
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319443706

Recovering Western On-line Signatures From Image-Based Specimens

Conference Paper · November 2017

DOI: 10.1109/ICDAR.2017.199

CITATIONS

6
READS

146

4 authors:

Some of the authors of this publication are also working on these related projects:

Handwriting analysis View project

Quantitative Forensic Document Examination View project

Moises Diaz

Universidad de Las Palmas de Gran Canaria

70 PUBLICATIONS   825 CITATIONS   

SEE PROFILE

Miguel A. Ferrer

Universidad de Las Palmas de Gran Canaria

281 PUBLICATIONS   2,969 CITATIONS   

SEE PROFILE

Antonio Parziale

Università degli Studi di Salerno

38 PUBLICATIONS   134 CITATIONS   

SEE PROFILE

Angelo Marcelli

Università degli Studi di Salerno

147 PUBLICATIONS   959 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Moises Diaz on 07 November 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/319443706_Recovering_Western_On-line_Signatures_From_Image-Based_Specimens?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319443706_Recovering_Western_On-line_Signatures_From_Image-Based_Specimens?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Handwriting-analysis?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Quantitative-Forensic-Document-Examination?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moises_Diaz?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moises_Diaz?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moises_Diaz?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel_Ferrer8?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel_Ferrer8?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel_Ferrer8?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio_Parziale?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio_Parziale?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Salerno?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio_Parziale?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angelo_Marcelli?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angelo_Marcelli?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Salerno?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angelo_Marcelli?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moises_Diaz?enrichId=rgreq-586847e54fe107a15a2a2a7377d38e9d-XXX&enrichSource=Y292ZXJQYWdlOzMxOTQ0MzcwNjtBUzo1NTc5ODc5MDc3NTE5MzZAMTUxMDA0NjA5MjQ5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Recovering Western On-line Signatures From
Image-Based Specimens

Moises Diaz∗†, Miguel A. Ferrer∗, Antonio Parziale‡ and Angelo Marcelli‡
∗Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones

Universidad de Las Palmas de Gran Canaria, 35017, Spain
† Mid-Atlantic University, Las Palmas de Gran Canaria, Spain

‡ Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Italy
E-mail: {mdiaz, mferrer}@idetic.eu, {anparziale, amarcelli}@unisa.it

Abstract—This article propose a complete framework to re-
cover the dynamic properties (i.e. velocity and pressure) of an
on-line Western signature from an image-based signature. The
framework is based on classical approaches to recover the writing
order of the strokes and a novel process to recover the kinematic
properties from thinned trajectories. In order to evaluate the
quality of the recovered signatures and the impact of each stage
of our framework, the performance of a signature verification
system on obtained signatures in each stage are compared to
the performance with real signatures. As a proof of concepts,
in this study we use the first 50 users of BiosecurID signature
database since they contain both the on-line and off-line version
of Western signatures.

I. INTRODUCTION

There are two modalities of handwriting signatures: 1) On-
line or dynamic signatures, which are commonly acquired with
a digital tablet and contain the time functions of the pentip
position and the pressure during their execution. 2) Off-line or
static signatures, which are obtained by scanning hard copy
documents and stored as image templates, without temporal
information.

According to the data format, signatures can be described
by three kinds of features: static, pseudodynamic and dynamic
features. Commonly static features involve geometric mea-
sures such as the calibre, proportion, spacing, or alignment
to baseline [1]. Instead, pseudo-dynamic features try to infer
dynamic properties from off-line signatures. They can be de-
duced from the High Pressure Points, the thickness of the pen
strokes and its variations, distribution of pixels, progression,
slant or form [1]. Dynamic features contain time functions,
which allow to calculate the kinematic properties of signatures
as their global parameters, among others. These differences
could explain the bigger growth and performance improve-
ments in on-line Automatic Signature Verifiers (ASVs) [2].

To take advantage of on-line ASVs, we wonder the fol-
lowing hypothesis: whether an on-line signature from a real
off-line was recovered, could we use such recovered signature
in on-line ASVs?

