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Abstract—Developing an automatic signature verification
system is challenging and demands a large number of train-
ing samples. This is why synthetic handwriting generation is
an emerging topic in document image analysis. Some hand-
writing synthesizers use the motor equivalence model, the
well-established hypothesis from neuroscience, which analyses
how a human being accomplishes movement. Specifically, a motor
equivalence model divides human actions into two steps: 1) the
effector independent step at cognitive level and 2) the effec-
tor dependent step at motor level. In fact, recent work reports
the successful application to Western scripts of a handwriting
synthesizer, based on this theory. This paper aims to adapt
this scheme for the generation of synthetic signatures in two
Indic scripts, Bengali (Bangla), and Devanagari (Hindi). For this
purpose, we use two different online and offline databases for
both Bengali and Devanagari signatures. This paper reports an
effective synthesizer for static and dynamic signatures written
in Devanagari or Bengali scripts. We obtain promising results
with artificially generated signatures in terms of appearance and
performance when we compare the results with those for real
signatures.

Index Terms—Biometrics, handwritten signature recognition,
handwritten signature synthesis, Indian scripts, motor equiva-
lence model.

I. INTRODUCTION

HE handwritten signature has been used for many cen-
T turies for authenticating personal identity. Performing sig-
nature verification aided by computer vision systems is nowa-
days common practice. However, because of large intrauser
variability, obtaining reliable performance of such verifica-
tion systems demands exhaustive system training and requires
a large number of samples. Procuring a signature database of
real signatures that could be used in extensive training and
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testing is a tedious, complex, and costly task since a reliable
database should exhibit biometric variability as much as pos-
sible (i.e., multisession, multiple acquisition sensors, different
signal quality, emotions, etc.). User cooperation is also a fac-
tor. On top of that, legal issues pertaining to data protection
are also relevant.

To address these problems, researchers have investigated
methods of generating synthetic signature data that exhibits
similar characteristics to real life signatures. However, all such
methods used so far focus on Western-based scripts. Present
state-of-the art research reveals this fact.

A. Schemes for Synthetic Signature Generation

Various workers have proposed methods for synthetic gen-
eration, based on dynamic signature duplication, aimed at
improving enrollment in dynamic Western signature verifica-
tion [1]-[4]. In [5] researchers generate new static signatures
from two dynamic samples produced by the same user.
A static handwritten Western signature database is gener-
ated in [6] by making an affine transformation of the original
signatures. Similar objectives were achieved in [7] by the
generation of enhanced static signatures which approximate
the performance of real Western signature datasets. Workers
in [8] use an inspired cognitive approach to generate Western
static versions of real dynamic signatures and in [9] to gen-
erate Western static signatures from real static ones. Those
in [10] use a similar proposal to generate duplicates of Bengali
signatures.

Popel [11] proposed an approach for completely new sig-
nature generation. He develops a language model based
on visual characteristics extracted from the time domain.
However, Popel [11] provided only visual validation with-
out any performance evaluation. Galbally er al. [12], [13]
proposed a novel methodology for the generation of genuine
Western synthetic online signatures using flourish and isolated
casual characters. They fused spectral analysis and the kine-
matic theory of rapid human movement [14]-[17] to generate
the master signature of a new identity. Similarly, [18] reports
a proposal to use heuristic procedures to generate Western
static genuine and forged signatures.

Recently, elaborated procedures to generate signatures
have been proposed based on the motor equivalence theory.
Specifically, in [19] for Western offline signatures and in [20]
for Western online and offline signatures simultaneously.
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Fig. 1. Block diagram of the handwriting signature synthesizer based on the
motor equivalence model for Western style.

B. Motor Equivalence Theory

The motor equivalence theory, originally formulated by
Lashley [21] and later articulated by Bernstein [22], suggests
that the movements aimed at performing a single task is dis-
sected by the brain into two steps. The first step is called
“effector-independent.” It stores the movement in an abstract
form as a spatial sequence of points representing the action
plan. The parietal cortex in general, and the posterior pari-
etal cortex and the occipitotemporal junction in particular,
are suggested in [23] as the most important brain regions for
representation of the action plan. The second step is called
“effector dependent.” It consists of a sequence of motor com-
mands directed at obtaining particular muscular contractions
and articulatory movements in order to execute the action
plan [24].

Applying the motor equivalence theory to handwriting, the
action plan may be represented by means of strokes, which
are encoded in terms of relative positions and spatial direc-
tions. Once the movement has been planned, the motor control
delivers the commands to specific muscles to produce the
handwriting.

Kawato [25] stated that, due to slow biological feedback,
the feedback control cannot solely execute fast and coordi-
nated movements. He asserts that the brain acquires an inverse
image of the object controlled by motor learning. Accordingly,
the brain calculates the motor command by looking at the
internal inverse model of the limbs, which are created by
the cerebellum. This means that the handwriting of a human
being at an early age demands attention while writing and has
a clumsy appearance and slow execution speed. However, after
prolonged practice, the movements become quick, smooth,
automatic, and require a minimal cognitive contribution.

C. Signature Synthesizer Based on Motor
Equivalence Theory

The above factors are combined in the model used for
synthetic Western signature generation in [19] and [20] as fol-
lows: first, it defines a user grid based on the cognitive
map. Second, it represents the name and flourish engrams
as a sequence of grid nodes and their stroke limits. To gen-
erate these engrams a language model is required. Third, it
designs the signature trajectory by applying a motor model
to the signature engram. Fourth, from the signature trajectory,
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Fig. 2. Block diagram of the handwriting signature synthesizer based on the
motor equivalence model for Indian script.

theory

it generates the dynamic signature by lognormal sampling of
the signature trajectory. Finally, from the same signature tra-
jectory, it generates the static signature image by applying an
ink deposition model.

