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a b s t r a c t

Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids.
The macrocyclic lactone (ML) class of drugs has been used to prevent heartworm infection. There is
confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that
could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious
advantages. These channels, present in the nematode nervous system, control movement, feeding,
mating and respond to environmental cues which are necessary for survival of the parasite. Any new
drug that targets these ion channels is likely to have a motility phenotype and should act to clear the
worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels
and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be
useful information for drug design as receptor polymorphism may affect responses to a drug. Such in-
formation may also be useful for anticipation of possible resistance development. A total of 224 ion
channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing
data of parasites from eight different geographical locations, four from ML-susceptible populations and
the other four from ML-loss of efficacy (LOE) populations, were used for polymorphism analysis. We
identified 1762 single nucleotide polymorphic (SNP) sites (1508 intronic and 126 exonic) in these 224 ion
channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions,
129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a
change in predicted secondary structure. A few of the SNPs identified may have an effect on gene
expression, function of the protein and resistance selection processes.
© 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dirofilaria immitis is a mosquito-borne-filarial nematode that
causes dirofilariasis or heartworm disease in dogs and cats, and
occasionally infects humans. For approximately the last 25 years,
prevention of heartworm infection has been solely dependent on a
single drug class, the macrocyclic lactones (MLs). Two sub-groups
of MLs, namely the avermectins - ivermectin (IVM) and sela-
mectin, and the milbemycins e moxidectin and milbemycin oxime
- are used as heartworm preventatives (Lespine et al., 2012).
hard).
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However, there have been reports of loss of efficacy (LOE) of these
MLs against heartworm in the USA, especially in those areas where
heartworm challenge is high (Hampshire, 2005). Recent studies
have confirmed, using in vivo efficacy studies and genetic analysis,
actual ML resistance in D. immitis (Bourguinat et al., 2011a, 2015;
Pulaski et al., 2014). There also exists some evidence of ML resis-
tance in the human parasite, Onchocerca volvulus (Osei-
Atweneboana et al., 2007, 2011; Nana-Djeunga et al., 2012, 2014;
Pion et al., 2013), a filarial nematode which is closely related to
D. immitis. Considering the range of nematode parasites in animals
and humans, anthelmintic resistance occurs against virtually all of
the major families of broad spectrum anthelmintics, including the
MLs, the benzimidazoles, levamisole and monepantel (Kotze et al.,
2014). In the absence of effective vaccines or means to prevent
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infection, both treatment and prophylaxis for most helminth par-
asites relies mainly on the use of these drugs. Since resistance is an
increasing, serious concern there is an urgent need to develop new
classes of anthelmintic drugs.

Current programs of anthelmintic drug discovery, especially
those that operate in industrial settings, focus primarily on the
discovery of new drugs for veterinary indications: mainly gastro-
intestinal nematodes of livestock and companion animals, and
canine heartworm (Woods et al., 2007, 2011; Woods and Knauer,
2010; Geary et al., 2015). Furthermore, it is worthy of note that
many of the anthelmintics used in humanmedicine were originally
developed for the veterinary sector (Geary et al., 2015). In terms of
economic factors, in the USA alone, with over 80 million dogs, and
with heartworm drugs costing US $75e100/dog per year (Godel
et al., 2012), there exists an attractive market for heartworm drug
development. Any new pharmaceutical for heartworm control may
also benefit efforts to control filarial and potentially other parasitic
infections in humans (Wolstenholme et al., 2015).

The neuromuscular system of D. immitis shows great potential
as a drug target; nematodes have well-developed neuromuscular
systems that control motility, navigation, feeding, mating and re-
sponses to environmental cues, which are essential for their sur-
vival, development and reproduction (White et al., 1986; Perry
et al., 2004; Greenberg, 2014). Interference with any of these ac-
tivities can paralyse, kill or stop reproduction in the parasite
(Greenberg, 2014). Ion channels and associated receptors that un-
derlie neuromuscular systems are targets for a wide variety of
naturally occurring toxins and synthetic compounds (Camerino
et al., 2007). Ion channels are targets for many nematocidal drugs
currently in the market (Wolstenholme, 2011). Furthermore, any
new drug that acts on these receptors can be easily screened, in a
semi-automated manner, for anthelmintic activity based on its ef-
fect on worm motility (Wolstenholme, 2011). Ion channels of
nematodes may be classified by the type of ions that are allowed to
pass through them (e.g. cations (Naþ, Kþ and Caþþ) or anions (Cl�)),
and by the type of gating: voltage gated (sodium, calcium or po-
tassium channels) or ligand gated (in which the ligand may be an
amino-acid such as glutamate, ɤ-amino butyric acid (GABA), or a
biogenic amine such as serotonin, tyramine or dopamine)
(Wolstenholme, 2011; Greenberg, 2014). Among the ligand-gated
ion channels (LGICs), the cysteine-loop (cys-loop) superfamily in-
cludes cation-permeable acetylcholine receptors as well as anion-
selective channels gated by GABA, glutamate, 5-
hydroxytryptamine, dopamine or tyramine (Raymond and
Sattelle, 2002; Hobert, 2013; Ringstad et al., 2009; Lees et al.,
2012). A complete inventory of the homologs of these channel
genes, in D. immitis, is so far unknown.

Due to current screening activities based on worm motility,
there are good chances that ion channels and receptors inD. immitis
will be targets for new anthelmintics. Genetic variability, in the
form of single nucleotide polymorphism (SNPs), insertions or de-
letions (indels), in ion channel and receptor genes may create
structural changes in the protein products. Such changes may alter
the physiochemical or structural properties, disrupting folding,
affecting stability or function of the protein, or making it totally a
null receptor for a drug effect (Lahti et al., 2012). Genetic changes
within ion channel genesmay alsomodulate their expression levels
and such changes, though not examined here in this study, could be
a source of variability in channel properties (Mulley et al., 2005).
Knowledge of possible polymorphism in ion channels and associ-
ated receptors in D. immitis may be relevant for drug design pro-
cesses. In addition, such knowledge can be used to make sure that
any new drug is active against all of the allelic forms of the target,
including allelic variants found in LOE populations. Furthermore,
heterogeneity in an ion channel drug target may facilitate
resistance development (Prichard, 2001; Bourguinat et al., 2011c)
and knowledge of that heterogeneity may be informative in
anticipating possible resistance development. The objectives of this
study were to identify all the putative ion channel genes/subunits
in D. immitis by comparative genomic approaches and to analyze
them for polymorphism.

