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Abstract Numerous studies have shown an epidemiological
link between meat consumption and the incidence of cancer,
and it has been suggested that this relationship may be moti-
vated by the presence of carcinogenic contaminants on it.
Among the most frequently detected contaminants in meat
are several types of persistent organic pollutants (POPs), and
it is well known that many of them are carcinogenic. On the
other hand, an increasing number of consumers choose to feed
on what are perceived as healthier foods. Thus, the number of
consumers of organic food is growing. However, environmen-
tal contamination by POPs is ubiquitous, and it is therefore
unlikely that the practices of organic food production are able
to prevent this contamination. To test this hypothesis, we ac-
quired 76 samples of meat (beef, chicken, and lamb) of two
modes of production (organic and conventional) and quantified
their levels of 33 carcinogenic POPs. On this basis, we deter-
mined the human meat-related daily dietary exposure to these
carcinogens using as a model a population with a high con-
sumption of meat, such as the Spanish population. The maxi-
mum allowable meat consumption for this population and the
carcinogenic risk quotients associated with the current pattern
of consumption were calculated. As expected, no sample was

completely free of carcinogenic contaminants, and the differ-
ences between organically and conventionally produced
meats were minimal. According to these results, the current
pattern of meat consumption exceeded the maximum limits,
which are set according to the levels of contaminations, and
this is associated with a relevant carcinogenic risk. Strikingly,
the consumption of organically produced meat does not dimin-
ish this carcinogenic risk, but on the contrary, it seems to
be even higher, especially that associated with lamb
consumption.
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Introduction

It is well known that the food is the primary route of exposure
to pollutants from numerous chemical classes (Vogt et al.
2012). Among the multitude of different chemical compounds
that foodmay contain, persistent organic pollutants (POPs) are
especially worrisome, and during the last decades, many POPs
have been highlighted as a cause of concern and have been the
subject of extensive study and international regulation in part
because of their carcinogenic potential (Boada et al. 2012;
Casals-Casas and Desvergne 2011; Dickerson et al. 2011;
Dorgan et al. 1999; Knerr and Schrenk 2006; Ribas-Fito
et al. 2001; Valeron et al. 2009). Since these compounds are
highly resistant to degradation and are highly distributed in the
environment, their presence in food is very difficult to avoid
(Li et al. 2006; Rychen et al. 2014). Thus, it has been
established that the ingestion of food contributes more than
90 % to the total current exposure to these compounds,
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especially those food from animal origin such as fish, dairy
products, or meat (Li et al. 2006). According to the literature,
the content of POPs in meat is particularly relevant, and sev-
eral studies have reported high levels of organochlorine pes-
ticides (OCPs) (Letta and Attah 2013; Pardio et al. 2012;
Schecter et al. 2010; Wang et al. 2011), polychlorinated bi-
phenyls (PCBs) (Costabeber et al. 2006; Malisch and Kotz
2014; Schecter et al. 2010; Schwarz et al. 2014), and especial-
ly polycyclic aromatic hydrocarbons (PAHs), which although
they are not strictly considered as POPs, they are usually in-
cluded in this group due to their high environmental preva-
lence and lipophilicity (Helmus et al. 2013; Lammel et al.
2013; Martorell et al. 2012; Veyrand et al. 2013).

It is known that dietary practices may influence exposure to
chemical contaminants such as POPs, through the food con-
sumption pattern, the forms of cooking or processing the food,
the production modes, packaging types, etc. (Luzardo et al.
2013a; Oates and Cohen 2011; Vogt et al. 2012). For example,
a growing number of people choose organic food as a health-
ier choice, although the study of the profile of these consumers
has indicated that they are also motivated by concern for en-
vironmental health, the animal welfare, or by the perception
that organic food has a higher nutritional value than conven-
tional products (Oates et al. 2012; Smith-Spangler et al. 2012;
Vogt et al. 2012). In fact, in the USA, organic food production
increased by 50 % during the last decade, and in Europe, this
increase has been even higher (in some countries like Spain,
the land surface devoted to organic production has tripled
during this period) (FIBL-IFOAM 2012).

Numerous studies have compared organic and convention-
al food production, both in relation to their nutritional value
and in relation to its content of chemical residues (Smith-
Spangler et al. 2012). With respect to nutrient content, most
studies indicate that organic food production does not have a
higher nutritional value than conventional production (Smith-
Spangler et al. 2012). However, studies have shown that or-
ganically produced foods have much less risk of being con-
taminated by residues of pesticides or other chemical pollut-
ants than conventional foods (Smith-Spangler et al. 2012).
Organic livestock are fed with organically produced feed that
is free of pesticides and animal by-products (Beane 2013), and
therefore it is supposed that there should be lower accumula-
tion of chemical residues. However, practically, there are no
studies on the chemical residues’ content in organic meat,
although some authors have studied the presence of residues
of veterinary drugs, heavy metals, microorganisms, and anti-
biotic resistance in organically and conventionally produced
pigs (Hoogenboom et al. 2008). Therefore, the comparison
with conventional production meat has also been scarcely
studied.