Despite being a classical pattern recognition problem [3],
[4], recovering an on-line signature from its off-line coun-
terpart (Off-2-On) has not been completely solved in the
literature. Nevertheless, several genuine proposals and even
competitions (e.g. [5]) have established genuine basis to solve

Fig. 1: Block diagram of the proposed Off-2-On framework
and its performance-based validation.

some stages of this problem. One of the critical stage of
the complete problem is the estimation of the writing order,
which have been already approached in the literature. For
instance, solving ambiguities in the loops [6], by the edge
continuity relation concept [7], by the optimum skeleton
path [8], among others. Another already approached stage is
the stroke segmentation. Proposals are typically worked out the
curvature [9], [10] of static handwriting specimens. Another
critical stage is to infer the temporal properties from images,
which have been also studied (e.g. [11]).

We propose a complete framework to recover on-line signa-
tures from image-based specimens. This Off-2-On framework
is based on several consecutive stages. One of the target of
this paper is to quantify the influence of these stages in the
recovering process. Since kinematic properties are derived
by a real on-line signature, we also contribute with a novel
lognormal resampling of an 8-connected trajectory to generate
human-like dynamic profiles (i.e. velocity, acceleration and
pressure).

To evaluate the quality of the recovered signature, we
consider a state-of-the-art automatic signature verifier (ASV)
and compare its performance when dealing with real on-line
signatures and with recovered ones. Additionally, to mitigate
the errors associated to writing order recovery stage, a modi-
fication of the used ASV is proposed in this article.

The reminder of this paper has the following organization.
Section II describes the proposed framework. A modification
of a state-of-the-art ASV is presented in Section III. A proof
of the method is evaluated in Section IV and finally the paper
closes with the conclusions in Section V.
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Fig. 2: Visual examples of the proposed framework to recover on-line signatures.

II. PROPOSED FRAMEWORK

The proposed framework was divided into the following
five stages, as it is shown in Fig. 1: A) Thinning, B) Writing
order recovery, C) Perceptual point estimation, D) Duration of
the signature and, E) Lognormal resampling. It could be said
that this procedure shows a complete framework to estimate
an on-line signature from an image-based specimen (Off-2-
On). Visual details of the proposed framework are illustrated
in Fig. 2.

A. Thinning
The goal of this stage is to create the skeleton from static

signatures. Firstly, the signatures were binarized by using the
Otsu method. Then a dilation was applied to the binary images
as a morphological operation. A line was used as structural
element, which changed its angle from 0 to 90 degrees. This
preprocessing helped to fill some gaps due to incorrect ink
depositions on the paper without adding too much unreal
pixels to the images.

Then, the thinning was applied following a proposal method
published in [12]. Such method is based on an augmented fast
matching procedure, which computed the boundary location
of each pixel. A thresholding phase was processed at the end
in order to create the skeleton branches. An implementation
of this contour-pruned skeletonization in Matlab was used in
this work1, setting 35 as the threshold value.

B. Writing order recovery
The tracing of the signature was carried out over an 8-

connected skeleton. To obtain such 8-connected skeleton, two
corrections were carried out to solve ambiguities in the branch
points:

1) Let k be the number of lines, which converged in a
branch point, where k ∈ (3, 4, 5, 6, 7). More than 7

1The code used in the skeletonization is available in goo.gl/CAm8Bn

lines were never found during the experiments. In our
implementation, each branch point was processed in
order to join the lines in an 8-connected way. Moreover,
the window size around the branch point would increase
in order to find 8-connected branch reconstructions. To
assign the pair of lines, the algorithm decided regarding
a good continuity criterion, i.e. the less abrupt derivate
trajectory after trying all pairs. Obviously, when k was
not pair, the remained line was unpaired and therefore
became either start or end point.

2) Since some small spurious branches still remained, they
were also removed.

From the obtained image, it is extremely tough to guess
how the signer traced his signature. In our implementation, to
recover the writing order, we simplify the signer decisions in
a twofold rule: Firstly he decides which is the next component
to draw and secondly he selects the start and the end point of
such component. To select the start point of the component, we
follows this hypothesis: the signer started to write by selecting
the free end-point closer to the top-right part of the image. It
is worth mentioning that a real signer could modify these two
rules in each execution of his signature as it is a behavioral
action.