A detailed block diagram of this procedure is shown
at Fig. 1 for Western signatures and complemented with
Fig. 2 for Indic signatures.

The above proposed scheme gave us poor results in both
appearance and performance when it was applied to synthe-
size Devanagari and Bengali signatures. On the one hand,
the appearance was not perceptually natural for Indian native
people and, on the other hand, the performance was signif-
icantly different compared to the results obtained with real
Indic datasets.

Moreover, a deeper analysis revealed several limitations of
the Western-based model proposed in [19] and [20] to gen-
erate Indic scripts. Such limitations are related to the Indic
scripts themselves and the handwriting style of Indian writ-
ers. Specifically, the Indic scripts consist of more complex
characters, shorter strokes and more pen-ups than Western
handwriting. Additionally, the Indian writers exhibit more
curved pen-up trajectories and pen-up to pen-down transitions
without speed minimum, i.e., Western writers lean the pen
against the sheet and start to write while Indian writers seem
to start the writing in the air. This effect is necessary for rapid
handwriting with a high number of pen-up to pen-down transi-
tions. These findings explain how the motor system influences
the user variability.

Therefore, a redesign of the signature synthesizer was
mandatory to generate Indic handwriting. As a result,
this paper describes the procedure to generate synthetic
Bengali and Devanagari signatures by defining Indic
morphology and language models, script shapes, and Indic
handwriting styles to the synthesizer proposed in [20]. The
quality evaluations of the generated Indic signatures are based
on both performance and subjective opinion surveys. The
performance experiment compares the similarity between the
equal error rates (EERs) obtained with real and synthetic
signatures database with different online and offline classi-
fiers. Instead, the perceptual experiment explores the human
confusion between synthetic and real Indic signatures.

The outline of the remainder of this paper is as fol-
lows. Section II describes the signature morphology and
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Fig. 3. Example of signatures in two different scripts. Top: Bengali. Bottom:
Devanagari.

language model of both Bengali and Devanagari signatures.
Section III is devoted to offline Indian signature generation
while Section IV is dedicated to the synthesis of online Indian
signatures. The generation of multiples samples is discussed
in Section V. The experiment and related discussions are
described in Sections VI and VII concludes this paper.

II. MORPHOLOGY AND LANGUAGE MODEL FOR
DEVANAGARI AND BENGALI SIGNATURES

To define an appropriate synthetic signature specimen,
a morphology, and language model is needed to construct sig-
natures with similar appearance to the original signature [26].
This requirement is mainly due to the fact that performance
of a signature database depends on characteristics, such as the
average number of words, letters per word, etc. Additionally,
although real names are avoided for privacy reason and read-
able names are recommended for perceptual acceptability of
the synthetic signature.

A. Bengali Signature Characteristics

Bengali is the seventh most popular language in the world
and is mainly spoken in the eastern part of India and in
Bangladesh. It is derived from Indo—European languages of
the tenth century. Bengali script is used to express the lan-
guage in written form. Like other Indic scripts the Bengali
script has its root in Brahmic script.

Bengali signatures consist of readable text and usually
include two parts, the first part refers to the name and the
second part refers to the surname of a person. An example
can be seen at Fig. 3. There is a third word, only when the
middle name is included.

To define the name of the synthetic signer, a statistical lan-
guage model is used. This model should take into account
the basic grammar of the language and several other rules
as probability distributions of the occurrence frequency of
every character that defines the construction of names in this
language.

In this way, the number of Bengali signatures with one word
is 46.95%, with two words is 46.95%, and with third word is
6.1%. The distribution of the number of letters per word is
given at Table I. This data have been worked out from
a Bengali signature dataset [27].
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Fig. 4. Engram of a Bengali character (left) and Devanagari one (right).

TABLE I
DISTRIBUTION OF WORDS AND LETTERS IN THE SIGNATURE

Number of letters per word
Database  Word 1 2 3 4 5 6
1 0.00% 12.0% 51.0% 30.0% 7.00% 0.00%

Bengali 2" 4.00% 48.0% 43.0% 4.00% 1.00% 0.00%
34 0.00% 69.2% 23.0% 0.00% 0.00% 7.80%
1* 0.00% 17.0% 53.0% 20.0% 10.0% 0.00%
Devanagari 2™ 0.00% 17.0% 54.0% 19.0% 10.0% 0.00%

3 12.50% 37.5% 37.5% 12.5% 0.00% 0.00%

TABLE II
VALUES OF THE GEV u, o, AND £ PARAMETERS FOR THE DIFFERENT
DATABASES AND MORPHOLOGY CHARACTERISTICS

Parameter Database 4 g U min _ max
Total number Bengali -0.03 1.03 5.59 4.00 12.00
of letters Devanagari  -0.12 122 5.51 3.00 11.00
Slant Bengali -0.26 12.32 -4.75 -28.50 33.69
(degrees) Devanagari  -0.16 8.25 -4.39 -22.31 32.47
Skew Bengali -0.17 2.03 -0.94 -5.06 6.12
(degrees) Devanagari  -0.35 2.55 -0.64 -6.84 5.60
Text  width Bengali -0.12 30.54 1489  98.82 251.8
(mm) Devanagari  -0.01 24.88 129.5  82.96 231.7
Text  height Bengali -0.06 6.55 31.11  19.07 65.50
(mm) Devanagari  -0.23  4.96 28.27  16.59 43.34

. Bengali -0.07 0.65 2.63 2.00 5.00
Velocity .
Devanagari -0.13 0.95 3.12 2.00 6.00

The probability density function (PDF) of other useful sig-
nature morphological parameters are modeled by means of
the generalized extreme value (GEV) distribution. GEV com-
bines three simple distributions into a single form, allowing
a continuous range of possible shapes. As a consequence, the
GEV leads to “let the data decide” which distribution is most
appropriate. The GEV is defined as

fxlé, pn,o)= ét(x)g"'le—f(x) )

where

(1+8(54) " ife 0

1x) = e~ —mw)/o if€=0

@)

being 1 the location parameter, o the scale parameter, and &
the shape parameter.

