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ABSTRACT
In recent decades, there has been a decline in ecosystem services. Thus, the development of reli-
able methodologies to monitor ecosystems is becoming important. In this context, the availabil-
ity of very high resolution sensors offer practical and cost-effective means for good environmen-
tal management. However, improvements in the data received are becoming necessary to obtain
higher quality information in order to get reliable thematic maps. One improvement is pansharpen-
ing, which enhances the spatial resolution of the multispectral bands by incorporating information
from a panchromatic image. The main goal of this work was to assess the influence of pansharpening
techniques in obtaining precise vegetation maps. Thus, pixel- and object-based classification tech-
niques were implemented and applied to fused imagery using different pansharpening algorithms.
Worldview-2 high resolution imagery was used due to its excellent spatial and spectral characteris-
tics. The Teide National Park, in The Canary Islands (Spain), was chosen as the study area since it is a
vulnerable heterogeneous ecosystem. The vegetation classes of interest considered were established
by the National Park conservation managers. Weighted Wavelet ‘à trous’ through Fractal Dimension
Maps pansharpening algorithm demonstrated a superior performance in the image fusion prepro-
cessing step, while the most appropriate classifier to generate accurate vegetation thematic maps in
heterogenic andmixed ecosystemswas the Bayesmethod after the segmentation stage, even though
Support Vector Machine achieved the highest overall accuracy.

RÉSUMÉ
Au cours des dernières décennies, les ressources naturelles ont diminué. Pour ces raisons, le
développement de méthodologies fiables de surveillance des écosystèmes devient de plus en plus
important. Dans ce contexte, la disponibilité de satellites à très haute résolution offre des moyens
pratiques et rentables pour une bonne gestion environnementale. Cependant, il est d’abord néces-
saire d’introduire des améliorations dans l’acquisition de données afin d’obtenir des informations de
meilleure qualité permettant la création des cartes thématiques fiables. Une de ces améliorations est
le “pansharpening”, qui augmente la résolution spatiale des bandes multispectrales en incorporant
de l’information à partir de l’image panchromatique. Le but principal de ce travail était d’évaluer
l’influence des techniques de pansharpening dans l’obtention de cartes de végétation précises.
Pour ce faire, on a mis en place des techniques de classification par pixel et orientée-objet, et on
les a appliquées à l’imagerie fusionnée en utilisant différents algorithmes de “pansharpening”.
L’imagerie à haute résolution Worldview-2 a été utilisée en raison de ses excellentes caractéristiques
spatiales et spectrales. On a choisi le Parc National du Teide, aux Canaries (Espagne), comme zone
d’étude, étant donné qu’il s’agit d’un écosystème vulnérable et hétérogène. Les classes de végétation
considérées ont été établies par les responsables de la conservation du Parc National. L’algorithme de
pansharpening “WeightedWavelet ‘à trous’ through Fractal DimensionMaps”a démontré la précision la
plus élevée à l’étape de prétraitement de fusion d’images, alors que le classificateur le plus approprié
pour générer des cartes précises de végétation, dans les écosystèmes hétérogènes et mixtes, a été
la méthode Bayes, après l’étape de segmentation, bien que Support Vector Machine a obtnenu le plus
haut précision globale.

Introduction

Biodiversity supports a wide variety of ecological func-
tions together with the services provided by ecosystems
(Isbell et al. 2011). Its conservation is related to global
environmental changes, such as the land use changes,
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climate change, and sustainable developments. How-
ever, during the last century, human activity gave raise
to alterations in ecosystems and thus, biodiversity is
suffering a fast decline (Khare and Ghosh 2016). This
creates a demand to preserve environmental resources

Copyright © CASI

D
ow

nl
oa

de
d 

by
 [

U
L

PG
C

. B
ib

lio
te

ca
] 

at
 0

3:
10

 1
5 

Ja
nu

ar
y 

20
18

 

https://doi.org/10.1080/07038992.2017.1371583
https://crossmark.crossref.org/dialog/?doi=10.1080/07038992.2017.1371583&domain=pdf&date_stamp=2017-09-13
mailto:edurne.ibarrola101@alu.ulpgc.es


2 E. IBARROLA-ULZURRUN ET AL.

(Pakzad et al. 2003). Remote sensing has become an
essential tool for evaluating and monitoring ecosystems.
It is able to provide consistent data on the Earth at
various scales, reducing the collection of field data and
ground-based observations (Khare and Ghosh 2016),
making it a cost-effective tool for land-cover classifi-
cation, monitoring, and environmental management
(Aplin 2004). Procedures for both classifying land cover
and monitoring land cover changes are extensively used
in environmental management. However, classifying
remotely sensed data in a thematic map remains a chal-
lenge because of the many factors involved, which may
affect the success of the classification (Lu andWeng 2007),
i.e., the complexity and heterogeneity of small species in
the ecosystem, quality of the remotely sensed data avail-
able, as well as the image preprocessing and classification
approaches. Remote sensing classification involves the
selection of training samples, image pre-processing, a
suitable classification model, post-classification process-
ing, and accuracy assessment (Lu and Weng 2007). In
this context, pixel-based and object-based classification
approaches can be distinguished.