2. Materials and methods

2.1. Identification of all the ion channel genes of D. immitis

The nDi.2.2 genome of D. immitis is in draft stage (Godel, 2012)
and the gene annotation is not complete (Bourguinat et al., 2015). A
complete inventory of ion channel genes of D. immitis is not
available. To identify all the putative ion channel genes/subunits in
the genome of D. immitis, a complementary approach was followed.
Protein-encoding genes from the assembled D. immitis contigs
were predicted and validated by Godel et al. (2012) using three
parallel strategies; i) predictionwith the ab initio gene finders SNAP
(Korf, 2004) and Augustus (Stanke and Morgenstern, 2005) using
the training set of Brugia malayi, ii) direct alignment to B. malayi
proteome and iii) alignment to the RNA-seq assembly (Godel, 2012;
Kumar, 2013). Thus, all the ion channel genes so far annotated and
available in the GFF (Generic Feature Format) file format under
Nuclear Annotation Freeze nDi.2.2.2 in the D. immitis website
(http://nematodes.org/genomes/dirofilaria_immitis/) were used.
To study the un-annotated homologs of D. immitis ion channel
genes, nucleotide sequences of all the genes or subunits that belong
to the family of cys-loop LGIC, voltage-gated (e.g., potassium, cal-
cium) and other channel types of all nematodes were extracted
from available databases such as NCBI (http://www.ncbi.nlm.nih.
gov/), Wormbase (http://www.wormbase.org/#01-23-6), Broad
Institute (https://www.broadinstitute.org/) and NEMBASE4 (http://
www.nematodes.org/nembase4/). These sequences were then
blasted (BLASTN 2.2.25) (Altschul et al., 1997) in the nucleotide
blast server v2.2 (http://nematodes.org/genomes/dirofilaria_
immitis/) to locate each of the putative ion channel genes in the
scaffolds of the D. immitis nuclear genome (version nDi.2.2.2)
(http://salmo.bio.ed.ac.uk/cgi-bin/gbrowse/gbrowse/nDi.2.2.2/).

2.2. Synchronized file generation to assess polymorphism in ion
channels

Pooled worm samples and the method followed for synchro-
nized file generation for genetic variability analysis were as previ-
ously described (Bourguinat et al., 2015) except that the reference
genome used was different in this study. Briefly, our study samples
included a total of 122worms from 17ML susceptible dogs from the
USA (Missouri isolate), Gran Canary (Spain), Grenada (West Indies)
and Italy (Po Basin, Northern Italy). All worms from each country
populationwere pooled, resulting in 4 pools for susceptible worms.
Other phenotypic populations included ~8000 microfilariae (mfs)
from each of 4 ML-LOE dogs, originally from four different locations
in the USA (Mechanicsville, VA; New Orleans, LA; Haywood County,
TN; Monroe, LA). Loss of efficacy to MLs in such dogs was assessed,
as described in Bourguinat et al. (2015). Mfs from each individual
LOE dog were analyzed as a pool, resulting in 4 pools for LOE
samples. All 8 pooled samples were subjected to whole genome
sequencing using the HiSeq2000 platform from Illumina® by Illu-
mina Next Generation Sequencing (The McGill University and
Genome Quebec Innovation Centre) and Bam files, corresponding
to the alignment of the reads from each population against the
reference genome, were generated. D. immitis nuclear genome v2.2
(http://nematodes.org/genomes/dirofilaria_immitis/) was used as
the reference genome for the alignment. The program,
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PoPoolation2, which allows comparison of nucleotide frequencies
of two or more populations and identifies any significant differ-
ences in nucleotides at a position among populations (Kofler et al.,
2011), was used to generate a synchronized file. After filtering for
base quality, the synchronized file contained nucleotide (read)
frequencies for every position for every population along the length
of the reference genome. Based on the population read frequencies
obtained for every gene/subunit in the synchronized file, a locus
was considered to be polymorphic and different if a change in
nucleotide frequency at that locus was >15% different between
populations, a threshold limit set on the basis of the number of
reads and the base pairs covered for SNP genotyping.
2.3. Nomenclature, classification of identified ion channels

Naming of the identified ion channel genes/subunits was based
on their respective orthologs in Caenorhabditis elegans during
BLAST searches. These names may change in the future based on
phylogenetic analysis. The gene description for the ion channels
was the same as given during annotation; available as nuclear
annotation freeze nDi.2.2.2 in the website http://nematodes.org/
genomes/dirofilaria_immitis/. Classification of each ion channel of
D. immitis into sub-groups/sub-classes was done as previously
described for the neuronal genome of C. elegans (Hobert, 2013).
2.4. Assessment of position, type and impact of identified
polymorphism

A GFF file containing the nuclear annotations of the nDi.2.2.2
version of the D. immitis genome (http://nematodes.org/genomes/
dirofilaria_immitis/) was used to identify whether a SNP was
located in an intron or an exon region of a transcript. Protein
sequence predicted for every gene annotation, available as file
“Protein predictions from nDi.2.2.2” in the same website, was used
to locate the position of amino acid changes within a protein. For
the un-annotated genes, all the exon regions of a gene were pre-
dicted, combined and translated to confirm the full length of a gene.
The type of single nucleotide polymorphism, synonymous (nSNP)
or non-synonymous (nsSNP), was determined using Sequencher
software 4.10.1 (Gene Codes Corporation, 2010). PSIPRED (http://
bioinf.cs.ucl.ac.uk/psipred/), a general purpose secondary struc-
ture predictor (SSP) and a highly accurate SSP tool for ionic chan-
nels (Konopka et al., 2009) was used to predict the effect of non-
synonymous mutations in the secondary structure of a gene/
subunit.
Table 1
A summary of ion channel gene/subunit sequences investigated for the Dirofilaria
immitis SNP analysis.

Parameter Results

Number of ion channel genes/subunits studied 224
Total bases (bp) covered 965,735
Intronic bases 698,720
Exonic bases 267,015
Number of SNPs in introns 1508
Number of SNPs in exons 254
Number of missense causing SNPs in exons 129
2.5. Focus on potential drug targets and their polymorphism

To highlight any potential D. immitis drug target (and its poly-
morphic forms), a similar filtering methodology was used as was
followed for B. malayi (Kumar et al., 2007) and D. immitis (Godel
et al., 2012). One of the filters used was that their respective
orthologous gene should have had deleterious effects following
gene knockout studies in C. elegans. Such deleterious effects could
be embryonic lethal/larval arrest, shortened life span, locomotion
variant, organism development variant, sluggish/fainter, slow
growth, egg size defective, or pharyngeal pumping variant, as
shown in the Wormbase website (http://legacy.wormbase.org/). A
second type of filter used was the absence of a BLASTP (http://blast.
ncbi.nlm.nih.gov/Blast.cgi?PROGRAM¼blastp&PAGE_
TYPE¼BlastSearch&LINK_LOC¼blasthome) hit with an E-value
below 10�5, in the predicted proteomes of Homo sapiens and Canis
lupus familiaris (Godel et al., 2012; Kumar, 2013).
3. Results

3.1. Number of ion channel genes/subunits studied for SNP
genotyping

A total of 1249 nucleotide sequences for all the known ion
channel genes/subunits of both free living and parasitic nematodes
were extracted from NCBI and nematode databases (Supplemen-
tary file 1, Table S1). Complete information of these extracted
nucleotide sequences is available in Supplementary file 2, Table S2
(worksheet “Details of extracted sequences”). We identified 224
genes/subunits in total (Supplementary file 2, Table S2, worksheet
“Ion channel genes in D. immitis”) that covered 965,735 base pairs
(bps) (Table 1); about 1.1% of the ~84.2 Mb sized nuclear assembly
of D. immitis (Godel, 2012). All of the 224 genes/subunits included
for SNP genotyping were either identified from BLAST hits in the
D. immitis nucleotide blast server (nDi.2.2) with extracted nucleo-
tide sequences of ion channels of related nematodes or those ion
channels were already annotated in the D. immitis genome (http://
salmo.bio.ed.ac.uk/cgi-bin/gbrowse/gbrowse/nDi.2.2.2/).
3.2. Polymorphic pattern in ion channel genes of D. immitis