The values for GEV distribution parameters of signature
morphological characteristics, such as slant, skew, signature
size are given in Table II. Minimum and maximum values are
established for those distributions, as can be seen in Table II.
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Signature dynamic distributions, such as the velocity of writing
the signatures have also been taken into account. Although
signatures in Western script exhibit characteristics like skew
and slant, such traits are generally much lower in Bengali
signatures.

Usually, a name consists of a concatenation of vowels and
consonants. In Bengali script there is no concept of an upper
case or a lower case letter. All characters in a word are
of a similar size, including the starting character. We have
considered the most frequently used vowels and consonants
in contemporary Bengali script, specifically 12 vowels and
40 consonants.

For Bengali script, the language model turned out to be more
complex than English counterpart: this is because: 1) there are
restrictions on presence/absence of certain vowels before or
after the consonants; 2) the shape of the vowels can be changed
and this gives rise to vowels in modified form; and 3) a modi-
fied shape of a vowel may come in two parts and often changes
their position with respect to the consonants. Specifically, the
following basic rules are followed for automatic generation of
a Bengali signature text.

1) A vowel will be followed by a consonant with a proba-

bility of 0.97, whereas a consonant will be followed by
a vowel with a probability of 0.7.

2) There are certain vowels, which are restricted from being
the last letter of a word. These are & and &.

3) A vowel, when it appears after a consonant, changes its
shape. For the vowels T, ﬁx, the vowel modifiers are
placed after the consonant. For the vowels 3 4, &L , the
vowel modifiers are placed before the consonant. For the
vowels @, @, A, the vowel modifiers are placed beneath
the consonant.

4) There are two particular vowels & and R which, when
they appear after a consonant, are split into two parts:
one remains in the same position, whereas the sec-
ond part is inserted just before the preceding consonant
character.

5) A vowel, when it appears at the first position of a word
or after another vowel, keeps its original shape; other-
wise it follows the above rules.

Another important aspect of a Bengali signature is that
the individual characters generally become connected to each
other at the headline region, whereas in English signa-
tures, characters mostly become connected in the lower part.
However, the presence or absence of character connections are
generally random for any particular signature.

B. Devanagari Signature Characteristics

Hindi is the language followed here for Devanagari script.
As a language, it stands fourth among all the languages
spoken in the world. It is mainly spoken in the Northern
part of India and is regarded as the most spoken language
of India. Devanagari, again, has its root in the Brahmic
scripts.

Signatures written in Devanagari script have little resem-
blance to Western ones, but are somewhat closer to their
Bengali counterpart because of the similar origin of the
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scripts. Devanagari signatures mainly consist of readable texts.
47.08% of them contain one word, 47.08% two words and the
remainder 3.84% three words. The distribution of the num-
ber of letters per word worked out from a Hindi signature
dataset [27] is given in Table I. Other useful signature mor-
phological parameters, modeled by means of GEV distribution
are given in Table II.

To synthesize the signature name in Devanagari, 11 vow-
els, and 36 consonants are considered. Bearing in mind the
frequencies of occurrence of each character, the following
basic rules are used.

1) A vowel will be followed by a vowel with a probability

of 1%, whereas a consonant is followed by a consonant
with a probability of 30%.
2) A vowel, while appearing after a consonant, changes its

shape. For the vowels 31T, é 3ﬁ , 3’?[ the vowel modifiers
are placed after the consonant; for % it is placed before
the consonant. For the three vowels 3, %, and & the
vowel modifiers are placed below the consonant and for

the other two vowels ¥ and ﬁ the modifiers are placed
on top of the consonant.

3) In general, if the vowel comes at the beginning of the
word, it keeps its shape, and if it appears somewhere
else, it changes to the modified shape.

4) The first vowel 3 keeps its shape at the beginning of
a word, but is absent in any other position.

Another important aspect of Devanagari signatures is that
the individual characters generally become connected to each
other at the upper line region via the matra (see example in
Fig. 3). There are few vowel modifiers like the modified vow-
els which finish at either the top of the consonant or the bottom
of the consonant. For these, the corresponding character is
normally not connected to the following character, but always
connected to the previous one. The character connections, i.e.,
the presence or absence of them, are generally random for
a particular signature. The character connection can again be
divided into two subtypes: 1) where each subsequent charac-
ter is connected along the matra (general aspect, not every
character needs to be connected) and 2) where the matra is
made after a part (greater than a single letter) or the whole of
a word.

III. STATIC SIGNATURE DEVELOPMENT

This section proposes a means to generate the signa-
ture engram that imitates the cognitive action plan of motor
equivalence theory. This is not a simulation of the neurolog-
ical processes but a procedure inspired by those concepts.
Motor equivalence theory suggests that actions are encoded
in the central nervous system as a plan. The cortex seems to
encode the information about position (i.e., place, distance,
and direction) in hexagonal mesh whose key unit is the grid
cell [28]. Inspired by this idea [19] and [20] proposed a grid,
which spans the signing surface, as the signature engram of
a sequence of grid nodes.

The signature engram is described in two steps: 1) the letter
engram and 2) the pen-up engram.
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Fig. 5. Engram of both Bengali (left) and Devanagari (right) names.

A. Letter Engram

The text engram is built up as a sequence of grid nodes
through a tessellation that is calculated by concatenating let-
ter engrams. In English, each letter engram was defined in
a hexagonal letter grid of 7 rows and 5 columns [19], [20].
But both Bengali and Devanagari characters are more com-
plex and curved than English ones. Hence, a denser mesh is
required to define accurately the letter engrams following our
earlier proposal [29] for offline Bengali signatures.

