BASIC FORMULAS

The Fibonacci numbers F_n and the Lucas numbers L_n satisfy

\[F_{n+2} = F_{n+1} + F_n, \quad F_0 = 0, \quad F_1 = 1; \]

\[L_{n+2} = L_{n+1} + L_n, \quad L_0 = 2, \quad L_1 = 1. \]

Also, $\alpha = (1 + \sqrt{5})/2$, $\beta = (1 - \sqrt{5})/2$, $F_n = (\alpha^n - \beta^n)/\sqrt{5}$, and $L_n = \alpha^n + \beta^n$.

PROBLEMS PROPOSED IN THIS ISSUE

B-1216 Proposed by D. M. Bătinețu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Prove that, for any positive real number m, and any positive integer n,

\[F_m^n F_{n+1}^m \sum_{k=1}^{n} \frac{L_k^{m+1}}{F_k^{2m}} \geq n^{m+1} \left(\prod_{k=1}^{n} L_k \right)^{\frac{m+1}{n}}. \]

B-1217 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let $M_{k_i} = 2^{(i-1)k_i} L_{k_i}$. For integers $r \geq 1$ and $n \geq 0$, find a closed form expression for the sum

\[S_n = \sum_{0 \leq k_1, \ldots, k_r \leq n, k + k_1 + \ldots + k_r = n} \frac{F_{k} M_{k_1} \cdot M_{k_2} \cdots M_{k_r}}{k! \cdot k_1! \cdot k_2! \cdots k_r!}. \]
THE FIBONACCI QUARTERLY

B-1218 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precapathian National University, Ivano-Frankivsk, Ukraine.

Find a closed form expression for
\[(L_{n+1} - 1)F_n(F_{2n+2} - F_{n+2}) + (1 - F_n - F_{n+2})F_{n+2}(F_{2n+2} - F_{n+3}) + (F_{2n+2} - F_{n+2})(F_{2n+2} - F_{n+3}).\]

B-1219 Proposed by D. M. Bătinețu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Prove that, for any integer \(n \geq 2\),
\[
\frac{F_n^4 + F_n^2 + 1}{F_n} + \sum_{k=1}^{n-1} \frac{F_k^4 + F_k^2 F_{k+1}^2 + F_{k+1}^4}{F_k F_{k+1}} > 3F_n F_{n+1}.
\]

B-1220 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
\[
\prod_{n=3}^{\infty} \left(1 - \frac{1}{F_n^4}\right) = \frac{\alpha^5}{12}.
\]

SOLUTIONS

Symmetric Functions

B-1196 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 54.4, November 2016)

For any integer \(n\), prove that
\[
\frac{L_{n+2}^5 - L_{n+1}^5 - L_{n-1}^5 - L_{n-2}^5}{L_{n+2}^3 - L_{n+1}^3 - L_{n-1}^3 - L_{n-2}^3} = 5 \cdot \frac{F_{n+2}^5 - F_{n+1}^5 - F_{n-1}^5 - F_{n-2}^5}{F_{n+2}^3 - F_{n+1}^3 - F_{n-1}^3 - F_{n-2}^3}.
\]