C. Perceptual point estimation

The requirement here consisted in segmenting an 8-
connected trajectory generated from individual strokes2. In
our implementation, we have followed a multi-scale method
proposed in [10]. Briefly, let M be the total points of an 8-
connected trajectory. Starting from 3 equidistant points until
M , M − 3 representations from a determined 8-connected
component were created. Then, the local curvatures were
calculated per each representation at each scale in order to

2In this work, stroke refers to a neuromuscular command to execute an
elementary movement.



build a feature map. Such feature map required to normalize
individual curves in the range [0, 1]. This way, a matrix was
built by inserting in each row the local curvature values, which
were interpolated to M values in the range [0, 1]. Finally,
a saliency map was processed by summing the matrix in
vertical. In the saliency map, the peaks corresponded to the
perceptual points, which were selected in order to segment the
8-connected trajectories. In Fig. 2-e the perceptual points for
the signature are highlighted.

D. Duration of the signature

What is the duration of a static line? This is one of the most
crucial parts of this work, since it is by far one of the most
discriminating properties in on-line ASVs. The time taken
by each single stroke can be estimated from its existence.
It is known that the so called Central Pattern Generator
(CPG) produces rhythmic patterned outputs without sensory
feedback. Moreover, it has been suggested that the mammalian
locomotor CPG comprises a “timer” which generates step
cycles of varying duration and a pattern formation layer which
selects and grades the activation of motor pools. This time is
usually compressed between 0.09 and 0.12 sec. Therefore, if
the stroke generation was simulated by the CPG step cycle,
the duration of each stroke could be established as 0.1 sec. Let
τs+r the duration of a single stroke. Where τs = 0.1 sec and r
a random value that follows a normal distribution N (0, 0.01)
clipped in the range of ±0.01, which comprises 68.2 % of
the distribution. Finally, the duration of a component was
determined by the sum of each stroke duration.

E. Lognormal resampling

The objective of this section is to generate a human-like
on-line signature from an 8-connected signature.

Suggested by the kinematic theory of rapid human move-
ments, the velocity profile of a handwriting signature could
be interpreted as a vectorial summation of consecutive log-
normals [13]. Being a single lognormal speed described as

follows: |vi(t)| = D√
2πσi(t−t0i )

exp

(
− (ln(t−t0i )−µi)

2

2σi

)
.

1) Velocity profile: The velocity profile is designed by
following the previous formulation. According to [14], it could
be said that the distance e traveled at time t during the
execution of a lognormal could be calculated through the
lognormal cumulative function:

e(t) =

∫ +∞

−∞
v dt =

Di

2

(
1 + erf

(
(ln(t− t0i)− µi)2√

2σi

))
(1)

From equation (1) it could be worked out the time and the
velocity in terms of distances for each lognormal as follows:

tei = t0 + exp
(√

2σierf−1(2 e/Di − 1) + µi

)0.5
(2)

ve =
Diexp

(
−
√
2σierf−1(2 e− 1)

)
σi
√
2πexp

(√
2σierf−1(2 e/Di − 1) + µi

) (3)

It could be said that there exists a certain correspondence
between the lognormals and perceptual points [9]. Accord-
ingly, we have located a lognormal between two perceptual
points.

Hence, the following step was to deduce the lognormal
parameters from an 8-connected trajectory. Formally, we as-
sumed that the distance traveled by a stroke in the signature lsi
has a duration tsi . This way, equation (1) could be rewritten
as follows:

lsi =
Di

2

(
1 + erf

(
(ln(tsi)− µi)2√

2σi

))
(4)

Empirically, we studied the skewness and kurtosis of indi-
vidual lognormals from handwriting signatures. For extracting
the lognormal parameters, ScriptStudio software [13] was
used. It was observed that the average skewness was 0.1301
and average kurtosis 3.082. So, a possible solution for equa-
tion (4) would assume that erf(3) = 1. Therefore:

lsi = Di (5)

µi = ln(tsi)− 3
√
2σi (6)

On the other hand, the lognormal mode can be analytically
defined by eµi−σ2

i and it is approximately tsi/2 with a slightly
left skew. Numerically, we could said that:

δk tsi = eµi−σ2
i (7)

δk being a uniform distribution heuristically defined in the
range [δmink , δmaxk ] = [0.3, 0.4].

Then, combining equations (6) and (7) we could obtain the
following relationship:

σ2
i + 3

√
2σi − ln(δk) = 0 (8)

So, whether the length of a stroke (i.e. the space between
two perceptual points) and its duration (see Sect. II-D) were
known, the rest of lognormal parameters could be directly
approximated, in the case of individual strokes. However, there
exist certain synergies between the lognormals during the ex-
ecution of a rapid movement like handwriting signatures [13].
Such synergies were approached by overlapping the individual
lognormals and increasing heuristically their initial lengths to
double.

