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que siempre me ha apoyado a conseguir mis metas.

Por otro lado, quiero expresar mi más sincero agradecimiento a los

directores de la tesis, Javier Sánchez Pérez y Agust́ın Salgado de la Nuez,
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Abstract

The aim of this thesis is to contribute in the calculation of variational optical flow

methods. This is a basic topic in the field of computer vision that pursues the accurate

estimation of the displacement experienced by the objects present in a video scene. In

particular, this dissertation is focused on two main themes: (i) we study the influence of

temporal information compared to traditional spatial variational methods; (ii) we analyze

several strategies for the preservation of flow discontinuities and propose alternatives to

overcome this problem. Nowadays, these two issues remain unsolved and we consider them

important for finding better optical flow fields. According to the enormous increment of

the automation in the industry, the use of artificial intelligence and computer vision

techniques in particular becomes more important. In this context, it is relevant to find

automatic and well founded numerical methods to interpret moving scenes from image

sequences.

The document is divided in five chapters. In the first chapter we introduce the problem

and give a guideline of this document. In the second, we study the most relevant works

from the state-of-the-art that fits with the problems that we are dealing. Besides, we

present several issues closely related with the context of this thesis, like standard datasets

for optical flow studies or reproducible research.

In the third chapter, we propose a spatio-temporal variational method for the

consistent estimation of large motion fields. Our focus is on the development of realistic

temporal coherence models that are suitable with current spatial models. The aim of this

work is to explore ways of temporal coherence that takes into account the non-continuity

of large motion fields. In this sense, we propose three main contributions: (i) a nonlinear

flow constancy assumption, similar to the nonlinear brightness constancy assumption, (ii)

a nonlinear temporal regularization approach; (iii) an anisotropic diffusion operator based
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2 Abstract

on the Nagel-Enkelmann operator.

The chapter four presents an implementation of the spatial and temporal approaches

of the Brox et al. method and compare their main features. We also study various

solutions using grayscale and RGB images from recent evaluation datasets to verify the

color benefits in motion estimation.

Finally, we analyze several strategies for the discontinuity-preserving problem in

variational methods. Our analysis includes the use of tensors based on decreasing

functions, which has shown to provide good results. We observe that this strategy is

normally unstable if the function is not well controlled introducing instabilities in the

computed motion field. Our conclusions lead us to propose two alternatives to overcome

these drawbacks: (i) a simple approach that combines the decreasing function with a

minimum isotropic smoothing; (ii) a fully automatic strategy that adapts the diffusion

depending on the image features. It looks for the best parameter configuration that

preserves the important motion contours and avoid instabilities.

Our contributions have been tested on standards benchmark databases that are in

common use in optical flow.



Resumen

El objetivo de este tesis es contribuir en el cálculo de flujo óptico. Este es un tema

importante dentro del campo de la visión por computador que persigue estimar de

manera precisa el desplazamiento que experimentan los objetos presentes en una escena

de v́ıdeo. En la figura 1 se ofrece un ejemplo de lo que significa la estimación del flujo

óptico. Utilizamos para ello la secuencia de Alley 1 que pertenece a la base de datos de

Sintel1 [Butler12].

Figura 1: Ejemplo de flujo óptico. En la parte superior vemos dos frames consecutivos
de las secuencia Alley 1 que pertenece a la base de datos de Sintel. En la imagen inferior,
vemos un campo vectorial que representa el movimiento presente en esta secuencia.

1http://sintel.is.tue.mpg.de/
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4 Resumen

La importancia del cálculo del flujo óptico es muy elevada ya que sirve como base para

un amplio número de aplicaciones dentro del campo de la visión artificial, aśı como para

resolver muchos tipos de problemas, como pueden ser: la reconstrucción 3D, el guiado de

robots, la compresión de v́ıdeo, el registrado de imágenes médicas, el análisis de imágenes

meteorológicas y muchas otras. Toda esta variedad de aplicaciones nos da una idea de

la importancia que tiene el flujo óptico dentro de esta área de investigación. A medida

que aumenta la automatización en la industria, se hace más importante la utilización de

técnicas de inteligencia artificial y de visión por ordenador en particular.

Este trabajo de tesis tiene dos objetivos principales: (i) Estudiar la influencia que

tiene la información temporal comparada con los métodos variacionales de tipo espacial;

(ii) Analizar varias estrategias para la preservación de discontinuidades en el flujo y

proponer alternativas para solventar este problema.

A pesar de más de treinta años de estudios de flujo óptico, estos temas siguen sin estar

del todo resueltos y, además, en el mundo actual es cada vez más relevante encontrar

métodos numéricos que puedan emular de manera automática la habilidad humana de

interpretar escenas en movimiento a partir de secuencias de imágenes. Por este motivo,

consideramos relevantes las propuestas expuestas en este trabajo.

El documento se divide en cinco partes: En la primera parte introducimos el problema

y comentamos brevemente la gúıa de este documento. En el segundo caṕıtulo estudiamos

los trabajos más relevantes del estado del arte que mejor encajan con los problemas que

tratamos. Además, presentamos varias cuestiones muy relacionadas con el contexto de

esta tesis, tales como bases de datos estándar en estudios de flujo óptico o investigación

reproducible. En el tercer caṕıtulo proponemos un método variacional de tipo espacio-

temporal. Nuestra intención es contribuir en modelos de coherencia temporal que

sean aplicables en modelos espaciales. El objetivo de este trabajo es explorar modelos

temporales que tengan en cuenta la no continuidad en desplazamientos largos. En

este sentido, proponemos tres principales contribuciones: (i) un término que ofrece una

asunción no lineal de constancia en el flujo, (ii) un nuevo esquema de regularización que

trata con flujos ópticos no continuos, (iii) Un esquema anisotrópico de difusión basado en

el operador de Nagel-Enkelmann.

En cuarto lugar, presentamos una implementación propia de las aproximaciones

espacial y temporal del método de Brox et al. y comparamos sus principales
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caracteŕısticas. Además estudiamos varias soluciones usando imágenes en escala de grises

y RGB que pertenecen a bases de datos recientes para verificar si la información de color

beneficia a la estimación de movimiento.

Finalmente, analizamos varias estrategias orientadas al problema preservación de

discontinuidades en métodos variacionales de flujo óptico. Nuestro análisis incluye el

uso de tensores de difusión basados en funciones decrecientes que han demostrado buenos

resultados. El uso de funciones decrecientes suelen introducir inestabilidades en el campo

de flujo computado. Nuestras conclusiones nos han llevado a proponer dos alternativas

que permiten solventar esta desventaja: (i) Una aproximación que combina una función

decreciente pero acompañada de un valor constante, con el objetivo de asegurar que se

produzca siempre un mı́nimo de difusión isotrópica, (ii) un método que busca la mejor

configuración de parámetros que preserve los contornos del flujo al mismo tiempo que

evite las inestabilidades. Este último esquema ofrece un sistema automático que regula

su influencia a partir de las caracterısticas de la imagen.

Todas las contribuciones expuestas en esta tesis han sido testeadas en bases de datos

estándar ampliamente utilizadas en estudios de flujo óptico.

Conclusiones

A continuación, detallamos el trabajo realizado y resumimos las conclusiones obtenidas

durante los distintos caṕıtulos. Hemos contribuido en el estudio del flujo óptico de dos

maneras:

• Tratamiento de la información temporal en métodos de flujo óptico.

En el caṕıtulo 3 propusimos un método variacional que hace uso de coherencia

temporal para encontrar campos de flujo más continuos. Este método combina una

asunción no lineal de constancia en el flujo en el modelo de enerǵıa además de un

esquema no lineal de regularización del flujo. La primera relaciona convenientemente

los campos de flujo en diferentes instantes de tiempo mientras que la segunda

produce flujos continuos en el tiempo. Este también incluye un operador robusto

de difusión anisotrópica basado en la técnica de Nagel-Enkelmann y una técnica de
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flujo inverso que permite encontrar correspondencias en el tiempo. Denominamos

a este método como TCOF.

Hemos realizado pruebas en secuencias sintéticas y reales para poder comparar

los resultados con su contrapartida temporal. Observamos que, cuando usamos

secuencias reales, TCOF ofrece campos de flujo continuos en el tiempo y que el ruido

se reduce respecto a la solución espacial. Esto es un comportamiento interesante y

refleja que las propuestas de este caṕıtulo encajan correctamente con los términos no

lineales estándar de constancia del brillo y del gradiente. TCOF ofrece importantes

mejoras, especialmente cuando el método se enfrenta a desplazamientos largos.

• Estrategias eficientes para tratar con el problema de preservación de

discontinuidades.

En el caṕıtulo 4, realizamos un análisis exhaustivo del método de Brox et al.

Observamos buenos resultados ofreciendo flujos continuos y robustos frente a

outliers. Sin embargo, también crea formas redondeadas en los ĺımites del flujo

y normalmente estos no coinciden con los contornos de los objetos de la imagen.

Posteriormente, introdujimos el esquema espacial dentro de un esquema multicanal

para evaluar los posibles beneficios. Concluimos que la mejora es evidente y que el

coste computacional es razonable y está justificado.

La información de color mejora la preservación de discontinuidades pero aún produce

formas redondeadas. Esto ocurre porque la regularización depende del flujo y no

se utiliza información de la propia imagen. Introducir una función decreciente en

el término de suavizado puede ser una posible solución a este problema. Por esta

razón, estudiamos varias técnicas orientadas a la preservación de discontinuidades

en el caṕıtulo 5. En particular, nos centramos en el uso de funciones decrecientes y

tensores de difusión anisotrópicos.

Observamos que esta estrategia ofrece precisión en los contornos del flujo pero, sino

escogemos cuidadosamente los parámetros, aumentan considerablemente los errores

en el resultado. Esto es porque un parámetro equivocado introduce inestabilidades

en el flujo óptico. Además, detectamos que este problema ocurre en la gran mayoŕıa

de las secuencias y no es anecdótico.

En este sentido, propusimos dos estrategias para solventar este problema. La
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primera consiste en combinar la función decreciente con una pequeña constante que

asegure siempre un mı́nimo de suavizado impidiendo que se cancele completamente el

término de regularización. La segunda es una aproximación automática que adapta

la difusión dependiendo del histograma de gradientes de la imagen. Comparando su

evolución del error con respecto al parámetro de discontinuidad vemos que reducen

sensiblemente el problema de las inestabilidades y que ambas propuestas presentan

un buen comportamiento en las discontinuidades del flujo.

La primera propuesta es muy estable y ofrece soluciones muy competitivas. Sin

embargo, creemos que la aproximación automática es mejor ya que normalmente

consigue los mejores resultados sin intervención externa. En nuestra opinión, esta

caracteŕıstica hace que la segunda propuesta pueda ser interesante para aplicaciones

reales.





Chapter 1

Introduction

Computer vision encompasses a wide research field that pursues the comprehension of
the data captured in digital images or videos. Related to this, a broad variety of high-
level applications within the field of artificial vision, such as robotic guidance, objects
tracking, 3D scene reconstruction, augmented reality, image medical registration, video
compression and many others, require a low-level process that allows a precise motion
recovery from their surrounding environment.

In this context, optical flow estimation is very useful because it provides consistent
information of the apparent displacement of the pixels in a video sequence. Once we
have calculated our solution, we can determine the movement of the objects through the
sequence. Owing to its importance and multiple uses, the optical flow problem has become
a major theme in computer vision and it is the objective of this dissertation.

In figure 1.1, we observe an example of the meaning of optical flow estimation by using
the sequence of Alley 1, which belongs to the Sintel Dataset1 [Butler12]. The idea is that,
if we add into the first image the movement described by the flow field for each pixel, we
should obtain the following image.

Variational optical flow methods are among the most widely used techniques in the
literature if accuracy is the main objective. Typically, these approximations obtain their
solutions as a minimization of an energy functional that allows obtaining dense flow fields,
which means that the displacement values are provided for the whole domain. Another
interesting property of the variational methods is that they are transparent, in the sense
that all the assumptions on the image data and the solution are explicitly formulated in
the underlying energy functional. There are no intermediate or post processing steps that
question the consistency of the whole approach. Moreover, the use of a joint minimization
framework allows a solid mathematical integration of all desired assumptions.

1http://sintel.is.tue.mpg.de/
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10 Introduction

Figure 1.1: Representation of the optical flow. At the top, it is shown a pair of images of
the Alley 1 sequence from the Sintel Dataset. In the pictures below, there are depicted
flow fields representing the motion present in this sequence by using three different
strategies. The scheme for the representation is at the right of each solution.

This energy is expressed as a weighted sum of a data and a smoothness terms. The first
puts in correspondence pixels from consecutive images under a premise, commonly known
as brightness constancy assumption, that the intensity of the objects remains constant
through the sequence. The second imposes a constraint on the continuity of the flow that
ensures that our solution is unique assuming that neighboring pixels present a similar
motion. Otherwise, the optical flow arise to an ill-posed problem in the sense that there
may exist an infinity of solutions for the matching of two images.

The minimization of this energy functional typically generates a system of partial
differential equations (PDE) whose solution must fulfill several restrictions imposed on
the model. This system results into a scheme that is solved using techniques of numerical
analysis and whose solution can be implemented in a standard programming language.
Although there exist other possibilities like multi grid schemes, in our case, we solve our
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system of equations by using the SOR (Successive Over-Relaxation) method. This is an
iterative procedure that solves linear system of equations, resulting in faster convergence.

In order to estimate large displacements and avoid irrelevant local minimum values,
we embed the optical flow method in a multi-scale strategy as in previous works like
[Anandan89, Battiti91, Luettgen94, Bornemann96, Enkelmann88, Mémin02]. This allows
us to create a coarse-to-fine structure for solving the system of equations in each scale,
starting at the coarsest scale, to get successive approximations of the optical flow for
refining the solution at finer scales.

We represent the flow fields by using three different strategies. The first one consists in
using directly a vectorial representation to describe the relative motion while the other two
strategies use color schemes. Each color denotes a different direction and their intensities
the magnitude of the moving objects (see figure 1.2). In the document, we call them as
IPOL and Middlebury color schemes, respectively. The chromaticity of the Middlebury
color scheme is clearer than the IPOL representation, which is interesting for saving costs
when printing. However, the IPOL color scheme is more intuitive, since the black color
represents no motion.

Figure 1.2: Relation between the color scheme and the vectorial field for the optical flow
representation.

Despite of more than thirty years of optical flow studies, there are still some limitations
in current variational methods like, for instance, occlusions handling, that arise when a
portion of the image is visible at one frame but not in its successive, the estimation of large
displacements or the preservation of discontinuities in the displacement field. From these
issues, the intention of this manuscript is to contribute in two themes: (i) the influence of
temporal information compared to traditional spatial variational methods; (ii) Efficient
strategies for improving the preservation of flow discontinuities.

