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A compound Poisson distribution is used to study factors that motivate
the fact of showing yellow and red cards in a football competition such as a
national league, the FIFA World Cup or the UEFA Champions League. The
resulting model is applied to the outcomes in the Spanish Football League
during the season 2013–14, studying the partial and total effects on the home
and away teams. It is shown that various factors, such as the victory of the
guest team, goal difference in the game, total of fouls committed, attacking
play of the home team, whether or not the match is a derby, round when
the game is played, level of fair play, age of the referee, whether or not the
referee has international experience, may influence the number of cards. The
model introduced in this paper is simple and it works well, providing a useful
tool that can be applied in different sport settings.
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1 Introduction and motivation

In this paper, a parametric model to analyse the total number of cards (the sum of yellow
and red cards, and only red cards) shown in a football competition such as a national
league, the FIFA World Cup or the UEFA Champions League, is introduced. Football
goes beyond the sport itself. The turnover generated around soccer has brought the
interest in analysing different aspects that could affect the particular circumstances of
the game. As a simple example, bettors can gamble on almost every aspect of the game.
Among all the factors that might affect a match, we analysed the number of cards shown
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to players. The goal of this work is not intended to predict the total number of cards in
a game, or to analyse the consequences of showing the cards, but put on the table what
kind of factors could lead the referee to show yellow or red cards, beyond the inherent
features of the game itself. When a player receives a card, his team will play with one
less player during that match, or at a later stage, that player will be discarded for a
future game due to the cards accumulated in different games. For instance, recently in
the Spanish Cup, one team was eliminated from the competition for improperly aligning
a player who did not fulfilled a suspension match due to the accumulated cards in his
previous team. Undoubtedly, this issue had an important economic impact on his current
club.

However, as it is said, rather than focus on the effects of the red and/or yellow cards,
we study the factors that might explain the number of cards shown (both total and only
red cards) in a football competition.

The effects of the cards shown have been analysed from diverse perspectives; see
Ridder et al. (1994), Vecer et al. (2009), Anders and Rotthoff (2011), Reilly and Witt
(2013) and Lex et al. (2015), among others. In addition, the question of the yellow and
red cards shown, from the referee–behaviour standpoint, has been studied recently, see
for example Boyko et al. (2007), Dawson et al. (2007), Dawson (2012), Dohmen (2008),
Nevill et al. (2002). Apart from the economic effects that the cards shown have on the
player, they also have a negative impact on the probability of winning games (see Anders
and Rotthoff (2011)). This is so not only in the game where the card is issued to the
player, but also in subsequent games due to the accumulated cards, the player perhaps
will not play the following game. The results are useful to illuminate the behaviour of
the actors involved, namely the players and the referees.

To the best of our knowledge, this is the first statistical model proposed in this setting.
A discrete compound distribution is applied to analyse the factors that affect the total
(yellow and red) and the red cards shown in the Spanish Football League. Let X be
the random variable denoting the total number of cards shown in a competition and let
Zi be an indicator variable associated with the ith card shown, such that Zi = 1 if the
ith card is red, and Zi = 0 if the ith card is yellow. Let now Z =

∑X
i=1 Zi be the total

number of red cards shown, being therefore a compound distribution. When X follows
a Poisson distribution and Zi follows a Bernoulli distribution, the resulting distribution
of Z is binomial. Clearly, Z ≤ X and the distribution of (X,Z) represents the joint
distribution of total number of cards and of the red cards shown. This context seems to
be appropriate for the statistical modelling of the total (red and yellow) and red cards
shown in a competition, and therefore we study it in detail, obtaining the marginal and
conditional distributions, and highlighting certain features of the distributions involved.

We present the results obtained from three regression models created for the dependent
variables (X,Z): first the joint effect of home and away teams, then the same effects
separately, first with relation to the home team, and then to the guest team. Finally,
we examine the effect of the covariates on the same dependent variables. In each case,
different factors were found to affect the outcome.

To place this problem in context, we first describe the laws governing disciplinary
measures in football. The FIFA Disciplinary Code (2011) describes infringements of the
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rules, determines the sanctions incurred, regulates the organisation and function of the
bodies responsible for taking decisions and stipulates the procedures to be followed before
these bodies. The General Part of the First Title of the code describes the disciplinary
measures to be taken during a match. Among the sanctions applicable (to persons, not
institutions) are those of caution (yellow card) and expulsion (red card).

A yellow card is a warning issued by the referee to a player during a match to sanction
unsporting behaviour of a less serious nature (see Law 12 of the Laws of the Game (2014),
issued by the International Football Association Board). On receiving a red card, the
player concerned, whether present from the start or playing as a substitute, is sent off and
must leave the field immediately. This player cannot be replaced during the game, and
so the team must continue with one less player. There are different causes of expulsion,
but the most common is the receipt of two cautions during the same match (indirect red
card) or the act of serious unsporting behaviour, as defined by Law 12 of the Laws of
the Game, in which case the red card is regarded as direct.

If a player receives two cautions during the same match, he/she is automatically sus-
pended from the next one in the same competition. Similarly, when a caution is received
in two separate matches of the same FIFA competition, the player is automatically sus-
pended from the next game in the same competition. Nevertheless, the Disciplinary
Committee may exceptionally suspend or amend the application of this rule before the
competition starts up; this happened, for instance, before the World Championships in
2010 and 2014, when FIFA decided that the accumulated yellow cards would not be
taken into account from the start of the semi final stage.

An expulsion, a direct red card, automatically incurs suspension from the subsequent
match, although the Disciplinary Committee may extend the duration of the suspension.
The players are well aware of these sanctions, and in the case of key players, a suspension
could have very important consequences for the team. For this reason, the players might
play strategically in such a way during a match to force the imposition of a sanction, this
would result in their suspension for a less important match, leaving them, subsequently,
available to play a more relevant match.

