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Abstract: Bioacoustic research of reptile calls and vocalizations has been limited due to the general
consideration that they are voiceless. However, several species of geckos, turtles, and crocodiles are
able to produce simple and even complex vocalizations which are species-specific. This work presents
a novel approach for the automatic taxonomic identification of reptiles through their bioacoustics by
applying pattern recognition techniques. The sound signals are automatically segmented, extracting
each call from the background noise. Then, their calls are parametrized using Linear and Mel
Frequency Cepstral Coefficients (LFCC and MFCC) to serve as features in the classification stage.
In this study, 27 reptile species have been successfully identified using two machine learning
algorithms: K-Nearest Neighbors (kNN) and Support Vector Machine (SVM). Experimental results
show an average classification accuracy of 97.78% and 98.51%, respectively.

Keywords: biological acoustic analysis; bioacoustic taxonomy identification; reptile vocalization;
frequency cepstral coefficients; SVM; kNN

1. Introduction

The taxonomic class Reptilia is formed by turtles, crocodiles, snakes, lizards, and tuataras, of which
some are able of vocalize [1], but they do not do it often. As a result, there are few studies in literature
about the reptile acoustic communications, and have been considered unimportant until recently.
However, some geckos, crocodiles, and turtles are very active in producing vocalizations [2,3], but their
social roles are still not fully understood. Crocodiles are probably the most vocal reptiles, with a rich
variety of hissing, distress, and threatening calls due to their close relation with birds, they are even
capable of vocalizing in the egg before hatching [4]. Moreover, some species such as turtles, crocodiles,
and alligators can emit sound both in air and underwater [5].

Reptiles emit vocalizations in a broad range of frequencies—they produce sounds mainly between
0.1–4 kHz—but some turtles, crocodiles, and also lizards are able to generate calls above 20 kHz [5,6].
In addition, as a consequence of their behavior and small size, most reptiles can be very difficult to
detect in the field using visual surveys [7], which can lead to an underestimation of species richness.

Bioacoustic technologies are an efficient way to sample populations in extended areas where visibility
is limited [8], so they may be able to provide additional data for reptile estimation. Traditional bioacoustic
monitoring methods rely on human observers who categorize acoustic patterns according to sound
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similarities. However, this procedure is slow, and it depends on the observer’s ability to identify
species, which leads to bias [9]. Hence, machine learning techniques are being applied in many research
areas to design automatic classification intelligent systems, such as mosquito identification based on
morphological features [10], carbon fiber fabrics classification to minimize risks in engineering processes
[11], automatic recognition of arrhythmias for the diagnosis of heart diseases [12], or this work where
bioacustic signals of reptile species are used for taxonomic classification.

In recent decades, several techniques have been proposed to automate the acoustic classification of
species through intelligent systems. For instance, Acevedo et al. [13] successfully classified three bird
and nine frog species by characterizing their calls with 11 variables: minimum and maximum frequency,
call length, maximum power, and frequency of eight highest energy points in the call. Then, the results
of three classification algorithms—Decision Tree (DT), Linear Discriminant Analysis (LDA) and
Support Vector Machine (SVM)—were compared. In their work, SVM achieved an identification
rate of 94.95%, outperforming DT and LDA, but the sample calls were selected manually. Brandes [14]
used a Hidden Markov Model (HMM) to recognize the vocalizations of nine bird, ten frog, and eight
cricket species. This approach employed the peak frequencies and bandwidth from the spectrogram to
characterize the sound samples, getting high classification rates for each animal group individually,
though it had difficulties coping with complex broad band calls. Another interesting approach can be
found in Le-Qing’s research [15], where 50 different insect sounds were classified with an accuracy
of 96.17%. In that work, Mel Frequency Cepstral Coefficients (MFCCs) were employed as features,
and a Probabilistic Neural Network (PNN) was applied for classification. However, the sounds were
taken from noise-free sections of the recorded files. More recently, Henríquez et al. [16] recognized
seven different species of bats by Gaussian Mixture Models (GMM), achieving a low average error of
1.8%, using a combination of linear and non-linear parameters. There is no doubt of the progress made
in the field of bioacoustic identification to enable an efficient classification of species. However, a robust
machine learning technique to recognize reptile calls has still not been found. Previous studies have
been focused on the analysis of spectro-temporal characteristics of reptile calls, but to the best of
our knowledge, there has not been any research that has used their acoustic signals for automatic
inter-species classification. For this reason, this paper proposes a novel approach of taxonomic
identification of reptiles through their acoustic features. To achieve this goal, Linear Frequency
Cepstral Coefficients (LFCCs) and MFCCs [17] have been used to parametrize the reptile acoustic
signals and they have been fused to obtain a robust characterization of the signal in the frequency
domain. In addition, two widely used machine learning algorithms—K-Nearest Neighbors (kNN) [18]
and Support Vector Machine (SVM) [19] have been utilized to verify the robustness of the proposed
parameters. The approach has been validated in three public collections of reptile sounds selected by
experts, which contain 27 different species with several types of calls. Therefore, despite the small
corpus, this study may serve as a first reference in the field of automatic acoustic recognition of reptile
specimens for researchers.