Experimentally, a common letter grid for both
Bengali and Devanagari scripts has been defined which
consists of 180 nodes distributed in 15 rows and 12 columns.
The baseline is the tenth row whilst the upper line is assigned
to the fifth row (see Fig. 4). The rows 11-15 are used to
accommodate the shape of those characters with strokes in
the region below the underline but they are also required
to accommodate the modified shape of the vowels. This
distribution is also adequate for representing the small
circular shapes observed in several Bengali and Devanagari
characters.

The distance between columns and rows of the grid is gener-
ally different for different writers but constant for each writer.
This helps to define the writing style, including the personal
letter shape. The letter grid nodes are labeled with a number
and each letter engram is defined as a sequence of grid nodes.
For instance, the Bengali “8” letter engram is defined as the
sequence of grid nodes: {111, 112, 96, 95, 110, 141, 127, 97,
127, 143, 130, 115, 84, 67}, where the speed minima are at
components {2, 4, 6, 8, 10, 12} as can be seen at Fig. 4. We
refer to speed minima as the minima points in the handwriting
speed profile. These minima points set the transition between
the strokes.

Any particular character can be written in a slightly differ-
ent shape even by the same writer. Taking this into account,
multiple variants of one particular character have been stored.
The letter engram definition includes a stroke division. The
strokes can be obtained as the nodes, where the pen velocity
is a minimum in the velocity profile. In this way, the strokes
of each letter of both alphabets were defined by the inspection
of recorded digital tablet samples and examining minima in
the velocity profile. The stroke division nodes can be seen at
Figs. 4 and 5 as solid nodes.

The signature engram is obtained by concatenating the letter
engrams as in Fig. 5. Finally, the tessellation is spanned to
allow the definition of grid nodes for the pen-up engrams.
A characteristic that has to be added to the signature engram,
the matra, has received special attention as it can be written
after each character or after several characters (the usual case).

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 10, OCTOBER 2018

Fig. 6. Western and Devanagari signatures. Dashed red lines show the penup
trajectory.

Fig. 7.
signatures.

Synthetic trajectory for Bengali (left) and Devanagari (right)

B. Pen-Up Engrams

Once the text engrams are defined, it is necessary to
define the pen-up engrams that link disconnected handwrit-
ten components which appears when the pen is lifted between
two consecutive characters. The pen-up engram was modeled
in [19] and [20] by dividing its trajectory into three zones:
1) the start or source area defined as a circle around the pen
lift; 2) the intermediate area defined as a tube going from
the pen lifting up to pen descent; and 3) the sink or ending
area defined as a circle around the pen descent. A number
of nodes are randomly selected in each area and the pen-up
engram is defined by linking them. The radius of the source
and ending circles, along with the radius of the tube, define the
straightness of the pen-up trajectory and the number of nodes
define its randomness. For a Western script, the radius of the
circle is set to d/10, d being the distance between the begin-
ning and ending of the pen-up, and just one node is selected
in each zone.

In general, Western writers display very straight pen-up
trajectories, whereas Bengali and Devanagari writers, in our
databases, show pen-ups with more rounded trajectories which
follow the curved handwriting style of Bengali writers, as can
be seen in the example of Fig. 6.

Moreover, from analyzing the speed profiles, it seems that
Western writers slow down the pen speed at the beginning and
end of every pen-down while the Indian writers slow down the
pen at the end of every pen-down but they do not reduce the
pen speed during the transition from pen-up to pen-down. This
produces a sort of harpoon shape at the beginning of the major-
ity of the pen-downs. These “harpoons” cannot be observed
in Devanagari. It appears that this different handwriting style
stems from the learning procedure at primary school. In fact, in
our experiments, native Bengali writers use the same method
for writing both Bengali and English.

This behavior has been confirmed with the Fourier
Transform of the x and y sequences of the signature trajectory.
It was supposed that their spectral bandwidth would be greater
for Bengali and Devanagari than for Western scripts because
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Fig. 8. Joint PDF of the signature time and signature length.

the Indian characters contain more corners than Western ones.
However, the opposite is the case: the bandwidth of the Indian
writers is narrower than for the Western writers because of
the rounding way in which native Indians write. It seems that
Indian writers generate more circular/curve shapes in their
handwriting so they can write more complex characters when
compared with Western writers, who produce less complex
characters in the same time period.

Therefore, the pen-up engram model is changed to produce
curved pen-up trajectories. This is conducted by selecting one
or two points only in the intermediate area whose radius is
heuristically widened to d/3 with a minimum value of d/10.
The effect of this procedure can be seen in the synthetic pen
up trajectories in Fig. 7. Additionally, the stroke limits at the
beginning of the pen-downs are removed, thus integrating both
the pen-up ending and pen-down starting points in the same
speed cycle.

C. Signature Trajectory: Motor Control

Once the signature engram is defined, an inverse model
for motor control is applied to obtain a realistic human
signature ballistic trajectory [23]. In the Western signature
synthesizer [19], [20], the signature ballistic trajectory is
worked out by using a multilevel motor scheme based on iner-
tial moving average filters that emulate the inertia of different
muscles used for handwriting. In summary, it obtains the sig-
nature trajectory by filtering the engram with three inertial
filters which are assigned heuristically to the action of fingers,
forearm, and wrist: the finger inertial filter is applied to the
text engram, the forearm filter is applied to the flourish engram
and the wrist filter is applied to the whole signature.

For both Indian scripts, a similar scheme is applied, but, as
Devanagari and Bengali script, in general, consist of shorter
strokes than Western signatures, the wrist filter is reduced to
the minimum and the finger and forearm filters turns out to be
relevant for defining the signature trajectory from the signature
engram.