The rest of this paper is organised as follows. The main model is developed in Section
2. In Section 3, together with a simple application to the FIFA World Cup held in Brazil
in 2014, we present the model with the incorporation of covariates. The data and results
on the Spanish Football League are described in Section 4 and conclusions are shown in
the last Section.

2 Modelling the total and red cards

Although yellow and red cards are shown more frequently than in the past1, during
the ninety minutes of normal playing time, this event is uncommon in comparison with

1The first rules were established in 1863 by the Football Association of Great Britain, which published
a document stipulating 14 official rules. In 1938, the International F.A. Board presented the revised
Laws of the Game, in which the number of rules was expanded to 17. Finally, in 1997, a new modern
version of the Laws of the Game of Football was defined, and the latest update of these Laws came
into force on 1 June 2014.
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others that occur during a match, such as fouls, corners, offside, etc. Accordingly (and
except in the case of hot–tempered matches, in which large numbers of cards may be
shown) the fact of showing a yellow, or red card, can be considered as a random variable
that can be modelled by the Poisson distribution, which is habitually used to describe
the number of events occurring within a given time interval. Thus, this distribution has
been used for modeling the number of goals (see Greenhough et al. (2002)).

Therefore, we assume that the number of yellow and red cards shown (X) in a given
time interval has a Poisson distribution, with the parameter λ > 0 and a probability
function that is given by

Pr(X = x) = exp(−λ)
λx

x!
, x = 0, 1, 2, . . .

When a referee shows a card to a player, it may be yellow or red. Let us now introduce
a second random variable, separating the card–showing event into two sub–events (show
yellow card and show red card), as follows. Let Zi be an indicator variable associated
with the ith card shown, such that Zi = 1 if the ith card is red, and Zi = 0 if the ith
card is yellow. Furthermore, we assume that the probability function of Zi is given by

Pr(Zi = zi) =

{
p, if zi = 1,

1− p, if zi = 0,

where 0 < p < 1. In other words, we assume that Zi follows a Bernoulli distribution.

Now, let Z =
∑x

i=1 Zi be the number of red cards shown. If Zi (i = 1, . . . , x) are
assumed to be mutually independent, then the conditional probability function of Z,
given X = x, is binomial with parameters x and p. That is,

Pr(Z|X = x) =

(
x

z

)
pz(1− p)x−z, z = 0, 1, . . . , x.

Thus, the conditional mean and the variance are given by E(Z|X = x) = xp and
var(Z|X = x) = xp(1−p). This means that the regression of Z on X and the conditional
variance of Z, given X, are linear.

Therefore, the joint distribution of the total number of cards shown (X) and of the
red cards shown (Z) has the probability function

Pr(X = x, Z = z) = Pr(Z|X = x) Pr(X = x)

=
λxpz(1− p)x−z

z!(x− z)!
exp(−λ), (1)

for x = 0, 1, . . . , z = 0, 1, . . . , x. From the joint probability function given in (1) we
obtain Pr(Z = z), i.e. the marginal probability function of the number of red cards,
given by

Pr(Z = z) =
(λp)z

z!
exp(−λp), z = 0, 1, . . . , (2)
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for which the mean and variance are the same and given by

E(Z) = var(Z) = pλ. (3)

The probability function in (2) is a Poisson distribution with parameter λp. Under
the model proposed, if the total number of cards shown is Poisson with mean λ, then the
total red cards shown is again Poisson, with mean λp, which is the product of the mean
of the total number of cards and the probability of a red card being shown. This seems
reasonable; thus, the mean of the red cards shown is a proportion of the total number
of cards shown.

Another way to obtain the expression given in (2) is the following. Consider a com-
petition, for which X is the random variable giving the number of cards (yellow or red)
shown in the competition, and Z the random variable giving the number of players cau-
tioned with red cards by the end of the competition. If each player has a probability of
p of being shown a red card, then, Pr(Z = z) and Pr(X = x) are related as follows:

Pr(Z = z) =
∞∑
x=z

(
x

z

)
pz(1− p)x−z Pr(X = x). (4)

It is evident that (4) represents a map from probability function to probability func-
tion. That is,

∑∞
z=0 Pr(X = x) =

∑∞
Z=0 Pr(Z) = 1 and Pr(z) ≥ 0, z = 0, 1, . . .

Then, if X follows a Poisson distribution with parameter λ > 0 we have

Pr(Z = z) =

∞∑
x=z

(
x

z

)
pz(1− p)x−z λ

x

x!
exp(−λ)

=
exp(−λ)

z!

(
p

1− p

)z ∞∑
x=z

[λ(1− p)]x

(x− z)!

=
exp(−λ)

z!

(
p

1− p

)z ∞∑
j=0

[λ(1− p)]j+z

j!

=
(λp)z

z!
exp(−λp), z = 0, 1, . . .

Expression (4) can be viewed as a weighted sum of binomial probabilities where the
weights are given by the probability of a card being shown, Pr(X = x). More specifically,
it is the mean of total number of cards shown conditional to the fact of X = x cards
(yellow and red) shown being given by xp and assuming the existence of a heterogeneity
factor which causes a player to be shown a card. Hence, expression (4) can be viewed as
a mixture distribution. From this standpoint, the model provides a framework in which
random effects are incorporated into the Poisson assumption.

To determine the correlation between X and Z, we need E(XZ), which is found to be
E(XZ) = pλ(1 + λ). Then the covariance is cov(X,Z) = pλ, which is always positive.



634 Gómez–Déniz, Dávila–Cárdenes

This is coherent with the fact that total number of cards shown and red cards shown
are positively correlated. The coefficient of correlation is ρ =

√
p.

A similar model, in the setting of traffic accidents, was proposed by Leiter and Hamdan
(1973). See Cacaoullos and Papageorgiou (1982) for details.