1.1 Main contributions

This section describes the main contributions that have been published in the context of
this thesis:
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• Nonlinear Temporal Coherence Models for Optical Flow Estimation
[Sánchez13f, Sánchez13e, Sánchez13d, Sánchez13c, Sánchez15]

We present nonlinear variational models for the coherent estimation of motion fields.
The aim of this work is to explore new ways of temporal coherence that takes into
account the non-continuity of large motion fields. In this sense, we propose two
main contributions: a nonlinear flow constancy assumption, similar in spirit to the
nonlinear brightness constancy assumption, which conveniently relates flow fields
at different time instants; and a nonlinear temporal regularization approach, that
fosters smooth flow fields in time. These can be easily combined with traditional
spatial models, consistently linking the flow information in the spatial and temporal
dimensions.

• Robust Optical Flow Estimation [Sánchez13b, Monzón14b, Sánchez12]

We describe an implementation of the variational method proposed by Brox et
al., in 2004, which yields accurate optical flows with low running times. It has
several benefits with respect to the method of Horn and Schunck: it is more robust
to the presence of outliers, produces piecewise-smooth flow fields and can cope
with constant brightness changes. It also generalizes the use of continuous L1

functionals, which help mitigate the effect of outliers and create a Total Variation
(TV) regularization. Additionally, it introduces a simple temporal regularization
scheme that enforces a continuous temporal coherence of the flow fields.

• Regularization Strategies for Discontinuity-Preserving Optical Flow
Methods [Monzón16a, Monzón16b, Monzón13, Monzón14a, Sánchez14]

Our objective is to study several strategies for the preservation of flow discontinuities
in variational optical flow methods. We analyze the combination of robust error
functions and diffusion tensors in the smoothness assumption. Our study includes
the use of tensors based on decreasing functions, which has shown to provide good
results. However, it presents several limitations and usually does not perform better
than other basic approaches. It typically introduces instabilities in the computed
motion fields in the form of independent blobs of vectors with large magnitude. We
propose two alternatives to overcome these drawbacks: first, a simple approach that
combines the decreasing function with a minimum isotropic smoothing; second, a
method that looks for the best parameter configuration that preserves the important
motion contours and avoid instabilities.
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Outline 13

that belongs to the research center: Centro de Tecnoloǵıas de la Imagen (CTIM) at the
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1.3 Outline

• Chapter 2, The Optical Flow Problem:

This chapter describes the state of the art concerning the problem of optical flow
estimation. First, we summarize the main issues dealing with optical flow methods.
Second, we mention the most relevant methods of the literature, describing some of
the most innovative techniques that have emerged in recent years that have served
as reference to other methods developed later. This is followed by related works
regarding to the main challenges that we address in this dissertation: Temporal
coherence and motion contours preservation.

We explain the main characteristics of the most widely used datasets in the optical
flow literature. We describe the sequences used in the experiments of this thesis, as
well as the metrics used for obtaining quantitative results.

• Chapter 3, Nonlinear Temporal Coherence in Optical Flow Methods :

Applying temporal coherence in variational methods favors finding more continuous
flow fields in time. Besides, the occlusion handling could be ameliorated by using
information from successive frames. In this sense, in chapter 3, we propose several
contributions: (i) nonlinear flow constancy assumption; (ii) a novel nonlinear flow
regularization scheme that can deal with non-continuous optical flows; (iii) an
anisotropic diffusion operator based on the Nagel-Enkelmann operator. The results
show that a nonlinear temporal formulation of the flow field provided accurate
motion fields.

• Chapter 4, Robust Optical Flow Estimation:

We study spatial and temporal approaches of the Brox et al. proposal [Brox04].
Then, we improve the results of this method by including color information in its
energy functional. We observe that the flow discontinuities are typically degraded
by the continuous temporal regularizer; therefore, the spatial approach is still a good
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option due to its more simplicity and faster solutions respect to the discontinuity
preserving problem in optical flow methods.

• Chapter 5, Robust Discontinuity-Preserving Optical Flow Methods :

The preservation of the motion boundaries is one of the main issues that we analyze
in this dissertation. Once we have developed and deeply studied the behavior of
the classical TV-L1 approach of the Brox method, we observed that this type of
methods typically creates rounded effects at flow boundaries, which usually do not
coincide with object contours. A simple strategy to overcome this problem consists
in inhibiting the diffusion at high image gradients. Here, we first introduce a general
framework for TV regularizers in optical flow and relate it with some standard
approaches. Then, we propose efficient strategies to improve the discontinuity-
preserving problem.

• Chapter 6, Conclusions and Future Work :

In this chapter, we present the final conclusions of the thesis, discussing the problems
encountered during its development and highlighting the contributions made to the
literature in all the works collected in this document. Then, we enumerate some
tasks that due to their complexity and lack of time (and budget) have been left for
the future.

• Appendices:

– Appendix I: Estimation of the backward flow.

The temporal method exposed in chapter 3 requires backward flow for its
correct performance. In this appendix, we present algorithms for computing
the inverse optical flow in image sequences.

– Appendix II: Details of implementation of the ROF method.

Here, we present the pseudo-codes and a brief explanation of the parameters
of the implementation presented in chapter 4.

– Appendix III: Details of implementation of the RDPOF method.

In this appendix, we present several details and the parameters of the
discontinuity preserving strategies proposed in chapter 5.

– Appendix IV: Work flow for the RDPOF demo.

In this section, we explain the work flow and details of the demo associated
with the RDPOF demo. This is a demo that belongs to the IPOL journal.



Chapter 2

The Optical Flow Problem

This chapter describes the state-of-the-art concerning to the optical flow problem. We
review some of the most important methods in the literature and discuss successful
techniques used in recent years and which has been a source of inspiration for this thesis.
We also present the sequences and the datasets used in the different experiments, the
reproducibility research that has lead our work and the error metrics on which we rely to
quantitatively evaluate our solutions.

The optical flow is a vector field that puts in correspondence the pixels between two
images. Given a continuous image sequence, we represent the images as an application
I : (x, y, t) → I(x, y, t) where (x, y) is the spatial coordinate of the image and t is the
time. The motion vector is defined as w(x, y, t) = (u(x, y, t), v(x, y, t), 1)� and represents
the horizontal and vertical displacements, respectively.

If we want to find correspondences between the pixels, we need to assume that some
property of the image is invariant through the time. In this sense, the intensity of the
pixels is a value that indicates the amount of luminance reflected by the surface of the
objects. There are many models to represent different types of surfaces. One of the
simplest is the Lambertian model. On a Lambertian surface the apparent brightness is
the same for all view directions. A pixel belonging to this type of surface will maintain
the same intensity value in the complete sequence. This is known as brightness constancy
assumption. For this reason, if we assume that the surfaces of the objects are Lambertian,
we can represent this invariance as

I(x+ u, y + v, t+ 1)− I(x, y, t) = 0, (2.1)

where t and t + 1 are the present instant and its successive in the image sequence. This
is not always fulfilled in the real scenes where the luminance conditions can easily change
due to many circumstances.

The latter expression (2.1) is non-lineal but, if we assume that the image sequence

15
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varies smoothly in space and time, we can avoid this non-linearity by performing a first-
order Taylor expansion. Then, we obtain the well-known optic flow constraint (OFC)

Ixu+ Iyv + It = 0, (2.2)

where Ix, Iy are the first order derivatives in x and y. Another property that we will use
in this thesis is the assumption that the color does not vary in time.

The OFC is not enough to estimate uniquely the optical flow because is one equation
with two unknowns. This ambiguity is known as the aperture problem. In figure 2.1 is
shown, from left to right, a line at time instants t and t + 1, respectively. We can only
know the displacement of the normal component in the direction of the gradient of the
pixels of the line (red arrow). We can not be sure if that line has also shifted in the
direction of the component orthogonal to the direction of the gradient.

Figure 2.1: Example of the aperture problem.

The work of Horn and Schunck [Horn81] solves this issue by imposing an additional
constraint assuming smoothness in the flow over the whole image. This restriction is
known as smoothness (or regularization) term. The combination of both constancy and
smoothness assumptions into a single formulation gives us the energy functional

EHS(w) =

�

Ω

(Ixu+ Iyv + It)
2

� �� �
Constancy

dx+ α

�

Ω

�
|∇u|2 + |∇v|2

�
� �� �

Smoothness

dx. (2.3)

The solution is obtained directly by minimizing this energy. Based on the existing
mathematical theory if this energy meets a number of conditions the minimization process
will allow to reach the global minimum and ensure the uniqueness of the solution. The
parameter α determines the influence of the regularization in the functional. This was
one of the first variational methods proposed and it is one of the most cited works in the
optical flow literature.
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2.1 Challenges in Optical Flow Methods

Despite of more than thirty years of variational optical flow studies, there still exists
important questions and issues to solve. Some of these are the following:

• Occlusions: The occlusions problem arises when a portion of the image is visible
at one frame but not in its successive. The movement itself, either of the camera
or any of the objects, typically produces that part of the scene is hidden from
the view of the camera. The occlusions create discontinuities in the optical flow
which generates the violation of some of the restrictions imposed. The detection of
occlusions improves the estimation of optical flow at the edges of objects. We see
an example in figure 2.2.

Figure 2.2: Example of occlusion in an image. We observe many occlusions that hide the
cars of the scene due to the different lampposts, traffic lights and poles in the Rheinhafen
sequence.

• Preservation of motion contours: Flow boundaries are normally associated with
the contours of the objects in the scene. However, the converse is not true, since
adjacent objects, moving in the same direction, may belong to the same optical flow
region, with no motion discontinuities between them. The problem becomes more
challenging since it is difficult to differentiate between object contours and textures.
A simple mechanism for inducing the boundaries of the flow field from the objects
is not easy.

• Large motions: The presence of large displacements makes more difficult the
correlation between a pair of successive images and creates non-continuous motions
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Figure 2.3: Example of motion contours. We see in the image at the right a representation
of the flow edges of a moving car by using the IPOL color scheme.

in time. This affects how to model regularity conditions in order to create smooth
flow fields.

Figure 2.4: Example of a large displacement. The position of the car between the image
on the left and its consecutive on the right represents a large displacement.

• Velocity model: Natural objects follow physical motion models in realistic scenes.
Assumptions of inertial displacements, where velocity and acceleration determine
the trajectory of objects, should be considered to provide smooth coherence flow
fields in time.

• Temporal continuation: The optical flow can be incrementally computed from
previous estimates. It is not reasonable to start from scratch with every new frame.
This makes us think that the first optical flow should be computed in a different
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way than the rest of flows. This pose a problem of initialization and temporal
continuation.

• Redundancy: Normally, most of the information in the frames does not vary too
much in short period of times. Perhaps we should take advantage of the intrinsic
redundancy for creating better matching criteria.

By using the temporal dimension, we come across problems that are different from
the spatial dimension.

• Frame rate: The temporal resolution is given by the frame rate of the camera.
This is completely different to the spatial resolution, which is given by the size of
the images. The motion continuity depends on the speed of the objects. We use
figure 2.51 as example of the frame rate.

Figure 2.5: Frame rate example

We also find two more problems with the frame rate: On the one hand, frames can
be lost due to a poor camera performance; on the other hand, it is not assured that
frames are captured with a constant frame rate.

• Change of context: In large sequences, the optical flow method have to cope with
situations when the video changes completely from scene or a rapid rotation of the
camera.

1http://www.mediacollege.com/video/frame-rate
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• Matching criteria: The brightness constancy assumption is easily violated in
real sequences. In fact, it is quite difficult that the intensities remain constant
through a real sequences due to defects of the camera, imperfections of the lens,
dust in the air or other factors. Even a cloud in the sky can vary the luminance
in the scene. The optical flow methods usually incorporate techniques that correct
or attenuate this effects such as, robust penalization or pre-processing algorithms
before the calculation for reducing these type of problems. On the other hand, using
multi-channel schemes can associate the pixel information with various brightness
intensities. This helps when dealing with variations of the luminance.

2.2 Optical Flow Methods

In this section, we present some of the most important approaches in the optical flow
literature. Some of them have been a source of inspiration for the present thesis. We
comment their main contributions. For simplicity, we use the same notation being I1 and
I2 the input images defined in a continuous domain Ω : (x, y) → R, where x = (x, y) are
the coordinates of the pixels.

Horn-Schunck [Horn81]

The Horn and Schunck method uses the OFC equation (2.2) and a regularization term
that solves the aperture problem. Equation (2.3) shows the Horn and Schunck functional.
This energy model uses quadratic functionals in both terms. This assumes that the image
noise and the flow derivatives are expected to follow a Gaussian distribution. A direct
consequence of this kind of functionals is that the method is very sensitive to the presence
of noise and the computed flow fields are very smooth.

Since this proposal, many approaches have arisen inspired by their ideas in the form
of new regularization terms like Nagel-Enkelmann [Nagel86], Alvarez et al. [Alvarez99],
Uras et al. [Uras88], Schnörr [Schnörr94], Weickert [Weickert97, Weickert98] or the
inclusion of more invariants in the data term like in Brox et al. [Brox04].

Lucas-Kanade [Lucas81]

Lucas-Kanade is one of the most representatives approaches that belongs to the local
methods. This type of optical flow methods use the information obtained from the
neighborhood around a pixel to estimate its motion. Lucas-Kanade calculates the
displacement by minimizing the optical flow equation around a window centered on a
pixel and assuming that the motion is constant in this neighborhood.
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E(u, v) =
�

(x,y)∈N
W 2(x, y) (Ixu+ Iyv + It)

2 , (2.4)

where W (x, y) is the windows centered on the pixel (x, y) and N is the neighborhood.

One of the biggest drawback of this type of methods is that it is only possible to detect
the movement in those areas where there are variations in the image. In homogeneous
zones where there may be movement this one is not detectable. Therefore, the fields
of displacement are not dense. Some authors have used more functions than pixel
intensities to prevent the problem from being poorly conditioned, such as Mitiche et
al. [Mitiche87], Wohn et al. [Wohn83]. Others have used differential operators such as
Tretiak-Pastor [Tretiak84] or Campani-Verri [Campani90].

Nagel-Enkelmann [Nagel86]

The energy model proposed by Nagel-Enkelmann was a great contribution in the field
of optical flow. Their model is similar to Horn-Schunck but it includes an anisotropic
smoothing term. This term varies the direction of diffusion according to the gradient of
the image. In regions where the gradient is small it acts isotropically and in those where
the gradient is high the diffusion is anisotropic along the edges.

In [Nagel86], the method uses only two frames but, some years later, it was created
a new spatio-temporal approach of this model in [Nagel90a]. The following functional
describes the spatial version of this method.

E(w) =

�

Ω

(I1(x)− I2(x+w))2 dx+ α

�

Ω

tr(∇w�D∇w)dx, (2.5)

The diffusion operator (D) proposed by Nagel and Enkelmann [Nagel86] preserves
discontinuities of the images in the flow field. This is a continuous diffusion operator that
allows for anisotropic diffusion along the edges and isotropic smoothing in homogeneous
regions. This operator is based on a projection matrix in the orthogonal direction to the
gradient of the image,

D(∇I) =
∇I⊥∇I⊥T + λ2Id

�∇I�2 + 2λ2
,

with Id the identity matrix. λ determines the value of the gradient from which the
anisotropy is activated.