Another characteristic that differs from Western to Indian
languages is the significance of the stroke contact points.
To preserve the position of the contact point is essential for
keeping the legibility of the character. In turn, these contact
points are automatically detected and the filtered trajectory is
constrained to pass through these points.

Bearing in mind these considerations, the signature tra-
jectory is obtained by linking the engram nodes by the
Bresenham’s line algorithm. The inertial filters are then applied
to the line. The finger control motor filter is applied to the
shorter strokes, stopping at every stroke limit. The forearm
control filter is applied to the larger strokes and the wrist
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control motor filter is applied to the whole engram to obtain
the signature trajectory. The inertia filters are based on Kaiser
filters with symmetric finite impulse response /(n) defined as

hn) = {(I)O(nﬁ,/l—(zn/N”—l)z) 0<n<N 3)

otherwise

where N corresponds to the filter length and g is experimen-
tally set to 0.1. The value of N is related to the signing velocity
v which is randomly obtained following its PDF as defined
in Table II. The finger, forearm and wrist filter lengths are
worked out as Ny = Lp*, N, = Lp?, and Ny, = L2,
respectively. The inertia variables Ly, Ly, and Ly, define the
synthetic user inertia and are randomly set from 3 to 4 times
the distance between the grid nodes. These values are kept
constant for each user. Due to the smaller bandwidth of the
Indian writing, the inertial filters are longer than in the case
of the Western scripts.

A drawback of this procedure is that the trajectory of
straight vertical and horizontal strokes appears unnaturally
straight. This problem is reduced by converting the long
straight lines into triangles. The triangle height is a constant for
each writer and in the range [0,d/10], where d is the length
of the straight stroke. Fig. 7 shows the resulting trajectory
obtained from the above handwritten engrams.

Finally, a realistic offline signature image is generated by
applying the ink deposition model proposed in [18] to the
trajectory.

IV. SIGNATURE DYNAMICS

This section is devoted to sampling the continuous signature
trajectory so as to provide the synthetic online signature from
the above trajectory in a unified synthesis framework. The
major problem for the sampling is to obtain a human like
speed profile v(7), which the kinematic theory of the rapid
movements claims to be a linear combination of lognormals
as follows:

M
W(t) = Zv,-(z; Dj. ;0 1), csz) 4)

J=1

where the speed profile of each stroke v;(7), is defined as

[in(—7) -]’ } ™

2
20]

v-(t' Tj, U‘2>=L6Xp -
i\b s B O o; Tn(t_?i)

where ¢ is the time, 7; is the time of stroke occurrence, D; is
the amplitude of each stroke, 7; is the stroke time delay on
a logarithmic time scale, and o; is the stroke response time,
also on a logarithmic time scale. Consequently, two tasks have
to be performed, the first to synthesize the speed profile and
the second to sample the signature trajectory for fitting the
given speed profile.

A. Velocity Profile Synthesis

Let us suppose a single stroke velocity profile is given by
vj(t). The values of D;, u;, and sz are set from the following
two hypotheses: first, the margins for natural human handwrit-

ing given in [29] and second, experimentally it is observed that

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on January 20,2021 at 11:02:51 UTC from IEEE Xplore. Restrictions apply.



2902

most of the lognormals are centered, i.e., the lognormal peak
approaches the stroke center from the left. Therefore, the skew-
ness is close to zero but positive and the kurtosis is around
3. This conclusion was drawn from 300 different signatures
selected from each respective dataset. Their lognormal decom-
position was worked out with the ScriptStudio program [29].
Thus, the values ; and aj2 are randomly obtained for each
stroke within the margins specified in [29] and iteratively
refined to fit the skewness in the range [0 — 0.3] and kurtosis
[3 — 3.5]. Dj is obtained to fix the stroke length.

The occurrence time for each stroke 7; is computed from
the so-called central pattern generators (CPGs) that produce
rhythmic patterned outputs, without sensory feedback, to acti-
vate different motor pools [30]. This can be observed in the
clearly periodic pattern of the handwriting speed.

Therefore, if the stroke generation is assimilated into the
CPG step cycle, the duration of each stroke is very similar
to any other. This has been verified with the above mentioned
signature samples, where each signature is divided into strokes
to calculate the dispersion of the strokes’ duration. The dis-
persion is defined as the standard deviation divided by the
mean. The distribution of the dispersion can be approximated
by a Gaussian distribution N(0.32,0.06). Consequently, the
duration assigned to each stroke of the synthetic signatures is
computed by: 1) dividing the whole signature duration by the
number of strokes and 2) multiply by a random sequence to
fit the dispersion to the time sequence assigned to each stroke.

The signature duration is obtained randomly from the joint
PDF that relates signature time and length, which is shown at
Fig. 8. The length is known from the trajectory defined above.

B. Lognormal Sampling of the Trajectory

As the trajectory has been defined in space, the time #(s) of
every pixel on the trajectory is required for spatial sampling.
This is calculated as follows. Let us assume that a single
stroke’s velocity is given by v;(#) in (3). The distance traversed
at time ¢ is then obtained as

o el )
(6)

which is the lognormal cumulative function. Solving for ¢ in
this equation, we get the time in terms of the distance as

(s) = exp{ Vaojert™ (25/Dj—1)+1; ] M

where the values of Dj, uj, oj, and 7; have been computed
in the above section. The time at every pixel in the sig-
nature trajectory is known from (7). Then the accumulated
time along the signature trajectory is calculated and the tra-
jectory is sampled by selecting the pixels for which the time is
closer to multiples of 1/f,,, where f;, is the sample frequency.
Fig. 9 shows the realism of the synthetic dynamic information.