Clearly, the number of red and yellow cards shown may be influenced by different
characteristics and variables, and explanatory variables may be useful to explain this
setting and this is examined in the next section.

3 Normalising the distribution

For the sake of convenience, we rewrite (1) in another form, so that covariates may be
introduced later into the model. By equating (3) to µ2 and the mean of the marginal
probability function of X to µ1, that is λ = µ1, we obtain the normalised joint distribu-
tion of (X,Z) from (1), as follows:

Pr(X = x, Z = z) =
µz2(µ1 − µ2)x−z

(x− z)!z!
exp(−µ1), (5)

for x = 0, 1, . . . , z = 0, 1, . . . , x, µ1 > 1 and µ2 > 0.
This probability function (5) satisfies the condition that the marginal means should be

given by E(X) = µ1 and E(Z) = µ2 and thus is appropriated for introducing covariates.
In order to show how the distribution (5) takes effect, we provide an example addressing
the total number of cards and the red cards shown in the FIFA World Cup competition
held in Brazil in 2014.

Example 1 (An example from the FIFA World Cup)

Consider the total yellow and red cards shown in the FIFA World Cup 2014 competition
held in Brazil. A total of 32 teams took part in the final stage of the tournament. In
the first round, or group stage, the 32 teams were divided into eight groups of four, each
of which engaged in a round–robin tournament. Thus, each team played 3 matches,
and the two highest ranked teams in each group advanced to the knockout stage. The
knockout stage started with 16 teams, and consisted of four rounds, from the last 16,
through the quarter finals and semi finals, to the final (plus the third place play–off). A
total of 64 matches were played during the competition, which took place from 12 June
to 13 July.

With respect to yellow and red cards, the following rules were applied during the
tournament. If a player received a red card (direct or indirect), he was automatically
suspended for the next match. Any player sanctioned with two yellow cards in two dif-
ferent games was suspended for the next game. This rule was applied from the beginning
of the group stage until the end of the quarter final matches, at which point all single
yellow cards were cancelled. This rule change was made in order to give the players a
better chance to compete in the final, if their team got that far in the competition. In
order to apply our model, data on the red and yellow cards shown were obtained from
http://www.uefa.com/.
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The empirical values of the data are shown in bold in Table 1. The total number of
yellow and red cards shown in the competition in the data were 198 and 10, respectively.
This last corresponds to the direct red card shown to a player and the accumulation of
two yellow cards shown to the player. Figure 1 is a plot of the evolution of the total
number of cards and red cards shown in this competition, revealing a large concentration
of yellow cards shown in the latest matches. In other words, the number of cards shown
increased as the tournament progressed. In these later stages, obviously, fewer matches
took place (due to the knockout nature of the competition). One factor that might
explain this paradoxical situation is the fact that cards were cancelled after the quarter
finals, and so players whose teams remained in the competition after the initial stage
might then be more prepared to run the risk of receiving a card.
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Figure 1: Plot of the evolution of yellow and red cards shown in the FIFA World Cup
2014 (left) and number of yellow and red cards shown (right)

In this study, the maximum likelihood method (see Appendix) was used to estimate
the two parameters of the bivariate distribution in (5), from the appropriated likelihood
equations. The estimated values obtained are given by µ̂1 = 3.09375 (0.219863) and
µ̂2 = 0.15625 (0.0494106), where the corresponding standard errors are shown in brack-
ets. These estimated parameters were used to compute the expected values by using
expression given in (5). The value obtained for the Akaike information criterion (AIC)
was 296.355. Note that AIC = 2(k − `max), where k is the number of model parame-
ters and `max is the maximum value of the log–likelihood function, see Akaike (1974)
for details. The goodness–of–fit was determined by standard Pearson’s chi squared test
statistics, given by

χ2 =

n0∑
i=1

(observedi − expectedi)
2

expectedi

with the following grouping procedure: the outermost classes were consolidated to
produce theoretical class sizes of 5 or larger. It is known that χ2 follows a chi–squared
distribution with n0 − k − 1 degrees of freedom, where n0 is the number of classes
considered in order to compute the value of χ2. In the present case, we obtained χ2

3 =
4.18 (which is well below 7.81, the 5% critical value of χ2 with 3 degrees of freedom)
with a p-value of 24.26%. From the estimated values of the parameters, the estimated



636 Gómez–Déniz, Dávila–Cárdenes

correlation obtained from the expression ρ =
√
µ̂2/µ̂1, is 0.224733, versus the true value

of 0.37478. The fitted values are also shown in Table 1, below the sample values in bold.
A graph showing the number of red cards expected to be shown, given the total number

of cards shown, was plotted (see Figure 2). Clearly, the observed values follow a pattern
that is almost linear, and which is well described by the expression E(Z|X = x) = x µ̂2µ̂1 .
In view of this satisfactory result, we believe the distribution given in (5) is suitable for
the data set in question.

Table 1: 2014 FIFA World Cup disciplinary record in terms of yellow and red cards
shown in total matches played. Empirical values above and fitted values below

Red

Cards

Total

Cards

0 1 2 3 4 5 6 7 8 9 10 Total

0 0 8 18 13 9 4 1 1 0 0 0 54

2.90 8.52 12.52 12.25 9.00 5.29 2.60 1.08 0.40 0.13 0.04 54.73

1 0 0 3 1 2 1 1 0 1 0 1 10

0.00 0.45 1.33 1.95 1.91 1.41 0.82 0.40 0.17 0.06 0.02 8.52

Total 0 8 21 14 11 5 2 1 1 0 1 64

2.90 8.97 13.85 14.20 10.91 6.70 3.42 1.48 0.57 0.19 0.06 63.25

3.1 Including covariates

In this section, we investigate the effect of covariates that account for the total number
of cards and the red cards shown. Obviously, some factors must be considered of especial
importance in explaining the endogenous variates (Xi, Zi). Expression (5) is useful for
this purpose, since the marginal means are µ1i and µ2i. Two appropriate links are
needed to connect the covariates with these marginal means. A natural way to do this
is to assume that (Xi, Zi) for i = 1, . . . , n follows the probability function given in (5)
and

logµ1i = ω1iβ1,

µ2i =
µ1i exp (η2iβ2)

1 + exp (η2iβ2)
,

where ω1i and η2i denote vectors of m explanatory variables for the ith observation, i.e.
with components ωji and ηji, , (j = 1, . . . ,m), used to model µ1i and µ2i, respectively,
and where βk = (βk1, . . . , βkm)′, (k = 1, 2) denotes the corresponding vector of regression
coefficients. The log–linear specification for µ1i is widely used, while the link function
for µ2i was chosen in this way to ensure that the latter would not be larger than µ1i and
thus would be compatible with Z ≤ X.