The study of chemical contamination of meat is relevant
because the consumption of meat has been associated with the
increased incidence of different types of cancer (Abid et al.

2014), and different studies have linked this increased risk of
cancer with the presence of carcinogenic chemical substances
in meat (Trafialek and Kolanowski 2014). Meat consumption
in Europe is high (51.2 kg/year/person) (Chamorro et al.
2012), and according to the Integrated Risk Information
System, a variety of the most common pollutants inmeat, such
as PCBs, hexachlorocyclohexane (HCH), dichlorodiphenyl-
trichloroethane (DDT) and its metabolites, and some conge-
ners of PAHs, have been classified in group B of carcinoge-
nicity (probable human carcinogens) (WHO 2014). Although
cancer slope factors (CSFs) have been calculated for all these
probable carcinogens (EPA 2014) and this would allow an
estimate of the risk of cancer associated with continuous ex-
posure to them through foodstuff, very few studies have
attempted to estimate the carcinogenic risks that are associated
with the current pattern of consumption of meat and meat
products (Trafialek and Kolanowski 2014). To our knowledge
no study to date has considered studying whether organic
meat production could be an option to reduce the carcinogenic
potential of meat consumption in relation to their content of
chemical carcinogens, especially POPs.

This study was designed to test this hypothesis, where the
concentrations of 7 PAHs, 18 PCBs, and 8 OCPs for which the
CSFs have been calculated were determined in samples of
meats (chicken, beef, and lamb) from organic and convention-
al production. The samples were acquired in large suppliers
who serve the entire European territory. The main objective of
this study was to use these data to estimate the carcinogenic
risk associated with the current level of meat consumption by
the European population considering two possible scenarios:
consumers that choose organic meats and consumers that
choose conventional meats. The methodology that has been
recently used to estimate the carcinogenic risk in other food
groups, such as fish (Yu et al. 2014), was applied, using the
data of food consumption of the Spanish population.

Materials and methods

Sampling

Two purchases of meat samples of the two modes of produc-
tion (organic and conventional) were made in the last quarter
of 2013 and the first of 2014. These purchases were made in
supermarkets belonging to large European retail chains locat-
ed in the Canary Islands (Spain), which have common sup-
pliers, and can therefore be considered representative of the
products available to consumers throughout the continent. A
total of 76 samples of meat were acquired, which were dis-
tributed as follows: 16 samples of lamb (8 from conventional
production and 8 from organic production), 32 samples of
chicken (20 conventional and 12 organic), and 28 samples
of beef (16 conventional and 12 organic). The samples were
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processed immediately after arrival at the laboratory. Each
meat sample was finely chopped with a knife and milled using
a stainless steel food processor. Then, all the samples were
frozen at −18 °C until analysis.

Chemicals, reagents, and analytes of interest

Dichloromethane, hexane, ethyl acetate, and cyclohexane (pu-
rity >99.9 %) were purchased from Fisher Scientific
(Leicestershire, UK). Ultrapure water was produced using a
Milli-Q Gradient A10 (Millipore, Molsheim, France).
Diatomaceous earth was purchased from Sigma-Aldrich (St.
Louis, USA). Bio-Beads SX-3 were purchased from BioRad
Laboratories (Hercules, USA). Standards of OCPs, PCB con-
geners, and the internal standards (ISs, PCB 202, p,p′-DDE-
d8, phenanthene-d10, tetrachloro-m-xylene, and heptachloro
epoxide cis) were purchased from DrEhrenstorfer, Reference
Materials (Augsburg, Germany). Standards of PAHs were
purchased from Absolute Standards, Inc. (CT, USA). Stock
solutions of each compound at 1 mg/mL were prepared in
cyclohexane and stored at −20 °C. Solutions diluted from
0.05 to 100 ng/mL were used for calibration curves.

The analytes selected for this study were 8 OCPs (p,p′-
DDT, p,p′-DDE, p,p′-DDD, hexachlorobencene, and the four
isomers of hexachlorocyclohexane (α-, β-, γ-, δ-HCH)); 18
PCB congeners, including marker-PCBs (M-PCBs) and
dioxin-like PCBs (DL-PCBs) (IUPAC numbers # 28, 52, 77,
81, 101, 105, 114, 118, 123, 126, 138, 153, 156, 157, 167,
169, 180, and 189); and 7 PAHs listed as carcinogens in the
Toxics Release Inventory Program of the USA and the EPA’s
Priority Chemical list (EPA 2001) (benzo(a)anthracene,
benzo(a)phenanthrene (chrysene), benzo(a)pyrene,
benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)an-
thracene, and indeno(1,2,3-cd)pyrene).