Since this operator depends on the gradient of the image, the main drawback is that
the motion discontinuities tend to proliferate, especially in textured regions. A similar
proposal was presented in Alvarez et al. [Alvarez00] using an scale-space strategy to obtain
a coarse-to-fine scheme that benefits the optical flow dealing with large displacements.



22 Chapter 2. The Optical Flow Problem

Black-Anandan [Black96]

Robust functions provide methods that reduce the influence of failures in the input data.
In optical flow, many strategies use robust functions to remove outliers. In 1996, Black and
Anandan [Black96] proposed a method that robustified the OFC and the regularization.
Their idea was to reduce the problems due to violations in the brightness and spatial
smoothness assumptions caused by multiple motions.

E(u, v) =
�

m∈M

�
λDΨD (Ixu+ Iyv + It, η) + λS

��

z∈Z
ΨR (uz − un) +

�

z∈Z
ΨR (vz − vn, η)

��

(2.6)

with Ψ(s) = log(1 + 1
2

�
s
η

�2

) the Lorentzian norm. They assumed that ΨD = ΨR

in their experiments. η is a control parameter for the robust functions. M =
{m1,m2, ...,mn2 |∀w, 0 ≤ i(sw), j(sw) ≤ n− 1} defines a site of the image with size n× n
pixels. Z represents the north, south, east and west neighbors of M .

Brox et al. [Brox04]

The method of Brox et al. [Brox04] uses a data term composed of two invariants: constant
gradient and the brightness constancy assumption. Their smoothing was a robust version
of the one proposed by Horn-Schunck. This is based on differentiable L1 functionals
that creates piecewise-smooth flow fields. This keeps a better spatial coherence between
both unknowns of the optical flow, at the expense of creating rounded effects at flow
discontinuities. The functional reads as

E(w) =

�

Ω

Ψ
�
(I1(x)− I2(x+w))2 + γ (∇I1(x)−∇I2(x+w))2

�
dx

+ α

�

Ω

Ψ
�
|∇u|2 + |∇v|2

�
dx, (2.7)

with Ψ(s2) =
√
s2 + �2 and � := 0.001 a small constant. This method (both spatial and

spatio-temporal versions) is deeply studied in chapter 4.

Zach et al. [Zach07]

The method of Zach et al. [Zach07] minimizes a data term using the L1 norm and a
regularization term that uses the total variation of the flow. This proposal can be
considered a robust version of the classical Horn and Schunck method [Horn81] that



2.2. Optical Flow Methods 23

allows discontinuities in the flow field and is more robust against noise by changing the
quadratic factors. They linearize the data term as

ρ(u) = ∇I2(x+ u0) · (u− u0) + I2(x+ u0)− I1(x) = 0, (2.8)

with u0 a close approximation to u. Then, they minimize the functional by introducing
the following convex relaxation

Eθ(u,v) =

�

Ω

|∇u1|+ |∇u2|+
1

2θ
|u− v|2 + λ |ρ(v)| . (2.9)

Setting θ to a very small value forces the minimum of Eθ to occur when u and v are
nearly equal, reducing to the original energy E, defined in equation (3.1). The interest
of this relaxation is that Eθ can be minimized by alternatively fixing one of u or v, and
solving for the other variable.

1. Fixed v, solve

min
u

�

Ω

|∇u1|+ |∇u2|+
1

2θ
|u− v|2 . (2.10)

2. Fixed u, solve

min
v

�

Ω

1

2θ
|u− v|2 + λ |ρ(v)| . (2.11)

The first sub-problem fits the total variation denouncing model of Rudie-
Sher-Fate mi [Rudin92], which can be solved by Chamomile’s duality-based
algorithm [Chambolle04]. The second sub-problem does not depend on spatial derivatives
of v, so it can be solved point-wise by thresholding. In 2012, Ballester et al. [Ballester12]
proposed a variational method that joints the previous proposal with an occlusion detector
based on the divergence of the flow.

Optical Flow in Harmony [Zimmer11]

The work of Zimmer et al. [Zimmer11] presented the spatial and spatio-temporal
approaches of a method that combines diffusion tensors with robust functions in order to
avoid over segmentation in the flow field. A similar diffusion scheme is used for studying
the regularization at motion contours in chapter 5. This approach includes a data and a
regularization term, as follows:

E(w) =

�

Ω

(D (w) + α · R (∇w))dx. (2.12)
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Their data term uses constraint normalization, both brightness and gradient constancy
assumptions and HSV color representation. They also use separate robust penalization for
each color channels like in [Bruhn05a]. This allows robustness under outliers and varying
illumination conditions. The attachment term reads as

D (w) :=
3�

c=1

ΨD
�
wT J̃c

1w
�
+ γ

�
3�

c=1

ΨD

�
wT J̃c

2w
��

, (2.13)

where J̃ is the motion tensor that mixes both brightness and constancy assumptions like
in Brox et al. [Brox04] and the summatory is due to the use of the three HSV channels.

The smoothness term uses information from the motion tensor in the data term.
Their diffusion tensor resembles a robust variant of the Nagel-Enkelmann operator, with
decreasing functions to mitigate the diffusion across the boundaries of the objects. The
diffusion is performed unconditionally along the isocontours while in the gradient direction
it is modulated by a robust function.

R (∇w) := ΨR
�
u2
r1
+ v2r1

�
+ (u2

r2
+ v2r2), (2.14)

with Ψ(s2) = 1
λ2 log (1 + λ2s2) [Perona90] and (r1, r2) are eigenvalues of a structure tensor.

Sun-Roth-Black Weighted Median Filter [Sun10a]

This work formalizes median filtering as non-local term that integrates information
over large spatial neighborhood. They included this term, that combines median
filtering and L1 minimization [Li09], into a variational method that uses the
Charbonnier [Charbonnier97] function to robustified their functional. This strategy
adaptively preserves motion details.

Other Methods

There exist several strategies for dealing with large displacements, such as the use of
coarse-to-fine schemes [Bergen92, Alvarez00], descriptor matching, nearest neighbors (NN)
or approximate nearest neighbors (AAN), that are aimed at solving this problem. Other
approaches, such as graph-cuts or belief-propagation, rely on discrete optimization to find
global solutions.

Brox and Malik [Brox11a] proposed a descriptor matching into a variational method to
estimate large motions of small structures. This is a technique for estimating arbitrarily
large displacement. Their method do not improve the accuracy but, they support the
coarse-to-fine warping strategy in avoiding local minima. They split the non-convex
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optimization problem into a series of tractable subproblems. The method in [Lei09]
proposes a similar solution based on region matching and discrete optimization. The
source image is represented as a tree of regions. Coarse-to-fine scheme based on region
trees. The segmentation is carried out using mean-shift filtering. However, it searches in
a neighborhood around the current estimation and it may lose small structures motions.

Other strategy that has been recently used in optical flow is the PatchMatch
filter [Lu13]. This is an algorithm that quickly finds correspondences between small
patches in an image [Barnes09, Barnes10]. Recently, the authors of [Hu16] propose
to combine a coarse-to-fine scheme with this PatchMatch, in order to detect large
displacements at the same time that it enables small structures to be detected
at the finest scales through random search. This is used as sparse matching
in [Revaud15]. The procedure consists in three steps: an initial sparse matches (Deep
matching [Weinzaepfel13]); an interpolation algorithm and a variational method for the
optical flow. Their experiments showed that Deep Matching provides better results
compared to AAN in optical flow. The work presented in [Bailer15] uses a correspondence
field approach (Flow Fields) and an outliers filtering with the method in [Revaud15].

Belief propagation has a long tradition in stereoscopic vision [Sun03] and can be also
used in optical flow [Yedidia03]. It resembles the regularization process: Every region
receives the candidate flows of its neighbors, with their corresponding probabilities. This
information allows to update the probability of the candidates in each region.

2.3 Temporal Coherence in Optical Flow Methods

The seminal work of Horn and Schunck [Horn81] proposed a basic idea about temporal
coherence. They proposed to compute the flow field between the first two images and
then use this estimate as initial guess for the following frame. This is a simple predicting
technique, that introduces one of the desirable ideas for temporal coherence methods: the
temporal continuity [Black94] of the calculations that should result in less computations.
This idea is exploited later in some other works, where the flow is predicted and updated
according to the observed data.

This is the strategy followed with Kalman filtering approaches like in [Singh91]. In
this work the filter was used to incrementally compute the optical flow. The process is
divided in prediction and update phases: during the prediction phase, the previous flow is
extrapolated to an intermediate state vector and, in the update phase, the measurements
are mixed with the predicted state to create a final state. The method is based on a
correlation approach, so the solutions are expected to be sparse. The Kalman filter allows
to reduce the uncertainty and improve the flow field in subsequent predictions.

The most widely used strategy is a very simple formulation based on the regularization
of the temporal derivative. This has shown to be effective when the motion field is
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continuous, as has been originally demonstrated in [Weickert01]. Although this is a simple
idea, it is not realistic for actual optical flow applications.

The main handicap of using the temporal derivative is the implicit assumption that
the motion field must be continuous. This poses a sort of incongruence with respect to
the nonlinear attachment of the data, which is specially designed for large displacements.
The use of robust functions may mitigate the effect of temporal smoothing, since it avoids
taking into account the outliers from the continuous model. When the temporal derivative
is coupled with the spatial derivatives, it may also mitigate the effect of the spatial
regularization. Isolating the temporal term helps solving this problem, although it is only
effective in the presence of small motions.

Another method to propose a time formulation were Black and Anandan [Black91].
They proposed a temporal coherence constraint based on the assumption of constant
accelerations. The flow field was predicted from the averaged acceleration and the previous
estimation of the optical flow. In the energy model they introduced a new temporal term
based on the attachment of the flow to the estimated flow field that incorporates the
information of acceleration. Nagel [Nagel90b] also proposed a temporal method based on
an extension of his spatial diffusion operator as a 3D diffusion matrix.

More recently, some authors have generalized the use of regularization schemes based
on the flow temporal derivative. This was analyzed in [Weickert01] and later used in
other related approaches, e.g. [Brox04], [Bruhn05b] or [Papenberg06]. In these cases,
the temporal information is coupled with the spatial gradient in the form of a non-
quadratic 3D smoothing operator. Empirical results have demonstrated that the temporal
information should have a lower penalty weight than the spatial counterpart. This
is probably due, in part, to the fact that, while the spatial information is continuous
and the gradient can be numerically approximated with enough precision, the temporal
information is not in general continuous, specially in the presence of large displacements.
The use of temporal information has demonstrated to provide important improvements
with respect to the spatial formulation. As stated in [Weickert01] it is also more
robust against noise and produces smoother flow fields. However, it treats the temporal
information in the same way as the spatial one.

One of the firsts to propose a nonlinear temporal coherent model were Salgado and
Sánchez [Salgado06]. In that case, they proposed to separate the temporal constraint
from the spatial regularization and not to use the temporal derivative. They showed that
it has a stabilizing effect on the estimated errors through the sequence. They devised
the need to introduce the backward flow to improve the result in the whole sequence.
Here we show that it is not necessary to explicitly introduce the backward flow in the
energy model since it naturally appears during the minimization process. Additionally,
we propose a nonlinear temporal regularization scheme.

In general, the taxonomy of temporal optical flow methods can be divided in three
different groups: causal models, that compute the optical flow in an incremental way,
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using the information of past and present images, e.g. [Black91] or [Chin94]; anti-causal
models, that only use information from future and present frames; and non-causal models
(or acausal), that use past and future information to compute the optical flow at the
current frame, e.g. [Weickert01], [Brox04]. This taxonomy is the traditional classification
used in digital signal processing for the design of filters. The former is suitable for real-
time applications, like robot guidance, and the latter is useful for off-line processes, like
video compression. Apparently, anti-causal systems does not seem to be applicable for
the estimation of optical flow. It is reasonable that the non-causal models should provide
higher accuracies than the causal models, since more information is available. In this
sense, the new model that we propose in the present work is classified as a non-causal
model. In general, we may regard the non-causal systems as a generalization of temporal
coherence models.

Energy-based methods are among the most accurate methods in the literature. The
Middlebury database [Baker07b] holds a ranking on outstanding optical flow methods.

In Xu et al. [Xu10] was presented a balance function between the brightness
and gradient constancy terms, a mechanism to select flow candidates from multiple
displacements using the SIFT features detector in each scale, and a simple occlusion
handling technique. The use of SIFT detectors has also been proposed in other works,
e.g. [Brox10], for estimating the motion of small scale structure.

In the work by Sun et al. [Sun10a], they propose to use a modified version of the
median filtering during the optimization process. The median filtering is adapted to the
image discontinuities. This allows also to respect the motion of small scale structures at
the same time that the motion better fits the shape of the figures. A different approach
is the other work by Sun et al [Sun10b] . They propose a probabilistic model in where
the motion is separated in layers. These layers are ordered in depth and the occlusions
are determined reasoning on this ordering.

2.4 Multichannel Optical Flow Methods

Optical flow methods are usually based on grayscale images. In fact, some methods
convert the original color image into grayscale in order to obtain faster execution times and
to decrease the complexity of the algorithm. However, the grayscale values are susceptible
to slight changes in brightness, which often appear in real scenes.

This situation could be prevented by using color images due to the fact that
these ones associate the information of their pixels with various brightness intensities.
Even, the color information may avoid the use of additional constraints in the flow
calculation [Golland97, Ohta89] and contains more photometric information that can be
useful against shadows, shading and image specularities [Barron02, vdW04, Mileva07].
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Color images build the scenes as the matching of different features stored by multiple
channels of information. There exist several models depending of their characteristics and
number of channels. Probably, the most commonly known is the RGB, that uses three
channels for combining red, green and blue light components to reproduce a broad array
of colors. The grayscale images are very similar but they only use a single channel of
information for the luminance.

The YUV and HSV models store the image information in three channels as cylindrical-
coordinate representations. Both schemes decompose the information in two channels for
the chrominance and the brightness. Their difference is related to the color representation:
while the YUV system uses an orthogonal three dimensional space of the color plane, the
HSV model describes it as a vector in polar form. The three channel UCS color model
gives an uniform chromaticity space based on measurements of human color perception.
This measure is denoted by the Euclidean distance that corresponds linearly to the color
perception or changes in the intensity.

We can also find other alternatives like, for instance, the CMYK model that composes
the scene by mixing four channels of information (cyan, magenta, yellow and black) or
satellite images. This last model can be defined as a visual representation captured by
multiple electromagnetic spectrum channels of a sensor mounted on an artificial satellite.

During the years, various optical flow works have proposed the use of color
information in their models. In this sense, Ohta [Ohta89] presented a method that
calculates its solutions directly from an image pixel without imposing any other
assumption [Fennema79, Horn81]. Therefore, the model derived multiple conditions
from the multi-channel information of a single image point. Later, Markandey and
Flinchbaugh [Markandey90] proposed a numerical scheme that uses the visible and the
infra-red spectrum from a multi-spectral image.

