigal [126, 127] applied the AVM and the material derivative to obtain the 
shape sensitivities for thermal and elasticity problems. 

Besides being useful by itself or for shape optimisation, shape sensitivity analysis using 
the BEM fits particularly well with inverse problems. Mellings and Aliabadi [128, 129) used 
the BEM and the Dual BEM for identification of cavities and cracks on potential and elastic 
problems. Also, Nishimura and Kobayashi [ 130) developed a BEM formulation for iden­
tification of cracks with complex shapes. Bonnet [131-134) covered almost all aspects of 
shape sensitivity analysis using the BEM and a rigurous mathematical treatment. In particu­
lar, Bonnet [135) proved that material differentiation formulas for regular integrals still hold 
true for strongly singular and hypersingular integrals, which demonstrated that material dif­
ferentiation can be applied to non-regularised as well as regularised BIEs. Gallego, Rus and 
Suarez [ 103-107) used the BEM for cavities and crack identification on potential and elastic 
problems using a free-form approach for the flaw parametrisation, anda sensitivity BIE de­
rived from the Taylor's expansion of the shape perturbation. In the present work, the latter 
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approach is used to obtain the sensitivity or variation BIE (8BIE) which is the fundamental 
ingredient to build the BEM for sensitivity analysis. lt is esentially similar to applying the 
material differentiation formulas to the BIE. 

3.6 Generalities 

The superscript i overa symbol O representing a position vector, unit normal, field variable, 
etc., i.e. Di, is used to indicate if the object is associated with the collocation point, rather 
than with the observation point. lt is notan index, thus no summation is implied for it. 

Let Q be a region in IR.2 with boundary r = an whose orientation is defined by the 
outward unit normal vector n = (n1, n2) . Following the usual convention, the orientation of r 
can be equally defined by the unit tangent vector t = (t 1, t2) = (-n2 , n1 ) . Considera boundary 
element <I> e r with N: nodes, then any point x of the boundary element is described by: 

(3 .5) 

where j = 1, 2 is the coordinate index, p = 1, ... , N: is the node index of the boundary 
element, xJ;, is the J -th component of the position vector of the p-th node, <Pp = </J/~) is the 
shape function of the p-th node, and ~ is the local curvilinear coordinate. The transformation 
between the local curvilinear coordinate and the global cartesian coordinates is governed by 
the Jacobian vector J: 

axj d</Jp (!> 
J .=-=-x. 

J a~ d~ JP 
(3 .6) 

dr= ~d~ = IJI d~ (3.7) 

where summation convention is implied for J. Thus, the unit tangent can be calculated as 
t = JI IJI and the unit normal n = (t2, -t1) . 

For first-order shape sensitivity analysis, the region Q = Q (aº) is perturbed with respect 
to a given design velocity field v = v(x, a0

) that is produced by a design variable a when 
a = a0

, see Figure 3.2. The following linear mapping builds the perturbed domain ñ from 
the reference domain Q = Q (aº) for a small variation of a around a0

: 

X= X+ V (a - a0
) (3 .8) 

The design velocity field acts basically as a displacement field, thus a constantdesign velocity 
field throughout the domain does not produce any shape variation. lt can be easily seen that 
a material vector w, i.e. a vector whose origin and orientation are sticked to a point, follows 
this linear mapping [ 136): 

(3 .9) 

where the comma notation for derivatives with respect to x is implied. The following notation 
is going to be used for the vector sensitivity (or vector material derivative): 

(3 .10) 
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ñ 
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w .... 

Figure 3.2: Taylor's expansion of the shape parametrisation 

Thus, the linear mapping of the vector length is: 

(3 .11) 

where only linear terms are retained, and summation convention is implied for i and j . With 
this in mind, the linear mapping of an infinitesimal part of the boundary ctr is easily obtained 
by using the length variation of the unit tangent considered as a material vector: 

df = ctr + t¡vi.l j ctr ( a - a0
) = ctr + 81 ctr ( a - a0

) = ( 1 + 81 ( a - a0
)) ctr (3 .12) 

The unit tangent and normal vectors are not material vectors. The unit tangent is only mate­
rial with respect to orientation, and the unit normal is completely dependant on the tangent 
plane. Hence, the linear mapping of the unit tangent is similar to that of a material vector but 
su bstracting the length in crease: 

The variation of the unit tangent 8t can only be perpendicular to the unit tangent t. Hence, it 
can further be simplified to: 

(3 .14) 

The linear mapping of the unit normal is obtained by rotation of that of the unit tangent: 

(3 .15) 

where eij is the two-dimensional Levi-Civita symbol, and then 8n¡ = -tinkvk,/ j · 

The design velocity field v = v(x, a0) throughout the domain is defined by using a design 
mesh (auxiliary mesh) connected to the physical mesh by position, i.e. the so-called free­
form deformation approach (see Section 3.4). The geometry and the design velocity field of 
a design element q, e Q with N: nodes are interpolated similarly (isoparametric): 

X j = 1/fqXjq (3 .16) 

Vj = 1/fqVi (3 .17) 
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where q = 1, ... , N: is the node index of the design element, and x¡q and v¡q are the J -th 
components of the position vector and design velocity field of the q-th node, respectively. The 
element can be a one-dimensional or a two-dimensional element, i.e. shape functions can be 
l/lq = lflq(r¡) or lflq = lfl/r¡1, r¡2), respectively. In general, they can be written as lflq = t¡1q(r¡). 
As it will be seen later, shape functions t¡1q(r¡) only appear in the calculation of the integrals . 
Thus, for an integration point i with position vector x (i) located within a design element 'I', 
the calculation of the local curvilinear coordinate r¡Ci) is required: 

(3 .1 8) 

which can be done by a simple iterative minimisation algorithm (convergentif x (i) E 'I'). The 
connectivity between the physical mesh and the design mesh is built in the initialisation stage 
of the solver, allowing a good initial guess for the minimisation algorithm. 

Strictly speaking, the design velocity field must be at least continuous throughout the do­
main, i.e. ~o, otherwise it breaks the domain. Hence, the design mesh should fill the whole 
domain, should be conforming, and only elements with the same dimension as the ambient 
space should be used. However, for shape sensitivity calculation using finite elements, the 
design velocities are required only at the nodes of the finite elements. Thus, neither the design 
mesh must fill the domain (by default a null design velocity field can be assigned to physical 
nodes not connected to the design mesh) nor the elements must have the same dimension as 
the ambient space. This fact justifies using the boundary layer technique as a way to reduce 
the computational cost (elements with null design velocity fields have null matrices deriva­
tives with respect to the design variables) at the expense of a moderate but acceptable error 
increase in unstructured meshes . As it will be shown later in this chapter, for shape sensi­
tivity calculation using boundary elements, the design velocity field at the collocation point 
must be at least differentiable, i.e. ~ 1• The same strategy as with finite elements can be fol­
lowed, although, in that case, a computationally expensive non-nodal collocation is required. 
In order to use nodal collocation, an element with the same dimensionas the ambient space 
must be present at the collocation point. More details about these issues will be given later 
in this chapter. 

As shown above, the calculation of the gradient of the design velocity field is needed. For 
a point located ata design element 'I', it means that the derivatives of shape functions with 
respect to the global coordinates are required: 

(3 .19) 

If the design element is a one-dimensional element, then the shape functions are lflq = lflq(~), 
and their derivatives with respect to the global coordinates are: 

(3.20) 

where the J acobian vector is: 

axj dl/fq 
J . =-=-x~ 

1 a~ a~ Jq 
(3.21) 
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If the design elementis a two-dimensional element, then the shape functions are lflq = lfl/~ 1, ~2), 

and their derivatives with respect to the global coordinates are: 

(3 .22) 

where G = r I and the elements of the J acobian matrix J are: 

(3 .23) 

The linear mapping corresponding to a field variable u is: 

(3 .24) 

where the sensitivity 8u can be evaluated using the expression shown above only when u is 
explicit . When u sed in the FEM or BEM sensiti vity analysis, 8u is a degree of freedom. Field 
variables and their sensitivities are interpolated using the same shape functions as the geom­
etry, hence an isoparametric boundary element representation is considered. For a vector 
variable u: 

uj = </)Pu% 

8uj = <Pp8u% 

(3 .25) 

(3 .26) 

where p = 1, ... , N~ is the node index of the boundary element, and u% and 8u% are the J -th 
components of the vector variable and its sensitivity of the p-th node, respectively. 

3.7 Laplace problem 

A problem governed by the Laplace equation is considered. The potential (primary variable) 
is denoted by p, while the flux is the potential derivative in the n direction (secondary variable) 
and is denoted by q = Vp · n. 

3.7.1 8SBIE for non-boundary collocation points 

The Singular BIE (SBIE) for an interior or exterior collocation point with respect to the ref­
erence domain Q can be written as [6,105): 

8~pi + j q"pctr = /p"qdr, (3 .27) 

r r 
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where: 

p* = --1 
lnr 

2n 
,. 1 1 

p - ---r 
· J - 2n r ,j 

,. ,. 1 1 ar 
q - p n - ---­

- · ,j j - 2n r an 

r = lx - xil 

(3 .28) 

(3 .29) 

(3 .30) 

(3 .3 1) 

and x and xi are the observation and collocation points, respectively. Likewise, for the per­
turbed domain ñ: 

(3 .32) 

t t 

As seen in the previous section, the relationships of geometrical objects and variables between 
the reference domain Q and the perturbed domain ñ are given by linear mappings: 

i = i + 8 i ( a - a0
) 

p = p + 8p ( a - a0
) 

P- . = p . + 8p . (a - a0) ,J . ,J .. ,j 

ñj = nj + 8nj ( a - a0
) 

q = p .ñ . = q + (p .8n + 8p .n .) (a - a0
) = q + 8q (a - a0

) · ,JJ . · ,/ ·· ,JI 

df = [ 1 + 8J ( a - a0
)] dr 

(3 .33) 

(3 .34) 

(3 .35) 

(3 .36) 

(3 .37) 

(3 .38) 

where (a-a0
)
2 terms have been disregarded. Since the shape parametrisation does not change 

the topology of the domain, i.e. an interior (or exterior) point remains interior (or exterior), 
then 8b = 8~ . The fundamental solution p* depends on the observation and collocation points 

p* = p*(x, xi), hence its linear mapping mustbe builtfrom the Taylor's expansion with respect 
to both points: 

_,. * ap* ( º) ap* i ( º) * * ( i) ( º) p =p +-v . a - a +-. v . a - a =p +p . v . -v . a - a . ax . J a 1 / ,/ / / 
J xj 

(3 .39) 

where O,j = aO /axj = - aOJax~ holds for any fundamental solution and its derivatives since 
x and xi only appear inside of terms depending on the distance vector r = x- xi. Furthermore, 
from the linear mapping of observation and collocation points, it is possible to write: 

X = X + V ( a - a0
) 

xi = xi + vi (a - a0) 

x - xi = x - xi + ( v - vi) ( a - a0) 

f = r + 8r ( a - a0
) 
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where it is obvious that 8r ~ O as x ~ xi, i.e. 8r = @(r). This important fact is used later to 
study the integration of the SBIE for collocation points located at the boundary. Therefore, 
jj* can be written as: 

(3.4 1) 

The linear mapping of q* is built by using the linear mapping of its components: 

(3.42) 

where only linear terms are kept. Note that p*.
11 

is obtained differentiating Equation (3 .29): 
,Jf 

(3.43) 

where 8ij is the Kronecker delta. Last, substituting all these linear mappings into Equation 
(3 .32), keeping only linear terms (a - a0), substracting Equation (3 .27) from it, and dropping 
out (a - a0) terms, give the sensitivity SBIE (or 8SBIE): 

8~8i + j q*8p dr+ / (8q* + q*8J)p dr = / p*8q dr+ / (8p* + p*8J) q dr (3.44) 

r r r r 

The first and third integrals are analogous to the integrals of the SBIE, except that instead 
of p and q, their sensitivities 8p and 8q appear. The second and fourth integrals are new 
integrals that depend on p and q, hence only once the zero-order solution is known they 
can be evaluated. Since the integration domain r does not contain the collocation point, all 
integrals are regular but nearly singular if the collocation point is close to r. 

3.7.2 óSBIE for boundary collocation points 

The 8SBIE presented in Equation (3 .44) is valid only for interior or exterior collocation points . 
In orderto obtain the 8SBIE forboundary collocation points (xi E r), itis possible to perform 
the integration of Equation (3.44) but along a modified path avoiding the collocation point: 

(3.45) 

where e is the radius of a circular are r i that substitutes a neighbourhood ei of the collocation 
point on r. As seen in Figure 3.3, this limiting process can be done from the interior (8~ = 1) 
or from the exterior (8~ = O), both leading to the same final result. In the following, the 
former is used: 
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f::,,.()ext = 2n _ /::,,.()int 

x i 

Figure 3.3: Integration path near boundary collocation points. Left: from the interior. Center: 
from the exterior. Right: criteria for angles 01 and 02 

8i + lim / q*8p ctr + lim / q*8p ctr + lim / (8q* + q*8J)p ctr 
e-,o+ e-,o+ e-,o+ 

r - e; r ; r - e; 

+ lim ¡(8q* +q*8J)pdr= lim !p*8qdr+ limfp*8qdr 
e-,o+ e-,o+ e-,o+ 

~ ~~ ~ 

+ lim / (8p* + p* 8J) q ctr + lim / (8p* + p* 8J) q ctr (3.46) 
e-,O+ e-,O+ 

Integration over r i In order to evaluate the integrals along r i, a polar system of coordina tes 
(e,()) centered at the collocation point and oriented counterclockwise is considered. The polar 
angle () is in the domain 01 ::; () =:; 02 , where 01 and 02 are shown in Figure 3.3. The main 
geometrical terms along r i are: 

x i =0 

x = (ecos O, e sin O) 

r = x, r = € 

r . =r./r 
,j J 

nj = r .j• n = (cos O, sin O) 

t¡ = eijnj, t = (- sin O, cos O) 

arlan = r .n . = 1 
,J J 

r .f . = O 
,j J 

ctr = e cto 

(3.47) 

(3.48) 

(3.49) 

(3 .50) 

(3 .51) 

(3 .52) 

(3 .53) 

(3 .54) 

(3 .55) 

where eij is the two-dimensional Levi-Civita symbol. The evaluation of the first integral over 
r i of Equation (3.46) gives: 

92 

lim q*8p ctr = -- lim - 1 (8l +@(e)) e d() = - 8l = ---8l 
/ 

1 / 1 . 82 - 81 . 1::,,.oext . 

e-,o+ 2n e-,o+ e 2n 2n 
(3 .56) 

r ; e, 

Instituto Universitario SIANI 71 



3 :~ TWO-DIMENSIONAL DYNAMIC MODEL FOR SHAPE OPTIMISATION 

where a simple zero-order expansion 8p = 8i + (!J (e) is required. The second integral over 
r i is: 

}~W+ ¡ (8q* + q*8J)p ctr = }~W+ ¡ (pj8nj + pj 1118rmnj + q*8J) p ctr 
f i f i 

92 

= --
2
1 

lim / [.!ninj + _!_2 (8j111 - 2njn,,i) 8rmnj + .! 18J] (i + (!J (e)) e dO 
7C e-.O+ € € € 

9, 

(3 .57) 

where a zero-order expansion p = i + (!J (e) is used. In order to evaluate the integral, expan­
sions of several terms of the kernel around the collocation point are needed. For the sensitivity 
of the unit normal 8nj, a zero-order expansion is required: 

Likewise, for the sensitivity of the boundary length 8J 

8J = t 111v:11./j + (!J (e) 

For the design velocity field, however, a first-order expansion is required: 

i i i ( 2) i i ( 2) v111 = v111 + vm./xj - x} + (!J r = v111 + vm,jr,je + (!J e 

and hence: 

(3 .58) 

(3 .59) 

(3 .60) 

(3 .6 1) 

Therefore, since the gradient of the design velocity field at the collocation point v:
11
.j is re­

quired, the design velocity field must be differentiable, i.e. v(xi) E <?s 1
• Substituting these 

expansions into Equation (3 .57) leads to: 

(3 .62) 

where b;
11

j is: 

(
b¡ ) _ _ l ( sin 202 - sin 201 

lllj - 4JC - (cos202 - cos201) 
(3 .63) 

which is null if the collocation point is located ata smooth point of the boundary, i.e r (xi) E 
<?s 1 

=} b;
11

j = O. The third integral over r ¡ is null: 

lim / p* 8q ctr = --
1 

8q ( lim eln e) ( /

92 

do ) = o 
- ~ b - ~ 

0 ~ 

(3 .64) 
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where 8q must be bounded. The fourth integral over r i is also null: 

92 

lim / (8p* + p*8J) q ctr = --
1 

lim / (.!.n 111v:
111

.en
1
• + (lne) 8J) qe dB = O (3.65) 

e-,o+ 2n e-,o+ e · 
~ ~ 

where q must be bounded. Substituting all these results into Equation (3.46) gives: 

= lim / p* 8q ctr + lim / (8p* + p* 8J) q ctr (3 .66) 
e-,O+ e.-,O+ 

where e¡ = ~oint /2n is the free-term similar to that of the SBIE, and b'.
11

j is a new free-term 
appearing in the 8SBIE. The integrals over r - e¡ are at most strongly singular, and their 
evaluation requires additional work. 

Integration over r - e¡ The evaluation of the integrals in Equation (3 .66) can be performed 
in different ways, from a pure analytical approach (doable for straight elements) to a pure 
numerical approach using special quadrature formulae (Kutt's quadrature). In this work, an 
analytical regularisation leading to at most weakly singular integrals is applied before any 
numerical integration is done. By doing so, only regular and weakly singular integrals are 
numerically managed, which are easily tractable and controllable. 

The integrands are composed mainly of geometrical terms and field variables, thus their 
behaviour near the collocation point must be studied. The behaviour of the relevant geomet­
rical terms is illustrated in Figure 3.4. The field variables are at least bounded, and hence 
p, q, 8p, 8q are @(rº). The first integral of Equation (3.66) is regular: 

¡ ,. ,. 1 1 ar -- /Pi (rº) H = lim q 8p ctris regular·: q = -- - C/ 
e.-,o+ 2n r iJn - (3.67) 

@(,- •) @(r') 

The third integral is weakly singular: 

G = lim / p* 8q ctr is weakly singular·: p* = --
1 

ln r = @ (ln r) 
e.-,O+ 2n 

(3 .68) 

r - ei 

The fourth integral can be split into two parts: 

8G = }~W+ ¡ (8p* + p* 8J) q ctr = 8GR + 8G1 (3 .69) 

r - ei 
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n 

x before xi x after xi 

Q Q 

ar r (ªr)i ar = -;: · t < o, ar = - l ar = ~ . t > O ( ar )i = l 
ar r ' ar 

ar r ar 
- = - · n ~ O when r ~ O ~ - = @(r) 
an r an 

Figure 3.4: Limiting behaviour of geometrical vectors around the collocation point 

where: 

8GR = lim / 8p"qdris regular·: 8p" = p". 8r . =@ (r0
) -~ ~ ~ 

r - ei (5 (,-1) @( , , ) 

(3.70) 

8G1 = lim / p" 8J q ctr is weakly singular·: p* 8J = @(In r) 
e-,O+ - ..__ 

r - ei @(Jnr)6(r0
) 

(3 .7 1) 

The second integral can be split into three parts: 

8H = ;~~ ¡ (pj 8nj + pj
111

8r111nj + q"8J) p ctr = 8HN + 8HR + 8H1 (3.72) 

r - ei 

where: 

8HN = lim / p~8njpdris strongly singular·: p". 8n . =@ (r- 1
) (3.73) 

e-,O+ ' ~ .__! 
r - ei @(r-') @(rº) 

8HR = ~mo+ / pj 1118r111njp ctr is strongly sing. ·: pj 111 8r111 nj = @ (r- 1
) (3.74) 

E .__,,_... ,__.. -.,...; 

r - ei @(,-2) @(r') @(,.O) 

8H1 = lim / q" 8Jp ctr is regular ·: q* 8J = @ (rº) (3.75) 
e-.o+ -.,...; ,__.. 

r - ei @(rº) @(rº) 
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Therefore, 8HN and 8HR require further treatment. 8HN can be regularised by substracting 
and adding the limit when r ~ O of a part of the integrand: 

8HN = -
1
- lim / .!.r,.t,.n111V111ikpdr = -

1
- lim / _!_ ar nlllvlllktkpdr 

2:n e ... o+ r · · 2:n e ... o+ r ar · 

(3 .76) 

leading to one regular integral and another integral / 1/ r dr that can be sol ved analytically. 
For 8HR, first, itis necessary to expand the integrand: 

8HR = - 2~ !~W+ ¡ :2 ( ójlll - 2r/,,,i) ( VIII - v:,J njp ctr 

= -1 
[ lim / 

2
2 ar ( VIII - v:11) r 111P ctr - lim / 

1
2 ( VIII - v:11) nlllp ctr] (3 .77) 2:n e-,o+ r an · e ... o+ r 

~~ ~~ 

which gives one regular integral and another strongly singular integral. Then, taking into 
account that: 

v111 = v:11 + v;11,jrj + (!J (r2
) ~ vm - v:11 - v;11,jrj = (!J (?) 

and adding and substracting v'.11 fj: 

(3 .78) 

8HR = -21 [ lim / 
2
2 aªr ( vm - v:,J r 111P ctr - lim / 

1
2 ( vm - v:11 - v:tl ,.r,.) nlllp ctr 

:,r e ... o+ r n . e ... o+ r . 
~ i ~ i 

- lim / .!. v:11 .r,.nlllpdr] (3 .79) e-,o+ r ,J • 

r - e; 

a new regular integral and a new strongly singular integral appear. 
3.4, it is easy to see that: 

By checking out Figure 

(ar)¡ 
r,j = ar t~ + (!J (r) (3 .80) 

which can be used to add and substracta part of the integrand of the strongly singular integral: 

8HR =-
2
1 

[ lim / 
2
2 aar (vm-v'.,Jrmp dr - lim ¡ 12 (v111 -v'.11 -v'.11 jrJnmp dr 

:,r e-,O+ r n ' e ... o+ r ' 
~~ ~~ 

/ 
1 ( . . (ar)¡ .. ·) - lim - v• .r .n - v• . - t n• 1 

e ... o+ r m,1 ., mP m,1 ar , 111P 
r - e; 

dr ¡ ¡ ¡ ¡ li / 1 ( ar )¡ ctr] - n111v ,, .t .p m - - . 
I ,J J · e ... o+ r ar 

r - e; 

(3 .81) 
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leading to a new regular integral and another strongly singular integral. Finally, by adding 
and substracting the limit of iJrliJr when r ~ O leads to: 

i:HR 1 [ 1. / 2 or ( ¡ ) dí 1. / 1 ( ¡ ¡ ) dí u = - tm . -2 -;-- V111 - V111 r 111p . - tm -2 V111 - V111 - V
1111

-rj n 111p . 
2n e-,o+ r un • e-,o+ r · 

r - ei r - ei 

· · · · j 1 ( ( or )¡ or ) d.í dí-n:11 vi
11 

.t
1
1-i lim - - . - - . 

I ,J e-,o+ r oí oí 
r - ei 

i i i i 1 · / 1 d l (3 82) - n
111

v 
111

.t .p ,m - r . 
'• J e-,O+ r 

r - ei 

which is a set of regular integrals and an integral / 1/ r dr analytically sol va ble. lt must be 
noticed that terms involving the integral / 1/r dr cancel out when 8H is evaluated using 
Equation (3 .72). 

3. 7.3 Discretisation, collocation techniques, integration and solution 

The boundary r is discretised using a set of N 00 boundary elements: r = u:: ~~<l>¡ where <l>¡n 
<l>j = 0 when i =fa j . As explained above, the discretisation is performed using isoparametric 
elements. For a given boundary element <l> with N: nodes: 

Geometry: xj = </>px% 
Variables: p = </> pP:, q = </> Pq:, op = </>Pop:, 8 q = </> iq: 

(3 .83) 

where p = 1, .. . , N: is the node index of the boundary element. The design domain is 
discretised using a set of Nde design elements: Y = u:: ~d•q,i where 'I'¡ n q,j = 0 when i =fa j . 

For a given design element q, with N¿ nodes: 

Geometry: 

Design velocity field: vj = lflqvi 
(3 .84) 

where q = 1, .. . , N¿ is the node index of the design element. In the following, the indices p 
and q are exclusively related to node indices of boundary and design elements, respectively, 
and any other index is related to a coordinate index. 

lt was shown in the previous section that the collocation point xi must be in a point where 
v(xi) E ~ 1

• Figure 3.5 shows a design mesh consisting of two two-dimensional design 
elements ('I' 1 and q, 2) with a common edge, and two one-dimensional design elements ('I' 3 and 
'114) with a common node. Design elements '112 (two-dimensional) and '113 (one-dimensional) 
share a common node. By defining the values of the design velocity field at each node, a ~ 00 

design velocity field is built throughout the design mesh except at sorne locations where it is 
guaranteed only to be~º- These locations are the edges and nodes shared by two or more 
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<l>7 

Figure 3.5: Possible positions of a boundary element throughout a design mesh 

design elements. The existence of these locations conditions the collocation procedure of the 
BIEs in the sensitivity analysis (and the required zero-order analysis). There are two ways of 
dealing with it: 

Fully isoparametric approach The design velocity field is interpolated also with the shape 
functions of the boundary element <l>: 

Geometry: xj = <PpxfP 

Variables: p = <PpP:, q = </)Pq:, 8p = </Jp8p:, 8q = </)P8q: (3 .85) 

Design velocity field: vj = </Jqvfq 

w here p, q = 1, ... , N: is the node index of the boundary element. The design velocity 
field at nodes u% are calculated from the design mesh. This interpolation guarantees 
differentiability along the boundary element except at the end nodes. Hence, a Multiple 
Collocation Approach (MCA) is used [60) , where the collocation is performed only in­
side the boundary element. This fully isoparametric approach using the MCA is simple 
and applicable to all possible positions of the boundary elements shown in Figure 3.5. 
lt is even possible to consider the boundary element <1> 5 if a null design velocity field is 
assigned to the node located outside the design mesh. Despite its versatility, it comes 
with a big disadvantage: its computational cost. 

Mixed approach Nodal collocation is used for boundary elements whose nodes are located 
at points where v(xi) E ~ 1

• For boundary elements where at least one node violates 
this condition, the full isoparametric approach is used. This approach is versatile and, 
at the same time, as computationally cheap as possible. The only disadvantage is the 
implementation effort needed to automatically distinguise between both situations. In 
Figure 3.5, nodal collocation is used on boundary elements <1> 1, <1>2 , <1> 3 and <1>7 , while 
the full isoparametric approach is used on boundary elements <l>4, <1>5 and <1>6. 

Once discretisation and collocation procedures have been described, it is possible to 
present the discretised form of Boundary Integral Equations (3.44) and (3 .66). For any col-
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location pointxi, both can be written in a generic way as: 

N 1,e N1,e N1,e N 1,e 

ci8i+b'.11jv;11.fi+ L (HP8pPt· + L (8HPpPt· = L, (GiqPt· + L, (8GPqPt· 
e= I e= I e= I e= I 

(3 .86) 

where: 

• Ifxi E r , then: 

and ci and b~,j are calculated as shown previously according to the local geometry of 
the boundary at the collocation point. 

• If xi ,± r then ci = i5i and bi . = O 
iz;:: ' Q 111) • 

For a boundary element <l> associated with a design element 'I', two different situations must 
be considered: 

Exterior integration, xi ~ <l>. All integrals are strictly regular, and standard Gauss-Legendre 
quadrature is able to approximate them numerically. However, the case of collocation points 
near the element lead to quasi-singular integrals. More details are given in Chapter 4. The 
contributions of a boundary element <l> similar to those of the SBIE are: 

HP = ¡ q*</>P dr 
(!> 

GP = ¡ p"' </>P dr 
(!> 

(3 .87) 

(3 .88) 

The contributions of the new integrals arising in the 8SBIE consider separately the design 
velocity field along the boundary element (through the design element 'I') and the design 
velocity field at the collocation point: 

78 

<;: H <;: H TI 'l' <;: H T2 i ( <;: H NI <;: H RI <;: H JI ) 'I' <;: H R2 i 
u p = u mqpvmq - u mpvm = u mqp + u mqp + u mqp vmq - u mpvm 

<;:G _ <;:GTI 'l' <;:GT2 i _ ( <;:GR) + <;:GJI ) 'I' <;:GR2 i 
u p - u mqpvmq - u mpvm - u mqp u mqp vmq - u mpvm 

(3 .89) 

(3 .90) 
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where: 

8H~!P = - ¡ pjtjnmlflq,ktk<Pp ctr 
(I> 

8H~!P = ¡ Pjmnjlflq<Pp ctr 
(I> 

8H~; = ¡ Pjmnj<Pp ctr 
(I> 

8H{,)qp = ¡ q*tmlflq,ktk<Pp ctr 
(I> 

8G~!P = ¡ P~nlflq<Pp ctr 
(I> 

8G~; = ¡ P~n<Pp ctr 
(I> 

8G{,)qp = ¡ p*t 111lflq,ktk<Pp ctr 
(I> 

(3 .9 1) 

(3 .92) 

(3 .93) 

(3 .94) 

(3 .95) 

(3 .96) 

(3 .97) 

Interior integration, x i E <l>. The integrals contain a singularity, which can be integrable 
in the Riemann sense (regular or weakly singular) or in the more general Finite Part sense. 
The regularisation performed in the previous section leads to a set of integrals integrable in 
the Riemann sense, making explicit the Finite Part of the original integral. In any case, the 
integrand is unbounded at the collocation point, and hence no integration point can lie at it. 
Only regular and weakly singular integrals have to be integrated, which is done according to 
Chapter 4 . The contributions of <l> similar to those of the SBIE are: 

HP = lim / q*</JP ctr 
e-.O+ 

(3 .98) 

GP = lim / p* <Pp ctr 
e-.O+ 

(3 .99) 

<l>- ei 

Since x i E <l>, the contributions of the new integrals arising in the 8SBIE consider only the 
design velocity field along the boundary element (through the design element 'I'): 

8HP = 8H~!Pv!q = (8 H ~~P+8H ~!P+8H ~!P) v!q 

8GP = 8G~!Pv!q = ( 8G~!P + 8G~!P) v!q 
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where: 

<;;: H NI 1 1· / 1 ar ( ,,,, ¡ ¡ ¡ ,,¡,i ) ctr u mqp = - 1m -- nmlfl.qktk'+'p - nmlflqktk'+'p . 
2K e-,O+ r ar ' ' (3 .102) 

<l> - ei 

óHRI 1 {! 2
r ,m or ( ¡) ,i.. df' / nm ( ¡ ¡ ) ,i.. df' 

mqp = 2n - ei 7 on l/lq - l/lq '+'p - <l>- ei -;:¡ l/lq - l/lq - l/lq,/j '+'p . -

/ 1 [ . (ºr)i ... ·] · · · · / -rl (( ~rr)i - ~rr) -;. nm<Ppl/f~_/,j - 01 n:11</>~l/f~/J df' - n:11</>~l/f~/J Ul Ul 

(3.103) 

8H~,:qp = lim / q"' t 111l/fq ktk<Pp ctr 
e-,o+ ' 

(3 .104) 

<l>- ei 

8G~~p = }~W+ j P~11 ( lflq - lfl!) <Pp ctr (3 .105) 

<l>- ei 

8G~,:qp = }~W+ ¡ p"'tmlflq,ktk<Pp ctr (3 .106) 

<l>- ei 

where the limit notation lim
6
_,0+ before sorne integrals has been omitted for brevity. Note that 

terms involving the integral / 1/r ctr has been removed from 8H~!P and 8H~~P since they 
cancel out when evaluating 8H!i~p· 

The solution of the sensitivity problem requires the solution of the zero-order solution. 
As it is well known, the discretised form of the SBIE is: 

N1,e N 1,e 

cii + L., (H PpP)<1>• = L., (GPqPt· (3 .107) 
e= I e= I 

which is somewhat a simplified version of the 8SBIE (3 .86). Performing a suitable colloca­
tion of the SBIE throughout the discretisation leads to the influence matrices H and G, which 
are built by assembling free-terms and H P integrals into H , and G P integrals into G. The dis­
cretised system is transformed into a system of linear equations once the boundary conditions 
are applied: 

Hp =Gq 
boundary conditions 
----~ Ax=Bx=b (3 .108) 

where A is composed of components of H and G related to the unknown components of p 
and q (gathered into x), and B is composed of components of H and G related to the known 
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components of p and q (gathered into x). Following a similar procedure but using the 8SBIE 
(3 .86), the first-order discretised system is: 

H8p + 8Hp = G8q + 8Gq 
boundary conditions 
-----, A8x = B8x + 8Gq - 8Hp = b8 (3 .109) 

where A and B is similar to that of the zero-order system (if the same discretisation and 
collocation is used), and the components of 8x are related to the sensitivities of the boundary 
conditions. 

3.8 Helmholtz problem 

The previous section deals with the Laplace problem, which, despite being the simplest case, 
it is very useful to explain, discuss and understand in detail all the steps to obtain a BEM for­
mulation for sensitivity analysis. Furthermore, the crucial part already solved for the Laplace 
problem is applicable with small modifications to other problems. A simple change of flux 
variable f = -kq, where f is the physical flux and k is the conductivity, make possible to use 
the already developed formulation for heat transfer or electrostatics problems. By expanding 
the fundamental solution, it is also possible to obtain the BEM formulation for the Helmholtz 
problem, which with simple change of flux variables allows the study of wave propagation 
within ideal fluids or the anti-plane wave motion in two-dimensional elastodynamics. In 
the present section, the BEM formulation (SBIE and 8SBIE) for sensitivity analysis for the 
Helmholtz problem is developed. 

Concerning the BIEs, the only formal difference between the Laplace problem and the 
Helmholtz problem is the fundamental solution [6], which represents a dynamic event with 
a propagation speed e in the frequency domain w. Being k = wlc the wavenumber, the 
fundamental solution p* and its derivatives are: 

p* = _l Ko (ikr) = _l p 
. 2K 2K 
,. 1 aP 1 

p . = ---r . = - Qr . 
. ,J 2K ar ,J 2K ,J 

Pjm = 2~ [~ ~~ 6jm + ( ~
2

r~ - ~ ~~) r/,m] 

q* = p*.n . = _l ap ar = _l Qar 
. ,J J 2K ar an 2K an 

(3 .110) 

(3 .111) 

(3 .112) 

(3 .1 13) 

where i is the imaginary unit, and Kn (z) is the modified Bessel function of the second kind 
of order n and argument z. Terms Q, R1 and Ri depend exclusively on r and k: 

Q = -ikK 1 (ikr) 

1 
R1 = -Q 

r 
R 2 = (ik)2K2 (ikr) 
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(3 .114) 
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Bessel functions Kn (z) can be decomposed as shown in Appendix B. By using this decom­
position, P , Q, R 1 and R2 can be written is such a way that a part depending only on r is 
segregated from another parts depending on r and k: 

P = - In r - In i; -y + K~ (ikr) = - In r + @ ( r 0) 

1 k
2 

k
2 

( ik 1 ) . R . . 1 Q = -~ + 2 rln r + 2 In 2 + y - 2 r - 1kK1 (1kr) = -~ + (9 (rln r ) 

1 k
2 

k
2 

( ik 1 ) ik R . 1 R1 = - r
2 

+ 2 In r + 2 In 2 + y - 2 - -;-K1 (1kr) = - r
2 

+ @ (In r ) 

2 k
2 

k
4 

2 k
4 

( ik 3) 2 2 R . 2 ( º) R2 = r 2 + 2 - 8 r In r - 8 In 2 + y - 4 r - k ~ (1kr) = r2 + @ r 

Therefore, the fundamental solution and its derivatives can be written as: 

( ) 
slalic ( ) dynamic 

p* = p* + p* 

* ( * ) slalic ( * ) dynamic 
PJ = P,j + P,j 

( )
slalic ( ) dynamic 

Pjm = Pjm + Pjm 

( )
slalic ( . ) dynamic 

q* = q* + q* 

(3 .117) 

(3 .118) 

(3 .119) 

(3 .120) 

(3 .121) 

(3 .122) 

(3 .123) 

(3 .124) 

where the static parts correspond to the Laplace problem. Dynamic parts lead to at most 
weakly singular integrals, hence neither produce additional free-terms nor require further 
treatment. 