In the traditional pixel-based classification approaches,
each pixel is identified by comparing its spectral signa-
ture value with the training samples and that pixel is
labeled with the proper class based on a certain super-
vised algorithm (Gao et al. 2009), but neither spatial con-
cepts nor contextual information are incorporated. Thus,
the misclassification rate could be high due to the spec-
tral similarity characteristics of some classes, the spec-
tral variability of the canopy reflectance and the pres-
ence of mixed pixels located on the boundary between
classes (Peña-Barragán et al. 2011). On the other hand,
object-based image analysis or OBIA, in the geographic
context (GEOBIA), was proposed as a new classifica-
tion approach due to the launch of very high resolution
(VHR) sensors. It offers a methodological framework,
from a machine-based interpretation of complex classes,
defined by the spectral, spatial, structural and hierarchi-
cal properties (Blaschke et al. 2008; Goodin et al. 2015,
Oruc et al. 2004). The idea of OBIA is the segmentation
of the image followed by successive analyses, usually at
different hierarchical levels, in order to create relation-
ships within segments or objects (Garcia-Pedrero et al.
2015; Lantz and Wang, 2013; Peña-Barragán et al. 2011).
Given that, segmentation could be defined as a bottom-
up region-merging process in which the image is sub-
divided into homogeneous regions according to several
parameters (band weights, scale, color, shape, texture,
etc.) defined by the operator, with the objective of creat-
ing object delimiting borders (Peña-Barragán et al. 2011).
However, segmentation could be a challenge because the
quality of the classification results depends largely on the

segments obtained, thus, it is necessary to establish a bal-
ance between efficacy and efficiency (Garcia-Pedrero et al.
2015).

As previously mentioned, remote sensing imagery
requires a number of corrections and enhancements,
before starting with the classification approach. Since,
VHR sensors provide both a multispectral image and a
panchromatic band, the quality enhancement would be
carried out using an image fusion technique (pansharpen-
ing algorithm) in which the spatial resolution of the mul-
tispectral image can be improved by incorporating infor-
mation from the panchromatic image (Carper et al. 1990;
Chavez et al. 1991; Shettigara 1992). Extensive research
into image fusion has been carried out during the last
decades. Image fusion can be categorized into 3 levels:
pixel level, feature level, and knowledge or decision level.
Specifically, pansharpening is performed at pixel level
and ideal pansharpening algorithm should have 2 main
attributes (Li et al. 2012): (i) enhancing high spatial reso-
lution; and (ii) reducing spectral distortion. The simplest
pansharpening methods, at the conceptual and computa-
tion level, are Intensity-Hue-Saturation (IHS; Carper et al.
1990; Shettigara 1992), Principal Component Analysis
(PCA; Chavez et al. 1991) and Brovey Transforms (Gille-
spie et al. 1987).However, these techniques have problems
because they provide spectral distorted fused images.New
approaches such as Wavelet transformation and the High
Pass Filtering (Alimuddin et al. 2012; Alparone et al.
2016; Chavez et al. 1991; González-Audícana et al. 2004;
Kpalma et al. 2014;Marcello et al. 2013; Pohl 2014; Vivone
et al. 2015) have been proposed to address particular
problems with the previous techniques (Aiazzi et al. 2002,
2006; Nuñez et al. 1999).

In addition, images acquired from VHR sensors
require atmospheric corrections to transform the top of
atmosphere radiance into ground reflectance by remov-
ing the atmosphere absorption and scattering effects
(Marcello et al. 2016), and image orthorectification, as
the topographic relief decreases or increases the radi-
ance illuminated because of the difference in land ele-
vation in some areas. Once images have been cor-
rected and enhanced, the generation of products for
the management of natural resources can be carried
out.

In this context, the main goal in this study was to
implement and assess pixel- and object-based classifiers
on VHR imagery that were fused using different pan-
sharpening techniques. Thus, the influence of fusion
on the classification results was analyzed. The ultimate
purpose was the development of a reliable processing
methodology which, when applied to remote sensing
imagery, serves to obtain accurate vegetation maps and
information for the conservation of natural resources.

D
ow

nl
oa

de
d 

by
 [

U
L

PG
C

. B
ib

lio
te

ca
] 

at
 0

3:
10

 1
5 

Ja
nu

ar
y 

20
18

 



CANADIAN JOURNAL OF REMOTE SENSING 3

Figure . Study area of Teide National Park (Canary Islands, Spain).

Specifically, a very complex shrubland ecosystemhas been
selected to perform the analysis.

The article is structured as follows: The 2nd section
includes the study area and a description of the data sets,
the image fusion methods, and the different classification
techniques applied at pixel- and object-based levels. The
analysis and evaluation of the different techniques, as well
as the thematic maps obtained are presented in the 3rd
section. Finally, the last section includes a critical analy-
sis of the results and summarizes the main outcomes and
contributions.

Material andmethods

Study area and dataset

A heterogeneous ecosystem of The Canary Islands (28°
06′ N; 16° 33′ W) was selected for this study: the Teide
National Park located on the island of Tenerife (Figure 1).
The Teide National Park, created in 1954, is a protected
area with 18,990 hectares (Martín-Osorio et al. 2005),
located on the island of Tenerife. The Teide National Park
area is a giant crater situated in the center of the island.
Teide is made up by several overlapping volcanoes in the
middle of the giant crater, making it the highest moun-
tain in Spain (3,718 m; González-Lemus et al. 2009). As
already mentioned, the vegetation is vulnerable to envi-
ronmental changes. Thus, the plants respond to thermic
and hydric stress, a characteristic of a mountain ecosys-
tem with a shrub physiognomy (Arozena-Concepción
and Beltrán-Yanes 2006).