Seven years later, Golland and Bruckstein [Golland97] presented two methods that
increase the robustness of their energy models based on the color information. The
first one assumes brightness conservation under motion considering a multi-channel
image as a set of three different grayscale images. The second introduced the idea
of color conservation under the premise that its components (not only the luminance)
are conserved. Their experiments confirmed that, in regions with strong gradient, good
solutions can be obtained, whereas in regions of uniform chrominance these methods failed.
This work used RGB, normalized RGB and HSV images to evaluate their proposals.

In 2001, Barron and Klette [Barron01] reviewed the previous proposals [Ohta89,
Golland97] and developed multi-channel extensions of the models of Horn and
Schunck [Horn81] and Lucas and Kanade [Lucas81] methods. Their experiments
concluded that the color is clearly beneficial in the computation of optical flow. Besides,
they observed that a multi-channel scheme does not increase excessively the running times.
In [Barron02], the authors reasserted their conclusions but determining, additionally, that
the saturation channel worsen the motion fields.



2.5. Determining Motion Discontinuities 29

Andrews and Lowell [Andrews03] compared the previous results of Horn and
Schunck [Horn81] and Lukas and Kanade [Lucas81] with YUV and UCS color spaces.
They also developed new implementations of [Golland97, Barron02] for achieving lower
computational costs.

Weijer and Grevers [vdW04] based their proposal on the dichromatic reflection model
of Schafer [Shafer85] for deriving photometric invariances against shadows, shading and
specularities. Furthermore, their model incorporated a reliability measure for dealing with
the instabilities that appear on the flow because of the photometric invariants. Their idea
was to achieve robust motion fields, even under severe luminance conditions and noisy
images, from the photometric information that the color provides.

In 2007, Mileva et al. [Mileva07] showed that a variational approaches improve their
solutions against realistic luminance conditions by replacing the classical brightness
assumption with photometric invariants. A few years later, Zimmer et al. [Zimmer11]
proposed a robust data term against outliers and variable luminance. Among other
features, it uses the HSV color space with separate robustification for each channel. This
idea is interesting because the HSV representation offers distinct levels of photometric
invariance, so we can use the most confident channel in our estimation. In 2010, Bin et
al [Bin10] presented an approach that computes their solutions by extending the typical
optical flow constraints. Their intention was to deal with movements like rotations,
deformation objects motion and light variations.

Álvarez et al. [Álvarez08] contributed in the use of multi-channel images in optical flow.
This work studied how to combine different channels of satellite images like, infra-red or
intensity, to follow the evolution of the clouds.

A comparison of motion fields obtained with grayscale and color optical flow models is
given in chapter 4. This leads us to extend our contributions into multi-channel schemes
to improve our results.

2.5 Determining Motion Discontinuities

One of the main problems in variational optical flow methods is the preservation of motion
boundaries that are normally associated with the contours of the objects in the scene.
However, when several overlapping objects move in the same direction, with the same
magnitude, they belong to the same optical flow region, with no motion discontinuities
between them. This is an important challenge because a poor discontinuities detection
means that our optical flow does not fit correctly with the reality of the scene. This
is quite problematic if our optical flow will be used in applications that require a good
definition of the scene like, for instance, 3D-reconstruction.

Since the seminal work of Horn and Schunck [Horn81], many optical flow approaches
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have proposed different strategies for dealing with the problem of discontinuities. In
1986, Nagel and Enkelmann [Nagel86] proposed that the regularization process should be
steered by a diffusion tensor that depends on the image. Proesmans et al. [Proesmans94]
introduced the anisotropic scheme of Perona and Malik [Perona90], based on decreasing
functions that inhibit the diffusion at high image gradients, in the estimation of optical
flow. They also introduced a symmetric coherence model that helps to detect the
discontinuities of the flow.

On the other hand, Rudin et al. [Rudin92] proposed to minimize the Total Variation
(TV) of an image with an attachment to the original image. This leads to a diffusion
equation that reduces the image noise, yielding sharp edges. This TV scheme was
introduced in optical flow by Cohen [Cohen93]. Black and Anandan [Black93, Black96]
mixed the previous ideas by establishing the relation between robust statistics and
anisotropic diffusion. They also extended the use of robust functions to the whole energy
terms, turning their method more robust against outliers. They showed that this strategy
deals with image noise at the same time that it preserves flow edges.

Some improvements on the Perona and Malik model are given in Black et al. [Black98].
This establishes the relation between this kind of anisotropic diffusion processes, robust
statistics and the minimization of energy functionals. It generalizes the use of robust
functions in order to deal with outliers. A review on different strategies for diffusion
filtering in image regularization and restoration can be seen in [Weickert97, Weickert98].
The author introduces the theory underlying the use of diffusion tensors in image filtering,
e.g., the structure tensor [Bigun87]. Another source of inspiration for discontinuity
preserving in optical flow is related with the bilateral filtering, introduced by Tomasi
and Manduchi [Tomasi98]. In this case, the idea is to regularize an image using the
information of the pixels that are near the actual position and have similar intensities or
colors.

The method by Álvarez et al. [Alvarez99] introduces a decreasing function to inhibit
the smoothing at image contours. Nevertheless, they did not use any robust function in
the data term, so it is more sensitive to image noise. Aubert et al. [Aubert99] explicitly
propose to use an L1 functional in the data term and any justification function for
smoothing. Alvarez et al. [Alvarez00] uses the Nagel-Enkelmann diffusion tensor, together
with a nonlinear brightness formulation and a linear scale-space for the estimation of large
displacements.

The generalization in the use of differentiable L1 functions was proposed in [Brox04,
Bruhn05b] and subsequent works. In fact, this has already been proposed before, e.g.,
in [Aubert99], but the former introduced a term based on the attachment of the image
gradients, which is invariant to constant brightness changes. On the other hand, non-
differentiable L1 functions have also been used in Zach et al. [Zach07] that relies on a
dual formulation, which yields a very efficient numerical scheme. The work in [Wedel09b]
increases the robustness to illumination changes using the textural part of the images,
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somehow similar to the gradient term of Brox et al. [Brox04]. Although the former
two approaches are similar, they provide different results, as can be seen in the on-line
works [Sánchez13b] and [Sánchez13a], respectively.

Some examples in the use of diffusion tensors with robust functions are given
in [Zimmer09, Zimmer11]. In this case, the authors introduce a motion tensor in the
data term and a regularization tensor in the smoothness term, which are designed in a
similar way, taking into account not only the variation of image intensities but also the
variation of the image gradients. The latter tensor uses a quadratic penalization for the
diffusion along the contours, while a Perona-Malik diffusivity is used for mitigating the
diffusion across flow edges.

TV-L1 methods have several drawbacks: (i) they create rounded shapes near the
borders or corners of the objects; (ii) typically, the edges are dislocated and usually do not
coincide with the image contours; (iii) they produce staircase effects, yielding piecewise
but planar motion regions. The first two inconveniences are due to the fact that the
regularization process does not depend on the image information but on the flow field.
In order to avoid these, some methods have introduced decreasing functions in order to
stop the diffusion at image boundaries. This idea originally comes from [Alvarez99] and
has recently been used in several methods, such as in [Wedel09a, Xu10]. It has also been
used in Werlberger et al. [Werlberger09], where a diffusion tensor steers the regularization
in the direction of the image gradient and its orthogonal direction. It incorporates a
decreasing function in the direction of the gradient, so it inhibits the smoothing across
edges.

The most important problem of these inhomogeneous diffusion schemes is that they
easily produce instabilities in the computed flow fields. Depending on the value of
the parameters, the method may become ill-posed if the smoothing term is canceled.
Most of the aforementioned strategies assign an empirical value to these parameters.
Unfortunately, the parameters that better preserve discontinuities are those that risk to
produce instabilities.

One way to avoid the ill-posed problem is to introduce a small constant for ensuring a
minimum isotropic behavior, like in Monzón et al. [Monzón14a] or Ayvaci et al. [Ayvaci12].
However, the value of this constant depends on the regularization factor, so that if this is
large, then discontinuities will not be respected. In chapter 5, we show that this strategy
outperforms the basic approach.

The idea of bilateral filtering has been introduced in optical flow by and Yoon and
Kweon [Yoon06] and Xiao et al. [Xiao06]. In this case, the authors propose to regularize
the flow field depending on the proximity and similarity of the intensities and flow
values. In fact, this has to be seen as an extended trilinear filtering. They also used
the information of occlusions to manipulate the range of the filters. Bilateral filtering has
been used more recently, in combination with a TV-L1 approach, in [Werlberger10].
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There exist other strategies for improving the definition of discontinuities. For
instance, some authors propose to compute the optical flow at the same time that
the objects in the scene are segmented. In this way, the segmentation provides more
information about the edges. Some examples in this line are [Mémin98, Sun10b, Sun12,
Unger12]. In [Sun10a], the authors combine median filtering and bilateral filtering, in
a post-processing step, to improve the flow field at edges. Other approaches mix TV-
L1 strategies with descriptor matching, such as [Brox11b, Xu10, Palomares16], which
estimate the motion of some sparse features that are later introduced in the optimization
process. This allows to deal with small moving objects. Moreover, since some features
are typically associated with edges, this may help to define discontinuities. The methods
based on segmentation, post-filtering or feature based matching, are difficult to analyze,
especially concerning the problem of discontinuity preserving. These usually mix different
aspects that affect the definition of flow boundaries, from standard robust regularization
approaches to other ad-hoc processes.

The problem of discontinuities has not been solved yet. Introducing a simple
mechanism for inducing the boundaries of the flow field from the objects is not easy.
Moreover, the problem becomes more challenging since it is difficult to differentiate
between object contours and textures, if we rely on the information of the image gradients.
In this regard, this is one of the main objectives that we want to tackle in this dissertation.

2.6 Datasets

Typically, a research process comprises several states like: the rise of an idea (or
hypotheses), a review of the most competitive methods in the literature that fits with
your research interest, developing your hypotheses and, once your method is stable, carry
out a deeply evaluation of the advantages and disadvantages of your results for obtaining
conclusions.

In the field of optical flow, this last step implied collecting images that contain the
challenges that your method tries to solve. In this sense, we need a complete dataset to
fulfill these challenges. These ones usually include a ground truth or true flow (both names
are correct) that represents exactly the motion present between a pair of consecutive
images. This true flow helps to measure how close is your solution respect to the best
possible flow field using different error measures such as the Average Angular Error or
the Average End-point Error (see section 2.8).

Yosemite with Clouds

The original Yosemite2 sequence was developed by Lynn Quam. It contains fifteen

2ftp://ftp.csd.uwo.ca/pub/vision
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pixels with a size of 316 × 252, that represents a synthetic scene of the national park of
Yosemite (Sierra Nevada, California). The camera simulates an aerial navigation that
enters into the park. There exist two versions of this sequence: Yosemite with Clouds and
Yosemite. The difference is that, in the second, the clouds have been artificially removed.

In some of our experiments, we use the complete version, where the clouds motion
presents an horizontal displacement of two pixels per frame and some lighting variations
appear in these clouds. The sequence mixes translational and divergent motions. The
first and last columns of figure 2.6 depict the sixth and seventh frames of both versions
of this sequence, respectively. In the center, we show the corresponding true flows that
represents the displacement using the IPOL color scheme.

Figure 2.6: Frames 6 and 7 of Yosemite and Yosemite with Clouds sequences at the first
and second rows, respectively. The center column shows their corresponding true flows.
The motion is represented with the color scheme showed in the first row.

The Middlebury benchmark database

Probably, this is the most widely used dataset in optical flow studies during the
last years. The Middlebury benchmark database3 [Baker07b] offers several synthetic and
realistic sequences for testing the methods.

Its synthetic scenes have been generated using computer graphics that creates several
challenges like, fine textures, occlusions or large displacement. Each sequence provides a

3http://vision.middlebury.edu/flow/
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true flow for the frame 10 to 11. Nowadays, this dataset is still one of the main challenges
that an optical flow method must overcome to achieve the interest of the scientific
community. Figure 2.7 shows some typical examples of this dataset. In particular, from
top to bottom, we see the sequences of RubberWhale, Grove2, Urban2 and Hydrangea.
The center row shows the ground of each sequence.

Figure 2.7: Middlebury benchmark dataset. From top to bottom, the first and third
columns show consecutive images from the sequences of RubberWhale, Grove2, Urban2
and Hydrangea, respectively. The central column depicts the corresponding true flows for
every pair of images. The motion is represented with the color scheme showed in the first
row.
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MPI-Sintel dataset

Sintel, is a Dutch short-film premiered on September 27, 2010 at the Netherlands Film
Festival that belongs to the adventure and fantasy genre. It was directed by Colin Levy
and is the third short film produced by the Blender Foundation.

In 2012, some sequences of this film were used to create the MPI-Sintel Flow
dataset4 [Butler12]. It is a complex benchmark database to train and evaluate optical
flow methods. As in the Middlebury dataset, Sintel provides true flows for every pair of
images of each sequence to construct a scientific dataset. It allows that our algorithms
face challenges like long-range motion, motion blur, defocus blur, atmospheric effects,
multi-frame analysis and non-rigid motion. Generally, each sequence has approximately
20 frames. Some of them can be sen in figure 2.8. In chapters 4 and 5, we use these
sequences for testing the methods with more complex scenes. The proposals presented
in chapter 5 has been evaluated in the official web of Sintel. Figure 2.8 depicts some
frames (and the corresponding ground truth) for the test sequences of Alley 1, Ambush 4,
Bamboo 2, Bandage 1 and Shaman 2.

Geometric sequences

Next, figure 2.9 shows several frames from a dataset developed by the AIRS group.
The sequences are composed with geometric figures, such as rectangles, squares or stars,
translating over a textured background. The motion of the figures is uniform with a
displacement of 15 pixels per frame, while the background remains stationary except in
the small sequence depicted at the first row. In this case, the background moves 3 pixels
in the same direction. The most important features are its translational motion and a
large displacement. These are simple sequences with a strong gradient variations at the
objects boundaries.

Real-World sequences

In order to test several of our proposals with real-world data, we use the sequences
of Karl-Wilhelm-strasse, Rheinhafen, Ettlinger-Tor, MovingArm, ULPGC-Car and Taxi.
We show several frames of each sequence in figure 2.10.

The scene of Karl-Wilhelm-strapless belongs to a dataset with several traffic scenes
created by Nagel5 that consists in 1500 gray value frames with a size of 768 × 576. In
this sequence, some vehicles are moving in different directions and speed, and a tram. In
the background, there are other cars moving slowly and changing of direction. There are
many perturbations in this sequence, such as noise or changes in the illumination that
have influence in the optical flow estimation.