Once the lognormal parameters have been estimated, the
velocity profile was calculated in the spatial domain according
to equation (3). It means the velocity value for each point of
the 8-connected trajectory.

Let (xc, yc) be a pair of coordinates of an 8-connected
trajectory. The distance of such trajectory, in centimeters, was

determined by de = 2.54
r

√
(xkc − xk−1c )2 + (ykc − yk−1c )2, r

being the resolution of the skeleton. Then, at point level, it
could be said that there exist a linear motion like te = de/ve.

The time over each point was finally used to sample the
continuous 8-connected trajectory. Points whose time was



(a) (b) (c)

Fig. 3: Example of recovered signatures with two components.

close to 1/fm were selected, fm being the sample frequency,
100 Hz in our case.

2) Pressure profile: Once the velocity profile was esti-
mated, the pressure profile p(t) was calculated. It is obtained
by inverting the normalized A-law compressed velocity ve as
follows:

p(t) = 2δu
max(ve)− ve

max(ve)
+ T + δu (9)

Where T is a scalar factor equal to 500 and δu a random
value which follows a uniform distribution [δminu , δmaxu ] =
[0, 150]. Both of them considered the pressure margin from
a commercial digitalized tablet. After observations of real
pressure profiles, we found a linear transition of two or three
samples long at the beginning and at the final of the pressure
profile in a component. Obviously, equation (9) was only valid
for pen-downs, in the case of pen-ups, p(t) = 0.

A visual example of the obtained dynamics can be seen in
Fig. 2, last illustration. Also, Fig. 3 illustrates some examples
of acceptable recovered on-line signatures for user #021 from
BiosecurID. In the case of this illustration, our Off-2-On
framework firstly detected the second executed component in
all visual examples.

III. ON-LINE AUTOMATIC SIGNATURE VERIFIER

We are aware of writing order recovery algorithm introduces
mistakes to reproduce the real stroke orders. These mistakes
are severely penalized by distance-based ASVs like dynamic
time warping. For this reason, we propose to use a Manhattan-
based on-line ASV [15]. This ASV is interesting for this
problem since it is not strictly based on the writing order of
the traces, but in the first and second derivate. However, we
propose a slight modification of this original ASV for reducing
some errors associated with the writing order recovery.

In particular, the modified ASV performs the verification
by rearranging the components of the online signatures. Let
{c1, . . . , ci, . . . , cn} be the n components randomly shuffled
of an on-line signature (xs, ys), we worked out the sequence
of coordinates of each component as described in Sect. II.
Furthermore, in order to avoid abrupt changes in the derivate
and guarantee the continuity, two consecutive components are
connected in a way that the end point (xci−1 [n], yci−1 [n])
of the first component is the starting point (xci [0], yci [0]) of
the following one. The sequence of coordinates obtained by

connecting the coordinates of the shuffled components is then
connected with its mirror version. Being (x̂ci , ŷci) the mirror
coordinates of (xci , yci). Formally, the modified coordinates
of the signature (xs, ys) could be expressed as:

x̂s = [xc1 , . . . , xci , . . . , xcn , x̂cn , . . . , x̂ci , . . . , x̂c1 ] (10)
ŷs = [yc1 , . . . , yci , . . . , ycn , ŷcn , . . . , ŷci , . . . , ŷc1 ] (11)

Finally, according to [15], the complete set of features
were used to build the absolute and relative histograms. In
our implementation, better results were obtained when the
parameters εabs and εrel were set up to 0.4 and 0.004,
respectively.

IV. EXPERIMENTAL RESULTS

The experiments were conducted to compare the real and
recovered on-line signatures through a performance-based
evaluation. Recovered on-line signatures were created in order
to quantify the errors produced in each stage of the proposed
framework. For this purposes, the following five strategies
were carried out to generate recovered on-line signatures:

1) The complete Off-2-On method was applied to real
off-line signatures and the overall performance was
evaluated.

2) The lines produced by the thinning stage were replaced
by an 8-connected trajectory that was created by interpo-
lating the real on-line signatures through the Bresenham
algorithm. They were provided to the system in order
to remove the thinning stage influence on the overall
performance.

3) Same input as in strategy 2) and including the real
tracing of the signature instead of the one produced
by the writing order stage. This way, the influences of
both thinning and writing order recovery stages were
removed.