Extraction and cleanup procedure

All the contaminants included in this study are completely
lipid-soluble and therefore are found in the lipid fraction of
tissues. For this reason, the fat from the meat was firstly ex-
tracted. Thus, the samples (5 g) were homogenized in 5 mL of
ultrapure water with a disperser (Ultra-turrax, IKA, China).
This homogenate was spiked with the ISs mix in acetone
(10 μg/mL) to yield a final concentration of 100 ng/mL and
was mixed with 30 g of diatomaceous earth to absorb any
moisture. The extraction and cleanup method followed the
procedures recommended by the European Standard for the
determination of pesticides and PCBs in fatty foods (EN
1996a, b), which had been previously validated in our labora-
tory for different fatty samples of animal origin (Almeida-
Gonzalez et al. 2012; Garcia-Alvarez et al. 2014; Luzardo
et al. 2014). This method achieves acceptable recoveries that
ranged between 71.5 and 103.2 %. Briefly, the fat was

extracted using a Soxtec™ 2055 Auto Fat Extraction (Foss®
Analytical, Hilleroed, Denmark) apparatus, which consisted
of an extraction unit, a control unit, and a drive unit. The
samples were placed into the extraction unit, and 20 mL of
dichloromethane was added to each of the extraction cups in a
closed system, and the cups were heated using an electric
heating plate. The three-step extraction consisted of boiling,
rinsing, and solvent recovery. The solvent was evaporated in a
rotary evaporator (Hei-VAP Advantage™, Heidolph
Instruments®, Schwabach, Germany) at 40 °C to prevent an-
alyte losses. Using a precision balance, the fat obtained was
carefully weighted into a zeroed glass tube to determine the fat
content of each meat sample (percentage). The weighted fat
was dissolved in 2 mL of cyclohexane/ethyl acetate (1:1) and
subjected to purification by gel permeation chromatography
(BioBeads SX-3) using cyclohexane/ethyl acetate (1:1) at a
constant flow of 2 mL/min as the eluent. The first 25-min
elution volume, which contained the great majority of lipids
(>98 %), was discarded. The 25–85-min elution volume
(120 mL), which contained all the analytes that were co-
extracted with the fat, was collected. The sample was concen-
trated using a rotary evaporator, and finally, the solvent was
evaporated to dryness under a gentle nitrogen stream. The
residue was then reconstituted in 1 mL of cyclohexane, and
the sample was transferred to a GC vial that was used for the
chromatographic analysis. The amount of pollutants per gram
of fat was obtained by multiplying by the corresponding cor-
rection factor. The amount of contaminants in fresh meat was
obtained by correcting for the fat percentage of each sample.

Chemical analysis procedure

All the compounds, plus ISs, were analyzed by gas
chromatography-triple quadrupole mass spectrometry (GC-
MS/MS) (Quantum XL, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) as previously described (Camacho et al.
2013, 2014; Luzardo et al. 2013b). Briefly, a 30 m×0.25 mm
i.d., 0.25-μm film thickness column (BPX5, SGE Inc., Austin,
TX, USA)was used as the stationary phase. Helium (99.999%)
was used as the carrier gas at a constant flow of 1 mL/min. The
61-min oven temperature program was as follows: 60 °C held
for 1 min, ramped to 210 °C at 12 °C/min and then to 320 °C at
8 °C/min and held for 6 min. The injector temperature was set
at 270 °C, and the transfer line was heated to 310 °C. The
injection volume was 1 μl in the splitless mode. A timed se-
lected reaction monitoring (SRM) method for the simultaneous
analysis of all the compounds in a single run was constructed.
The operation conditions of the mass spectrometer were as
follows: electron impact ionization (70 eV) in SRM; emission
current, 50 μA; ionization source temperature, 220 °C; electron
multiplier voltage, 1500 V; scan width, 0.15; scan time, 0.05 s;
and peak width, m/z 0.7, and Da. Argon (99.99 %) was used as
the collision gas at 0.2 Pa.
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Quality control

All the recoveries were above 71 %, and it was thus consid-
ered acceptable to use this method for all the pollutants. All
the individual measurements were corrected by the recovery
efficiency for each analyte. All the samples were injected three
times, and the values used for the calculations were the mean
of the three values. In each batch of samples, three controls
were included for every nine vials (three samples): a reagent
blank consisting of a vial containing only cyclohexane, a vial
containing 2 ng/mL of each of the pollutants in cyclohexane,
and an internal laboratory quality control (QC) consisting of
melted meat fat spiked with a mixture of all the pesticides
(20 μg/kg), and processed using the same method that was
used for the samples. The results were considered to be ac-
ceptable when the quantification of the analytes in the QCwas
within 15 % of the deviation of the theoretical value, which
occurred in all the injections. The limit of quantification
(LOQ) was set to 0.1 ng/g for all the analytes. A zero value
was assigned to all the compounds below the limit of detection
(LOD), and those compounds below the LOQ were assigned
half of the LOQ.