4http://sintel.is.tue.mpg.de/
5http://i21www.ira.uka.de/image sequences
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Figure 2.8: MPI-Sintel Flow dataset. From top to bottom, the first and third columns
show consecutive images from the sequences of Alley 1, Ambush 4, Bamboo 2, Bandage 1
and Shaman 2, respectively. The central column depicts the corresponding true flows for
every pair of images. The motion is represented with the color scheme showed in the first
row.

Rheinhafen also belongs to the previous traffic scenes created by Nagel6. It is a
grayscale sequence composed by 1000 frames with a size of 688× 565 pixels. The scene is
made with a camera located at a certain height capturing the road traffic that circulates
in one way. Several vehicles are seen circulating in different directions and speeds. Next
to the camera you will catch a van that circulates at high speed. In the background, you
see several vehicles that move at a slower speed and that are arranged to change direction.
In this sequence the effect of interlacing is clearly perceived in the contours of the van
near the chamber.

The sequence of Ettlinger-Tor is traffic scene of grayscale images (512 × 512) that
shows an intersection recorded at the Ettlinger-Tor in Karlene by a stationary camera.

6http://i21www.ira.uka.de/image sequences
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Figure 2.9: Several sequences of the Geometric dataset developed by the AIRS group.
The motion is represented with the color scheme showed in the first row.

Finally, the sequences of Moving Arm, GULP-Car and Taxi have been recorded by
the AIRS group. In the first one, a member of this group appears displacing radially his
right arm. It is a sequence with several challenges like noise and undesired motion of the
camera. The second scene shows a car leaving the computer engineering building of the
GULP. In the third sequence we observe a moving taxi in front of the previous building.
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Figure 2.10: From top to bottom: Several frames from the realistic sequences of Karl-
Wilhelm-strasse, Rheinhafen, Ettlinger-Tor, MovingArm, ULPGC-Car and Taxi.
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2.7 Reproducible Research

The articles of Sánchez et al.7 [Sánchez13b] and Monzón et al.8 [Monzón16b] were
published in the Image Processing On Line (IPOL) journal9, which logo can be seen
in figure 2.11. This is a scientific journal on mathematical signal processing algorithms
(image, video, audio, 3D) which accentuates on the importance of reproducibility.

Figure 2.11: IPOL logo. Journal for reproducible research.

The objectives of its editorial committee differ from other classic journals: each IPOL
article must present a complete description of its mathematical details together with a
precise explanation of its methods with pseudo-codes. These ones must describe exactly
the implementation that achieves the results depicted in the paper. The idea is that
readers with sufficient skills could implement their own version (in any programming
language or environment) directly from the IPOL article. Furthermore, submitting an
IPOL paper means to upload the manuscript and the original source codes. Here, the
role of referees includes a depth revision of the quality of the publication and that the
pseudo-codes match exactly with the attached program, before the editor decision. The
publication process is divided in two stages: first, the reviewers evaluate the scientific
interest, the experiments and the reproducibility of the work; secondly, if this evaluation
is positive, the authors submit the original code and the on-line demo is published.

This mechanism confronts the traditional publishing system where the method and
some details about the implementation are usually described but, it is not always possible
to confirm accurately the published results. Normally, we need to download the source
code (if its available) and make it work in our computers to reproduce the results. This is
not always immediate because the compilation of a code, its installation and even its use
is not necessarily easy. In fact, it is not strange that several problems may appear during
the installation process before we can execute our first test. In this sense, the work flow
of an IPOL demo changes the traditional steps allowing to test the method even before
considering if a researcher is going to invest more time in study a research work in depth.
Regarding to this, the demo only executes the algorithms provided by the authors. In this
sense, each IPOL demo downloads and compiles by itself the source code. This ensures
that the users can reproduce exactly the results claimed by the authors.

7http://www.ipol.im/pub/art/2013/21/
8http://www.ipol.im/pub/art/2016/172/
9http://www.ipol.im/
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The demo can also archive the experiments made with freely uploaded input data.
This facilitates that distant researchers can collaborate remotely and that external users
experiment with the demo using their own images. In this regard, a method can extend its
original purposes beyond the initial ideas of its authors. Besides, the number experiments
made with the archive are stored since its first use. Thus, the amount of archived data
reveals if the research community uses (or not) the proposals of an IPOL work beyond of
the citations of the paper. Since it was started in 2010 and according the usage statistics
collected along these years, IPOL has about 250 unique visitors per day.

The IPOL intention is to create an environment for the evaluation, preservation and
diffusion of the image science due to its reproducible research, executable algorithms
and experiment sharing. All IPOL software must be published with an open source
license for normal verification and reuse of the code by researchers. This is mandatory
for reproducible research. In the fourth appendix of this document, we present a detailed
explanation of the work flow and the possibilities of the IPOL work, Monzón et al. More
details about the IPOL project can be seen in the research works [Limare11, Colom15]
and, extensively, in the thesis of Nicolas Limare [Limare12].

2.8 Error Measures

We evaluate the quality of the methods described in this dissertation by using standard
error metrics. These ones allow to quantify the error between the perfect solutions (true
flow) and our estimations.

In [Baker07a] was exposed a dataset that updates the reference sequences of their time
and four error metrics. They are known as Average Angular Error (AAE), eq. (2.15),
End-point error (EPE), eq. (2.16), Interpolation error and Normalized Interpolation
error. These last two measure the precision of the interpolation in not dense solutions.
We do not use them because our methods produce dense optical flows and, actually, the
metrics most commonly used in the optical flow literature are the AAE and the EPE;
thus, we use them in our work. The AAE is found by normalizing the vectors, taking the
dot product, and calculating the inverse cosine of their dot product while the EPE is the
euclidean distance between our solution and the true flow.
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where N is the number of pixels in the image and wi y wtrueF low i are the corresponding
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values of the displacement field in pixel i from the estimation and the true flow,
respectively.





Chapter 3

Nonlinear Temporal Coherence in
Optical Flow Methods

The seminal work of Horn and Schunck [Horn81] proposed a very basic idea on temporal
coherence. They compute the flow field between the first two images and use this
estimation as initial guess for the following frame. This is a simple predicting technique
that introduces the idea of temporal continuity [Black94] of the calculations that should
result in less computations. This idea is exploited later in several works [Weickert01,
Brox04, Bruhn05b, Papenberg06] where the flow is predicted in the following time instant
and updated with the observed data.

The most widely accepted case is a very simple formulation based on the regularization
of the temporal derivative. This has shown to be effective when the motion field is
continuous, as has been originally demonstrated in [Weickert01]. Although this is a simple
idea, it is not realistic for many optical flow applications.

The main handicap of using the temporal derivative is the implicit assumption that
the motion field must be continuous. This poses a sort of incongruency with respect to
the nonlinear attachment of the data, which is specially designed for large displacements.
When the temporal derivative is coupled with the spatial derivatives, it may also mitigate
the effect of the spatial regularization.

In this chapter, we focus on improving the management of the temporal information
in optical flow methods. The presence of large motions in natural scenes is very common,
so it is necessary to investigate on more realistic temporal models. We propose a new
way to handle the temporal information. In our opinion, this is more congruent than
previous approaches. We claim that the separation between the spatial and temporal
regularizations is necessary. The temporal formulations must also consider the non
continuous nature of optical flow.

We propose several contributions: on the one hand, we introduce a nonlinear flow

43
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constancy assumption (FCA) which is similar in spirit to the nonlinear data assumption;
on the other hand, we propose a novel nonlinear flow regularization scheme (FRS) that
can be seen as the counterpart of the temporal derivative for non continuous motions.
We use a robust anisotropic diffusion operator based on the Nagel-Enkelmann operator.
This operator allows respecting the object boundaries during the diffusion process, at the
same time that it avoids oversegmentation in texture regions. This is similar to other
approaches like, for instance, the ones presented in [Werlberger09] or [Zimmer11].

The former contribution is motivated by the results presented in [Salgado06], where
a similar method was proposed based on the Nagel-Enkelmann diffusion operator. The
numerical results showed that the use of a nonlinear temporal formulation of the flow field
provided very good results. That was the first time that such a nonlinear flow assumption
was introduced.

The second contribution introduces a non-continuous flow regularization scheme. In
this case, we propose a new scheme, at the PDE level, which is similar in spirit to the
temporal laplacian. In these two new assumptions, we devise the need to use the backward
flow in order to find appropriate correspondences in previous frames. This is key to
tracking the right motion of the objects in the sequence.

We estimate the backward correspondences once we have previously calculated the
optical flow. In appendix I, we present four algorithms that use directly the forward
optical flow and the image intensities for computing the backward flow. In our temporal
method, we use the second algorithm due to its good results.

In order to recover large displacements, we implement a coarse-to-fine strategy. The
optical flow is initialized at the coarsest scale and incrementally refined in the following
scales. This is a common approach to deal with large displacements in variational optical
flow methods. Another approach, which is very similar in spirit to this technique, is the
use of a linear scale-space focusing strategy, as presented in [Alvarez00].

In the experiments, we observe that the temporal dimension allow finding continuous
flow fields in time and the noise is considerably reduced with respect to the solution given
by the spatial method.

The chapter is organized as follows: In section 3.1, we examine the new energy model
and explain the novel temporal coherence strategy; the energy model is minimized in
section 3.1.1 and some numerical details are explained. The new nonlinear flow smoothing
scheme is joined to the resulting PDE in section 3.1.1. In the experimental results, we test
our method using the Middlebury benchmark datasets, a geometric sequence and with
realistic scenes. We also present the results provided by the method compared with other
strategies presented in Middlebury. Finally, section 3.4 shows the conclusions of our work.
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3.1 Energy Functional

Let Ij(x) be a set of images, with j = 1, .., N , N the number of frames and x = (x, y).
The optical flows are defined as {wi(x)}, with i = 1, .., N − 1. In the method, the energy
functional is decomposed in two parts,

E ({wi}) = ES ({wi}) + ET ({wi}) , (3.1)

where ES, is the spatial energy model and ET stands for the energy model corresponding
to the temporal coherence strategy.

The spatial model, ES, includes an attachment term based on brightness and gradient
constancy assumptions and an anisotropic smoothness term. ES accounts for the
estimation of motion fields between two consecutive frames and reads as follows:

ES =

� N−1�

i=1

Ψ
�
(Ii(x)− Ii+1(x+wi(x)))

2�dx

+γ

� N−1�

i=1

Ψ
�
�∇Ii(x)−∇Ii+1(x+wi(x))�2

�
dx

+α

� N−1�

i=1

Ψ (N (∇Ii,∇wi))dx, (3.2)

with Ψ (s2) =
√
s2 + �2 (� a prefixed small constant, e.g. 0.01). We use the

anisotropic diffusion operator, N (∇Ii,∇wi) = trace
�
∇wT

i (x)D(∇Ii)∇wi(x)
�
, proposed

in [Nagel86]. It combines the benefits of a TV-L1 approach with the anisotropic behavior
of this operator. D(.) is defined as:

D(∇I) =
∇I⊥∇I⊥T + λ2Id

�∇I�2 + 2λ2
,

with Id the identity matrix. λ determines the gradient value from which the anisotropy
is activated.

Introducing the Flow Constancy Assumption (FCA)

Using the temporal derivative for estimating the optical flow means that the motion of
the objects need to be continuous in time or, equivalently, that the objects move slowly.
Following the work [Salgado06], we avoid calculating temporal derivatives. Given that an
object in the sequence may undergo large displacements we have to deal with information
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that is warped through the flows. In fact, given a flowwi(x), at instant i, its corresponding
flow at the following time instant is wi+1(x+wi(x)). If wi(x) is big then the temporal
derivative is no longer valid, but the previous correspondence still holds. The next step is
to pose any smoothness or attachment constraint that could relate these correspondences.
One direct is what we call the flow constancy assumption, FCA, that is:

wi(x) = wi+1(x+wi(x)).

This formulation is similar in spirit to the traditional Lambertian assumption for large
displacements in the image intensities. As we could expect, this type of assumptions
should favor a constancy of the flow so it is well suited for detecting translational
displacements with constant velocities. This lead us to propose a new kind of flow
attachment terms in the energy model:

Φ
�
�wi(x)−wi+1(x+wi(x))�2

�
, (3.3)

with Φ(.) any of the traditional quadratic or robust error function in the literature.

On the other hand, we devise in our energy functional (eq. (3.1)) a temporal coherence
model, ET , based on a nonlinear formulation. This temporal model favors the continuity
of the flow fields in time.

ET = β

� N−2�

i=1

Φ
�
�wi(x)−wi+1(x+wi(x))�2

�
dx, (3.4)

with Φ (s2) = e−�∇I�κ√s2 + �2, with κ = 0.8 and � = 0.01. This function has been used
in recent spatial methods, like in [Xu10], [Wedel09a], to make coincident the contours of
the motion field with the contours of the objects. In our case, it is useful to penalize the
temporal attachment at the image discontinuities, in order to reduce the effect of occlusion
propagation in time. The behavior of exponential functions in the regularization term will
be deeply described in chapter 5 but in a spatial model.

This temporal energy (3.4) can be regarded as an attachment of the flow field
in time. Its formulation is congruent with the brightness and gradient constancy
terms. In the presence of large displacements, this temporal model is coherent with
the spatial formulation and relates values at the correct positions. Note that when object
displacements are very small, this term can be seen as an approximation of a continuous
temporal regularization scheme based on the flow temporal derivative, which has been
previously used in several works (e.g., [Weickert01]). On the contrary, the temporal
derivative is useless in the presence of large displacements.

Predictably, the attachment of the flow will benefit the detection of constant motions
in the sequence. This is not the most general displacements that may appear in a sequence,
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but thanks to the robust function, it may also approximate small inertial motions. Later,
in section 3.1.1 we will see that this term approximates a nonlinear smoothing scheme.
Also, in section 3.1.1 we introduce a pure nonlinear temporal smoothing approach, which
is similar to the minimization of the temporal derivative. That kind of terms is more
suitable for general inertial motions.

3.1.1 Minimizing the Energy Functional

In this section, we derive the Euler-Lagrange of equation (3.1) into a nonlinear
regularization scheme which has the same effect as the Laplacian for the continuous case.

The Euler-Lagrange equations for the spatial energy model (3.2) is:

0 = Ψ� �(Ii(x)− Ii+1(x+wi(x)))
2�

· (Ii(x)− Ii+1(x+wi(x))) ·∇Ii+1(x+wi(x))

+ γ Ψ� ��∇Ii(x)−∇Ii+1(x+wi(x))�2
�

· (∇Ii(x)−∇Ii+1(x+wi(x))) · HIi+1(x+wi(x))

+ α div (Ψ� (N (∇Ii,∇wi)) ·D (∇Ii) ·∇wi) , (3.5)

where HIi+1 is the Hessian matrix.

In order to derive (wi(x)−wi+1(x+wi(x))) with respect to wi+1(x), it is necessary
to realize a change of variables, z = x + wi−1(x). This change allows us to remove the
nonlinearity inside the flow. The backward flow, w∗

i−1, appears due to this change of
variables. These ideas were drawn in [Salgado06] but, in that case, the backward flow was
directly introduced in the energy model. We compute the backward flow directly from
the forward flow, avoiding the need to introduce a symmetric model.