The following non-herbaceous vegetation species were
selected for the study by the experts of the National Park,
due to their abundance and importance at the ecological
level: Spartocytisus supranubius (Teide broom), Ptero-
cephalus lasiospermus (Rosalillo de cumbre), Descurainia
bourgaeana (Hierba pajonera), and Pinus canariensis
(Canarian pine; Figure 2). All of them are addressed
in this article as “vegetation classes.” Moreover, urban,
road, and bare soil classes were also included in the
classification.

The Teide broom (Spartocytisus supranubius; Bonet
et al. 2009) is a broom-like shrub reaching a height
of 2 m–3 m, moreover it is a strong competitor and
its growth is a major factor affecting the composi-
tion of plant species (Kyncl et al. 2006). S. supranubius
is 1 of the most important plant species as is Ptero-
cephalus lasiospermus (Rosalillo de cumbre) andDescura-
nia bourgaeana (Hierba pajonera; Arozena-Concepción
and Beltrán-Yanes 2006). P. lasiospermus is a small shrub
characterized by pink flowers appearing in the spring
and D. bourgaeana is a shrub that can be easily dis-
tinguished by its semi-spherical shape and its flowers
of yellow petals. Another significant plant species is the
Canary pine (Pinus canariensis), the only native pine in
the archipelago, which is found in the northern area of the
park. This species has a great resistance to fire and cold
temperatures (Garzón-Machado et al. 2011; Otto et al.
2012; Wildpret de la Torre 2001). Other similar shrub-
land ecosystems can be identified around the world, for
example: Pico do Pico in the Azores, Mt. Halla in South
Korea, and Hawaii or the Galapagos Islands, some areas
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4 E. IBARROLA-ULZURRUN ET AL.

Figure . Vegetation field campaign in the TeideNational Park: (a) Spartocytisus supranubius; (b) Pterocephalus lasiospermus; (c)Descurainia
bourgaeana; and (d) Pinus canariensis.

of Okanagan Desert in Canada. Thus, the importance of
studying this ecosystem is its similarity to other Mediter-
ranean, temperate or tropical parts of the world (Ruocco
et al. 2014).

Worldview-2 (WV-2) orthoready imagery was used
in the study. The WV-2 satellite, launched by Digital-
Globe on October 8, 2009, was the first commercial satel-
lite to have a very high spatial resolution sensor with 1
panchromatic and 8multispectral bands. The Teide image
was acquired on May 16, 2011, in the spring season as
the vegetation species has greater spectral separability
(González-Lemus et al. 2009; Wildpret de la Torre 2001).

Image corrections and enhancements

Numerous methodological problems are associated with
the use of data from VHR sensors (Franklin and
Wulder 2002), thus, several image enhancements must
be carried out in order to reduce these problems
and to obtain high quality products which will allow
a comprehensive and useful analysis of the natural
resources.

Pansharpening techniques
The first step was to generate a pixel-level fused image,
with a high spatial and spectral quality, using a pansharp-
ening process. The enhancement is important in this type
of heterogeneous ecosystem due to the small size of some
vegetation classes. After a comprehensive review of the
state-of-art (Ibarrola-Ulzurrun et al. 2017), 7 pansharp-
ening methods were applied (for detailed information see
the references):

� Gram-Schmidt (GS): A low-resolution PAN image is
simulated and the GS transformation is performed
on the simulated PAN plus the MS bands. Then,
the original PAN replaces the first GS band and
the inverse transform is applied (Laben and Brower
2000).

� Fast Intensity Hue Saturation (FIHS): It uses the
spectral bands and the IHS transformation to esti-
mate the new component I. The spatial detail is

extracted, computing the difference between the
panchromatic band and I. Finally, it is injected into
themultispectral bands (Marcello et al. 2013; Tu et al.
2001; Vivone et al. 2015).

� Hyperspherical Color Sharpening (HCS): It is an
algorithm specifically designed for the WV-2 sen-
sor, based on the transformation between any native
color space and the hyperspherical color space (Li
et al. 2012, 2013; Padwick et al. 2010; Tu et al. 2012;
Wu et al. 2015).

� Based Modulation Transfer Function (MTF): The
trendy implementations provided by Vivone et al.
2015 (http://openremotesensing.net/knowledgeba
se/a-critical-comparison-among-pansharpening-
algorithms/) of 2 different MTF fusion algorithms
were used: the one based on Generalized Laplacian
Pyramid (MTF_GLP; Aiazzi et al. 2002, 2006) and
the Generalized Laplacian Pyramid plus a High Pass
Modulation (MTF_GLP_HPM; Burt and Adelson
1983; Aiazzi et al. 2002, 2006; Amro et al. 2011).

� Wavelet ‘à trous’ (WAVE_ATROUS): The fused
images are obtained by adding the panchromatic
wavelet planes to the multispectral image approx-
imation (Amolins et al. 2007; Amro et al. 2011;
Dutilleux et al. 1987; Gonzalo-Martín and Lillo-
Saavedra 2008; Lillo-Saavedra and Gonzalo 2006;
Marcello et al. 2013; Wald et al. 1997).