3.8.1 Ideal fluid 

Consider an ideal fluid with density p and bulk modulus K . The wave propagation speed 
is then e = {Kip. Within the small perturbation hypothesis, the wave propagation in this 
medium follows the Helmholtz equation with the dynamic pressure p as the primary variable 
[6]. The flux variable (secondary variable) is the fluid normal displacement u

11
: 

1 dp 1 
u=--· =-q 

11 pú)2 an pú)2 
(3 .125) 

Thus, simply by making the change of variable q = pú)2u
11

, the formulation can be used to 
study this problem. 

3.8.2 Anti-plane elastodynamics 

Consider an elastic solid with density p and shear modulus µ . The shear wave propagation 
speed is then c2 = {µip . The two-dimensional analysis of the anti-plane motion is governed 
by the Helmholtz equation with the anti-plane displacement u3 = p as the primary variable, 
and c2 = e as the wave propagation speed [6]. The flux variable is now the anti-plane traction: 

(3 .126) 
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where a = 1, 2, and summation convention is implied. Hence, by making the change of 
variable q = t/µ, the formulation can be used to study this problem. 

3.9 Elastostatics 

Consider the static analysis of an elastic solid with Poisson's ratio v and shear modulus (or 
Lamé's second parameter) µ . Lamé's first parameter is then l = 2µv/( l - 2v). The primary 
variable of the governing differential equations for the in-plane problem are the displacements 
uk, and the secondary variables are the tractions tk = akjnj, where the stress tensor is a kj = 
lu

111
,m8kj + µ(uk,j + uj,k), and k, j, m = 1, 2. In the present work, the plane strain problem is 

considered, although the plane stress problem can be obtained easily from it [137). 

3.9.1 óSBIE for non-boundary collocation points 

The Singular BIE (SBIE) for an interior or exterior collocation point with respect to the ref­
erence domain Q can be written as [ 137): 

ó~u; + ¡ t~kuk dr = / u~kt k dr, (3 .127) 

r r 

where the body loads have been discarded, / = 1, 2 is the li ve index related to the load 
direction, k = 1, 2 is the dummy index related to the observation direction, and: 

u~k = l [- o,k (3 - 4v) 1n r + r ,r k] 
8.n µ ( 1 - V) ' ' 

u1"k . = 1 
_!_ [- 81k (3 - 4v) r 1. + 81.,r k + 8k1.r 1 - 2r 1r kr 1.] ,J 8.n µ ( 1 - V) r ' ' ' ' ' ' 

a" = lu" 8 + µ (u" + u" ) /km /j,j km /k,m lm,k 

a,"k,11 = - 1 1 
[2r ,r kr 111 + (1 - 2v) (o,kr m + o,mr k - ókmr ,) ] 

· 4.n (1 - v) r · · · · · · 

t" " lk = ª1kmnm 

t,"k = - l l { ar [o,k (1 - 2v) + 2r ,r k] + (1 - 2v) (n,r k - nkr ,) } 
4.n (1 - v) r an · · · · 

Likewise, for the perturbed domain ñ: 

o~u; + j i';ék df = / u~Jk df, 
r r 
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(3 .129) 

(3 .130) 

(3 .131) 

(3 .132) 

(3 .133) 

(3 .134) 
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As seen in previous sections, the relationships of geometrical objects and variables between 
the reference domain Q and the perturbed domain ñ are given by linear mappings: 

ii = u ¡ + 8ui (a - aº) k k k 

uk = uk + 8uk ( a - aº) 
uk . = uk . + 8uk . (a - aº) ,] ,J ,] 

ñj = nj + 8nj ( a - a0) 

(Jkj = J.um,mókj + µ(uk,j + uj,k) = (lkj + Ó(Jkj ( a - a0
) 

ik = akjñj = ukjnj + (ukj8nj + 8ukjnj) (a - a0
) = tk + 8tk (a - a0

) 

df= [1+8J (a-a0
)] ctr 

(3 .135) 

(3 .136) 

(3 .137) 

(3 .138) 

(3 .139) 

(3 .140) 

(3 .141) 

where only linear terms (a - a0
) are kept. The fundamental solution u;k depends on the 

observation and collocation points u;k = u;/x, xi), hence its linear mapping must be built 
from the Taylor's expansion with respect to both points. As seen with the Laplace problem, 
this means that the linear mapping can be written as: 

u;k = u;k + u;k,irj ( a - a0) = u;k + 8u;k ( a - a0) (3 .142) 

The linear mapping of f;k is built by using the linear mapping of its components: 

i';k = a;k111ñ111 = [u;km + u;km,irj (a - a0) ] [nm + 8n111 (a - aº)] 

= u;kmnm + ( u;k1118n111 + u;"km,jórjnm) ( a - a0
) 

= t;k + 8t;k (a - a0) 

(3 .143) 

and keeping only linear terms (a - a0
) . Note that u1*k . is obtained by differentiation of 

m,J 

Equation (3 .13 1): 

u;"k1111. = - / ) 1
2 
[- 8r 1r kr mr 1• - 2 (1 - 2v) (81kr 111r 1. + 81111r kr 1• - 8k111r 1r 1. ) 

. ' 4.n 1 - V r ' ' ' ' ' ' ' ' ' ' 

+ 2 ( 8/j r,kr,111 + ók/,1 r,111 + 8111jr/,k) + (1 - 2v) ( 81k8mj + 811118kj - ókmólj) ] (3 .144) 

Finally, su bstituting all these linear mappings into Equation (3 .134 ), keeping only linear terms 
(a - a0), substracting Equation (3 .127) from it, and dropping out (a - a0) terms, give the 
sensitivity SBIE (or 8SBIE): 

8~8u; + ¡ t;kóuk ctr + / ( 8t;k + t;k8J ) uk ctr = / u;kótk ctr + / ( 8u;k + u;éJ ) tk ctr 
r r r r 

(3 .145) 

The first and third integrals are similar to the integrals of the SBIE, except that now the 
sensitivities 8uk and 8tk appear. The second and fourth integrals are new integrals that depend 
on uk and t k• thus they can be evaluated only once the zero-order solution is known. 
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3.9.2 óSBIE for boundary collocation points 

The process to obtain the 8SBIE for boundary collocation points is analogous to the process 
performed for the Laplace problem, so many aspects are skipped and assumed similar here. 
The limiting process is also done from an interior collocation point (8h = 1). The integration 
path of the integrals of Equation (3 .145) is modified according to Equation (3.45), then: 

/ 
( ... ) ctr = lim / ( ... ) ctr + lim / ( ... ) ctr 

e-.O+ e-.O+ 
(3 .146) 

r 0 r - ~ 

Integration over r i In order to perform the integration over the are r i, a polar system of 
coordinates centered at the collocation point is used, see Section 3.7.2. Assuming that the 
displacement sensitivity is continuous, i.e. 8uk = 8u~ + @ (e), the evaluation of the first 
integral of Equation (3 .145) leads to: 

where c)k is the well-known elastic free-term: 

( e¡ ) _ !:,.8ext ( 8 ) _ 1 ( sin 282 - sin 281 
tk - 2:n tk 8:n (1 - v) - ( cos 282 - cos 281) 

- ( cos 282 - cos 281 ) ) 
- ( sin 282 - sin 281) 

(3 .148) 

Given that the displacement is continuous: uk = u~ + @ (e); and the design velocity field is 
differentiable: vm = v:

11 
+ v:

11
f,j€ +@ (e2

); the second integral ofEquation (3 .145) can be 
written as: 

lim / ( 8t7k + t7k8J ) uk ctr = lim / (ai"'kmónm + a;km .8rj.nlll + t7k8J) uk ctr = b\k1"mv1i· mu~ 
e-.o+ e-.o+ ,J ' 

f i 0 

(3 .149) 
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where b;kjm is: 

92 92 92 

+ (1 + 2v) 8/j / nknm dO + (3 - 2v) 8kj / n1n111 dO - (1 - 2v) / t1nkn/111 dO 

91 91 91 

92 92 92 ] 

+ (1 - 2v) / n1tkn/111 dO + 2 / n1nkt/111 dO + (1 - 2v) 81k / t/111 dO 

91 91 91 

(3 .150) 

and its evaluation can be found in Appendix D. The new free-term b;kjm is null if the col­
location point is located at a smooth boundary point. Assuming that traction t k and traction 
sensitivity 8t k are bounded, the third and fourth integrals of Equation (3 .145) are null: 

lim / u~étk ctr = o 
e-,o+ 

(3 .151) 

(3 .152) 

f i 

Therefore, after performing the integration over r i, the 8SBIE for boundary collocation points 
can be wri tten as: 

cf éu~ + b;k1"mv1Í· mu~ + lim / t~éuk ctr + lim / ( 8t~k + t~k8J ) uk ctr 
' e-,o+ e-,o+ 

r - ei r - ei 

r - ei r - ei 

Integration over r - e¡ The first integral of Equation (3.153) is clearly strongly singular: 

(3 .154) 

r - ei 

The term leading to the strongly singular part can be segregated: 

1 { . / 1 ar [ ] H1 =- ( ) hm --a 81k(l-2v)+2r 1rk 8ukdr 4.n 1 - v e-,O+ r n ' ' 
r - ei 

+ (1 - 2v) lim / .!. (n1r k - nkr ,) 8uk ctr} (3 .155) 
e-,o+ r ' ' 

r - ei 
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Because the displacement sensitivity is continuous, one can add and substract 8u~ from 8uk 
in order to further segregate the strongly singular term: 

H1 = - 1 
{ lim / .!. or [8,k (1 - 2v) + 2r 1r k] 8uk dí 

4n (1 - v) e-,O+ r on ' ' 
r - ei 

+ (1 - 2v) [ lim / .!. (n1r k - nkr 1) (8uk - 8uik) dí + 8uik lim / .!. (n1r k - nkr 1) dí]} 
e-,o+ r • • e-,o+ r • • 

r - ei r - ei 

(3 .156) 

lt is easy to see that: 

Hence, the regularised integral can be written as: 

1 { . / 1 ar [ ] H1 = - hm -- 81k (1 - 2v) + 2r 1r k 8uk ctr 
4.n (1 - v) e-,o+ r dn · · 

r - ei 

+ (1 - 2v) [ lim / ! (n1r k - nkr ,) (8uk - 8u~) 
e-,O+ r ' ' 

r - ei 

ctr + e,éu~ lim / ! dr]} e-,O+ r 
r - ei 

(3 .158) 

where / 1/r dr is analytically solvable. The second integral of Equation (3 .153) can be split 
into three integrals: 

8H1 = lim / (8t;k + t;k8J ) uk ctr = lim / (u;km8nm + u;k 111.8r1.n111 + t;k8J) uk ctr 
€-+O+ €-+O+ I ' 

~~ 0 

(3 .159) 

8H~ is a strongly singular integral: 

8H~ = }~W+ / u;k1118n111uk dris strongly singular·: u;km = (!J (r - 1
) (3 .160) 

r - ei 
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If its integrand is expanded, two integrals are obtained: 

1 . / 1 [ ar ( ar ) ] = ( ) hm - 2r ¡r k .:ir+ (1 - 2v) ó¡k .:ir+ f¡r k - tkr ¡ n,Vr 5 f5Uk dr 4.n 1 - V e-,O+ r ' ' u u ' ' ,, , 

r - ei 

where the first integral is regular because t1r k - tkr 1 = (!J (r) . In the second integral, it is 
possible to add and substract n~v~ 

5
t~ from n,~r 

5
f suk: · ,, ' ,, ' 

+ }~W. / ~ :~ [ 2r,1 r,k + (1 - 2v) 81k] (n,v,,stsuk - n~v~.st~u~) dr 
r - ei 

+ n~v~.i~u~ e~W. / ~ :~ [ 2r/,k + (1 - 2v) 81k] ctr} (3.162) 

r - e' 

where new regular and strongly singular integrals are obtained. In the new strongly singular 
integral, one of its terms lead to an integral / 1/ r dr: 

+ }~W. / ~ :~ [2r,1 r,k + (1 - 2v)81k] (n,v,,isuk - n~v~.i~u~) ctr 
r - ei 

+ n~v~i~u~[( l - 2v)81k lim / ! dr+2 lim / ! ar r 1r k dr]} (3 .163) 
' e-,O+ r e-,O+ r ar ' ' 

r - ei r - ei 

and the other term can be expanded as: 

(ar)¡ . ( ar )¡ . . . 
r r = - t - t + (!J (r) = t t + (!J (r) 

,/ ,k ar ' ar k ' k 
(3 .164) 
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which leads to: 

+ }~W+ / ~ !~ [2r,1 r,k + (1 - 2v)81k] (n,v,,s1suk - n~v~.st~uU dr 
r - ei 

¡ ¡ ¡ ¡ [ 2 1. / 1 or ( ¡ ¡ ) +n,V, s1suk 1m -- r 1r k - t1tk ' e-,o+ r ar ' ' 
r - ei 

ctr + [O - 2v) 81k + 2t;t~] lim / ! dr]} 
e .... o+ r 

r - ei 

(3 .165) 

Hence, 8H~ can be written as a set of regularintegrals and one integral/ 1/r dr. The integral 
8Hf is also strongly singular: 

If the following part of the integrand is expanded: 

a1"k .n
111 

= - 1 
{ _!_

2 
or [- 8r 1r kr

1
. - 2 (1 - 2v) 81kr

1
- + 2 (811-r k + 8k

1
.r ,) ] 

m,J 4.n (1 - v) r on ' ' ' ' ' ' 

+ r
1
2 [ - 2 (1 - 2v) r,j (n1r,k - nkr,1) + 2n/,1 r,k + (1 - 2v) (81knj + 8kjn1 - 8/jnk) ]} 

= u:kj + u~kj (3 .167) 

lt is easy to see that u1kj leads to a regular integral while u~kj leads to a strongly singular 
integral: 

8Hf = !~W+ ¡ u:kj ( Vj - V~) uk dr + !~W+ ¡ <J~kj ( Vj - V~) uk dr (3 .168) 

r - ei 

i i ( · 2) Given that the design velocity field is differentiable, i.e. vj - vj - vj/ s = (!J r , one can 

add and substract V~/s from 8rj leading to new regular and strongly singularintegrals: 

+ liffi / r<J/bk · Uj. Sr 5Uk ctr (3 .169) 
e .... o+ J J,. ,. 

r - ei 
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This new strongly singular integral can be further reduced by adding and su bstracting lim7 _,0 ( r,su k) = 
(ar/ar)¡ t~u~ to r,suk: 

r - ei r - ei 

(3 .170) 

The latter integral can be expanded and written as: 

A= lim / ro'~kj (ar)¡ dr= - l lim /!(ar)¡ [-2(1 -2v)r j (n1rk - nkr 1) 
e-,o+ ar 4.n (1 - v) e-,O+ r ar ' ' ' 

r - ei r - ei 

By adding and substracting the following, already used, expansions: r,j = (arlar)¡ t~ +@ (r), 

r/,k = t;t~ + @ (r) and n,j = n~ + @ (r); it can be written as: 

1 { . / 1 (ar)¡ [ ( (ar)¡ ¡) A= - hm . - - - 2 (1 - 2v) r j - - tj ( n1r k - nkr 1) 
4.n( l -v) e-,O+ r ar ' ar ' ' 

r - ei 

+ 2 (njr,1r,k -n~t;tU + (1 -2v) (81k (nj - n~) + 8kj (n, -n;) - 8/j (nk - nU) ] dr 

- 2(1 - 2v) t
1
i. lim / ! (n1r k - nkr ,) dr 

e-,O+ r ' ' 

where the second integral is similar to the strongly singular integral appearing in the regular­
isation process of H1• Also, it is easy to see by inspection that 8kjn; - 8/jn~ = e1kt~. The third 
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integral can be regularised by adding and substracting arlar to (ar1ar f 

1 {· / l( ªr)i [ ( (ªr)ii ) A= - lim - - - 2 (1 - 2v) r j - - tj (n1r k - nkr 1) 
4.n( l -v) e-,O+ r ar ' ar ' ' 

r - ei 

+ (ni. (2t;t~ +( l -2v)81k) - (l -2v)e1kt
1
i.] lim / ! dr} (3 .173) 

J e-,o+ r 
r - ei 

Therefore, 8Hf can be written as a set of regular integrals and an integral / 1/r dr. The 
integral 8H~ can be easily regularised. If, in the first place, the expansion of 8J = t~ktjvj.i s = 

t~v~.st~ + (j (r) is considered: 

then the resulting strongly singular integral is similar to H 1• Hence, the regularised form of 
8H~ can be written as: 

- l t~v~st~ { lim ¡ .!.ªr [8,k( l -2v)+2r,rk]ukdr 
4.n( l -v) ,. e-,o+ ran · · 

r - ei 

+( l -2v) [ lim / ! (n1rk-nkr 1) (uk-u~) ctr+e,ku~ lim / ! dr]} (3 .175) 
e-,O+ r ' ' e-,O+ r 

~~ ~~ 

Eventually, we are in the position to evaluate 8H1 = 8H~ + 8Hf + 8H~ by simply adding 
the three contributions. lt is easy to see that all terms related to the integral / 1/r dr cancel 
out when adding all the contributions. 

The third integral ofEquation (3 .153) is weakly singular: 

(3 .176) 

r - ei 
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The fourth integral of Equation (3 .153) can be split into two integrals : 

8G, = lim / ( ÓU~k + u~k8J) tk ctr = 8Gf + 8G~ 
e-,O+ 

r - ei 

where: 

8Gf = e~W+ / u~k.ir/k dris regular·: u~k.j 8rj = (!J (rº) 

r - ei @~) @Cr) 

3.9.3 Discretisation and solution 

(3 .177) 

(3 .178) 

(3 .179) 

The discussion done in Section 3.7 .3 about discretisation, collocation, numerical integration 
and solution of the Laplace BEM sensitivity problem holds for the elastostatic case. The 
difference is in the length of the formulation, which is also more involved as it has been 
shown in the previous section. 

The discretised form of Boundary Integral Equations (3.145) and (3 .153) for any collo­
cation point xi can be written in a generic way as: 

N1,e N 1,e N1,e N 1,e 

c)éu~+b;kjmu~.mu~+ L (H,kiukprl>,+ L (óH/kpukprl>, = L (G,kitkprt>· + L (óG¡k/kp)<f>· 
e= I e= I e= I e= I 

(3 .180) 

where: 

• Ifxi E r , then: 

<l>i = {<t>e,e = l , ... , N be : Xi E <I>e} 
q,i = { q, d, d = 1, ... , N de : xi E q, d } 

U~ = ( (p~Ukp) <f>¡ 

óU~ = ( (p~óUkp) <f>¡ 

i ( i ) q,i vj,m = lflq,mvjq 

and cf k and b;kjm are calculated as shown previously according to the local geometry of 
the boundary at the collocation point. 

• Ifxi ~ r , then c;k = 8,é~ and b;kjm = o. 

For a boundary element <l> associated with a design element 'I', two different situations must 
be considered: 
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Exterior integration, xi ~ <l>. When x i ~ <l> , the contributions of a boundary element <l> 
similar to those of the SBIE are: 

H 1kp = ¡ t;k</Jp dr (3 .1 81) 
(I> 

G 1kp = ¡ u ;k</JPdr (3 .1 82) 
(I> 

The contributions of the new integrals arising in the 8SBIE consider separately the design 
velocity field along the boundary element (through the design element 'I') and the design 
velocity field at the collocation point: 

óH = óHT1 v'P - óHT2 vi = (óHN 1 + óHR1 + óHJJ ) v'P - óHR2 vi 
lkp lkmqp mq lkmp 111 lkmqp lkmqp lkmqp 111q lkmp 111 

óG = óGTI v'P - óGT2 vi = (óoRJ + óGJI ) v'P - óGR2 vi 
lkp lkmqp mq lkmp 111 lkmqp lkmqp 111q lkmp m 

where: 

8H~'.nqp = - ¡ u;k}jnmlflq,5' s<Pp ctr 
(I> 

8HRI =/u* n -lfl cp ctr lkmqp lkj,111 J q P 

(I> 

8Hfk~np = ¡ u ;kj,mnj<Pp ctr 
(I> 

8H~!mqp = / t;ktmlflq,sts<Pp dr 
(I> 

8Gf¿,qp = ¡ u ;k,1111/fq<Pp ctr 
(I> 

8Gfk~11p = ¡ u ;k,m<P P ctr 
(I> 

8G~!mqp = ¡ u ;ktmlflq,sts<Pp ctr 
(I> 
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(3 .184) 

(3 .1 85) 

(3 .1 86) 

(3 .1 87) 

(3 .1 88) 

(3 .1 89) 

(3 .190) 

(3 .191) 
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Interior integration, x i E <I>. When x i E <I>, the contributions of <I> similar to those of the 
SBIE are: 

H1kp = - l { lim . / ! ar [8,k (1 - 2v) + 2r 1r k]<t>P ctr 
4.n( l - v) e .... o+ r an · · 

4>- ei 

+ (1 - 2v) [ lim . / ! ( n1r k - nkr 1) ( <Pp - </>~) dr + e1k</>~ lim / ! dr]} (3 .192) 
e .... o+ r ' ' e .... o+ r 

4>- ~ 4>- ~ 

G1kp = lim / u~k<Pp ctr (3 .193) 
e .... o+ 

4>- ei 

Since x i E <I>, the contributions of the new integrals arising in the 8SBIE consider only the 
design velocity field along the boundary element (through the design element 'I'): 

8H = 8HT1 v'P = (8 H N1 + 8HR1 + 8HJJ ) v'P lkp lkmqp mq lkmqp lkmqp lkmqp mq 
8G = 8GT1 v'P = (8GR 1 + 8G11 ) v'P lkp lkmqp mq lkmqp lkmqp mq 

(3 .194) 

(3 .195) 

where: 

8H,Nkl11qp = 1 {c1 -2v). / ! (t,r k - tkr ,) nmlflq sts<Pp ctr ' 4.n (1 - v) r ' ' ,- · 
4>- ei 
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8HRI - / a-ª ( - ¡) "' dr + / o'b ( - ¡ - ¡ r ) "' ctr lkmqp - /km lflq lflq '1-'p /km lflq lflq lflq,s s '1-'p 

r - ei r - ei 

/ 

-b ( ¡ "' ¡ (ªr)i i,1.i) ctr + ralkm lflq,sr,s'l-'p - lflq,s ar ts'l-'p 

r - ei 

1 . . . {/ 1 (ar)¡ [ ( (ar)¡ . ) ( ) - l/f.q1 

5 f~ <Pp1 
- - - 2 (1 - 2v) r m - - t:11 n1r k - nkr 1 4.n( l -v) ,. · r ar · ar · · 

- ei 

+ (l - 2v) l ; (n1r., - n,r.,) ( 4>, - 4>:) dr} (3 .198) 

8Gf¿,qp = }~W+ J u~k,m ( l/lq - lfl!) <Pp ctr (3 .199) 

<l>- ei 

8G
1
1k
1 = lim / u1"ktmlflq sts<Pp ctr mqp e-,o+ , .. (3 .200) 

<l>- ei 

where the limit notation lime ... o+ before sorne integrals has been omitted for brevity. Note that 
terms involving the integral/ 1/r ctr has been removed from 8H~'.nqp' 8H~'mqp and 8Hnmqp 

since they cancel out when evaluating 8H¡)mqp· 

The solution of the sensitivity problem requires the solution of the zero-order solution. 
As it is well known, the discretised form of the SBIE is: 

Nt,e Nt,e 

c fku~ + L., ( H ,kpukpt• = L., ( G ,k/kpt· (3 .201) 
e= I e= I 

Performing a suitable collocation of the SBIE throughout the discretisation leads to the in­
fluence matrices H and G , which are built by assembling free-terms and H1kp integrals into 
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H , and G1kp integrals into G. The discretised system is transformed into a system of linear 
equations once the boundary conditions are applied: 

Hu =Gt 
boundary conditions 
----~ Ax=Bx=b (3 .202) 

where A is composed of components of H and G related to the unknown components of u 
and t (gathered into x), and B is composed of components of H and G related to the known 
components of u and t (gathered into x). Following a similar procedure but using the 8SBIE 
(3 .1 80), the first-order discretised system is: 

Hou + 8Hu = Got + 8Gt 
boundary conditions 
----~ Aox = B8x + 8Gt - 8Hu = b8 (3 .203) 

where A and B is similar to that of the zero-order system , and the components of 8x are 
related to the sensitivities of the boundary conditions. 

3.1 O Elastodynamics 

In the present section, the time harmonic counterpart of the elastostatic problem is studied. 
The formulation is completely analogous to the elastostatic problem, except that the funda­
mental solution is more involved. However, it can be split into a part similar to the elastostatic 
one, and another part that leads to at most weakly singular integrals. This splitting process 
was also applied to the Helmholtz problem in Section 3.8. 

Consider the time harmonic analysis of an elastic solid with density p, Poisson's ratio 
v and shear modulus µ . Lamé's first parameter is then ..1 = 2µv/( l - 2v). As it is well 
known [6], two body modes exist: the longitudinal mode (primary wave or P-wave) with a 

propagation speed c1 = y(..1 + 2µ)/p, and the transversal mode (secondary wave or S-wave) 

with a propagation speed c2 = yµÍp. The P and S wavenumbers are denoted as k 1 = w/c1 

and ki = wlc2 , respectively, where w is the circular frequency. 

96 

The fundamental solution and its derivatives can be written as [6]: 

u,"k = _ 1_ [U181k - U2r ,r k] 
21rµ ' ' 

U1 = Ko (ik2r) + i:
2
r [ K 1 (ik2r) - :~ K 1 (ik1r)] 

k2 
U2 = K2 (ik2r) - ~ K2 (ik 1r) 

k2 

(3 .204) 

(3 .205) 
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u;km,j = 
2
~ [ R 1 ( 8/j r,111r,k + ók/,1r,111 + 8111jr/,k ) + R2r,j ( 81kr,111 + 81111r,k ) 

+ R3r,1r,kr,111r,j + R 4 8km8/j + R58kmr/,j + R6 ( 8,émj + 811118kj ) ] 

1 
R i = -Ti 

r 

R2 = ;Pui - .!. (ªui + au2 - ~u2) 
ar2 r ar ar r 

R =2 - - + - 5- - -U [ 
a
2
u 2 1 ( au2 s )] 

3 ar2 r ar r 2 

1 
R4 = -T3 

r 

Rs = 3. (ª2u1 - a2u 2 - .!. aui + lu2) - '?:. au2 + iu2 
µ ar2 ar2 r ar r2 r ar r2 

1 
R6 = -T2 

r 

(3 .206) 

(3 .207) 

(3 .208) 

where terms U; , v; , T¡ and R; depend on distance r, frequency cv and material properties. By 
using the decomposition of Bessel functions presented in Equation (B .1 ), the non-frequency 
dependant part (static) of each term can be segregated. Their full decomposition can be found 
in Appendix D. Terms U;, v;, T¡ and R; can be written as: 

3 - 4v ( º) Ui = - ( In r + @ r 
4 1 - v) 

U2 = - . 1 + @ (r2 In r) 
4( 1 - v) 

(3 .209) 

. 3 - 4v 1 
Vi = - ( - + @ (r In r) 

4 1 - v) r 
1 1 

V2 = 2 (1 - v) --; + @ (r) 

(3 .210) 
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I 1 
T1 = - --- + @(r) 

1- vr 
1 - 2v 1 

T2 = - + (9 (rln r ) 
2(1- v)r 
1 - 2v 1 

T3 = ( - + (9 (rln r ) 
2 I - v) r 

R _ 1 - 2v 1 ,fi ( º) 2- ---+ {.;I r 
} - V r 2 

R 3 = _ 4_ ..!_ + (9 (rº) 
} - V r 2 

Rs = - 1 - 2v ..!_ + e (rº) 
1 - V r 2 

(3 .211) 

(3 .212) 

where terms v;, R 1, R4 and R6 have been omitted for brevity, see Equations (3 .205) and 
(3 .208). Also, in order to be able to verify that the static parts lead to the elastostatic funda­
mental solution, the following relationships have been used: 

c2 
2 

c2 
1 

1 - 2v 
2 (1 - v) 

J. el 
- =- - 2 
µ c2 

2 

(3 .213) 

(3 .2 14) 

By substituting these decompositions into Equations (3 .204-3.208), it is very easy to see that 
the static parts lead to the elastostatic fundamental solution and its derivatives, and that the 
"dynamic residues" lead to at most weakly singular integrals: 

,, _ ( ,, ) static ( ,, ) dynamic 
u ,k - u ,k + u ,k 

u " - u " + u " ( ) 
stat ic ( ) dynamic 

/k,m - /k,m /k,m 

,, _ ( ,, ) static ( ,, ) dynamic 
t,k - t,k + t,k 

a" = a" + a" ( )
static ( ) dynamic 

/km /km /km 

a" = a" a" ( )
static ( ) dynamic 

lkm,j lkm,j + lkm,j 

(3 .2 15) 

(3 .2 16) 

(3 .217) 

(3 .2 18) 

(3 .2 19) 

3.11 Discretisation and collocation in multi-region problems 

The boundary of a region ani is split into severa! boundaries rk in order to assign a different 
boundary or interface condition to each one of them. Also, it is split at sharp corners in or­
der to have a better representation of tractions there. Since it has been established that each 
boundary has its own nodes, double nodes appear at points where different boundaries meet. 
If standard nodal collocation is applied at these nodes, then a singular system of linear equa­
tions could be obtained. There are severa! ways to overcome this difficulty, for example using 
discontinuous elements, special com er elements, alternative BIEs, or additional equations. In 
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the present work, non-nodal collocation is used at these nodes, where the collocation points 
are located inside the elements but near the nodes. This approach not only solves the degen­
eracy problem with an acceptable error, but is also quite simple. The meshes obtained from 
standard pre-processors do not require modifications. Furthermore, it can be fully automated 
without much difficulty. 

Coupling is directly performed by establishing compatibility and equilibrium along both 
faces of the interface at the level of discretised equations. Consider two BEM regions Q i and 
Q j (i =fa )) connected through an interface boundary rk with orientation defined by its unit 
normal n, see Figure 3.6. Relative to region Q ¡, rk has positive orientation, hence n Ci) = n. 
However, relative to region Q j, rk has negative orientation, and thus nU) = - n. Following 
this notation, coupling conditions between BEM regions are described next. 

BEM (Q¡: elastic solid) - BEM (Qj : elastic solid) The compatibility and equilibrium at 
the interface in a nodal fashion can be written as: 

u Ci) = u U) 

t CO + t U) = 0 

ó U (i ) = ó U (j ) 

8t (i) + 8t (j) = O 

(3 .220) 

(3 .22 1) 

where it must be noticed that displacements and tractions and their sensitivities have the 
same coupling equations. In the following, we denote u¡ and t¡ as vectors of displacements 

and tractions in all boundaries of Qi except rk, and u ~) and t~i) as vectors of displacements 
and tractions of rk with respect to Q ¡. Also, we denote u j and t j as vectors of displacements 

and tractions in all boundaries of Q j except rk, and uf) and tf) as vectors of displacements 
and tractions of rk with respect to Qj . The equations obtained after collocating the SBIE for 
both regions are: 

(3 .222) 

Q j Q j 

n anj = { ... , - rk, ... } - ri.. 

rk nU) = - n 

n Ci) = n 
ani = { ... , rk, ... } 

r" 
Q i Q i 

Figure 3.6: Boundary rk acting asan interface between BEM regions Qi and Q j 
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( u,, H jk ){ u j }-( G,, G jk ){ t j } -{ :: } (3.223) 
H kj 

(j ) (j ) 
G kj 

G U ) (j ) 
H kk u k kk t k 

which reduce to: 

H ;; H ik G ik oij U i G u oij Oi 

H ki 
H (i) G Ci) 

o kj 
(i) 

G ki o kj { tl }- ok kk kk u k 
(3 .224) 

oki 
(j ) (j ) 

H kj 
(j ) 

oki G kj ok H kk - G kk tk t j 

º ji H jk G jk H jj u j º ji G jj oj 

once coupling conditions are applied maintaining u ~ ) and i ¡i) as active degrees of freedom 
along the interface. The final system of linear equations is obtained after applying the bound-
ary conditions: 

A;; Hik G ik oij Xi B;; oij b i 

A ki 
u (i) GCi) 

o kj 
(i) 

B ki o kj { ''i }- b (i) 
kk kk u k k (3.225) 

oki 
HU) (j ) 

A kj 
(j ) 

oki B kj xj 
(j ) 

kk - G kk t k b k 

º ji H jk G jk A jj xj º ji B jj b j 

where xi and xj gather unknown displacements and tractions, and xi and xj gather known 
displacements and tractions. Matrices A and B combine terms ofH and G matrices according 
the known and unknown displacements and tractions. Once this system of equations is solved, 
all displacements and tractions are known. 

Therefore, in order to solve the sensitivity problem, we proceed following a similar pro­
cess but collocating the 8SBIE instead of the SBIE: 

A ii Hik G ik oij c5x i B ii oij 

A ki 
H (i) d i) 

o kj 
c5 (i) 

Bki o kj { c5x¡ } kk kk u k 
(j ) - GU) c5t (j ) = 

oki H kk A kj oki B kj c5x j kk k 

º ji H jk G jk A jj c5x j º ji B jj 

( óH¡¡ 
c5H ik Oik 

O¡¡ ){ u, } ( DG¡¡ 
c5G ik Oik 

o ){ t } 

lj l 

_ c5H ki 
c5H (i) 

o kk 
(i) ¿;d i) 

o kk 
ok. t(i) 

kk Okj u k c5G ki kk J b) 
oki o kk 

c5HU) ()) + 
o kk 

c5G U) 
kk c5H kj u k Oki kk c5G kj t k 

º ji o jk c5H jk c5H jj u j Oji o jk c5G jk c5G jj t j 

(3 .226) 

where the left hand side matrix is exactly the same as before. 

BEM (Qi: ideal fluid) - BEM (Qj : ideal fluid) The nodal compatibility and equilibrium 
at the interface can be written as: 

100 

u ~)n (i) = u ~ )n (j) 

- / i)n(i) - pU)nU) = O 

(i) (j ) 
Un = - Un 

/ i) = p (j ) 
(3.227) 
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óU(i) = -óU(j ) 
n n 

8 l i) = 8 p(j ) 
(3 .228) 

where, as in the previous case, normal displacements and pressures and their sensitivities 
have the same coupling equations. The procedure to obtain the final system of equations is 
analogous to the process followed in the previous case. 

BEM (Q¡: ideal fluid) - BEM (Qj : elastic solid) In this case, the nodal compatibility and 
equilibrium is: 

u~)n(i) = uU) =} 

-li)n(i) + t U) = O =} 

u~i) = - uU) · n U) 

t U) = l i)n(i) 

8u~) = -8uU) · n U) - u U) · 8nU) 

8t U) = 8/i)n(i) + / i)8n(i) 

(3 .229) 

(3 .230) 

where, unlike the previous cases, the sensitivities do not follow exactly the same coupling 
equations due to an additional term that takes into account the variation of the unit normal. 
This, however, does not lead to difficulties . The only difference with respect to the previous 
cases is a new term in the right hand side of the system of equations. 

