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Abstract

The growing interest for mobile biometrics stems
from the increasing need to secure personal data and
services, which are often stored or accessed from there.
Modern user mobile devices, with acquisition and com-
putation resources to support related operations, are
nowadays widely available. This makes this research
topic very attracting and promising. Iris recognition
plays a major role in this scenario. However, mo-
bile biometrics still suffer from some hindering fac-
tors. The resolution of captured images and the com-
putational power are not comparable to desktop sys-
tems yet. Furthermore, the acquisition setting is gener-
ally uncontrolled, with users who are not that expert to
autonomously generate biometric samples of sufficient
quality. Mobile Iris CHallenge Evaluation aims at pro-
viding a testbed to assess the progress of mobile iris
recognition, and to evaluate the extent of its present lim-
itations. This paper presents the results of the compe-
tition launched at the 2016 edition of the International
Conference on Pattern Recognition.

1. Introduction

Mobile biometric recognition by personal and/or
wearable devices is the most advanced frontier for se-
cure use of data and services. It provides a further ap-
plication for user mobile equipment, which are ubiqui-
tous nowadays. Moreover, it extends the functionality
and capabilities of a traditional biometric identification
systems, by allowing capture of biometric traits in any

place. Captured information can be compared with that
stored either on the device itself, or even within RFID
tags, smartcards or recent machine readable identifi-
cation documents (IDs)for single user verification pur-
poses, or on a remote server, for identification in a set
of relevant subjects.

Mobile devices used for biometric recognition must
incorporate all necessary hardware equipment and soft-
ware applications for the capture and processing of one
or more biometric traits. Moreover, they must be de-
signed for intuitive operation, especially if it is not
planned to assist users during sample capture. The cap-
tured data must be suitably converted by software into
digital templates for storage and matching against other
records. Feature extraction, storing and processing,
require non negligible resources. Therefore, notwith-
standing the continuous advances in technology and re-
sources, transferring all the phases of biometric pro-
cessing on a mobile device calls for faster as well as
lighter procedures, and for more efficient storage.

Iris is a natural candidate for mobile biometric recog-
nition for two main reasons: iris acquisition is little
intrusive, and iris codes are among the less expensive
templates from the storage point of view. As for other
biometrics, even research results regarding related tech-
niques underwent a quick progress, from the pioneer-
ing work by Daugman [1] and Wildes [10], mostly per-
taining controlled settings, to the most advanced use
of deep learning [5], through the recent challenges ad-
dressing iris recognition in less controlled and/or mo-
bile settings [8] [3]. Most current iris recognition sys-
tems still require that subjects stand close to the capture
device (about 1 m or less) and look towards it for about



3s. The first iris biometric competitions have relied on
images acquired in these conditions. Among the most
well-known, we can mention the Iris Challenge Evalu-
ation (ICE) (http://iris.nist.gov/ICE/, [6]). Proença and
Alexandre [7] have rather tackled the problem of noisy
iris recognition.

Even for this biometric trait, techniques targeted at
mobile devices must be suitably adapted to the mobile
setting and resources, and call for light processing pos-
sibly avoiding complex mathematical processing (e.g.,
see [2]).

The aim of the contest Mobile Iris CHallenge Eval-
uation II (MICHE-II), launched in conjunction with
ICPR 2016 Conference, was to collect relevant contri-
butions to the field of mobile iris recognition in both
academy and industry. We present in this paper the re-
sults from the comparison of the seven best performing
algorithms.

2. The challenge setup

The Noisy Iris Challenge Evaluation (NICE I) ex-
ploited images captured in unconstrained imaging envi-
ronments, to evaluate how noise affects iris segmenta-
tion (http://nice1.di.ubi.pt). To this aim, the proposed
iris dataset UBIRIS.v2 [9] contains data captured in
the visible wavelength, at-a-distance, namely between
4 and 8 m, and on the move (http://nice2.di.ubi.pt/).
The results achieved by participant methods confirm
the major impact that uncontrolled conditions have on
recognition performance. Recognition of visible wave-
length (VW) iris images captured at-a-distance and on
the move with less controlled protocols was the target
of the further NICE II contest [7]. VW images usually
contain much more features than the traditionally used
near infrared (NIR) images, however they are also more
seriously affected by many noisy artifacts, and their pro-
cessing suffers from dark pigmentation.