The remainder of this paper is organized as follows. Section 2 presents the proposed technique where
the audio signal segmentation and the feature extraction procedure are described. Two classification
systems based on kNN and SVM algorithms are described in Section 3, particularized for acoustic
recognition. The experimental methodology, the sound dataset, and the results obtained are shown in
Section 4, where a comparison of features and classification algorithms is done. Finally, the conclusions
and future work are shown in Section 5.

2. Proposed Method

The proposed method is based on the following phases. First, reptile acoustic signals are
automatically segmented in syllables and labeled by species. Secondly, for each syllable, the cepstral
feature parameters are computed and fused into a unique vector of characteristics per call.
Afterwards, these vectors are employed in the classification stage to train and test the two pattern
recognition algorithms utilized in this work. Figure 1 illustrates the proposed system technique.
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Figure 1. Automatic acoustic classification system diagram.

2.1. Segmentation

The segmentation stage splits the file recordings into as many syllables as possible to yield useful
information for the taxonomy identification. The procedure has been developed based on the Härmä
segmentation algorithm [20]. It uses short-time analysis to divide the acoustic signal into a set of
frequency and amplitude modulated pulses, where each pulse corresponds to one detected call. For this
purpose, the acoustic signal spectrogram was calculated utilizing Short Time Fourier Transform (STFT)
with a Hamming window size of 5.8 milliseconds and a 33% overlap, with which they have been
heuristically computed. The spectrogram is represented by a matrix S( f , t), where f is the frequency
and t denotes the time. Then, the algorithm explores the matrix using the following strategy:

1. Find tn and fn such that |S( fn, tn)| ≥ |S( f , t)|∀( f , t), placing the nth syllable in tn. The amplitude
of this point is calculated as Equation (1):

Yn(0) = 20log10(|S( fn, tn)|) (1)

2. If Yn(0) < Y0(0)−βdB, the segmentation process is stopped, as the signal amplitude is inferior to
the stopping criteria β. For reptile sounds, β has been set to 25 dB.

3. From tn, seek the highest peak of |S( f , t)| for t > tn and t < tn, until Yn(t) < Yn(0)−βdB for both
sides. Thus, the starting and ending times of the nth syllable are denoted as , tn − ts and tn + te.

4. Save the amplitude trajectories as the nth syllable.
5. Delete the nth syllable from the matrix S( f , tn − ts, · · · , tn + te) = 0 and set n = n + 1.
6. Repeat from Step 1 until the end of the spectrogram.

Figure 2 shows four spectrograms belonging to several kinds of reptiles: Crotalus atrox
(Diamondback rattlesnake), Gecko, Alligator mississippiensis (American alligator), and Chelonoides nigra
(Galapagos giant tortoise). The alligator spectrogram presents a complex and most rich vocalization
similar to birds, while the other species present a simpler sound production of hissing and groan calls.
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Figure 2. Example of four reptile call spectrograms.

2.2. Feature Extraction

For each syllable, two cepstral features were extracted to characterize the acoustic signal.
MFCCs and LFCCs have been broadly used in speech recognition with success [21], and they have
also been applied in animal bioacoustic classification [22–25], due to their easy implementation and
high performance. Reptiles mainly produce sounds in low frequencies within the human auditory
range. For this reason, MFCCs have been adopted to get high resolution in the low frequency region.
However, reptiles are capable of producing sound above 20 kHz, so LFCCs have also been computed
to obtain the information in high frequency ranges.