3.12 Validation examples 

In this section, sorne examples with analytical solution are used to validate the formulation 
and its implementation. Only dynamic problems are considered since their static counter­
parts can be checked by simply making w ~ O. In the same line as in the previous chapter, 
the example is a square domain with boundary conditions such that a one-dimensional wave 
phenomenon occurs. However, in order to validate the formulation for curved geometries, 
the domain is divided into two regions with the same material properties but with curved 
interfaces. 

3.1 2.1 Ideal fluid problem 

3.12.1.1 Analytical solution 

Considera rectangular domain Q with the geometry and boundary conditions shown in Figure 
3.7 . The domain Q contain an ideal fluid with density p, and bulk modulus K . The solution of 
the related Helmholtz equation consists of two pressure waves travelling in opposite directions 
along x 1: 

(3 .23 1) 

where A and B are the amplitudes of the waves, k = wlc is the wavenumber, w is the circular 
frequency, and e = yKÍp is the wave propagation speed. Once boundary conditions are 
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u,,=0 

p=O p=P 

X¡ 

u,,=0 

L 

Design velocity field: v1(x)=x!L, vi(x)=O 

Figure 3.7: Problem layout (ideal fluid problem) 

considered, the pressure p and fluid displacement in the x 1 direction (u1 = 1/(pú})p,1) can be 
written as: 

p ( x 1 ) = . p sin kx 1 sm kL 
(3 .232) 

Pk 
U 1 ( X 1 ) = 2 . COS kx I 

pw sm kL 
(3 .233) 

If L is taken as the shape design variable with a design velocity field v = (x/ L , O), then the 
sensitivities are: 

( ) 
p k ( cos k L . X J ) 

8p X1 = sin k L - sin k L sm kx1 + L cos kx1 

( ) 
p k2 

( cos k L X J • ) 
8u 1 x 1 = -

2 
• • cos kx 1 + - sm kx 1 pw sm kL sm kL L 

3.12.1.2 BEM solution 

(3 .234) 

(3 .235) 

The problem is solved numerically by using the BEM sensitivity analysis with the 8SBIE 
developed in this chapter. The domain is a square with side length L , and is meshed using 
different element sizes (L/4, L/10) and different element order (linear, quadratic). By doing 
so, h and p convergence can be tested. Also, a fictitious circular inclusion filled with the 
same material is considered in order to demonstrate that the formulation works well also for 
curved elements . All meshes used here are shown in Figure 3.8. Dimensionless frequency 
a0 = wL/c is used, which is in the range (O, 6). 

The design velocity field is defined by a design mesh containing one 4-node quadrilateral 
element covering the domain Q , and appropriate values of v are assigned to the four nodes in 
orderto define v = iJx/iJL = (x/L , 0). 
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o o o o 
Figure 3.8: Linear and quadratic meshes with L/4 and L/10 element sizes, and with and 
without a fictitious circular inclusion. 

Figure 3.9 shows the normalised displacement u I and sensitivity 8u 1 at x 1 = L , and their 
relative errors with respect to the analytical solution. These results are obtained for the up­
per meshes in Figure 3.8. Figure 3.10 shows the same results but using the meshes with the 
fictitious circular inclusion, i.e. the lower meshes in Figure 3.8. In all cases, error levels 
are so small that the differences between numerical and analytical solutions can only be seen 
in the relative error graphs. These graphs clearly demonstrate the h and p convergence of 
the developed BEM sensitivity analysis for plane and curved boundary elements. The error 
levels at low frequencies are higher when using the meshes with the fictitious circular inclu­
sion. However, the same phenomenon is seen in both the displacement and the displacement 
sentitivity, and hence it seems to be related to the discretisation itself. 

3.12.2 Elastodynamic problem 

3.12.2.1 Analytical solution 

Consideran elastic two-dimensional rectangular domain Q with the geometry and boundary 
conditions that Figure 3.11 shows. The domain Q has a density p, shear modulus µ and 
Poisson's ratio v. Despite being a two-dimensional domain, boundary conditions lead to 
a one-dimensional behaviour. The solution of the time harmonic elastodynarnic governing 
equations consists of two waves travelling in opposite directions along x 1: 

(3 .236) 

where A and B are the amplitudes of the waves, k = wlcp is the wavenumber, w is the 
circular frequency, and Cp = y(Ji, + 2µ)/ pis the P-wave propagation speed. Once boundary 
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Figure 3.9: Convergence of u1 (L) and 8u 1 (L) for the ideal fluid problem 
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Figure 3.10: Convergence of u1 (L) and 8u 1 (L) for the ideal fluid problem (meshes with a 
fictitious circular inclusion) 
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Design velocity field: v1(x)=x!L, vix)=O 

Figure 3.11: Problem layout 

X¡ 

conditions are considered, the displacement u1 and stress a 11 can be written as: 

(3 .237) 

(3 .238) 

If L is taken as the shape design variable with a design velocity field v = (x/ L , O), then the 
sensitivities are: 

( ) 
P ( sin kL . 1 x 1 ) 8u1 x 1 = -

2 2 
sm kx1 + cos kx1 

pcp cos kL cos kL L 
(3 .239) 

( ) ( 
sin kL 1 x 1 • ) 

8a11 X1 =Pk cos2kL coskx1-coskLL smkx1 (3 .240) 

where 8 = dldL = a/aL + (a!axj)vj is the simplified notation for the field variable sensitivity 
(or material derivative). 

3.12.2.2 Numerical solution 

The numerical solution is obtained using the same configuration and the same set of meshes 
as in the previous section. Poisson's ratio is assumed to be v = 1/4. In this case, the dimen­
sionless frequency is a0 = w L/c1, where c1 is the P-wave propagation speed. 

Figure 3.12 shows the normalised displacement u1 and sensitivity 8u I at x 1 = L , and their 
relative errors with respect to the analytical solution. Figure 3.13 shows the same results but 
using the meshes with the fictitious circular inclusion. As in the previous section, h and p 
convergence can be seen in these graphs for straight and curved boundary elements. 
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Figure 3.12: Convergence of u 1 (L ) and óu1 (L ) for the elastodynamic problem 

10" 104 

lü3 103 

1ü2 ;;, 102 

~ 101 ::, 
101 

IO 

§ 1o<> ~ 10° 
IQ 

10-' io-• 

io-2 io-2 
-- An.aly tical 

10-3 10-3 
o 2 3 4 5 6 o 2 3 4 5 6 

ao no 

1ü2 102 

~ 101 ~ 101 

1 o<> -::. IOº ::, :, 

~ io-• IQ io-• ... 
o g 10-2 g 10-2 

" 10-3 10-3 
" " > ~ ·::, 

104 ·; 104 
"' ;:¡ ü ¡:,:; 10-s ¡:,:; I0-5 

10-Ó 10-6 
o 2 3 4 5 6 o 2 3 4 5 6 

ao no 

Figure 3.13: Convergence of u 1(L ) and óu1(L ) for the elastodynamic problem (meshes with 
a fictitious circular inclusion) 
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4.1 lntroduction 

In previous chapters, two- and three-dimensional non-standard BEM formulations such as 
the Dual BEM and the Geometric Sensitivity BEM have been studied. These lead to the 
numerical evaluation of a greater number, more difficult and costlier integrals when compared 
to the conventional BEM. Therefore, there is a strong need to explore safe, systematic and 
economical numerical treatments of these integrals. 

In this chapter, the main aspects related to the numerical evaluation of BEM integrals are 
reviewed, and sorne practica! improvements are proposed. Since any attempt to provide a 
literature review in this field is inevitably incomplete because it is quite vast, a broad classi­
fication including the most relevant techniques is considered. Our effort is directed towards 
using simple algorithms where little orno tuning regarding the required number of integration 
points is needed. We propose sorne simple estimators of the required number of integration 
points as a function of the required error, and other measurable magnitudes of the element 
and collocation point. In particular, a strategy to obtain formulas for the numerical evaluation 
of weakly singular integrals by using polar coordinates with angular 1n tan f (B) transforma­
tion [138) and conforma! mapping [139) is proposed. 

The rest of the chapter is organised as follows . BEM integrals are described in Section 
4.2, while the main issues related to their evaluation are presented in Section 4.3. In Section 
4.4, the evaluation of the integral of the Jacobian is studied, while in Section 4.5 different 
methods for evaluating weakly singular integrals are analysed. 

4.2 Description of BEM integrals 

The basic structure of integrals arising in the Boundary Element Method is: 

I = l YdX = l F*<PJd5 (4.1) 

where F * corresponds to a fundamental solution term, <P to a shape function/s term, J to 
the Jacobian of the element transformation between reference B (local) and real X (global) 
spaces, and d.= to a differential length (d.= = d~), area (d.= = d~1d~2) or volume (d.= = 
d~1 d~2d~3) in the reference space. Figure 4.1 depicts sorne boundary and body load elements 
that may be present in two-dimensional and three-dimensional BEM problems. The most 
important objects influencing the integrand are also shown: position vector x and unit normal 
vector n at the observation point (integration point), position vector xi and unit normal vector 
ni at the collocation point (singularity) xi, and the distance vector r = x - xi. 

Fundamental solution (F*) 

The fundamental solution F* is the most challenging part of the integrand. Time harmonic 
fundamental solutions can generally be expressed as the following linear combination of N P 
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n 

line element surface element 

(a) Two-dimensional problems 

line element surface element volume element 

(b) Three-dimensional problems 

Figure 4.1 : Layout of the integration problem in the Boundary Element Method 

terms: 

N F• 

F* = p (cte) (w,properties) · L, [F;rad\r,w,properties) · F~geo) (x,n, xi, ni) ] (4.2) 
a= I 

where, for given frequency w and material properties, F; cte) are constants, F~rad) are radial 
functions with respect to the distance r between observation x and collocation point xi (r = 
lx - xil), and Fa(geo) are functions of geometric nature depending on position and unit normal 
vectors at the observation and collocation points. Each radial function F;rad) can be further 
decomposed as: 

N Fa 
(rad) ~ (cte) . (rad) . 

Fa = ~ Fab (w, propertles) · Fab (r, w, properties) (4.3) 
b= I 

where again, for given frequency w and material properties, F;:te) are constants, and F;t) 
are radial functions. Radial functions F;~ad) can be classified as: 

Singular. The radial function is one of the following types: 

11 O 

1 
-, p = 1, 2, ... 
rP . 

ln r 

where lim,_.0 F;t) is unbounded. 

(4.4a) 

(4.4b) 
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Regular. The radial function is one of the following types: 

1 

rP ln r , p = 1, 2 ... 

rP , p = 1, 2 ... 

K~ (ikr) = @ ( w11+2r 2 ln (wr)) , n = O, 1, 2 
rn 

ER (-ikr) 
n+I =@ (w11+ 1r), n = O, 1, 2, ... 

rl1 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

where lim, ... 0 F;~act) is bounded. Note that k is a wavenumber, K: (z) is the rest after 
decomposing a modified Bessel function of the second kind of order n, and E~ (z) is the 
rest of order n after decomposing the exponential function. These decompositions are 
described in Appendix B. In mosteases, Bessel functions are related to 2D fundamental 
solutions, while exponential functions are related to 3D fundamental solutions. 

Each function F ~geo) contains one or several factors of the following types: 

Distan ce gradient components: r k ' The gradient of the distance r between observation and 
collocation points is: 

_ x - xi r 
r = grad(r) = -- = - = r .e . 

r r '1 1 
(4.6) 

which is an unit vector with direction pointing from the collocation point to the obser­
vation point, and will be called unit distance vector. In the 2D case, by applying a polar 
coordinates (p, B) transformation centred at the collocation point (x1 = xi1 + p cos B, 
x 2 = x~ + p sin B), each component becomes: 

r 1 = cos () 

r 2 = sin() 

(4.7a) 

(4.7b) 

In the 3D case, by applying a spherical coordinates (p, B, cp) transformation (x1 = xi1 + 
p cos cp cos (), x2 = x~ + p cos cp sin(), x3 = x~ + p sin cp ), each component becomes: 

r 1 = cos (fJ cos () 

r 2 = cos cp sin () 

r 3 = sin cp 

(4.8a) 

(4.8b) 

(4.8c) 

They are thus purely angular functions centred at x i, bounded within [- 1, 1 ] , and con­
tinuous everywhere except at x = x i, where they have a jump discontinuity. Despite 
their relative simplicity in polar or spherical coordinates, they have a number of pecu­
liarities in Cartesian coordinates. Algebraically, they are the quotient of a polynomial 
of order p and the square root of a polynomial of order 2p, where pis the element order 
and both polynomials are in terms of reference coordinates. 
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Figure 4.2: Colour maps of functions r 1, r 2 and f · d with a = 36º 

In order to show how these components behave along an integration domain, instead 
of showing r k• the more general directional derivative ar/ad = f · d is shown, where 
d is a unit direction vector. Figure 4.2 shows colour maps of r 1, r 2 and f · d, where 
the unit direction vector is d = (cosa, sin a) with a = 36º. The jump discontinuity can 
clearly be seen at x = xi, and it is present at any line through point xi except for a line 
perpendicular to d, where the function is zero. 

Figure 4.3 shows the values of the directional derivative f · d along a straight ele­
ment with end-nodes at (-1, O) and ( 1, O), and collocation points at (O, 1 ), (O, 0.1) 
and (O, 0). The unit direction vector is again taken as d = (cosa, sin a), and angles 
a = { O°, 18º, 36º, 54º, 72º, 90º} are considered. Figure 4.4 shows the same results but 
for a quadratic curved element with rnid-node at (O, O) and end-nodes at (- 1, - 0.2) and 
(1, 0.2). Note that ~ is the element local coordinate. When the collocation point is 
relatively far from the element, the integrand varies smoothly. When the collocation 
point is relatively near the element, the integrand has a smooth but abrupt step for an­
gles less than approximately 45°, anda peak for angles greater than approximately 45º. 
When the element contains the collocation point, a discontinuity is present in the inte­
grand. However, the integrand is very smooth at both sides of the discontinuity. In the 
case a = 90º for a straight element, the discontinuity disappears and the integrand is 
zero. When the curved element is considered, the discontinuity becomes a kink point 
(discontinuous derivative) and the integrand is zero atit. 

Figure 4.5 shows r 1, r 2, l frP and sorne combinations of them for a straight element 
similar to that of Figure 4.3, and different minimum distances r min between element 
and collocation points. lt is observed that the behaviour of r 2 (a = 90º) is similar to 
1/r, except for the sign. The behaviour of r 1 (a = Oº) is very different from 1/r because 
at ~ = O it goes to zero, and it has a stronger variation around that zone. A similar 
behaviour is observed between r if r and l/r2

, except again for the sign. In the case of 
r / r, two sharp peaks are present at both sides of ~ = O, where the function is zero. 

Components of the unit normal vector at the observation point: nk. lt is bounded inside 
[ - 1, 1), and it is continuous on a given element. For Lagrange elements of order p, it 
is generally the quotient of a polynornial of order p - 1 (line and triangular elements) 
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Figure 4.3: Behaviour off · d along a straight element with end-nodes at (- 1, O) and (1, 0). 
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Figure 4.4: Behaviour off · d along a quadratic curved element with mid-node at (O, O), and 
end-nodes at (- 1, - 0.2) and ( 1, - 0.2). 
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o.o 
; 

1.0 

1.0 

Figure 4.5: Comparison between r 1, r 2 , 1/ r' and sorne combinations of them along a straight 
element with end-nodes at (-1, O) and (1, 0). 

or 2p - 1 ( quadrilateral elements) and the square root of a polynomial of order 2(p - 1) 
(line and triangular elements) or 2(2p - 1) (quadrilateral elements). Polynomials are 
in terms of reference coordinates. Nonetheless, if a line element is straight ora surface 
element is planar, nk is simply constant. 

Components of the unit normal vector at the collocation point: n~. ltis merely a constant 
for a given collocation point. 

Distance derivative with respect ton: iJrliJn. This is a particular case of the first case stud­
ied, where the direction d is now the unit normal at the observation point n: 

iJr -- = r · n = r .n . iJn .1 J 
(4.9) 

Therefore, it behaves al ways in a very similar fashion as the case a = 90º shown in 
Figures 4.3 and 4.4. When the element contains the collocation point, one important 
property is iJrliJn = @(r), and thus lim,..,0 iJrliJn = O. 

Distan ce deriva ti ve with respect to ni: iJrl iJni. This is a particular case of the first case stud-

114 

ied, where the direction d is now the unit normal at the collocation point ni: 

iJr . . 
- = - f · n1 = -r .d . (4.10) 
iJni .1 J 

and the negative sign is due to differentiation with respect to the coordinates of the 
collocation point. lt behaves in a similar fashion as the case a = 90º only when the 
element contains the collocation point, because ni is in fact associated with the element. 
However, for collocation points outside the element, n i can have any direction a. 

When the element contains the collocation point, one important property to keep in 
mind is iJrliJni = @(r), and hence lim,..,0 iJrliJni = O. 
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Scalar product between n and ni: n · ni. Given that n is continuous within an element, and 
ni is a constant vector, this scalar product is also continuous. When the e lement contains 
the collocation point, one important property is limr ... o n · ni = 1. 

As a summary, for given w and material properties, F* can be decomposed as: 

(4.11) 

where: 

S
. l { r- P, p = 1, 2, ... 
mgu ar lnr 

1 
(rad) 

Fab (r) = one of rP ln r, p = 1, 2 ... (4.12) 
Regular rP, p = 1, 2 ... 

K,~ (ikr) lr'1, n = O, 1, 2 
E ~+J (-ikr )/1', n = O, 1,2, ... 

(geo) ( i i) { i ar ar i } F0 x, n, x , n =aproductof l ,r 1,nk,n
1
.,-,-. ,n · n ' an an• 

(4.13) 

Each fundamental solution is then a linear combination of products of F;t) and F0(geo) , which 
are purely geometric. This systematic way of decomposing the fundamental solution is well 
known [6], and allows to apply a divide and conquer strategy to the evaluation of BEM inte­
grals . 

The presence of the collocation point in the integration domain or not leads to the main 
division of BEM integrals: potentially singular integrals (xi E X) and regular integrals 
(xi i X). In the former case, only singular F;~act) may lead to singular integrals, all other 
combinations lead to regular integrals. In the latter case, although all integrals are regular, 
their evaluation may be quite difficult when the collocation point is near the element. This is 
due to the presence of abrupt steps and peaks in the integrand, as illustrated in Figures 4.3, 
4.4 and 4.5. 

Shape function (4>) 

The shape function <P commonly comes from a Lagrange basis </J ( S), thus it is often a poly­
nomial function. When dealing with singular integrals, it may be absent, or transformed into 
one of the following forms appearing after performing the regularisation: 

<P (S) = </J (S) - </J (Si) 
<P (S) = </J (S) -</J (Si) - <P,k (Si) (xk - x~) 

(4.14) 

(4.15) 

where Si is the position of the collocation point in the reference coordinates, and </J k = 
a</)!axk is the tangential gradient. In the former case, <P remains as a polynomial since </J ( Si) 
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is a constan t. In the latter case, it also remains as a polynomial since </J,k ( .='¡) and x~ are 
constants and xk is obtained from a Lagrange interpolation. 

In the case of integrals arising in Geometric Sensitivity BEM, <P consists of the product 
between a shape function coming from field variable interpolation, and a shape function com­
ing from design velocity interpolation or its gradient.Therefore, high-order polynomials and 
also rational polynomial functions can also be present. 

Jacobian (J) 

The J acobian J represents the relationship between infinitesimal lengths, areas or volumes in 
the transformation Tg from a reference space E to the real space x (Tg : E ~ x). Elements 
must be valid, i.e. min ( J ) > O, and preferably of good quality, i.e. J approximately constan t. 
The Jacobian of boundary elements comes from the transformation Tg: IR.n- J ~ IR.n: 

n = 2 : ctr = J d~, J = 1 :; 1 = ITI (4.16a) 

n = 3 : ctr = J d~1d~2, J = 1 ax X ax 1 = IT1 X T2I = INI 
a~I ª~2 

(4.16b) 

The Jacobian of a line element embedded in a three-dimensional ambient space (Tg: IR. ~ IR.3) 

follows also Equation ( 4.16a). The Jacobian of domain elements comes from the transforma­
tion Tg: IR.n ~ IR.n: 

n = 2 : dQ = J d~ 1 d~2 

n = 3 : dQ = J d~1d~2d~3 

(4.17a) 

(4.17b) 

which is the usual determinant of the Jacobian matrix J det (J), where Jij = axJa~j• 
i, j = 1, ... , n. For Lagrange boundary elements, J is the square root of a polynomial of 
order 2(p - 1) (line elements), 2(2p - 2) (triangular elements) or 2(2p - 1) (quadrilateral 
elements ), where p is the order of the geometric interpolation. When a line element is straight 
(constant direction of the tangent vector) ora surface element is planar (constant direction of 
the normal vector), it reduces to a polynomial of order p- 1 (line elements ), 2p-2 (triangular 
elements) or 2p - 1 (quadrilateral elements). This polynomial can further reduce its order 
depending on the location of the higher-order nodes within the line or plane. For Lagrange 
domain elements, J is a polynomial of order 2p-2 (triangular elements), 2p- l (quadrilateral 
elements), 3p - 3 (tetrahedral elements), or 3p - 1 (hexahedral elements). 

4.3 Evaluation of BEM integrals 

BEM integrals as those represented by Equation (4.1) can be evaluated analytically only in 
certain cases, usually for planar and low-order elements, and simple fundamental solutions, 
see e.g. [140-142]. Integrals associated with free-terms for non-smooth points can also be 
evaluated analytically for typical fundamental solutions [79, 80). Nonetheless, most of BEM 
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integrals are generally evaluated by numerical integration [143). Before performing the nu­
merical integration, sorne analytical transformation ( change of variables, integration by parts) 
may be applied in order facilitate the computation. The number of developed techniques for 
handling BEM integrals is quite large, and brief reviews are given in later sections for the type 
of integrals managed in this work. In this section, sorne general aspects regarding numerical 
integration are described. 

When facing the numerical evaluation of an integral, the first question that arises is what 
method is able to approximate the integral with a given prescribed error and a reasonable 
computational cost. In this sense, Gaussian quadratures are commonly used due to its ef­
ficiency in most cases [143, 144], and the BEM is notan exception [6]. One-dimensional 
Gaussian quadratures are directly applied to line integrals after possibly performing a linear 
coordina te transformation to a normalised coordinate, typically in a [O, 1] or [ - 1, 1] domain. 
For surface integrals, a Gaussian quadrature product rule can be used for both quadrilateral 
and triangular elements. For triangular domains, besides the well-known low-order sym­
metric quadrature rules used in finite elements [145-147], there exists high-order Gaussian 
quadrature rules [148, 149). These are more appropriate than product rules since integration 
points are symmetrically distributed over the triangle, and the number of points is consid­
erably lower. Wandzura [149) obtained rules 1 up to order 30, all with positive weights and 
interior integration points, unlike older rules of Dunavant [ 148] . 

The second question that arises is what quadrature order and/or integration domain subdi­
vision are required. To answer this question one can explore two main possibilities: automatic 
integrator algorithms with a posteriori local or global error estimators, or adaptive algorithms 
with a priori error estimators based on a study of the integral. Clearly, the former is expensive 
since much more integrand evaluations than strictly needed are necessary in order to obtain 
an integral approximation and an error estimation. lt should only be used in general-purpose 
environments where a wide spectrum of integrals are expected. When the integral class is 
known beforehand, and it is possible to obtain an error estimator, the latter should be used. 
This is the case of BEM integrals, where, in addition to that, a large number of them have to 
be evaluated. A priori error estimators allow a prediction of the required quadrature order, 
which leads to a reliable and efficient evaluation of the integrals. The more accurate and 
adaptive the error estimator is, the less quadrature points need to be evaluated. Nonetheless, 
it does not directly lead to computational savings as it also depends on the ratio between error 
estimator and quadrature point evaluation costs. 

An analytical upper bound of the error of Gauss-Legendre quadratures may be obtained 
from Stroud and Secrest's book [144]. For one-dimensional integrals, the absolute error E is 
bounded by: 

11n the paper (149] only some guadratures are shown. We would like to thank Stephen Wandzura for pro­
viding us with severa) scripts for a symbolic computation program which were used to build ali guadrature rules 
from order 1 to order 30. 
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where r¡(k) and wCk) are respectively the k-th quadrature point and weight of the quadrature 
rule with N points. For two-dimensional integrals: 

where r¡(k¡) , w(k¡) , k and Nj correspond to the quadrature rule applied to the J-th dimension. 
These inequalities are able to show the relationship between error, number of quadrature 
points and integrand. Despite leading to useful error estimators, these are often very conser­
vative and quite complex since they require high-order derivatives. Furthermore, they usu­
ally are obtained as E = E (N, integrand parameters) functions rather than as more practical 
N = N(E, integrand parameters) functions. Within the BEM context, these facts can be ob­
served in many works, see e.g. [150-152). Therefore, comprehensive numerical experiments 
with curve fitting can also be used in order to provide these estimators. 

From the description of BEM integrals given in Section 4.2, it is concluded that integrands 
contain linear combinations of products of several rational polynomial and radical functions. 
That means that a purely analytical approach for the study of numerical integration errors of 
the whole integral is quite difficult. Fortunately, focusing only in the most problematic terms, 
particularly those that contain radial functions F;~act) of singular nature (ln r, 1/ rl'), is often 
enough to provide good answers. These terms require to consider two different situations 
for evaluating the integral: the collocation point is present in the integration domain, and the 
collocation point is outside the integration domain. 

If the element contains the collocation point (xi E X), integrals may be singular. In any 
case, for these integrals it must be guaranteed that no integration point is located at the col­
location point. This can be assured by cutting the integration domain at the collocation point 
when Gaussian quadratures are used. Singular integrals can be classified into weakly singu­
lar (integrable in the Riemann sense), strongly singular (integrable in the Cauchy Principal 
Value), hypersingular (integrable in the Hadamard Finite Part) or supersingular [153). This 
classification depends on the singularity order@ (s (r)), where sis a function of the distance r 
between the collocation point and any element point, and the dimension m of the integration 
domain. In the context of the BEM, one can find functions s(r) of the type s = 1n r or s = r - 11

• 

For the cases = 1n r, integrals are weakly singular irrespective of the dimension of the in­
tegration domain. For the case s = r- 11

, integrals are classified according to Table 4.1. In 
this work, however, only weakly singular integrals are numerically treated since strongly sin­
gular and hypersingular integrals are transformed into regular and weakly singular integrals . 
As Riemann integrals, weakly singular integrals can be evaluated by any classical numerical 
integration scheme. Although not strictly needed, additional transformations or specialised 
quadratures should be used in order to reduce the required number of integration points. 

If the element does not contain the collocation point (xi ~ X), integrals are regular. In 
principle, plain Gaussian quadratures are able to evaluate these integrals. However, a costly 
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Condition lype of integral 

n =::; O 
O<n<m 
n=m 
n = m + 1 
n > m + 1 

regular 
weakly singular 
strongly singular 
hypersingular 
supersingular 

Table 4.1: Types of integrals of dimension m and Y,..., (j (r- 11
) [153-155] 

and even prohibitive quadrature order would be needed when the collocation point is near the 
element, say O < min (r) /diameter (X) =::; 1, and hence they are generally referred as nearly­
or quasi-singular integrals . In order to keep a moderate computational cost, additional treat­
mentis required forthis situation. When min (r) /diameter (X) > 1, there still is sorne quadra­
ture order dependency with respect to r, butno further treatmentis needed. Depending on the 
element order and curvature, shape function and Jacobian may instead determine the quadra­
ture order required for these integrals. The numerical evaluation of quasi-singular integrals 
by using subdivision with quadrature order selection methods [150, 15 1) (hp strategy), and 
cubic polynomial (Telles) or sinh non-linear coordinate transformation methods [156-158) 
(peak smoothing strategy) have been proposed. Granados and Gallego [159) developed a dif­
ferent technique based on a regularisation in the complex plane. In this work, we use curves 
like those obtained by Jun et al. [ 15 1] but for the Telles' transformation, and then we apply a 
recursive algorithm based on a uniform refinement at each level when the required order of 
quadrature is not available. 

Radial functions F;~act) of regular nature always lead to regular integrals. When considered 

together with F~geo), shape functions and Jacobian, they are of second importance. Their 
only difficulty is that terms like those of Equations (4.5d) and (4.5e) are oscillatory with 
wavelengths related to medium properties and frequency. However, given that the maximum 
size of elements must be chosen according to the element order and wavelengths, i.e. at 
least six linear or three quadratic elements per wavelength [160), these regular parts can be 
considered within the element as polynomials of lower order than element order. 

4.4 Integral of the Jacobian 

In this section, the numerical evaluation of the integral of the Jacobian J (Tg E ~ x) is 
studied: 

l size = l dX = l J d.= (4.20) 

This elementary integral gives the size (length, area or volume) of an element, and its nu­
merical evaluation does not have any particular difficulty. However, its study is interesting 
since the Jacobian J is always present in the integrand. The Jacobian may be the leading 
component of the integrand together with the shape function when the fundamental solution 
is smooth (min (r) /diameter (X) » 1) and the element has sorne distortion. This can also 
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be the case in weakly singular and quasi-singular integrals when a transformation or quadra­
ture which completely cancels out the singularity is used. Another cases are those regular 
integrals arising when the collocation point is in the integration domain. 

The aim is obtaining simple formulas for the estimation of the required quadrature order 
as a function of the desired relative error. Sorne alternatives to such formula would be obtain­
ing a rigorous error bound [143, 144], or using an iterative numerical integration procedure. 
Because of their costs, results should be obtained at a pre-processing stage and stored for 
later usage. The formulas, however, can be inexpensively used inside monolithic integration 
procedures. We have only been able to obtain a reliable formula for quadratic line elements, 
which can also be u sed for higher-order line elements. Nevertheless, the main ideas developed 
in this case should be useful for obtaining similar formulas for other elements. 

The Jacobian is the square root of a polynornial when the element has a lower dimension 
than the ambient space, which is the case of boundary elements. The Jacobian is a simple 
polynomial when the dimension of the element and the dimension of the ambient space are 
equal, and also when, although dimensions are not equal, the element is planar. In the latter 
case, by the very definition of Gaussian quadratures, the integral can be integrated exactly 
by a quadrature rule of equal order than the polynornial. In the former case, however, an 
appropriate quadrature rule achieving the desired error should be chosen. lt is intuitive to 
state that it is related to the deviation of the curved element from the planar configuration. 

In order to assess the effect of such deviation, a numerical experiment using a quadratic 
line element with end-nodes located at (-l/2, O) and (l/2, O), and mid-node located at (O, s2) 

is considered. A dimensionless measure of the deviation can be defined as e = sil, where 
/ is the distance between end-nodes and s = s2 is the distance between the mid-node and 
the mid-point between end-nodes. For a set of values of relative error e and deviation e, the 
required number of integration points (Gauss-Legendre quadrature) for calculating J size has 
been obtained. Figure 4.6a shows the obtained results together with the following estimation: 

N(e, e)= nint [(0.7 - 0.25 logJO e) - (5 + 4 logJO e) e] (4.21) 

which is valid for e E [O, 1/2) ande E [10- 15
, 10- 3

). Figure 4.6a shows that a fast change 
occurs in N between e = O ande = 0.1 , especially for the lowest errors. Equation (4.21) 
provides a conservative estimation in that range and does not converge to the theoretical N at 
e = O. Therefore, the particular case of a straight element should be handled separately. For a 
more general configuration with the mid-node located at (s 1, s2), and defining s = (sf + s;) 112

, 

Equation (4.21) still provides a very good estimation when ls 11 ::; l/6. Figure 4.6b shows 
a comparison between numerical experiments and Equation (4.21) where the mid-node is 
located at (l/6, s2) and s = ((l/6)2 + s;) 112

• The fast change occurs now near e = 1/6, and 
it is more abrupt than before, showing that the curvature produced by rnid-nodes located far 
from the rnid-length point is more critical from the integration point of view. For locations 
of the mid-node nearer to the quarter point, i.e. the well-known point where the element 
degenerates, the formula considerably underestimates the required N . Thus, we propose the 
following predictive formula: 
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Figure 4.6: Comparison between numerical experiment results (solid lines) and estimation 
provided by Equation (4.21) (dashed lines) 

(3) 

s = x C3) - xC') + xC2) 

2 
I = xC2) - xC' ) / ~ 

(l) c?l~ (2) 
I 

p= 
111 xsll 

l s e = 7 domain of validity of (3) _/ 

{ 

1, p = O 

N(e ,p, e)= int [(0.7 - 0.25 log 10 e) - (5 + 4 log 10 e) e], p > O, e=::; 1 + i (4·22) 

where xCI ) and xC2) are the position vectors of end-nodes, xC3) the position vector of the mid­
node, and it is valid for e E [ 10- 15

, 10-3
]. 

This formula virtually covers all quadratic line elements that may be encountered in a 
mesh. lt can obviously be u sed for a su bdi vision [ ~( l)-S, ~(2)-S] of an element by using 
x (~(l )-s ) , x (~C2)-S) and x ((~(l )-S + ~(2)-S)/2) instead ofrespectively xCI ), x C2) and xC3). By using 
an appropriate subdivision strategy, the required N for higher-order line elements can also 
be estimated. 

When the curvature radius of an element is approximately constant, s represents the sagitta 
and l the chord length of an are. In that situation, the ratio s/12 = el! is approximately constant 
for any subdivision of the element, and p ~ l. The required N for a subdivision can be 
estimated in that case as: 

s . [ ( ) ~e ] 1 N (e, e, ~~ ) = mt (0.7 - 0.25 log 10 e) - 5 + 4 log 10 e 2 c , e=::; 2 (4.23) 
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where t::.~s = ~(2)-S - ~(J )-S, and e are obtained from the parent element, i.e. by using xCJ ), 
xC2) and xC3). This assumption avoids obtaining x (~(J )-s), x (~C2)-S) and x ((~(J )-S +~C2)-S)/2) for 

each subdivision. 

4.5 Weakly singular integrals 

Weakly singular integrals are those that despite containing a singularity, the integral can be 
understood in the Riemann sense, i.e. the integrand is absolutely integrable. As previously 
stated, any standard numerical integration scheme is able to perform the evaluation as long 
as the integrand at the collocation point is not evaluated. A coordinate transformation that 
smooths out the weak singularity is highly recommended in order to reduce the number of 
integration points. This is done by finding a transformation whose Jacobian is at least null at 
the weak singularity. An optimal coordinate transformation would be such that the Jacobian 
completely cancels out the singularity behaviour all over the integration domain. Another 
option is using specialised quadratures which somehow include the singularity as a weighting 
function. lt is a less flexible but more straightforward approach. Different strategies work 
better for line integrals (weak singularity ln r), for surface integrals (weak singularities ln r 
or 1/r), and for volume integrals (weak singularities 1/r or llr2). 

Coordinate transformations are performed over subdivisions of the original integration 
domain. Within each subdivision, the weak singularity is located at one of the two extremes 
of the subdivision (in line integrals) or ata vertex of the subdivision (in surface and volume 
integrals). By doing so, the integrand is never evaluated at the collocation point. There are 
mainly three families of coordinate transformations that are used: 

One-dimensional non-linear transformations In this family, one can include Telles' cu­
bic polynomial transformation [156, 161), sigmoidal transformation [157) and many 
others [162). These transformations are able to produce a null Jacobian at the colloca­
tion point, and thus are effective for weakly singular integrals. One of the advantages 
of these transformations is its versatility, as they can be applied to a wide variety of 
situations including integrals of any dimension. 