Dietary intake estimates and calculations

To estimate the daily intake of pollutants through the con-
sumption of a certain type of meat, it is necessary to know
the concentration of pollutants in that meat (median and mean
values expressed in ng/g fresh product) and multiply that val-
ue by the daily average consumption of that meat in a given
population. Data on food consumption in Europe are pub-
lished by the European Food Safety Authority (EFSA) from
data provided by the Member States of the EU (EFSA 2011).
However, the data for the whole EU are available by food
groups (meat) rather than for individual foods (pork, beef,
and chicken). Given that Spain is one of the EU countries with
the highest meat consumption per capita (the third after the
Czech Republic and Hungary in the adult population, and the
first in child and adolescent population), the values of con-
sumption of individual foods by the Spanish population were
used in this study, which have been published by the Spanish
Agency for Consumer Food Safety and Nutrition (AECOSAN
2006, 2011).While it has been established that regular organic
food consumers tend to consume less amount of meat (up to
33 %) than non-consumers (Kesse-Guyot et al. 2013), in this
paper, we have assumed that consumption is identical, for
comparison purposes. For the risk assessment, two groups
were considered: adults (18 years old and above, average
weight 70.1 kg) and children (6 to 10 years old, average
weight 30.4 kg).

For calculations of this paper, analytical values have been
considered separately and grouped as follows: the total value
of OCP residues (∑OCPs) as the sum of the 8 OCPs and

metabolites measured; the total value of DDTs (∑DDT) as
the sum of the measured values of p,p′-DDT, p,p′-DDE, and
p,p′-DDD; and the total value of HCH residues (∑HCH) as the
sum of the 4 HCH isomers measured (α-,β-, δ-, and γ-HCH);
the total value of PCB residues (∑PCBs) as the sum of the 18
PCB congeners measured; the total value of the marker PCB
residues (∑M-PCBs) as the sum of the 7 congeners considered
as markers of environmental contamination by PCBs (#28, 52,
101, 118, 138, 153, and 180); the total value of dioxin-like
PCBs (∑DL-PCBs) considered as the sum of the measure-
ments of the 12 individual congeners (#77, 81, 105, 114,
118, 123, 126, 156, 157, 167, 169, and 189); and the total
content of carcinogenic PAHs (∑c-PAHs) as the sum of the
values of the 7 US-EPA compounds following the EFSA rec-
ommendations (EFSA 2008). Additionally, for the risk esti-
mation, we calculated the potential toxicity (in terms of toxic
equivalence to dioxins, TEQs) for the DL-PCBs using the
toxic equivalency factors (TEFs) as revised by the World
Health Organization (WHO) in 2005 (Van den Berg et al.
2006), and the potential toxicity in terms of benzo[a]pyrene
toxic equivalents (B[a]Peq) using the TEFs, which are
established for the carcinogenic PAHs (Nisbet and LaGoy
1992).

The CFSs of the carcinogens included in this study were
taken from the EPA’s IRIS (EPA 2014) and were as follows: 1
per mg of substance/kg body weight-day (mg/kg-day) for
marker PCBs (based on Aroclors 1260, 1254, 1242, and
1061), 1.1×105 per mg/kg-day for dioxin-like PCBs (based
on 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8,-TCDD)),
0.34 per mg/kg-day for DDTs, 1.8 per mg/kg-day for HCHs
(as there are not CFS values listed for total HCHs, the values
listed for β- and γ-HCH were used), 1.6 per mg/kg-day for
hexachlorobencene, and 7.3 per mg/kg-day for PAHs (based
on benzo[a]pyrene).

Carcinogenic risk calculation

To estimate whether chemical contamination by carcinogens
of meat endangers the consumers, we applied the risk assess-
ment index, known as the risk quotient (RQ), using the meth-
odology that has been used for other food groups, such as fish
(Yu et al. 2014). RQ is defined as the ratio between the current
consumption of meat (Rmeat) and the maximum tolerable con-
sumption of these products, which is calculated taking into
account the concentrations of carcinogens in these foods
(CRlim) as follows:

CRlim ¼ ARL˙BW
X X

m¼1
Cm˙CSFm

where CRlim is the maximum allowable consumption rate
(kg/day) for a particular meat; ARL is the maximum
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acceptable individual lifetime risk level (dimensionless), and a
value of 10−5 was used in this study (Yu et al. 2014); BW is the
body weight (kg); Cm is the median concentration of contam-
inant m in a particular meat (mg/kg) as determined in this
study; and CSFm is the cancer slope factor of a contaminant
m (mg/kg/day) with carcinogenic potential. In the case of
multiple contaminants with the same CSF, their concentra-
tions in a particular type of meat were summed (from m=1
to m=x).

Then, the RQ for each food item and contaminant was
calculated as follows:

RQ ¼ Rmeat

CRlim
for a single contaminantð Þ

RQ ¼ Rmeat˙
X

m¼1
x 1

CRlim
for multiple contaminantsð Þ

Thus, if the value ofRQ is equal to or less than 1, there is no
carcinogenic risk associated with the ingestion of contami-
nants through the consumption of a particular type of meat.
Otherwise, the population is considered to be at carcinogenic
risk when RQ is greater than 1, indicating that the current
consumption of that foodstuff is greater than its CRlim value.