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

The denominators on both sides of the identity become zero when \(n = 0\), so we shall assume \(n \neq 0\). The LHS can be written as
\[
\frac{(a + b + c)^5 - a^5 - b^5 - c^5}{(a + b + c)^3 - a^3 - b^3 - c^3},
\]
where \(a = L_{n+1}, b = L_{n-1},\) and \(c = L_{n-2}\). Both numerator and denominator are symmetric functions in \(a, b,\) and \(c\). Noting that \((a + b + c)^5 - a^5 - b^5 - c^5 = 0\) when \(a = -b, b = -c,\) or \(c = -a\), we deduce that
\[
(a + b + c)^5 - a^5 - b^5 - c^5 = (a + b)(b + c)(c + a)[k(a^2 + b^2 + c^2) + \ell(ab + bc + ca)]
\]
for some constants \(k\) and \(\ell\). By setting \((a, b, c)\) to \((1, 1, 0)\) and \((1, 1, 1)\) respectively, we obtain \(2k + \ell = 15\) and \(k + \ell = 10\). The solution is \(k = \ell = 5\). Similarly, we find
\[
(a + b + c)^3 - a^3 - b^3 - c^3 = 3(a + b)(b + c)(c + a).
\]
Since
\[(a + b)(b + c)(c + a) = (L_{n+1} + L_{n-1})L_n(L_{n+1} + L_{n-2}) = 10F_nL_n^2 \neq 0,
\]
the LHS of the given identity simplifies to
\[
\frac{5}{3}(a^2 + b^2 + c^2 + ab + bc + ca) = \frac{5}{6}[(a + b + c)^2 + a^2 + b^2 + c^2].
\]
A similar argument can be applied to the RHS of the given identity. Hence, for \(n \neq 0\), the identity is equivalent to
\[
L_{n+2}^2 + L_{n+1}^2 + L_{n-1}^2 + L_{n-2}^2 = 5(F_{n+2}^2 + F_{n+1}^2 + F_{n-1}^2 + F_{n-2}^2).
\]
The proof is completed by observing that
\[
F_m^2 + L_{m-1}^2 = 5(F_m^2 + F_{m-1}^2)
\]
for any integer \(m\).

Editor’s Notes. Several solvers showed that both sides of the identity equal to \(\frac{25}{3}L_{2n}\) when \(n \neq 0\). The identity would have been valid even when \(n = 0\) if we rewrite it as
\[
(L_{n+2}^5 - L_{n+1}^5 - L_{n-1}^5 - L_{n-2}^5)(F_{n+2}^5 - F_{n+1}^5 - F_{n-1}^5 - F_{n-2}^5) = 5(F_{n+2}^5 - F_{n+1}^5 - F_{n-1}^5 - F_{n-2}^5)(F_{n+2}^5 - L_{n+1}^5 - L_{n-1}^5 - L_{n-2}^5).
\]
Hisert remarked that the identity also holds for any pair of Fibonacci-Lucas type second-order recurrence relations (provided that the denominators are nonzero) with an appropriate adjustment in the factor 5. The details are left to the readers as an exercise.

Also solved by Brian D. Beasley, I. V. Fedak, Dmitry Fleischman, George A. Hisert, Nuerttin Irmak, David Terr, Welfare Wang (student), and the proposer.

Bergström and Cauchy-Schwarz

B-1197 Proposed by D. M. Bătinețu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade Secondary School, Buzău, Romania.

(Vol. 54.4, November 2016)

Let \(a\) and \(b\) be positive real numbers. For any positive integer \(n\), prove each of the following:

(i) \[
\sum_{k=1}^{n} \frac{F_k^4}{aL_k + bF_k^2} > \frac{F_n^2F_{n+1}^2}{a(L_{n+2} - 3) + bF_nF_{n+1}};
\]

(ii) \[
\sum_{k=1}^{n} \frac{F_k^4}{aF_{n+2} + bF_k - a} > \frac{F_n^2F_{n+1}^2}{(an + b)(F_{n+2} - 1)}.
\]

Solution by Wei-Kai Lai and John Risher (student), University of South Carolina Salkehatchie, Walterboro, SC.

Note that both strict inequality signs > should be replaced by inequality signs ≥, as equality does occur when \(n = 1\) in both cases.

Proof of (i): Bergström’s inequality, which is a special case of Radon’s inequality, states that
\[
\frac{x_1^2}{y_1} + \frac{x_2^2}{y_2} + \cdots + \frac{x_n^2}{y_n} \geq \frac{(x_1 + x_2 + \cdots + x_n)^2}{y_1 + y_2 + \cdots + y_n}
\]
for any positive \(x_i\)s and \(y_i\)s. Applying this inequality, we have
\[
\sum_{k=1}^{n} \frac{F_k^4}{aL_k + bF_k^2} \geq \frac{(\sum_{i=1}^{n} F_i^2)^2}{a \sum_{i=1}^{n} L_i + b \sum_{i=1}^{n} F_i^2}.
\]
Since \(\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}\), and \(\sum_{i=1}^{n} L_i = L_{n+2} - 3\),
\[
\frac{(\sum_{i=1}^{n} F_i^2)^2}{a \sum_{i=1}^{n} L_i + b \sum_{i=1}^{n} F_i^2} = \frac{F_n^2 F_{n+1}^2}{a(L_{n+2} - 3) + bF_n F_{n+2}},
\]

hence completing the proof.