Degenerated mapping The idea is using a coordina te mapping with sorne points at locations 
where the resulting Jacobian is null at the collocation point. The main idea behind this 
transformation is similar to that of well-known quarter-point quadratic elements pro­
posed by Barsoum [163), where mid-nodes are moved so that the resulting Jacobian 
becomes of order yr. In the present case, however, the degeneration is produced by 
locating two or more ver tices ( comer nodes) at the same position. Duffy [ 164] probably 
was the first using such an idea for evaluating weakly singular volume integrals over 
pyramids or cubes in a purely mathematical context. Li et al. [165) proposed a simi­
lar technique for surface and volume integrals arising in the BEM, which is known as 
triangle/tetrahedron polar coordinates. lt consists in mapping a quadrilateral/hexahe­
dron into a degenerated quadrilateral/hexahedron with two/four of the vertices located 
at the collocation point, in such a way that it resembles a triangle/tetrahedron. The re­
sulting Jacobian is null at the collocation point, and varies linearly/quadratically along 
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rays from the collocation point, and hence smoothing out the weak singularity in sur­
face/volume integrals. The main advantages of this transformation are its simplicity 
and effectiveness. 

Polar/spherical coordinate transformations This family of transformations uses a polar/­
spherical coordinate transformation centred at the collocation point for managing sur­
face/volume weakly singular integrals . The basic polar/spherical transformation pro­
duces a null Jacobian at the collocation point, which is besides linear/quadratic with 
respect to the radial coordinate in the reference space. lt is the most natural approach as 
it incorpora tes the polar/spherical nature of fundamental solutions. However, the trans­
formation from these coordinates to normalised coordinates, where Gaussian quadra­
tures are applied, introduces new difficulties as the Jacobian has a quasi-singularity 
when the collocation point is near edges/faces. Fortunately, there exists a transfor­
mation proposed by Khayat et al. [138) which completely cancels out it for surface 
integrals. 

Coordinate transformations are probably the most flexible and powerful way of evaluating 
these integrals . As it will be seen later, in order to produce such integrands more than one 
are usually required. 

There are many specialised quadratures for managing weakly singular integrals. These 
methods provide algorithms for the calculation of quadrature points and weights and/or di­
rectly give tables of quadrature rules for sorne assumed weighting function. Anderson [ 166) 
contributed with tables of quadraturerules for evaluating integrals of the type - Id ln (x) f (x) dx, 
which is the most common type of one-dimensional weakly singular integral encountered 
in BEM. Crow [ 167) proposed a quadrature scheme for the more general integrals of the 
type Id [a+ b ln (x)] f (x) dx, where a and b are polynomials. Following the same idea, 
Smith [168) obtained ad hoc quadratures for logarithmic singularities within isoparamet-
ric elements. For two-dimensional weakly singular integrals with 1/r kernels, Cristescu 
and Laubignac [169) offered a direct Gaussian scheme for integrating over triangular and 
quadrilateral domains. Schwab and Wendland [ 170) presented a comprehensi ve paper where 
they proposed and discussed several methods for the evaluation of weakly singular as well as 
strongly and hypersingular integrals, including error estimation. 

4.5.1 Line integrals 

Weakly singular line integrals of logarithmic type are generally encountered in the SBIE as 
well as in the HBIE for two-dimensional problems. Taking into account Equation ( 4.11 ), this 
type of integrals appear as: 

I ab = ( i p(cte) F;~1e) ln (r ) F;geo)<PJ d~ 
l-1 
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where a reference space ~ E [- 1, 1] is assumed. Since F0(geo) and <P may appear in a number 
of different forms, it is useful to segregate the evaluation of the weakly singular integral as: 

J ab = p(cte) F;t) [111 ln (r) [ Fa(geo) <P - ( Fa(geo) <P ) i] J d~ + ( pJeo) <P ) i ¡ 11 ln (r ) J d~] 

(4.25) 

where ( F
0
(geo) <P) i = lim, ... 0 ( FJeo) <P) . Now, the first integral is regular, and the weak singu­

larity is concentrated in the second one. In order to evaluate the weakly singular integral, the 
original integration domain is cut at the collocation point: 

Jlnr = ( I;; ln (r) J d~+ ¡i 1n (r) J d~ = ± ( 11n (r) J JSd df = Jlnr-SI + f 1nr-S2 (4.26) 
l-1 }1;; d= I lo 

where l sd = d~/d~', and ~, is the reference coordinate f E [O, 1) of each subdivision: for 
d = 1 the transformation is ~ = - 1 + ( 1 + ~¡ )f , and for d = 2 the transformation is 
~ = ~¡ + ( 1 - ~¡)~' . In this form, the weak singularity is al ways located atan extreme of each 
integration domain. 

The direct integration of these weakly singular integrals using Gauss-Legendre quadra­
tures is very inefficient since the convergence is very slow. The two main ways of appropri­
ately dealing with it are using a non-linear transformation [156-158) which smooth out the 
singularity, or using specialised Gaussian quadratures [ 166-168) w hich include a logarithmic 
weighting function. Despite all these methods are powerful, they have their own advantages 
and disadvantages in terms of analytical effort, efficiency and availability. Non-linear trans­
formations do not require to modify the in te grand, and since simple Gauss-Legendre quadra­
ture are used, high-order quadrature rules are available. Gauss- Anderson quadrature [ 166) 
need an expansion of r in terms of the quadrature reference coordinate in order to isolate 
and remove the weighting function from the integrand [ 17 1]. High-order Gauss-Anderson 
quadrature rules are available from several sources [6, 144, 172, 173). Gauss-Crow quadra­
ture [ 167) does not require isolating the weighting function, but unfortunately only quadrature 
rules of low-order (up to 7 points quadrature) are available since obtaining them is problem­
atic. The quadrature proposed by Smith [168) gives a further step by establishing single 
quadrature rules for several positions of the collocation point for quadratic elements. lt in­
herits the difficulty of obtaining high-order quadrature rules, but it is the most efficient as 
it is able to evaluate a set of integrals with the position of the collocation point at different 
locations with the same quadrature rule. All these specialised quadratures deal with the loga­
rithmic singularity in an optimal way while non-linear transformations do it in a approximate 
way. 

In order to illustrate the efficiency of sorne of the methods described above, the required 
number of integration points N for evaluating / 1n,- s1 with a prescribed relative error e = 
111:u,~s/ / 1~e~- si - 11 is calculated. The reference value of each integral / 1~e~- si is obtained 
using a Gauss-Anderson quadrature of32 points. Three differentintegration domains defined 
by a quadratic element are considered: a straight element, a curved element along a quarter 
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Figure 4.7: Number of integration points N required for integrating J1n ,- si with a prescribed 
relative error e 

of a circumference, and a curved element along a half of a circumference. The location of 
the collocation point in the reference space ~¡ varies from - 1 to 1. Figure 4.7 depicts the 
results for several relative errors e = { 10- 3

, 10- 6
, 10-9 } . lt shows the inefficacy of Gauss­

Legendre quadratures for dealing with this type of integral. Telles' transformation is effective 
in reducing the number of integration points, but only when moderate errors are demanded. 
The two specialised quadratures Gauss- Anderson and Gauss- Crow are the best methods for 
obtaining accurate evaluations, being Gauss- Anderson slightly better. However, in the latter 
case it must be noticed that the number of function evaluations are greater since J1n ,- si is 
further split into a weakly singular part evaluated using the Gauss- Anderson quadrature, and a 
regular part evaluated using a Gauss-Legendre quadrature. Gauss- Crow quadrature does not 
need this splitting process, but the available quadrature is limited up to a 7 integration points 
rule. The complete cancellation of the weak singularity provided by the Gauss- Anderson 
quadrature is confirmed by observing that Nis similar to that obtained by Equation (4.23), 
which is the N required by the integral of the Jacobian. In this work, the Gauss- Anderson 
quadrature is used due to its robustness, efficiency and the availability of high-order rules. 
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4.5.2 Surface integrals 

Weakly singular surface integrals contain singularities of order 1/r, and they appear in two­
dimensional problems (in body load elements) and three-dimensional problems (in boundary 
elements and surface loads). Unlike weakly singular line integrals, they appear in a number 
of different forms . For example, up to fi ve different integrals appear in the three-dimensional 
potential problem: 

/ 3 = r J_2 ar_ </)J d~ 1 d~2 I~ r an• 

I = ( J_ ar ~</JJ d~ d~ 
4 JE r3 an ani 1 2 

/ 5 = ¡ D ;ti ( qJ - </Ji - </J'./J J d~I d~2 

(4.27a) 

(4.27b) 

(4.27c) 

(4.27d) 

(4.27e) 

where integrals 12, / 3 and / 4 become null for aplanar element since arlan= O and arlan¡ = 
O. In the elastic and poroelastic cases, a much greater number of different weakly singular 
integrals appear, where numerators contain severa! factors of the type nk, n~, r,k arlan and 
arlan¡ . 

As in the case of weakly singular line integrals, Gauss-Legendre quadratures or other 
numerical integration schemes for regular integrals may be used to evaluate these integrals, 
but they are extremely inefficient. One-dimensional non-linear transformations, for example 
Telles' transformation [156, 161), can be used for each direction, which improves the perfor­
mance. However, there are much better ways of dealing with them. The two main families 
of efficient methods are the degenerated mapping [165) (also known as triangle polar co­
ordinates) and the polar coordina tes. In their basic form, both methods perform similarly. 
However, polar coordinates can easily be improved after sorne transformations, leading to a 
very robust integration technique. 

4.5.2. 1 Degenerated mapping 

The degenerated mapping for surface integrals is a straightforward technique, but repeated 
here using a different convention from the original paper [ 165) for the sake of completeness 
and later comparison. lt requires a preliminary stage where, depending on the location of 
the collocation point, the element is subdivided into a number of triangular regions in the 
reference space f Each triangular subdivision is mapped as a degenerated bilinear quadri­
lateral element where nodes 3 and 4 of the quadrilateral are located at the collocation point, 
i.e. ~(3)-Sd = ~(4)-Sd = ~¡, and nodes 1 and 2 are located at the boundary of the element, 
see Figure 4.8. The minimal and usual subdivision pattern takes up to three subdivisions for 
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Element reference space Subdivision reference space 

Figure 4.8: Degenerated mapping technique 

triangular elements and four subdivisions for quadrilateral elements. From the adaptability 
point of view, it will be demonstrated later that a better subdivision pattern is obtained when 
each triangular subdivision is further subdivided into two right-angle triangular regions, see 
Figures 4.9 and 4.10. The contribution of each subdivision d is obtained by using two trans­
formations: 

1. Transformation from the element reference space to the real space Tg : ~ ~ x: 

Nn 

X = L., </J(k) (~) . X(k) (4.28) 
k= I 

where </J are the geometric interpolation shape functions, and the Jacobian J is that of 
Equation (4.17a) for a two-dimensional ambient space or Equation (4.16b) for a three­
dimensional ambient space. 

2. Transformation from the subdivision reference space to the element reference space 
Tsd : ( ~ f 

~ = (2~¡ + ( 1 - (2) [ ( 1 - (1) ~(1 )-Sd + (1~(2)-Sd) (4.29) 

wherethe JacobianJSd = 1ac~1,~2)/d((1,(2)I is: 

J Sd = ( ~~1 )-Sd _ ~?)-Sd ) ( ~2 _ ~1) _ ( ~;1 )-Sd _ ~;2)-Sd ) ( ~I _ ~:) (4.30) 

The Jacobian is a plane in the element reference space, and is null at the collocation 
point. A Gauss- Legendre product rule of N 1 x N 2 points is used in the region r¡ E 
[O, 1) x [O, 1). 

Therefore, for a weakly singular integrand f, the integral is evaluated as: 

(4.31) 
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Collocation point Subdivision d 

at element e\ e1 Ns 1 2 3 4 5 6 

Vertex 1 1 o 2 T3 T4 
Vertex 2 o 1 2 T5 T6 
Vertex 3 1 o 2 T1 T2 
Edge 1-2 (O, 1) 1 - e\ 4 T3 T4 T5 T6 
Edge 2-3 o (O, 1) 4 T5 T6 T l T2 
Edge 3-1 (O, 1) o 4 T1 T2 T3 T4 
Interior (O, 1) (O, 1 - e\) 6 T1 T2 T3 T4 T5 T6 

(a) Subdivisions (triangular regions) to be integrated 

fi l)-Sd ef )-Sd e;2)-Sd ef)-Sd 

T1 o I+~:-~~ 1-~:+~; 
- 2- - 2-

T2 1~ ;-~~ 1-~i +~ o 1 -2- -r 
~¡. + e¡ T3 o 1 o 2 2 

T4 o ~ +e1 o o 
T5 o o e¡ + f 1 2 o 
T6 e¡ + ~ 1 2 o 1 o 

(b) Vertices of triangular regions except ~¡ (e) Subdivision pattern of the element 

Figure 4.9: Subdivision pattern of triangular elements. The minimal subdivision pattern is 
obtained as MTj = T2j - l u T2j, j = 1, 2, 3. 

4.5.2.2 Basic polar transtormation 

The transformation to polar coordina tes is the most natural approach since it incorpora tes the 
symmetric nature of fundamental solutions. lt is more involved than the degenerated mapping 
technique, but it is considerably more powerful, as it will be seen in the following. 

As in the previous methodology, a subdivision pattern of the element into triangular re­
gions is required, see Figures 4.9 and 4.10. lt can be formulated in several ways, typically 
directly in the elementreference space ~. i.e. (~1, ~2) = (~\. ~1) + p · (cos 8, sin 8). In that case, 
it is necessary to handle a piece-wise definition of the (p, 8) domain, with different equations 
between edges of triangular and quadrilateral elements. A more systematic approach can 
be achieved by rotating and scaling each triangular region such that the opposite side of the 
collocation point is horizontal and normalised, and the collocation point has positive vertical 
coordinate. After this simple linear transformation, the remaining transformations for each 
subdivision are similar, and thus eases later developments. Figure 4.11 shows the complete 
transformation. The contribution of each su bdivision d is obtained after fi ve transformations: 

1. Transformation from the element reference space to the real space Tg : ~ ~ x, which 
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Collocation point Subdivision d 

at element e\ e1 Ns 1 2 3 4 5 6 7 8 

Vertex 1 -1 -1 2 T4 T5 
Vertex 2 -1 2 T6 T7 
Vertex 3 1 2 T8 TI 
Vertex 4 -1 2 T2 T3 
Eclge 1-2 ( -1 , 1) -1 4 T4 T5 T6 TI 
Eclge 2-3 1 (-1 , 1) 4 T6 T7 T8 T1 
Eclge 3-4 ( -1 , 1) 1 4 T8 TI T2 T3 
Eclge 4- 1 -1 (-1 , 1) 4 T2 T3 T4 T5 
Interior ( -1 , 1) (-1 , 1) 8 Tl T2 T3 T4 T5 T6 TI T8 

(a) Subdivisions (triangular regions) to be integrated 

f~l )-Sd e;l )-Sd e;2)-Sd e;2)-Sd 

T1 -1 -1 e\ -1 
T2 e\ -1 1 -1 

T3 l -1 e1 
T4 e1 1 1 
T5 1 e\ 1 
T6 e\ -1 1 
TI -1 1 -1 e1 
T8 -1 e1 -1 -1 

MT4 

(b) Vertices of triangular regio ns except ;¡ (e) Subdivision pattern of the element 

Figure 4.10: Subdivision pattern of quadrilateral elements . The minimal subdivision pattern 
is obtained as MT¡ = T2¡ _1 u T2¡, j = 1, 2, 3, 4. 

is similar to the previous case. 

2. Transformation from su bdi vis ion reference space to element reference space Tsd : ( ~ 
~: 

~ = ~¡ + ssd( 

ssd - ~, ~, ~, ~, 
( 

_t:(1 )-Sd _ .t:i _t:(2)-Sd _ .t:i ) 

- ~~1 )-Sd _ ~1 ~;2)-Sd _ ~~ 

f sd = (~;')-Sd _ ~\)(~;2)-Sd _ ~1) _ (~;2)-Sd _ ~\ )(~;1 )-Sd _ ~~) 

(4.32a) 

(4.32b) 

(4.32c) 

3. Transformation from the su bdivision space to su bdi vis ion reference space Tcd : r¡ ~ (: 

(4.33a) 

(4.33b) 
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Figure 4. 11: Basic polar transformation 

where the Jacobian J Cd = la((1, ( 2)/d(r¡ , r¡)I is simply: 

J 1/ i- Sd 
Cd = r/2 (4.34) 

The location of the collocation point in r¡ space, i.e. r¡i- Sd, is such that the resulting 
triangle is similar to that in the element reference space. This leads to: 

(~¡ _ ~(1)-Sd) . (~(2)-Sd _ ~(1 )-Sd) 

11~(2)-Sd _ ~(l )-Sd ll 2 

i- Sd 
r/1 = 

( ~(1)-Sd _ ~i) X ( ~(2)-Sd _ ~¡) 
r¡t Sd = ----------

11~(2)-Sd _ ~(1 )-Sd 112 

(4.35a) 

(4.35b) 

4. Transformation from polar coordinates to subdivision coordinates TPd : (p, O) -; r¡: 

r¡ = r¡i + { : ~~;: } (4.36) 

where the Jacobian J Pd = la(r,1, r¡2)/d(p, B)I is: 

J Pd = p (4.37) 
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The J acobian is proportional to the radial coordina te p in the reference space, and thus 
cancels out the weak singularity very well. The domain of polar coordinates is (p, 8) E 
[0, p8d] X [8(1 )-Sd, 8(2)-Sd], where: 

i- Sd 
- Sd Y/2 p = - --

sin8 
(4.38a) 

r¡\-Sd 
8(1 )-Sd = 1C + arccos ---;:============= V ( r¡\- Sd) 2 + ( r¡~- Sd) 2 

(4.38b) 

1 _ r¡\- Sd 
8(2)-Sd = 2K - arccos ---::=============== V ( l _ r¡\- Sd) 2 + ( r¡~- Sd) 2 

(4.38c) 

5. Transformation from polar coordinates reference space to polar coordinates space Tud 
(p', 8') ~ (p, 8): 

{:}={ o 
8(1 )-Sd 

o 
8(2)-Sd _ 8(1 )-Sd 

where the Jacobian l ud = ld(p, 8)/d(p' , 8')1 is: 

) { ;: } (4.39) 

(4.40) 

A Gauss-Legendre product rule of N P x N 9 points is used in the region (p', 8') E 
[O, 1) x [O, 1). The normalisation of p introduces a peak-like Jacobian with respect to 8 
dueto the term 1/ sin 8. lt becomes problematic when the triangular region is flat, i.e. 
when r¡tsd « 1 and thus 8(1)-Sd ~ 1C and/or 8(2)-Sd ~ 2K. Quasi-singularities occur at 
those extremes. If 8 ~ 8(1 )-Sd ~ K , then 1/ sin 8 ~ ll(K - 8). If 8 ~ 8(2)-Sd ~ 2K, 

then 1/ sin 8 ~ 1/(8 - 2K ). Therefore, they are strong quasi-singularities with respect 
to the angular coordinate. 

Since transformations Tsd and Tcd are linear, it is possible to directly combine both transfor­
mations into TPd• and build a straightforward transformation TRd : (p, 8) ~ ~: 

(4.4 1a) 

R Sd = 1 1 2 2 ( 
t2) - ~()) - (t2) - ti)) ) 
~;2) - ~;)) ~;2) - ~;)) (4.41b) 

JRd = p 11~(2)-Sd - ~(1)-Sdll (4.41c) 
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which reduces the complete transformation to three transformations. Therefore, for a weakly 
singular in te grand f, the integral is evaluated as: 

(4.42) 

In this basic form, the polar transformation is not better than the degenerated mapping tech­
nique, as it will be seen in Section 4.5.2.5. 

4.5.2.3 Polar transformation without the main angular strong quasi-singularity 

The Jacobian f ud from Equation (4.40) induces a quasi-singularity in the basic polar trans­
formation when the collocation point is near an edge. There are many ways to mitigate it. 
Partheymüler et al. [174] proposed a self-adaptive hp strategy for the angular coordinate. 
Other authors use sorne non-linear coordinate transformation, e.g. Hayarni [175) used a pro­
posed angular transformation and Rong et al. [139) used a sigmoidal transformation. Khayat 
et al. [138) proposed a transformation of the type ln tan f(8) that produces Jacobians of the 
type sin 8, cos 8 or (sin 8 + cos 8). lt seems that their work is unknown within the BEM com­
munity, except Rong et al. [139) who did not use it because "( ... ) our numerical experience 
indicates a better overall performance by using sigmoidal transformation ( ... )". However, it 
seems unreasonable to us since there is no better way to deal with that term than cancelling 
it analytically. Therefore, Khayat's type of transformation is used in this work. 

Based on the basic framework shown in Figure 4.11 , it is necessary to deal only with 
one kind of f ud dueto the use of transformations Tsd and Tcd · Otherwise, one would have 
to find severa! 1n tan f (8) transformations, which are different for each edge of triangular 
and quadrilateral elements. For the complete cancellation of the quasi-singularity, the last 
transformation of the basic polar transformation should be replaced by the following two 
transformations: 

5. Transformation from altered polar coordinates to polar coordinates TAd : (p, O) ~ 
(p, 8): 

132 

{) 
8 = n + 2 arctan exp i- Sd, 

Y/2 

Where the Jacobian J Ad = a8/a{) is: 

J =_sin 8 
Ad i - Sd 

Y/2 

- . Sd 8 - 7C 
8 = r,t 1n tan --

2 

and the domain {) E [[)Cl )-Sd, {)(2)-Sd] is: 

8(1)-Sd 
jj(l )-Sd _ i - Sd 1n t - 7C 

- Y/2 an 2 

8(2)-Sd 
[)(2 )-Sd _ i - Sd 1n t - 7C 

- Y/2 an 2 

(4.43) 

(4.44) 

(4.45a) 

(4.45b) 
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6. Transformation normalised polar coordinates to the altered polar coordinates TuAd 

(p',B') ~ (p,iJ): 

{ ~} = { 
o 

iJCl )-Sd 
o 

iJ(2)-Sd _ iJCl)-Sd ) { ;: } 
where the Jacobian f uAd = ¡a(p, B)!a(p', B')I is: 

i-Sd 
J = p8d (iJ(2)-Sd _ i]Cl)-Sd) = _ ~ (iJ(2)-Sd _ iJCl )-Sd) 

UAd sm 0 

(4.46) 

(4.47) 

A Gauss- Legendre product rule of NP x N 9 points is used in the region (p', ()') E 
[O, 1) x [O, 1). 

The complete cancellation of the quasi-singularity is obtained from the product of Jacobians 
present in Equations (4.44) and (4.47). Then, the integral is evaluated as: 

where the product of Jacobians introduced by the polar transformation: 

J Rd. J Ad. J UAd = p 11~(2)-Sd _ ~ (1)-Sdll (iJ(2)-Sd _ iJ(l )-Sd) (4.49) 

is now strictly proportional to p. 

4.5.2.4 Polar transformation with P° conformality at the collocation point 

In the seminal works of Guiggiani et al. [75, 76) about CPV and HFP surface integrals, a 
Taylor expansion of the distance between observation and collocation points with respect to 
the radial coordinate is performed. They used this expansion to properly regularise these 
integrals from the reference space, where a polar transformation is used. They observed that 
in general any circular neighbourhood around the collocation point in the real space is an 
ellipse in the reference space when r ~ O. Conversely, any circular neighbourhood around 
the collocation point in the reference space is in general an ellipse in the real space. Therefore, 
this expansion allows measuring the goodness of the mapping of polar coordinates from the 
reference space to the real space. The expansion of the distance components rk = xk - x~ at 
the collocation point can be written as: 

rk = ( ~:k Y P + ~ ( ~;k Y p2 + i ( a;;k Y p3 + 2~ (~;:Y p4 +@ (p5) (4.50) 

= P [Ak + Bkp + Ckp2 + Dkp3 +@ (/)] 

where, following our usual convention, (O)i indicates that O is evaluated at the collocation 
point. Assuming that polar coordina tes are established at the reference space ~, i.e. ~ = 
~¡ + p (cos O, sin Bf, the first two terms of the expansion can be expressed as: 

Ak = _k cosB + _k sin() (ax )¡ (ªx )¡ 
a~, a~2 

(4.51a) 
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(
iPxk ) i cos2 

8 ( iJ2xk )¡ . (iJ2xk ) i sin2 
8 

Bk = a~~ - 2 - + a~
1
a~

2 
sm8 cos8 + a~J - 2 - (4.5 1b) 

which contains trigonometric functions and tangent vectors (and higher-order derivatives) 
with respect to the reference coordinates at the collocation point. Hence, the distance r = 
,,¡,:;;-: is: 

(4.52) 

where the function M (p, 8) is the key ingredient for measuring the quality of the mapping. 
The first two terms under the square root are: 

(
axk)i(axk)i 2 (ªxk)i(axk)i 2 (ªxk)i(axk)i AkAk = afi' afi' cos O + a;2 a;2 sin O + afi' a;2 2 sin O cos O (4.53a) 

( axk)i (ª2xt)i cos
3

B (ªxk)i ( a2xk )¡ . 2 (ªxk)i (ª2xt)i sin
2

BcosB A B = - - --+ - -- srnBcos B+ - -k k a;, a;; 2 a;, a;,a;2 a;, a;i 2 

( axk)i ( ª2xk ) i sin0cos
2

B (ªxk)i ( a2xk )¡ . 2 (ªxk)i (ª2xt)i sin
3

B + - - + - -- sm BcosB + - - --
a;2 a;; 2 a;2 a;, a;2 a;2 a;i 2 

(4.53b) 

The limit of M (p, 8) when p -; O is y AkAk. Therefore, Equation (4.53a) indicates that 
the shape of the neighbourhood in the limit p -; O is an obligue ellipse, as already shown by 
Guiggiani and Gigante [75]. Furthermore, when p -; O, elements with aspect ratios far from 
1 produces y AkAk ~ K sin 8 or y AkAk ~ K cos 8, and hence 1/r ~ 1/(pK sin 8) or 1/r ~ 

1/(pK cos 8), where K is a constant. Likewise, for skewed elements 1/r ~ 1/(py K sin 8 cos 8). 
Therefore, as it happened with the Jacobian f ud of Equation ( 4.40), this is another source of 
quasi-singularities when the collocation point is close to the edges of the element. If we 
were able to make AkAk constant, a perfect cancellation of the 1/r weak singularity would be 
achieved in the limit p -; O. 

These facts were already identified by Hayami [175), and partially enforced by using the 
polar coordina tes over triangles obtained from the projection of the element. Despite produc­
ing only an approximately constant AkAk, it is a very effective strategy. Rong et al. [139) pro­
posed a methodology for obtaining a rigorous constant AkAk for triangular elements. From 
Equation (4.53a), it is straightforward to see that if the following conformality conditions are 
met: 

Condition I (equal length): (4.54a) 

Condition 11 (orthogonality): (axk)¡ (ªxk )¡ = 0 
a~I ª~2 

(4.54b) 

then: 

(4.55) 
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In order to enforce these, they make a linear transformation of the triangle in the reference 
space ~ to another triangle in a parametric space r¡ . One vertex of the triangle in the para­
metric space is chosen such that conformality conditions are met. This is a P° conformality, 
i.e. conformality is guaranteed only at the collocation point. Depending on the actual ele­
ment geometry, approximate conformality is also present in certain neighbourhood around 
the collocation point. 

The proposed framework shown in Figure 4.11 lets us to easily generalise their method 
also to quadrilateral elements. For each subdivision d, we have to calculate r¡i- Sd that fulfil 
the conformality conditions: 

Condition I (equal length): 

Condition 11 (orthogonality): 

where: 

which leads to the following solution: 

(4.56a) 

(4.56b) 

(4.57) 

(4.58) 

where aj = ~y)-Sd - ~;' )-Sd and bj = ~y )-Sd - ~; . Therefore, the only modification that 

is necessary is the new conformality position of r¡i- Sd instead of that indicated by Equation 
(4.35). In order to use the straightforward transformation TRd : (p, 8) ~ ~. instead of using 
Equation (4.4 1), it is necessary to use the following: 

~ = ~¡ + Rsd { P c~s (} } 
p smB 

RSd = ~) ~) Y/1 ~ ) Y/1 ~ ) ~ ) Y/2 

( 

J:(2)-Sd _ J;(J )-Sd [ ( l _ i-Sd) J;(J)-Sd + i- Sd J;(2)-Sd _ J;i ] / i- Sd l 
~;2)-Sd _ ~f )-Sd [ ( l _ r¡\-Sd) ~f )-Sd + r¡\- Sd ~;2)-Sd _ ~1] Jr¡tSd 

J 
- (~~1 )-Sd _ ~ \ )(~;2)-Sd _ ~1) _ (~¡2)-Sd _ ~: )(~;1)-Sd _ ~1) 

Rd - p i- Sd 
Y/2 

For a weakly singular integrand f, the integral is evaluated as: 
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The resulting polar transformation is free from any source of quasi-singularities . Dueto con­
formality at the collocation point, angles measured at that point in the r¡ space are equal to 
those measured in the physical space. Also, r and p becomes proportional as r ~ O, which 
guarantees a perfect cancellation of the weak singularity. Incidentally, approximate confor­
mality is also achieved in sorne neighbourhood around the collocation point, and, for mod­
erately curved elements, in the whole element. Thus, purely angular terms like r k becomes 
approximately independent of p and resemble trigonometric functions of () . This makes nu­
merical integration very insensitive to the aspect ratio and the skewness of elements. 

4.5.2.5 A comparison between methodologies 

The aim of this section is comparing the methodologies for evaluating weakly singular surface 
integrals presented in previous sections: 

DM Degenerated mapping. 

PTB Basic polar transformation. 

PTQ Polar transformation without the strong angular quasi-singularity. 

PTC Polar transformation without the main angular strong quasi-singularity, and without 
the angular quasi-singularity dueto shape aspect ratio and skewness of elements (P° 
conformality ). 

The comparison is made in terms of the number of integration points required along each co­
ordinate for achieving a desired relative error, which is assumed e = abs((Jnum - ¡rer)/ ¡rer) = 

10- 6
. Reference solutions are calculated using a NP x N 9 = 32 x 32 quadrature rule, while 

numerical solutions are limited up to rules of NP x N9 = 30 x 30. According to Figures 4.8 
and 4.11 , the number of integration points N 1 used by the degenerated mapping technique 
assumes the role of N 9 of polar transformations, and similarly N2 with respect to NP. Hence, 
this is assumed in ali graphs. Seven nine nodes quadratic quadrilaterals are considered in 
the numerical experiment, see Table 4.2 and Figure 4.12. These elements allow studying the 
influence of shape aspect ratio, skewness, curvature in the plane and spatial curvature. Four 
different integrals A, B, C and D are considered: 

1A = r .!.J d~1d~2 lsi r 

/ 8 = ( .!_</)J d~1d~2 
l si r 

l e= h1 ;r.1r,2</JJ d~1d~2 

l o= r 12 aªr </)J d~1d~2 lsi r n 

(4.6 1a) 

(4.6 1b) 

(4.61c) 

(4.6 1d) 

w hich are ali expressed in terms of the reference coordinates, but la ter sol ved using each one 
of the four methodologies . These integrals are evaluated only over the first subdivision S 1, 
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Id Description Nl N2 N3 N4 NS N6 N7 NS N9 

Sguare x, 0.000 1.000 1.000 0.000 0.500 1.000 0.500 0.000 0.500 
PRl 1 X 1 Xi 0.000 0.000 1.000 1.000 0.000 0.500 1.000 0.500 0.500 

X3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Rectangle x, 0.000 2.000 2.000 0.000 1.000 2.000 1.000 0.000 1.000 
PR2 2xl Xi 0.000 0.000 1.000 1.000 0.000 0.500 1.000 0.500 0.500 

X3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Obligue x, 0.000 1.000 1.707 0.707 0.500 1.354 1.207 0.354 0.854 
POI 1 X 1 Xi 0.000 0.000 0.707 0.707 0.000 0.354 0.707 0.354 0.354 

X3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Obligue x, 0.000 2.000 3.414 1.414 1.000 2.707 2.414 0.707 1.707 
P02 2xl Xi 0.000 0.000 0.707 0.707 0.000 0.354 0.707 0.354 0.354 

X3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Straight x, 0.000 1.000 0.750 0.250 0.500 0.875 0.500 0.125 0.500 
PQR sides Xi 0.000 0.250 1.000 1.250 0.125 0.625 1.125 0.625 0.625 

~lxl X3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Curved x, 0.000 1.000 0.750 0.250 0.500 0.938 0.500 0.068 0.500 
PQC sides Xi 0.000 0.250 1.000 1.250 0.068 0.625 1.198 0.625 0.625 

~lxl X3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

x, 0.000 0.707 0.577 0.000 0.368 0.686 0.303 0.000 0.367 
QSS Spherical Xi 0.000 0.000 0.577 0.707 0.000 0.244 0.674 0.368 0.367 

X3 1.000 0.707 0.577 0.707 0.930 0.686 0.674 0.930 0.855 

Table 4.2: Quadratic quadrilateral elements used in the numerical experiment 

and for a set of collocation points located ata regular grid of 100 x 100 points in the interior 
of the element ~ ¡ E [-0.999, 0.999) x [-0.999, 0.999). Therefore, this numerical experiment 
is a comprehensive testing of the capabilities of each methodology. 

The first task is to choose the appropriate subdivision pattern which will later offer a reli­
able and efficient way of selecting the required quadrature rules . The subdivision pattern of 
triangular and quadrilateral elements was shown in Figures 4.9 and 4.10, respectively. The 
minimal subdivision pattern make use of the triangles MT¡ , with j = 1, 2, 3 for triangu­
lar elements and j = 1, 2, 3, 4 for quadrilateral elements. Each triangle MT¡ can be further 
subdivided into two right-angle triangles T2¡_1 and T2¡ . For an arbitrary location of the col­
location point within the element, the minimal subdivision pattern produces a small set of 
triangular regions of very different shapes. The subdivision pattern of right-angle triangles 
has a bigger set of triangular regions, but all with that feature in common. For locations of 
the collocation points near the comer of elements, two very unequal right-angle triangles are 
produced, which indicates that a very different quadrature rule may be needed for the radial 
coordinate of each right-angle triangle. Hence, the subdivision into right-angle triangles is 
chosen. 

In order to describe the type of graphs where the comparison is made, a full example is 
shown in Figure 4.13. The integral / 8 extended over the subdivision S l = T l of the element 
PQC is considered, and it is evaluated by using the basic polar transformation. Figure 4.13a 
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PRl XI PR2 XI POI XI P02 XI 

x, . x,. 
X2 

PQR XI PQC XI QSS 

XI 

Figure 4.12: Quadratic quadrilateral elements used in the numerical experiment. Blue lines 
are ~ 1 and ~2 isolines. 

shows two colour maps of the required NP and N 9 for each location of the collocation point 
~¡ . They reveal that the required NP mainly depends on the length of the hypotenuse h of 
the triangle Tl , and the required N 9 mainly depends on the angle t::.() of triangle Tl at the 
collocation point. Both facts are reasonable since they are the maximum lengths of p and () 
paths measured in the reference space. Preferably, these lengths should be given in the real 
space, w hich produces graphs more independent from shape aspect ratio and skewness of the 
actual element. However, for the sake of comparison between all methodologies, the former 
lengths are used in the present section. Figure 4.13b synthesises these maps as N 9 = N e(t::.B ) 
and NP = N/h) filled curves between maximum and minimum values of the ordinate. They 
clearly show the correlation in both cases. Note how N 9 = Ne(t::.B) reflects the presence of 
the quasi-singularity as t::.() ~ 1r/2, which is intrinsic to the basic polar transformation dueto 
the Jacobian l ud (Equation (4.40)). 

