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Abstract. The use of evolutionary algorithms has been enhanced in recent years for solving
real engineering problems, where the requirements of intense computational calculations are
needed, especially when computational engineering simulations are involved (use of finite
element method, boundary element method, etc). The coupling of game-theory concepts in
evolutionary algorithms has been a recent line of research which could enhance the efficiency
of the optimum design procedure and the quality of the design solutions achieved. They have
been applied in several fields of engineering and sciences, mainly, in aeronautical and struc-
tural engineering (e.g: in computational fluid dynamics and solid mechanics problems).
Among them, Nash-evolutionary algorithms (Nash-EAs) have been recently applied in the
single-objective reconstruction inverse design problem in structural engineering (aiming to
obtain the structure whose maximum stresses match those stresses considered as references),
with successful speed-up of the structural optimum search. Several test cases of different
search space size bar structures are handled here, with bar sized structures up to 105 bar el-
ements. Particularly, frames -bar structures with rigid nodes where bending moment and
shear effort should also be taken into consideration- are handled here. Influence of the struc-
tural size in the comparative performance of Nash-EAs will be investigated and tested. The
performance of Nash-EAs improves significantly the one of the standard panmictic evolution-
ary algorithms. According to the results shown here, this advantage is greater when the prob-
lem size increases.
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1 INTRODUCTION

Evolutionary algorithms have been successfully spread their use among computational en-
gineering applications for optimum design in the last decades (see e.g.: [1,2,3,4]). Among the
strategies to increase the efficiency of those algorithms, parallelization and hybridization with
game theory concepts have been proven useful. Particularly, the use of Nash-Evolutionary
Algorithms (Nash-EAs) has been demonstrated as acceleration tools increasing convergence
speed and/or quality of solutions in computational mechanics applications [5]. In this work, a
study of performance of Nash-EAs versus standard panmictic EAs is developed, considering
two structural test cases of different sizes in the reconstruction inverse problem, and compar-
ing the influence of the number of bars (size of the problem search space).

In section 2, Nash EAs are described; the reconstruction inverse structural problem han-
dled is explained in section 3, and the frame structural test cases are detailed and justified in
section 4. This paper continues with the results and discussion in section 5, and finalizes with
the conclusions in section 6.

2 NASH-EVOLUTIONARY ALGORITHMS

Nash-EAs were introduced in Sefrioui and Periaux [6] for solving computational fluid dy-
namics problems. They are based in hybridizing the mathematical concepts of Nash equilib-
rium (Nash, 1950-51) [7,8] (competitive game theory where players maximize their payoffs
while taking into account the strategies of their competitors) in the evolutionary search: A set
of subpopulations co-evolve simultaneously each of which deals only with a partition of the
search variables. These subpopulations interact to evolve towards the equilibrium; when deal-
ing with a single objective problem, a virtual Nash game approach has been applied in inverse
shape optimization computational fluid dynamics and computational solid mechanics prob-
lems as an improvement technique versus the standard panmictic evolutionary algorithms.
This approach has been successfully applied in the case of inverse problems where the fitness
function objective is a sum of separable terms (such as the case of many shape optimization
problems) [9,10].

3 STRUCTURAL PROBLEM

The aim of the structural reconstruction problem is to achieve the structure which fits most
the maximum reference stresses. The optimum structural bar design is defined as a design in
which some allocation of every bar in the structure has a maximum stress value as accurately
equal as the maximum reference stress for that bar. Equation (1) shows the fitness function
(FF) to be minimized (reconstruction problem).

Nbars

Fitness Function = \/ Z(O'MAX_I. — Cyxr)’ (1

i=1

where oy4x.; 1S the maximum calculated stress and o.4x.r; the maximum reference stress, in
bar i. A null value of the fitness function in the reconstruction problem means a perfect match
of stresses, and a location of the aimed structural design.