� Weighted Wavelet ‘à trous’ method through Fractal
DimensionMaps (WAT�FRAC; Lillo-Saavedra and
Gonzalo 2006): It is based on the wavelet ‘à trous’. A
mechanism that controls the trade-off between the
spatial and spectral quality by introducing a weight-
ing factor for each band αi (x, y) for the panchro-
matic wavelet coefficients is established and defined
as Fractal Dimension Map with the same size as the
original image (Lillo-Saavedra et al. 2011). These
maps are generated for each of the source images
with the box-counting algorithm and by applying a
windowing process. Each element in thesemaps pro-
vides a different weighting value for each pixel and
each band.
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Quality evaluation is a fundamental issue to bench-
mark and optimize different pansharpening algorithms
(Marcello et al. 2013; Rodríguez-Esparragón 2015; Wald
2000; Wang and Bovik 2002). A visual and quantitative
assessment was undertaken in order to evaluate the pan-
sharpening results in the different fused images. The qual-
ity assessment was carried out for the whole set of bands.
In the study, a number of statistical evaluation indices
were used to measure the quality of the fused images at
the spectral, spatial and global level (Alparone et al. 2008;
Kpalma et al. 2014; Shridhar and Alvarinho 2013). The
indices applied tomeasure the spectral quality of the fused
images, which take the original multispectral bands as
a reference, were: Spectral Angle Mapper (Kruse et al.
1993; best value closer to 0) and Spectral ERGAS (Wald,
2000; best values closer to 0, but usually between 0–3).
The spatial quality assesses the spatial detail injected and
the panchromatic band was chosen as a reference. The
indices considered were: Spatial ERGAS (Lillo-Saavedra
et al. 2005; best values closer to 0, but usually between 0–
3); Frequency Comparison (Rodríguez-Esparragón et al.
2014; values between 0–1, best closer to 1); and Zhou
Index (Zhou et al. 1998; values between 0–1, best closer to
1). Finally, at global level the Q8 index, which is a general-
ization of the Q index, (Wang and Bovik 2002) and of the
Q4 index (Alparone et al. 2004), with values between 0–1
(best closer to 1), was used to measure correlation, mean
shifts, and radiometric distortion simultaneously (Mar-
cello et al. 2013).

As theTeide ecosystem is very heterogeneous and com-
posed by small shrubs, pansharpeningwill be very impor-
tant to achieve reliable vegetation maps. Also, both qual-
ities will be critical, the spatial to discriminate the small
plants and the spectral to differentiate similar covers. As
indicated in Thomas et al. (2008), the ideal fusionmethod
does not exist yet, but the fused results generally corre-
spond to a tradeoff between a good geometrical represen-
tation of structures and a good representation of spectral
information.

Orthorectification and atmospheric correction
After detailed assessment of different image and model-
based atmospheric corrections algorithms using WV-2
imagery and field spectroradiometer data collected simul-
taneously (Marcello et al. 2016), the FLAASH algorithm
(Adler-Golden et al. 1999) achieved the best performance.
The appropriate atmospheric parameters were adjusted
(atmosphericmodel, aerosolmodel, aerosol optical thick-
ness, adjacency, etc.) using climatologic information and
field data and the average reflectance estimations achieved
a Root Mean Square Error (RMSE) around 3% when
compared to the in-situ measurements. Orthorectifica-
tion, using the Rational Polymodal Coefficients model,

was carried out using ENVI 5.0 software (ENVI 2004) and
the average RMSE after the orthorectification was 3.11 m
for geodesic points located in the park.

Segmentation at object-based approach

The OBIA process starts with a segmentation of the
input images into local groups of pixels (segments) that
become spatial units in the later classifications and accu-
racy assessment. The object shape, size and spectral prop-
erties depend on both the segmentation approach and the
research goals. The ideal purpose of the segmentation is
to approximate meaningful landscape entities recogniz-
able at a given image resolution (Dronova 2015). Image
segmentation in eCognition is not a straightforward pro-
cess and finding useful segmentation levels is an iterative
process (Walsh et al. 2008). The most popular segmenta-
tion carried out by eCognition users (Burnett et al. 2003;
Dronova 2015; Lu and Weng 2007; Walsh et al. 2008) is
Multiresolution Segmentation. It is regarded as a region-
based algorithm, which starts by considering each pixel
as a separate object. Subsequently, pairs of image seg-
ments are merged to form bigger segments. The decision
to merge is based on the homogeneity criterion, which
measures how homogeneous or heterogeneous an image
object is within itself. The derived image objects in eCog-
nition are determined by the following parameters (Baatz
et al. 2001):

� Weight of image channels to assign different impor-
tance to each image band.

� Scale to determine the maximum heterogeneity of
the objects allowed. Smaller scales increase the
dimensionality and the division of the objects into
the sub-groups, while larger scales combine the
multi-segments into 1 (Marangoz et al. 2006).

� Shape to adjust the homogeneity of the object
generation.

� Compactness to determine whether the objects will
become more compact or smoother.

Once theMultiresolution Segmentationwas performed,
Spectral Difference algorithmwas used tomerge neighbor-
ing image objects when the difference between their layers
mean intensities are below the value given by the maxi-
mum spectral difference (Baatz et al. 2001).

Classificationmodels

Several classification techniques were applied in the study.
The first stepwas to determine the classes appearing in the
image and to obtain a set of training and testing samples.
The size and representativeness of the set of the training
samples are critical for image classification (Lu andWeng
2007). The second step was to determine the classification
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6 E. IBARROLA-ULZURRUN ET AL.

Table . Pixel-based and object-based classification algorithms and their parameters.