Figure 4.14 shows the required N9 when integrating the most simple integral I A for plane 
elements with constant tangent vectors (PRl , PR2, POI , P02), and for all methodologies . 
The required NP is 1 as the weak singularity is perfectly cancelled along the radial coordi­
nate in all methodologies, and hence the integrand does not depend on p. On the other hand, 
there is dependence of N 9 with respect to t::.() for all methodologies, except for the PTC be­
cause it enforces a constant AkAk (Equation (4.53a)). In the particular case of the square 
element, PTQ also has angular independence because AkAk is already constant. DM and 
PTB present the strong quasi-singularity in all cases. PTQ presents the quasi-singularity due 
to AkAk, which emerges only when the element has a shape aspect ratio different from 1 or 
sorne skewness. The insensitivity of PTC methodology with respect to shape aspectratio and 
skewness can be seen in Figure 4.16, where p and () isolines are drawn in the physical space. 
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Figure 4.13: Required NP and N 9 for different locations of the collocation point ~¡ . The 
integral is I 8 extended over the su bdi vision S 1 = T 1 of element PQC, and evaluated by using 
the basic polar transformation. 

Figure 4.15 shows the required NP and N 9 when integrating the integral J A for elements 
where the Jacobian is not constant (PQR, PQC and QSS). Figure 4.17 shows the mapping 
of polar coordinates for planar elements PQR and PQC, where it can be seen that PTC is no 
longer capable of producing a perfect mapping of polar coordinates to the physical space. 
Results related to NP show that all methodologies are equally efficient when managing the 
radial coordinate. NP = Np(h) can be approximated by a linear function, which for all these 
three elements are quite similar. The Jacobian of the planar elements PQR and PQC is a bi­
variate polynomial of degree 6 w hen expressed in terms of reference coordina tes ~ 1, ~2 • Once 
the polar transformation is applied, it becomes a linear combination of terms pP sin'() coss () 
where r + s = p and p =:; 6. Therefore, if the other terms of the integrand are ignored, the 
required NP is 4 since p = 2NP - 1 for the Gauss-Legendre quadrature. The maximum of 
NP = Np(h) is approximately 6, which is greater than 4 but not too far from it. The Jaco­
bian of the spherical element QSS is the square root of a bivariate polynomial of degree 12, 
which in general can not be integrated exactly by a Gauss-Legendre quadrature. However, re­
sults show that the required NP for this spherical element is close to that of planar elements. 
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Figure 4 .14: Required N9 when integrating I A for plane elements with constant tangent vec­
tors (PRl , PR2, POI , P02). Required NP is 1 in all cases (constantJacobian J ). 
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Figure 4.15: Required NP and N 9 when integrating J A for elements PQR, PQC and QSS 
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(a) PTB or PTQ (b) PTC 

(e) PTB or PTQ (d) PTC 

Figure 4.16: Mapping of polar coordinates p and () to the physical space for elements PO 1 
(a)-(b) and P02 (c)-(d) with collocation point~i = (1/3, 1/3). Blue lines are ~1 and ~2 isolines, 
and red lines are p and () isolines. 

Regarding the angular coordinate, PTC shows sorne dependence of N 9 with respect to !:::.() 

due to the loss of a perfect mapping of polar coordinates to the physical space. Unlike the 
other methodologies, PTC shows a stable N 9 = Ne(t::.B) curve even when !:::.() ~ 90º. lt is 
remarkable that all methodologies have virtually the same efficiency for !:::.() < 60º. 

Figures 4.18 and 4.19 show the required NP and N 9 when integrating the integral / 8 for all 
elements and methodologies . The difference between / 8 with respect to JA is the presence of 
shape functions. In the case of nine node quadrilateral elements, shape functions are bivariate 
polynomials of degree 4, which after the polar transformation lead to a linear combination 
of terms pP sin'() coss () where r + s = p and p =:; 4 . As explained before, the Jacobian 
for planar elements is a linear combination of terms pP sin'() coss () where r + s = p and 
p =:; 6. Therefore, if only the shape function is considered ( elem ents with constant J ), then 
the required NP is 3. If both shape function and Jacobian are considered, then the required NP 
is 6. As observed in Figure 4.19, the maximum of NP = N/h) is approximately 9 in all cases, 
which is greater than 6 but not too far from it. For elements with constant J , the required N 9 is 
no longer constant for the PTC methodology due to the presence of trigonometric functions. 
For elements with non-constant J , the behaviour of N 9 = Ne(t::.B) is similar to the integral 
/ 8 , except that slopes are slightly higher dueto the presence of trigonometric functions. 

Figures 4.20 and 4.21 show the required NP and N 9 when integrating the integral l e for 
all elements and methodologies. The difference between l e with respect to / 8 is the presence 
of distance gradient components r I r 2, which are purely angular terms in the physical space. 
Results show that in fact NP = N/h) curves for elem ents with a non-constant J remain 
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(a) PTB or PTQ (b) PTC 

(e) PTB or PTQ (d) PTC 

Figure 4.17: Mapping of polar coordinates p and () to the physical space for elements PQR 
(a)-(b) and PQC (c)-(d) with collocation point~i = (1/3, 1/3). Blue lines are ~1 and ~2 isolines, 
and red lines are p and () isolines. 

approximately equal. Obviously, NP remains equal to 3 for elements with constant J (not 
shown in Figure 4.20 for brevity). On the other hand, N 9 = Ne(t::.8) curves have a higher 
slope. This is dueto the additional factors r I r 2, which, considering only the linear terms of 
expansions shown in Equations (4.52) and (4.50), can be expressed as a linear combination of 
terms sin'() coss () where r + s = 2. This effect can be clearly observed by comparing Figure 
4.20 and Figure 4.1 8 for elements with constant J . In the case of elements with non-constant 
J , the effect is still present, but is less pronounced. 

Figure 4.22 shows the required NP and N 9 when integrating the integral 10 for the spher­
ical element QSS, which is the only with one where 10 =fa O. The difference between 10 with 
respect to the previous ones is that now the fundamental solution term contains iJrliJn. As 
previously discussed, this term has the peculiarity that lim,_,0 iJrliJn = O, and vanishes every­
where for planar elements. Taking into account that it can be expressed as iJrliJn = (r lr) · n, 
it becomes clear that is a smooth function for moderately curved elements. Results show that 
NP and N 9 maintain the same behaviour as in previous integrals. 
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Figure 4.1 8: Required N9 when integrating I s for plane elements with constant tangent vec­
tors (PRl , PR2, PO 1, P02). Required NP is 3 in all cases (constant Jacobian J ). 
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Figure 4.19: Required NP and N 9 when integrating I s for elements PQR, PQC and QSS 
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Figure 4.20: Required N 9 when integrating l e for plane elements with constant tangent vec­
tors (PRl , PR2, POI , P02). Required NP is 3 in all cases (constantJacobian J ). 
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Figure 4.22: Required NP and N 9 when integrating / 0 for element QSS 

90 

In summary, all methodologies perform with a similar efficiency regarding the radial co­
ordinate. The same occurs for the angular coordinate when the angle of the triangular region 
at the collocation point is approximately !:::,J) < 60º. When !:::.() > 60º, both the degenerated 
mapping technique and the basic polar transformation perform equally bad. Polar transfor­
mation with the angular strong quasi-singularity removed virtually allow treating triangular 
regions with !:::.() ~ 90º. If additionally P° conformality conditions are forced in the polar 
transformation, the efficiency becomes practically independent from shape aspect ratio and 
skewness of element. 

4.5.2.6 Adaptive non-iterative algorithm 

In the previous section, results show that the subdivision pattern of the element into right­
angle triangular regions in the reference space ~ leads to certain NP = N/h) and N 9 = 
Ne(t::.8) relationships, which, in the case of the polar transformation without any source of 
quasi-singularities (PTC) are highly independent from the actual element geometry. This is 
due to a mapping of polar coordinates to the physical space of a very good quality, and also 
to the analytical removal of the angular strong quasi-singularity arising in the normalisation 
of the radial coordinate. Therefore, it allows using a simple adaptive non-iterative numeri­
cal integration algorithm based on a priori error estimation of simple functions in a reliable 
manner. 

The required N 9 can be related to the problem of the numerical integration of product of 
trigonometric functions: 

1
92 

J aux- 9 = sin'() COS
5 

() d() 
91 

(4.62) 

where () is the angular coordinate in the physical space. Since PTC methodology enforces 
conformality at the collocation point, the angular coordinate () can be taken as that of the r¡ 

space, where 81 and 82 is directly provided by Equations (4.38b), (4.38c) and (4.58). An error 
estimation can be provided by Equation (4.18): 

E =:; eH = E, e ~ 4 ( !:::,.() )2N+1 H > 1 d2N f 1 

22N (2N) ! 2 ' - d()2 N 
(4.63) 
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where f = sin' B coss B. Gi ven the nature off, H can be obtained by finding the maximum 
absolute value of the 2N-th derivative off. A tighter value would be to find the maximum 
within 01 and 02, but it seems rather complicated to obtain a closed-form expression of Hin 
that situation. For the cases f = sinP B (and f = cosP B), the maximum absolute value of 
the 2N-th derivative can be obtained by using elementary trigonometric power and addition 
formulas . Table 4.3 shows the obtained H from p = 1 top = 8, their asymptotic values when 
N ~ oo, and the general formulas obtained by generalisation. For all other r, s pairs we have 
not obtained general formulas of H , but at least for pairs with odd r+ s, it is easy to verify that 
H,,s =:; H,+s,o = Ho,r+s- Therefore, H shown in Table 4.3 provide a conservative estimator 
for all other r, s pairs when p = r +sis used. Error estimator E can be further simplified by 
using the asymptotic value of H , and the Stirling's formula for the factorial, leading to a very 
compact equation: 

(4.64) 

Figure 4.23 shows numerical errors E and error estimations provided by Equation (4.64) for 
a number of r, s cases. lt can be seen that E is conserva ti ve, but care must be taken for higher 
values of p and small values of N 9 since the asymptotic H is assumed in Equation (4.64). In 
terms ofrelative error, the following estimator can be used: 

(4.65) 

where i is calculated by a simple 2-point Gauss- Legendre quadrature. 
Figures 4.24 and 4.25 show a comparison between previous results and required N 9 pro­

vided by Equation ( 4.65). The comparison is made against results when integrating l A and 
l e for PQR, PQC and QSS elements. The angle measured in the reference space is still used 
in abscissas, see Figure 4.13a, which is now indicated as ó_(}(~) in order to avoid confusion. 
According to the discussion given in the Section 4.5.2.5, for the integral l A it is appropriate 
to consider p = 6, and for l e it is appropriate to consider p = 12. Results show that the 
estimator provides an acceptable estimation of the required N 9 for different relative errors, 
and different integrands. However, it underestimates the required N 9 for low values of N 9 

and high values of p. This can be explained from the fact that the asymptotic value of H is 
used in the estimator. 
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Figure 4.23: Numerical error E and error estimation E for the integral J:.2 sin'() coss () d() for 
all pairs r, s from p = r + s = 1 top= 6 (82 - 81 = 1d5) 

p H limN ... 00 H 

1 1 1 
2 ~22N) /2 22N/2 

3 32N + 3) /22 32N/22 

4 ~ 42N + 4 . 22N ) /23 42N/23 

5 52N +5 .32N + 10)/24 52N/24 

6 t'N + 6 · 42N + 15 · 22
N ) /2

5 62N/25 

7 72N + 7. 52N + 2 1 . 32N + 35) /26 72N/26 

8 32N + 8. 62N + 28. 42N + 56. 22N ) /27 32N/27 

k=p/2 
p even ~ ( i ) (p - 2k)2N p2N/2p- l 

p odd k,r, ( ;; ) (p - 2k)2N 

Table 4.3: Values of H = max ict2N f /d()2NI for f(B) = sinP () and f(B) = cosP () 
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Figure 4.24: Comparison between required N 9 obtained from numerical experiment (left) 
and from error estimator e(N9 , 6, 01, 02) (right) when integrating J A 
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APPLICATION TO WAVE BARRIERS ~, 5 
r 

In this chapter, the methodologies described in previous chapters are used for studying sorne 
aspects of wave barriers. A wave barrier is a passive method of reducing the amplitude of 
mechanical waves at certain areas (receivers) produced by sorne sources of vibrations. The 
vibrations produced by overground or underground machinery or vehicles can travel through 
the air, ground and structures to places where they can annoy people or cause the failure or 
malfunction of equipment. A wave barrier is an appropriate discontinuity installed ata point 
of the transmission path which produces such reduction. The design of each wave barrier 
depends on the source of vibrations, the properties of the transmission path, costs, and the 
isolation requirements imposed by regulations, customers or manufacturers . 

A clear distinction must be made between overground and underground wave barriers. 
The former case refers to sound waves barriers, most commonly known as sound or noise 
barriers, and their aim is reducing the dynamic sound pressure up to certain limits such that 
these are acceptable by human auditory perception in our activities . For defining such limits, 
regulations take into account, among other things, the average human hearing capabilities: 
a typical frequency range of f = [20, 20000) Hz, and a typical dynamic pressure between 
threshold of hearing and pain ofp = [20 · 10-6

, 63) Pa (frequency dependent) or sound pres­
sure levels LP = [O, 130) dB (A-weighted) [176]. The latter case refers to elastic waves 
barriers, in the following simply "wave barriers", and their aim is reducing the acceleration 
up to certain limits in order to guarantee health and comfort and to avoid perception and mo­
tion sickness, particularly in buildings (ISO 263 1-1 : 1997 [ 177)). The range of frequencies 
of interest is within f = [0.1 , 80) Hz, and acceleration limits are defined such that accelera­
tion perception is avoided. Typical acceleration perception thresholds vary between 0.01 and 
0.02 m/s2

, although recommended maximum accelerations are also frequency-weighted and 
depend on multiple factors. 

Another relevant diff erence between overground and underground wave barriers is their 
costs and feasibility. Noise barriers are relatively easy to install, and their designs can a 
priori reach sorne level of complexity. In this sense, there have been many developments, 
mostly at the top of the barrier. Hothersall et al. [178, 179) considered T-, Y-, and arrow 
profile barriers, Crombie et al. [1 80) studied multiple-edge barriers, and Watts and Morgan 
[1 81) used an interference based device at the top of the barrier. Okubo and Fujiwara [1 82) 
considered a waterwheel cylinder installed on the top, while Monazzam and Lam [1 83) used 
a quadratic residue diffuser. An exhaustive study about noise barriers can be found in Maeso 
and Aznárez [46]. Toledo et al. performed a comprehensive study of optimised noise barriers 
of many diff erent topologies [24, 25). On the other hand, underground wave barriers tend 
to be simple designs because of installation costs . Their effectiveness mostly depends on 
the ratio between the Rayleigh wavelength and barrier depth. Simple open trenches provide 
considerable vibration reduction because their stress-free boundaries actas perfect reflectors 
of elastic waves [ 184]. However, apure open tren ch can not be excavated to any desired depth 
for soil stability reasons. Therefore, alternative systems such as open trenches reinforced 
with retaining sheet piles or concrete walls [ 185), in-filled trenches with soft or stiff materials 
[ 186-1 88), or the installation of sheet piles [ 189) or rows of piles [ 190, 191 ], have also been 
considered. 
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The aim of this chapter is present severa! contributions in this field, mostly in a two­
dimensional setting. In the case of noise barriers, we study to what extent to common as­
sumption of rigidity is valid for this kind of problems in Section 5.2. In the case of wave 
barriers, we study the eff ect of considering a poroelastic soil for severa! topologies in Section 
5.3. In Section 5.4, a three-dimensional curved wave barrier buried in a poroelastic soil is 
studied for the purpose of studying the fidelity of the DBEM- FEM model. In Section 5.5, we 
study the optimisation of single and double wall barriers buried in elastic soils. 

5.2 Two-dimensional flexible noise barriers 

In this section, the DBEM- FEM model is used for the analysis of two-dimensional flexible 
noise barriers. Also, in order to quantify Fluid-Structure Interaction (FSI) in this type of 
problems, a parametric study of a wall is performed. Therefore, this is the simplest case from 
those explained in Chapter 2, where the shell is modelled as an equivalent beam (E beam = 
E/(1 - v2

)) surrounded by an ideal fluid. 
As a first step, the DBEM- FEM model has been validated against results published by 

Jean [192) , where a simple noise barrier is studied. The problem description is outlined in 
Figure 5.1. The fluid n.1 is air with p = 1.3 kg/m3 ande= 340 mis. The thin elastic body 
Q.

5 
is a simple noise barrier 3 m high and 0.01 m thick, and it is clamped to the ground. 

Three different materials are considered for the barrier n.1 (see Table 5.1). The ground is a 
perfectly reflecting surface, i.e. fluid displacement and pressure flux are null at the ground, 
for which the half-plane fundamental solution based on the method of images is used [6]. A 
point source located at X

5 
= (-2.3, 0.5) is used. The point source is easily added to the BEM 

equations, see e.g. [ 17). 
A comparison between results from Jean [192) and results from the proposed model is 

shown in Figure 5.2. The results from [192) are shown as a coloured background image from 
the original paper. The figure shows three graphs, one for each material. The y axis of each 
plot is the difference between pressures absolute val u es ata point x w hen using a rigid barrier 
(Un = O) and when using a flexible barrier. The natural frequencies fn of each case are plotted 
as vertical lines, and they are calculated using the cantilever beam equations [193). 

The model u sed in [ 192) takes into account the real geometry of the barrier, while the 
proposed model uses a null thickness barrier. The slenderness is Llw = 333, so from the 
barrier behaviour point of view, the Euler-Bernoulli hypotheses are valid. Thus, the proposed 
model should be able to reproduce the results from [192). 

Figure 5.2 shows excellent agreement between Jean's model and the proposed model. 
Peak frequencies and amplitudes are very well reproduced, although sorne small discrepan­
cies appear in the wood case at frequencies around 850 Hz. 

5.2.1 Complex noise barrier shapes 

Jean [192) made a broad study comparing results between flexible and rigid simple noise 
barriers when varying material, thickness, damping coefficient, receiver and source position, 
and barrier height. In this section, sorne more complex barrier shapes are considered. 
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Figure 5.1 : Noise barrier problem studied by Jean [192) (thickness not to scale) 

.Qs p [kg/m3
] E [GPa] V e 

Wood 650 12.0 0.01 0.0100 
Glass 2400 87.0 0.24 0.0005 
Paraglass 1190 3.3 0.40 0.0150 

Table 5 .1 : Materials for the barrier considered by Jean [ 192) 
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Figure 5.3: Layout for studying complex sound barrier shapes 
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Figure 5.4: S IL for different barrier shapes and materials 

The layout of the numerical experiments is depicted in Figure 5.3. Two simple screen 
barriers (simple barrier and double simple barrier) together with three multi-edge barrier 
shapes (Y barrier, U barrier and E barrier) are considered. For each shape, all materials from 
the Table 5.1 are used, the thickness is w = 0.01 m for all pieces, and the effective height is 
3 m. The point so urce is located at ground level and 10 m ahead the barrier [ 17, 178, 194]. A 
grid of 3 x 11 receivers covering 6 x 60 m2 is considered. A thousand frequencies uniformly 
distributed in loglO(f) space from Ímin = 20Hz to Ímax = 4000Hz are used. 

lnstead of taking the pressure as the variable of interest, the Insertion Loss I L is u sed [ 17). 
The I L is the difference between pressures (in dB) when there is no barrier and when the 
barrier is placed, so it measures the effectiveness of the barrier. We also consider the average 
Spectral Insertion Loss SIL, which is simply the average I L in the spectrum, leading to a 
frequency-independentindicator. The I L and the SIL are averaged values over all receivers. 

In the literature, it is often assumed that noise barriers are rigid, so it is interesting to find 
when this hypothesis is valid or not. A first step is using the SIL, Figure 5 .4 shows the SIL 
for all considered barrier shapes and materials, including the rigid case. lt is seen that the 
rigid case is not conservative when using the SIL as an indicator. However, the maximum 
difference between the rigid case and any case is below 2 dB, being 1 dB for the simple 
barrier and double simple barrier, and 2 dB for the Y barrier. Thus, when a global indicator 
such as the SIL is going to be studied, the rigid assumption seems to be valid. 

As Jean [192) showed for the simple barrier, when considering the elastic nature of the 
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barrier there is a widespread pressure increment at low frequencies. Although this behaviour 
seems reasonable, it is interesting to analyse what happens when barriers more complex than 
the simple one are used. Figure 5.5 shows the J L spectrum for all studied barrier shapes and 
materials, including the rigid case. 

For low frequencies (f < 200 Hz) appreciable differences between rigid and flexible bar­
riers are obtained. The simple barrier behaves as Jean described, with increments of pressure 
below 5 dB, i.e. I L decrements below 5 dB. The other barrier shapes have J L decrements 
below 10 dB. For very low frequencies (f < 80 Hz) there is virtually no noise attenuation. 
The considered complex barrier shapes strongly influence the I L spectrum, especially at low 
frequencies. 

For mid-high frequencies (f > 500 Hz) the J L spectrum is very similar to a rigid barrier. 
For simple and dou ble simple barriers, the differences are very small. For Y, U and E barriers, 
the differences are more noticeable, reaching up to 5 dB at sorne frequencies. Nevertheless, 
these differences seem to be irrelevant for noise propagation problems. 

The human ear is less sensitive at low frequencies than at high frequencies, so, at first, this 
behaviour at low frequencies could be neglected. However, high frequencies are attenuated 
by losses in the air and on the absorbing surfaces, while low frequencies are not. Furthermore, 
when a building with windows closed is near the noise barrier, low frequency noises may be 
amplified inside the building. Therefore, depending on the context, the elasticity of a barrier 
similar to those studied should be considered. 

5.2.2 Parametric study of a straight wall 

The present problem consists of a straight wall (beam) (2 L, w, p, Em, v, ~) with its centre 
clamped, surrounded by a fluid (jj, e), where a pressure plane wave is propagating with unity 
amplitude, perpendicular direction, and angular frequency cv, see Figure 5.6. The problem 
parameters can be reduced to six dimensionless ones: 

• Wave velocity ratio: ele, where e = {E]p is the beam axial wave velocity. 

• Densities ratio: jjl p. 

• Geometrical slenderness: LI w. 

• Dimensionless frequency: a0 = (cvL) le. 

• Damping coefficient: ~ 

• Poisson's ratio: v 

Table 5.2 shows the studied values of the dimensionless parameters. The wave velocity 
ratio and the densities ratio have ranges that include the most extreme fluid-structure combi­
nations. The geometrical slenderness starts from Llw = 10 to Llw = 1000, which are within 
the validity interval. The dimensionless frequency range has been chosen so that at least the 
first natural frequency is clearly captured in all cases. 
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Pincident Os: 2L, w,p,E111 , v,{ 

• n¡:p,c 

Figure 5.6: Problem layout 

Parameter Studied values 

e o.o5 
V 0.30 

ele {1150 , 1120, 1110, 115, 112, 1/1 ,2/1} 

plp {11105
, 11104, 11103

, 11102
, 1110, 111 , 1011} 

Llw { 10, 20, 50, 100,200,500, 1000} 

a0 [10-4, 10] 

Table 5.2: Studied values of each dimensionless parameter 

This parametric study is oriented to know the FSI coupling degree. lt seems obvious that 
a decoupled model could be used for extreme cases, e.g. a thick steel wall in air. In these 
extreme cases, the pressure field in the air is calculated considering a rigid obstacle, and if 
needed, the pressure field can be used as the obstacle load. However, there are cases like a 
thin wall in water, ora thin steel wall in oil, or other similar cases where interaction relevance 
is not so clear. All dimensionless parameters combinations of Table 5.2 are studied. 

Figure 5.7 shows the average relative pressure difference at nodes between a given case 
and the rigid case. The relative pressure difference is averaged over frequencies. lt has been 
built in order to know if a wall could be considered rigid or not when one is interested in 
the pressure field. lt has been found that the wave velocities ratio has a small influence over 
it. The densities ratio and the geometrical slenderness strongly influence the average relative 
pressure diff erences. The contour lines clearly show that, for a given pressure difference, 
there is a region where the straight beam can be considered rigid. A rule of thumb can be 
established: for Llw < 1000, if pi p < 111000, the straight beam can be considered rigid. 

Figure 5.8 shows the w/w1 ratio, where w1 is the first natural frequency of the fluid­
structure system, and w 1 is the first natural frequency of the structure in vacuum [ 193). lt has 
been built in order to know if the fluid must be taken into account when one is interested in 
the straight beam behaviour. Analogously to the previous analysis, the wave velocity ratio 
has a small influence over w /w 1• The densities ratio and the geometrical slenderness are the 
main influences over the variable of interest. The w /w I ratio is < 1, so the fluids roughly 
acts as an added mass, as it is well known. The obtained w/w I con tour lines can be used to 
quantify the fluid influence over the FSI problem. 
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Figure 5.7: Average relative pressure differences between elastic case and rigid case 
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5.3 Two-dimensional wave barriers in poroelastic soils 

In this section, the vibration isolation effectiveness of two-dimensional totally or partially 
buried thin walled wave barriers in poroelastic soils is studied. Ground vibrations are con­
sidered to be Rayleigh waves propagating on a permeable free-surface, see Appendix E. As 
in the previous case, the shell is modelled asan equivalent beam (Ebeam = E/(1 - v2)), but 
it is now surrounded by a poroelastic medium. Two different types of coupling of the beam 
with the surrounding medium appear: with an ordinary boundary (BEM-FEM), and with a 
crack-like boundary (DBEM-FEM). 

Firstly, sorne results from the classical vibration isolation paper by Beskos et al. [1 86) 
are compared to our models as a way of verification of our models. Beskos et al. studied the 
vibration isolation of open and filled trenches using a two-dimensional conventional elastody­
namic BEM model. The problem under consideration is a trench, open or filled with concrete, 
with a depth to width ratio dlw = 10, impinged by waves coming from a footing 5d behind 
the trench, vibrating with a frequency corresponding to a Rayleigh wavelength AR equal to 
the depth d . The elastic soil has a density p = 1785 kg/m3

, shear modulus µ = 132 MPa, 
Poisson's ratio v = 0.25 and hysteretic damping ~ = 0.03. The equivalent poroelastic soil 
used in our model has a porosity </J = 0.00 1, fluid density Pr = 0.00 1 kg/m3, solid density 
Ps = 1785 kg/m3

, null additional aparentdensity, solid Lamé's parameters µ=A = 132 MPa, 
solid phase hysteretic damping ~s = 0.03, Biot's parameters R = Q = 0.1 MPa, and null dis­
sipation coefficient. The concrete for the filled trench barrier has a density p = 2449 kg/m3, 
shear modulus µ = 4.52628 GPa, Poisson's ratio v = 0.25 and hysteretic damping ~ = 0.15. 

Fig. 5.9 shows a comparison between their results and our results using the vertical dis­
placement amplitude reduction ratio AY: 

luth barrier (x, Y= O)I 
A (x)=~~~~~~~ 

Y luthoutbarrier (x, y= O)I 
(5 .1) 

For the open trench, we have used an open trench with dlw = 10 using a conventional BEM 
model, but also an open trench with the null width assumption (dlw -; oo) using the Dual 
BEM. For the filled trench, we have used a filled trench with dlw = 10 using a conventional 
multidomain BEM model, and also a filled trench using our DBEM-FEM model, i.e. from 
the soil point of view the trench has null thickness but preserves its structural behaviour. 
There exist differences between the results of Beskos et al. and our results, although the 
main tendencies are similar. lt is probably due to the fact that they used constant boundary 
elements and an important truncation of the free-surface mesh, which was also noticed by 
Ahmad et al. [ 187). In both problems, the diff erences between the results using the real 
geometry (conventional BEM) and the results using the null width assumption (DBEM) are 
very small. Therefore, it is justified using the proposed DBEM-FEM model for thin structures 
(dlw =:; 10) in these kinds of problems. 

In the following sections, three kinds of wave barrier systems are studied: open trench, 
simple wall and open trench-wall; see Fig. 5.10. An open trench system is defined by its 
depth d and width w. Qualitatively, it acts as a perfect reflector where surface waves having 
a wavelength less than its depth are filtered out. A pure open trench is the perfect solution, 
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Figure 5.10: Wave barrier topologies. Left: open trench. Center: simple wall. Right: open 
trench-wall. 

however, systems using walls are needed in situations where the soil stability is compromised. 
In this study, we consider a wall characterized by its top view cross-section per unit length, 
see Fig. 5 .11. lt is defined by the total width h and the wall thickness t, being t =:; h . 
Hence, the cross-section area is A = t and the inertia is I = t3/ 12 + t(h/2 - t/2)2

. When 
t = h, it represents exactly a plate with uniform cross-section. When t < h, it represents a 
two-dimensional simplified version of a sheet pile, whose three-dimensional geometry and 
structural behaviour as a transversely isotropic plateare neglected. This simplification is valid 
as long as we are interested in far-field variables. A simple wall barrier system is defined by 
its depth d and wall cross-section. An open trench-wall system is defined by its trench depth 
d, trench width w, wall cross-section, and wall burial depth l . Hence, these problems are 
defined by their geometry: d, w, l, h and t; by the properties oftheirregions: poroelastic soil 
(</), Pr, P5, µ5 , \, ~s• Q, R, Pa, b) and wall (pb, Eb, vb, ~b); and by the frequency cv. 

For elastic soils, the open trench and the simple wall problems have been extensively stud­
ied, whereas the open trench-wall system has been rarely studied [1 85). In these cases, each 
problem is easily nondimensionalized to a small set of parameters of general applicability. 
Basically, ratios of lengths (dlw, di h, etc.), Poisson's ratios of the soil v5 and wall vb, ratios 
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t 

Figure 5 .11: Wall cross-section 

of densities p/ pb and Young's modulus E/Eb between soil and wall, and a dimensionless 
frequency w* defined by using the Rayleigh wave velocity and sorne length, for example d . 
However, such a broad study for poroelastic soils is difficult due to the number of properties 
involved, and the question if a set of values for these properties represents an existing soil or 
not. 

Therefore, in order to obtain realistic results of practica! usage, we limit our study to 
water-saturated sandstones whose properties are based on experimental data. The poroelastic 
approximation of water-saturated sandstones is taken from [195) , although a more general 
dissipative soil (b =fa O) is considered here. The main hypothesis is the linear relationship 
between porosity </J and solid dry bulk modulus Ks: 

(5 .2) 

where Kcr = 200MPa is the critica! bulk modulus for the dry frame, <Pcr = 0.36 is the critica! 
porosity and Kg = 36000MPa is the bulk modulus of a solid grain. The critica! porosity <Pcr 
is the point where the porosity is too large to form a sustainable dry frame. Several porosities 
and Poisson's ratios are considered: </J = { 0.10, 0.20, 0.30} and vs = { 0.20, 0.30, 0.40} . Thus, 
Lamé parameters are\ = (3vs)l(l + vs)Ks and µs = [3(1 - 2vs)Jl[2(1 + vs)lKs. The density 
of the solid phase is Ps = 2650 kglm3

, and the damping ratio is null (~s = 0). The fluid phase 
(water) properties are Kr = 2000MPa and Pr = 1000kglm3

. The Biot's coupling parameters 
Q and R are: 

(5 .3) 

Berryman's model for the additional aparent density [52) is used assuming spherical grains: 
Pa = ( 1-</J )prf2. The dissipation coefficient is b = Pr g</)2 

IK, where K is the hydraulic conduc­
tivity. In order to present a dimensionless problem, a dimensionless dissipation coefficient 
b* = bdlyµ;] is defined, where p = <PPr + (1 - </J)Ps is the bulk density. Also, it is necessary 
to use a dimensionless frequency w*. One representing the ratio between the barrier system 
depth and the Rayleigh wavelength w* = di A.Ro = (wd)l(21rcR0) is defined, where cRo is the 
wave velocity of the Rayleigh waves assuming b = O. Assuming a typical barrier depth d "' 5 
m, and taking into account that K E [10- 6, 10- 2) mis (see [195, Fig. 1)), </JE [0.10, 0.30) and 
v E [0.20, 0.40), an appropriate set of values for the dimensionless dissipation coefficient is 
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b* = { O, 0.2, 5, 100, 2000} . For the dimensionless frequency, a suitable range w* E [0.5, 1.5] 
is used. The thin walls are considered made of steel: pb = 7850kglm3

, Eb = 210GPa, 
vb = 0.30, ~b = 0.05. 

All the boundaries in contact with airare considered permeable, and given that the bulk 
modulus of the air is much more lower than any of the porous media, the fluid dynamic stress 
r and the solid stresses r;j can be considered null at those boundaries. Specifically, these 
boundaries are the free-surface of the half-space and the bottom of the open trench-wall. 

The isolation eff ectiveness of each configuration is measured by using the average vertical 
displacement amplitude reduction ratio AY: 

_ 1 ¡)0,IRO 
Ay = OA 

2 
Ay(x) dx 

1 RO - al a/2 
(5.4) 

where a = w for the open trench and open trench-wall, and a = O for the simple barrier. lt 
synthesizes the behaviour of Ay(x) along the shadow zone of the wave barrier up to lOARo• 
as suggested by Ahmad et al. [ 187). 

5.3.1 Open trench 

Three geometrical configurations of the open trench are studied: dlw = { 1, 2, 10}; which 
correspond to a very wide, wide and narrow open trenches, respectively. Although it does 
not use any of the new features proposed here, it seems mandatory since, to the authors' 
knowledge, previous results about this problem does not exist in the literature. 

Fig. 5.12 shows AY response for the ranges of variation of porosity </J, Poisson's ratio 
vs, dimensionless dissipation coefficient b* , and dimensionless frequency w*, for the wide 
trench (dlw = 2). The main behaviour of open trenches in poroelastic soils are similar to 
those in elastic soils. The dimensionless frequency w* = d I AR = 1 is a key point. Below this 
frequency, the effectiveness gets worse increasingly, and above it, the effectiveness improves 
up to a maximum effectiveness, approximately constant for w* > 1.2. In most cases, the 
Poisson's ratio has a small influence on AY when w* > 0.8. lt becomes more important 
when the porosity is near <Pcr and the dimensionless dissipation coefficient is b* < 1. The 
dimensionless dissipation coefficient b* has a very small influence on AY for b* > 5. For 
b* < 5, b* becomes more influential when the porosity approaches <Pcr· 

Fig. 5.13 shows AY responses for the different dlw ratios, when vs = 0.30 and b* =:; 5. In 
general terms, the smaller dlw ratio the more efficient is the open trench, which is physically 
obvious. The influence of dlw increases as w* decreases, especially when w* < 0.6. When 
w* > 1.2, although differences exist, they are less important given the high effectiveness 
(A y < 0.05) of all the studied dlw ratios . The influence of the porosity </J and the dissipation 
coefficient b* is similar for the different studied dlw ratios. 

5.3.2 Simple barrier 

The simple barrier is studied for three depth to cross-section width ratios: dlh = { 10, 20, 100}; 
and each of them for four cross-section width to wall thickness ratios: hit = { 1, 6, 10, 20} . 
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Figure 5.12: AY response for open trench dlw = 2 

Except for the average effectiveness level, which is much more lower, the influence of soil 
properties over the AY response for simple barriers are similar to those of open trenches . 
Therefore, in order to compare the influence of the wall configuration, the soil properties 
are fixed to: </J = 0.20, b* = 0.2, vs = 0.30. These problems are solved using the proposed 
DBEM-FEM coupling. Hence, the soil sees a null thickness barrier which maintains its effec­
tive structural response. Additionally, the real three-dimensional behaviour of cross-sections 
with hit =fa 1 is approximated by a two-dimensional behaviour, which is a valid assumption 
as long as we are not concerned about near-field variables . 