Proof of (ii): According to Bergström’s inequality again,
\[
\sum_{k=1}^{n} \frac{F_k^4}{aF_{n+2} + bF_k - a} \geq \frac{(\sum_{i=1}^{n} F_i^2)^2}{an(F_{n+2} - 1) + b \sum_{i=1}^{n} F_i}.
\]
Since \(\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}\), and \(\sum_{i=1}^{n} F_i = F_{n+2} - 1\),
\[
\frac{(\sum_{i=1}^{n} F_i^2)^2}{an(F_{n+2} - 1) + b \sum_{i=1}^{n} F_i} = \frac{F_n^2 F_{n+1}^2}{(an+b)(F_{n+2} - 1)},
\]

hence completing the proof.

A closing remark: for Bergström’s inequality, it requires either \(\frac{x_1}{y_1} = \frac{x_2}{y_2} = \cdots = \frac{x_p}{y_p}\) or \(n = 1\) to reach equality. For both inequalities we just proved, the only case of equality is when \(n = 1\).

Editor’s Notes: Bergström’s inequality can be viewed as a consequence of Cauchy-Schwarz inequality. As Ohtsuka pointed out, for \(a_k > 0\),
\[
\left(\sum_{k=1}^{n} a_k \right) \left(\sum_{k=1}^{n} \frac{F_k^4}{a_k} \right) = \left(\sum_{k=1}^{n} \left(\frac{\sqrt{a_k}}{a_k} \right)^2 \right) \left(\sum_{k=1}^{n} \left(\frac{F_k^2}{\sqrt{a_k}} \right)^2 \right) \geq \left(\sum_{k=1}^{n} F_k^2 \right)^2 = F_n^2 F_{n+1}^2,
\]
from which the desired results follow by letting \(a_k = aL_k + bF_k^2\), and \(a_k = a_{n+2} + bF_k - n\), respectively.

Also solved by Brian Bradie, I. V. Fedak, Dmitry Fleischman, Cai Yan Ho (student), Hideyuki Ohtsuka, Ángel Plaza, Henry Ricardo, and the proposer.

An Infinite Sum of Arctangent

B-1198 Proposed by Hideyuki Ohtsuka, Saitama, Japan. (Vol. 54.4, November 2016)

Let \(c\) be a positive integer. The sequence \(\{a_n\}\) is defined by, for \(n \geq 1\),
\[
a_{n+2} = a_n + 2c,
\]
with \(a_1 = 1\) and \(a_2 = 3\). Prove that
\[
(i) \sum_{n=1}^{\infty} \tan^{-1} \frac{F_c}{F_{an+c}} = \frac{\pi}{4}, \text{ if } c \text{ is even;}
\]
\[
(ii) \sum_{n=1}^{\infty} \tan^{-1} \frac{L_c}{L_{an+c}} = \frac{\pi}{4}, \text{ if } c \text{ is odd.}
\]
Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

We will use Binet’s formulas and that \(\tan^{-1} \frac{y-x}{1+xy} = \tan^{-1} y - \tan^{-1} x \). Then, for the first sum, and taking into account that \(c \) is even implies that \(a_n + c \) is odd for \(n \geq 1 \), we have

\[
\tan^{-1} \frac{F_c}{F_{a_n+c}} = \tan^{-1} \frac{\alpha^c - \beta^c}{\alpha^{a_n+c} - \beta^{a_n+c}} = \tan^{-1} \frac{\alpha^c - \alpha^{-c}}{\alpha^{a_n+c} + \alpha^{-a_n-c}} = \tan^{-1} \frac{\alpha^{-a_n} - \alpha^{-a_n-2c}}{1 + \alpha^{-2a_n-2c}} = \tan^{-1} \alpha^{-a_n} - \tan^{-1} \alpha^{-a_n-2c} = \tan^{-1} \alpha^{-a_n} - \tan^{-1} \alpha^{-a_n+2c}.
\]