4 TEST CASES

4.1 Test Case 1: 55 bar sized frame structure

A fifty-five bar sized frame structural test case [11] is shown in figure 1, particularly the
case of discrete cross-section type variables is handled here. The frame structure of reference
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considered is the one corresponding to IPE330 cross section type in all beams (being the
search space an interval between IPE080 and IPES00) and HEB450 cross section type in all
columns (being the search space an interval between HEB100 and HEB450). Details about
the corresponding maximum stress in each bar are available in [12].

A two player (two subpopulations) splitting territory approach will be used. Two Domain
Decomposition (DD) player territories are tested in section 5. The distribution of bars in every
case are shown as follows in figure 2 (black and cyan colors indicate membership to each ter-
ritory, respectively): a Bottom-Up DD and a Left-Right DD. Territories divide the variable
search space in two subsets of 27 and 28 bars.
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Figure 1: Computational domain, boundary conditions and loadings available in [11], 55 bar sized.

Left-Right Domain Decomposition Nash-EAs Bottom-Up Domain Decomposition Nash-EAs

Figure 2: Nash EAs domain decompositions, 55 bar sized structure.

4.2 Test Case 2: 105 bar sized frame structure

This test case is designed purposely to study the influence of problem size in the perform-
ance of Nash-EAs versus panmictic EA. A one-hundred-five bar sized frame structural test
case is shown in figure 3, particularly the case of discrete cross-section type variables is han-
dled here. This test case is an horizontal extension of the one shown in section 4.1, with iden-
tical computational domain, boundary conditions and loadings, as well as identical cross
section search space.
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Also in this extended test case, a two player (two subpopulations) splitting territory ap-
proach will be used. Two Domain Decomposition (DD) player territories are tested in section
5. The distribution of bars in every case are shown as follows in figure 4 (black and cyan col-
ors indicate membership to each territory, respectively): a Bottom-Up DD and a Left-Right
DD. Territories divide the variable search space in two subsets of 52 and 53 bars.
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Figure 3: Computational domain, boundary conditions and loadings as in Figure 1, 105 bar sized (horizontal ex-
tension of test case 1).

Left-Right Domain Decomposition Nash-EAs

11

Bottom-Up Domain Decomposition Nash-EAs

Figure 4: Nash EAs domain decompositions, 105 bar sized structure.
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S RESULTS AND DISCUSSION

5.1 Test Case 1: 55 bar sized frame structure

A population size of 80 individuals, with uniform crossover, gray codification and 0.4%
mutation rate are used in a set of 30 independent executions of the three evolutionary algo-
rithms tested: standard panmictic EA, Nash-EAs with left-right partition and Nash-EAs with
bottom-up partition. The stopping criterion is set as maximum number of fitness evaluations
equal to 2'10°.

Figure 5 shows the final average number of fitness evaluations versus the standard devia-
tion of fitness evaluations of those executions of the three algorithms required to achieve the
optimum (null) solution (all the three EAs were able to reach the optimum in all the runs in
this first test case, as shown in table 1). Convergence curves of the evolution of the average,
best and standard deviation values of the fitness function value are shown in figures 6, 7 and 8,
respectively.

55 Bar Sized Structural Test Case
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Figure 5: Panmictic EA and Nash-EAs Results - Fitness Evaluations required to obtain the optimum design out
of 30 independent runs.

3497



D. Greiner, J. Periaux, J.M. Emperador, B.Galvan and G. Winter

Average Fitness Function Value

Best Fitness Function Value

55 Bar Sized Structural Test Case
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Figure 6: Average Convergence; Nash-EAs versus Panmictic EA; 55 bar sized test case
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Figure 7: Best Convergence; Nash-EAs versus Panmictic EA; 55 bar sized test case
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55 Bar Sized Structural Test Case
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Figure 8: Standard Deviation Convergence; Nash-EAs versus Panmictic EA; 55 bar sized test case

Average Stagdqrd Best Value  Worst Value

. Number Deviation . . Success
Algorithm . . Fitness Fitness
Fitness Fitness . . Rate
. . Evaluations  Evaluations
Evaluations  Evaluations

Panmictic EA 40458 5258.8 33698 57488 30/30
Nash-EAs Left-Right Player 1 12781 1528.7 10688 18098 30/30
Nash-EAs Left-Right Player 2 12742 1536.8 10688 18098 30/30
Nash-EAs Bottom-Up Player 1 12638 1496.9 10298 16538 30/30
Nash-EAs Bottom-Up Player 2 12664 1452.0 9908 16538 30/30

Table 1: Final Results (over 30 independent runs, after a maximum number of 2:10° fitness evaluations), 55 bar
sized test case.