The minimization of the temporal coherence term is not evident because of the
nonlinearity in the flow functions. We show that in this minimization the backward
flow naturally appears, which is an interesting issue in the temporal diffusion process.
This enables a temporal smoothing that transmits the information between the past and
future estimates.

Starting with the temporal energy term

J({wi}) =
� N−2�

i=1

Φ
�
�wi(x)−wi+1(x+wi(x))�2

�
dx, (3.6)

with wi(x) = (ui(x), vi(x))
T , the problem arises due to the composition of wi+1 with wi.

Before the minimization, it is necessary to make a change of variables in the integral to
deal with this nonlinearity.
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Expanding the sum in (3.6), the temporal energy functional reads as

J({wi}) =
�

Φ
�
�w1(x)−w2(x+w1(x))�2

�
dx

+

�
Φ
�
�w2(x)−w3(x+w2(x))�2

�
dx

+ . . .

+

�
Φ
�
�wN−2(x)−wN−1(x+wN−2(x))�2

�
dx. (3.7)

We observe that every flow function appears in two terms, except for the first and last
flow fields, w1 and wN−1. First analyzing the interior terms, with i = 2, . . . , N − 2, we
have two components for each wi,

J(�wi�) =J(�wi�)1 + J(�wi�)2
=

�
Φ
�
�wi−1(x)−wi(x+wi−1(x))�2

�
dx

+

�
Φ
�
�wi(x)−wi+1(x+wi(x))�2

�
dx. (3.8)

The problem with the first component, J({wi})1, is that wi depends on (x+wi−1(x))
and it is not possible to minimize it directly. We may proceed with the following change
of variables: z = x + wi−1(x), so that wi(x + wi−1(x)) boils down to wi(z). Then, we

can isolate the variable x = z + w∗
i−1(z), with w∗

i−1(z) =
�
u∗
i−1(z), v

∗
i−1(z)

�T
, if it fulfills

w∗
i−1(z) + wi−1(z + w∗

i−1(z)) = 0. This means that w∗
i−1(z) must hold the following

equality:

w∗
i−1(z) = −wi−1(z+w∗

i−1(z)). (3.9)

In this sense, if wi−1 is the flow field from frame i − 1 to frame i, then w∗
i−1 can be

interpreted as the flow field from frame i to i − 1, i.e., the backward flow. This requires
that wi−1 be injective. In general, this is true in the whole domain, except for occluded
regions, where several points of the domain may have the same target. Thus, occlusions
should have a different treatment as it is explained in appendix I.

The Jacobian matrix for this change of variables is:
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J (z) =

����
1 + u∗

i−1x(z) u∗
i−1y(z)

v∗i−1x(z) 1 + v∗i−1y(z)

����

=
�
1 + u∗

i−1x(z)
� �

1 + v∗i−1y(z)
�

− u∗
i−1y(z)v

∗
i−1x(z), (3.10)

so the integral now becomes

J(�wi�) =
�

Φ
���wi−1(z+w∗

i−1(z))−wi(z)
��2
�

· |J (z)| · dz.

The Euler-Lagrange equation is now straight forward

�
∂J(�wi�)

∂wi

�

1

=− 2Φ�
���wi−1(z+w∗

i−1(z))−wi(z)
��2
�

·
�
wi−1(z+w∗

i−1(z))−wi(z)
�
· |J (z)| .

On the other hand, the minimization of J(�wi�)2 with respect to wi(x), yields the
following equation:

�
∂J(�wi�)

∂wi

�

2

=2Φ� ��wi(x)−wi+1(x+wi(x))�2
�

· (wi(x)−wi+1(x+wi(x)))
T

·
�
Id−∇wT

i+1(x+wi(x))
�
,

where Id is the identity matrix. Putting both terms together, we finally obtain the
minimization of (3.8) as

∂J(�wi�)
∂wi

=− 2Φ�
���wi−1(x+w∗

i−1(x))−wi(x)
��2
�

·
�
wi−1(x+w∗

i−1(x))−wi(x)
�
· |J (x)|

+ 2Φ� ��wi(x)−wi+1(x+wi(x))�2
�

· (wi(x)−wi+1(x+wi(x)))
T

·
�
Id−∇wT

i+1(x+wi(x))
�
, (3.11)
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with i = 2, ..., N − 2.

For i = 1, the minimization only affects the first term of the sum, having the following
expression:

∂J(�wi�)
∂w1

=2Φ� ��w1(x)−w2(x+wi(x))�2
�

· (w1(x)−w2(x+w1(x)))
T

·
�
Id−∇wT

2 (x+w1(x))
�
. (3.12)

And, for i = N − 1, the minimization only affects the last term, so we have

∂J(�wi�)
∂wN−1

=− 2Φ�
���wN−2(x+w∗

N−2(x))−wN−1(x)
��2
�

·
�
wN−2(x+w∗

N−2(x))−wN−1(x)
�
· |J (x)| . (3.13)

Thus, equations (3.11), (3.12) and (3.13) are the Euler-Lagrange equations of (3.8). Then,
the temporal energy model (3.4) yields the following Euler-Lagrange equations:

0 = β Φ� ��wi(x)−wi+1(x+wi(x))�2
�

·
�
(wi(x)−wi+1(x+wi(x)))

T

·
�
Id−∇wT

i+1(x+wi(x))
��

+ β Φ�
���wi(x)−wi−1(x+w∗

i−1(x))
��2
�

·
��
wi(x)−wi−1(x+w∗

i−1(x))
�
· |J (x)|

�
, (3.14)

where |J (x)| stands for the absolute value of the determinant of the Jacobian matrix,

which is equal to J (x) =
�
1 + u∗

i−1,x

� �
1 + v∗i−1,y

�
− u∗

i−1,yv
∗
i−1,x with w∗

i−1 =
�
u∗
i−1, v

∗
i−1

�T
as the backward flow from Ii to Ii−1.

We use a gradient descent approach to find the solution of the above PDE. The
nonlinear terms are linearized using first order Taylor expansions. In the temporal
dimension, we use Neumann boundary conditions for the last and first frames.

The first temporal term in (3.14) stands for the anticausal model, where only future
and present information is used; and the second term accounts for the causal model, which
depends on past, wi−1), and present data. Both parts conform a whole non-causal model.
In the experimental results we examine these two terms separately, in order to study the
effect of the causal and anticausal parts.



3.1. Energy Functional 51

Introducing the nonlinear Flow Regularization Scheme (FRS)

In this section, we introduce a temporal smoothing term that aims at replacing the
traditional continuous case, based on the minimization of ∂wi(x)

∂t
. The second order

derivative of the flow field is usually approximated as utt ≈ ui,j,k+1 − 2ui,j,k + ui,j,k−1

This has a temporal regularizing effect, centered at the same spatial position but at
different time instants. It is clear that this scheme is valid if the flow field varies smoothly
across the image sequence. This is not the case in the presence of large displacements.

We propose a new solution, which is similar in spirit to this numerical approximation,
and is suitable to deal with non-continuous displacements. Following the reasoning of
section 3.1, the corresponding flow positions at different time instants are located at the
warping of the flow field. The counterpart of the continuous second order derivative to
the nonlinear case, can be formulated as

wi−1(x+w∗
i−1(x))− 2wi(x) +wi+1(x+wi(x)).

This is a nonlinear formulation that puts in correspondence the correct flow values of a
given object in different frames. In the general case of inertial motions, this approximation
can be considered as a nonlinear flow smoothing scheme, and it is the counterpart of
the traditional continuous temporal regularization for non continuous motions. It is not
evident how to abstract this term at the temporal energy. The use of robust functions
can also be included as

TS = δ Φ�
���wi−1(x+w∗

i−1(x))−wi+1(x+wi(x))
��2
�

·
�
wi−1(x+w∗

i−1(x))− 2wi(x) +wi+1(x+wi(x))
�
. (3.15)

The robust function is the same as we have used so far, and it is based on the norm of
the difference of the flow at the previous and following frames. This is very similar to the
first order temporal derivative of the flow that is used in the continuous case. When the
difference of the flow is big, it is treated as an outlier. δ is the weighting parameter and
should be smaller than that of the spatial regularization.

This new term provides a new scheme at the PDE level that can be combined with
the previous PDE equations (3.5) and (3.14). In the experiments we show that this new
term provides good results. It has a similar gain as the continuous case, but it correctly
handles the large displacements.

Also here, as in equation (3.14), it is easy to appreciate the contribution of the causal
and anticausal parts.
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3.2 Experimental Results

Next, we examine the behavior of the temporal models explained in this chapter. In
the first row of figures 3.1 and 3.4, we show the third frames of the small square and
Urban2 sequences, respectively; their true flows, and the best spatial solutions found. In
the second row, we show three temporal solutions: the first for the nonlinear temporal
attachment defined in (FCA, eq. (3.4)); the second, for the nonlinear temporal smoothness
approach defined in (FRS, eq. (3.15)); and, finally, using both temporal terms. In these
experiments, we refer to this combination as Temporal Continuity Optical Flow (TCOF).

The small square is a simple sequence where the object is moved over a textured
background. The square is moving 15 pixels per frame, while the background moves 3
pixels in the same direction. The most important features are its translational motion
and a large displacement. On the other hand, we use the Urban2 sequence from the
Middlebury database due to its greater displacements (of about 20 pixels in some areas)
respect to the other sequences of the dataset.

We show the AAE and EPE errors for every frames of the small squares in graphics of
figures 3.3 and 3.2, respectively. In figure 3.5, we use Urban2 to extend the comparison
by showing motion details for the corresponding spatial and TCOF solutions regarding
to its true flow. Then, we show the solutions for the spatial and TCOF approaches using
the test and evaluation sequences from Middlebury in figures 3.6 and 3.7, respectively.

Finally, we use the sequence of Karl-Wilhelm strasse and a scene extracted from the
movie ’Godfather: Part II’ in order to analyze the behavior of the proposed method in
real world sequences. In figure 3.8, we depict the flow fields obtained with the spatial and
spatio-temporal methods for several frames of the original sequences.

We represent the motion of these two last experiments with the IPOL color scheme
while, the previous ones, are represented with the scheme of Middlebury.

According to the results, the improvement of the temporal methods with respect to
the spatial solution is important. As expected, the spatial method produces higher errors
at the motion discontinuities and, more significantly, at the occlusions. Table 3.1 shows
the average End-point (EPE) and Angular (AAE) errors for the geometric sequence. The
first temporal result, corresponding to the first image in the second row of figure 3.1,
provides an important improvement on the EPE and, more noticeable, on the AAE.
The improvement in accuracy is still more important if we use the nonlinear temporal
smoothing scheme (3.15) or a combination of both.

We observe that the nonlinear temporal smoothing scheme (3.15) behaves better than
the temporal attachment, even at the motion boundaries. The graphics in figure 3.2 show
the EPE for every frame on the square sequence. Frame by frame, the optical flows are
more accurate in the temporal methods. We also observe that the results are very stable,
specially in the middle of the FRS line. Reasonably, the frames at the beginning and at
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First Frame True Flow Spatial

FCA FRS TCOF

Figure 3.1: Square sequence. First row: one of the images of the Square sequence, the true
flow and the best spatial solution found. Second row: three temporal solutions using FCA,
FRS and TCOF approaches, respectively. The color scheme is showed in the upper-right
corner of the spatial flow.

Table 3.1: EPE and AAE for the Square sequence.
Method EPE AAE
Spatial 0.071 0.629o

FCA 0.049 0.204o

FRS 0.036 0.134o

TCOF 0.035 0.138o

the end of the sequence present higher errors, due to the Neumann boundary conditions.
The AAE graphic in table 3.3 shows a similar behavior.

In the case of Urban2, the improvement of the temporal methods with respect to the
spatial solution is not so evident. However, we observe better results dealing with the
occlusions in the regions highlighted at figure 3.5.
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Figure 3.2: EPE in each optical flow of the Square sequence.

Figure 3.3: AAE in each optical flow of the Square sequence.
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First Frame True Flow Spatial

FCA FRS TCOF

Figure 3.4: Urban2. First row: original frame, true flow and the best spatial solution
found. Second row: Results for the three approximations that uses temporal coherence
for the optical flow. The color scheme is showed in the upper-right corner of the spatial
flow.

True Flow Spatial TCOF

True Flow Spatial TCOF True Flow Spatial TCOF

Figure 3.5: Urban2 sequence. We show some flow details for comparing the spatial and
temporal solutions regarding to the true flow.
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Table 3.2: EPE and AAE for the Middlebury sequences.
Sequence Spatial EPE Spatial AAE TCOF EPE TCOF AAE
Hydrangea 0.165 2.086o 0.162 2.032o

Grove2 0.128 1.901o 0.144 1.843o

Grove3 0.559 5.781o 0.552 5.682o

Urban2 0.226 2.280o 0.284 2.256o

Urban3 0.338 2.633o 0.317 2.429o

RubberWhale 0.094 2.971o 0.093 2.953o

Next, we show the results for the test sequences of the Middlebury benchmark
database [Baker07b], except Dimetrodon and Venus. This is because there are not enough
images to use TCOF properly. The numerical results depicted in table 3.2 reflect that the
temporal approach always improves the AAE respect to its spatial counterpart, specially
in Urban2 and Urban3. However, its EPE is worst in Grove2, Urban2 and RubberWhale
but not significantly. On the other hand, figure 3.6 depicts the original image, the true flow
and the flow fields for the two approaches. Here, we observe accuracy in both solutions
without strong differences. The TCOF method was sent to the Middlebury web page for
its evaluation. Figure 3.7 contains the original image, the true flow and our solution. In
general, we observe good results in the motion fields.