Among the eight pooled samples studied for polymorphism
within the 224 genes/subunits of ion channels in D. immitis, we
identified 1762 SNPs (Supplementary file 3, Table S3) with a
nucleotide diversity rate of 0.18% (Table 1). This number of SNPs
was obtained after using 15% as the threshold level for SNP calling
at a position. If the alternative nucleotide frequency at a locus was
set at �20% in order for a position to be considered polymorphic,
then 1504 of the 1762 loci were retained. About 85.5% of the SNPs
identified were in intron regions with an intronic SNP rate of 1/
463 bp, whereas the remaining SNPs were in exons with an exonic
SNP rate of 1/1051 bp. One hundred and twenty nine of 254 SNPs in
exons caused non-synonymous polymorphism, 14 of which
changed secondary structure of the protein as predicted by
PSIPRED. The nsSNPs identified in this analysis are in most cases
described in detail. The polymorphic rates, calculated for each
population as a percentage of the total SNPs identified, are given in
Table 2. A similar polymorphic rate (around 70%) was seen in
pooled populations from the USA, Grand Canary and Grenada.
However, a lower polymorphic rate (43%) was identified in the
pooled samples from Italy.
3.3. SNPs in Cys-loop LGIC

The genome of D. immitis was found to contain 81 genes/sub-
units that could encode 42 unique genes (15 nAChR, 1 ionotropic
glutamate receptor (iGluR), 6 ACh-gated, 6 GABA-gated, 5
glutamate-gated, 2 biogenic amine-gated and 7 genes in a diverse
group). From all of the genes encoding Cys-loop LGICs studied for
SNP analysis, 410 SNP loci were identified. Of the 64 SNPs in exon
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Table 2
Genetic variability within ion channels and receptors genes of Dirofilaria immitis in
populations from different locations.

Geographical locations No. of SNPs found Polymorphic rate (%)a

USA 1203 75.2
Grand Canary (Spain) 1135 70.9
Grenada 1120 70.0
Italy 688 43.0

a Number of SNPs identified (as percentage) in each country based on total SNPs
identified.
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regions, 39 were nsSNP. In this superfamily of cys-loop LGICs, an
overall polymorphic rate of 0.17% was noticed with 0.14 and 0.33%
in cation-selective nAChR and ionotropic glutamate receptors,
respectively. Anion-selective channels such as acetylcholine-gated,
GABA-gated, glutamate gated and the biogenic amine-gated sub-
group were found to have polymorphic rates of 0.08, 0.32, 0.18 and
0.15%, respectively (Table 3).

SNPs in the exon regions of nAChR-types of the cys-loop LGIC
superfamily, such as acr-8, acr-11 and acr-16 were recorded
(Table 4). The gene acr-8 identified in the scaffold nDi.2.2.scaf00069
had a deletion mutation at the 65th amino acid position and the
percentage of deletions was 33% in susceptible populations
compared to 64% in LOE populations. The other subunit of acr-8 in
the same scaffold was identified to have three SNPs with R364G in
particular causing a change in predicted secondary structure of the
protein (Fig. 1). In the homolog of coelomocyte-specific gene cup-4,
identified in the scaffold nDi.2.2.scaf01506, a SNP was identified at
position 141 between aliphatic isoleucine and acidic amide aspar-
agine. In C. elegans, the cup-4 gene was shown to be required for
efficient endocytosis of fluids by coelomocytes (Patton et al., 2005)
and the loss-of-function RNAi studies showed increased sensitivity
to oxidative stress and reduced lifespan (Park et al., 2009). Among
the acetylcholine gated chloride channel genes studied, both acc-3
and lgc-47 were identified with the SNPs Y311D and Y256D,
respectively. D. immitis has five GluCl encoding genes namely glc-2,
glc-3, glc-4, avr-14 and avr-15; three of these genes had SNPs in exon
regions. The homolog of the avr-14 gene in D. immitis had two SNPs,
C382F and C385F. The presence of these two adjacently positioned
SNPs was predicted to cause a change in secondary structure in the
flanking region (Fig. 1). The glc-2 homolog was found with two
SNPs, Q90E and V381A, with the latter causing a change in the
predicted secondary structure. Another GluCl gene homolog of glc-
4 had a SNP at T375K. The glutamate-gated cation channel (iono-
tropic glutamate receptor) gene glr-1 homolog in D. immitis, was
identified with two SNPs, N287S and P809T. The former was spe-
cific to LOE, and the latter to susceptible populations. GABA-gated
channel gene gab-1 had a SNP, I20T identified only in the suscep-
tible populations, whereas the other gene, unc-49 with N57D
polymorphism was in both susceptible and LOE populations. SNP
loci were also identified in the homologs of the dopamine gated
Table 3
Summary of SNPs and SNP rate calculated for each sub-family of cys-loop ligand-gated i

Ion selectivity Sub-groups No. of subunits studied Base pairs

Cation nAChR-type 34 (15) 88,768
Cation iGluR 2 (1) 18,180
Anion ACC 6 (6) 37,509
Anion Aminergic 3 (2) 33,752
Anion GABA-gated 14 (6) 21,198
Anion GluCl 8 (5) 18,564
Unknown diverse 14 (7) 28,484

No. of unique genes are indicated in brackets.
channel gene lgc-53, tyramine gated channel gene lgc-55 and also
in uncharacterized members of the cys-loop LGIC superfamily, such
as lgc-39, lgc-41, lgc-44 and lgc-45.

3.4. Potassium channels

Seventy three of the gene annotations in the nDi.2.2 genome
encode 43 potassium channel genes (plus 1 auxiliary subunit), with
representatives for each of the three major classes: 2-pass (3
genes), 4-pass (23 genes) and 6-pass (14 genes) transmembrane
proteins. With 284 SNPs in these voltage gated channels, a poly-
morphism rate of 0.09% was observed; lowest among the genes
studied (Table 5). A SNP at amino acid position 99 of the inward
rectifier potassium channel gene irk-3, caused an amino acid
variant between arginine (basic amino acid) if the corresponding
codon was CGA and glycine (aliphatic amino acid) if the corre-
sponding codonwas GGA. Homologs of potassium channels with 4-
transmembrane topology, namely twk-48 and twk-8, were poly-
morphic with SNPs I171T and M468V, respectively. The latter
caused a change in predicted secondary structure. The SNP in the
gene twk-8 was in the susceptible populations only, but was well
conservedwithmethionine in the LOE populations. A subunit of the
twk-47 gene homolog in D. immitis was identified with a SNP V9A,
with predominantly valine at this position in the susceptible pop-
ulations and alanine in the LOE populations. Two subunits of the
gene twk-18, which existed as gene clusters in the same scaffold of
nDi.2.2.scaf01557, were found to be polymorphic, with one of the
subunits having 4 SNPs, including a SNP that leads to a stop codon.
The other subunit had 2 SNPs (M1V and H5D) towards the 50 end of
the gene. Homologs of the six-pass transmembrane channel genes
in D. immitis such as exp-2, kvs-4 (Kv2 subfamily), and shw-1, shw-3
(Kv3 subfamily) were found to have a single SNP in each (see
Table 6). In the kvs-4 homolog gene, a locus with the SNP T208I was
more common in the LOE populations than in the susceptible
populations. A couple of SNPs, identified in the potassium channel
gene containing a tetramerisation domain (homolog of uncharac-
terized C. elegans gene F59F3.6), with SNP I194M in particular, be-
ing predicted to cause a change in the secondary structure of the
protein (Fig. 1). A secondary structure change caused by a SNP
(H346R) in a calcium activated potassium channel gene, kcnl-2,was
found to be present only in the LOE populations. An auxiliary
subunit and a multipass transmembrane protein, unc-93 had a SNP
R131Q that was only observed in the susceptible populations.