MICHE-I challenge moved to issues related to iris
acquisition by mobile devices. In this new context, it
is assumed that the subject to be recognized generally
autonomously operate the capturing device. MICHE-
I provided a dataset suitable to assess the performance
of biometric applications related in this specific set up.
Two opposite considerations hold. Capturing accuracy/
quality may be enhanced due to the usually short dis-
tance (the length of a human arm) and the user quite
naturally tends to assume a frontal pose. However, the
quality of the captured image can suffer from possible
lower resolution, possible motion blur and illumination
distortions, caused by both the kind of device and by the
lack of control on user capture operation. These pos-
sible issues call for robust detection/segmentation and

encoding procedures. It is worth noticing that the ac-
curacy of the latter is heavily affected by the quality
of the former. The composition of the dataset used for
MICHE-II challenge is basically the same of MICHE-I,
with the addition of new unpublished images to be used
mostly in the competitors ranking process.

2.1. MICHE-II database

The aim of MICHE-I dataset, publicly available to
the scientific community and representing the core of
the still unpublished MICHE-II dataset, is to represent
the starting core of a wider dataset to be collected thanks
to a possible crowd-sourcing approach. This should bet-
ter allow unbiased assessment of cross-demographic ro-
bustness, as well as of cross-device and cross-setting
interoperability of recognition procedures. In particu-
lar, the dataset allows to measure both the ability to
match samples of the same subject acquired with dif-
ferent devices, and in general the ability to handle sam-
ples acquired by devices with different characteristics
without a significant performance degradation. More-
over performances in different illumination conditions
are evaluated. We now detail how MICHE-I dataset
differs from the most popular existing iris datasets.
The Chinese Academy of Science collected the first
group of publicly available datasets dealing with iris im-
ages, namely CASIA-Iris, that has been updated from
CASIA-IrisV1 to CASIA-IrisV4 since 2002. Its im-
ages are collected under NIR illumination or synthe-
sized. For these reasons, they cannot be reliably used
for assessing methods entailing mobile acquisition, un-
less NIR sensors get more common in mobile devices
too. Similar considerations hold for images used for
ICE competitions. On the contrary, UBIRIS datasets,
acquired and made available from SOCIA Lab at Uni-
versity of Beira Interior (Portugal), are captured in vis-
ible light and uncontrolled conditions. However, acqui-
sition is carried out by cameras with a better resolution
than average sensors built in mobile devices. MICHE-
I is a dataset of iris images acquired in visible light by
different mobile devices. The key features of the dataset
are: (1) sufficiently large population of users; (2) the use
of different mobile devices for the acquisition; (3) the
realistic simulation of the acquisition process including
different sources of noise; (4) and several acquisition
sessions separated in time. A full metadata annotation
completes the dataset. The subjects involved in data col-
lection were asked to behave as they would do by using
a real system, e.g., subjects wearing eyeglasses could
either choose to remove or keep them. They had to take
self-images of one of their irises, by holding the mobile
device by themselves, with a minimum of 4 shots for



each camera (two out of three devices were equipped
with two cameras with different resolutions) and acqui-
sition mode (indoor, outdoor). Indoor acquisition was
affected by various sources of artificial light, sometimes
combined with natural light sources. Outdoor acquisi-
tion was carried out using natural light only. For each
subject only one of the two irises was acquired. Three
kinds of smartphones and tablets were used:

• Galaxy Samsung IV (GS4): Google Android Op-
erating System, CMOS posterior camera with 13
Megapixel (72 dpi) and2322 × 4128 resolution,
CMOS anterior camera with 2 Megapixel (72 dpi)
and1080× 1920 resolution;

• iPhone5 (IP5): Apple iOS Operating System,
iSight posterior camera with 8 Megapixels (72
dpi) and1536 × 2048 resolution, anterior Face-
Time HD Camera with 1.2 Megapixels (72 dpi)
and960× 1280 resolution;

• Galaxy Tablet II (GT2): Google Android Operat-
ing System, no posterior camera, 0.3 Megapixels
anterior camera with640× 480 resolution.