They are calculated using STFT (a 25 milliseconds Hamming window with an overlap of 50%)
and applying Discrete Fourier Transform (DFT) over each frame of the signal. The resultant magnitude
spectrum is wrapped by a bank of 40 triangular band pass filters. For MFCCs, the filters are
non-uniformly sparse to perform the mel scale transformation. Finally, the coefficients are retrieved
taking the lowest Discrete Cosine Transform (DCT) values from the log-magnitude filter outputs,
log |Yi|. They are computed following Equation (2):

MFCCj =
B

∑
i=1

(log |Yi| cos[j(i− 0.5)]π/B), 0 ≤ j ≤ N − 1 (2)

where j denotes the index of the cepstral coefficient, B is the number of triangular filters, and N denotes
the number of cepstral coefficients to compute.

LFCCs are calculated similarly, but using a linear sparse triangular filter bank instead of the mel-scale
filters. Furthermore, the number of coefficients, N, has been established by experimentation in order
to reach the highest classification rate in the last stage. As a result, 18 coefficients have been taken for
both features.

In this work, the feature vectors have been fused, appending the characteristics horizontally as
in Label (3), where each row represents a syllable from the segmentation stage. These features have
been combined to hold information of higher as well as lower frequency regions, obtaining a broad
spectral representation of the reptile calls. Therefore, these rows contain 36 coefficients, which are used
as inputs to the classification stage.
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DATASET =

 MFCC1 LFCC1
...

...
MFCCn LFCCn

 (3)

3. Classification System

For the classification stage, the performance of two machine learning algorithms have been
compared (kNN and SVM), which have been parametrized to resolve the acoustic signal classification.

3.1. K-Nearest Neighbor

This algorithm determines the classification of new observations based on the closest training
samples in the feature space. It matches the class measuring the distances of the k nearest data points
to the test data. Then, simple majority of neighbors is used to determine the class prediction. In this
study, the number of neighbors has been established to k =

√
N where N is the length of the feature

coefficients for a syllable.

3.2. Support Vector Machine

SVM has been used to some extent in bioacoustic species recognition with success [13,26].
It discriminates the data by seeking the optimal hyperplane that separates the training data into
two classes. However, the reptile call features are not lineally separable, so a non-linear kernel function
has been used to divide the features in a higher dimensional space. For the experiments, a Gaussian or
Radial Basis Function (RBF) kernel K(x, x′) = exp(−γ‖x− x′‖2) has been selected, where the parameter
γ was optimized using a grid approach. For multiclass classification, the strategy “one-versus-one” [27]
has been implemented, which trains a binary SVM classifier for each pair of classes. Therefore, for N
different classes, N(N − 1)/2 binary classifiers are required to distinguish the samples, where N
represents the number of reptile species. The SVM decision function is defined as in (4), where b is
a numeric offset threshold and αi are Lagrange multipliers. The magnitude of α is determined by the C
parameter, which imposes a penalty on misclassified samples (0 < α 6 C).

f (x) = sign

(
l

∑
i=1

yiαiK(x, x′) + b

)
, yi ∈ {1,−1} (4)

4. Experimental Procedure

This section describes the datasets and the experimental methodology used in the experiments to
evaluate the effectiveness of the proposed method.

To ensure independence between the training and testing sets in each experiment (at least
100 simulations by experiment), the syllables obtained automatically from the segmentation of each
sound have been randomly shuffled and split 50/50 into two datasets—one for training and another
for testing (k-fold cross-validation with k = 2)—to achieve significant results.

Furthermore, accuracy has been calculated following Equation (5) for each class and averaging
the results. F-Measure value [28] has also been calculated as 2 ∗ ((P ∗ R)/(P + R)), where P (precision)
is the number of correct positive results divided by the number of all positive results, and R (recall) is
the number of correct positive results divided by the number of positive results:

Accuracy(%) =
Syllables Correctly Identified (Nc)

Total Number of Syllables (Ns)
× 100. (5)

The acoustic classification system was implemented in Matlab, where the SVM implementation
was based on the libsvm library [29], applying a C-Support Vector Classification (C-SVC) [30].
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In addition, a non-dedicated standard laptop with an Intel Core i7-4510 2.0 GHz CPU and 16 GB RAM
under Windows 8.1 operating system was used to carry out the experiments.