3.5. Calcium channels

The nDi.2.2 D. immitis genome contained four a1 subunits, one
a2v subunit, one b subunit and two auxiliary proteins. Out of 26
gene annotations that could encode 9 unique genes, 321 SNPs were
observed with a polymorphic rate of 0.18%. Investigation of these
calcium channels for SNP genotype revealed the presence of SNPs
on channel genes.

covered No. of SNPs identified Polymorphic rate (%)

Introns Exons Total

107 19 126 0.14
53 7 60 0.33
26 3 29 0.08
40 9 49 0.15
59 8 67 0.32
26 8 34 0.18
35 10 45 0.16



Table 4
SNP analysis of cys-loop LGIC genes/subunits of Dirofilaria immitis.

Putative gene name/Description Coverage in nDi.2.2 scaffold SNP position in
the scaffold

Nucleotide
change

Amino acid
polymorphism

(lgc-27) ligand-gated ion channel family member nDi.2.2.scaf00004 (380863..387209) 384,333 TTG4GTG L137V
384,340 GTA4GGA V139G

(lgc-30) neurotransmitter-gated ion-channel ligand binding domain
containing protein

nDi.2.2.scaf00014 (297209..303637) 299,340 ACT4AAT T257N

(acr-8)b nicotinic acetylcholine receptor alpha subunit 8 nDi.2.2.scaf00069 (86715..87299) 87,289 CTT4C-T L65Deletion
(acr-8) nicotinic acetylcholine receptor alpha subunit 8 nDi.2.2.scaf00069 (89908..93744) 92,048 TAT4TTT Y264F

93,364 CGA4GGA R364Gc

92,025 TTA4TTT L256F
(acr-11)a cre-acr-11 protein nDi.2.2.scaf00565 (17269..21582) 19,839 CAA4CCA Q46P
(acr-16)a acetylcholine receptor subunit alpha-type nDi.2.2.scaf07899 (1..688) 305 TCA4TTA S53L

337 TTG4TTT L43F
345 CCG4TCG P40S

(unc-63) nicotinic acetylcholine receptor alpha subunit nDi.2.2.scaf00751 (16790..21721) 16,834 CTT4TTT L353F
(cup-4)a acetylcholine receptor-like protein nDi.2.2.scaf01506 (618..6786) 1869 ATT4AAT I141N
(acc-3) cre-acc-3 protein nDi.2.2.scaf00812 (363..7136) 2540 TAT4GAT Y311D
(lgc-47) neurotransmitter-gated ion-channel ligand binding domain

containing protein
nDi.2.2.scaf00030 (142465..147144) 144,803 TAC4GAC Y256D

(glc-4) glutamate-gated chloride channel subunit beta nDi.2.2.scaf00002 (266371..271808) 267,383 ACG4AAG T375K
(glc-2)a Glutamate-gated chloride channel nDi.2.2.scaf00035 (124763..129718) 125,276 CAA4GAA Q90E

129,561 GTG4GCG V381Ac

(avr-14)a glutamate-gated chloride channel nDi.2.2.scaf00410 (1..5378) 5254 TGT4TTT C382Fc

5263 TGT4TTT C385Fc

(glr-1) Ionotropic glutamate receptor nDi.2.2.scaf00632 (11556..19637) 15,358 AAT4AGT N287S
19,548 CCA4ACA P809T

(gab-1) gamma-aminobutyric acid receptor subunit beta-like nDi.2.2.scaf01694 (74..792) 132 ATC4ACC I20T
(unc-49) gamma-aminobutyric-acid receptor beta subunit nDi.2.2.scaf01074 (11518..13243) 12,418 AAC4GAC N57D
(lgc-53) neurotransmitter-gated ion-channel ligand binding domain

containing protein
nDi.2.2.scaf00139 (44015..65641) 49,539 CTA4CCA L691P

(lgc-53) neurotransmitter-gated ion-channel ligand binding domain
containing protein

nDi.2.2.scaf00238 (35622..42385) 36,421 CGA4GGA R375G
36,422 TCG4GCG F374L
36,430 AGA4AAA R362K
36,442 CAA4AAA Q368Kc

36,459 TCC4 CCC S372P
(lgc-39) cre-lgc-39 protein nDi.2.2.scaf02810 (1..1288) 531 CCA4GCA P71A
(lgc-41) ligand-gated ion channel family member nDi.2.2.scaf00010 (375585..379494) 379,448 CAC4CCC H335P

379,483 GCA4ACA A347T
(lgc-44) neurotransmitter-gated ion-channel ligand binding domain

containing protein
nDi.2.2.scaf01696 (393..4458) 557 CTT4ATT L139I

596 GCA4ACA A126T
4443 GCA4ACA A6T

(lgc-45)b cre-lgc-45 protein nDi.2.2.scaf02553 (1..1867) 1356 GAG4AAG E59K
(lgc-55) cre-lgc-55 protein nDi.2.2.scaf00086 (64805..70168) 67,173 CCT4ACT P177T

a Homolog genes with detrimental RNAi phenotype in C. elegans.
b Absence of a significant BLAST hit (E-value below 10�5) in the predicted proteomes of H. sapiens and C. lupus familiaris.
c SNP causes change in secondary structure of the protein as predicted by PSIPRED.
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in the homologs of phylogenetically defined L-type (‘long-lasting’)
gene egl-19, Non e L (P/Q) -type gene unc-2, T-type (‘transient’)
gene cca-1 and also in nca-2, an a1U branch of invertebrate cation
channel (Hobert, 2013) (Table 7). In gene nca-2, a SNP resulting in
either glutamate or lysine at position 1619, could be of importance
since its RNAi phenotype is embryonic lethal in C. elegans. A SNP
predicted to cause a secondary structure change (Fig. 1) was found
to be present at amino acid position 147 of the a2v subunit gene
unc-36. The SNP V147G was present mainly in the susceptible
populations. Multiple SNPs were identified in the Ryanodine re-
ceptor (RyR) class of intracellular calcium channels. Among the
auxiliary proteins of calcium channels, two SNPs (A141T, F144L) in
unc-79, and a T1836M SNP in unc-80 were identified. Orthologs of
these genes in C. elegans had RNAi detrimental effects (Jospin et al.,
2007).
3.6. Chloride channels