4) Same input as in strategy 3) and adding the real per-
ceptual points, estimated from the minimum of the real
velocity profile, so as to remove its influence on the
overall performance of the first three stages.

5) On-line versions were created by using the same input as
strategy 4) and including the real duration at each com-
ponent. Therefore, only the influence of the lognormal
resampling is evaluated in this last strategy.

Once the on-line signatures were recovered under these five
strategies, both the original Manhattan-based ASV [15] and
the modified one (Sect. III) were used in the experiments.
As a proof of concepts, we used the first 50 users of the
BiosecurID database [16], which comprises 800 genuine and
600 forged specimens. For training the system, five genuine
signatures per user were randomly selected in each trial. The
remaining genuine signatures were left for testing. In the
Random Forgery (RF) experiments, the genuine signatures
of each user were compared with the genuine signatures of
the other users, while in the Skilled Forgery (SF) experiment
the genuine signatures were compared with the corresponding



TABLE I: Performance evaluation in EER (%) of the proposed Off-2-On framework’s stages - first 50 users from BiosecurID [16]

On-line ASV Experiment Real Off-line1 Thinning2 Writing Order3 Perceptual Points4 Duration5 Real On-line

Original Manhattan-based Random Forgery 8.77 5.22 1.06 1.34 1.25 0.83
(own implementation [15]) Skilled Forgery 26.76 20.03 9.67 6.01 3.86 3.24

Modified Manhattan-based Random Forgery 8.47 4.26 3.14 3.00 3.03 1.73
(Sect. III) Skilled Forgery 27.83 19.23 16.31 10.78 5.80 5.01
1Known image-based signature (completed method, see Fig. 1) but unknown the rest
2Known real thinning but unknown real writing order, real perceptual points, real signature duration and real re-sampling
3Known real writing order but unknown the real perceptual points, signature duration and real re-sampling
4Known real writing order and the real perceptual points but unknown signature duration and real re-sampling
5Known real writing order, the real perceptual points and real signature duration but unknown real re-sampling

falsified ones. Each experiment was repeated ten times and
results were given in terms of Equal Error Rate (EER, %).

Experimental results are given in Table I. The reference
performance is given in the column shadowed in gray. It is
worth pointing out that an ideal Off-2-On framework would
achieve these performances.

A. Discussion

Recovering on-line signatures from real off-line specimens
has several milestones. According to the proposed framework,
some relevant properties of each stage could be quantified for
both RF and SF.

On the one hand, in RF was observed that our Thin-
ning stage produced a loss in the performance of 45 % and
63 % for both original and modified Manhattan-based ASVs,
respectively. These losses were worked out by comparing
the performances in Real Off-line and Thinning stages with
respect to the Real on-line3. Comparing the Writing Order and
Thinning performances with respect to the Real on-line, we
could quantify a performance decrease of 95 % and 44 % for
both verifiers, respectively. These results suggest that writing
order is one of the most critical stage in the Off-2-On process.
According to the experimental results, the following stages
(i.e. Perceptual points and Duration) did not introduce any
notorious improvement regarding Real On-line performances
in both verifiers. More research in these stages would be
necessary to highlight further difference between genuine
signatures.

On the other hand, the outcome of SF exposed additional
findings. On the Thinning stage, the comparison between the
data in the Real Off-line and in the Thinning columns shown
that, in case of the original Manhattan-based verifier, the
thinning was responsible for more than 28 % of the decrease in
performance with respect to the Real on-line case. It was also
observed a performance decrease of 37 % for the modified
verifier. It should be noted, however, that there were many
external factors that limited the performance of the thinning
stage, such as low resolution, dust in the images, type of
sensor used to register them, blurred grayscale images and so
on. Such drawbacks were especially incremented in Western

3From Table I: (8.77-5.22)/(8.77-0.83)=0.4471 for the Original Manhattan-
based ASV and (8.47-4.26)/(8.47-1.73)=0.6246 for the modified one. Accord-
ingly, the quantification of each stage has been similarly measured along
Sect. IV-A.

signatures, which have a large quantity of crosses that hidden
and blur relevant details.