As indicated in Section 2.2, the number of cepstral features was obtained by experimentation.
They were selected applying a wrapper method by varying the number of coefficients, N, from 6 to 25
for each feature until there was no improvement in prediction.

As for the SVM parameters, to find the optimum values of the penalty parameter of the error term (C)
and the kernel gamma (γ) parameter, a grid-search was utilized with exponentially growing sequences of
the parameters (C = 2−2, 2−1, ..., 210; γ = 2−12, 2−11, ..., 22) and employing cross-validation. Finally, a finer
grid search was conducted, establishing a gamma value of 0.45 and a penalty term of 30 for all experiments.

Initially, the features have been analyzed individually to determine their effectiveness.
However, different species of reptiles can produce sounds in frequencies anywhere in the spectrum.
Therefore, to obtain the correct useful information, the two types of cepstral coefficients have been
fused to better represent the acoustic information of the sounds.

4.1. Sound Dataset

The number of reptile sound repositories is quite limited. As a consequence, the dataset has been
constructed using three internet sound collections. The main source of audio recordings has come
from the Natural Museum of Berlin [31], which contains 120.000 audio recordings of diverse species.
A third of them were recorded in controlled conditions, employing animals in captivity, and the rest in
natural habitats with background noise. In addition, two on-line collections of reptiles from California
have also been used: California Herps [32] and the California Tortoise Club [33]. Hence, the dataset is
finally composed of 1,895 samples, which correspond to 27 different reptile species. Table 1 shows
the list of species employed in this work, indicating the number of segmented syllables extracted from
each species and their family group. All files have been sampled to 44.1 kHz.

Table 1. Dataset classes.

No. Scientific Name Family Number of
Syllables (Ns) No. Scientific Name Family Number of

Syllables (Ns)

1 Crotalus lepidus Squamata 12 2 Crotalus molossus Squamata 33
3 Crotalus oreganus helleri Squamata 34 4 Crotalus tigris Squamata 22
5 Crotalus willardi Squamata 5 6 Crotalus atrox Squamata 6
7 Crotalus scutulatus Squamata 64 8 Crotalus oreganus oreganus Squamata 18
9 Caiman crocodilus Crocodilia 5 10 Chelonoidis nigra Testudines 6
11 Crotalus molossus Squamata 10 12 Centrochelys sulcata Testudines 29
13 Testudo horsfieldii Testudines 20 14 Gekko gecko Gekkonidae 16
15 Alligator sinensis Crocodilia 18 16 Alligator mississippiensis Crocodilia 5
17 Crotalus durissus Squamata 51 18 Crotalus horridus Squamata 53
19 Kinixys belliana Testudines 13 20 Geochelone chilensis Testudines 14
21 Testudo kleinmanni Testudines 95 22 Geochelone carbonaria Testudines 17
23 Geochelone denticulata Testudines 115 24 Crotalus cerastes Squamata 642
25 Heloderma suspectum Squamata 383 26 Hemidactylus turcicu Squamata 199
27 Ophiophagus hannah Squamata 10

4.2. Results and Discussion

In order to validate the proposed data fusion, the features have been analyzed individually
to compare their performance. At the same time, the acoustic features have been combined with
the classification algorithms to seek the best model. The algorithms have been run 100 times to
obtain significant results. Additionally, the dataset has been randomly scrambled in each repetition,
dividing the data 50/50 for training and testing purposes.