Therefore, the series telescopes. Thus,

\[
\sum_{n=1}^{\infty} \tan^{-1} \frac{F_c}{F_{a_n+c}} = \sum_{n=1}^{\infty} \left(\tan^{-1} \alpha^{-a_n} - \tan^{-1} \alpha^{-a_n+2c} \right) = \tan^{-1} \alpha^{-1} + \tan^{-1} \alpha^{-3}.
\]

It can be further simplified to

\[
\sum_{n=1}^{\infty} \tan^{-1} \frac{F_c}{F_{a_n+c}} = \tan^{-1} \frac{\alpha^{-1} + \alpha^{-3}}{1 - \alpha^{-4}} = \tan^{-1} \frac{\alpha - \beta}{\alpha^2 - \beta^2} = \tan^{-1} \frac{1}{\alpha + \beta}.
\]

Thus,

\[
\sum_{n=1}^{\infty} \tan^{-1} \frac{F_c}{F_{a_n+c}} = \tan^{-1} \frac{1}{4} = \frac{\pi}{4}.
\]

The second identity follows analogously.

Also solved by I. V. Fedak, Dmitry Fleischman, and the proposer.

Another Sury-Type Identity

B-1199 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas de Gran Canaria, Spain.

(Vol. 54.4, November 2016)

For any positive integer number \(k \), the \(k \)-Fibonacci and \(k \)-Lucas sequences, say \(\{F_{k,n}\}_{n \in \mathbb{N}} \) and \(\{L_{k,n}\}_{n \in \mathbb{N}} \), both are defined recursively by \(u_{n+1} = ku_n + u_{n-1} \) for \(n \geq 1 \), with respective initial conditions \(F_{k,0} = 0 \), \(F_{k,1} = 1 \), and \(L_{k,0} = 2 \), \(L_{k,1} = k \). Prove that for all integers \(m \geq 1 \) and \(r \geq 1 \),

\[
k^{-m+1}F_{k,m+1} = \sum_{i=0}^{m} r^i L_{k,i} + (kr - 2) \sum_{i=0}^{m+1} r^{-i} F_{k,i}.
\]

Solution by Brian Bradie, Christopher Newport University, Newport, VA.

Define \(F_{k,-1} = 1 \) and note that this value satisfies the two-term recurrence relation defining \(F_{k,n} \) for \(n = 0 \). Next, observe that

\[
L_{k,0} = 2 = 1 + 1 = F_{k,-1} + F_{k,1},
L_{k,1} = k = 0 + k = F_{k,0} + F_{k,2}.
\]
Now, suppose that $L_{k,i} = F_{k,i-1} + F_{k,i+1}$ for $i = 0, 1, \ldots, n$, where $n \geq 1$. Then

$$L_{k,n+1} = kL_{k,n} + L_{k,n-1}$$
$$= k(F_{k,n-1} + F_{k,n+1}) + F_{k,n-2} + F_{k,n}$$
$$= (kF_{k,n-1} + F_{k,n-2}) + (kF_{k,n+1} + F_{k,n})$$
$$= F_{k,n} + F_{k,n+2}.$$

Thus, $L_{k,i} = F_{k,i-1} + F_{k,i+1}$ for all $i \geq 0$ by induction. With this relationship, it follows that

$$\sum_{i=0}^{m} r^i L_{k,i} + kr \sum_{i=0}^{m} r^{i-1} F_{k,i} = \sum_{i=0}^{m} r^i (F_{k,i-1} + F_{k,i+1}) + k \sum_{i=0}^{m} r^i F_{k,i}$$
$$= \sum_{i=0}^{m} r^i (F_{k,i-1} + kF_{k,i} + F_{k,i+1}) + kr^{m+1} F_{k,m+1}$$
$$= 2 \sum_{i=0}^{m+1} r^i F_{k,i+1} + kr^{m+1} F_{k,m+1}$$
$$= 2 \sum_{i=1}^{m+1} r^{i-1} F_{k,i} + kr^{m+1} F_{k,m+1}$$
$$= 2 \sum_{i=0}^{m+1} r^{i-1} F_{k,i} + kr^{m+1} F_{k,m+1}.$$

because $F_{k,0} = 0$. Subtracting $2 \sum_{i=0}^{m+1} r^{i-1} F_{k,i}$ from both sides of this last expression yields

$$kr^{m+1} F_{k,m+1} = \sum_{i=0}^{m} r^i L_{k,i} + (kr - 2) \sum_{i=0}^{m+1} r^{i-1} F_{k,i}.$$