Nine membrane localized chloride channels were identified;
five from the chloride channel (CLC) family, two from the chloride
intracellular channel (CLIC) family and two from the bestrophin-
related channel types. Two hundred and sixty five SNPs were
identified among these 9 chloride channel genes with a poly-
morphic rate of 0.48%; highest among the channel types studied. In
the CLC-type clh-1 gene homolog, two closely positioned SNPs
A300G and V302F were identified. In the other CLC-type gene clh-3,
we found two SNPs at positions 915 (Q915K) and 1095 (S1095N). A
single SNP N325H was identified in the clh-5 gene homolog. The
clh-6 gene was multi-polymorphic as we identified 9 missense
types of polymorphism in this gene. Bestrophin-related calcium-
activated chloride channel genes, namely best-13 and best-24 were
found to be polymorphic (see Table 8). One of the subunits of the
best-24 gene had a premature stop codon causing polymorphism,
whereas the SNP L75M, found in the other subunit, caused a change
in predicted secondary structure.
3.7. Other type of channels

From the DEG/ENaC (DEGenerin/Epithelial Sodium Channels)
protein family of D. immitis, we identified 8 annotations that could
encode 7 genes. The calculated polymorphic rate within this group
of sodium channels was 0.2%. One SNP in each of the amiloride-
sensitive sodium channel genes, namely unc-105, acd-1, acd-5 and
del-10, was identified (see Supplementary file 4, Table S4). Double



Fig. 1. PSIPRED predicted secondary structure changes in ion channels due to polymorphism. Secondary structure changes predicted for each ion channel are represented
by cartoons: for helix (H), for strand (E) and for coil (C). Confidence value for prediction at each position is given as a series of blue bar graphs - . Any change in
amino acid due to polymorphism is highlighted in yellow.
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SNPs, F33L and D148N were seen in del-10. The TRP (Transient
Receptor Potential) superfamily of cation channels were 7 in
number in the D. immitis genome. These canonical TRP channels
carried 319 SNPs in both introns and exons, with a polymorphism
rate of 0.38%. Both the first and second SNPs were found in codon
214 of the gene spe-41, changing alanine to valine or serine. In the
trp-4 gene, 3 SNPs, T83P, A538T and S894A, were identified; the
first predicted to cause a secondary structure change from helix to
coil. Another TRP channel gene, ced-11, was found to be highly
polymorphic with 15 variable loci identified in the exon regions
alone. So far, the genome of D. immitis was found to have three
cation-selective cyclic nucleotide gated (CNG) ion channel genes,
namely tax-2, tax-4 and che-6, that respectively encode b, a, and a/b
subunits (Smith et al., 2013). A single polymorphic site T106I was
found in the b-type subunit gene, tax-2, whereas the other subunit
gene, che-6, was also highly polymorphic (see Supplementary file 3,
Table S3). The gene ncs-4 (“neuronal calcium sensor”) belonging to
the calcium binding protein family had a SNP at amino acid position
E169K. Also, a single SNP, V124I was found in the cation channel,
and 2 SNPs, F30L and S66G, were observed in an unnamed voltage-
dependent anion channel. The presence of these amino acid
changes were predicted to cause secondary structure changes in
the protein.

4. Discussion

Parasitic nematode associated diseases cause serious health is-
sues in millions of humans (Hotez et al., 2007, 2008; Brooker et al.,
2010; Lustigman et al., 2012) and animals (both domestic and
livestock) each year (Bird and Kaloshian, 2003; McKellar and
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Jackson, 2004; Charlier et al., 2014). MLs have been the drugs of
choice to treat and/or to prevent many parasitic nematode in-
fections, including heartworm in dogs (Geary, 2005; Omura, 2008;
Prichard et al., 2012). In recent times, many of the existing an-
thelmintics, including the MLs, have begun to face problems of
emerging resistance. Therefore, improved diagnostics, new drugs
and effective vaccines are important goals for efficient control and
prevention of parasitic diseases. For the animal health sector, there
has been an increased focus on the discovery of new drugs for
canine heartworm (Geary et al., 2015). In the context of discovering
new anthelmintics, it is of interest that ion channels in the neuro-
muscular systems of nematodes have been successful drug targets
for many of the anthelmintics discovered in the past, and remain
targets of choice for discovery of new anthelmintics
(Wolstenholme, 2011; Greenberg, 2014).

In this study, we employed comparative genomic approaches, by
using ion channel gene sequences from related nematodes, to
localize their homologs in the nDi.2.2 genome of D. immitis. A total
of 224 genes/subunits that are likely to encode 126 unique ion
channels and receptors genes were identified. The genome of
D. immitis has 42 cys-loop LGIC (15 cationic nAChR,1 cationic iGluR,
19 anionic chloride channels and 7 diverse channel genes). This is
similar to the 44 receptor genes (21 nAChR-like genes and 23
chloride channel subunits) reported in the closely related B. malayi
genome (Scott and Ghedin, 2009), but fewer compared to 102 LGIC
genes (52 nAChR, and 50 chloride channel genes) in C. elegans
(Jones and Sattelle, 2004). We report that the genome of D. immitis
may have at least 43 voltage-gated potassium channels; close in
number to the 36 in B. malayi (Scott and Ghedin, 2009) but fewer
than the 72 reported in C. elegans (Hobert, 2013) and 80 in mam-
mals (Pardo and Stühmer, 2014). Six subunits encoding calcium
channel genes (also 2 auxiliary subunits) were identified in
D. immitis, with four encoding a1 subunits, one each encoding a2v,
b subunits. In C. elegans, 5 genes encode a1, 2 b, and 2 a2v subunits
(Hobert, 2013). Among the chloride channels, 5 were identified
from the CLC type, 2 CLICs and 2 genes from the bestrophin-related
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genes, compared to 6 genes of the CLC and 26 bestrophin-related
genes found in C. elegans (Schriever et al., 1999; Hobert, 2013).
We also identified 7 genes that belong to DEG/ENaC/ASIC channels
and another 7 belonging to the TRP-type channels. This compares
with 30 and 23 genes, respectively, in C. elegans (Hobert, 2013).

We aimed at investigating SNPs in these ion channel genes that
cover 1.1% of ~84.2 Mb nuclear assembly of D. immitis.Within these
ion channel genes, we report an overall polymorphic rate of 0.18%.
For each of the polymorphisms, especially for those in the exonic
regions, we studied its likely effects, such as a change in amino acid,
and change in predicted secondary structure of the protein as it
could be relevant for anthelmintic drug development. Furthermore,
this study identified all the allelic forms in these ion channels. This
information may be used to help ensure that a prospective drug
candidate is active against different genetic forms. As we also used
genomic data from pooled LOE populations for genotyping, the
populations’ specific genetic variants were also identified. This in-
formation may be helpful to check the effectiveness of a new drug,
Table 5
Summary of genes/subunits of voltage-gated and other channel types studied for poly
populations from different geographical locations.