Classification Approach Classification Algorithm Parameters

Pixel-based approach Maximum Likelihood Threshold: .
Mahalanobis Distance Maximum distance error: None
Support Vector Machine Kernel: Radial basis function

Gamma in kernel function: .
Penalty parameter: 

Object-based approach Bayes eCognition does not allow to set parameters with this classifier
Nearest Neighbor eCognition does not allow to set parameters with this classifier
K-Nearest Neighbor K: 
Support Vector Machine Kernel: Radial basis function

Gamma in kernel function: .
Penalty parameter: 

model to be used andwhich classifier apply in eachmodel.
An evaluation of the parameters chosen in each classi-
fier was performed. However, these parameters are image
dependent, and the user should analyze which parame-
ters are more suitable for their images. The 2 classifica-
tion approaches considered here were pixel-based, which
was carried out using ENVI 5.0 image processing software
(Exelis Visual Information Solutions, Inc., a subsidiary of
Harris Corporation); and object-based using eCognition
Developer (Trimble Geospatial). eCognition is optimized
for the cost-effective OBIA classification of VHR imagery.

The classification models selected for carrying out
the pixel-based classification approach are Maximum

Likelihood, Mahalanobis Distance, and Support Vector
Machine. Regarding the OBIA approach, Bayes, Near-
est Neighbor, K-Nearest Neighbor, and Support Vector
Machine were selected (Table 1). For choosing the classi-
fiers’ parameters, different trials were performed and eval-
uated until obtaining the most suitable parameter value
for each classifier.

Thematic maps were obtained after applying the dif-
ferent classification techniques using the same training
samples. Afterwards, the accuracy of the classification
was measured by using the testing samples collected.
In order to obtain a reliable thematic map, the training
and testing samples were selected with the help of Teide

Figure . True color images of the Teide National Park: (a) original multispectral image; and fused imagery using: (b) GS; (c) FIHS; (d) HCS;
(e) MTF_GLP; (f ) MTF_GLP_HPM; (g) WAVE_ATROUS; and (h) WAT�FRAC.
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Figure . RGB color composite: (a) WAT�FRAC fused image and (b) WAVE_ATROUS fused image; and thematic maps using: (c) Maxi-
mum Likelihood in WAT�FRAC fused image; (d) Mahalanobis Distance in WAVE_ATROUS fused image; and (e) Support Vector Machine in
WAT�FRAC fused image.

National Park experts from well-known sites around the
park and using the ground truth samples obtained during
the fieldwork carried out in the study area, which were
used for the training and testing phases in the classifica-
tion process. The method used for choosing the samples
was a random method in which a total of 362,631 pixels
(ca. 70% of the total samples) were chosen as training
samples and 159,182 pixels (ca. 30% of the total samples)
for the testing.

The statistical accuracy assessment technique used in
the study was the standardized confusion Error Matrix
which reports 2 measurements of accuracy: Overall
Accuracy and Kappa coefficient (Congalton 1991). It is

more appropriate in difficult classification approaches,
assuming that the map categories are mutually exclu-
sive and exhaustive and that each location belongs to
a single category. On the other hand, the Kappa coeffi-
cient is a measure of overall statistical agreement, which
takes non-diagonal elements into account (Lu and Weng
2007).

Results and discussion

The following results are presented as: (i) analysis and
evaluation of the fused images quality obtained through
the different pansharpening techniques; (ii) accuracy of
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8 E. IBARROLA-ULZURRUN ET AL.

Figure . Classification overall accuracy in percentage (%) of each
class and classifier in the fused imagery. X axis: classes; Y axis: per-
centage value.

the pixel-based thematic maps obtained for each fused
image; and (iii) accuracy of the OBIA classification results
obtained for each fused image.

Pansharpening results

In this section, a visual and a quantitative assessment of
the fused images are presented. To facilitate the visual
inspection and for a detailed spatial analysis, a zoom of
the complete scene is shown in Figure 3.

The visual interpretation at the spectral level in the
image indicates that every algorithm seems to correctly
preserve the spectral information in the fused image.
Moreover, the differences are clearer spatially than spec-
trally. For HCS and MTF-based techniques, although
they maintain the spectral information well, the spatial
details are not satisfactorily injected, thus not achieving a
good spatial enhancement. This smoothed aspect appear-
ing in the image is because the algorithm makes uni-
form the areas with a common texture. Thus, Dimen-
sional Fractal Maps are calculated into the MS and the
PAN image, giving information regarding roughness in
the image areas. Then, a small amount of the spatial infor-
mation is incorporated in homogeneous areas, maintain-
ing a more homogeneous spectral response, closer to the
original multispectral image, avoiding in this way, the
‘salt&pepper’ effect.

As it was mentioned, in order to carry out an objective
evaluation of the pansharpening techniques, 6 qual-
ity indices were computed. The results are presented
in Table 2. Spectral Quality indices and Q8 confirm
that MTF methods provide better spectral performance
while WAVE_ATROUS gets, in general, the lowest spec-
tral quality, even though there is not great difference
between the highest and the lowest result. As regards
the spatial performance, WAVE_ATROUS is confirmed
as the best spatial quality method. Furthermore, these

results confirm the trade-off between the spectral and
spatial quality of pansharpening techniques. As next
presented, WAT�FRAC will be the most suitable tech-
nique followed by WAVE_ATROUS, taking into account
the balance between a good geometrical representa-
tion of structures and a good representation of spectral
information (Thomas et al. 2008).

Pixel-based classification results

Before performing the classification process, the Jeffries-
Matusita Distance algorithm was carried out in order to
check the ROIs separability. This distance provides for
most of the class pairs a value of higher than 1.8, indicat-
ing a good separability for most of the ROIs.

Three supervised classification methods were applied
to each fused image (Table 1). Table 3 shows the Overall
Accuracy as well as the Kappa coefficient for each classi-
fication technique applied to each fused image.