Editor’s Notes: Davenport noted that the special case of $k = 1$ can be found in [1], which is a generalization of an identity obatined by Sury [2].

REFERENCES

Also solved by Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Kantaphon Kuhapatanakul, David Terr, and the proposer.

Harmonic and Fibonacci/Lucas Numbers

B-1200 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 54.4, November 2016)

Let H_n denote the nth harmonic number. Prove that

(i) $\sum_{n=1}^{\infty} \frac{H_n F_n}{2^n} = \log \left(4\alpha^{12/\sqrt{5}} \right)$ and (ii) $\sum_{n=1}^{\infty} \frac{H_n L_n}{2^n} = \log \left(64\alpha^{4/\sqrt{5}} \right)$.

372 VOLUME 55, NUMBER 4
Solution by Kenny B. Davenport, Dallas, PA.

The generating function for H_n is known to be
\[
\sum_{n=1}^{\infty} H_n x^n = \frac{1}{1-x} \ln \left(\frac{1}{1-x} \right).
\]

Thus, using the Binet form for the Fibonacci numbers, we obtain
\[
\sum_{n=1}^{\infty} \frac{H_n F_n}{2^n} = \frac{1}{\sqrt{5}} \sum_{n=1}^{\infty} H_n \left[(\frac{\alpha}{2})^n - (\frac{\beta}{2})^n \right]
\]
\[
= \frac{1}{\sqrt{5}} \left[\frac{1}{1-\frac{\alpha}{2}} \ln \left(\frac{1}{1-\frac{\alpha}{2}} \right) - \frac{1}{1-\frac{\beta}{2}} \ln \left(\frac{1}{1-\frac{\beta}{2}} \right) \right].
\]

Since
\[
\frac{1}{1-\frac{\alpha}{2}} = 3 + \sqrt{5} = 2\alpha^2, \quad \text{and} \quad \frac{1}{1-\frac{\beta}{2}} = 3 - \sqrt{5} = 2\alpha^{-2},
\]
we can write
\[
\sum_{n=1}^{\infty} \frac{H_n F_n}{2^n} = \frac{2\alpha^2 \ln(2\alpha^2) - 2\alpha^{-2} \ln(2\alpha^{-2})}{\sqrt{5}}
\]
\[
= \frac{2(\alpha^2 - \alpha^{-2}) \ln 2 + 4(\alpha^2 + \alpha^{-2}) \ln \alpha}{\sqrt{5}}
\]
\[
= 2 \ln 2 + \frac{12}{\sqrt{5}} \ln \alpha
\]
because $\frac{1}{\sqrt{5}} (\alpha^2 - \alpha^{-2}) = F_2 = 1$, and $\alpha^2 + \alpha^{-2} = L_2 = 3$. This completes the proof of (i).

For part (ii), using the same approach, we find
\[
\sum_{n=1}^{\infty} \frac{H_n L_n}{2^n} = 2\alpha^2 \ln(2\alpha^2) + 2\alpha^{-2} \ln(2\alpha^{-2})
\]
\[
= 2(\alpha^2 + \alpha^{-2}) \ln 2 + 4(\alpha^2 - \alpha^{-2}) \ln \alpha
\]
\[
= 6 \ln 2 + 4\sqrt{5} \ln \alpha.
\]

The result is equivalent to the proposer’s form of the solution.

Also solved by Khristo N. Boyadzhiev, Brian Bradie, I. V. Fedak, Dmitry Fleischman, Ángel Plaza, David Terr, and the proposer.