The mean number of red and yellow cards shown may be influenced by several char-
acteristics and variables, and the explanatory variables that are used to model each
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Figure 2: Expected red cards shown given the values of the total number of cards shown

parameter µ1i and µ2i may not be the same in practice. In respect of this, Cameron and
Trivedi (1998) provide good overviews of standard count regression models.

Maximising the log–likelihood function (6) with respect to βk (k = 1, . . . ,m) is
straightforward via Newton–Raphson iteration or the scoring algorithm. The solutions
of the nonlinear equations shown in the Appendix provide the maximum likelihood es-
timates of these parameters. However, these equations cannot be solved explicitly, but
must be addressed either by a numerical method or by directly maximising the log–
likelihood function. Different initial values of the parametric space can be considered as
a seed point. In this study, the FindMaximum function of Mathematica software package
v.10.0 (Wolfram (2003)) was used, although the same results can be obtained by other
methods, too, such as Newton, PrincipalAxis or QuasiNewton (all of which are available
in this package), or by other packages such as R, Matlab or WinRats. Finally, the stan-
dard errors of the parameter estimates were obtained by inverting the Hessian matrix.
The Fisher information matrix is shown in closed–form expression in the Appendix.

3.1.1 Marginal effects and interpretation of the coefficients

The marginal effect reflects the variation of the conditional mean of X and Z due to a
one–unit change in the j-th covariate, and is calculated as

∂µ1i

∂β1j
= ωji exp(ω1iβ1) = ωjiµ1i,

∂µ2i

∂β2j
= ηjiµ2i

(
1− µ2i

µ1i

)
,
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for i = 1, . . . , n and j = 1, . . . ,m. Thus, the marginal effect indicates that a one–unit
change in the j-th regressor increases or decreases the expectation of total number of
cards and red cards being shown depending on the sign, positive or negative, of the
regressor for each mean. For indicator variables such as ωik, which takes only the value
0 or 1, the marginal effect in term of the odds–ratio is exp(β1j) for µi1 and exp(β2j) for
µi2. Therefore, the conditional mean is exp(β1j) times larger if the indicator variable is
one rather than zero in the case of µi1, and a similar conclusion is drawn for µi2.

4 Application to the Spanish football league

Twenty teams play in the first division of the Spanish Football League (known as the
LFP, from its Spanish initials, or La Liga). The competition follows a two–round format
in which each team plays each other twice, once at home and once away. Three points
are awarded for a win, one for a draw and none for a loss. The total points won by the
end of the competition determine the final ranking. The highest ranked club becomes
the champion. If at the end of the tournament two or more clubs have the same number
of points, the champion team may be determined by application of the Fair Play scales,
although in fact this possibility is the last in the list of tie–breakers described in the
rules. Statistics and data for all the matches played are available on the LFP website.

4.1 Data

According to the UEFA coefficient, the Spanish Football League has been the strongest
competition in Europe over the past five years. The basis for the UEFA coefficient is
the performance of teams in the European club competitions over a five–year period, for
which each team is awarded two points for a win and one for a draw, plus a coefficient
of 20% of the clubs’ association ranking.

The Spanish clubs have won the most UEFA Champions League tournaments and one
Spanish club is the most successful in the UEFA Europa League. Rivalry is fierce in
La Liga, especially among the two top–ranked clubs in Europe, Real Madrid and F.C.
Barcelona. Every match between these top teams is considered one of the main sports
events not only in Spain, but also around the world. It is estimated that over 400 million
people watched their last match, and according to the company that owns the television
rights, ”There is no football match between teams from the same country that arouses
greater international interest”. In Spain, not only the matches between these two teams
are considered of special significance, but also those played against any of the other
three top–ranked clubs in Spanish football, Atlético de Madrid, Sevilla and Valencia.
Other major games are those played between teams from the same city or region, such
as Atletico de Madrid vs Real Madrid or Athletic de Bilbao vs Real Sociedad. Such
derbies are played with special intensity and higher numbers of yellow and red cards are
often shown.

The data used in this analysis were obtained from the following website

http://www.football-data.co.uk
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which compiles and presents data from every match, including the winning team, total
goals scored, total fouls, the stage of the league competition (first or second round), the
total number of shots, the number of shots on target, the number of yellow and red cards
shown, the number of corners and of offside and how many times the team’s shots hit
the post. All data are compiled for the home and away team in every match. Among
these data, the factors we believe most relevant to the fact of showing yellow and red
cards are included and analysed in the following section. The total number of yellow
and red cards shown in the competition in the data were 1981 and 115, respectively.