Statistical analysis

The PASW Statistics v 19.0 software package (SPSS Inc.,
Chicago, IL, USA) was used to manage the database of the
study and to perform the statistical analyses. Normality was
examined using the Kolmogorov-Smirnov test. The POP dis-
tributions in the meat samples lacked normality and homosce-
dasticity; therefore, we used non-parametric tests (the Mann-
Whitney and Kruskal-Wallis tests). The results are reported as
the medians and percentiles 25th–75th ranges. Probability
levels of less than 0.05 (two-tailed) were considered statisti-
cally significant.

Results and discussion

Distribution of persistent organic pollutants
with carcinogenic potential in organically
and conventionally produced beef, chicken, and lamb

The main objective of this paper is to provide an estimate of
the level of exposure to carcinogenic POPs through consump-
tion of beef, chicken, or lamb, depending on their mode of
production (conventional production or organic production).
While the levels of many of these substances have been iden-
tified in previous studies carried out in different parts of the
world, all these works have been performed in conventionally
produced meat. As far as we know, no work has been done
specifically on organic meats. Also, as one might expect, the

levels of carcinogenic POPs in meats published to date are
highly variable (sometimes very significantly) (Costabeber
et al. 2006; Letta and Attah 2013; Malisch and Kotz 2014;
Pardio et al. 2012; Polder et al. 2010; Schecter et al. 2010;
Tornkvist et al. 2011; Wang et al. 2011), which is logical
because it is very common to find regional variations in con-
taminant levels. Since the objective of this paper is not to
compare our results with previous works but to make a com-
parison of exposure depending on the product chosen by con-
sumers, to make a realistic estimate, we preferred to directly
quantify the contaminants in a representative sample of the
main types of meat that any European consumer can find in
supermarkets of the continent, and directly determine over
them carcinogenic contaminant levels. Table 1 presents a sum-
mary of the data obtained directly from these samples,
expressed as median and percentiles 25th and 75th.

As it would be expected in foods of animal origin, none of
the samples was free of all the contaminants investigated.
Both, meat samples from organic production and from con-
ventional production, presented an average of 19 residues
(ranging from 11 to 24 residues out of 33). In any case, the
levels found in all samples were below the levels legally
established in Europe (maximum residue levels, MRLs) (EC
2006a, b). The highest levels of contaminants found in this
study were those of theM-PCBs in lamb, both organically and
conventionally produced, and those of DDTs, also in organic
and conventional lamb. In fact, these two sets of pollutants,
theM-PCBs and DDTs, were the most abundant in all types of
meat, as shown in Table 1. With regard to the PCB content of
meats, it is remarkable that these were completely dominated
by congeners 118, 138, 153, and 180 in all the cases, and thus,
the∑M-PCBs contributed with 94.3–99.8% to the∑PCBs. In
fact, DL-PCBs were the contaminants that reached the lowest
levels in all meat types, and therefore the toxic equivalent
quantity (TEQ) levels for dioxin-like PCBs in the meat sam-
ples analyzed had low median values (range from 0.01 to
0.41 pg/g w.w.) (Table 1).

Two facts attracted attention of our results. First, the fact
that pollution levels are quite different between distinct types
of meats. Thus, lamb is by far the one with the highest levels
of all pollutants studied. At the other extreme, we find the
chicken (skinless) having the lowest levels in all cases. The
beef meat shows intermediate values (Table 1). These differ-
ences are probably attributable to the very different percent-
ages of fat of each type of meat, because whenwe compare the
data expressed as nanograms of carcinogen per gram of fat
rather than per gram of fresh product, the differences are much
smaller (data not shown).Second, it is interesting to note that
the differences between the two modes of production, organic
and conventional, can be considered minimal, generally
speaking. Table 1 shows the values of statistical significance
found for each of the pollutants and meats. As seen above, the
highest differences were found between organic and
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conventional beef. However, contrary to what one might
think, not in all cases the values were lower in meat from
organic production. Thus, as it can be observed in Table 1,
in the case of hexachlorobenzene (HCB), levels found in sam-
ples of organic beef and organic chicken were significantly
higher than those found in the same meats from conventional
production. Also noteworthy is the case of HCH isomers
(∑HCH) since, although not statistically significant, a trend
is observed that the levels are higher in lamb and beef from
organic production. However, in relation to these contami-
nants, the trend was reversed in chicken meat (in this case
with statistical significance, p>0.05, Table 1).

As the differences were not very relevant when analyzed by
pollutants, we also performed the comparison by grouping
them by chemical classes: OCPs, PCBs, and PAHs. The re-
sults are shown in Fig. 1. The only significant differences in
the level of pollutants according to the mode of production
were found for OCPs (in the three types of meat) and PAHs (in
beef). The most striking results were that organic lamb meat
contained much higher levels of OCPs than conventionally
produced lamb (p<0.001, Fig. 1). These higher levels were
also found in chicken meat, but the differences were much
smaller (p<0.05). However, for beef meat, the situation was
reverse: conventional production beef showed higher levels of
OCPs than beef from organic production, and the same was
obtained for the levels of PAHs (p<0.05 in both cases).