The best result for both Maximum Likelihood and
Support Vector Machine classification is obtained in the
WAT�FRAC fused image, whereas theWAVE_ATROUS
fused image obtains the best accuracy with Mahalanobis
Distance classification. Every classifier performs a good
classification, which ismore significant both inMaximum
Likelihood and Support Vector Machine, with Kappa
coefficients of 0.76 and beyond. Furthermore, the Support
Vector Machine achieves the highest accuracy with the
WAT�FRAC fused image. Finally, it is observed how the
WAVE_ATROUS and WAT�FRAC algorithms, which
obtain higher values in the quantitative spatial indices
(Table 2), improve the classification compared with the
originalmultispectral image and the remaining pansharp-
ening techniques. These results highlight the importance
of the spatial information in the Teide National Park
where vegetation species aremixed and are limited in size.

In more detail, thematic maps for the best pansharp-
ening algorithm are shown in Figure 4 for Maximum
Likelihood, Mahalanobis Distance, and Support Vector
Machine.

According to Figure 4c, although the best Maximum
Likelihood Classification obtains an Overall Accuracy of
89.12%, some misclassifications appear in this thematic
map. For instance, some pixels which are classified as
urban (red) appear in bare soil areas, as well as some
road pixels in areas of bare soil. Moreover, due to the
field observations and information from the Teide man-
agers, an excess of D. bourgaeana appears in the classified
image (too many yellow pixels). In addition, S. supranu-
bius must be less abundant around P. canariensis in the
ecosystem (top left in the thematic map). For the best
Mahalanobis Distance method, similar misclassified pix-
els to those of the Maximum Likelihood Classification
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CANADIAN JOURNAL OF REMOTE SENSING 9

Figure . Multiresolution segmentation and spectral difference segmentation results.

Table . Quality results for the complete WV- bands (best results in bold).

Spectral Quality Spatial Quality Global Quality

SAM Spectral ERGAS Spatial ERGAS FC Zhou Q

GS . . . . . .
FIHS . . . . . .
HCS . . . . . .
MTF_GLP 3.212 . . . . 0.961
MTF_GLP_HPM_NM . 0.334 . . . .
WAVE_ATROUS . . 0.749 0.935 0.994 .
WAT�FRAC . . . . . .

Table . Accuracy assessment of the pixel-based classification algorithms for each fused image (the best results are in bold).

Classification Techniques Maximum Likelihood Mahalanobis Distance Support Vector Machine

Pansharpening Algorithms Overall Accuracy Kappa Overall Accuracy Kappa Overall Accuracy Kappa

Multispectral .% . .% . .% .
GS .% . .% . .% .
FIHS .% . .% . .% .
HCS .% . .% . .% .
MTF_GLP .% . .% . .% .
MTF_GLP_HPM .% . .% . .% .
WAVE_ATROUS .% . 80.79% 0.73 .% .
WAT�FRAC 89.12% 0.85 .% . 92.75% 0.89
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10 E. IBARROLA-ULZURRUN ET AL.

Figure . (a)WAT�FRACRGB color composite; and thematicmaps: (b) Bayes; (c) Nearest Neighbor; (d) K-Nearest Neighbor; and (e) Support
Vector Machine.

appear. Nevertheless, the abundance of pixels classified as
D. bourgaeana decreases compared with the Maximum
Likelihood result while S. supranubius class increases in
some areas where, according to expert opinion, it does not
have to appear in these areas. Finally, the Support Vec-
tor Machine thematic map achieves the highest Overall
Accuracy (92.75%). Despite the improvement using the
Support Vector Machine classifier, the computation time
with it was significantly higher, more than 24 hours, than
the other 2 classifiers, which took a few minutes in the
same computer.

In order to identify the best methodology (pansharp-
ening + classification model) to properly discriminate

the vegetation classes, Figure 5 displays the classifica-
tion overall accuracy chart for each class in each pixel-
based approach for the pansharpening algorithm achiev-
ing the best performance.Observing the classes, it is noted
that Maximum Likelihood classifier obtains higher val-
ues in the different classes than other classifiers except for
P. lasiospermus and bare soil, even though the best Over-
all Accuracy and Kappa coefficient is achieved by Sup-
port Vector Machine classifier. This fact is important due
to the aim of the study, which is to obtain the best plant
species classification map. However, as it was mentioned,
Figure 4c shows somemisclassifications when usingMax-
imum Likelihood classifier.
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CANADIAN JOURNAL OF REMOTE SENSING 11

Figure . Classification overall accuracy in percentage (%) of each
class and classifier in the fused image. X axis: classes; Y axis: per-
centage value.

Object-based classification results

Image segmentation
The imagewas segmented using the aforementionedMul-
tiresolution Segmentation technique to generate first, 8 dif-
ferent object-oriented segmentations to select the most
suitable Image Layer Weight and Scale parameters. The
segmentation parameters were selected by a visual evalua-
tion and applying a Support VectorMachine classification
technique with the training and testing samples obtained
in the field work. Both the Overall Accuracy and the
Kappa coefficient were analyzed in order to evaluate the
most suitable segmentation parameters. The greater the
accuracy, the better the adjustment of the segmentation
parameters with the image objects. Tables 4 and 5 details
some of the Scale parameters and criterion combinations
used, as well as the classification accuracy obtained in
each segmentation. Test Number 8 shows the most suit-
able segmentation for the Image Layer Weights and Scale
parameters, which is revealed in the classification results.

Figure 6 shows a zoom of the segmentation results, in
which objects preserve small shrubs which are difficult to
delimitate.

OBIA classification
Once the objects are obtained from the segmentation
techniques, classification algorithms can be applied. The
classification algorithms analyzed and the parameters
used are shown in Table 1.