The optical flows obtained for the synthetic sequences ofMiddlebury do not show many
differences between the spatial and temporal solution. This situation is the opposite in the
real sequences depicted in figures 3.8 and 3.9. We observe that the temporal dimension
allows finding continuous flow fields in time and the noise is reduced with respect to the
solution given by the spatial method, specially in the Karl-Wilhelm strasse sequence. We
also observe an improvement in the Godfather scene when the camera begin to move to
the left. For instance, the details of the trees are better preserved in the temporal solution
showed in the third row of figure 3.9. On the other hand, the first car that appears in
the sequence leaves dust in the air when it gets out of the scene. When this happens, the
temporal solution is more consistent than the spatial one. Both figures demonstrate that
TCOF performance is better dealing with the complexity of real sequences.
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First Frame True Flow Spatial TCOF

Figure 3.6: Optical flow fields using the temporal method on the test sequences of the
Middlebury dataset. First row shows the original image, the second the true flow and the
third the temporal solution. The color scheme is showed in the upper-right corner of the
first temporal solution.
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First Frame True Flow TCOF

Figure 3.7: Optical flow fields using the temporal method on the evaluation sequences of
the Middlebury dataset. First row shows the original image, the second the true flow and
the third the temporal solution. The color scheme is showed in the upper-right corner of
the first temporal solution.
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First Frame Spatial TCOF

Figure 3.8: Comparison between the spatial and temporal solutions in the real sequence
of Karl-Wilhelm strasse. The temporal coherence strongly reduces the noise regarding to
the spatial counterpart. The color scheme is showed in the upper-right corner of the first
temporal solution.
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First Frame Spatial TCOF

Figure 3.9: Comparison between the spatial and temporal solutions in a scene extracted
from the Godfather movie: Part II. We observe an improvement due to the temporal
information, specially in the first and third rows. The color scheme is showed in the
upper-right corner of the first temporal solution.
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3.3 Numerical Results

We extend our evaluation in tables 3.4 and 3.3, where we show the AAE and EPE achieved
by TCOF, OFH [Zimmer11], TC-Flow [Volz11] and MDP-Flow2 [Xu12] approaches.
We observe that the numerical differences are not pronounced except in the Schefflera
sequence. Furthermore, we see better errors in the EPE of Urban and Teddy. This idea
can be confirmed according to the flows depicted in figure 3.3, where can be seen that the
differences are not very pronounced.

Table 3.3: EPE: Middlebury evaluation sequences.

Sequence Rg. Eval. TCOF OFH [Zimmer11] TC-Flow [Volz11] MDP-Flow2 [Xu12]

Army
all 0.11 0.10 0.07 0.08
disc 0.28 0.25 0.21 0.21

untext 0.09 0.09 0.06 0.07

Mequon
all 0.24 0.19 0.15 0.15
disc 0.76 0.69 0.59 0.48

untext 0.19 0.14 0.11 0.11

Schefflera
all 0.53 0.43 0.31 0.20
disc 1.15 1.02 0.78 0.40

untext 0.29 0.17 0.14 0.14

Wooden
all 0.24 0.17 0.16 0.15
disc 0.88 1.08 0.86 0.80

untext 0.20 0.08 0.08 0.08

Grove
all 0.88 0.87 0.75 0.63
disc 1.26 1.25 1.11 0.93

untext 0.69 0.73 0.54 0.43

Urban
all 0.38 0.43 0.42 0.26
disc 0.93 1.69 1.40 0.76

untext 0.29 0.32 0.25 0.23

Yosemite
all 0.16 0.10 0.11 0.11
disc 0.16 0.13 0.12 0.12

untext 0.22 0.18 0.29 0.17

Teddy
all 0.49 0.59 0.62 0.38
disc 1.03 1.40 1.35 0.79

untext 0.65 0.74 0.93 0.44
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Table 3.4: AAE: Middlebury evaluation sequences.

Sequence Rg. Eval. TCOF OFH [Zimmer11] TC-Flow [Volz11] MDP-Flow2 [Xu12]

Army
all 4.17 3.90 2.91 3.23
disc 10.4 9.77 8.00 7.93

untext 3.71 3.62 2.34 2.60

Mequon
all 3.17 2.84 2.18 1.92
disc 10.7 11.0 8.77 6.64

untext 2.59 2.04 1.52 1.52

Schefflera
all 6.58 5.52 3.84 2.46
disc 15.7 14.4 10.7 5.91

untext 3.82 1.89 1.49 1.56

Wooden
all 3.69 3.52 3.13 3.05
disc 16.1 20.5 16.6 15.8

untext 2.37 1.60 1.46 1.51

Grove
all 3.78 3.18 2.78 2.77
disc 4.95 4.06 3.73 3.50

untext 2.47 2.82 1.96 2.16

Urban
all 2.59 3.86 3.08 2.86
disc 8.47 14.1 11.4 8.58

untext 2.58 3.59 2.66 2.70

Yosemite
all 3.66 1.77 1.94 2.00
disc 4.83 3.62 3.43 3.50

untext 2.67 1.81 3.20 1.59

Teddy
all 1.83 2.64 3.06 1.28
disc 4.20 7.08 7.04 2.67

untext 1.46 2.15 4.08 0.89
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TCOF OFH [Zimmer11] TC-Flow [Volz11] MDP-Flow2 [Xu12]
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Figure 3.10: Flow fields obtained by the methods of TCOF, OFH, TC-Flow and MDP-
Flow2 using the evaluation sequences from Middlebury.
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3.4 Conclusion

In this chapter, we presented nonlinear flow assumptions for the estimation of motion fields
with two contributions: on the one hand, we introduced a new flow constancy assumption
(FCA) that is formulated as a non-linear attachment of the flow; on the other hand,
a non-continuous regularization operator (FRS) at the PDE level, which regularizes the
optical in the temporal dimension and is suitable for large displacements. These proposals
are more confident in the estimation of motion fields than previous approaches.

We observe that the FCA term relates flow fields at different time instants and is
consistent with the rest of the energy terms. In the experiments, we combine both ideas
obtaining a scheme that conveniently deals with continuous and non-continuous velocities.

These nonlinear assumptions correctly fit with the standard nonlinear brightness and
gradient constancy terms, can cope with general image sequences and provide better
solutions. We observe that the TCOF scheme is more general than using the continuous
temporal regularization of the flow, with the advantage that it conveniently deals with
continuous and non-continuous velocities. In fact, if the motion is very small, this term
approximates a continuous temporal smoothing scheme.

We have shown in the experimental results that using the backward flow is important to
distribute good guesses all through the sequence of flows. The method provides important
improvements, specially in the presence of large displacements. The results are promising
in both cases, although we observe a better performance for the nonlinear temporal
smoothing scheme in general. Another interesting result of the temporal coherence
schemes is that the background motion oscillations tend to disappear. These oscillations
clearly appear in the spatial method, in regions where there is no apparent motion.



Chapter 4

Robust Optical Flow Estimation

In this chapter, we analyze the optical flow method presented in Brox et al. [Brox04]
using our own implementation1. First, we describe its Spatial and Temporal approaches
for grayscale images. Both approximations are very similar but the Temporal approach
includes a continuous smoothing scheme in the Temporal dimension. Second, we modified
the Spatial approximation into a multi-channel extension to determine if the color
information benefits the optical flow calculation.

This type of methods produce piecewise-smooth flow fields. In particular, Brox et al.
proposed a technique that is more robust to outliers due to a continuous L1 function that
creates a TV regularization. It also deals with constant brightness variations by including
a gradient constancy term in its energy functional in conjunction with the brightness
constancy assumption [Horn81].

In our experiments, we first conduct a thorough analysis of the method with grayscale
images from the Middlebury benchmark database. We observe that this kind of methods
creates rounding shapes at the borders of the moving objects, which is a typical
consequence of TV-L1 strategies.

In relation to this, the color information could prevent this problem by associating the
pixel information with various brightness intensities. Furthermore, this type of images
may avoid the use of additional constraints in the flow calculation [Golland97, Ohta89]
and contains more photometric information that can be useful against shadows, shading
and image specularities [Barron02, vdW04, Mileva07]. On the other hand, we observe a
better accuracy of the Spatial approach for the Middlebury sequences in our experiments.
Thus, we introduce the color information in the Spatial version and compare with the
basic approach.

Another alternative to avoid rounding shapes at the motion contours is to introduce a
discontinuity preserving strategy in the regularization term similar as in [Wedel09a, Xu10].

1http://www.ipol.im/pub/art/2013/21/sms optic flow 2.0.tar.gz

65
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In chapter 5, we combine both improvements and present several proposals into a multi-
channel framework.

Once we conclude the experiments with grayscale images, we evaluate the possible
benefits of color against grayscale information. We perform our evaluation with RGB and
grayscale images in the sequences from the Middlebury benchmark database [Baker07b]
and the open source movies from the MPI-Sintel flow data set [Butler12]. The purpose
of these tests is to compare motion details between the best flows achieved for the
same sequence. Our experiments demonstrate that, in general, the color information
provides more accurate solutions and the computational cost seems reasonable given the
improvement.

The chapter is organized as follows: first, Section 4.1 presents the grayscale optical flow
model and the modification of its energy functional to introduce the general framework
behind the multi-channel scheme; second, we deeply examine the behavior of the method
for some standard image sequences and, then, we confront the color and grayscale
information in the experiments of Section 4.2; next, we study the accuracy of both color
spaces in Section 4.3; finally, a summary of the main ideas and conclusions are given in
Section 4.4.

4.1 Energy Functional

We denote as I : Ω ⊂ R3 → R a sequence of grayscale images in space and time with
x = (x, y, t)T ∈ Ω. Our optical flow is a dense mapping, w = (u(x), v(x), 1)T , between the
pixels of every two consecutive images, where u(x) and v(x) are the x and y displacements
in the 3D volume, respectively. We assume that each frame is at distance 1 in time from
the previous and following frames.

The Spatial gradient of the image is given by ∇I = (Ix, Iy)
T , with Ix, Iy the first order

derivatives in x and y. The Spatial gradient of the optical flow, between two frames, is
defined as ∇u = (ux, uy)

T for the Spatial method while the spatio-Temporal gradient in
the Temporal method is ∇u = (ux, uy, ut)

T . Since the abstract framework is identical in
both cases, we keep the same notation for both methods. This distinction appears later
in the numerical scheme.

We suppose that the problem is not continuous, therefore, the brightness constancy
assumption is expressed in its nonlinear form as I(x + w) − I(x) = 0. Then, according
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to this notation,the energy functional reads as

E(w) =

�

Ω

Ψ
�
(I(x+w)− I(x))2

�
dx+ γ

�

Ω

Ψ
�
�∇I(x+w)−∇I(x)�2

�
dx

+ α

�

Ω

Ψ
�
�∇u�2 + �∇v�2

�
dx, (4.1)

with Ψ (s2) =
√
s2 + �2 is a robust function and � := 0.001 is a prefixed small constant to

ensure that Ψ is strictly convex.

The energy model of Brox et al. uses brightness and gradient constancy assumptions
in the data term and a TV scheme for smoothing. It depends on the γ and α parameters
for controlling the gradient and the smoothness strength, respectively.

Note that this energy functional (eq. 4.1) is different respect to the model presented
in [Brox04]. There, the brightness and gradient constancy terms were included inside the
same Ψ function. However, we consider better justified that the model separates these
two assumptions, as proposed in Bruhn and Weickert [Bruhn05a].

4.1.1 Minimizing the Energy Functional

The solution of the previous energy model can be found by solving the associated Euler-
Lagrange equations, given by

0 =Ψ�
D · (I(x+w)− I(x)) · Ix(x+w)

+ γΨ�
G · ((Ix(x+w)− Ix(x)) · Ixx(x+w) + (Iy(x+w)− Iy(x)) · Ixy(x+w))

− α div (Ψ�
S ·∇u) ,

0 =Ψ�
D · (I(x+w)− I(x)) · Iy(x+w)

+ γΨ�
G · ((Ix(x+w)− Ix(x)) · Ixy(x+w) + (Iy(x+w)− Iy(x)) · Iyy(x+w))

− α div(Ψ�
S ·∇v), (4.2)

with Ψ�(s2) = 1
2
√
s2+�2

. In order to simplify the equations, we use the following notation:

Ψ�
D :=Ψ� �(I(x+w)− I(x))2

�
,

Ψ�
G :=Ψ� ��∇I(x+w)−∇I(x)�2

�
,

Ψ�
S :=Ψ� ��∇u�2 + �∇v�2

�
. (4.3)

The above equations are nonlinear due to the argument w and function Ψ�. We need to
linearize the equations for avoiding this problem; so, we enclose the numerical scheme in
two fixed point iterations. We introduce the first index (outer iterations), m, to remove
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the nonlinearity in w, using first order Taylor expansions; and the inner iterations, n, to
account with the nonlinearities for the Ψ� functions.

I(x+wm+1) ≈I(x+wm) + Ix(x+wm)dum + Iy(x+wm)dvm

Ix(x+wm+1) ≈Ix(x+wm) + Ixx(x+wm)dum + Ixy(x+wm)dvm

Iy(x+wm+1) ≈Iy(x+wm) + Ixy(x+wm)dum + Iyy(x+wm)dvm, (4.4)

with wm = (um, vm)T , dum = um+1 − um and dvm = vm+1 − vm. We assume that wm is
a close approximation to our unknowns wm+1.

We use motion increments (dum, dvm) to calculate the optical flows [Mémin98].
These are incrementally updated from the motion increment as um+1 = um + dum,
vm+1 = vm + dvm.

0 =(Ψ�
D)

m,n ·
�
I(y) + Ix(y)du

m,n+1 + Iy(y)dv
m,n+1 − I(x)

�
· Ix(y)

+ γ (Ψ�
G)

m,n ·
��
Ix(y) + Ixx(y)du

m,n+1 + Ixy(y)dv
m,n+1 − Ix(x)

�
· Ixx(y)

+
�
Iy(y) + Ixy(y)du

m,n+1 + Iyy(y)dv
m,n+1 − Iy(x)

�
· Ixy(ym,n)

�

− α div
�
(Ψ�

S)
m,n ·∇(um,n + dum,n+1)

�

0 =(Ψ�
D)

m,n ·
�
I(y) + Ix(y)du

m,n+1 + Iy(y)dv
m,n+1 − I(x)

�
· Ix(y)

+ γ (Ψ�
G)

m,n ·
��
Ix(y) + Ixx(y)du

m,n+1 + Ixy(y)dv
m,n+1 − Ix(x)

�
· Ixx(y)

+
�
Iy(y) + Ixy(y)du

m,n+1 + Iyy(y)dv
m,n+1 − Iy(x)

�
· Ixy(ym,n)

�

− α div
�
(Ψ�

S)
m,n ·∇(vm,n + dvm,n+1)

�
, (4.5)

with y = x+wm,n.

The system of equations (4.5) can be efficiently solved using the SOR method. The
unknowns dum,n+1 and dvm,n+1, in pixel (i, j, t), are expressed in terms of the remaining
terms, and their values are iteratively updated until the method converges to a steady
state solution. In this sense, we introduce an additional fixed point iteration scheme, s,
for the SOR method.