V. GENERATION OF MULTIPLE IDENTITIES AND SAMPLES

In this section we describe the flexibility of the synthesizer
to adjust both inter and intra personal variability. The eval-
uation in the following section consists of adjusting these
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variabilities so that they are similar to native Bengali and
Devanagari handwriting.

A. Generation of Multiple Identities: Inter
Personal Variability

In the synthesizer, inter personal variability is introduced at
morphological, cognitive, and motorial levels.

1) Morphological Level: As Indian signatures consist
mainly of the signer name and surname, the morpho-
logical variability is achieved by randomly generating
the signer’s full name as per the statistics defined in
Section II. Additional morphological parameters con-
sidered are: signature skew, letter slant, average space
between letters, and average space between words.

2) Cognitive Level: This variability is introduced by adjust-
ing the distance between rows and columns of the signer
grid. This distance is randomly defined for each writer
between a maximum and minimum dimension heuristi-
cally selected. It defines the text height and width and
provides different letter styles for each signer.

3) Motorial Level: The signer identity significantly depends
on his or her average writing velocity which is related
to inertial filter lengths, namely the Ly, L,, and L,
parameters defined in Section III-C. The stroke duration
dispersion (also called jitter), the lognormal skewness
and kurtosis and the straightness of the lines are also
defined for each user at this stage.

The signer stability parameter is also defined at this point
because some signers are more stable than others. There
are two signer stability parameters: the first refers to static
features, namely the morphological and cognitive ones, the
second refers to dynamic features, such as the speed and motor
filters. At this point, the obtained signature is called the mas-
ter signature of the synthetic signer and the related variables
are retained for the rest of its genuine duplicates.

Several Bengali and Devanagari examples of online sig-
natures synthetically generated via the proposed procedure
are shown at Fig. 9. The blue dots indicate the pen-downs,
whereas the red dots refer to pen-ups. It is worth highlighting
that the synthesizer is capable of generating a wide range of
signatures.

B. Multiple Sample Generation: Intra Personal Variability

Every new sample of a genuine signature is different from
the previous one because of slight changes in posture, writ-
ing tools, emotional condition and so on. So, once the master
signature has been generated, the intra personal variability is
applied to this master signature by random modification of the
master signature parameters.

Parameters, such as signature skew, letter slant, average
space between letters, and average space between words, are
varied as follows: let p be the parameter value and mp its
range, i.e., the maximum value minus the minimum. Let s be
the stability value for static parameters. The value p is com-
puted for every sample generated for the same signer as p+u ,
1 being a random variable N (0, s % mp). If the modified value
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Fig. 9. Examples of generated intra and inter personal variability for three Bengali and three Devanagari signatures.

exceeds the parameter range, it is set to the minimum or
maximum value accordingly.

As Indian scripts consist of multiple short strokes, the order
of them is changed frequently, thus morphological variability
has been also taken into account as follows: the intra per-
sonal changes focus on the matra, the vowel modifiers, and
the character morphology. Instead of writing a matra for each
character, the writers tend to elongate them over different char-
acters. Thus, the number of matras and their length are a source
of morphological intrapersonal variability. In a similar way, the
character style is changed depending on whether it is in the
scope of the matra. Likewise, some characters and some vowel
modifiers are changed with the above mentioned probability
depending on how the previous and the following character
take shape.

At cognitive level, the intra personal variability is dealt with
as follows.

1) The grid nodes change their position randomly inside

a circumference centered on the particular grid node.
The radius of the circumference is another parame-
ter of the signer. This radius is reduced for the grid
nodes that belong to the baseline and the upper line (see
Fig. 3) because the Indian way of handwriting is more
stable in these grid nodes.

2) A sinusoidal transform is applied to the signature
engram nodes as in [8]. This deformation aims to repli-
cate approximately the effect of synchronism variability
among agonist and antagonist muscles.

3) An affine distortion is applied by changing the relative
x and y scales. The scale for each segment is randomly
selected between 1 —s and 1 4 s with s = 0.1.

4) The signature engram nodes for each pen-down are dis-
placed toward the right to a distance randomly chosen
between zero and twice the grid distance between nodes,
and vertically to a distance randomly chosen between
zero and half the grid distance between nodes.

At motor level the parameters are modified in the same way
as the morphological ones. In Fig. 9 we show several examples
of generated intra personal variability for some Bengali and
Devanagari signatures.

VI. EXPERIMENTS

The objective of these experiments is to evaluate the
similarity between synthetic and real signatures. With this
aim, a dual static and dynamic signature database has been
recorded for Bengali and Devanagari scripts. Native writers
have been involved in this task. Two kinds of experiment have
been performed: performance-based and perception-based.
The performance experiments compare the EER and detection
error tradeoff (DET) curves for the synthetic and real databases
using different classifiers: two online and two offline. A DET
plot represents the false rejection rate (FRR) curve versus false
acceptance rate (FAR) curve. Then, the ERR is the point in
the DET plot at which both curves (FRR and FAR) are equal.

The perceptual experiment is carried out by surveys to esti-
mate the human ability to distinguish between the synthetic
and real signatures by naturally viewing those signatures.

A. Third Party Offline Bengali and Devanagari Databases

Two third party, available databases have been found in
the literature. The first one, an offline Bengali signature
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database [27] which contains 100 users with 24 genuine sig-
natures and 30 forgeries per user. For each contributor, all
genuine specimens were collected in a single day’s writing
session. In order to produce the forgeries, the imitators were
allowed to practice their forgeries as long as they wished from
static images of genuine specimens.

The second database, an off-line Hindi dataset [27], is sim-
ilar to the Bengali one. It consists of 24 genuine signatures
and 30 forgeries per user.