In the first case, without covariates, the maximum likelihood method was used to
estimate the parameters of the bivariate distribution in (5), from the corresponding
likelihood equations shown in the Appendix. The estimated values obtained are given
by

µ̂1 = 5.2132 (0.1171), µ̂2 = 0.3026 (0.0282),

where the standard errors are shown in brackets. The maximum value of the log–
likelihood function was –1085.89. The chi squared test statistic obtained was χ2

13 = 7.15
(below 22.36, the 5% critical value of χ2 with 13 degrees of freedom) with a p-value
of 89.41%. From the estimated values of the parameters, the estimated correlation
obtained from the expression ρ =

√
µ2/µ1, is 0.2410, in comparison to the true value of

0.35753. The fitted values are also shown in Table 5, below the sample values in bold.
Needless to say that a different grouping will give us different values of the χ2 statistics.
Nevertheless, looking at Table 5, it seems that there is no deviations from the model
in any part of the table, and examination of the ungrouped table confirms this and the
reader can also see the marginal results. In view of the good results obtained, we believe
the distribution given in (5) is appropriated for this data set.

4.2 Variables

In our analysis, to determine what factors might affect the number of yellow and red
cards shown, the variables considered were grouped into four categories: those related
to the game statistics (RFT2, FGOALS, TF, HAPVF, AS AF and AY), those we term
match variables (DERBY, ROUND and FP), extra–game variables (BUDGET and SH)
and those associated with the referee (AGER and INTERNATIONAL).

The following variables were included in the game statistics: RFT2, the final result
of the match, awarded a value of 1 if the away team wins and 0 otherwise; FGOALS,
measures the square root of the absolute value of the difference between the goals scored
by the home team (FTHG) and the away team (FTAG) after the full time match2.
This variable was also computed as a categorical variable, and the results obtained are
similar to those of the variable FGOALS considered here; TF, the total fouls committed;
HAPVF, the ratio between the home team’s total shots plus on–target shots and the

2This is a standard transformation in soccer analysis, see for instance Gelman: ”Stan Goes to the World
Cup” on his blog) since larger score differences are expected to make progressively less difference on
the impact of the cards awarded.
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number of fouls committed by the away team, i.e., (HS+HST)/AF, this variable provides
a measure of the degree of attacking play offered by the home team; the same ratio was
calculated for the away team, but it was not statistically significant; AS, the total shots
made by the away team; and finally, AF, representing the fouls committed by the away
team, and AY, representing the yellow cards shown to the away team. Obviously, the
number of illegal actions committed will have a direct influence on the number of yellow
and red cards shown.

There are two match variables: DERBY, which takes the value 1 when the match is
played between teams from the same city or region or between the strongest teams in La
Liga, and 0 otherwise; and ROUND, which takes the value 1 when the match is played
in the second round of the league competition, and 0 when it is played in the first. In
addition to these, we take into account the variable fair play, FP, which is the ratio
between the fair play points awarded during the previous year for the home and away
teams (these points are awarded in accordance with the yellow and red cards shown).

The extra–game variables used were BUDGET, defined as the absolute value of the
difference between the budgets of the home team, BH, and the away team, BA; and SH,
referring to the capacity of the home stadium.

Finally, the variables related to the referee were his age, AGER, and whether he had
international experience, INTERNATIONAL, which was scored as 1 if the referee had
such experience, and 0 otherwise. Other variables related to the referee were PROFES-
SION (a measure of idiosyncrasy between the referees) AND YEARS OF EXPERIENCE
(number of years of experience in the first division). However, these last two ones never
resulted significant, in consequence, they were not taken into account.

A brief description of the variables considered is shown in Table 2.

Table 3 presents descriptive statistics of the continuous variables considered, and Fig-
ure 5 shows the corresponding Box–Whisker charts. These charts show that except for
the TF variable, there are outliers for all the other variables, which suggests that perhaps
these variables should be converted to dichotomous variables, by splitting the sample
at some point on the scale(s) of measurement. This is a matter that lies beyond our
present scope and may be suitable for future study.

As in the previous example, Figure 3 provides a plot of the evolution of total number
of cards and of red cards shown in the Spanish football competition considering home
and away teams together, and separately. Figure 4 reveals a large concentration of cards
(yellow and red) shown in the last matches.

4.3 Results

Table 4 shows the joint effect for the home and away teams in terms of the total number
of cards. The following significant variables for the season 2013–2014 were obtained:
the game statistics variables, RFT2, FGOALS and TF; the match variable, DERBY.
The marginal effect is positive for all the variables except for FGOALS, what means
that the expectation of showing cards decreases with the absolute value of the difference
between the goals scored by the home and away teams, i.e., when one team wins by a
considerable margin, there is a lower probability of showing cards. In other words, in
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Table 2: Description of the variables

Variable Description

Game statistics

RFT2 Scored as 1 if the away team wins and 0 otherwise.

FGOALS Square root of the absolute value of the goals difference between home (FTHG)

and away (FTAG) teams after the full time match.

TF Total fouls.

AS Away team shots.

AF Number of away team fouls.

AY Away team yellow cards.

HAPVF The sum of home shots and home shots on target

divided by away fouls (HS + HST)/AF .

Match variables

DERBY Match played between teams from the same city or region

or between the strongest teams in the league.

ROUND Scored as 0 if the match is played in the first round

and 1 in the second.

FP The ratio between the previous year’s

fair play points for the home team and

those for the away team.

Extra games

BUDGET Absolute value of the difference between the home team budget

and that of the away team divided by 100.

SH Capacity of the home stadium.

Referee

AGER Age of the referee.

INTERNATIONAL Scored as 0 if the referee has no international experience

and 1 if he does.

Table 3: Descriptive data for the continuous variables considered

BUDGET FGOALS TF HAPVF FGOALS AS AY AGER

Maximum 568 7 43 10 6 35 7 45

75% 85 2 32 1.78 1 14 3 43

Median 25 1 28 1.33 1 11 3 40

25% 12 1 24 1.00 0 8 2 37

Minimum 0 0 13 0.35 0 2 0 30
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Figure 3: Evolution of yellow and red cards shown during the league competition. Home
and away teams together (left), home team (center) and away team (right)

the absence of competitiveness (a large goal difference is interpreted as representing a
difference in quality between the teams), as a result the mean of the number of cards
shown decreases.