5.2 Test Case 2: 105 bar sized frame structure

A population size of 150 individuals, with uniform crossover, gray codification and 0.4%
mutation rate are used in a set of 30 independent executions of the three evolutionary algo-
rithms tested: standard panmictic EA, Nash-EAs with left-right partition and Nash-EAs with
bottom-up partition. The stopping criterion is set as maximum number of fitness evaluations
equal to 2:10°.

Table 2 shows the final average, standard deviation, best and worst number of fitness
evaluations of those executions of the three algorithms required to achieve the optimum (null)
solution, expressed as the success rate. The two Nash-EAs were able to reach the optimum in
all the runs in this second test case, while the panmictic EA was completely unsuccessful (no
execution was able to achieve the optimum. Convergence curves of the evolution of the aver-
age (figure 9 and zoomed figure 10), best (figure 11 and zoomed figure 12) and standard de-
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viation values (figure 13 and zoomed figure 14) of the fitness function value are shown in the
aforementioned figures, respectively.
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Figure 9: Average Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case
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Figure 10: Average Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case (Zoomed figure 9)
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105 Bar Sized Structural Test Case
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Figure 11: Best Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case
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Figure 12: Best Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case (Zoomed figure 11)
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105 Bar Sized Structural Test Case
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Figure 13: Standard Deviation Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case
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Figure 14: Standard Deviation Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case
(Zoomed figure 13)
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Average Standard
g o Best Value  Worst Value
. Number Deviation . . Success
Algorithm . . Fitness Fitness
Fitness Fitness Rate

Evaluations  Evaluations  ©vaiuations  Evaluations

Panmictic EA Not reached Not available Notreached Not reached 0/30
Nash-EAs Left-Right Player 1 84559.3 16617.1 65418 136458 30/30
Nash-EAs Left-Right Player 2 84658.0 16546.9 62458 136458 30/30
Nash-EAs Bottom-Up Player 1 73114.0 7472.6 59498 89098 30/30
Nash-EAs Bottom-Up Player 2 72916.7 7555.6 56538 89098 30/30

Table 2: Final Results (over 30 independent runs, after a maximum number of 2:10° fitness evaluations), 105 bar
sized test case.

5.3 Discussion

In the smaller size test case (first one), both panmictic and Nash-EAs were equally able to
reach the optimum solution consistently in all the executions. Nevertheless, Nash-EAs were
much faster than panmictic EA (see table 1 and figures 6 to 8). Between the Nash-EAs Left-
Right domain decomposition and the Nasb-EAs Bottom-Up domain decomposition, results
are slightly better in the latter.

In the bigger size test case (second one), only Nash-EAs were able to reach the optimum
solution consistently in all the executions. On the contrary, the panmictic EA was completely
unsuccessful. Also Nash-EAs were much faster than panmictic EA (see table 2 and figures 9
to 14). Between the Nash-EAs Left-Right domain decomposition and the Nasb-EAs Bottom-
Up domain decomposition, results are slightly better in the latter, fact that is shared with the
first test case.

CONCLUSIONS

Results obtained through a reconstruction inverse problem in structural frames have evi-
denced that the advantage of use and efficiency of Nash-EAs versus standard panmictic EAs
is greater when higher size search spaces are involved. Here particularly, two search space
sizes were compared: 55 and 105 bar sized problems, which correspond to discrete search
spaces of 2%%° and 2*%°, respectively. Robustness of the search has remained unaffected in
Nash-EAs, while seriously affected in panmictic EAs.
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