Channel types No. of subunits studied Base pairs covered

Calcium 26 (9) 183,111
Potassium 72 þ 1* (44) 313,602
Chloride 13 (9) 55,311
DEG/ENaC 8 (7) 52,637
TRP 14 (7) 82,860
Others 8 (7) 28,970

No. of unique genes are indicated in brackets. *One auxiliary subunit of a potassium cha
even against ML LOE populations. Moreover, the polymorphic
knowledge of ion channel targets may help to anticipate resistance
development, as the more heterogeneous a drug target is, the
greater the potential for resistance to develop (Prichard, 2001).

We analyzed polymorphic rates per geographical location and
found rates of 75.2, 70.9, 70.0 and 43.0% in pooled populations from
the USA, Grand Canary, Grenada and Italy respectively. A low
polymorphic rate in the sample of worms from Italy may be
explained by the fact that the worms were from a single dog, in
contrast to worms coming from other countries in which several
dogs donated worms. Thus, barring the Italian samples, we saw a
trend of low genetic variability among ion channel and receptor
genes between populations from the USA, Grand Canary and
Grenada. This hypo-variability, though not anticipated, is in
agreement with the population genetic results studied at the mi-
crosatellite level (Belanger et al., 2011) and also at the whole
genome level (Godel et al., 2012). However, Godel et al. (2012) used
only two different D. immitis isolates, one from Italy and the other
morphism, SNPs identified and the SNP rate calculated among Dirofilaria immitis

No. of SNPs identified Polymorphic rate (%)

Intron Exon Total

278 46 324 0.18
245 39 284 0.09
224 41 265 0.48
91 14 105 0.20
280 39 319 0.38
47 11 58 0.20

nnel.



Table 6
SNP analysis of potassium channel genes/subunits of Dirofilaria immitis.

Putative gene name/description Coverage in nDi.2.2 scaffold SNP position in the
scaffold

Nucleotide
change

Amino acid
polymorphism

(irk-3) inward rectifier potassium channel 2 nDi.2.2.scaf0048335 (35621..36678) 35,701 CGA4GGA R99G
(twk-48) potassium channel subfamily k member 18-like nDi.2.2.scaf00031 (282982..285733) 284,309 ATC4ACC I171T
(twk-8) t family of potassium channels protein nDi.2.2.scaf00297 (29943..41201) 31,960 ATG4GTG M468Vc

(twk-18) cre-twk-18 protein nDi.2.2.scaf01557 (1..1936) 1832 AAA4TAA K103Stop
1846 ATG4ATA M107I
1869 CGA4CAA R115Q
1875 TCT4TTT S117F

(twk-18)b cre-twk-18 protein nDi.2.2.scaf01557 (1976..6354) 1976 ATG4GTG M1V
1988 CAT4GAT H5D

(twk-47)a,b protein twk-47 nDi.2.2.scaf03721 (1..1197) 1172 GTA4GCA V9A
(exp-2) expulsion defective family member nDi.2.2.scaf00006 (218879..222098) 219,314 GTA4GGA V24G
(kvs-4) potassium voltage-gated channel subfamily b

member 1
nDi.2.2.scaf00301 (583..5688) 4802 ACA4ATA T208I

(shw-3) cre-shw-3 protein nDi.2.2.scaf05035 (1..436) 428 AGC4ATC S3I
(shw-1) voltage-gated potassium channel nDi.2.2.scaf07713 (1..653) 624 GAC4AAC D80N
(F59F3.6) k þ channel tetramerisation domain containing

protein
nDi.2.2.scaf00117 (106270..113892) 113,664 ATT4ATG I194Mc

113,723 GCT4GTT A214V
(unc-93)a potassium channel regulatory protein nDi.2.2.scaf00192 (61319..67673) 62,629 CGA4CAA R131Q
(kcnl-2)a small conductance calcium-activated potassium

isoform m
nDi.2.2.scaf01340 (1485..8980) 1522 CAT4CGT H346Rc

a Homolog genes with detrimental RNAi phenotype in C. elegans.
b Absence of a significant BLAST hit (E-value below 10�5) in the predicted proteomes of H. sapiens and C. lupus familiaris.
c SNP causes change in secondary structure of the protein as predicted by PSIPRED.
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from the USA to draw this conclusion. Our findings could support
the hypothesis that heartworm disease is a New World disease
(Bowman and Atkins, 2009). However, canine heartworm was re-
ported for the first time in Italy in 1626 (Birago, 1626) but is known
to have been present in the USA from 1847 (Osborne, 1847). On the
other hand, the result of our study is in contrast to reports sug-
gesting that D. immitis has considerable genetic variability (Geary
et al., 2011; Bourguinat et al., 2011c). These earlier studies were
based on only 5 gene sequences in individual adult worms from the
USA (field and laboratory samples) and Japan (field samples). It
must also be kept in mind that in the current study we did not
analyze polymorphism when it occurred in less than 15% of the
reads of a sequence. Thus, additional polymorphism may occur at
low levels. Other parasitic nematodes have marked genetic vari-
ability such as Ascaris lumbricoides (Criscione et al., 2007), Hae-
monchus contortus (Cerutti et al., 2010), Telardorsagia circumcincta
andMazamostrongylus odocoilei (Grillo et al., 2007). However, these
studies were conducted onwhole genomes and some genes may be
Table 7
SNP analysis of calcium channel genes/subunits of Dirofilaria immitis.

Putative gene name/Description Coverage in nDi2.2 scaffo

(egl-19) Ca nDi.2.2.scaf00156 (87..12
(unc-2) P/Q e type calcium channel nDi.2.2.scaf01292 (5521.
(cca-1) calcium alpha subunit family member nDi.2.2.scaf02061 (1..256
(cca-1) calcium alpha subunit family member (cca-1) nDi.2.2.scaf02732 (1..174
(nca-2)a four domain-type voltage-gated ion channel

alpha-1 subunit
nDi.2.2.scaf00024 (97885

(unc-36) voltage-dependent calcium channel nDi.2.2.scaf00220 (32908
RyRa ryanodine receptor 44f nDi.2.2.scaf00024 (33872

(unc-80)a uncoordinated family member nDi.2.2.scaf00207 (43636
(unc-79)a uncoordinated family member nDi.2.2.scaf01338 (32..94

(unc-79)a protein unc-79 homolog nDi.2.2.scaf04898 (1..113

a Homolog genes with detrimental RNAi phenotype in C. elegans.
b SNP causes change in secondary structure of the protein as predicted by PSIPRED.
more conserved than others. Therefore, it is not appropriate to
compare genetic variability in a subset of genes in one organism
with different genes in other organisms. D. immitis appears to be a
nematode with a relatively low level of heterogeneity in ion
channel genes. Genome wide studies need to be done on worms
from different locations to make definitive conclusions on the
overall degree of heterogeneity in D. immitis.