With respect to the variables TF (total fouls) and AGER (the age of the referee); the
higher is the numbers of fouls committed and the older is the referee, the greater is the
expectation of the number of cards shown. Obviously, cards may be shown when fouls
are committed. However, it less clear the meaning of the positive marginal effect for the
AGER variable, it might be considered as the older referees are less tolerant, that is, as
they are more experienced, they are more inclined to impose their authority and more
favourably disposed to issue cards.

The probability of showing cards is also greater when the match is a derby, because
these games are often played with greater intensity. In addition, when the final score
is favourable to the away team, this increases the mean of the total number of cards
shown.

With relation to the number of red cards, the round of the competition in which the
match was played was found to be significant, with a positive marginal effect. Thus,
when the match is played in the second round of the league competition, a red card
is more likely to be shown. We interpret this finding as follows: once the first round
has been completed, an initial ranking of the teams is established and the results of
the second round will then determine the final options of the teams, i.e. whether they
have any chance of qualifying to play in Europe, or whether they are candidates for
relegation. Therefore, in this second stage of the competition, the teams probably play
more intensely and they will receive red cards. A similar situation arises in tournaments
such as the World Cup, where we observed that the mean of the number of red cards
awarded increased as the competition progressed.

With respect to the total fouls, TF, the more fouls are committed, the higher is the
number of red cards shown. This outcome is logical, and in accordance with the rules of
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Table 4: Home and away teams together. 2013–14 Spanish League disciplinary record
in terms of yellow and red cards shown in total matches played

Total cards

Variable Estimate Standard |t|-statistic Pr > |t| Marginal

error effect

Game statistics

RFT2 0.1219 0.0499 2.4447 0.015 0.636

FGOALS –0.1417 0.0361 3.9206 < 0.001 –0.738

TF 0.0263 0.0038 6.7667 < 0.001 0.137

Match variables

DERBY 0.1019 0.0565 1.8030 0.072 1.107

Referee

AGER 0.0084 0.0053 1.5829 0.114 0.044

Red cards

Variable Estimate Standard |t|-statistic Pr > |t| Marginal

error effect

Game statistics

TF 0.0326 0.0197 2.5491 0.011 0.009

HAPVF 0.2989 0.1390 2.1508 0.032 0.085

Match variables

ROUND 0.5079 0.1992 2.5491 0.011 1.661

Extra game

BUDGET –0.1640 0.0749 2.1887 0.029 –0.047

Other variables

Constant (total number of cards) 0.6559 0.2280 2.8760 0.004

Constant (red cards) –4.3068 0.7471 5.8066 < 0.001

Value of the Akaike information criterion 2093.25
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Figure 4: Number of yellow and red cards shown during the league competition. Home
and away teams together (left), home team (center) and away team (right)

the game.

The results for the variable HAPVF means that, the higher the ratio between the sum
of shots and shots on target by the home team and the total number of fouls committed
by the away team, the greater is the probability of showing red cards. As commented
above, this variable reflects the home team’s ability to play in an attacking style. It
means that when the home team plays near the box of its opponent, a higher number of
red cards tend to be shown.

Finally, when a joint effect on the home and away teams is considered, a large difference
in their budgets tends to reduce the number of red cards shown. The financial resources
for the teams are assumed to be related to the quality of the players available to each
team. When there is a large difference between the budgets of the teams, there is less
competitiveness and hence fewer red cards are shown.

Again, a goodness–of–fit measure for the models with covariates is given in Table 5,
and below the fitted values obtained for the model without covariates. The fitted cell
frequencies were calculated in this case using the method proposes by Kim (2013). Let
p̂(c1i, c2i), i = 1, 2, . . . , n, c1i, c2i = 0, 1, . . . denoted the fitted probability that (Xi, Zi)
has (c1, c2), then the fitted frequency in cell (c1, c2) is computed as

∑n
i=1 p̂(c1i, c2i). The

chi squared test statistic obtained was χ2
4 = 12.67 (below 13.28, the 1% critical value of

χ2 with 4 degrees of freedom).

In order to contrast if there exists any difference between the covariates affecting the
total number of cards in the joint analysis and those that may affect to the home and
away team considered separately. As we will see there are some covariates that affect
to the away team and not to the home team, for instance, the variable DERBY, or
viceversa, as the total fouls, TF.

When only the home team is considered (see Table 6) the following results were ob-
tained. For the total number of cards shown, we observe the same significant variables
as for the joint distribution, except DERBY, which does not have a significant factor for
the home team. However, the higher the FP (the fair play ratio) is for the home team,
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Figure 5: Box–Whisker chart for the continuous variables considered

the greater is the expectation of total number of cards. This finding is in line with the
definition of FP, because a higher FP ratio tends to reflect an absence of fair play.

With regard to the number of red cards shown, ROUND and BUDGET were the
only variables that remained significant for the home team. Thus, TF (total fouls) and
HAVPF (the attacking play of the home team) vanished while RFT2 and INTERNA-
TIONAL appeared. Thus, when the away team wins, this increases the number of red
cards shown to the home team. With relation to the covariates connected to the referee,
we highlight INTERNATIONAL, since it implies that when the referee has international
experience the expectation of the number of red cards being shown to the home team
increases.

In a separate analysis for the away team (see Table 7), the DERBY variable was found
to be significant for the joint distribution, it means that in this kind of games, the away
team is more likely to receive yellow and/or red cards than when the two teams are
considered jointly. As noted previously, this variable was not significant in the separate
analysis for the home team.