Fig. 5 .14 shows AY response for different di h and hit ratios . For the studied range of 
w* , the effectiveness of the simple barrier is much more lower than the effectiveness of any 
open trench. While the open trench acts as a perfect reflector, the simple barrier partially 
converts surface waves into body waves. As pointed out by Ahmad et al. [1 87, Fig. 12), 
the effectiveness of this type of barriers depends mostly on the wall area d · t. In order to 
show this relationship for the present study, Fig. 5.15 has been built using the AY analysis 
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Figure 5.13: AY comparison between open trenches with different dlw ratios (vs = 0.30) 
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Figure 5.14: AY comparison between simple barriers with different dlh and hit ratios (</J = 
0.20, b* = 0.2, Vs = 0.30) 

points of all cases shown in Fig. 5.14 in ordinates, anda dimensionless area (di AR0)(t/ A.Ro) = 
(w*)2(hld)(t/ h ) in abscissas. The left graph shows a global picture of the results, and the right 
graph shows a detailed view of the results for smaller cross-sections. Although the observed 
slope is different for each specific cross-section, it is shown that, as found by Ahmad et al. , a 
roughly linear relationship exists between the effectiveness and the dimensionless area. 

5.3.3 Open trench-wall 

The open trench-wall is studied for three depth to width ratios: dlw = { 1, 2, 10}; three wall 
burial depth to trench depth ratios: 11 d = { O, 0.25, 0.50}; three trench depth to cross-section 
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Figure 5.15: AY comparison between simple barriers using the dimensionless area in abscis­
sas (</J = 0.20, b* = 0.2, vs = 0.30) 

width ratios: di h = { 10, 20, 100}; and four cross-section width to wall thickness ratios: 
hit = { 1, 6, 10, 20} . The influence of the dimensionless dissipation coefficient b* and the 
Poisson's ratio vs is similar to that of the open trenches, i.e. their influence is relatively small, 
thus b* = 0.2 and vs = 0.30 are assumed. These problems are solved using both the BEM­
FEM and DBEM-FEM couplings, being the BEM-FEM coupling applied to the retaining part 
of walls, and the DBEM-FEM coupling applied to the buried part of the walls . 

Fig. 5.16 has been built in order to assess the influence of the wall and its burying in 
the soil over A Y" For all cases, the depth to cross-section width ratio is di h = 20, and the 
cross-section width to wall thickness ratio is hit = 1. The figure contains 3 x 3 graphs, w here 
each column corresponds to a different porosity </), and each row to a different depth to width 
dlw ratio. Each graph contains four curves corresponding to the open trench case and the 
open trench-wall case with three different wall burial depth to trench depth lid ratios . For a 
given </J and dlw ratio, the differences between the open trench and the open trench-wall for 
ll d = O are small for w* > 1, but for w* < 1 the open trench-wall is slightly more efficient. 
For the other values of the lid ratio, AY gets worse, especially for w* < l. The smaller the 
porosity, the smaller AY differences between the open trench and the open trench-wall for any 
lid ratio. Likewise, the smaller the dlw ratio, the smaller the A Y differences between both 
kinds of wave barriers. 

Fig. 5.17 contains graphs comparing the AY response of configurations with different lid 
ratios and different cross-sections. For all cases, the porosity is </J = 0.20, and the depth 
to width ratio is dlw = 2. Each column corresponds to a different dlh ratio, and each row 
correspond to a different ll d ratio. Four curves are drawn on each graph, one corresponding 
with the open trench, and three corresponding with hit = { 1, 6, 20} . lt is seen that the open 
trench-wall converges to the open trench as di h and hit increase, as it should be. The cross­
sections corresponding with a plate with uniform thickness (hit = 1) have a considerable 
impact on Ay, increasing the effectiveness for w* < 1 and lid = O, but decreasing it in the 
rest of the cases. The cross-sections associated with the sheet pile idealization have a small 
influence on the eff ectiveness when compared with the open trench. 
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Figure 5.16: AY comparison between open trench and open trench-wall for different </), dlw 
and lid ratios (b* = 0.2, vs = 0.30, d/h = 20, hit= 1) 

5.3.4 Concluding remarks 

The open trench, simple wall and open trench-wall are studied varying their geometry, soil 
properties and frequency. The soil is assumed to be a sandstone following a linear relationship 
between porosity and solid dry bulk modulus. In the study, severa! values of porosity </), 
Poisson's ratio vs and dimensionless dissipation coefficient b* are considered. From the point 
of view of isolation efficiency of all wave barriers, it is found that the porosity </> is relevant 
when is near the critica! porosity <l>cr and the dimensionless dissipation coefficient is b* < 5. 
Also, results do not vary significantly beyond b* > 5, and Poisson's ratio vs becomes relevant 
only for dimensionless frequency w* < 0.8. Qualitatively, the open trench and the simple 
wall (thin in-filled trench) behave similarly to those in elastic soils, except for high porosities 
and small dimensionless dissipation coefficients. For the evaluation of the isolation efficiency 
of an open trench-wall, it is found that the influence of the walls can be ignored if they are 
typical sheet piles, and if the dimensionless frequency w* lies between 0.5 and 1.5. This is not 
the case when walls with bigger cross-sections are used, leading in general toan efficiency 
loss. Wall burial depths lid > O lead to efficiency losses, especially for high porosities and 
low dimensionless frequencies w* < 1. 
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Figure 5.17: AY comparison between open trench and open trench-wall for differentd/h, lid 
and hit ratios (</J = 0.20, b* = 0.2, vs = 0.30, dlw = 2) 

5.4 Three-dimensional wave barrier 

In this section, the three-dimensional DBEM- FEM dynamic model is used in a wave diffrac­
tion problem, and compared againsta multi-region BEM model [14, 17). A curved vibration 
isolation wall buried in a poroelastic half-space under a Rayleigh wave field is considered. 
The wall has a radius of 6 m, a depth of H = 4 m, covers an angle of 90º , and different thick­
nesses t = { 0.80, 0.40, 0.08, 0.04} m are studied. Thus, slendernesses ranging from H lt = 5 
to H lt = 100 are analysed. The wall is considered to be made of concrete with density 
p = 2400 kg/m3

, shear modulus µ = 6.5 GPa, Poisson's ratio v = 0.15, and hysteretic damp­
ing ratio~ = 0.05, where the complex shear modulus used isµ* = (1 +i2~)µ . The poroelastic 
half-space has the following properties taken from Kassir et al. [196): Pr = 1000 kg/m3

, 

Ps = 1425 kg/m3
, A = µ = 32.1 8 MPa, </J = 0.35, Pa = O kg/m3

, R = 248 MPa, 
Q = 46 1 MPa, b = 1.1986 · 107 N · s/m4

; and the free-surface is permeable, i.e. r = tk = O 
at z = O. As a source of vibrations, an incident Rayleigh wave field with unitary vertical dis­
placements is impinging along the x-axis at f = 50 Hz, see Appendix E. Since the zx-plane 
is a symmetry plane, only one-half of the domain is discretised and appropriate symmetry 
conditions are thus enforced. 

Figure 5.1 8 shows an example of multi-region BEM and DBEM- FEM meshes, where it 
can be observed the simplicity of the latter. At the wall, there are two conforming meshes 
in the DBEM- FEM model: a BE mesh with crack boundary elements representing the soil­
wall interface, and a FE mesh with shell finite elements representing the wall. For each 
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(a) Multi-region BEM exarnple mesh 
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Soil - wall: coupled crack BE - shell FE 

(b) DBEM-FEM example mesh 

Figure 5.1 8: Curved wall barrier (models with one-half symmetry) 

thickness, the multi-region BEM model requires a new discretisation, while the DBEM-FEM 
model only requires changing the shell thicknesses. The multi-region BEM model requires 
sorne control of the element size with respect to the thickness in order to avoid integration 
and conditioning problems. Also, due to the presence of the geometrical details of the wall, 
more degrees of freedom are required for the wall edges and the free-surface near the wall, 
especially for small thicknesses. Since the DBEM-FEM model does not require different 
meshes for different wall thicknesses, they can be changed without needing to build the whole 
linear system of equations for each case, but only the stiffness and mass matrices. 

Figures 5.19 and 5.20 show respectively far-field and near-field results for all thicknesses, 
which are arranged in columns. Figure 5.19 shows Amplitude Reduction ratios in x and 
z directions (ARj = abs(u/u~ncident)) along the x-axis for y = z = O. Figure 5.20 shows 
displacements, fluid equivalent stress and tractions along the depth of the outer face of the 
wall, i.e. along the z-axis for y = O and x = t/2 (multi-region BEM) and x = o+ (DBEM­
FEM). 

Multi-region BEM meshes are similar to that shown in Figure 5.1 8, where a mesh of 
11 x 11 , 8 x 8, 8 x 8 and 8 x 8 nine-node quadrilateral boundary elements are used for the 
faces of the wall with respectively t = 0.04, 0.08, 0.4 and 0.8 m. The criteria to mesh the wall 
and its surroundings have been: a) at least six elements per wavelength, and b) elements of 
lengths up to ten times the wall thickness. Two DBEM- FEM meshes are considered: (1) soil 
and wall discretised with a mesh of 8 x 8 nine-node quadrilateral crack boundary elements 
and MITC9 shell finite elements, and (2) with a coarse mesh of only 4 x 4 elements. 

Results show the convergence of the DBEM-FEM model when Hit ~ oo, having excel­
lent agreement for slendernesses Hit 2::: 10. Nevertheless, the DBEM-FEM model is able 
to roughly capture the response even for the case of slenderness H /t = 5. Results regarding 
Amplitude Reduction ratios clearly show that in the DBEM-FEM model interaction is hap­
pening on the wall mid-surface rather than on the real boundaries of the wall. lt is able to 
reproduce the displacement field, although with a spatial shift that depends on the thickness of 
the shell structure. This approximation may or may not be acceptable depending on the appli­
cation at hand. Results along the outerface of the wall demonstrate that even near-field results 
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5 APPLICATION TO WAVE BARRIERS 

Mesh Noop tbuild [s] t S<>lve [s] ttotal [s] 
BEM / t = 0.04 m 39851 207 175 382 
BEM / t = 0.08 m 35729 175 128 303 
BEM / t = 0.40 m 34177 158 113 271 
BEM / t = 0.80 m 34161 158 112 270 
DBEM- FEM (1) 32935 151 101 252 
DBEM- FEM (2) 29623 125 75 200 

Table 5.3: Computation times for solving the wave diffraction problem 

are in good agreement with those of the multi-region BEM model. Differences are mainly 
found near the edges, although these become appreciable only for the smaller slendernesses . 
Coarse DBEM-FEM mesh (2) gives almost identical results than the fine DBEM-FEM mesh 
( 1) regarding results along the free-surface. However, there are small differences on the fluid 
equivalent stress and solid tractions along the wall, being appreciable near the edges for the 
smaller slendernesses. 

Table 5.3 shows computation times when solving the problem for each wall thickness 
and mesh using a 28 x 2.6 GHz workstation. Computation times for DBEM- FEM meshes 
correspond to the solution of the problem for one individual thickness. Despite the additional 
costs of evaluating the HBIE, the building time of DBEM- FEM models is only moderately 
affected when comparing multi-region BEM and DBEM- FEM meshes. More important is 
the fact that the DBEM- FEM intrinsically leads to a considerable reduction of the number of 
degrees of freedom, which is what greatly decrease the total computation time. This is clearly 
more advantageous as the wall thickness reduces, where the approximation introduced by the 
DBEM- FEM model is also less relevant. 

5.5 Optimisation of two-dimensional wave barriers 

In this section, the problem under consideration is the shape optimization of a wave barrier 
system located within a square design domain [d~in, d~ªx] x [dfi", dfªx]. The design domain 
is between a point source located at xs and a point receiver located at xr, both of them at 
the half-plane free-surface, see Fig. 5.21. The half-plane (soil) and the barrier system are 
homogeneous, isotropic, linear elastic solids with bonded contact conditions. Time harmonic 
analyses are used to measure the performance of the wave barrier, which is given in terms of 
insertion losses at the receiver location: 

I L (f, x') - 20 log10 ( 
lutb (!, xr)l2 + lu;°b (!, xr)l2 l 
lurb (!, xr)l2 + lu;b (!, xr)l2 

(5 .5) 

where uk denotes displacement components, superscript wob stands for "without barrier", 
superscript wb stands for "with barrier", and f is a frequency (in Hz). 
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The problem at hand is a non-convex non-linear constrained optimization which can be 
formulated as: 

min ,r 
a 

(5 .6a) 

S t a mín < a < amax . l N 
· · j - j - j ' J = ' · · · ' dv (bounds) (5 .6b) 

d min < (q ) < dmax k - 1 2 - 1 N 
k - pk - k ' - ' ' q - ' ... ' gp (design domain) (5 .6c) 

g
111 

=:; O, m = 1, ... , Ne ( compa tibili ty) (5 .6d) 
A=:; A max (economic) (5 .6e) 

where three different types of objective functions are considered: 

(5 .7) 

Nr 

= avg = __ l ~ I L (!º. pl r) = - I L (r¡ºPl ¡ºPl] r) X X N ,/,.¿ ; , X J , Nr , X 
f i = I 

(5 .8) 

X= xmm = i=rr.~:Nr - I L (J;°P\ xr) = - IL ( [f~P\ ¡~\ xr) (5 .9) 

Four types of constraints are defined: Eq. (5 .6b) establishes the design variables bounds, Eq. 
(5 .6c) limit the parametrized geometry points within the design domain, Eq. (5 .6d) estab­
lishes the geometric compatibility constraints, and finally Eq. (5 .6e) imposes an economic 
constraint by limiting the barrier area (amount of material). Regarding objective functions, 
the first type of objective function defined by Eq. (5 .7) is the insertion loss ata receiver point 
xr for a given frequency fºP1, where a change in sign is used in order to formulate a minimiza­
tion problem. This objective function focuses on obtaining an optimized wave barrier for a 
very well defined single-frequency source. The second type of objective function defined by 
Eq. (5 .8) is an average insertion loss for a given set of Nr frequencies, which aims obtain­
ing an optimized wave barrier for a broadband source. The third type of objective function 
defined by Eq. (5 .9) represents the worst insertion loss within a a given set of frequencies, 
whose aim is to obtaining a wave barrier appropriate for a harmonic source within a frequency 
range. 

In order to solve the considered optimization problem, MATLAB© [197) is used. For 
objective functions of Eqs. (5 .7) and (5 .8), the function fm i ncon with the sqp algorithm is 
used, i.e. a Sequential Quadratic Programming method. For objective function indicated by 
Eq. (5 .9), the function fmi n i max is used. The gradient of the objective function is supplied 
by using the the chain rule and the displacements sensitivities obtained from the Geometric 
Sensitivity BEM analyses . 

In this problem many local minima may appear, and itis not possible to guarantee that the 
best local minima found is in fact the real global minima. To overcome this issue, a simple 
multi-start procedure [198) is used. To do so, randomly generated feasible starting points 
are studied until the diff erence between the number of expected local minima (Proposition 2 
in [198)) and the number of different local minima found is below a tolerance (0.2 is chosen), 
or until the number of starting points studied is greater than an established maximum (50 is 
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X (dmax dmax) 
2 1 , 2 

Source (d~in, dfªx) t x1 1 Receiver • • • • • 
(x~,0) (x~,0) 

design domain 

(dmin dmin) 0 
1 ' 2 

(dmax dmin) 
1 ' 2 

half-plane 

Figure 5.21: Problem layout 

Source Receiver 

(-7.5,0) (7.5,0) 

(a) Single wall barrier (b) Double wall barrier 

Figure 5.22: Studied wave barrier topologies located inside a design domain of 5 m x 8 m 
(in orange) 

chosen). As Rinnooy Kan et al. [198) discussed, it is very interesting to note that, based on 
Bayesian analysis, the number of starting points to be studied depends on previously found 
local minima, and not on the dimension of the problem. 

Two wave barrier topologies are studied: a single wall barrier, and a double wall bar­
rier. Figure 5.22 shows the general setting and the wave barrier topologies together with the 
corresponding design variables. 

Source and receiver are 15 meters apart (xs = (-7.5, O), xr = (7.5, 0)), and the design 
domain is 5 meters wide and 8 meters deep (d~in = - 2.5, d~ax = 2.5, dfin = - 8, dfªx = O). 
The soil region Q s has a shear modulus µs = 80 MPa, Poisson's ratio vs = 1/3 and density 
Ps = 2000 kg · m-3

. Regions Q b, Q b 1 and Q b2 represent elastic regions of the barrier with 
shear modulus µb = 605 MPa, Poisson's ratio vb = 1/4 and density pb = 2000 kg · m-3

. A 
conventional hysteretic damping ratio of 5% is considered for all regions, i.e. ~s = ~b = 0.05. 
Any value between 0% and 7% has a limited influence in this type of problems [1 87). The 
range of frequencies of interest is f E [20, 80) Hz, and a set of eleven frequencies fºP1 = 
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{20, 26, 32, ... , 80} Hz are considered for objective functions. 
The shear wave velocities are css = 200 m · s- 1 and csb = 550 m · s- 1 for the soil and 

barrier regions, respectively. The ratio of cs/csb = 2.75 is greater than the minimal value of 
2.5 suggested by Ahmad et al. [1 87]. The Rayleigh wave velocity in the soil is cRs = 186.4 
m · s- 1

• Since the range of frequencies of interest is f E [20, 80) Hz, Rayleigh wavelengths 
ARs vary from 2.33 m to 9.32 m. Therefore, for the lowest frequencies, the design domain 
limits the barrier depth up to approximately one Rayleigh wavelength. In that situation, the 
optimization search for solutions that increases the insertion loss without going deeper. For 
higher frequencies, there is a compromise between depth and width. Ahmad et al. offer an 
explanation of the related physical phenomena for a vertical wall barrier. An optimal depth to 
width ratio is present in such wall barriers when the dimensionless area is Al A.is > 0.2, and 
varies between 1.2 and 2.8. These conclusions of Ahmad et al. give very useful design rules 
for single vertical wall barriers, and serve as a starting point for the more complex designs 
studied in the present work. 

5.5.1 Optimal single wall barriers 

The simplest wave barrier topology corresponds to a single wall barrier with wall top and 
bottom position, and thickness freedoms, see Figure 5.22a. lt is defined by four design vari­
ables (Ndv = 4): a 1 is the horizontal coordinate of the wall top (-2.5 =::; a 1 =::; 2.5), a2 and a3 

are respectively the horizontal and vertical coordinates of the wall bottom (-2.5 =::; a2 =::; 2.5, 
-8 =::; a3 =::; - 0.1 ), and a4 is the wall thickness (0.1 =::; a4 =::; 5). There are four parametrized 
geometry points (Ngp = 4), which can be be obtained from: 

p (J) = (a1 + (ai2)/cosB, O), p C2) = (a2 + (ai2)cos0,a3 + (ai2)sinB) 

p C3) = (a2 - (ai2)cos0,a3 - (ai2)sinB), pC4) = (a1 -(ai2)/cosB, O) 
(5 .10) 

where O = arctan ( (a1 - a2)/a3) . These points correspond respectively to the top right, bot­
tom right, bottom leftand top left cornerpoints ofthe wall. The bounds established previously 
for design variables are less strict than those of points p (q) (Eq. 5.6c), in such a way that the 
design space allows any barrier within the design domain. This is also done for the rest of 
topologies . 

5.5. 1. 1 Optimized base cases 

The first optimization problem is a simplified one from the general case stated above by doing 
a 1 = a2 = O. The aim is to study to what extent the design rules of design of stiff vertical wall 
barriers are optimal. Also, since these are the simplest single wall barrier designs to install, it 
is appropriate to compare the performance of more involved designs with such simple ones. 
Because of that, these are referred as optimized base cases in the following. Optimization is 
performed for four different maximum area constraints Amax = { 2, 4, 8, 12} m2, and thus the 
dimensionless area is within 0.025 < Ama/ -ti < 2.22. 

For the objective function in Eq. (5 .7) related to single-frequency sources, the obtained 
global minima are depicted in Fig. 5.23 together with their insertion loss spectra. Three 
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Figure 5.23: Optima! vertical and centered single wall barriers for single-frequency sources 

types of optima! designs with different aspect ratios are found: deep walls (optima! for low 
frequencies), floors (optima! for mid frequencies in sorne cases), and thick walls (optima! 
for high-frequencies). Results show that there is no smooth transition between these types 
of optima! designs as the target frequency increases. In fact, these are more or less similar 
within a frequency interval, and only small changes take place in order to achieve optima! 
performance at each target frequency. The frequencies at which the type of optima! design 
shifts are different depending on the amount of material available (Amax). For Amax = 8 and 
Amax = 12 m2

, there is a sudden shift from deep walls to a thick walls at approximately 50 
Hz (AR = 3.728 m). For Amax = 2 and Amax = 4 m2, there is a shift from deep walls to floors 
at approximately 30 Hz, and then from floors to thick walls at approximately 50 Hz. Despite 
being very practica!, it is clear that the rule of thumb of limiting the depth of the barrier at 
one Rayleigh wavelength is generally not optima! for a given amount of material. 

In order to compare the differences between all three kinds of designs, Fig. 5.24 shows 
color maps of the magnitude of the real part of displacements and insertion losses within a 
domain of interest (-20 ::; x 1 ::; 20 x - 20 ::; x2 ::; O m2

) for the three local minima of 
the case f ºP

1 = 50 Hz, Amax = 12 m2
: floor-like design (a1 = a2 = O m, a3 = - 1.05 m, 

a4 = 5 m, I L = 4.7 dB), thick wall design (a1 = a2 = O m, a3 = -3.288 m, a4 = 2.642 
m, I L = 5.1 dB), and deep wall design (a1 = a2 = O m, a3 = - 6.785 m, a4 = 1.769 m, 
I L = 5.2 dB). Fig. 5.25 shows the insertion loss spectrum for each local minima. This 
case is interesting because all three minima have insertion losses around 5 dB at the receiver 
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Figure 5.24: Comparison between three approximately similar local minima working with 
different isolation mechanisms (JºP1 = 50 Hz, Amax = 12 m2) 
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Figure 5.26: Insertion loss improvement of optimized design (see Fig. 5.23) with respect to 
typical designs (a3 = -Ji,R(fºP1 ), a4 = Ama/ Ji,R (JºP1 )) for each target frequency fºP1 

location, as can be see in Fig. 5.25. In Fig. 5.24, it can be seen that the floor is a fast path 
for incoming waves, which produces inclined transmitted body waves . The overall effect is 
a significant insertion loss near the surface along the receiver side. The thick wall partially 
converts incoming Rayleigh waves into body waves by reflecting them on the wall and also 
sending body waves through the bottom of the wall into the half-space. The deep wall also 
makes both types of conversion, but reflection is predominant in this case. Despite having 
close insertion losses at the receiver point, the thick wall design have better insertion losses 
along all the receiver side whereas the floor-like design has a more localized effect. Fig. 5.25 
also shows that floor-like design is effective only in a narrower range of frequencies than thick 
or deep walls. 

Fig. 5.26 shows the difference between optimized designs and typical designs with a 
depth of one Rayleigh wavelength for a given target frequency. lt shows that optimization is 
irregularly effective within the range of target frequencies studied. Improvements are small 
for low frequencies, and increase as frequencies get higher. This behavior is reasonable since 
the available dimensionless area increases with the frequency, and also the design domain is 
larger in dimensionless terms. Improvements between 1 and 2 dB are achievable, which are 
significant 11 % to 21 % better Amplitude Reduction ratios. 

For the objective function in Eq. (5 .8) related to optimization for broadband sources, 
the obtained global minima are depicted in Fig. 5.27 together with their insertion loss spec­
tra. Since the objective function is an average of insertion losses within a given frequency 
range, optimization improves insertion losses where they can be easily increased, i.e. at high­
frequencies. In fact, optima! designs for this objective function are very similar to those of 
high frequency sources. There is a clear improvement as the maximum area is increased, 
except for Amax = 12 m2

. The optima! solution in this case does not make use of all the 
available area, which is something that also happened when dealing with sorne of the pre­
vious high frequency single-frequency sources. The reason behind this is that, compared to 
the optima! design, insertion losses in the high frequency range decrease considerably and in 
the low frequency range slightly increase when the depth of the barrier is increased to reach 
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Figure 5.28: Effect of increasing width or depth for the optimal vertical and centered single 
wall barrier for broadband sources (JºP1 = [20, 80) Hz, A max = 12 m2) 

A = A max• see Fig. 5.28. Conversely, when the width of the barrier is increased to reach 
A = A max• insertion losses in the high frequency range increase and in the low frequency 
range decrease. 

For the objective function in Eq. (5 .9) related to optimization for harmonic sources within 
a frequency range, the obtained global minima are depicted in Fig. 5.27 together with their 
insertion loss spectra. There are no practica! design rules for this objective function, and 
thus optimization is quite necessary in this case. However, since lowest insertion losses are 
usually but not always located at the lowest frequency, good starting points are those barri­
ers designed for single-frequency sources at the lowest frequency. Results show that optimal 
designs are indeed similar to those obtained for single-frequency sources at the lowest fre­
quency. Nevertheless, another minimum insertion losses are located at approximately 70 Hz. 
Since the objective function is evenly sampled from 20 to 80 Hz in steps of 6 Hz, minimum 
insertion losses used during the optimization are only approximated ones, as can be seen in 
Fig. 5.27. As expected, it can be observed that optimal designs for each A max achieve better 
minimal insertion losses as A max increases. 

Instituto Universitario SIANI 181 



5 ·(<i APPLICATION TO WAVE BARRIERS 

O 20 40 60 80 100 

.f[Hz] 

-2 .... 

--8 ._____........__ _ _, 

-2.5 O 2.5 
XJ [m] 

2 -
4 

8 -
12 -

Figure 5.29: Optimal vertical and centered single wall barriers for harmonic sources within 
a frequency range (fopt = [20, 80) Hz) 
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Figure 5.30: Insertion loss improvement of optimized single wall barriers with respect to 
optimized base cases for each target frequency fºP1 

5.5. 1.2 Optimized single wa/1 barriers 

In this section, single wall barriers with all four design variables are optimized. Compared 
to the previous case, the horizontal position of the top and bottom parts of the wall are now 
included in the optimization, which gives freedom to the horizontal position and angle of the 
wall. 

For the objective function in Eq. (5 .7) related to single-frequency sources, the improve­
ment of the obtained global minima with respect to the optimized base cases is depicted in 
Fig. 5.30. lt is observed that the improvementis negligible for low frequencies, and becomes 
significant as the frequency increases, although it is quite irregular. For frequencies higher 
than 40 Hz, an improvement roughly between 1 and 2 dB can be achieved. 

The optima! designs for single-frequency sources of 20, 26, 44, 50, 74 and 80 Hz are 
shown in Fig. 5.3 1. As in the case of vertical and centered single wall barriers, there is 
no clear and smooth transition between maximum depth reached by optima! designs and 
wavelengths associated with the frequency of the source. For low frequency sources, optima! 
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Figure 5.3 1: Optimal single wall barriers for single-frequency sources 
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walls have a small inclination and reach the maximum depth. These changes, however, do 
not improve significantly the corresponding optimized base cases, as shown in Fig. 5.30. For 
mid frequency sources, optimal walls are highly inclined towards the receiver and cover the 
available width of the design domain. For sources of 38 and 44 Hz and the highest values 
of A max• slightly inclined deep walls are obtained as optimal designs. Depths reached for the 
former cases are around 2 meters, which is much less that one wavelength. In this sense, 
these designs can be seen as an evolution of floor designs obtained in several optimized base 
cases. A more sophisticated version of this type of design was also obtained by Van hoorickx 
et al. [199) via topology optimization. For high frequency sources, optimal walls are highly 
inclined towards the source and cover almost all the available width of the design domain. In 
sorne cases, nearly squared blocks also appear as optimal designs. In the former cases, the 
depth reached by walls is approximately of 4 meters, more than one Rayleigh wavelength. 
This type of design also appears in a more complicated fashion in [ 199). Most of the designs 
for the same frequency and different A max have very similar inclination and position, showing 
that these are key factors for tuning the design for the single-frequency source. For mid and 
high frequency sources, insertion loss spectra show a clearly defined peak at the optimized 
frequency. 

Fig. 5.32 shows the insertion loss color maps for optimized base cases and optimized sin­
gle wall barriers for single-frequency sources of 50 and 7 4 Hz, with A max = 8 m2

, and within 
a given domain of interest (-20 ~ x 1 ~ 20 x -20 ~ x 2 ~ O m2

) . For both single-frequency 
sources, the optimized single wall barriers relocate insertion loss maxima occurring along 
the receiver side such that one maximum is placed at the receiver point. Despite that opti­
mization is performed for the receiver point, insertion losses are also significantly improved 
along all the receiver side. The optimized single wall barrier inclined towards the receiver 
side (JºP1 = 50 Hz) reflects incoming waves and also acts as a waveguide redirecting waves 
away from the surface. The insertion loss map of the optimized single wall barrier inclined 
towards the source side (JºP1 = 74 Hz) behaves essentially similar to a deep wall, see e.g. 
Fig. 5.24, but inclination improves insertion losses behind the wall. 

For objective functions in Eqs. (5 .8) and (5 .9) related to optimization for broadband 
sources and for harmonic sources within a frequency range respectively, the obtained global 
minima are depicted in Figs. 5.33 and 5.34 together with their insertion loss spectra. Im­
provements with respect to the optimized base cases (Figs. 5.27 and 5.29) are less that 0.5 
dB for both objective functions, which is a relatively small gain. 

5.5.2 Optimal double wall barriers 

The second barrier topology is a double wall barrier with position, orientation, length and 
thickness freedoms for both walls, see Figure 5.22b, and thus it has eight design variables 
(Nctv = 8). Design variables a 1 to a4 are the same as those of the single wall barrier, and they 
are associated with the left wall (Q b1 ) . Analogously, design variables a5 to a8 are related to 
the right wall (Q b2) . There are eight parametrized geometry points (Ngp = 8), which can be 
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Figure 5.33: Optima! single wall barriers for broadband sources (JºP1 = [20, 80) Hz) 
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Figure 5.34: Optima! single wall barriers for harmonic sources within a frequency range 
(fºP1 = [20, 80) Hz) 

be obtained from: 

p (I) = ( a l + (ai2)/ COS 81, 0) , p (
2
) = ( Q2 + (ai2) COS 81, a3 + (ai2) Sin 81) 

pC3) = (a2 -(ai2)cos81,a3 - (ai2)sin81), pC4) = (a1 -(ai2)/cos81, 0) 

pC5) = ( a5 + (a8/2)/ cos 82 , O) , p(6) = ( a6 + (a8/2) cos 82, a7 + (a8/2) sin 82) 

pC7) = ( a6 - (a8/2) cos 82, a7 - (a8/2) sin 82) , pC8) = ( a5 - (a8/2)/ cos 82, O) 

(5 .11) 

where 81 = arctan ( (a1 - a2)/a3) and 82 = arctan ( (a5 - a6)/a7 ) . In order to preserve the 
topology during the optimization, three additional constraints (Ne = 3) between points of 
both walls are imposed: 

P(I) < p (8) :::} g = p (I) _ p (8) + € < 0 
1 1 1 1 1 -

A 1,2,1 > O :::} g
2 

= - A 1,2,1 + e ::; O 

As.2,1 > O:::} g
3 

= - As.2,1 + € ::; O 

(5 .12a) 

(5 .12b) 

(5 .12c) 

where A i,j,k denotes the signed area of the triangle formed by points p eo, p (j), and p (k), and 
e is a small constant that guarantees the original strict inequality. Constraints indicated by 
Eqs. (5 .12a-5.12c) guarantees that the quadrilateral formed by points p CI). pC2), pC7) and p(8) 

is convex, thus collision between walls is completely avoided. 
For the objective function associated to single-frequency sources, the improvement of the 

obtained global minima with respect to the optimized base cases is shown in Fig. 5.35. lt 
is observed that the improvement is small ( < 0.5 dB) for the lowest frequency (20 Hz), but 
it is roughly proportional to the frequency and the available area A max and reaches remark­
ably high gains with respect to the optimized base cases. Unlike single wall barriers (see 
Fig. 5.30), which exhibit an irregular improvement within the considered range of single­
frequency sources, one can always expect that optimization would achieve relevant improve­
ment. 

The optima! designs for single-frequency sources of 20, 26, 44, 50, 74 and 80 Hz are 
shown in Fig. 5.36. Most optima! designs for low and mid frequency sources, i.e. from 
fºP1 = 20 to f 0f'A = 50 Hz, share severa! characteristics with the corresponding optima! 
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Figure 5.35: Insertion loss improvement of optimized double wall barriers with respect to 
optimized base cases for each target frequency fºP1 

single wall barriers (see Fig. 5.3 1). For 20 and 26 Hz sources, walls on the left hand side 
have similar angle and position regardless of A max• and the same happens with the walls on the 
right hand side for 44 and 50 Hz sources. The opposite walls are located at the boundary of 
the design domain, and are approximately 5 meters deep, i.e. 1.1 8.AR for 44 Hz and 1.34.AR for 
50 Hz. Sorne cases seem not to completely follow this description, but this is simply because 
those designs are suboptimal solutions and are not shown. For high frequency sources, there 
are also sorne characteristics similar to the corresponding optimal single wall barriers. The 
depth reached by the walls on the left hand side are around 2 meters, i.e. 0.8.AR for 74 Hz and 
0.86.AR for 80 Hz, and they are thin walls or very thick walls (nearly squared blocks). The 
depth reached by walls on the right hand side are around 2 meters or 4 meters, and they all 
are relatively thin walls. 

Except for a 20 Hz harmonic source, optimized double wall barriers lead to significant 
improvements with respect to optimized single wall barriers. In the following paragraphs, 
we are going to discuss in more detail what is happening physically for optimized designs for 
low (26 Hz), medium (50 Hz) and high (74 Hz) frequency sources. 

Fig. 5.37 shows a comparison between the optimized base case and optimized double 
wall barrier for a single-frequency source of fºP1 = 26 Hz. A modest 1.2 dB improvement 
is achieved by the optimized double wall barrier (J L = 4.4 dB) with respect to the opti­
mized base case (J L = 3.2 dB) at the receiver point. The comparison between diffracted 
displacement fields shows that optimized double wall barrier relies less on reflection, and 
instead transmitted waves carry most of the energy towards the inside of the half-space and 
away from the receiver. The overall effect is a better insertion loss along the receiver side, 
and incidentally less insertion gain along the source side. 

Fig. 5.38 shows insertion loss maps for optimized double wall barriers for fºP1 = 50 
Hz and fºP1 = 74 Hz when the available area is A max = 8 m2. lt is shown individually the 
insertion loss maps for walls on the left and right hand side, and finally the complete double 
wall barrier. The idea is to observe the contribution of each wall, and their combined effect. 
For the case fºP1 = 50 Hz, the wall on the left hand side acts as a deep wall (depth is 1.25.AR), 
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Figure 5.36: Optimal double wall barriers for single-frequency sources 
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Figure 5.37: Comparison between diffracted displacement field and I L color maps of op­
timized base case (top) and optimized double wall barrier (bottom) for fºP1 = 26 Hz and 
Amax = 8 m2 

and the individual insertion loss at the receiver point is 1.31 dB. The wall on the right hand 
side is a highly inclined thick wall that partly reflects incoming waves, but also acts as a 
waveguide taking transmitted waves towards the inside of the soil. The insertion loss of the 
latter wall alone is 6.15 dB at the recei ver point. Sin ce the insertion loss of the dou ble wall 
barrier is 9.65 dB, they nicely work together in a synergic way. For the case ¡opt = 74 Hz, the 
wall on the left hand side is a deep and thick wall (depth is 0.86AR) which is partly reflecting 
incoming waves but also producing inclined transmitted waves away from the source. The 
insertion loss at the receiver point of this wall alone is 6.77 dB. The wall at the right hand side 
is a very deep wall (depth is l.78AR), and the individual insertion loss at the receiver point is 
only 2.7 dB. The complete double wall barrier works by partly reflecting incoming waves on 
the wall on the left hand side, which also produces inclined transmitted waves that are partly 
reflected on the wall on the right hand side. Both walls work in a very productive manner 
producing an insertion loss of 15.9 dB, which is much higher than individual contributions. 