B. Description of OnOffSigBengali-75 and
OnOffSigHindi-75 Corpuses

An additional contribution of this paper is the develop-
ment of OnOffSigBengali-75 and OnOffSigHindi-75 corpuses,
which contain static and dynamic signatures simultaneously
captured for both scripts. The main motivation was to allevi-
ate the setback of the above third party signatures which are
useful for comparing synthetic and real databases in offline
procedures but not in the online mode.

OnOffSigBengali-75 and OnOffSigHindi-75 corpuses were
collected over a WACOM Intuos 3 Tablet with an ink pen, so
the online and offline versions of each signatures are avail-
able. The inked signatures were scanned at 600 dpi to obtain
the offline signature. The image background was removed
following the procedure suggested in [31]. The images were
saved in .jpg format. For the online version, the sampling
frequency is 100 samples per second and the resolution
2540 dpi. Due to some temporal irregularities, the sam-
ples were spline interpolated to assure a uniform sampling
frequency.

Regarding the size of databases, they consist of signatures
from 75 native Bengali and 75 native Devanagari writers. Each
writer produced 24 signatures in two sessions, 12 in each ses-
sion. The height and width of the form signing boxes were
3 and 12 cm, respectively.

The synthetic version of these four novel database are
publicly available for research purposes and they can be
downloaded from http://www.gpds.ulpgc.es/.

C. Perceptual Experiments

We conducted two visual Turing tests to investigate the
generator’s ability, according to human judges, to produce
humanlike signatures. The two visual Turing test were car-
ried out independently for Bengali and Devanagari scripts and
performed by nonforensic volunteers and forensic handwriting
experts (FHEs).

In a similar way to [13] and [19], the respondents were
asked to score between 0 (very sure that it is synthetic) and 10
(very sure that it has been written by a human) each signature
after a careful inspection.

The visual Turing tests combined real signatures randomly
selected from our own recorded datasets with synthetic spec-
imens. Exactly 110 nonforensic volunteers and eight FHEs
participated in these tests. They were of Indian origin and had
a good knowledge of each script. In total, volunteers made
more than 10 000 decisions.
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Fig. 10. Subset of signatures used in the visual Turing tests to validate the
appearance of synthetic samples. Synthetic signatures are marked with a cross.

For a fair comparison, the signatures were segmented to be
shown over the same white background and the ink of all the
signatures were substituted by the ink deposition model [18].
A subset of the survey sheets used in these experiments is
shown in Fig. 10, where the synthetic specimens are marked
with a cross.

The perceptual realism of the synthetic generator is mea-
sured by calculating two kinds of errors: the false synthetic
rate (FSR: rate of real signature with a score less than 5)
and the false real rate (FRe: rate of synthetic signature with
a score greater than 5). The average classification error (ACE)
is calculated as ACE = (FSR + FRe)/2. The results of both
surveys are shown in Table III, where the number of effective
decisions that we registered from the volunteers are given.

A complete confusion is achieved at 50% of error rate. The
visual Turin test made by nonforensic volunteers confirm the
high confusion to discern whether our synthetic specimens
are real or not. Therefore, judging by the Turing tests, the
results suggest that perceptually the synthetic signature gen-
erator based on the motor equivalence approach is able to
produce signatures that native human, nonexpert examiners
accept visually as real.

Regarding the tests performed by the FHEs, the results
obtained highlight the level of agreement attained by them.
Despite carrying out their test independently, the Pearson
correlation coefficient between their answers of Bengali and
Devanagari tests are 0.49 and 0.90, respectively. It confirms
a statistical relationship between their judgements.

Compared with nonforensic volunteers, the FHEs detected
correctly the synthetic signatures (lower FRe). However, the
FHEs and nonforensic volunteers show a similar degree of
confusion in identifying the real signatures (FRe > 30). In
addition to spending more time inspecting each signature, it
can be noted that the FHEs are more skilled than nonforensic
volunteers in detecting synthetic signatures.
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TABLE III
VISUAL TURING TEST RESULTS
BENGALI Non-forensic FHEs
Number of participants 70 4

Number of answers 7360 320

FSR 30.90% 35.50%

Error Rates (%) FRe 53.26% 11.88%

ACE 42.08% 22.19%
Averaged scores Real - 6.50 319
Synthetic 5.30 1.58

Averaged time per signature 7.54 sec. 15.38 sec.
DEVANAGARI Non-forensic FHEs
Number of participants 40 4

Number of answers 3776 128

FSR 44.44% 29.69%

Error Rates (%) FRe 42.11% 3.13%

ACE 43.27% 16.41%
Averaged scores Real - 8.74 7.04
Synthetic 4.85 0.70

Averaged time per signature 7.49 sec. 15.84 sec.
TABLE IV

EER COMPARING THE PERFORMANCE OF OFFLINE AND ONLINE
SYNTHETIC DATASETS WITH REAL ONES

Trai | Classi Bengali Devanagari
ning | fier | Third In Synth | Third In Synth
Party House etic | Party House etic

HMM | 6.03% | 5.54% | 6.24% | 5.32% | 6.71% | 5.73%
SVM | 4.32% | 0.84% | 2.73% | 2.85% | 1.37% | 2.03%

2
DTW | NA [041% | 1.66% | NA |[0.41% | 1.02%
Man | NA |[8.19% | 12.6% | NA |9.77% | 12.2%
HMM | 4.08% | 3.18% | 3.06% | 3.37% | 4.43% | 2.68%
SVM | 1.97% | 0.23% | 0.67% | 1.56% | 0.56% | 0.47%

5
DTW | NA [0.27% | 0.47% | NA |[0.31% | 0.49%
Man | NA |3.41% [ 6.50% | NA |4.16% | 5.79%
HMM | 3.17% | 2.46% | 2.38% | 2.77% | 3.58% | 1.75%
SVM | 1.32% | 0.13% | 0.34% | 1.37% | 0.38% | 0.24%