The variable FGOALS appears also in this separate analysis, as it occurred in the
previous. Lastly, for the total number of cards, a new variable, AF, arises. Here, a
positive marginal effect was recorded, meaning that an increase in the number of fouls
committed by the guest team, it implies an increase in the probability of the total number
of cards received.
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Table 5: 2013–14 Spanish League disciplinary record in terms of yellow and red cards
shown in total matches played. Empirical values above and fitted values below,
without and with covariates, respectively

Red

Cards

Total

Cards
0 1 2 3 4 5 6 7 8 9 10 11 12 Total

0 4 14 21 36 56 46 54 13 21 7 3 2 0 277

2.07 10.16 24.94 40.83 50.12 49.22 40.29 28.26 17.35 9.46 4.65 2.07 0.85 280.27

3.51 13.97 29.10 42.16 47.75 44.99 36.66 26.49 17.29 10.33 5.71 2.94 1.42 282.23

1 0 0 1 11 4 18 17 17 11 5 3 3 1 91

0 0.63 3.07 7.55 12.35 15.17 14.90 12.19 8.55 5.25 2.86 1.41 0.63 84.56

0 0.83 3.41 7.37 11.11 13.10 12.84 10.87 8.15 5.51 3.41 1.94 1.03 79.57

2 0 0 0 0 0 1 1 3 1 4 0 2 0 12

0.00 0.00 0.09 0.46 1.14 1.87 2.30 2.25 1.84 1.29 0.79 0.43 0.21 12.67

0.00 0.00 0.12 0.51 1.14 1.76 2.16 2.19 1.92 1.49 1.05 0.67 0.40 13.48

Total 4 14 22 47 60 65 72 33 33 16 6 7 1 380

2.07 10.79 28.10 48.84 63.61 66.26 57.49 42.70 27.74 16.00 8.30 3.91 1.69 377.50

3.74 15.20 32.79 49.76 59.48 59.44 51.49 39.62 27.53 17.49 10.27 5.62 2.88 375.31

A separate analysis of the number of red cards for the away team gives the following
results. The larger is the number of shots made by the away team, the lower is the
probability of red cards received; while the older is the age of the referee, the higher is
the probability of red cards received.

5 Conclusions and further research

In this paper, we have presented a flexible bivariate count data regression model based
on a compound distribution to represent the cards shown (both total yellow and red,
and only red cards) in football matches. The model proposed could be extended to
accommodate truncated, censored and zero–inflated correlated count data models in
the same framework. We have obtained a computationally straightforward and simple
closed form bivariate model. Our empirical application shows that the proposed model
provides a good fit to the data for the FIFA World Cup and the Spanish League for the
season 2013–14.

It is well known that a good portion of red cards in a football competition is the
result of the second yellow card shown to a player, and the model proposed here does
not reflect this fact, although assume dependence between the total cards and the yellow
cards shown. A more rational model should consider to replace the distribution (1) by
the quasi binomial distribution (see Consul (1990)). Under this model Z would represent
the number of red cards shown when X cards (yellow and red) have been shown. In
such a case, the probability of the first red card is p and the probability of showing a
red card in the following is p+ xφ, being therefore proportional to the number of total
cards shown. Since φ can take negative and positive values, a positive value of φ would
reflect large probability to the event red card when the yellow cards shown is also large.
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Table 6: Home team. 2013–14 Spanish League disciplinary record in terms of yellow and
red cards shown in total matches played

Total cards

Variable Estimate Standard |t|-statistic Pr > |t| Marginal

error effect

Game statistics

RFT2 0.2157 0.0732 2.9462 0.003 0.530

FGOALS –0.1566 0.0539 2.9015 0.004 –0.385

TF 0.0292 0.0057 5.1226 < 0.001 0.072

Match variables

FP 0.1686 0.0805 2.0941 0.037 0.415

Referee

AGER 0.0170 0.0078 2.1789 0.030 0.042

Red cards

Variable Estimate Standard |t|-statistic Pr > |t| Marginal

error effect

Game statistics

RFT2 1.2994 0.2941 4.4176 < 0.001 0.179

Match variables

ROUND 0.8927 0.3017 2.9589 0.003 2.441

Extra game

BUDGET –0.2781 0.1226 2.2679 0.024 –0.038

Referee

INTERNATIONAL –0.5918 0.2962 1.9983 0.046 0.553

Other variables

Constant (total number of cards) –0.7018 0.3418 2.053 0.041

Constant (red cards) –3.2880 0.3274 10.0410 < 0.001

Value of the Akaike information criterion 1560.85
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Table 7: Away team. 2013–14 Spanish League disciplinary record in terms of yellow and
red cards shown in total matches played

Total cards

Variable Estimate Standard |t|-statistic Pr > |t| Marginal

error effect

Game statistics

FGOALS –0.1177 0.0475 2.4794 0.013 –0.324

AF 0.0426 0.0073 5.8250 < 0.001 0.117

Match variables

DERBY 0.1445 0.0769 1.8790 0.061 1.155

Red cards

Variable Estimate Standard |t|-statistic Pr > |t| Marginal

error effect

Game statistics

AS –0.0949 0.0336 2.8237 0.005 –0.013

Referee

AGER 0.0614 0.0355 1.7291 0.085 0.009

Other variables

Constant (total number of cards) 0.4986 0.1225 4.0704 < 0.001

Constant (red cards) –4.2722 1.4667 2.9127 0.004

Value of the Akaike information criterion 1655.30
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On the other hand, the maximal number of red cards that can be shown to players
on the field is limited to 4 per team, otherwise the game is terminated. Thus, a future
line of research could be to derive a model where the Z variable would include an upper
bound support.

Finally, it is apparent that the number of red cards shown in a competition has a
large number of zero values. Thus, a similar model to the one proposed here where the
Z variable were inflated with zeros would be more practical.
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Appendix

In this section, we derive estimators based on maximum likelihood for the model with and
without covariates, and also provide closed–form expressions for the Fisher information
matrix.