For objective functions related to optimization for broadband sources and for harmonic 
sources within a frequency range the obtained global minima are respectively depicted in Figs. 
5.39 and 5.40 together with their insertion loss spectra. As in the case of single wall barriers, 
optimal designs for broadband sources are very similar to those for high frequency harmonic 
sources, and optimal barriers for harmonic sources within a frequency range are quite similar 
to those of low frequency harmonic sources. In the case of optimizing for broadband sources, 
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Figure 5.38: Comparison between I L color maps of optimized double wall barriers for fºP1 = 
50 Hz (left) and fºP1 = 74 Hz (right) when A max = 8 m2. Top: wall on the left hand side. 
Middle: wall on the right hand side. Bottom: double wall barrier. 
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Figure 5.39: Optimal double wall barriers for broadband sources (fºP1 = [20, 80) Hz) 

o 
6 Amax 

-2 2 -

íii' 
4 

I-4 
4 

:::1, 8 -

::::1 
f;,' 12 -

2 
-6 

o 
-8 

o 20 40 60 80 100 -2.5 o 2.5 
XJ [m] 

.f[Hz] 

Figure 5.40: Optimal double wall barriers for harmonic sources within a frequency range 
(fºP1 = [20, 80) Hz) 

the improvements with respect to the optimized base cases shown in Figs. 5.27 and 5.29) are 
greater than 1 dB, and increase with the available area reaching up to 3 dB for Amax = 12 m2. 

In the case of optimizing for harmonic sources within a frequency range, the improvements 
hardly reach 0.5 dB for all values of Amax . 

5.5.3 Concluding remarks 

In this section, we have examined the possibilities of shape optimization of two wave barrier 
topologies: a single wall barrier, anda double wall barrier. In the former case, we have also 
studied the vertical and centered particular case, which has been taken as the optimized base 
case. Despite the relative simplicity of these topologies, they offer room for improvement 
with respect to the conventional design rules. 

When the depth of the design domain is limited up to approximately one Rayleigh wave­
length, the optimization of the studied barrier topologies does not lead to significant improve­
ments. Once the depth of the design domain is greater than 1.1 AR (f > 26 Hz in our case 
study), relevant room for optimization is observed, especially for double wall barriers . 

For the simplest case of a vertical and centered single wall barrier, it is observed that 
the typical design rule of having a wall depth of AR and width Ama/ AR is far from optimal. 
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Optimized designs fall into one of three types of barriers: a) deep walls, b) fl oors, or c) thick 
wall of nearly unitary aspect ratio. Each one of these may become optimal depending on the 
frequency and the available material. 

For general single wall barriers, it is found little room for optimization in the low fre­
quency range (f > 38 Hz in our case study). For greater frequencies, improvements of 1 to 2 
dB with respect to optimized base cases can be achieved. However, these seem to be irregular 
along the frequency range. 

For double wall barriers, small improvements with respect to optimized base cases are 
found at low frequencies. However, they increases significantly with the frequency and the 
available area (Amax), reaching quite remarkable gains between 2 and 13 dB. 

In the optimization for broadband sources, designs very similar to those of the highest 
frequency are consistently obtained. This conclusion is reasonable because the objective 
function is a simple average of insertion losses within the frequency range. Therefore, for this 
particular objective function, itis appropriate to start with a single-frequency optimization of 
the highest frequency, and then use the results as initial points . 

In the optimization for harmonic sources within a frequency range, designs very similar 
to those of the lowest frequency are obtained. Analogously to the optimization for broadband 
sources, this conclusion should be used to establish better initial points. 
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6.1 lntroduction 

Bucket foundations (or suction caisson foundations) are used as anchors and foundations of 
offshore platforms, and more recently as foundations of offshore wind turbines when suit­
able water depths and soil conditions are encountered [200). Foundations of offshore wind 
turbines experience important horizontal and moment loadings, which are larger for deeper 
waters . Single bucket or monopod foundations are used for wind turbines installed at mod­
erate water depths. When monopod foundations are not enough to carry these loads, three or 
four small buckets can be combined to form what are known as tripod or tetrapod foundations. 
In general, wind turbines with bucket foundations are well suited for water depths between 
20 to 50 meters [201] . 

Despite the experience gained from oil and gas industries, their application to wind tur­
bines face severa! new challenges [200, 202). They must be designed to withstand large hor­
izontal forces and overturning moments, and in addition these are of dynamic nature. These 
loads mainly comes from steady-state operation of the machine (rotor rotation), wind field, 
water current field, water waves, tidal effects, and earthquakes. Furthermore, the installation 
process and the soil conditions of the seabed near the foundation introduce severa! uncertain­
ties. These designs should be able to operate under such conditions for a number of years in 
order to be economically viable. Therefore, it is necessary to advance towards the develop­
ment of rigorous models able to take into account realistic conditions. 

Many aspects of the installation and design of bucket foundations have been studied, and 
the literature is large. A very complete review about bearing capacity and installation was 
published by Foglia and Tosen [203). In the context of dynamics, a recent work of Kourkoulis 
et al. [204) uses a non-linear FEM model to study the behaviour of bucket foundations of 
offshore wind turbines under lateral monotonic, cyclic, and earthquake loading. They give an 
interesting discussion about the interface conditions between soil and foundation. Liingaard 
etal. [41) studied the impedances ofbucketfoundations in elastic soils, including the variation 
of these under changes of geometry and soil properties. The aim of the present chapter is to 
perform a preliminary exploration into the influence of poroelastic soils on the impedances 
of bucket foundations. 

The chapter is organised as follows. Section 6.2 briefly describes the problem and the 
main aspects of the model used to analyse it. In Section 6.3, a comparison between previous 
results and results obtained with the proposed model is made, where soils are considered 
elastic. In Section 6.4, impedances are studied for a range of poroelastic soils . Finally, Section 
6.5 gives sorne final remarks and further research. 

6.2 lmpedances of bucket foundations 

A bucket foundation has two main parts: the lid, which is a stiffened circular steel plate in 
contact with the mudline, and the skirt, which is a cylindrical steel shell buried into the seabed 
soil. Due to the stiffening, the lid can be considered rigid for the present analysis. Therefore, 
the geometry is defined by the bucket diameter D (or radius R ), the skirt length L , and the 
skirt thickness t . 
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Figure 6.1 : Bucket foundation 

The impedances are calculated with respect to the displacements and rotations at the cen­
tre of the rigid lid. In order to obtain them, unitary displacement and rotations are given to 
the lid, and then resultant forces and moments are evaluated. Given that the foundation is 
axisymmetric, the 6 DOF impedance matrix S is composed of 5 different impedances: sway­
ing S HH• vertical S vv, rocking S MM• rocking - swaying coupling S MH• and torsional S77; 

which can be arranged in a dimensionless fashion as follows: 

Fif,,R2 SHH o o o S MH o UifR 

Fj1,R2 o SHH o - S MH o o U2/R 

Ff,,R2 o o S vv o o o U3/R 
(6.1) 

Mif11R3 o - S MH o S MM o o ()) 

MJ1,R3 S MH o o o S MM o B2 
Mf11R3 o o o o o S TT 83 
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In the following, the bucket foundation is considered massless (p = O kg/m3
), with a 

Young's modulus E = 210 GPa, Poisson's ratio v = 1/4 and hysteretic damping ratio~ = 0.0 1 
(E* = E( l + i2~)). The diameter is D = 10 m, and the thickness t = 0.05 m. Because of the 
nature of the DBEM-FEM model, the mass distribution through the soil-structure interface 
is continuous according to the density of the soil despite the structure is considered massless. 

lt is assumed that the bucket is installed in an elastic or poroelastic half-space, with per­
fectly bonded (non-relaxed) interface conditions. Figure 6.1 depicts the layout of the prob­
lem andan example mesh, including the considered coordinate reference system. Symmetry 
properties of the problem are exploited and only a quarter of the domain is discretised. 

The soil region QS<>il has three BE boundaries: the seabed free-surface r free - surfaw the 
soil-skirt interface r ,;oiJ - skirt (a crack-like boundary), and the bucket lid ~ id · The skirt region 
Q skirt is a mesh of degenerated shell FE. The seabed free-surface r;.ree - surface is a permeable 
traction-free boundary, i.e. r = O and tk = O. The bucket lid ~ id has prescribed fluid and solid 
displacements according to the impedance that is being being calculated. Shell FE nodes in 
(x > O, y > O, z = O) and in zx and yz symmetry planes are 6 DOF shell nodes, while 
the restare 5 DOF nodes. By doing so, it is easy to establish the prescribed displacements 
and rotations to the 6 DOF nodes according to the impedance that is being calculated and the 
symmetric/anti-symmetric conditions imposed by the displacement field. Both i-:oil - skirt and 
Q skirt are discretized with conforming meshes of 8-noded quadrilateral elements. Boundaries 
~ id and r free- surface are discretized with 6-noded triangular elements. The size of the elements 
of the foundation and its surroundings is at least of 6 elements per wavelength, while at least 
4 elements per wavelength is used beyond it. 

6.3 lmpedances of bucket foundations in elastic soils 

In order to check the validity of the DBEM-FEM model, a comparison between severa! results 
of Liingaard et al. [4 1) and the present model is done. Figure 6.2 shows impedances (nor­
malized magnitude and angle) for bucket foundations with severa! length to diameter ratios 
LID = { 1/4, 1, 2} . The given elastic soil properties areµ = 1 MPa, v = 1/3 and ~ = 0.025. 
In the present model, it is used a poroelastic soil with the same properties for the solid phase, 
air properties for the fluid phase, and a small porosity </J ~ O. Figure 6.2 demonstrates very 
good agreement between results . Although not shown here for the sake of conciseness, all 
other static and dynarnic results presented in [41) also agree with results obtained by our 
model. 

Liingaard et al. [4 1) give a detailed physical interpretation of the results . In particular, 
the location of anti-resonance and resonance peaks observed in the vertical impedances are 
related to those of an infinite long cylinder under axial excitation. Likewise, the location of 
anti-resonance and resonance peaks observed in the horizontal impedance are related to those 
of an infinite hollow cylinder. 
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Figure 6.2: Comparison between Liingaard et al. [4 1) and the present approach. From 
top to bottom: normalized horizontal, vertical, rocking, and horizontal-rocking coupling 
impedances. 
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6.4 lmpedances of bucket foundations in poroelastic soils 

Elastic soils can be defined by a small set of properties, for example shear modulus µ, Pois­
son's ratio v, density p and a hysteretic damping ratio ~ (µ* = µ( l + i2~)). Hence, fully 
dimensionless studies can be carried out by defining sorne shape factors of the structure, a 
dimensionless frequency a0 with the help of a length of the structure and a wave velocity of 
the soil, and setting the Poisson's ratio and damping ratio of the soil. In the case of poroe­
lastic soils, this task becomes impractical dueto the number of properties involved, and the 
difficulties of knowing if a given set of values of the properties represents a realistic soil or 
not. For these reasons, we have decided to use realistic seabed soils taken from Buchanan 
and Gilbert [205), see Table 6.1. All results are shown using a dimensionless frequency 
a0 = wR!c~, where R is the radius of the bucket, and e~ = y µl(<l>Pr + (1 - </>)Ps) is the 
undrained S-wave velocity. 

Seabed soils taken from Buchanan and Gilbert [205), see Table 6.1 , cover a wide range of 
possible realistic soils, from gravels, sands, silts, to clays. These soils are denoted as "sb l " to 
"sb5" in the following tables and graphs. Three length to diameter ratios LID = { 1/4, 1, 2} 
are studied. Table 6.2 shows the dimensionless quasi-static stiffnesses for all cases, where 
they are calculated for a small dimensionless frequency a0 = 10-6. Nondimensionalization 
of impedances is performed using the shear modulus µ of the soil and the radius R of the 
bucket. Figures 6.3 to 6.5 show the impedances for all cases, where in the low-frequency 
range (a0 = [10- 6, 1)) only their magnitudes are analysed, andina broader frequency range 
(a0 = [O, 6)) also their angles are shown. Taking into account the definition of the dimension­
less frequency a0, the low-frequency range corresponds approximately to frequencies below 
1 - 6 Hz depending on the seabed soil. Also, the broader frequency range corresponds ap­
proximately to frequencies between 1 - 6 Hz and 40 Hz depending on the seabed soil. 

Dimensionless quasi-static stiffnesses are similar in magnitude to those obtained by Li­
ingaard et al [4 1) for elastic soils, considering the seabed as a drained elastic soil. In fact, 
Table 6.2 includes the results using an elastic solid with the drained conditions of the porous 
medium, and the discrepancy is small. Differences are dueto a not sufficiently small dimen­
sionless frequency for the calculation of the quasi-static stiffness. 

As can be seen in the left hand side graphs of Figures 6.3 to 6.5, impedance functions are 
almost constant and approximately equal to the quasi-static value in the low-frequency range. 
This is characteristic of any elastic soil, which is even more smooth. In the case of poroelastic 
soils, the smaller length to diameter ratio the less regular behaviour at low-frequencies . In 
the case of buckets with LID = 1/4, it is very noticeable the variation of impedances when 
a0 ~ O. The effect is dueto the permeability of the porous medium, the smaller permeability 
the more pronounced variation. lt is more relevant for buckets with smaller length to diameter 
ratios beca use of the relevance of the compressional interaction of the bucket lid with respect 
to the total impedance. 

In Figure 6.4, results of the corresponding undrained elastic soils are included, and they 
are normalized with respect to the quasi-static stiffnesses of the correspoding porous media. 
Along the low-frequency range (except when a0 ~ O), itis quite clear that neither the drained 
nor the undrained elastic soil is able to reproduce the real poroelastic behaviour. 

The right hand side and central graphs of Figures 6.3 to 6.5 show impedance functions 
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Figure 6.5: Impedances of bucket foundations with LID 2 in poroelastic soils. From 
top to bottom: horizontal, vertical, rocking, and horizontal-rocking coupling impedances 
normalized with respect to the corresponding quasi-static stiffness. 
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Coarse 
Coarse Fine Silty Silty Property, symbol and units sand and 

fine grave) sand sand clay sand 

(sbl) (sb2) (sb3) (sb4) (sbS) 
Frame shear modulus Re(µ*) [MPa] 12.50 74.00 7.12 0.79 41 .00 
Frame shear modulus Im (µ*) [MPa] 4.50 4.70 0.23 0.03 7.90 
Frame bulk modulus Re ( K*) [MPa] 27.10 52.00 9.49 3.67 29.00 
Frame bulk modulus lm ( K*) [MPa] 0.90 0.74 0.30 0.12 1.30 
Poisson's ratio v [-] 0.30 0.02 0.20 0.40 0.02 
Porosity </J [-] 0.30 0.38 0.43 0.68 0.65 
Fluid bulk modulus Kf [GPa] 2.38 2.40 2.39 2.38 2.40 
Biot's coupling paramater Q [GPa] 1.666 1.488 1.362 0.762 0.840 
Biot's coupling paramater R [GPa] 0.714 0.912 1.028 1.618 1.560 
Fluid density Pt [kg/1113] 1000 1000 1000 1000 1000 
Solid density Ps [kg/rn3] 2680 2710 2670 2680 2670 
Tortuosity a (- ] 1.25 1.25 1.25 3.00 3.00 
Additional apparent den. Pa [kg/rn3] 75 95 107.5 1360 1300 
Fluid viscosity r¡ [rnPa · s] 1.01 1.01 1.01 1.01 1.01 
Permeability K (1112) 2.6 . 10-10 7.5 · 10- 11 3.1 . 10-14 5.2. 10-14 6.3 . 10-15 

Hydraulic conductivity k [mis] 2.5 · 10-3 7 .3 · 10-4 3.0. 10-7 5.1 · 10-7 6.2 · 10-8 

Disipation constant b [N · s/1114) 3.52 · 105 1.95 · 106 5.99 · 109 8.98 · 109 6.74 · 1010 

Undrained Poisson's ratio v" [- ] 0.4992153 0.4942119 0.4993609 0.4998878 0.4945113 
Bulk density p (kg/1113] 2176 2060 1952 1538 1585 
Undrained S-wave velocity e~ [rn/s] 75.8 189.5 60.4 22.6 160.9 

Table 6.1: Properties of seabed soils taken from Buchanan [205). Top: poroelastic medium. 
Bottom: undrained solid. 

for a broader frequency range (a0 = [O, 6]). By comparing these graphs and those obtained 
by Liingaard et al. [41) for elastic soils, the same qualitative behaviour is observed. For 
small length to diameter ratios, results tend to the solution of a disc foundation, while for 
larger ratios results tend to the solution of an infinite hollow cylinder. As shown in Figure 
6.4, the behaviour is not only qualitatively similar, but also numerically if the correspond­
ing undrained elastic soil is used. The difference between the real poroelastic soil and the 
undrained elastic soil is very small. 

Figure 6.6 shows the absolute values of impedances for bucket foundations of different 
LID ratios buried in "fine sand" (sb3 in Table 6.1) with differenthydraulic conductivities. The 
bucket has the same geometry and properties as previous results, except that the considered 
LID ratios now range from O (bucket without skirt), 0.5, 1 and 2. According to Lin et al. [ 195), 
for a fine sand and within the area w here Biot' s theory is applicable, the hydraulic conductivity 
k can range between 10- 2 and 10-6 mis. Therefore, five different hydraulic conductivities 
ranging from drained, partially drained and undrained soils are considered: k ~ oo (drained 
elastic soil), k = 10- 2, k = 10-4 , k = 10- 6, and k ~ O (undrained elastic soil) mis. The 
frequency range and scaling shown in Figure 6.6 has been chosen so that the transition from 
drained to undrained conditions can be clearly seen for each impedance and bucket geometry. 

lt is well known that for a0 ~ O the response using a poroelastic model with finite hy-
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Quasi-static stiffness Seabed L_I .!:. = 1 !::. =2 
(porous: a0 = 10-6) soil 75 - 4 D D 

Porous Porous Drained Porous 
sbl 7.774 13.073 13.116 (0.3%) 16.137 
sb2 6.186 8.900 8.892(0.1 %) 9.385 

KHH sb3 7.445 13.198 12.175 (7.8%) 17.754 
sb4 8.065 14.516 14.069 (3.1%) 21.614 
sb5 7.216 11.525 9.956 (13.6%) 12.723 
sbl 7.557 11.288 11.336 (0.4%) 15.502 
sb2 5.822 8.954 8.946 (0.1 % ) 11.952 

Kvv sb3 7.483 11 .662 10.124 (13.2%) 16.013 
sb4 8.403 12.321 11.58 (6.0%) 16.731 
sb5 7.904 11.849 9.283 (21.7%) 15.407 
sbl 8.739 47.368 47.48 (0.2%) 131.429 
sb2 7 .066 28.100 28.096 (0.0%) 44.571 

KMM sb3 8.003 46.973 46.246 (1.5%) 153.538 
sb4 8.993 53.106 52.728 (0.7%) 217.156 
sb5 7.581 35.139 34.53 (1.7%) 68.016 
sbl - 2.778 - 15.539 - 15.572 (0.2%) - 30.881 
sb2 - 2.464 - 8.816 - 8.806 (0.1 %) - 10.950 

KMH sb3 - 2.729 - 16.036 - 15.307 (4.5%) - 37.250 
sb4 - 2.700 - 17.923 - 17.561 (2.0%) - 51.545 
sb5 - 2.550 - 11.751 - 11.112 (5.4%) - 17.182 

Table 6.2: Quasi-static stiffnesses of the studied bucket foundations and seabed soils 

draulic conductivity k tends to a drained elastic soil, while for a0 ~ oo the response of 
a poroelastic model tends to the undrained elastic soil. However, the difference between 
impedances under drained and undrained conditions, and the location where the transition 
takes place in the frequency domain, depends on severa! factors . 

The most important factor influencing the diff erence between impedances under drained 
and undrained conditions is the presence of P waves. Due to the bucket geometry and the 
absence of P waves in the torsional mode, the torsional impedance shown in Figure 6.6 does 
not depend on hydraulic conducti vity, and any poroelastic soil behaves as the undrained elastic 
one. All other impedances imply P waves and hence are sensitive to hydraulic conductivity, 
although their origin and relevance are different. In the vertical mode, P waves are mostly 
originated from the lid, and thus, for a given diameter D, the difference between drained and 
undrained impedances does not depend on the length L nor LID ratio. However, in relative 
terms, this difference is more important for small L/ D ratios because the impedance values 
are smaller. In the swaying mode, P waves are mainly originated from the skirt, and then the 
difference between drained and undrained impedances does depend on both diameter D and 
length L. In relative terms, however, these diff erences are equally significant for diff erent LID 
ratios because they increase as the impedance values increase. The rocking mode produces 
P waves from the lid and the bucket, and hence both diameter D and length L influence 
the difference between drained and undrained impedances. The difference of impedances 
measured in relative terms is considerable for all LID ratios studied, being more important 
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for smaller LID ratios. Rocking-swaying impedances have significant differences between 
completely drained and undrained impedances. They are approximately constant in relative 
terms for all LID ratios, except for the case LID = O of a bucket without skirt ( circular 
footing). The influence of this coupling impedance in the impedance matrix is negligible 
for very small LID ratios because its magnitude is much smaller than swaying and rocking 
impedances, but as LID increases the coupling impedance becomes appreciable. 

For all impedances except the rocking impedance, soils are virtually behaving in undrained 
conditions for dimensionless frequencies a0 > 1, i.e. f > 2 H z for the considered soil. For 
the rocking impedance, soils start behaving in undrained conditions at higher frequencies, 
especially for small L/ D ratios. As expected, the drained to undrained transition frequency 
decreases as the hydraulic conductivity decreases. 

This type of foundations is now very important because of its potential as foundations of 
Offshore Wind Turbines. The range of frequencies of interest depends on the type of analysis, 
the site environmental conditions and the wind turbine [206). For dynamic loading analysis, 
one could take a range from about 0.05 Hz to a few Hertz typically. This corresponds to 
dimensionless frequencies greater than a0 = 10-2 for the soil properties used in this exam­
ple. lt can be seen in Figure 6.6 that, for hydraulic conductivities greater than 10-4 mis, the 
drained/undrained transition takes place within the range of frequencies of interest. The im­
portance of this fact depends on multiple factors: soil properties, foundation design, wind 
turbine, etc.; but it should certainly be taken into account. 

6.5 Final remarks and further research 

In this chapter, a preliminary study on impedances of bucket foundations in poroelastic soils 
has been carried out. The main conclusion is finding that impedances of bucket foundations 
depends significantly on the hydraulic conductivity. The relevance of this dependence vary 
from impedance to impedance, and it also depends on the length to diameter ratio. 

As a preliminary study, there are several aspects missing, and they are going to be con­
sidered in future research. The main aspects to be developed are: 

• Perform a parametric study for a wider set of soil properties. One of the main challenges 
when considering such a study for poroelastic soils is choosing the sets of properties 
to be analysed. In this sense, three possibilities might be explored. The first one could 
be using an extensive set of realistic soils collected from the literature. The second 
possibility could be using an approximate model with a reduced set of properties, in the 
same spirit of the model for water-saturated sandstones used by Lin, Lee and Trifunac 
[195) , which has actually been used in Chapter 5. The third choice could be using 
judiciosly selected sets of constant and variable properties . 

• Study the influence of the water layer above the mudline and the interface condition 
between soil and water. Due to the nature of the resulting problem, an appropriate 
absorbing boundary condition must be included in the water layer. 

• Study of the influence of the contact conditions between bucket and soil. 
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• Study of interaction factors for seismic SSI response. 

• Study the relevance of the previous aspects on the response of Offshore Wind Turbines 
founded on bucket foundations (monobucket or multiple bucket foundations). 
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7.1 Summary and conclusions 

This dissertation proposes a simplified fluid- and soil-structure dynamic model for the anal­
ysis of immersed or buried buried shell structures [28- 30), which is tackled in Chapter 2. lt 
makes use of the Dual Boundary Element Method (DBEM), which is more commonly used 
for crack analysis, in order to produce an approximate but natural and direct coupling between 
the shell structure and its surroundings. 

The shell structure is modelled with shell finite elements based on the degeneration from 
the solid. The shear and membrane locking intrinsic of this type of elements is avoided by 
using the Mixed Interpolation of Tensorial Components (MITC) proposed by Bathe [93), 
which is also free from spurious modes. 

The resulting DBEM-FEM model has been developed for two- and three-dimensional 
problems, where curved shell structures can be coupled to ideal fluid, elastic solid or Biot's 
poroelastic medium. lthas been implemented in acode based on previous BEM- BEM multi­
region codes of the Research Team, and hence it essentially enriches the previous capabilities. 

The main difficulty of the model lies in the development of one of the ingredients of 
the Dual BEM, the Hypersingular Boundary Integral Equation. In order to do so, we have 
used the regularisation techniques proposed by Saéz, Gallego, Domínguez and Ariza [12, 
60- 62, 207), which had been used for potential and elastic problems. We have extended it 
to the Biot's poroelastic medium, for which Singular Boundary Integral Equations had been 
proposed by Domínguez, Maeso and Aznárez [14, 15, 70, 74]. 

We have also explored the extension of the model to gradient-based shape optimisation. 
lts completion is still underway, but the already explored branches are collected in Chapter 
3. lts contents are limited to two-dimensional formulations, and structural finite elements 
have not been yet considered. The approach for the BEM for geometric sensitivity is based 
on previous works of Gallego, Suárez and Rus [103- 107), and it is used in a BEM- BEM 
multi-region setting. 

The implemented BEM formulations lead to the numerical evaluation of a greater num­
ber, more difficult and costlier integrals when compared to the conventional BEM. Therefore, 
Chapter 4 collects a recapitulation of the subject, and shows sorne advances regarding eco­
nomical and robust numerical integration algorithms. 

The proposed models have extended the range of problems that the Research Team is able 
to tackle. These have been applied to a number of problems in this thesis: 

• Two-dimensiorzal flexible noise barriers. Usually, noise barriers are considered as rigid 
obstacles. In this study, the effect of considering their flexibility is taken into account. 
The main conclusion is that insertion losses predicted by rigid models may be too op­
timistic, specially at low frequencies. 

• Two-dimensiorzal wave barriers in poroelastic soils. In this study, the amplitude reduc­
tion ratio (or insertion loss) of three different wave barriers buried in poroelastic soils 
is studied. 

• Three-dimensional curved wave barriers in poroelastic soils. This problem is used 
to study the range of applicability of the DBEM-FEM model by observing near- and 
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far-field variables for a number of wave barriers of different thicknesses . The DBEM­
FEM model is compared against a multi-region BEM model. The main conclusion 
is that the DBEM-FEM model have excellent agreement for slendernesses (length to 
thickness ratio) beyond 1 O, but it also shows acceptable results for slendernesses of 5 
and coarse meshes. 

• Optimisation of two-dimensional wave barriers in elastic soils. In this research, the 
optimisation of insertion losses of single and double wall barriers is performed. Three 
different objective functions corresponding to three different types of sources are con­
sidered: harmonic single frequency source, broadband source and harmonic sources 
within a frequency range. In this problem, we have found that the resulting optimal 
designs greatly improves conventional design rules, especially when the relevant part 
of the frequency spectrum is relatively high with respect to the depth of the design do­
main. In this sense, for the same amount of material, the dou ble wall barrier outperform 
the single wall barrier. 

• Impedances of bucket foundations in poroelastic soils. Since bucket foundations are 
installed on the seabed, we have considered the calculation of impedances using a more 
realistic Biot' s soil than in previous works . In this sense, we have u sed a set of realistic 
seabeds taken from the literature, an for one of them we have varied the hydraulic 
conductivity. lt has been found that impedances significantly depends on the hydraulic 
conductivity, except the torsional one. 

For these problems, more specific conclusions are given in their corresponding chapters. 

7.2 Future research directions 

The proposed DBEM-FEM model has been developed for a wide range of situations: two­
and three-dimensional problems, ideal fluid, elastic solid or Biot's poroelastic medium; and 
integrated in acode based on a previous multi-region BEM code of the Research Team. Like­
wise. the BEM for shape sensitivity analysis, only for two-dimensional problems, has also 
been integrated in that code. This means that the number of potential problems that may be 
considered from the present Ph. D. Thesis is large. At the same time, the experience gained 
from the developments done in this work put us in a better position to be able to propose new 
models and to face new problems. Sorne of the possible future research directions are: 

• Short-term 

212 

- Bucket foundations. The proposed DBEM-FEM model can directly be used to 
tackle a number of problems regarding bucket foundations and their application 
to offshore wind turbines: 

* Impedances. Since for an appropriate design of offshore turbines the first and 
second natural frequencies should avoid the most energetic part of wave and 
wind loading spectrum [206), it is very important to accurately estimate the 
foundation impedances. For elastic soils, there are several works proposing 
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formulas for their calculation [208,209]. Our results suggest that there may be 
relevant differences between impedances under drained and undrained con­
ditions which might affect the first natural frequency. Therefore, it is impor­
tant to study and predict this transition frequency, or at least to know in what 
conditions this is important. 

* Kinematic interactionfactors. Currentrecommendations suggestperforming 
seismic analyses of the wind turbine. Therefore, it is of interest to study 
the kinematic interaction factors for a number of geometrical and material 
properties. 

* Group effect. Foundations of off shore wind turbines come in two fashions: 
monobucket (a large bucket), or supporting a three orfour leggedjacket (three 
or four small buckets). For the latter, buckets operate with a push-pull mech­
anism, and thus mainly vertical impedances are relevant. In this situation, 
for design purposes it is relevant to know if fully coupled direct models are 
required, or if simplified sub-structuring procedures may be used. 

* Infiuence of water depth and contact conditions. Incorpora te absorbing bound­
ary elements for a three-dimensional water layer, and study the influence of 
water depth and contact conditions between the seabed and water. 

- lnclined seismic waves in multi-layered poroelastic soils. Formulation and imple­
mentation of more general incident field for the poroelastic half-space [ 195,210). 
The aim is to further study the Kinematic Interaction Factors of buckets founda­
tions and the insertion losses of wave barriers in multi-layered half-spaces. 

- Poroelastic cracks. Given that in this work we have developed the Dual BEM 
for the Biot's poroelastic medium, we can use it for the study of Stress Intensity 
Factors (SIFs) of poroelastic cracks. In fact, after developing the two-dimensional 
version, we performed a comparison against already published analytical results 
[211 ,212), with no success. We suspect that the relatively small but significant 
discrepancies are dueto the SIF definition or the stress incident field used. 

• Medium-term 

- Optimisation of wave barriers. The optimisation of wave barriers performed in the 
present work is somewhat limited by the problem configuration considered. A fur­
ther optimisation study should include a more general excitation, like a Rayleigh 
incident field, and also considera more general receptor area. Also, soil stratifi ­
cation may play a relevant role and hence it should also be studied. 

- Pile-soil mixed dimensional model for porous medium. Given that in the present 
work the HBIE has been studied, it may be used together in sorne combination 
with the SBIE in order to propose a BEM-FEM model like that of Padrón et 
al. [1 8) but for poroelastic soils . 

- Public software release. We would like to make a public release of software de­
veloped in the course of this work. This could be in form of open source libraries 
or programs, or directly executables. 
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FUND. SOL. ANO ITS DER. FOR BIOT'S POROELASTICITY r~: A 

Let x and n be the position and unit normal vectors of the observation point, while xi and ni 
are those of the collocation point. The distance vector between both points is r = x - xi, its 
norm is r = lr l, and the distance derivativeis denoted as r,j = arlaxj . The partial derivatives 
of the distance with respect to the unit normal vectors are arlan= rjnj and arlan¡ = - rjn~ . 
For the sake of brevity, the wavenumbers are rewritten as kj = kPj and k3 = ks, and the 
following frequency-dependent parameters are defined: 

1 A k2k2 
J = -- z = P 12 a . = k~ - µ k2 f3 . = µ k~ - _1 _2 

P 22ú)2' P22' J J A+ 2µ 3, J A + 2µ J IS (A.l) 

The matrices 1~ and 1~ appearing respectively in SBIE and HBIE are: 

. [Jº] . [lº] 1~ = o 8,k ' 1~ = o 8,k (A.2) 

A.1 Two-dimensional problem 

The complex function Kn (z) is the modified Bessel function of the second kind, order n and 
complex argument z. 

A.1.1 Singular Boundary Integral Equation 

The fundamental solution matrix U" is: 

U" = [ -r; u~k ] 
-r,o u,k 

where: 

" i e uok = -- r k, 2:n ' 

" i e r10 = -- r 1 2:nJ ' 

u,"k = _l_ (l/fó¡k - xr ,r k) 
2:nµ ' ' 

(A.3) 

(A.4) 

(A.5) 

(A.7) 

l/f = Ko (ik3r) +-. 1- Ki(ik3r)- 2 

1 
2 [/3,-. 

1
- K 1 (ik 1r)-/32-. 

1
- K 1 (ikir) ] (A.8) 

1k3r k
1 

- k2 1k1r 1k2r 

X= K2 (ik3r) - 2 l 2 [/3,K2 (ik 1r) - /32K2 (ik2r) ] 
k, - k2 
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A 1 FUND. SOL. ANO ITS DER. FOR BIOT'S POROELASTICITY 
"= ' 

The fundamental solution matrix T" is: 

where: 

U* JX'" 1 w; ar 
00 + . n . = - o-

n J J 2K an 

w; = (z0 -Jªr¡) o ar 

Toi = - 2µ (ª8 - !0) 
ar r 

(
a0 1 ) 1 Q T02 = - A. - + -8 - 2µ - 8+ -r¡ 
ar r r R 

(
a0 1 ) w¡ = Z X - µ - - -8 
ar r 

1 it; = - Zt¡1 - µ - 8 
r 

T= -2(ªx -~x) 
I ar r 

(A.9) 

(A.10) 

(A. 11) 

(A. 12) 

(A.13) 

(A. 14) 

(A. 15) 

(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 

(A.20) 

(A.21) 
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FUND. SOL. ANO ITS DER. FOR BIOT'S POROELASTICITY r~: A 

A.1.2 Hypersingular Boundary Integral Equation 

The fundamental solution matrix D" is: 

where: 

d " = _ l_w;~ 
00 21rJ o ani 

d " 1 ( ,.,.. ar ,.,.. ¡) 
10 = - - 1 01 r ,-. + 1 02n, 

21rJ · an• 

d * 1 [r ar T ( ar <;: ¡ ) T ¡] lk = - 1r ,r k - . - 2 - - . u,k +r ,nk - 3r kn1 
2,r · · an• an• · · 

The fundamental solution matrix S* is: 

where: 

z 2 
( ae 1 ) ( a2r, 1 ar,) Q1 =-,r - 2Z ---8 +J ----

µ ar r ar2 r ar 
z 2 1 1 ar, 

Q =-i¡r+2Z-8 - J--
2 µ r r ar 

S 01 = -2z (ªx -~x)-2µ [-ª28 
+ l (ªª -!e)] 

ar r ar2 r ar r 

S 02 = z [~ (ªl/f -ax - .!.x) - ~x] + A [ª28 
+ .!. (ª8 

- !e)] 
µ ar ar r r ar2 r ar r 

+2µ- ---e +- ze - J-1 ( ae 1 ) Q ( ar, ) 
r ar r RJ ar 
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(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.3 1) 

(A.32) 

(A.33) 

(A.34) 
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"= ' 

,, 1 { S ar ar S . ¡ ar S [ ar ¡] } s,o = - - o1 r ,---. + o2n,- - 03 -n,-. + r ,n1.n1. 
~ · ~~· ~ M . 