Table 6 shows the Overall Accuracy and the Kappa
coefficient for each object-based classification tech-
nique applied to each fused image. By analyzing the
table, every classifier obtains the best accuracy result in
the WAT�FRAC fused image. Overall Accuracy and
Kappa coefficient values are similar to the pixel-based
classification results (Table 3), with the Support Vector
Machine classifier, once again, obtaining the best overall
accuracy result. The table shows how the classification
accuracy is, in general, improved in images fused with

algorithms that preserve the spatial and spectral quality
(WAVE_ATROUS and WAT�FRAC), compared with
the original multispectral image. The most accurate
thematic maps of each classifier are shown in Figure 7.

Figure 7 shows the WAT�FRAC fused image and
each classificationmap using Bayes, Nearest Neighbor, K-
Nearest Neighbor, and Support Vector Machine. In the
case of the Bayes classifier some objects which are clas-
sified as urban areas appear as bare soil areas and road
objects in areas of bare soil, like theMaximum Likelihood
Classification in the pixel-based approach. In the Near-
estNeighbor classification, themisclassifications obtained
in the Bayes classifier are resolved, observing a more
accurate thematic map at first sight, as well as K-Nearest
Neighbor classifier, which shows a similar thematic map.
Finally, the Support Vector Machine map is similar to the
previous ones.

Figure 8 summarizes the classification overall accuracy,
in percentage, of each class and for each OBIA classifica-
tion approach applied to the WAT�FRAC fused image.
Bayes provides a high percentage of accuracy, obtain-
ing the highest results for most of the vegetation classes.
While the Nearest Neighbor, the vegetation classes have a
lower percentage of accuracy, achieving the lowest for S.
supranubius. Regarding the K-Nearest Neighbor classifier,
it achieves a high degree of accuracy for P. lasiospermus,
which is a significant class of interest for the ecosystem
management of this region. On the other hand, the mis-
classifications obtained in the other 3 types of vegetation
improved with respect to the Nearest Neighbor classifica-
tion. Support Vector Machine, even though achieving the
highest Overall Accuracy and Kappa coefficient (Table 6),
these results do not appear in the ones obtained in the
classification accuracy of each class (Figure 8).

It is important to note the good results obtained
using theWAT�FRAC algorithm in both pixel-based and
object-based approaches. Although the best overall accu-
racy is obtained by the Support Vector Machine in both
cases, not only the computation times for the pixel-based
approach are much higher that for the OBIA approach
but Maximum Likelihood Classification and Bayes clas-
sifier obtain higher accuracies for the majority of vegeta-
tion classes of interest. However, as it was mentioned, the
visual assessment obtained with Maximum Likelihood
classification does not fully correspond with the experts’
opinion. This leads to the Bayes classification, at OBIA
approach, applied to the WAT�FRAC fused image being
the most suitable classifier in order to obtain fast and
accurate thematic maps of these difficult heterogeneous
shrub-land ecosystems. Even though it does not achieve
the highest overall accuracy (Table 6), it is closer to the
Support Vector Machine classifier but obtaining higher
classification accuracies for each class.
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12 E. IBARROLA-ULZURRUN ET AL.

Figure . Zoom of the thematic maps obtained by the SVM classifier applied at pixel-based approach in: (a) Original multispectral image
and (b) WAT�FRAC fused image; and at OBIA approach in: (c) Original multispectral image and (d) WAT�FRAC fused image.

Table . Accuracy assessment of Image Layer Weight (Worldview- bands), and scale segmentation parameters (best result appears in
bold).

Segmentation Classification

Number Image Layer Weights Scale Shape Compactness Overall Accuracy Kappa Coefficient

 ,,,,,,,  . . .% .
 ,,,,,,,  . . .% .
 ,,,,,,,  . . .% .
 ,,,,,,,  . . .% .
 ,,,,,,,  . . .% .
 ,,,,,,,  . . .% .
 ,,,,,,,  . . .% .
8 1,1,1,1,1,1,2,2 12 0.1 0.5 88.29% 0.83
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CANADIAN JOURNAL OF REMOTE SENSING 13

Table . Accuracy assessment of compactness and shape segmentation parameter using the ImageWeight Layer: , , , , , , ,  andwith
a Scale:  (best result appears in bold).

Shape

. . . . 0.5 . . . .

Compactness . . . . . 88.83 . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Table . Accuracy assessment of the object-based classification algorithms for each fused and segmented (Multiresolution Segmentation
and Spectral Difference) image (the best results are in bold).

Classification Techniques Bayes NN K-NN Support Vector Machine

Pansharpening Algorithms Ov. Acc. Kappa Ov. Acc. Kappa Ov. Acc. Kappa Ov. Acc. Kappa

Multispectral .% . .% . .% . .% .
GS .% . .% . .% . .% .
FIHS .% . .% . .% . .% .
HCS .% . .% . .% . .% .
MTF_GLP .% . .% . .% . .% .
MTF_GLP_HPM .% . .% . .% . .% .
WAVE_ATROUS .% . .% . .% . .% .
WAT�FRAC 89.14% 0.84 84.07% 0.77 88.54% 0.83 89.39% 0.85

Note. Ov. Acc.= Overall Accuracy.

Table . Computation times (minutes) of the different classifiers in pixel based (using ENVI) and in OBIA (using eCognition) approaches.

Pixel-Based Approach OBIA Approach

Maximum Likelihood Mahalanobis Distance Support Vector Machine Bayes NN KNN Support Vector Machine

Computation Time (min)   , . . . .