In Table 2, the experimental results show that MFCCs are more suitable for the identification
of reptile calls than LFCCs. Mel features present more resolution at the lowest frequencies, emphasizing
these spectrum regions where most reptile acoustic energy occurs. In fact, most of the sounds
produced by reptiles are in the range 0.1 to 4 kHz. However, some reptiles—mainly lizards—can
generate harmonic components at high frequency even into the ultrasound range (>20 kHz). At these
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frequencies, MFCCs hold insufficient information because the area under the triangular filters used
in the mel-filterbank analysis increases at higher frequencies. Therefore, LFCCs are more suitable to
model these reptile calls, since no frequency warping is applied. Thus, LFCC surpasses MFCC in some
experiments, for instance in class 19 (Kinixys belliana or Hinge-back tortoise), where the mating calls
contain high levels of low frequency noise. It can also be observed that Alligator sinensis (class 15) was
poorly classified in all experiments, as this class was created by appending several audio recordings
because each of them only contains one or two sample calls. Therefore, it presents diverse types
of calls, which hinders the classification process. The distress calls emitted by the alligator present
a complex harmonic pattern in a wide bandwidth (see Figure 2), occasionally extending over 15 kHz.
Hence, the linear cepstral coefficients show a superior performance in both classifiers on class 15.

On the other hand, Crotalus durissus (South American rattlesnake) also achieved low recognition
rates, caused by its distinctive rattle noise that overlaps with the hissing call in several syllables.
On the other hand, nine species reached a classification accuracy of 100%, regardless of the features
used, due to the spectrum distribution of those reptile species being clearly different from others.

Regarding the classifiers, it is observed that SVM performs slightly better than kNN. This result is
because the SVM approach is able to separate the classes more efficiently using the Gaussian kernel.
However, as a consequence of the small corpus, the difference is not significant. In fact, for MFCC
features, kNN outperforms SVM by 0.12%. However, it is expected that the difference will increase
when new species are added to the corpus.

The feature fusion technique (MFCC/LFCC) exhibits high classification results in both algorithms,
outperforming each of the individual features. In most cases, the resultant accuracy per class is equal
to or greater than those achieved by single features. This confirms that this method provides a further
characterization of the reptile calls by appending information of high and low frequency regions,
which leads to a higher accuracy in classification. Furthermore, 13 classes were identified with a success
rate of 100% when this approach was applied.

Table 2. Classification results. kNN: K-Nearest Neighbors; LFCC: Linear Frequency Cepstral
Coefficient; MFCC: Mel Frequency Cepstral Coefficient; SVM: Support Vector Machine.

No.
kNN SVM

MFCC LFCC MFCC/LFCC MFCC LFCC MFCC/LFCC

1 98.67% ± 0.11 97.00% ± 0.17 98.67% ± 0.11 99.67% ± 0.06 96.00% ± 0.20 98.33% ± 0.13
2 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
3 99.53% ± 0.07 96.82% ± 0.18 97.65% ± 0.15 99.41% ± 0.08 99.06% ± 0.10 99.65% ± 0.06
4 98.00% ± 0.14 98.55% ± 0.12 96.00% ± 0.20 100.00% ± 0.00 97.09% ± 0.17 99.45% ± 0.07
5 100.00% ± 0.00 78.00% ± 0.42 97.00% ± 0.17 100.00% ± 0.00 90.00% ± 0.30 99.00% ± 0.10
6 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
7 97.88% ± 0.14 94.25% ± 0.23 95.31% ± 0.21 88.31% ± 0.32 96.63% ± 0.18 98.81% ± 0.11
8 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 99.33% ± 0.08 100.00% ± 0.00
9 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
10 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
11 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
12 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
13 98.80% ± 0.11 95.60% ± 0.21 99.80% ± 0.04 98.40% ± 0.13 98.80% ± 0.11 100.00% ± 0.00
14 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00
15 78.22% ± 0.41 79.11% ± 0.41 87.78% ± 0.33 67.56% ± 0.47 78.67% ± 0.41 86.22% ± 0.35
16 100.00% ± 0.00 100.00% ± 0.00 100.00% ± 0.00 80.00% ± 0.40 100.00% ± 0.00 100.00% ± 0.00
17 75.20% ± 0.43 72.88% ± 0.44 88.80% ± 0.32 83.36% ± 0.37 89.20% ± 0.31 88.40% ± 0.32
18 99.54% ± 0.07 96.31% ± 0.19 99.23% ± 0.09 98.46% ± 0.12 99.08% ± 0.10 99.08% ± 0.10
19 78.67% ± 0.41 95.33% ± 0.21 94.33% ± 0.23 88.33% ± 0.32 98.00% ± 0.14 97.67% ± 0.15
20 97.14% ± 0.17 96.57% ± 0.18 100.00% ± 0.00 99.71% ± 0.05 97.14% ± 0.17 100.00% ± 0.00
21 99.36% ± 0.08 99.83% ± 0.04 100.00% ± 0.00 99.87% ± 0.04 100.00% ± 0.00 100.00% ± 0.00
22 94.00% ± 0.24 88.75% ± 0.32 97.00% ± 0.17 92.25% ± 0.27 97.00% ± 0.17 98.00% ± 0.14
23 96.56% ± 0.18 64.74% ± 0.48 99.79% ± 0.05 97.89% ± 0.14 89.75% ± 0.30 99.89% ± 0.03
24 99.81% ± 0.04 98.99% ± 0.10 99.78% ± 0.05 100.00% ± 0.00 99.96% ± 0.02 100.00% ± 0.00
25 94.43% ± 0.23 86.39% ± 0.34 95.46% ± 0.21 97.77% ± 0.15 91.35% ± 0.28 98.21% ± 0.13
26 86.16% ± 0.35 74.16% ± 0.44 93.52% ± 0.25 96.79% ± 0.18 84.99% ± 0.36 98.79% ± 0.11
27 100.00% ± 0.00 97.20% ± 0.17 100.00% ± 0.00 100.00% ± 0.00 94.00% ± 0.24 98.40% ± 0.13