[ 
a

2 
x 1 ( ax s ) ] S3 = 4 -- + - 5- - - X ar2 r ar r 

A.2 Three-dimensional problem 

A.2.1 Singular Boundary Integral Equation 

The fundamental solution matrix U* is: 

U* = [ -r; u2k ] 
-r,o u,k 

where: 

* 1 
roo = 4.n r¡ 

_ 1 [ al - ik1r ª 2 - ik2r] r¡ - -e - -e 
k 2 - k 2 r r 1 2 

(A.35) 

(A.36) 

(A.37) 

(A.39) 

(A.40) 

(A.4 1) 

(A.42) 

(A.43) 

(A.44) 
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" 1 8 uok = - - r k 4.n ' 

Q/R - Z 1 [(l ik1) -ik r (1 ik2) -ik r] 8= -+- e 1 - -+- e 2 

A+ 2µ k2 - k2 r2 r r2 r 
1 2 

" 1 8 r10 = - r 1 4.nJ ' 

where: 

U " JX'" 1 w; ar oo + · nJ. = - o-
n ' 4.n an 

ar, 
Wo = Z8 - J ar 

U",o = _l_ [Wir /r + Win,] 
n 4.nµ · an 

(
a0 1 ) Wi = Z X - µ - - - 8 
ar r 
1 Uii = - Zl/f - µ - 8 
r 
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(A.45) 

(A.46) 

(A.47) 

(A.48) 

(A.49) 

(A.50) 

(A.5 1) 

(A.52) 

(A.53) 

(A.54) 

(A.55) 

(A.56) 

(A.57) 

(A.58) 

(A.59) 
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A 1 FUND. SOL. ANO ITS DER. FOR BIOT'S POROELASTICITY 
"= ' 

A.2.2 Hypersingular Boundary Integral Equation 

The fundamental solution matrix D* is: 

where: 

d* = - 1-Wr~ 
oo 47CJ o iJni 

d* 1 ( w. Or UT j ) Ok = - - ,rk-· + rv2nk 
47Cµ · on• 

d* 1 ( T, or T, ¡) ,o = 41CJ - 01 r ,1 iJni + o2n, 

d* 1 [r ar ,.,... ( <;: ar . ¡ ) T ¡] lk = - ,r ,r k- · - .1 2 - u,k - · + r ,nk - 3r knl 
47C · · on• on• · · 

The fundamental solution matrix S* is: 

where: 

* 1 [Q or or Q ( i)] 
Soo = 47C I on iJni + 2 Il . Il 

z
2 

( a0 1 ) ( a2r, 1 ar,) Q1 = -,r - 2Z - - -8 + J - - --
µ or r or2 r or 

z2 1 1 ar, Q2 = - i¡r+2Z- 8 - J--
µ r r or 

so, = - 2z (ªx -~x) -2µ [-ª20 + i (ª8 _ !0)] 
or r or2 r or r 

(A.60) 

(A.6 1) 

(A.62) 

(A.63) 

(A.64) 

(A.65) 

(A.66) 

(A.67) 

(A.68) 

(A.69) 

(A.70) 

(A.7 1) 

(A.72) 

(A.73) 

(A.74) 
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S 02 = Q ( z e - ar,) + z [~ ( a1¡1 - ax - ~ x) - ~ x] + 
R J ar µ ar ar r r 

;. - + - - - -e + 2µ- - - -e [ a
2e 2 ( ae 1 ) ] 1 ( ae 1 ) 

ar2 r ar r r ar r (A.75) 

(A.76) 

,, 1 { S . ar ar S ¡ ar S [ . ar ( ¡)] } (A 77) s,o = - - o1 r ,---. + o2n,- - 03 - n,- . + r ' n . n . 
4.n ' an an• an an• ' 

(A.78) 

(A.79) 

(A.80) 

[ a
2 
x 1 ( ax s )] S 3 = 4 - - + - 5- - -x ar2 r ar r (A.8 1) 

(A.82) 

(A.83) 
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DECOMPOSITION OF K N(Z) AND E2 FUNCTIONS r~: 8 

B.1 Modified Bessel functions of the second kind 

Modified Bessel functions of the second kind Ko, K 1 y K2 appear in two-dimensional funda­
mental solutions, and they can be decomposed by using the limiting form for small arguments 
z ~ O [213) as: 

z R K0 (z) = - ln 2 - y+ K0 (z) 

K 1 (z) = .! + ~ (1n ~+y - .!) + K ~ (z) 
z 2 2 2 

(B.l) 

2 1 z
2 

( Z 3 ) R 
K2 (z) = z2 - 2 - 8 ln 2 + Y - 4 + ~ (z) 

where K: (z) = (!J (z11+21n z) . Argument z has the general form of zm = ik
111
r, and thus, 

when substituting decomposed K11 in the fundamental solution components, it is possible to 
decomposed these in terms of order <!J [r P( ln r )q] with p 2: -2 and q = O, l. Note that this 
decomposition differs from that proposed in Domínguez [6] for K2 (z), in order to handle 
more appropriately two-dimensional hypersingular formulations. 

B.2 Exponential function 

Three-dimensional fundamental solutions are composed by a linear combination of terms of 
the type: 

1 'k 
f (r ) = -e- ¡ m' 

mn rll (B .2) 

where k
111 

is the wavenumber m, in general a complex number, n EN, and r = lx - x;I is the 
distance between observation and collocation points. Each wavenumber and coefficient of the 
linear combination is constant for a given frequency and properties. Therefore, for a given 
problem and frequency of analysis, these terms only depends on the distan ce r . When r ~ o+, 
then e - ikmr ~ 1 r - n ~ +oo and f (r ) ~ +oo When r ~ +oo and lm(k ) < O then e - ikmr 

' ' mn · m - ' 
is oscillating but evanescence, r - n ~ o+, and f

1111
¡(r ) ~ O. For small k

111
r , it is necessary 

to segregate the different parts of the exponential function. This admits the following power 
series expansion: 

k=oo k 

ez = L., ~ 
k=O k ! 

where if we define the residue of order l as: 

k=oo k 

E1(z) = L ~ 
k=I k ! 

the / first terms of the expansion can be segregated: 

z2 
ez = 1 + z + 2 + ... + E¡(z) 
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8 1 DECOMPOSITION OF K N(Z) ANO E2 FUNCTIONS 
"= ' 

Then, each term f
111

n(r) can be segregated in severa! terms of different degrees of singularity 
@(,.Í) with respect to r: 

1 . 1 (-ik
111

)'1- I 1 (-ik,,)n 1 
f 111n(r) = - - 1k111 -

1 
+ ... + - + + - En+i(Z) 

rn rn- (n - l ) ! r n! rn 

= @(r- n) + ... + @(rº) + @(r 1) (B.6) 
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VECTOR IDENTITIES USED IN THE REGULARISATION PROCESS 2'~ C 

The idea of regularising singular integrals in the context of the Boundary Element Method 
by using a form of the Stokes' theorem can be traced back to the seminal work of Cruse [214, 
Appendix 2) almost 50 years ago. In fact, the identity shown by Equation (C. l ) is already 
present in that paper. In all these years, many authors have been using the idea in one way 
or another. Although a little bit old, a review of the subject was presented by Tanaka, Sladek 
and Sladek [63) back in 1994. 

We base our work for three-dimensional formulations in the developments done by Domínguez, 
Ariza and Gallego [6 1), who presented an elegant and explicit regularisation process. They 
clearly demonstrate the cancellation of all unbounded terms at the Boundary Integral Equa-
tion level. One of the difficulties is finding the appropriate identities that allow using the 
Stokes' theorem to turn strongly singular and hypersingular surface integrals into weakly sin­
gular surface integrals and nearly singular line integrals. The identities used in the present 
work are: 

nk 3r,k iJr ( r X ek ) -=--+ Vx -- · n 
r 3 r 3 dn r 3 

r/,kr,j ( n · ni) 
r 2 

(C.l ) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

where r = x - xi is the distance vector between observation and collocation point, r 
lr l, r k = iJrliJxk, n is the unit normal at the observation point, ni is the unit normal at the 
collocation point, e j is the unit vector of the Cartesian axis j, 81k is the Kronecker delta 
and e1kj is the Levi-Civita symbol. Equations (C.1-C.4) are equal to those shown in [61, 
62). However, Equations (C.5) and (C.6) differ from respectively Equations (B 17) and (B20) 
because it seems that they contain sorne errata. In the former case, it seems that sorne indices 
are misplaced. In the latter case, it lacks two terms. In the following, we demonstrate these 
identities . 
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e VECTOR IDENTITIES USED IN THE REGULARISATION PROCESS 

Proof of Equation (C.5) Using tensor notation, the vector field in the rotational term is: 

(C.7) 

Applying the rotational: 

r X e k i) r 1 ( r 1 ) 
V X --3 - = €ijn;;--€111m3 ómk = €ijn€nlm 3 . ómk 

r uxj r r ,1 

(C.8) 

where the derivative is: 

(!j_) = o,k - 3r/,j 
r 3 ,j r 3 

(C.9) 

which results in: 

r X ek ó¡k - 3r/,j 
V X --3 - = €ijn€111m0mk 3 

r r r 3 r 3 
(C.10) 

after applying sorne properties of the Levi-Civita symbol and the Kronecker delta. Finally, 
doing the dot product by the unit normal, n on the left and n¡ on the right: 

(
V X r X ek) . n = Ó¡kni - 3r,kr,ini = nk - 3r,k ar 

r 3 r 3 r 3 r 3 r 3 iJ n 

which demonstrates the identity shown in Equation (C.5). 

Proof of Equation (C.6) Using tensor notation, the vector field is: 

The rotational of this vector field is: 

where the derivative is: 

( 
r/,j ) = 81qr,j + ojqr,1 _ 3r/Jr,q 

r ~ ~ ~ ,q 

(C. 11) 

(C. 12) 

(C. 13) 

(C. 14) 

(C. 15) 

after applying sorne properties of the Levi-Civita symbol and the Kronecker delta. Lastly, 
doing the dot product by the unit normal, n on the left and nP on the right: 

[ ( ekxni)] i i (º'qrJ ojqr,1 3r,1rf,q ) 
Vx r/,j r · n =(nknq - oqk(n · n )) -;z_-+-;z_-- r2 (C. 16) 

which results in Equation (C.6) once the right hand side is expanded. 
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DECOMPOSITION OF TWO-DIMENSIONAL FUNDAMENTAL SOLUTION ANO 

ITS DERIVATIVES FOR ELASTODYNAMICS [Ji D 

D.1 Fundamental solution 

The elastodynamic fundamental solution and its derivatives were presented in Equations 
(3 .204-3.208). In the present appendix, their main terms U¡, v; , T¡ and R¡ are decomposed 
by using the decomposition of Bessel functions shown in Equation (B. l ). Note that terms V3, 

R 1, R4 and R6 have been omitted for brevity, see Equations (3 .205) and (3 .208). 

(D.1 ) 

(D.2) 

( 2 ) ( 4 ) . 1 k 1 1 1 k 1 2 
V1 = -- - + 1 - + - - + 3k rln r 

2 k 2 r 8 k 2 2 
2 2 

1 { 1 [ ki ( ik1 3) 2 ( ik2 3) l 2 ( ik2 1 ) } + - - - y + In - - - - k y + In - - - + k y + In - - - r (D.3) 
2 4 k 2 2 4 2 2 4 2 2 2 

2 

k 2 
- ik2Kf (ik2r) + ~ .!.~ (ik 1r) - .!.~ (ik2r) 

k 2 r r 

(D.4) 

(D.5) 

Instituto Universitario SIANI 235 



D J1 DECOMPOSITION OF TWO-DIMENSIONAL FUNDAMENTAL ,, 
SOLUTION ANO ITS DERIVATIVES FOR ELASTODYNAMICS 

k2 ( k4) 1 1 1 2 2 1 T3 = - - + - 2k - k - 3- . rln r ¡¿ r 4 1 2 k 2 
2 2 

1 [ 2 ( ik1 1) 2 ( iki 3 ) ki ( ik1 5 )] + - 2k r + In - - - - k r + In - - - - 3 - r + In - - - r 
4 1 2 2 2 2 4 k 2 2 12 

2 

(D.7) 

+ ik1 2~ - 1 Kf (ik 1r) + ~~~ (ik 1r) - ~~ (ik2r) 
( 

k 2 ) k 2 

~ ~r r 

(D.8) 

(D.9) 

(D.10) 

D.2 Free-term b~kJm 

The values of the free-term b;kjm existing in the elastostatic (and elastodynamic) 8SBIE for 
boundary collocation points are presented, see Equation (3 .153). 

B = - 1 
(D.11) 

4n (1 - v) 

bi1111 = 1 sin(01 - 02) [-4(v-l) cos(01 + 02) + cos(301 + 02) + cos(01 + 302)] (D.1 2) 

bi1112 = -1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) - 2v + 1] (D.1 3) 

bi1121 = -1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) - 2v + 3] (D.14) 

bi1122 = -1 sin(01 - 02) [-4(v- l ) cos(01 + 02) + cos(301 + 02) + cos(01 + 302)] (D.1 5) 
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DECOMPOSITION OF TWO-DIMENSIONAL FUNDAMENTAL SOLUTION ANO 

ITS DERIVATIVES FOR ELASTODYNAMICS e~· D 

bi1211 = -1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) - 2v + 1] (D.16) 

bi1212 = ! [4v sin(2B1) - sin(401) - 4v sin(2B2) + sin(402)] (D.17) 

bi1221 =-1 sin(01 - 02) [-4(v -l )cos(01 + 02) + cos(301 + 02) + cos(01 + 302)] (D.18) 

bi1222 = 1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) - 2v + 1] (D.19) 

b~ 111 = -1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) + 2v -1] (D.20) 

b~ 112 = -1 sin(01 - 02) [4(v - l )cos(01 + 02) + cos(301 + 02) + cos(01 + 302)] (D.21) 

b~ 121 = ! [ -4v sin(2B1) - sin(401) + 4v s in(2B2) + s in(402)] (D.22) 

b~ 122 = 1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) + 2v -1] (D.23) 

b~211 =-1 sin(01 - 02) [4(v -l)cos(01 + 02) + cos(301 + 02) + cos(01 + 302)] (D.24) 

b~212 = 1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) + 2v - 3] (D.25) 

b~221 = 1 [ cos(2B1) - cos(2B2)] [ cos(2B1) + cos(2B2) + 2v -1] (D.26) 

b~222 = 1 s in(01 - 02) [4(v - 1) cos(01 + 02) + cos(301 + 02) + cos(01 + 302)] (D.27) 
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RAYLEIGH WAVES ON A PERMEABLE FREE-SURFACE ~~: E 

The Rayleigh waves are surface waves that exist when a half-space is in contact with the vac­
uum through its free-surface. For a half-space y =:; O, three different cases can be considered 
at the free-surface y = O: permeable (rijnj = O, r = O), impermeable (rij + r8ij)nj = O, 
(Uj - u}nj = O) or partially permeable. In this work, only the permeable case is considered. 

The potentials for the surface mode are composed by unknown functions R¡ = R ¡(y) and 
a wave propagating in the positive x direction: 

(E.l ) 

Once substituted into the governing equations, a set of four ordinary differential equations 
are obtained. lt can be converted into a fourth order equation in terms of Rt ), anda second 

order equation in terms of R?). The solution of the fourth order equation leads to: 

R(P) - p éRPIY + p éRP2Y 1 - 11 12 (E.2) 

R(P) - p ekRP1Y + p ekRP2Y - D p éRP1Y + D p éRP2Y 2 - 21 22 - 1 11 2 12 

(J.+ 2µ) ktj - o/ (fi11 - Q/ Rfi12) 
D . =~~~~~~~~~~~~-

1 o>2 (fi12 - Q/ Rfi22) 

(E.3) 

where the wavenumbers kRPj are obtained from: 

kRPj = ±V k~ - k~j (E.4) 

being physically meaningful only those with Re(kRP} > O, i.e. those producing evanescent 
displacements when y ~ - oo . The solution of the second order equation leads to: 

R (S) - S ekRsY 
1 - 1 

R(S) - S ekRsY - - pA /pA ekRsY 2 - 2 - 12 22 

where the wavenumber ks is: 

kRs = ±Vk~ - k~ 

being meaningful only that with Re(kRs) > O. Therefore, the potentials are: 

(E.5) 

(E.6) 

(E.7) 

(E.8) 

At this point, displacements and stresses can be written as functions of three amplitudes (P11 , 

P12 and S 1) and the Rayleigh wavenumber kR . Applying the permeable boundary conditions 
rxy = O, r YY = O and r = O to the free-surface at y = O, one obtains the following set of three 
equations: 

[ - 2µikRkRP1]P11 + [ - 2µikRkRP2]P12 + [µ (2k~ - k;) ] s 1 = o 

[2µk~ - (N + QD1) k~1 ]P11 + [2µk~ - (N + QD2) k~]P12 + [2µ ikRkRs] s 1 = o (E.9) 

[ - (Q + RD1) k~1]P11 + [ - (Q + RD2) k~]P12 = O 
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E 1 RAYLEIGH WAVES ON A PERMEABLE FREE-SURFACE 
"= ' 

where N = A + 2µ + Q2 
/ R. After sorne algebraic manipulations using the relationships be­

tween wavenumbers given by Eqs. (2.21), (2.23), (E.4) and (E.7), the characteristic equation 
associated with this homogeneous set of equations can be written in a similar fashion than 
that of the elastic case [47, Eq. (5 .95)): 

(2- r
2

)
2 

- 4~ ( H2y l - G1r 2 - H 1 y l - G2r 2) = O (E.10) 

where: 

ks 
r= -

k ' 
R 

[µl(A + 2µ)] k; - kij 
H . = --------

1 k2 _ k2 
PI P2 

(E.11) 

Eq. (E.10) is arranged in a new way which is more tractable than others previously obtained, 
e.g. [215,216). In fact, all terms are dimensionless, well behaved, and depend only on the 
bulk wavenumbers and Lamé's parameters. lt is direct to verify that this equation collapse 
into the elastic equation; if <j) ~ O, then kp1 ~ O, kP2 ~ k~Jastic, ks ~ k;iastic and (A+2µ)/µ ~ 
(k;lastic /k~astic)2 . 
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Título de la Tesis Doctoral: Modelo acoplado de 
elementos finitos y elementos de contorno para el análisis 

dinámico de estructuras laminares enterradas1 

F.1 Objetivos 

El objetivo principal de la Tesis es la formulación e implementación de un modelo aco­
plado de Elementos Finitos (EF) y Elementos de Contorno (EC) para el análisis dinámico 
de problemas de interacción suelo-estructura que implica a estructuras donde las hipótesis 
laminares son válidas. 

Para llevar a cabo dicha tarea, se requieren dos desarrollos paralelos: a) el Método Dual de 
los Elementos de Contorno, b) elemento finito tipo lámina curva adecuada para los objetivos 
del modelo. El modelo resultante debe ser capaz de llevar a cabo el análisis the problemas de 
propagación de ondas de carácter sísmico en estructuras enterradas de tipo laminar, la res­
puesta dinámica de muros y estructuras de retención, y la caracterización dinámica (impedan­
cias y factores de interacción cinemática) de cimentaciones basadas en estructuras laminares. 
La metodología simplificada podría facilitar la etapa de pre-proceso dado que la geometría 
detallada de la estructura laminar no se require. Asimismo, ello podría conllevar la reducción 
del número de grados de libertad y, por consiguiente, de los recurso de computación. 

En el camino para alcanzar dichos objetivos principales, existe una serie de objetivos 
parciales a considerar: 

• Estudio de las bases teóricas necesarias: elastodinámica y poroelastodinámica lineal, 
elementos de contorno y elementos finitos en problemas dinámicos, así como los mo­
delos y programas desarrollados por el Grupo que servirán de base para la consecución 
del objetivo propuesto. 

• Formulación e implementación de un modelo acoplado EF-EC bidimensional para el 
análisis de estructuras laminares. Se pretende con ello ajustar las posibilidades de la 
estrategia que se propone sobre un problema más sencillo dimensionalmente. 

• Extensión del modelo a problemas tridimensionales. En primera fase, estudio del ele­
mento finito lámina más adecuado a los propósitos del modelo. 

• Desarrollo e implementación de un código de elementos de contorno basado en la 
Formulación Dual del Método. Formulación e implementación del modelo acoplado 
EF-EC para problemas tridimensionales de propagación de ondas en medios fluidos 
y viscoelásticos. Aplicación del modelo desarrollado sobre problemas patrón y vali­
dación de los resultados con los obtenidos de la aplicación del modelo acoplado de 

1En este apéndice se presenta un breve resumen en castellano de la Tesis Doctoral de entre 5 y 20 páginas, 
de acuerdo con la Resolución del Vicerrector de Coordinación y Proyectos Institucionales de la Universidad de 
Las Palmas de Gran Canaria de fecha 1 O de febrero de 2017, relativa a los plazos de registro, depósito y defensa 
de las Tesis Doctorales desarrolladas en los Programas de Doctorado a extinguir, regulados por el Real Decreto 
1393/2007 de 29 de octubre. 
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elementos de contorno preexistente ya mencionado. Esta fase permitirá calibrar el pro­
grama, estudiar su sensibilidad a los parámetros del problema (geometría, frecuencia, 
discretización, etc.) y establecer sus límites de aplicación. 

• Extensión del modelo a la interacción entre láminas y medios de naturaleza poroelástica 
(modelo de Biot, [39)). Implementación y validación con el software disponible 

• Aplicación del modelo desarrollado al estudio de problemas de interacción dinámica de 
interés: difracción de ondas sísmicas por estructuras laminares enterradas ( ello implica 
la obtención de la respuesta de la estructura: desplazamientos, esfuerzos y la influencia 
sobre éstos de las características del suelo o la presencia de estructuras cercanas), el 
cálculo de impedancias de cimentaciones resueltas a base de vasos de succión (muy 
habituales estructuras off-shore), la respuesta sísmica de estructuras/muros de conten­
ción, silos, etcétera, y, muy relacionado con el problema de difracción mencionado al 
principio, la evaluación de la eficacia en el aislamiento de vibraciones (de cualquier 
origen) en determinado emplazamiento, provocado por el enterramiento en cercanías 
de estructuras de estas características. 

• Difusión de los resultados obtenidos en artículos y ponencias en congresos internacio­
nales de primer nivel. 

F.2 Modelo DBEM-FEM 

En este trabajo se propone un modelo dinámico simplificado fluido- y suelo-estructura 
para el análisis de estructuras laminares enterradas o sumergidas [28- 30). Éste hace uso del 
Método Dual de los Elementos de Contorno, o Dual Boundary Element Method (DBEM) 
en inglés, que es más comúnmente usado para el análisis de grietas, pero que este modelo 
permite obtener un acoplamiento aproximado pero natural y directo de la estructura laminar 
y del medio circundante. Véase Figura F. l . 

La estructura laminar se modela con elementos finitos tipo lámina basados en la degene­
ración del sólido tridimensional. El bloqueo de cortante y membrana intrínsecos en este tipo 
de elementos se evita usando la Interpolación Mixta de Componentes Tensoriales, o Mixed 
Interpolation ofTensorial Components (MITC) en inglés, propuesta por Bathe [93), que a su 
vez también carece de modos espúreos. 

El modelo resultante se ha denominado modelo DBEM- FEM, y ha sido desarrollado para 
problemas bidimensional así como tridimensionales, donde estructuras laminares, en general 
curvas, pueden acoplarse con medios fluidos (fluido ideal), elásticos o poroelásticos basados 
en la teoría de Biot. Ello ha sido implementado sobre un código basado en un código BEM 
multidorninio desarrollado previamente por el grupo. Por tanto, este nuevo método enriquece 
las habilidades ya existentes en el código. 

La principal dificultad del modelo se sitúa en el desarrollo de uno de los integredientes del 
DBEM, esto es la Ecuación Integral Hipersingular en el Contorno, o Hypersingular Boundary 
Integral Equation (HBIE) en inglés . Para enfrentarnos a dicha ecuación, hemos hecho uso de 
las técnicas de regularización propuestas por Saéz, Gallego, Domínguez y Ariza [12, 60-
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U,; , ut, -r+, tt" 

EC grieta (cara + ) EC grieta (cara - ) 

EF lámina (superficie media) 

Figura F. l : Vista explosionada del acoplamiento de un elemento de contorno tipo grieta con 
un elemento finito tipo lámina 

62,207), los cuales la aplicaron a problemas de potencial y elásticos. Nosotros la hemos 
extendido para tratar también medios porosos de Biot, cuya formulación singular había sido 
propuesta previamente por Domínguez, Maeso y Aznárez [14, 15, 70, 74]. 

F.3 Sensibilidad geométrica usando el MEC 

Se ha explorado también la extensión del modelo para optimización de forma (geométri­
ca) basada en métodos de gradiente. El alcance de dicha investigación se limita a modelos 
bidimensionales, en donde sólo elementos continuos (no estructurales) han sido tratados. El 
enfoque para el análisis de sensibilidad haciendo uso del BEM se basa en trabajos previos 
de Gallego, Suárez y Rus [103-107) , y son utilizados para la solución de problemas multi­
dominio, como se verá en los siguientes apartados. 

F.4 Problemas bidimensionales estudiados 

F.4.1 Pantallas acústicas flexibles bidimensionales 

Normalmente las pantallas acústicas se consideran rígidas. En este problem se estudia la 
cuál es la relevancia de considerar la verdadera flexibilidad haciendo uso del modelo DBEM­
FEM propuesto. Para ello, se consideran cinco tipos de barrera, todos con la misma altura 
efectiva, pero con diferentes configuraciones en la cabeza de la barrera: barrera simple, ba­
rrera doble, barrera en Y, barrera en U, y barrera en E. Asimismo, se consideran tres tipos de 
materiales con propiedades típicas. La Figura F.2 muestra resultados de pérdida por inserción 
para las configuraciones estudiadas. 
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Figura F.3: Topologías de pantallas consideradas: zanja abierta (izquierda), pantalla o pared 
enterrada (centro), y zanja entibada (derecha). 

h 

lm x 

1 
z' 

Figura F.4: Sección de pared equivalente a una tablestaca 

F.4.2 Pantallas de aislamiento de vibraciones bidimensionales en sue­
los porosos 

En este problema se estudian distintos tipos de pantallas o barreras de aislamiento de vi­
braciones en suelos porosos: zanja abierta, pantalla o pared enterrada, y zanja entibada a base 
de tablestacas; véase Figura F.3. Las secciones de las paredes se consideran en equivalencia 
a tablestacas, véase Figura F.4. 

F.4.3 Optimización geométrica de pantallas de aislamiento de vibra­
ciones 

Se estudia la optimización geométrica de pantallas de aislamiento de vibraciones en suelos 
elásticos homogéneos. Se consideran hasta tres tipos de funciones objetivo dependiendo del 
tipo de fuente: fuente a frecuencia fija, fuente con espectro relevante en un cierto rango de 
frecuencias y fuente armónica cuya frecuencia puede estar entre ciertos valores mínimos 
y máximos de frecuencia. Se considera asimismo una restricción de carácter económico al 
imponer un área (sección) máxima de pantallas. 

La Figura F.5 muestra los dos tipos de pantallas consideradas: pantalla simple, y pantalla 
doble; así como la configuración de fuente y receptor. La Figura F.6 muestra los diseños 
óptimos de barreras dobles para fuentes pulsantes a una única frecuencia fºP1

, y también 
muestra el espectro de pérdidas por inserción en un rango de frecuencias dado. Se observa 
cómo la optimización produce diseños que maximizan la pérdida por inserción a la frecuencia 
de la fuente. 
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Source 

(-7.5,0) 

7' 
(a2 a) 

(a) Pantalla simple 

Receiver 

(7.5,0) 

(b) Pantalla doble 

Figura F.5: Pantallas de aislamiento de vibraciones consideradas en un dominio de diseño de 
5 m x 8 m (en color naranja) 
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Figura F.6: Diseños óptimos de pantallas dobles ante fuentes pulsantes a una frecuencia dada 
f ºP1 para distintas áreas máximas Amax 
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F.5 Problemas tridimensionales estudiados 

F.5.1 Pantalla de aislamiento de vibraciones en suelos porosos 

Este problema consiste en una pantalla de aislamiento de vibraciones curva y tridimen­
sional enterrada en un suelo poroso. La excitación es una onda de Rayleigh, que incide en la 
parte cóncava de la pantalla. El objetivo de este problema es la verificación y estudio del rango 
de aplicabilidad del modelo DBEM-FEM tridimensional. Para ello los resultados the campo 
cercano y lejano obtenidos con dicho modelo se comparan con resultados de un modelo BEM 
multi-región. Se comparan varios espesores de la pantalla, así como varias discretizaciones 
de la misma. 

La Figura F.7 muestra un ejemplo comparando las mallas requeridas para el modelo multi­
región BEM y para el modelo DBEM-FEM. A pesar de la aproximación geométrica y física 
que este modelo produce, los resultados muestran que es posible utilizarlo en programas de 
difracción para estructuras de esbeltez (longitud máxima/ espesor) 5, e incluso utilizando 
mallas gruesas . 

F.5.2 Impedancias de vasos de succión en suelos porosos 

Se estudian las impedancias de vasos de succión de diferentes relaciones de longitud y 
diámetro, así como distintas propiedades del suelo poroso saturado. Mientras que para los 
suelos elásticos el número de propiedades es reducido, para los suelos poroelásticos mode­
lados con la teoría de Biot es necesario definir multitud de propiedades. Por ello, se decidió 
tomar propiedades de lecho marino realistas disponibles en la literatura [205). Asimismo, se 
tomó uno de éstos suelos y se estudió la influencia de la conductividad hidráulica en particu­
lar. 

La Figura F.8 muestra una de las mallas usadas para los cálculos, en donde se pueden 
observar las distintas partes del modelo DBEM-FEM contemplado. En la figura, el dominio 

Suelo - pantalla: EC - EC acoplados 

(a) Ejemplo de malla BEM multi-región 

Suelo - pantalla: EC grieta - EF lámina acoplados 

(b) Ejemplo de malla con modelo DBEM- FEM 

Figura F.7: Pantalla tridimensional curva (las mallas incorporan simetría un medio con res­
pecto al plano xz) 
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~ apa 

r ~uelo-falda 

Figura F.8: Descripción de la malla del vaso de succión instalado (LID = 1) 

n ra,cta correspondiente a la estructura laminar se ha desplazado de su localización real, que 
es coincidente geométricamente con el contorno tipo grieta i:uelo-falda• para visualizar la idea 
principal del modelo DBEM- FEM. En cuanto a resultados, la conclusión principal de este 
estudio ha sido que la conductividad hidráulica influye de manera significativa en las distintas 
impedancias, excepto en la impedancia de torsión. 

F.6 Conclusiones y desarrollos futuros 

En esta Tesis se ha desarrollado un modelo numérico simplificado pero riguroso y ven­
tajoso desde el punto de vista metodológico y computacional para el análisis dinámico de 
estructuras laminares enterradas. Dicho modelo hace uso del Método Dual de Elementos de 
Contorno, lo cual permite un acoplamiento natural y directo entre el suelo y el elemento finito 
tipo lámina. De no utilizar la metodología propuesta, sería necesario crear interfases artifi­
ciales [41). El modelo ha sido usado en problemas de aislamiento de vibraciones así como 
en el cálculo de impedancias de vasos de succión. 

En la misma línea, se ha comenzado ha desarrollar dicho modelo para aplicarlo a pro­
blemas de optimización basados en información de tipo gradiente. Para ello se hace uso del 
Método de Elementos de Contorno para análisis de sensibilidad geométrica. El resultado ob­
tenido en esta línea es un modelo BEM multi-región para su uso en análisis de sensibilidad 
geométrica o de forma. Este modelo ha sido usado para la optimización de pantallas de ais­
lamiento de vibraciones con éxito, resultando en mejoras significativas de las pérdidas por 
inserción con respecto a las reglas de diseño más habituales. 

Dado que el modelo DBEM- FEM ha sido desarrollado para problemas bi- y tridimensio­
nales, para medios tipo fluido ideal, sólido elástico y medio poroelástico de Biot, y además ha 
sido integrado en el código BEM multi-region existente en el grupo, el número de problemas 
abordables por el grupo ha incrementado significativamente. Algunas de las líneas de trabajo 
futuro que se plantean son: 

• Corto plazo 
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- Vasos de succión. El modelo DBEM-FEM puede directamente abordar diversos 
problemas relacionados con vasos de succión y su aplicación a aerogeneradores 
marinos: 

* Impedancias. Dado que para el apropiado diseño de los aerogeneradores ma­
rinos es necesario que los primeros modos estén localizados lejos de las prin­
cipales frecuencias de las excitaciones asociadas al oleaje y al viento [206), 
es importante determinar correctamente las impedancias de la cimentación. 
Dado que los aerogeneradores marinos descansan fundamentalmente en un 
medio poroelástico por naturaleza, excepto si se trata quizás de un lecho ro­
coso, es necesario determinar ante qué condiciones es necesario utilizar pro­
piedades drenadas o no drenadas, en caso de utilizar un modelo elástico, o si 
resulta ser importante usar un modelo poroelástico como el de Biot. 

* Factores de interacción cinemática. Las recomendaciones y normativas ac­
tuales sugieren el análisis sísmico de los aerogenerados . Por lo tanto, es de 
interés la determinación de los factores de interacción cinemática para diver­
sas configuraciones y propiedades. 

* Efecto de grupo. Los vasos de succión utilizado en el contexto de aerogene­
radores marinos han sido utilizados de dos maneras: utilizando un vaso de 
succión de gran tamaño, o bien utilizando típicamente tres o cuadro vasos 
más pequeños conectados a un jacket. 

Campo incidente con ángulo de incidencia variable en medio poroelástico estra­
tificado. Se propone la formulación e implementación de un campo incidente de 
ángulo de incidencia variable en medio poroelástico estratificado basado en traba­
jo previos como los de Lin et al. [ 195) y Feng et al. [210). Ello permitiría analizar, 
por ejemplo, el efecto que tiene el nivel freático sobre la respuesta dinámica de 
las cimentaciones y por ende de las superestruturas. 

Grietas en medio poroso. Dado que para el desarrollo del modelo DBEM-FEM se 
ha tenido que desarrollar el Método Dual de Elementos de Contorno para los me­
dios poroelásticos, resulta claro que se tiene una buena oportunidad para avanzar 
en el análisis de grietas en este tipo de medios. En particular, la variable de interés 
es el Factor de Intensidad de Tensiones. Hay muy pocos trabajos en este campo, 
en donde cabe destacar los trabajos de Phurkhao [2 11 ,212). En el momento en 
el que se desarrolló la formulación dual, se trató de reproducir los resultados de 
Phurkhao sin éxito. Sospechamos que la causa puede estar en la definición del 
problema, ya sea en la definición del factor the intensidad de tensiones, o bien en 
el campo incidente utilizado. 

• Medio plazo 

- Optimización de pantallas de aislamiento de vibraciones Se propone incluir una 
excitación de carácter más general, como puede ser un campo incidente de ondas 
de Rayleigh. Asimismo, estudiar las consecuencias en el proceso de optimización 
cuando se varía el número y posición de los receptores. Por último, se propone 
estudiar el efecto de la estratigrafía. 
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- Modelo BEM-FEM para pilotes en medio poroso En la misma línea del trabajo de 
Padrón [18) , la disponibilidad ahora de la formulación hipersingular para medios 
poroelásticos puede permitir la confección de un modelo pilote-suelo poroso. 

- Publicación de software en abierto. Se contempla la posibilidad de la publicación 
en abierto de software derivado del presente trabajo, ya sea en forma de librerías 
y código fuente, o en forma de ejecutables. 

Coupled model of FE and BE for the dynamic analysis of buried shell structures 
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