Dietary intake of carcinogenic POPs
through the consumption of organic and conventional
meats by adults and children

Dietary exposure calculations are performed by combining
data on consumption habits with the concentrations of con-
taminants found in food samples. The estimation of food con-
sumption, nutrient intake, and contaminant exposure is a topic
of growing interest in the field of public health as a means to
inform and guide the actions on food security and nutrition,
and as a predictive method for determining the state of health
of populations. For this reason, the European Food Safety
Authority (EFSA) performs a collection of food consumption
data from the different Member States (MS), which must de-
velop nutritional surveys in their territories. On this basis, the
Authority prepares an European database of Food
Consumption (http://www.efsa.europa.eu/en/datexfoodcdb/
datexfooddb.htm). For the estimates in this paper, the data
provided by the authorities on food security of our country,

Fig. 1 Box plots of the levels of ∑OCPs (a), ∑PCBs (b), and ∑c-PAHs
(c) in the three types of meat studied, and comparison between the two
modes of production of these meats (conventional vs. organic). The line
inside the boxes represents the median, the bottom and top of the boxes
are the first and third quartiles of the distribution, and the lines extending
vertically from the boxes indicate the variability outside the upper and
lower quartiles

b
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Spain (AECOSAN 2006, 2011), were used. The reason for
this is that Spain overall meat consumption has steadily
increased over the last few decades (Kanerva 2013; Leon-
Munoz et al. 2012), and currently, the meat industry is ranked
in fifth position in the industrial sector of the Spanish econo-
my and is ranked first among the agro-food industries
(Chamorro et al. 2012). Thus, meat consumption in Spain
increased from one of the lowest ones in the EU reaching an
average per capita consumption of 52.7 kg/year/person, which
is even higher than the European average (51.2 kg/year/per-
son) (Chamorro et al. 2012). In any case, using food consump-
tion data from any EU country, and the concentrations of
pollutants reported in this paper, daily intake levels of these
pollutants for the different European populations can be easily
obtained. It should be noted that in our estimates, we have
assumed that all consumers (strict consumers of organic prod-
ucts, occasional consumers of organic products, and non-
consumers of organic products) equally fit the pattern of con-
sumption defined in nutrition surveys. This assumption has
been made for comparison purposes, although it has been
recently described that those strict consumers of organic prod-
ucts tend to consume up to 30 % less meat than consumers of
conventional products (Kesse-Guyot et al. 2013), and there-
fore their actual exposure would be lower than the estimates
presented here.

Table 2 summarizes the dietary intake of all the contami-
nants included in this study arranged by groups (on the basis
of their similar carcinogenic potential), for children (6–
10 years) and adults (>18 years).

First, with regards to the OCPs, our results show that the
estimated daily intake (EDI) of ∑DDTs through the

consumption of these three types of meat for adults living in
Spain is 55.71 ng/kg body weight (b.w.)/day if they choose to
consume conventional products, and 86.75 ng/kg b.w./day if
they choose to consume organic meats, mainly due to the
contribution of lamb meat in both cases. In children, the ex-
posure to ∑DDTs through meat consumption is even higher,
being 91.02 ng/kg b.w./day for consumers of conventionally
produced meat, and up to 119.86 ng/kg b.w./day for con-
sumers of organic meats. In any case, it should be noted that
these consumptions represent only between 0.5 and 1.2 %
(depending on the consumer and their choice) of the provi-
sional tolerable daily intake (TDI) for humans established by
the World Health Organization for these contaminants
(0.01 mg/kg b.w./day)(JECFA 2000). With regard to the ex-
posure to ∑HCHs through meat consumption, the EDIs were
much higher in adults and children consuming organic prod-
ucts (36.8 and 51.59 ng/kg b.w./day, respectively) than in
consumers of conventionally produced meats (4.08 and
7.67 ng/kg b.w./day, respectively) (p<0.005). However, it is
remarkable that, again, in this case, the exposure to∑HCHs is
also far from the established TDIs (5000 ng/kg b.w./day)
(JECFA 2000), representing less than 1 % of this value even
in the worst scenario. The main contributors of this exposure
to ∑HCHs were organic lamb and organic beef. Finally, with-
in the group of OCPs, with regard to the intake of HCB, we
found that once again the major contributor was by far lamb
meat. However, in this case, organically and conventionally
produced lamb contributed almost equally to the exposure to
this contaminant. Thus, the HCB EDIs for adults and children
who consume organic meat were 56.49 and 76.57 ng/kg b.w./
day, respectively, and were 54.49 and 68.62 ng/kg b.w./day for