Genetic changes either in the form of insertions/deletions
(indels) or mutations in the intron region of a gene can influence
splicing (Kubota et al., 2011), structure and function of a protein,
and the possibility of resistance selection (Barr�ere et al., 2014). For
example, an indel of 63 bp present in intron 2 of the H. contortus
gene, Hco-acr-8 was found to be responsible for the truncated
isoform of the protein Hco-ACR-8b and this genetic change corre-
lated significantly with levamisole resistance (Barr�ere et al., 2014).
Also, an intronic SNP out of the diplotypic GG-GG genotype in Dim-
pgp-11 of D. immitis (Bourguinat et al., 2016) occurs at the intron
region of the 30 end of the gene. This diplotypic genotype strongly
ld SNP position in the
scaffold

Nucleotide
change

Amino acid
polymorphism

852) 11,273 ACC4CCC T1447P
.9462) 7528 TTG4GTG L163V
1) 748 CTG4CCG L102P
0) 693 CGA4GGA R130G
..111975) 110,036 GAA4AAA E1619K

..46275) 43,927 GTG4GGG V147Gb

1..388427) 345,969 CAA4AAA Q4384K
371,014 GAA4GGA E1711G
371,999 CGA4GGA R1587G
377,552 ACC4CCC T1285P
385,665 CTT4CCT L182P

..72270) 54,434 ACG4ATG T1836M
6) 923 GCA4ACA A141T

932 TTC4CTC F144L
0) 1125 CAA4CAT Q2H



Table 8
SNP analysis of chloride channel genes/subunits of Dirofilaria immitis.

Putative gene name/Description Coverage in nDi.2.2 scaffold SNP position in
the scaffold

Nucleotide
change

Amino acid
polymorphism

(clh-1) protein clh- isoform b nDi.2.2.scaf01639 (1..5958) 5052 GCT4GGT A300G
5057 GTT4TTT V302F

(clh-3/clc-3) voltage gated chloride channel
family protein

nDi.2.2.scaf00125 (31151..45497) 31,476 AGT4AAT S1095N
32,409 CAA4AAA Q915K

(clh-5/clc-5) chloride channel protein 3 nDi.2.2.scaf00353 (9838..16713) 14,624 AAT4CAT N325H
(clh-6/clc-6) chloride channel protein 7 (ccp-7) nDi.2.2.scaf00051 (224832..229977) 225,891 GTT4ATT V628I

226,548 GTG4GCG V549Aa

226,820 ATT4GTT I517V
226,841 TTT4GTT F510V
227,468 AAT4GAT N413D
228,310 GCG4GGG A278G
228,313 GCT4GGT A277G
228,316 GTG4GGG V276G
228,981 GGT4AGT G147S

(best-13) bestrophin 1 nDi.2.2.scaf00401 (31248..33870) 32,314 GCT4GGT A136G
33,830 CGA4CAA R384Q

(best-24) bestrophin family protein nDi.2.2.scaf00816 (5183..11705) 5254 GAA4AAA E626K
9709 CAA4TAA Q347Stop

(best-24) bestrophin family protein nDi.2.2.scaf01764 (346..4516) 852 TTG4ATG L75Mc

a SNP causes change in secondary structure of the protein as predicted by PSIPRED.
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correlated with in vitro (Bourguinat et al., 2011b), and in vivo re-
sponses of mf to IVM (Bourguinat et al., 2011a). Accordingly, a few
of the 1508 SNPs (82% of total polymorphism) identified within
intron regions of the 244 genes/subunits of ion channel genes could
have implications for gene expression, response to drugs (Wang
et al., 2011), resistance development (Barr�ere et al., 2014), or
other effects, which would need to be confirmed in future in-
vestigations. Also, 125 SNPs found within exon regions caused
synonymous type variation. There is therefore a possibility that a
few of these SNPs might have implications either for aberrant
mRNA splicing (Cartegni et al., 2002) or affect mRNA stability that
could impact protein expression (Nackley et al., 2006) or change
protein conformation. Such effects could lead to changes in protein
function (Kimchi-Sarfaty et al., 2007).

This study also identified 129 SNPs that are in exon regions and
caused amino acid changes. A few of the nsSNPs may be critical as
they were found in ion channels identified as potential drug targets
based on two criteria: the detrimental effect of knockout of its
homolog gene in C. elegans and absence of a homolog in humans
and dogs. The significance of the nsSNPs was analyzed on the basis
of changes in predicted secondary structure in association with a
change in amino acid.

Glutamate gated chloride channels (GluCls) are proven targets
for macrocyclic lactones. GluCls are invertebrate specific and play a
key role in locomotion, feeding and sensory input (Greenberg,
2014), and therefore are attractive drug targets. AVR-14, in partic-
ular, is an interesting target as it is well conserved in all nematodes
studied so far (Laughton et al., 1997; Jagannathan et al., 1999; Yates
and Wolstenholme, 2004; Njue et al., 2004; Tandon et al., 2006).
GluCls are expressed on motor neurons (Dent et al., 2000; Portillo
et al., 2003; Glendinning et al., 2011) that mediate locomotion,
feeding, reproduction and secretion/excretion from the excretory
pore. Considering this, the AVR-14 of D. immitis (GenBank:
CAE46429.1) could act as a drug target; two adjacent SNPs, C382F
and C385F, identified in this study could be critically important
from a drug design perspective. The homolog of this gene in
C. elegans has a locomotion coordination variant phenotype
following RNAi (Cook et al., 2006).

Nicotinic acetylcholine receptors (nAChRs), the most common
targets of current anthelmintics, are a diverse group of receptors
with interesting pharmacology (Wolstenholme, 2011; Greenberg,
2014). nAChRs are pentameric structures with a wide variety of
potential subunits that provide them with considerable receptor
diversity, and distinct structural properties and pharmacological
sensitivities (Greenberg, 2014). Although the possibility of rapid
development of resistance, and cross-resistance between drugs
that target these receptors, has been anticipated as nematodes may
alter receptor sensitivity to different anthelmintics by varying the
stoichiometry of subunits (Williamson et al., 2009; Buxton et al.,
2014), it was shown that this possibility may not be true at least
in the case of neuronal nAChRs targeted by monepantel (Kaminsky
et al., 2008). nAChRs get expressed at the neuromuscular junction,
nerve ring and in the pharynx of C. elegans (Jones and Sattelle,
2004). Therefore, nematode nAChRs, including those in
D. immitis, may be good targets for new anthelmintics. Among the
polymorphisms identified in the putative nAChRs genes of
D. immitis, SNPs identified in acr-8, acr-11 and acr-16 genes need
special mention. Three SNPs (L256F, Y264F, R364G), including a
secondary structure change caused by R364G in acr-8, and a
deletion-causing SNP in the other subunit of the acr-8 gene, were
identified. The acr-11 gene has a detrimental RNAi phenotype in
C. elegans and its homolog in D. immitis has been identified with a
SNP Q46P. The other nAChR gene, acr-16 was found to have three
close SNP loci, at P40S, L43F and S53L.