8
DTW | NA [0.33%|0.25% | NA |[0.34% | 0.36%
Man | NA | 2.7% |5.44% | NA |[3.59% | 4.7%
HMM | 2.5% |2.34% | 1.71% | 2.77% | 3.22% | 1.34%
SVM | 1.12% | 0.13% | 0.25% | 1.33% | 0.31% | 0-14%

10
DTW | NA [0.28% | 0.23% | NA |[0.29% | 0-38%
Man | NA |[2.57% |5.11% | NA |[3.11% | 441%

NA stands for ‘Not Apply’ as Third Party dataset does not contain
online signatures

D. Performance Experimental Protocol

For the performance experiments, four automatic signature
verifiers (ASVs) have been chosen: two offline and two online.
We chose these four ASVs on the basis of conceptually differ-
ent features because they are expected to cover a wide range of
signature properties. The classifiers are, for static signatures.

1) Hidden Markov Model-Based Verifier: Geometric fea-

tures and hidden Markov model (HMM) as classi-
fier. The static signature is parameterized in Cartesian
and polar coordinates and combined at score level.
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A multiobservation discrete left to right HMM is chosen
to model each signer’s [32].

2) Support Vector Machine-Based Verifier: In this case, the
local binary pattern operator has been used for static sig-
nature parameterization. A least squares support vector
machine (SVM) with Gaussian kernel has been used as
classifier. The procedure is described in [31].

For dynamic signature verification, we use the following.

1) A Dynamic Time Warping-Based Verifier: In this
case, the dynamic sequences of one enrolled sig-
nature and a questioned specimen are compared
using a dynamic time warping (DTW) algorithm with
Euclidean distance [33].

2) A Manhattan Distance-Based Verifier: The feature vec-
tor consist on two histograms: one with absolute
frequencies and other with relative frequencies. The his-
tograms of questioned and unquestioned signatures are
compared with Manhanattan distance [34].

All the verifiers are trained by following the same well-
established experimental protocol in which the training set
consists of 7 randomly selected genuine signatures. The
remaining genuine signatures are used for testing the FRR. In
all cases, the FCR has been obtained with the genuine
test samples from all the remaining users. All the experi-
ments are repeated ten times. For instance, if 7 = 5 train-
ing samples, the number of tests made for establishing the
FRR with the in house dataset (75 users) for each script
are (24—-5) x 75 x 10 = 14250, whereas for the FCR
the number of test samples are (24—5) x 75 x 74 x
10 = 1054500. All of these experiments are conducted for
T=2T=5T=28,and T = 10.

E. Performance Experimental Results

To evaluate the similarity between the real and synthetic
databases, a synthetic database was generated for each script.
They consist of 100 synthetic signatures with 24 samples per
signature. For each signature the offline and online versions
were synthesized.

The setup of the synthesizer to generate the databases was
conducted in four steps.

1) Introduce the parameters of the morphology of the real

dataset into the synthesizer.

2) Form the variability parameters for genuine static sig-
nature generation to approach the performance for the
offline random impostor experiment.

3) Form the parameters for genuine dynamic signature gen-
eration to approach the performance for online random
impostor experiment.

4) If the differences between the real and synthetic per-
formances are larger than expected in the last step, the
procedure is iteratively repeated looking for the mini-
mum square error between the eight EERs of the real
and synthetic dataset.

This procedure is based on the hypothesis that the parame-
ters used for generating the dynamics of the signature do not
affect the performance of the static signature, but the opposite
does not apply. This was performed by training with 7' = 5
samples. The results of the experiments are shown in Table IV.
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As can be seen, all real and synthetic databases perform in
the same range and display similar trends in all the cases with
T=2,T=5,T =28, and T = 10 which proves the ability
of the synthesizer to generate databases with performances
similar to those obtained with real datasets, offline, online, and
for different classifiers and training samples. The DET curves
for the case 7 = 5 are provided in Fig. 11 which reinforces
the conclusions obtained from Table IV.

VII. CONCLUSION

This paper proposes a unified theoretical framework for gen-
erating both online and static synthetic signatures in two of the
most popular Indian scripts: Devanagari and Bengali. The syn-
thesizer is based on the motor equivalence model that emulates
the human way of performing actions. The specific way of
writing these two Indic scripts generates more complex sym-
bols which are composed of two or more short components
with a few strokes.

So this paper proposes significant new developments in the
application of the motor equivalence model to handwriting
generation in these two Indic scripts. The main improve-
ment of the model relating to the cognitive level relies on
the variable density of the grid that defines the signature
engram. The Fourier transform is used for adjusting the iner-
tial filter length at motorial level. A procedure to balance the
variability between the cognitive and motor system has been
proposed to achieve humanlike variability when Indian scripts
are generated.

To evaluate the ability of the proposed synthesizer,
dual offline and online Bengali (OnOffSigBengali-75) and
Devanagari (OnOffSigHindi-75) signature corpuses have been
produced as no such datasets were previously available. The
performance of both real and synthetic databases are simi-
lar. A perceptual experiment to evaluate the likeness of real
and synthetic database, obtained over 42% confusion and this
indicates the realism of the synthesized signatures.

The feedback of these findings to the Western signature syn-
thesizer is expected to improve its “humanity,” i.e., to increase
its versatility. Besides, it will allow a future multiscript

0'0&02 0050102 05 1 2
FAR (in %)

5 10 20 40 0'0&02 0050102 05 1 2 5 10 20 40
FAR (in %)

DET plot comparison for all systems using the third party, in house and synthetic database for both scripts training with five signatures.

handwritten signature generator for biometrics and other areas,
such as health care, forensics, etc. The new datasets are freely
available to other researchers in this field.
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