Table 2 Median values of dietary intakes of carcinogenic POPs (ng/kg b.w./day) by means of the consumption of organic and conventional meats for
Spanish adults and children

Food consumption (g/day) ∑DDT ∑HCH HCB ∑M-PCB ∑DL-PCB ∑TEQa ∑B[a]Peq

Adults

Lamb (conventional) 11.5 32.16 1.52 51.59 8.49 0.58 0.05 0.61

Lamb (organic) 11.5 71.68 29.52 48.24 10.05 0.18 0.01 0.55

Chicken (conventional) 42.7 5.18 1.75 1.41 8.46 0.16 0.01 0.17

Chicken (organic) 42.7 4.36 0.80 3.35 8.71 0.13 0.01 0.13

Beef (conventional) 50.4 18.37 0.81 1.49 20.24 1.74 0.11 0.86

Beef (organic) 50.4 10.71 6.48 4.90 16.94 0.83 0.05 0.40

Children

Lamb (conventional) 6.0 38.69 1.83 62.06 10.21 0.70 0.06 0.73

Lamb (organic) 6.0 86.24 35.52 58.03 12.09 0.21 0.01 0.66

Chicken (conventional) 43.1 12.07 4.07 3.28 19.70 0.37 0.03 0.41

Chicken (organic) 43.1 10.14 1.87 7.80 20.27 0.31 0.03 0.31

Beef (conventional) 47.9 40.26 1.77 3.28 44.36 3.82 0.23 1.89

Beef (organic) 47.9 23.48 14.20 10.74 37.13 1.82 0.10 0.88

a Expressed in pg/kg b.w./day
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those adults and children consuming conventionally produced
meats. In the case of this contaminant, these EDIs represent
between 6.8 and 9.57 % of the TDI set by WHO for HCB
(JECFA 2000).

With regard to the group of M-PCBs, the exposure through
meat consumption was very similar between consumers of
organic and conventional meats, as seen in Table 2. The main
dietary intake of these contaminants is from beef. Thus, adult
population would be exposed to 37.19 ng/kg b.w./day if they
consume conventionally produced meat, and to 35.71 ng/kg
b.w./day if they consume organic meats. In children, the PCB
EDIs are almost double than in adults (74.27 and 69.49 ng/kg
b.w./day for conventional and organic meat consumers, re-
spectively). As, for the total PCBs, a TDI value has not been
established, it is necessary to consider the intake of the most
toxic compounds, the DL-PCBs, expressed in terms of the
equivalency to dioxin toxicity, to assess the level and expo-
sure. Using this approach, our estimates of ∑TEQDL-PCBs

would represent 3.5 to 16 % of the TDI of 2 pg/kg b.w./day
(SCF 2000). In this case, the highest levels of exposure were
found for children who consume conventionally produced
meats. Our results are in accordance to other studies where
authors have estimated that meat is an important source of
dioxins and dioxin-like compounds in a high percentage of
the samples analyzed (Costabeber et al. 2006; Malisch and
Kotz 2014; Schecter et al. 2010; Schwarz et al. 2014;
Tornkvist et al. 2011). These results are worrisome because
the possibility exists that certain consumers may be subject to
high dietary exposures to dioxins, even though they choose to
consume organic food.

Finally, with regard to the last chemical group studied, the
c-PAHs, we found that conventionally produced beef meat
was the major contributor. As shown in Table 2, the EDIs
(expressed as equivalents of B[a]P) for the adult population
is 1.6 ng/kg b.w./day if they consume conventionally pro-
duced meat, and a little bit lower if they choose to consume
organic meats (1.08 ng/kg b.w./day). In children, the EDIs are
3.03 and 1.85 ng/kg b.w./day for consumers of conventional
and organic meats, respectively. To date, the WHO has not yet
established TDI values for c-PAHs or benzo[a]pyrene (JECFA
2000). However, other references may be used. Thus, using
the Contaminated Land Exposure Assessment (CLEA) model
of the UK, which has established a TDI for B[a]Peq of 20 ng/
kg b.w./day (CLEA-UK 2008), the current meat consumption
in Spain would represent up to 15 % of these values (in chil-
dren consuming conventionally produced meats).

POP-associated carcinogenic potential of the current
consumption of organically or conventionally produced
meats

As shown in the previous section, in all cases, the intake of
contaminants through the consumption of meat represents a
relatively discrete percentage of the TDI established for each
of them. However, the main objective of our research is fo-
cused on the study of the carcinogenic potential associated
with the consumption of carcinogenic POPs with meat. It has
been established that the RQ evaluation is a good method to
estimate the risk of a population (in this case the carcinogenic
risk), and to establish exposure limits to chemicals (USEPA

Table 3 Values of maximum
allowable consumption rate of
conventional or organic meat
(CRlim), expressed in g/day

Food
consumption
(g/day)

∑DDT ∑HCH HCB ∑M-
PCB

∑DL-
PCB

∑B[a]Peq

CRlim for adults (g/day)