As a consequence, the three groups of images present
different resolutions, which is one of the factors that can
negatively affect cross-device recognition. The sources
of noise in the MICHE-II dataset include: (a) reflections
caused by artificial/natural light sources, people or ob-
jects in the scene; (b) out of focus; (c) blur, due either
to an involuntary movement of the hand holding the de-
vice, or to an involuntary movement of the head/eye; (d)
occlusions, due to eyelids, eyeglasses, eyelashes, hair,
or shadows; (e) device-specific artifacts, due to the low
resolution and/or to the specific noise pattern of the de-
vice; (f) off-axis gaze; (g) variable illumination; and (h)
different color dominants. The lack of precise local-
ization and of fixed distance in the capture (both im-
ages containing well centred eyes and images contain-
ing half faces are present in dataset), result in variable
sizes of the region useful for recognition. This is typ-
ical of mobile captures performed by the users, which
are usually neither too close nor at arm-length. This in-
troduces further difficulties, since eye localization must
be performed in a pre-processing step. In some cases,
the resulting size of the iris region is smaller. In other
cases, it is possible to exploit the further possibilities of-
fered by an extended periocular region. The dataset has
been collected during several different data acquisition
sessions separated in time. The time elapsed between
the first and second acquisition of a subject varies from
a minimum of 2 months to a maximum of 9. At present,
MICHE-I contains images from 75 different subjects,

with 1297 by GS4, 1262 images from IP5, and 632 im-
ages from GT2.

The XML annotations associated to each image con-
sist of the following tags:

• filename: the name of the image to which the XML
file refers; the name is composed according to a
convention allowing to quickly find the desired im-
age;

• img type: indicates the trait captured in the im-
age, since face images will be included soon in the
dataset;

• iris: indicates which iris was acquired (right, left
or both when the image contains both irises);

• distance from the device: distance of the user from
the acquisition camera, measured to provide a fur-
ther assessment information;

• session number: the number of the acquisition ses-
sion when the image was captured;

• image number: image ordinal number;

• user: identification number of the subject, together
with age, gender and ethnicity;

• device: contains all information about the capture
device: type, name, camera position (front or rear),
resolution and dpi;

• condition: information about capture conditions:
location, illumination;

• author: the XML le also contains the name of the
laboratory/institution who made that acquisition.

The XML file structure allows a quick and reliable re-
trieval of any image as a function of any one of the
above parameters.

MICHE-I is the dataset provided to participants to
MICHE-II challenge. In addition, further sequestered
images with similar characteristics were captured and
used to evaluate the final ranking. The complete
MICHE-II dataset will be soon available to the research
community (biplab.unisa.it).

2.2. The common segmentation algorithm

According to a policy established by NICE-I and
NICE-II competitions (Noisy Iris Challenge Evalua-
tion) the problem of iris recognition was tackled by two
separate challenges: MICHE-I dealt with the problem
of segmentation of iris images acquired by mobile de-
vices, and the following MICHE-II started from the best



segmentation algorithm as a fair preliminary processing
step to feed the following phases of feature extraction
and classification. This algorithm, by Haindl et al. [4],
was provided to all competing groups registered for the
challenge, in order to get an unbiased comparison. It is
focused on the detection of the non-iris components in-
side the parametrised iris ring. The procedure starts by
detecting reflections, and then applies form-fitting tech-
niques that enable to find a parametrisation of the pupil.
Next, data is converted into the polar domain, where
texture analysis determines the regions of the normal-
ized data that should not belong to the iris, according to
a Bayesian paradigm. The MICHE-II competitor meth-
ods start from the segmentation produced.

2.3. Performance evaluation

The competitors were left free to choose any distance
measure, given that it was at least semi-metric. In more
detail, thedissimilarity scorechosen by each competitor
is meant as the probability that two irises are from two
different subjects. The higher is the dissimilarity, the
higher is the probability that the two irises are not from
the same person. LetI be set of images from MICHE-II
database, andIa andIb ∈ I, thedissimilarity function
D must be defined as:

D : Ia × Ib → [0, 1] ⊂ R (1)

and satisfy the following properties:

1. D(Ia, Ia) = 0

2. D(Ia, Ib) = 0 → Ia = Ib

3. D(Ia, Ib) = D(Ib, Ia)

The submitted algorithm has to fill a dissimilarity ma-
trix among input probe and gallery sets. A possible bias
implied by embedding special processing into the algo-
rithms to improve performance is avoided by the com-
petition procedure itself, since new images were added
and new distance matrices were computed in order to
create the final rank. Distance matrices produced by
each methods were used to compute the usual Figures
Of Merit (FoM) to rank them, namely Recognition Rate
(RR) for identification, and Receiver Operating Char-
acteristic (ROC) curves, in particular the Area Under
Curve (AUC), for verification.