Inhibitory GABA-gated chloride channels present at the neuro-
muscular junction of nematodes (Holden-Dye et al., 1989;
Richmond and Jorgensen, 1999) mediate the relaxation phase of
sinusoidal muscle movement (Accardi et al., 2012) and so any drug-
induced activation, for example by the anthelmintic piperazine, a
GABA agonist, can cause flaccid paralysis of worms (Martin, 1985).
MLs also appear to bind to GABA-gated chloride channels of nem-
atodes (Feng et al., 2002; Brown et al., 2012). Therefore, these
channels can be fruitful drug targets. GABA receptors of D. immitis,
namely the homologs of gab-1 and unc-49 with identified SNPs
I20T and N57D, respectively, may be of interest for drug interven-
tion. The gene unc-49 (and its associated SNP) is worthy of mention
as its homolog gene in C. elegans has proven expression in somatic
muscle at the neuromuscular junction and therefore plays an
important role in locomotion (Bamber et al., 1999). Nematodes
possess serotonin, dopamine, tyramine and ACh-gated anion
channels not found in mammals (Wolstenholme, 2011; Beech et al.,
2013; MacDonald et al., 2014). Therefore, the SNPs in the tyramine-
gated receptor coded by lgc-55, and the dopamine-gated receptor
coded by lgc-53 could be of interest during drug development.
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iGluR gene glr-1 of D. immitis, with its SNPs N287S, P809T, could be
an interesting drug target, as such receptors have been found to
play vital roles in the nematode nervous system (Aronoff et al.,
2004; Kano et al., 2008).

Voltage gated ion channels function in response to changes in
membrane potential and gate calcium (Cav channels) or potassium
(Kv channels) in nematodes. This type of voltage-gated ion channel
represents a class of outstanding but underexploited drug targets
(Camerino et al., 2007; Davies et al., 2007). To date, only two
members of the voltage-gated ion channels, namely Ca2þ- activated
potassium channel gene slo-1 and a schistosome calcium channel
gene have been implicated in the action of anthelmintics: emo-
depside and praziquantel, respectively (Wolstenholme, 2011). The
genome of D. immitis encodes 43 potassium, 6 calcium channel
genes but no voltage-gated sodium channels. The potassium
channel genes, twk-18 and twk-47 were found to be nematode
specific targets and our study has identified SNPs in each of the
genes. Further study may be warranted to understand the impli-
cations of the identified SNPs, M1V, H5D (twk-18) and V9A (twk-
47), on the functionality of the respective proteins. A SNP (H346R),
which may be of importance, was found in the small conductance
Ca2þ -activated Kþ (SK) channel gene kcnl-2, wherein the homolog
of this gene is required for regulating the rate of egg-laying in
C. elegans (Chotoo et al., 2013). The a1 subunit encoding calcium
channel genes, such as nca-2 and egl-19 with SNPs (E1619K and
T1447P, respectively) could be good targets for future anthelmintic
discovery, considering the fact that their respective homolog genes
in C. elegans were found to have RNAi detrimental phenotypes
(Kamath et al., 2003; Humphrey et al., 2007). An intracellular
Ryanodine receptor (RyR) calcium channel encoded by the unc-68
gene is well conserved in nematodes (Maryon et al., 1996) and is
localized in muscles (Hobert, 2013) and in neurons (Liu et al., 2005)
of C. elegans. Also, the phthalic acid diamide and anthranilic
diamide classes of insecticides act on the RyR receptor (Sattelle
et al., 2008). Considering this, the RyR receptor homolog of
D. immitis could be an attractive drug target. However, this gene
was found to be highly polymorphic (both intronic and exonic
SNPs) and so the chances of resistance being selected against drugs
that target this gene product could be high. In D. immitis, CLC type
chloride channel genes, namely clh-1, -3, -5 and -6, which poten-
tially control the membrane potential of cells, were found to have
polymorphic site(s). However, the significance of these SNPs has yet
to be studied. There were also two bestrophin-related chloride
channel genes identified in D. immitis; the best-24 gene homolog is
of interest since the gene is expressed in neurons in C. elegans
(Hobert, 2013). For the same reason, SNPs identified in the gene,
mainly the one causing a stop codon and the other causing a change
in predicted secondary structure, may have interesting effects.

Nematodes possess several other families of ion channels in the
nervous system that could also be exploited as drug targets. For
examples, the DEG/ENaC (Degenerin/Epithelial Sodium Channel)
family of sodium channels have been implicated in mechano-
transduction and mechanosensitive behaviour in C. elegans
(Syntichaki and Tavernarakis, 2004). Activating this type of sodium
channel in the worms was found to cause inappropriate cell death
(Driscoll, 1992) due to their constitutive activation (Hong and
Driscoll, 1994), and so any agonist drug could be a potential
anthelmintic (Wolstenholme, 2011). From this study, SNPs were
also found in DEG/ENaC channel genes such as unc-105, acd-1, acd-5
and the worm-specific gene del-10. TRP channels, a superfamily of
cationic channels, well represented in both nematodes and schis-
tosomes (Wolstenholme et al., 2011), mediate transduction of
sensory stimuli and are important in Ca2þ signaling cascades. Any
dysregulation of these channels could interfere with signal trans-
duction and disrupt Ca2þ homeostasis in worms (Greenberg, 2014).
SNPs identified in TRP channel genes such as in trp-4, ced-11 and
spe-41 may, therefore, have interesting effects.

Finally, the genome of D. immitis codes for three predicted CNG
channels compared to six in C. elegans (Kaupp and Seifert, 2002). A
SNP, T106I, was identified in the gene tax-2, which could be a po-
tential drug target since its homolog gene regulates thermosensa-
tion, chemosensation and neuronal development in C. elegans
(Coburn and Bargmann, 1996; Komatsu et al., 1996; Coburn et al.,
1998).

SNPs present either in only susceptible or LOE populations were
also highlighted in this study. For example, SNPs such as I20T in the
gene gab-1, L691P (lgc-53), P809T (glr-1), I717V (mgl-2), A381T
(acd-5), V147G (unc-36), L75M (best-24), Q2H (unc-79), to name a
few, were specific to susceptible populations. SNPs such as N287S
in gene glr-1, S53L in acr-16, T208I in kvs-4, S1095N in clh-3, A538T
in trp-4, H346R in kcnl-2 and I36M in che-6 were identified only in
the LOE populations. The purpose of highlighting possible pheno-
typic consequences of SNP variability in populations is to provide a
basis to ensure that any new drug is active against all of the allelic
variants of the drug target.

5. Conclusion

Our study describes the extensive profile of ion channel and
receptor genes in D. immitis. This study is the first of its kind to
determine genetic polymorphism in ion channels in this parasite, to
generate information on possible effects on protein structure and
function, and to consider these findings in the context of RNAi
phenotypes for homologs of the genes in C. elegans. Such infor-
mation may be useful during drug design and to anticipate poly-
morphisms which could impact resistance development. Among
the total of 1762 SNPs identified, some may affect gene expression,
structure and function of the proteins, and resistance selection
processes. A merit of this study lies in the large number of samples
used for SNP genotyping. Whole genome sequencing data were
generated, from 122 ML susceptible adult worms, isolated from 17
dogs from 4 countries, for SNP analysis. In the case of LOE samples,
~32,000 mf, isolated from 4 ML-LOE dogs from different US states
were used (Bourguinat et al., 2015). It is possible that some addi-
tional SNPs were not detected in this analysis due to lack of
coverage of some sequences in the genome or to the population
size and diversity that was analyzed. Moreover, the SNPs that were
specific to the LOE populations were called based on a relatively
low number of reads, compared to the read frequencies among the
susceptible populations, and therefore information specific to the
LOE samples should be considered preliminary. Further studies
need to be done to confirm the SNPs in field samples and to un-
derstand the possible implications of such SNPs in terms of protein
structure, function and also any possible interaction of ion channels
with potential antiparasitic drugs.
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