Estimating the model parameters without covariates

Here we present the estimation based on the maximum likelihood method, first con-
sidering the model without covariates. Let Θ = (µ1, µ2) and a sample consisting of n
observations (x̃, z̃) = {(x1, z1), . . . , (xn, zn)}, taken from the probability function (5).
The log–likelihood is proportional to

`(Θ; x̃, z̃) ∝ nz̄ logµ2 + n(x̄− z̄) log(µ1 − µ2)− nµ1,

where x̄ and z̄ are the sample means of X and Z, respectively. The normal equations to
be solved are

∂`(Θ; x̃, z̃)

∂µ1
=

n(x̄− z̄)
µ1 − µ2

− n = 0,

∂`(Θ; x̃, z̃)

∂µ2
=

nz̄

µ2
+
n(z̄ − x̄)

µ1 − µ2
= 0,

from which it is easy to obtain the solution of this system and to see that the maximum
likelihood estimators are µ̂1 = x̄ and µ̂2 = z̄. The second partial derivatives are

∂2`(Θ; x̃, z̃)

∂µ2
1

= − n(x̄− z̄)
(µ1 − µ2)2

,

∂2`(Θ; x̃, z̃)

∂µ2
2

= −nz̄
µ2

2

+
n(z̄ − x̄)

(µ1 − µ2)2
,

∂2`(Θ; x̃, z̃)

∂µ1∂µ2
=

n(x̄− z̄)
(µ1 − µ2)2

.

The expectation of the second partial derivative, with a sign change, yields the Fisher

information matrix, and so this matrix is obtained as follows: J (Θ̂) = −E
[
∂2

∂Θ̂2
`(Θ̂; x̃, z̃)

]
,

which is given by

J (Θ̂) =

[
n

µ̂1−µ̂2
nµ̂1

µ̂2(µ̂1−µ̂2)
nµ̂1

µ̂2(µ̂1−µ̂2)
n

µ̂2−µ̂1

]
.

The asymptotic variance–covariance matrix of (µ̂1, µ̂2) is obtained by inverting this
information matrix.
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Estimating the model parameters with covariates

When covariates are considered, the log–likelihood is now proportional to

`(β1, β2; x̃, z̃) ∝
n∑
i=1

[zi logµ2i + (xi − zi) log(µ1i − µ2i)− µ1i] . (6)

Observe now that that µ1i = µ1i(β1) while µ2i = µ2i(β1, β2), denoting that the first
depends only on β1 and the second on both, β1 and β2. Thus,

∂µ1i

∂β1j
= ωjiµ1i,

∂µ2i

∂β1j
= ωjiµ2i,

∂µ2i

∂β2j
=

µ2iηji
1 + exp(η2i)

¯

,

for i = 1, . . . , n and j = 1, . . . ,m.

Then, after some algebra we obtain the normal equations, which are given by

∂`(β1, β2; x̃, z̃)

∂β1j
=

n∑
i=1

ωji(xi − µ1i) = 0, j = 1, . . . ,m,

∂`(β1, β2; x̃, z̃)

∂β2j
=

n∑
i=1

ηjiφ(µ1i, µ2i, xi, zi)

1 + exp(η2iβ2)
= 0, j = 1, . . . ,m,

where

φ(µ1i, µ2i, xi, zi) =
ziµ1i − xiµ2i

µ1i − µ2i
.

These equations provide the maximum likelihood estimates β̂1 = (β̂11, . . . , β̂1m) and
β̂2 = (β̂21, . . . , β̂2m).
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The second partial derivatives are as follows.

∂2`(β1, β2; x̃, z̃)

∂β2
1j

= −
n∑
i=1

ω2
jiµ1i, j = 1, . . . ,m,

∂2`(β1, β2; x̃, z̃)

∂β1j∂β1k
= −

n∑
i=1

ωjiωkiµ1i, j 6= k,

∂2`(β1, β2; x̃, z̃)

∂β1jβ2j
= 0, j = 1, . . . ,m,

∂2`(β1, β2; x̃, z̃)

∂β2
2j

= −
n∑
i=1

(
ηji

1 + exp(η2iβ2)

)2

[φ(µ1i, µ2i, xi, zi) exp(η2iβ2)

+
(xi − φ(µ1i, µ2i, xi, zi))µ2i

µ1i − µ2i

]
, j = 1, . . . ,m.

∂2`(β1, β2; x̃, z̃)

∂β2j∂β2k
= −

n∑
i=1

ηjiηki
(1 + exp(η2iβ2))2

[φ(µ1i, µ2i, xi, zi) exp(η2iβ2)

+
(xi − φ(µ1i, µ2i, xi, zi))µ2i

µ1i − µ2i

]
, j = 1, . . . ,m.

Now, the elements of Fisher’s information matrix (with dimension m ×m) are given
by

E

(
−∂`(β̂1, β̂2; x̃, z̃)

∂β̂2
1j

)
=

n∑
i=1

ω2
jiµ̂1i,

E

(
−∂

2`(β̂1, β̂2; x̃, z̃)

∂β̂1j∂β̂1k

)
=

n∑
i=1

ωjiωkiµ̂1i, j 6= k,

E

(
−∂`(β̂1, β̂2; x̃, z̃)

∂β̂1j∂β̂2j

)
= 0,

E

(
−∂`(β̂1, β̂2; x̃, z̃)

∂β2
2j

)
=

n∑
i=1

µ̂1iµ̂2i

µ̂1i − µ̂2i

(
ηji

1 + exp(η2iβ̂2)

)2

,

E

(
−∂`(β̂1, β̂2; x̃, z̃)

∂β2j∂β2k

)
=

n∑
i=1

µ̂1iµ̂2i

µ̂1i − µ̂2i

ηjiηki

(1 + exp(η2iβ̂2))2
, j 6= k,

for j = 1, . . . ,m, where we have taken into account that E(φ(µ1i, µ2i, xi, zi)) = 0. Again,
the asymptotic variance–covariance matrix of (β̂1, β̂2) is obtained by inverting this in-
formation matrix.