Table 7 shows the computation times of each classifier
in both approaches, using a computer with Windows 10
of 64 bits, Intel R© CoreTM i7-490 CPU @ 360 GHz with
32.0 GB of RAM. Note that the computation times of
OBIA classifiers were significantly lower than the ones
using the pixel-based approach, especially the Support
Vector Machine, which took hours to obtain the classi-
fication maps in the pixel-based approach.

In order to visually assess how the pansharpening pro-
cess improves the result in the thematic maps, a final
figure (Figure 9) shows zooms of the thematic maps
obtained using both Support Vector Machine algorithm
on the original multispectral and the WAT�FRAC fused
images in both pixel and OBIA approaches. We have
decided to show Support Vector Machine results because
it obtained the most suitable classification in the pixel-
based approach and, thus, it is possible to compare the
same classification result using the same classifier in the
2 different approaches (pixel- and object-based). The
importance of pansharpening is observed as some classes

of interest are not well labeled in the original multispec-
tral thematic maps (Figure 9a). On the other hand, build-
ings are erroneously classified as bare soil in the original
multispectral image and road limits are stepped due to the
pixel size in the original image. Moreover, the poor qual-
ity of the classification is appreciatedwhen applyingOBIA
to the Multispectral image, however, when it is applied to
the fused image, the contours of the covers are smoother
and it reduces the salt and pepper effect.

Conclusions

Themain objective of the presented work was to study the
pansharpening influence on obtaining accurate thematic
maps, applying pixel-based and OBIA classification tech-
niques on VHR imagery from a complex and heteroge-
neous ecosystem. Thus, 7 different pansharpening tech-
niques (GS, FIHS, HCS, MTF_GLP, MTF_GLP_HPM,
WAVE_ATROUS, and WAT�FRAC) were applied to
achieve the highest spatial resolution of the multispectral
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14 E. IBARROLA-ULZURRUN ET AL.

bands while preserving its original spectral information.
Several classification algorithms were next applied at the
pixel-based level (Maximum Likelihood Classification,
Mahalanobis Distance, and Support VectorMachine) and
at the object-based level (Bayes, Nearest Neighbor, K-
Nearest Neighbor, and Support Vector Machine).

First, visual and quantitative quality assessment of
the 7 pansharpening techniques was performed. A good
compromise between the spatial and spectral quality is
a requirement of the study. This compromise is noted
after analyzing the results from the 6 quality metrics.
MTF methods achieve the best spectral performance,
while WAVE_ATROUS achieves the best spatial qual-
ity. WAT�FRAC provides a suitable balance between the
geometrical representation of structures and representa-
tion of original spectral information.

Next, detailed accuracy results were performed for the
classified maps. We conclude the importance of the pan-
sharpening step in ecosystemswith small andmixed vege-
tation, where the spatial information is critical and should
be well incorporated in order to generate accurate the-
matic maps. It is important to highlight the difficulty
in classifying some types of vegetation due to the com-
plexity of this heterogeneous shrubland ecosystem with
small vegetation species such as D. bourgaeana. Hence,
the major impact on the mapping of different types of
vegetation is the misclassification created within the plant
species, due to their spectral similarity and the mix-
ing contributions from different covers in some pixels.
Thus, it is important to create a reliable training sample
database, which allows an accurate supervised classifica-
tion to be made. As mentioned, experts from the Teide
National Park helped to obtain the ground truth samples
used for training and testing. This assumption leads us
back to the importance of obtaining a fused image with
a high spatial quality that allows us to differentiate some
species from others, avoiding pixel misclassification but
also preserving the original spectral information.

In both classification approaches, the WAT�FRAC
fused image achieves the best thematic map with every
classification method except for Mahalanobis Distance
using the pixel-based approach. The highest Overall
Accuracy is obtained by the Support Vector Machine,
applied to the WAT�FRAC fused image for both
approaches, having similar results with Maximum Like-
lihood in the pixel-based approach and with Bayes in the
OBIA approach. Moreover, Maximum Likelihood, as well
as Bayes, obtained the highest accuracies for most vege-
tation classes, even though the visual results in the Max-
imum Likelihood classification are not fully satisfactory.
In addition, the computation time of the Support Vector
Machine is higher than other classifiers, being consider-
ably high in the pixel-based approach. Thus, we conclude

that Bayes classifier applied in an object-based approach
is the most suitable algorithm for this ecosystem area.

Despite the accurate classification results obtained,
some limitations for both studied approaches have to
be mentioned. In the case of the pixel approach, the
main limitation is the presence of mixed pixels located
in boundaries between classes. Moreover, the quantity of
data to be processed is higher than in the OBIA approach,
in which objects are processed instead of pixels. On
the other hand, in the OBIA approach there is a high
dependency on the segmentation parameters, which are
specific for each image. There is no global protocol for
setting the segmentation parameters and the user must
analyze which segmentation parameters aremore suitable
depending on the image.

In conclusion, after an extensive testing of pansharp-
ening and classification algorithms, we have obtained a
methodology that provides a good performance in these
heterogeneous regions with small and mixed shrubs,
obtaining challenging thematic maps of land-protected
areas for studying the state of conservation of natural
resources.

Future research will include ancillary data, such as
Lidar and SAR imagery, as well as specific vegeta-
tion indices and texture parameters in the classification
approach in order to obtain more accurate thematic maps
not only in shrubland ecosystems, but also in coastal and
shallow water natural areas. This methodology could be
applied not only to Teide National Park ecosystem but to
other similar ecosystems around the world.
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