Accuracy 96.00% ± 7.20 92.98% ± 9.95 97.78% ± 3.33 95.84% ± 7.74 96.15% ± 5.35 98.52% ± 3.26
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In the second experiment, the training samples were reduced from 50% to 5% to validate
the robustness of the method using the best model found in the first experiment (MFCC/LFCC
fusion + SVM). Table 3 shows that the fusion approach is able to deal with the low number of
training samples, keeping accuracy and F-Measure values above 90% in almost all cases. This proves
that the fusion of both cepstral coefficients is effective for modeling the discriminant information
in the reptile calls. Moreover, the reduction in training set size offers savings in time needed to
calculate the support vectors. However, when 5% of training is reached, the system clearly declines in
effectiveness because most of the reptile species are only characterized by one syllable; thus, SVM has
serious difficulties finding discriminant information to identify the classes. Nevertheless, this approach
is able to maintain the classification results above 85%, confirming the robustness of the feature
fusion method.

Table 3. Classifier performance by training set size.

Training (%) Accuracy (%) ± std Precision Recall F-Measure

5 85.50% ± 20.06 0.91 0.85 0.88
10 91.03% ± 14.06 0.94 0.91 0.92
20 94.81% ± 8.01 0.96 0.94 0.95
30 96.86% ± 5.39 0.97 0.96 0.97
40 97.88% ± 3.76 0.98 0.97 0.98
50 98.52% ± 3.26 0.98 0.98 0.98

5. Conclusions and Future Work

Automated methods to detect and identify species are particularly useful for biodiversity studies
and conservation purposes. In this paper, a novel automatic method for the bioacoustic recognition
of reptile species by a fusion of frequency cepstral features has been presented. Reptile acoustic
characteristics have been analyzed to seek the more discriminant features to parametrize their acoustic
signals. It has been concluded that MFCCs are able to represent the reptile call efficiently because their
acoustic signals are emitted predominantly in low frequencies. However, some species can also produce
sounds in high frequencies; hence, LFCCs have also been utilized to hold information regarding that
part of the spectra. The experimental results have demonstrated that the fusion of both features allows
a broad characterization of the signal, increasing the classification rate. It has been validated in over
27 different reptile species, achieving an average accuracy of 98.52% ± 3.26. In addition, the proposed
solution has been tested under low training sample conditions, proving the strength of the technique.

Traditional reptile surveys rely on visual searching, which is costly and time-consuming.
Therefore, this approach can lead to the development of new remote monitoring systems for reptile
research. In addition, the authors are not aware of other studies that have assessed the use of reptile
acoustic signals for their inter-species recognition. However, despite the promising results of this
first research, it is necessary increase the corpus and extend the solution to the entire animal group.
Furthermore, it would be useful to enhance the approach by recognizing individuals within the same
species. Finally, this approach could be applied to classify animals with similar sound production
mechanisms (such as frogs or birds) by adjusting the system parameters.
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