3. Summary of Competitor Algorithms

Rank 1
The group composed by Nasir Uddin Ahmed, Slobodan

Cvetkovic, Md. Erfanul Hoque Siddiqi, Andrey Niki-
forov and Ilia Nikiforov participated the challenge with
the algorithm with IDtiger_miche. Iris biometric
matching is performed using a combination of a popu-
lar iris code approach and a periocular biometric based
on the Multi-Block Transitional Local Binary Patterns.
The authentication scores are calculated separately, and
the results are combined to improve the system perfor-
mance. The proposed algorithm uses a score-level fu-
sion. The scores from periocular matching and iris code
Hamming distance are combined together to produce a
final score. The matchers produce outputs in different
ranges, with very different score distributions. There-
fore, z-score normalization is performed.

Rank 2
The algorithm with IDBata was submitted by Zhou
Shujuan. The pre-processing phase entails local his-
togram equalization to enhance iris texture. As a first
step, a 1D featureF = (f1, f2, . . . , f64) is computed
by using the normalized and equalized512 × 64 pixel
gray scale image, which is obtained by summing up row
values to obtain single values. Then the algorithm takes
64×8 fixed sample points in the normalized iris image,
and calculates 2D Gabor wavelet coefficients on 5 fre-
quencies and 8 directions for each sample point, there-
fore obtaining 40 complex numbers, stored in a binary
array of 80 bits for each sample point. Eye image is ex-
tracted using iris mask information and is normalized to
100×150 pixel size . Then, LBP features are calculated
in this eye image. The final matching of two iris im-
ages is obtained by combining the similarities measures
obtained, namely Hamming distance for both binary ar-
rays and LBP, and cosine distance for 1D features.

Rank 3
Karan Ahuja, Rahul Islam, Ferdous Barbhuiya
and Kuntal Dey presented the algorithm with ID
karanahujax. They proposed a baseline model,
namely Root SIFT, and two stacked convolution-based
deep learning models, for identifying a given individual
from a periocular image. This was obtained by training
the CNNs on a given set of periocular images as part of
the learning phase, and verifying a pair of images during
the testing phase. The two convolution-based models
for verifying a pair of periocular images containing the
iris are compared amongst each other as well as with the
baseline model. In the first approach, deep learning is
implemented in an unsupervised manner. The method
uses a stacked convolutional architecture, using exter-
nal models learned a-priori on external facial and peri-
ocular data, on top of the baseline model applied on the
provided data. Afterwards different score fusion models
are applied. In the second approach, the authors again
use a stacked convolution architecture, but the feature



vector is learned in a supervised manner.

Rank 4
The algorithm with ID irisom was submitted by
Fabio Narducci, Silvio Barra, Luigi Gallo and An-
drea Abate. It combines simple image processing tech-
niques, like contrast enhancement and histogram adjust-
ment, with unsupervised learning by Self Organizing
Maps (SOM). The algorithm first composes the orig-
inal image in polar coordinates with the segmenting
mask, to discard all non-significant pixels in the sur-
rounding of the iris. A SOM network is then config-
ured and trained with pixels of the pre-processed im-
age thus building the feature matrix that clusters the iris
pixels. The SOM network is fed with RGB triples to-
gether with local statistical descriptors. These are kur-
tosis and skewness, which are computed at pixel level
in a neighborhood window of 3x3 size. The output of
the network is a feature map representing the activa-
tion status of the neurons for each pixel. Such a map
represents, in other terms, the cluster decomposition of
the image which projects the problem of iris recogni-
tion onto a lower dimensional space. On the obtained
feature maps, the algorithm computes the Histogram of
Gradients, which is finally used as a feature vector rep-
resenting the subject iris. To verify the subject identity,
the Pearson coefficient in [0,1] real interval is used, to
measure the correlation between the two images. The
Pearson correlation is used as the probability that the
two irises are from the same subject.

Rank 5
The algorithm proposed by Chiara Galdi and Jean-Luc
Dugelay has IDFICO_matcher. Its key features are:
(i) the use of a combination of classifiers exploiting the
iris colour and texture information; (ii) its limited com-
putational time, particularly suitable for fast identity
checking on mobile devices; (iii) the high parallelism
of the code, making this approach also appropriate for
identity verification on large database.

Rank 6
The algorithm with IDotsedom was submitted by
Naiara Aginako, José María Martínez-Otzeta, Basilio
Sierra, Modesto Castrillón-Santana and Javier Lorenzo-
Navarro. It exploits Machine Learning paradigms, as
well as Computer Vision techniques. Descriptors are
obtained based on well known approaches, such as LBP,
LPQ, and WLD. The idea is to use them individually in
order to construct a classifier, and then combine some
of them to outperform the obtained accuracy. The final
algorithm combines the best five descriptors to obtain
a dissimilarity measure of two given iris images. Ma-
chine Learning classifiers have ben used to perform the
classification, and hence to obtain the a-posteriori prob-
ability distribution for each of the two iris images. His-

togram distance between the two distributions is used to
compute the dissimilarity. To perform the final classifier
combination, five different classifiers are used, each of
one giving a different a-posteriori distribution for each
image. The mode of each a-posteriory probability for
each class value is used to combine the five classifiers,
and the distance of the two mode histograms (one for
each iris image) is used as dissimilarity measure.