On the Writing Order stage, the comparison between the
data in the Thinning and in the Writing Order columns
shown that this stage was responsible for 62 % and 21 % of
performance decreases in both original and modified verifiers,
respectively, with respect to the on-line case. If we compared
the impact of both the Thinning and Writing Order with the
Real Off-line effect regarding the Real On-line performances,
we could observe 73 % and 50 % of the performance degrada-
tion. These results seems to confirm that these two stages were
by far the most critical ones and, consequently, more attention
should be given to them. A balanced view of the modified
Manhattan-based system pointed that even though the final
performance was not as competitive as the original verifier,
the negative impact of these stages were slightly reduced.

One key to solve successfully the branch points would
depend on differences between how human and machine see
the signatures: While a human sees globally the shape of the
signature and is able to solve correctly the branch points,
algorithms typically see a small region around the branch
point, losing the global information of the signature. Thus,
the selection of the start and end points is usually a matter
of empirical decision rules. Such rules try to approach the
unpredictable decision of a signer to start writing a component.
The sum of such negative effects during the thinning and
writing order stages are attributed to be the main challenges in
the performance degradation for both RF and SF. Moreover,
it is even more complicated in Western signatures since the
flourishes are usually quite longs and written over the text.

On the Perceptual points stage, the comparison between data
in the Writing Order and in the Perceptual points columns
shown that our perceptual points proposal was responsible
for more than 57 % and 49 % of the decrease in performance
for both ASVs. While an expected behavior was observed in
the modified ASV, better performances were achieved in the
original one.

In this case, two challenges were identified. Firstly, one
difficulty is attributed to the estimation of extra points like
turning points. Selecting extra points leads to unnatural rapid
traces, whereas detecting a few points reduces the number
of strokes in the recovered signatures. It is worth pointing
out that in our approach the number of strokes were directly
proportional to the number of perceptual points. Secondly,



certain details in the trajectory of on-line signatures would
give essential clues about the location of perceptual points in
on-line signatures. However, in an Off-2-On process, many of
these clues, which are essentials (e.g. [17]), are missing. Both
limitations could explain that the results in column Perceptual
points were not still comparable to the baseline (Real On-line
column). It is worth taking into consideration that forgeries
typically generate more perceptual points than genuine signers.

On the Duration, if we used our estimated duration, a
degradation of 77 % and 86 % was obtained for both ASVs
by comparing the Perceptual points and Duration columns. It
should be noted that our approach simplified the estimation
of the duration. We approach the temporal length of the
signatures in the BiosecureID database by a Gaussian (mean,
standard deviation) with (3.61, 1.75) sec for genuine and
(9.07, 6.04) sec for forgeries. Beyond its enormous importance
in on-line ASVs, these differences could explain the vital
question of its correct estimation for SF.

On the lognormal resampling a direct comparison was car-
ried out through column Duration and the baseline. The results
were quite acceptable comparing with the real performance.
Such results suggest a positive validation of the proposed
lognormal resampling in SF. Note that SF is the most relevant
experiment in signature verification.

V. CONCLUSION AND FUTURE WORK IDEAS

In this article a complete framework to recover on-line
signatures from image-based specimens (Off-2-On) have been
proposed. We have quantified the impact in the performance
in several stages of such framework. As such, a detailed
discussion is provided.

As on-line signatures are composed by time functions (ve-
locity, acceleration, pressure, etc), a novel lognormal resam-
pling of 8-connected trajectories was carried out. A modified
Manhattan-based classifier is proposed to cope with errors
associated with the writing order recovery algorithm. This
modified ASV tries to mitigate the order selection of compo-
nents and the assignation of the start and end points. However,
the classifier does not solve errors in the branches when the
trace is recovered.

As future work, applying this procedure to other scripts
seems to be promising for signature verification. Western
signatures contain a lot of crosses, ambiguities zones and
longer components compared to Chinese or Bengali scripts,
among others. Moreover, both thinning and writing order
algorithms seem to be the major critical stages. So, several
related algorithms would be tested and compared in a further
study. Finally, provided that this complete Off-2-On frame-
work reported comparable performance, the combination of
recovered and real on-line signatures could lead to better
improvements in on-line ASV.

ACKNOWLEDGMENT

This study was partially funded by the first IAPR Research
Scholarship Program, the Spanish government’s MCINN
TEC2016-77791-C4-1-R research project and European Union
FEDER program/funds.

REFERENCES

[1] E. J. Justino, A. El Yacoubi, F. Bortolozzi, and R. Sabourin, “An off-line
signature verification system using hmm and graphometric features,” in
Proc. of the 4th International Workshop on Document Analysis Systems,
2000, pp. 211–222.