Lamb (conventional) 11.5 10.2 40.8 1.4 13.1 210.5 25.1

Lamb (organic) 11.5 4.6 2.1 1.4 11.1 936.6 27.8

Chicken
(conventional)

42.5 234.9 131.6 184.0 48.9 2512.9 325.8

Chicken (organic) 42.5 279.7 286.2 77.3 47.6 2853.1 427.4

Beef (conventional) 50.4 78.3 335.5 204.4 24.2 418.3 77.6

Beef (organic) 50.4 134.2 41.9 62.4 28.9 929.6 167.0

CRlim for children (g/day)

Lamb (conventional) 6.0 5.3 21.0 0.7 6.8 108.3 12.9

Lamb (organic) 6.0 2.4 1.1 0.7 5.7 482.1 14.3

Chicken
(conventional)

43.1 120.9 67.7 94.7 25.2 1293.4 167.7

Chicken (organic) 43.1 144.0 147.3 39.8 24.5 1468.5 220.0

Beef (conventional) 47.9 40.3 172.7 105.2 12.4 215.3 39.9

Beef (organic) 47.9 69.1 21.6 32.1 14.9 478.5 85.9

The current values of consumption of these products by the Spanish population (g/day) are included for reference
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2000). However, the application of this method to multiple
chemical contaminants present in food has some weaknesses
because assumptions must be made. Thus, it is well known
that chemicals in foods are usually present in mixtures of var-
ious compounds belonging to different chemical classes, and
thus they may exert their adverse effects on consumers
interacting with each other in synergistic, additive, or even in
antagonistic manners. However, the calculation model of the
RQ implies the assumption that all pollutants cause similar
toxicological effects and that the combined effect is the sum
of the individual effects (USEPA 2000). Nevertheless, as

recommended by the USEPA, we have considered that all
carcinogens studied are similar and, therefore, we have used
the additive model for calculating the RQs.

To do this, theCRlim values (which represent the maximum
allowable consumption of each meat type on the basis of their
load of pollutants) were used for both adults and children
(Table 3). According to these results, the current pattern of
consumption of meat in the Spanish population implies that
some of these limits are exceeded. Thus, the CRlim of ∑M-
PCBs is exceeded by the consumption of all three types of
meat, either organic or conventional, both in adults and

Fig. 2 Risk quotients of the
contaminants for carcinogenic
effects in adults (upper panel) and
children (lower panel) via
consumption of conventionally or
organically produced meats. The
discontinuous horizontal line
indicates the threshold for
carcinogenic risk (RQ=1)
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especially in children. The CRlim of HCB and∑DDTs are also
exceeded by lamb consumption in both age groups, regardless
the type of meat production and consumers’ choice. Finally,
current consumption of conventionally produced beef also
implies that the CRlim values of ∑DDTs and B[a]Peq are
overpassed in children.

According to the CRlim, we calculated RQs associated with
the current consumption of each meat type for both adults and
children (Fig. 2). From our results, two facts powerfully attract
the attention. First, the current pattern of consumption of meat
implies a carcinogenic risk (RQ>1) in all cases. The calculat-
ed carcinogenic risk ranges between 1.76 and 17.41 in adults,
and between 3.45 and 17.65 in children. On the other hand, it
is striking that the POP-associated carcinogenic risk tends to
be higher in organic meats that in those which are convention-
ally produced. This is especially relevant in lamb meat, where
the consumption of organic product implies a carcinogenic
risk up to 1.5 times higher than the consumption of the con-
ventionally produced option, both in adults and children.

Conclusions

In this research, the concentrations of 33 persistent organic
pollutants with carcinogenic potential were determined in a
large sample of meats available in the European supermarkets
from two modes of production: conventional and organic. A
mean of 19 of these 33 contaminants in all the samples tested
(11–24) were found, but in no case the establishedMRLswere
exceeded. Some significant differences in the levels of pollut-
ants between organically and conventionally produced meats
were found, but these differences can be considered of minor
entity. As it is well known that continued exposure to carcin-
ogens is not without risk (even at very low doses), the daily
intake of these contaminants from the meat were estimated,
taking a high meat consumer population such as the Spanish
population as a model (adults and children). According to
these estimates, exposure is similar in children than in adults,
and also very similar if these consumers choose conventional
or organic meats, generally speaking. The approximation of
the risk ratio was used to evaluate the carcinogenic risk of the
current pattern of consumption of these meats in the studied
population, and a relevant risk was found in all the cases.
Surprisingly, the risk seems to be even higher if the consumer
chooses to consume organic meats (especially lamb). This
work demonstrates once again that environmental contamina-
tion by POPs is ubiquitous and human exposure is very diffi-
cult to avoid. Even those consumers who choose to consume
organic food, which is theoretically healthier, have exposure
rates to these legacy pollutants that can become even higher
than those of consumers who eat conventional food. This
shows that efforts to minimize the environmental presence

of these toxic pollutants should be continued and even
strengthened.
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