Rank 7
Naiara Aginako, José María Maqrtínez-Otzeta, Igor Ro-
dríguez, Elena Lazkano and Basilio Sierra submitted
the algorithm with IDccpsiarb. Even in this case,
the proposed approach is a combination of image trans-
formations and classification, using techniques both
from Machine Learning and Computer Vision. First, an
image classification process is carried out in order to be
able to classify the images as belonging to one of those
which are defined in a given set of classes. This step
involves both Machine Learning paradigms, in order to
perform the classification itself, and Image Transforma-
tions from the Computer Vision area in an intent to im-
prove the accuracies of the obtained models. As clas-
sifiers the authors use five well known ML supervised
classification algorithms with completely different ap-
proaches to learning and a long tradition in different
classification tasks: IB1, Naive-Bayes, Bayesian Net-
work, C4.5 and SVM. After several experiments with
a combination of different image transformations and
machine learning algorithms, the Edge transformation
followed by IB1 classification has shown the best re-
sults. As a novelty, the dissimilarity computation be-
tween two images has been computed as an a-posteriori
histogram difference of the classes distribution returned
by the machine learning algorithm.

4. Summary of competition results

This section summarizes the main results obtained
from the comparison of participating methods. Table 1
reports the final rank list, including the best performing
version among the ones submitted for each author. The
ranking has been obtained by averaging the Recognition
Rate (RR) and the Area Under Curve (AUC) achieved.

Results have been achieved with Probe and Gallery
containing all sequestered images from MICHE-II with
the addition of random images from the public set. The
test set contains a total of 60 images for each set (IP5
and GS4) . Both sets only included images from front
cameras, with IP5 images captured indoor and GS4 im-
ages captured outdoor. The table accounts for both
the total of 3600 matching operations, in the column
ALLvsALL, and for the results achieved by homoge-
neous sets of images, in the columns IP5vsIP5 and



Table 1. Final ranking of ICPR-MICHE-II competition
Rank Algorithm ALLvsALL GS4vsGS4 Ip5vsIP5 Final Rank
1 tiger_miche 0.99 1.00 1.00 1.00
2 Bata 0.98 0.98 1.00 0.99
3 karanahujax 0.89 0.89 0.96 0.91
4 irisom 0.79 0.82 0.88 0.83
5 FICO_matcher 0.77 0.78 0.92 0.82
6 otsedom 0.78 0.80 0.78 0.79
7 ccpsiarb 0.75 0.72 0.77 0.75

GS4vsGS4. Actually, ALLvsALL presents quite de-
graded performance due to the double cross-matching
carried out by some operations, that involve images cap-
tured with both different devices and in different set-
tings (indoor vs. outdoor). It is interesting to notice that,
notwithstanding the lower resolution of front cameras
with respect to posterior ones, the performance degra-
dation is less dramatic than expected. It is also inter-
esting that, notwithstanding the lower resolution of IP5
front camera, the results obtained in IP5vsIP5, with im-
ages captured indoor, are much better (except forOTSE-
DOM) than those obtained in GS4vsGS4, with images
captured outdoor. This confirms that resolution and
ambient conditions are complementary factors affecting
iris recognition. This especially holds when images are
captured by mobile devices, since conditions are less
controlled and unpredictable. Figure 1 shows the ROC
curves otbained in the three settings, and visually con-
firms the observed considerations.

5. Conclusions

MICHE-II challenge at ICPR aimed at assessing the
present status of iris recognition on mobile devices in
Visible Light conditions. Recent smart devices allow to
capture images in Near-Infrared (NIR) spectrum, that
in general allows to achieve better performance. In
fact, illumination conditions play a less critical role and
dark irises are better processed. However, problems
that are typical of mobile uncontrolled image capture,
e.g., significant off-axis or bad eye framing, as well as
cross-condition issues, would hold even with NIR ap-
proaches. Clearly, mobile iris recognition is still not
able to achieve the same results of desktop based one,
especially if the whole processing must be carried out
on the device itself. However, achieved results are en-
couraging, and suggest further research.
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Figure 1. ROC curves obtained by the competitor methods in the three settings.