[2] M. Diaz-Cabrera, M. Gomez-Barrero, A. Morales, M. A. Ferrer, and
J. Galbally, “Generation of enhanced synthetic off-line signatures based
on real on-line data,” in Proc. IAPR Int. Conf. on Frontiers in Hand-
writing Recogn., ICFHR, 2014, pp. 482–487.

[3] V. Nguyen and M. Blumenstein, “Techniques for static handwriting tra-
jectory recovery: A survey,” in Proceedings of the 9th IAPR International
Workshop on Document Analysis Systems, ser. DAS ’10, 2010, pp. 463–
470.

[4] K. Saeed, M. Tabedzki, M. Rybnik, and M. Adamski, “K3m: A
universal algorithm for image skeletonization and a review of thinning
techniques,” Int. J. Appl. Math. Comput. Sci., vol. 20, no. 2, pp. 317–335,
Jun. 2010.

[5] A. Hassane, S. A. Maadeed, and A. Bouridane, “Icdar 2013 competition
on handwriting stroke recovery from offline data,” in 2013 12th Inter-
national Conference on Document Analysis and Recognition, Aug 2013,
pp. 1412–1416.

[6] T. Steinherz, D. Doermann, E. Rivlin, and N. Intrator, “Offline loop
investigation for handwriting analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 193–209, Feb
2009.

[7] Y. Qiao, M. Nishiara, and M. Yasuhara, “A framework toward restoration
of writing order from single-stroked handwriting image,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11,
pp. 1724–1737, Nov 2006.

[8] Y. Kato and M. Yasuhara, “Recovery of drawing order from single-
stroke handwriting images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 9, pp. 938–949, Sep 2000.

[9] R. Plamondon and C. Privitera, “The segmentation of cursive hand-
writing: an approach based on off-line recovery of the motor-temporal
information,” IEEE Trans. on Image Processing, vol. 8, no. 1, pp. 80–91,
1999.

[10] C. D. Stefano, G. Guadagno, and A. Marcelli, “A saliency-based seg-
mentation method for online cursive handwriting,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 18, no. 07, pp.
1139–1156, 2004.

[11] D. S. Doermann and A. Rosenfeld, “Recovery of temporal information
from static images of handwriting,” in Proceedings 1992 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Jun
1992, pp. 162–168.

[12] A. Telea and J. J. van Wijk, “An augmented fast marching method for
computing skeletons and centerlines,” in Proceedings of the Symposium
on Data Visualisation 2002, ser. VISSYM ’02. Aire-la-Ville, Switzer-
land, Switzerland: Eurographics Association, 2002, pp. 251–259.

[13] C. O’Reilly and R. Plamondon, “Development of a sigma-lognormal
representation for on-line signatures,” Pattern Recogn., vol. 42, no. 12,
pp. 3324–3337, 2009.

[14] M. A. Ferrer, M. Diaz, C. Carmona, and A. Morales, “A behavioral
handwriting model for static and dynamic signature synthesis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PP,
no. 99, pp. 1–1, 2016.

[15] N. Sae-Bae and N. Memon, “Online signature verification on mobile
devices,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 6, pp. 933–947, June 2014.

[16] J. Fierrez, J. Galbally, J. Ortega-Garcia, M. R. Freire, F. Alonso-
Fernandez, D. Ramos, D. T. Toledano, J. Gonzalez-Rodriguez, J. A.
Siguenza, J. Garrido-Salas, E. Anguiano, G. G. de Rivera, R. Ribalda,
M. Faundez-Zanuy, J. A. Ortega, V. Cardeoso-Payo, A. Viloria, C. E.
Vivaracho, Q. I. Moro, J. J. Igarza, J. Sanchez, I. Hernaez, C. Orrite-
Uruuela, F. Martinez-Contreras, and J. J. Gracia-Roche, “BiosecurID:
A multimodal biometric database,” Pattern Analysis and Applications,
vol. 13, no. 2, pp. 235–246, May 2010.

[17] D. S. Doermann, “Document image understanding: Integrating recovery
and interpretation,” Ph.D. dissertation, College Park, MD, USA, 1993,
uMI Order No. GAX93-29544.

View publication statsView publication stats

https://www.researchgate.net/publication/319443706