Partial derivatives are approximated using central differences. The discretization
of the divergence is separated in three variables: div ((Ψ�

S)
m,n ·∇(um,n + dum,n+1)) =

div ((Ψ�
S)

m,n ·∇um,n) + div ((Ψ�
S)

m,n ·∇dum,n+1) ≈ div u + (div du − div d · dum,n+1
i,j,t ),

where div u discretizes the first divergence term, div d and div du correspond to the
second term. In the second term, div du stands for the values corresponding to the
neighbors of du, and div d stands for the coefficients accompanying du at the current
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pixel, dum,n+1
i,j,t . These variables are given by the following expressions:

div u :=
(Ψ�

S)i+1,j,t + (Ψ�
S)

m,n
i,j,t

2

�
um,n
i+1,j,t − um,n

i,j,t

�
+

(Ψ�
S)i−1,j,t + (Ψ�

S)
m,n
i,j,t

2

�
um,n
i−1,j,t − um,n

i,j,t

�
+

(Ψ�
S)i,j+1,t + (Ψ�

S)
m,n
i,j,t

2

�
um,n
i,j+1,t − um,n

i,j,t

�
+

(Ψ�
S)i,j−1,t + (Ψ�

S)
m,n
i,j,t

2

�
um,n
i,j−1,t − um,n

i,j,t

�
+

(Ψ �
S )i ,j ,t+1 + (Ψ �

S )
m,n
i ,j ,t

2

�
um,n
i ,j ,t+1 − um,n

i ,j ,t

�
+

(Ψ �
S )i ,j ,t−1 + (Ψ �

S )
m,n
i ,j ,t

2

�
um,n
i ,j ,t−1 − um,n

i ,j ,t

�
,

(4.6)

div du :=
(Ψ�

S)i+1,j,t + (Ψ�
S)

m,n
i,j,t

2
dum,n+1

i+1,j,t +
(Ψ�

S)i−1,j,t + (Ψ�
S)

m,n
i,j,t

2
dum,n+1

i−1,j,t+

(Ψ�
S)i,j+1,t + (Ψ�

S)
m,n
i,j,t

2
dum,n+1

i,j+1,t +
(Ψ�

S)i,j−1,t + (Ψ�
S)

m,n
i,j,t

2
dum,n+1

i,j−1,t+

(Ψ �
S )i ,j ,t+1 + (Ψ �

S )
m,n
i ,j ,t

2
dum,n+1

i ,j ,t+1 +
(Ψ �

S )i ,j ,t−1 + (Ψ �
S )

m,n
i ,j ,t

2
dum,n+1

i ,j ,t−1 , (4.7)

div d :=
(Ψ�

S)i+1,j,t + (Ψ�
S)

m,n
i,j,t

2
+

(Ψ�
S)i−1,j,t + (Ψ�

S)
m,n
i,j,t

2
+

(Ψ�
S)i,j+1,t + (Ψ�

S)
m,n
i,j,t

2
+

(Ψ�
S)i,j−1,t + (Ψ�

S)
m,n
i,j,t

2
+

(Ψ �
S )i ,j ,t+1 + (Ψ �

S )
m,n
i ,j ,t

2
+

(Ψ �
S )i ,j ,t−1 + (Ψ �

S )
m,n
i ,j ,t

2
. (4.8)

These expressions are the same for the other component of the optical flow, changing the
roles of u and v.

The last two terms of equations (4.6), (4.7) and (4.8), in italics, correspond to the
Temporal regularization of the optical flow. This is implemented in the Temporal method
and removed in the Spatial one. The finite difference scheme in the Temporal method is
computed using information from the previous, m−1, and following, m+1, frames. If we
define y = x+wm,n and separate the parts of the equation that remain constant during
the SOR iterations, we may define the following variables:

Au :=− (Ψ�
D)

m,n (I(y)− I(x)) Ix(y) + α div u,

− γ (Ψ�
G)

m,n ((Ix(y)− Ix(x)) Ixx(y) + (Iy(y)− Iy(x)) Ixy(y)) ,

Av :=− (Ψ�
D)

m,n (I(y)− I(x)) Iy(y) + α div v

− γ (Ψ�
G)

m,n ((Ix(y)− Ix(x)) Ixy(y) + (Iy(y)− Iy(x)) Iyy(y)) ,

Du :=(Ψ�
D)

m,nI2x(y) + γ (Ψ�
G)

m,n
�
I2xx(y) + I2xy(y)

�
+ α div d,

Dv :=(Ψ�
D)

m,nI2y (y) + γ (Ψ�
G)

m,n
�
I2yy(y) + I2xy(y)

�
+ α div d,

D :=(Ψ�
D)

m,nIx(y)Iy(y) + γ (Ψ�
G)

m,n (Ixx(y) + Iyy(y)) Ixy(y). (4.9)
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In order to compute expressions like I(x +wm,n), we use bicubic interpolation. Putting
all together, we arrive to the SOR scheme, which is given by

dum,n,s+1 :=
(1− w) dum,n,s + w (Au−D · dvm,n,s+1 + α div du)

Du
,

dvm,n,s+1 :=
(1− w) dvm,n,s + w (Av −D · dum,n,s+1 + α div dv)

Dv
, (4.10)

with w ∈ (0, 2) the SOR relaxation parameter. In our implementation, we choose w = 1.9
by default.

This numerical approximation is calculated until the method converges to a steady
state solution or it exceeds a maximum number of iterations. The stopping criterion is

1

N

�

i,j,t

�
dus+1

i.j,t − dus
i.j,t

�2
+
�
dvs+1

i.j,t − dvsi.j,t
�2

< ε2, (4.11)

with N the number of pixels in all frames and ε the stopping criterion threshold. This
is different from the original article [Brox04], where a fixed number of SOR iterations is
used. Once it has converged, we go to the next inner iteration, n + 1, and restart the
variables in (4.9).

4.1.2 Pyramidal Structure

In order to estimate large displacements, we embed the optical flow method in a pyramidal
structure. We follow the same strategy presented in a previous IPOL article [ML13] and
reproduce here the basic ideas.

The algorithm creates a pyramid of down-sampled images. The pyramid is created
by reducing the images by a factor η ∈ (0, 1). Before downsampling, the images are
smoothed with a Gaussian kernel of a standard deviation that depends on η. For a set of
scales s = 0, 1, . . . , Nscales − 1, the pyramid of images is built as

Is(ηx) := Gσ ∗ Is−1(x). (4.12)

After the convolution, the images are sampled using bicubic interpolation. The value of
σ depends on η and is calculated as

σ(η) := σ0

�
η−2 − 1, with σ0 := 0.6. (4.13)

Then, starting at the coarsest scale, the system of equations is solved in each scale to
get successive approximations of the optical flow. Every intermediate solution is used as
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initialization in the following scale. To transfer the values from a coarser scale, the flow
field is updated as

us−1(x) :=
1

η
us(ηx)

vs−1(x) :=
1

η
vs(ηx). (4.14)

4.1.3 Multi-Channel Robust Optical Flow

Next, we show the main modifications required in the Spatial version of the previous
energy model to adapt it to a multi-channel scheme.

Let Ic1, I
c
2 : Ω ⊂ R2 → Rc be an image sequence, with x = (x, y)T ∈ Ω, {Ic}c=1,...,C and

C the number of channels. Once again, our optical flow is w(x) = (u(x), v(x), 1)T and
the vector fields are u(x) and v(x). However, we now denote the Spatial gradient of the
image with ∇I = {(Icx, Icy)T}c=1,...,C , where I

c
x, I

c
y are the first order derivatives in x and y

for each information channel. Then, we express our multi-channel model as

E(w) =

�

Ω

Ψ

�
C�

c=1

(Ic2(x+w)− Ic1(x))
2

�
+ γ

�

Ω

Ψ

�
C�

c=1

�∇Ic2(x+w)−∇Ic1(x)�2
�

+ α

�

Ω

Ψ
��
�∇u�2 + �∇v�2

��
dx, (4.15)

with Ψ(s2) =
√
s2 + �2 and � := 0.001 like in the previous functional (4.1). Again, we

assume that the brightness constancy assumption is also fulfilled in the multi-channel
scheme.

The minimum of the functional is found by solving the following Euler-Lagrange
equations:

0 =Ψ�
D ·

�
C�

c=1

(Ic2(x+w)− Ic1(x)) · Ic2x(x+w)

�

+ γΨ�
G ·

�
C�

c=1

(Ic2x(x+w)− Ic1x(x)) · Ic2xx(x+w) +
�
Ic2y(x+w)− Ic1y(x)

�
· Ic2xy(x+w)

�

− α div (Ψ�
S ·∇u) ,

0 =Ψ�
D ·

�
C�

c=1

(Ic2(x+w)− Ic1(x)) · Ic2y(x+w)

�

+ γΨ�
G ·

�
C�

c=1

(Ic2x(x+w)− Ic1x(x)) · Ic2xy(x+w) +
�
Ic2y(x+w)− Ic1y(x)

�
· Ic2yy(x+w)

�

− α div(Ψ�
S ·∇v), (4.16)
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with Ψ�(s2) = 1
2
√
s2+�2

. Notice that the difference with respect to the original model
resides in the summation of image channels included in both constancy assumptions of
the data term. As a consequence, the influence of this term is increased proportional
to the number of channels. We compensate this situation by adapting the smoothness
parameter α, therefore, α = α� · C, being α� an input parameter. An example of this
multi-channel scheme can be seen in Fig. 4.1. We use the following abbreviations:

Ψ�
D :=Ψ�

�
C�

c=1

(Ic2(x+w)− Ic1(x))
2

�
,

Ψ�
G :=Ψ�

�
C�

c=1

�∇Ic2(x+w)−∇Ic1(x)�2
�
,

Ψ�
S :=Ψ� ��∇u�2 + �∇v�2

�
). (4.17)

  

Figure 4.1: Notation for grayscale and color images using frames 10 and 11 from the
RubberWhale sequence.

As in the grayscale model, we use centered finite differences to discretize the system
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and solve the system of equations (4.16) with the SOR method. The non-linearity of the
above formulas (4.17) are linearized by using again two fixed point iterations. We also
embedded it in a multiscale strategy to allow detecting large displacements. The warping
of Ic2(x+w) is approximated using Taylor series and bicubic interpolation.

4.2 Experimental Results

In this section, we examine the behavior of the method for some standard sequences using
their grayscale images. In particular, we use Yosemite (with and without clouds) and two
sequences from the Middlebury benchmark database (RubberWhale and Urban2 ). In our
experiments, we have looked for the best α and γ parameters (table 4.2) that provide the
best results presented at figure 4.2. The values for the remaining parameters are: η = 0.75,
ε = 0.0001, inner iterations = 1, outer iterations = 38, and Nscales is automatically
calculated so that the coarsest scale works with images around 16×16 pixels. The optical
flow representation is given by the IPOL color scheme.

We observe that, in general, the L1 functionals and the TV regularization scheme
create piecewise continuous flow fields and provide a good preservation of the motion
discontinuities. However, the method also creates rounded shapes at these boundaries.
Besides, we also observe an accurate behavior dealing with the translational motion
(2 pixels to the right) of the sky in the Yosemite with Clouds sequence despite of the
illumination changes in the clouds. In this case, the benefits of the gradient constancy
term are clear.

Table 4.1 shows the Average Angular Error (AAE) and Average End-point Error
(EPE) for the Spatial and Temporal methods, respectively. The AAE and EPE are
calculated as in the Middlebury benchmarks [Baker07b]. The present results are quite
similar to the ones of the original paper [Brox04] for the Yosemite sequences. According
to these results, the Spatial approach is worst regarding to the Temporal method. The
flow in these sequences is very smooth, so it is clearly benefited from the spatio-temporal
continuous regularization term.

Table 4.1: Numerical results for the Spatial and Temporal solutions of figure 4.2. We
remark in boldface the best error for each sequence.
Sequence Spatial AAE Spatial EPE Temporal AAE Temporal EPE
Yosemite 1.587o 0.075 1.297o 0.061
Yosemite with Clouds 2.367o 0.101 1.927o 0.079
RubberWhale 3.467o 0.103 4.798o 0.152
Urban2 2.803o 0.395 5.823o 0.560
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Sequence True Flow Spatial Temporal

Yosemite

Yosemite with Clouds

RubberWhale

Urban2

Figure 4.2: Results for the Yosemite, Yosemite with Clouds, RubberWhale and Urban2
sequences. First column shows frame 6 for Yosemite and Yosemite with Clouds, and
frame 10 for RubberWhale and Urban2. Second column shows the corresponding true
flows. Third and fourth columns show the results for the Spatial and Temporal methods,
respectively.
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α = 2 α = 7 α = 15 α = 30

Figure 4.3: Results for the Urban2 sequence using the Temporal method. We depict the
influence of the α parameter and how it increases the rounded shapes in the discontinuities.

Table 4.2: Best α and γ for the best Spatial and Temporal solutions of figure 4.2.
Spatial Temporal
α γ α γ

Yosemite 50 2 27 2
Yosemite with Clouds 145 15 93 15
RubberWhale 185 60 91 60
Urban2 30 2 2 2

Nevertheless, in the cases of RubberWhale and Urban2 the situation is the opposite.
The solutions of the Temporal method are worse than its Spatial counterpart. The best
flow achieved for RubberWhale presents piecewise continuous motion fields but, it also
mistakes some motion directions and has problems at the flow discontinuities. Moreover,
the Temporal regularization worsen the results in Urban2, where the maximum motion is
about 22 pixels. The discontinuities of the optical flows are strongly deteriorated for bigger
values of α as we observe in figure 4.3. The effects of continuous Temporal smoothing
scheme are negative and, and it is necessary to use small values of α to obtain results
similar to the Spatial method. In these sequences the presence of flow discontinuities
and large displacements is more important, therefore the continuous Temporal scheme is
not suitable in these cases. As a consequence, it is better to use a nonlinear Temporal
smoothing scheme, like in [Salgado06] or the method explained in chapter 3.

On the other hand, figure 4.4 compares the AAE and EPE evolutions with respect to α
for both approaches. As we expected, the results of the Temporal method for the Yosemite
sequence are better than the Spatial method. The regularization is more important with
the Temporal scheme, thus smaller α values attain smaller AAE and EPE. We also observe
that the Temporal results degrade faster for increasing values of α. It crosses the Spatial
curve and then diverges. This may occur because the Temporal regularization tends to
spoil faster the flow discontinuities.

Interestingly, we observe that the best AAE and EPE are obtained at different values
of α for the same sequence. The best AAE is obtained with a larger α. This is justified
because a larger α creates smoother flows, which may be better aligned with the directions
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Figure 4.4: First row, the AAE and EPE for Yosemite and Yosemite with Clouds
sequences; second row, the AAE and EPE for RubberWhale and Urban2.
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of the true flow, but with smaller magnitudes. In the bottom row of figure 4.4, we observe
that the Temporal method always provides worse results in the RubberWhale and Urban2
sequences. Note that the Temporal curve for Urban2 depicts a strong deterioration for
increasing values of α.

In the graphics of figure 4.5, we compare the Spatial and Temporal methods, frame
by frame, for the Yosemite with Clouds sequence. Most of the optical flow errors in the
Temporal method remain below the Spatial errors. When α is big, α = 350, the errors in
the Temporal method exceed the Spatial ones.
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Figure 4.5: Comparison of the Spatial and Temporal methods: AAE (left) and EPE
(right) for the Yosemite with Clouds sequence in every frame.

Table 4.3 depicts the error evolution with respect to the η parameter. In this
experiment, we have used the best α and γ parameters of table 4.2. We note that the
AAE and EPE do not significantly improve for biggest values of η and Nscales.

In the Yosemite sequences, we observe a difference between our results and the
solutions of the original work [Brox04], where the best flows were obtained for η = 0.95,
with a large number of scales and a lot of inner and outer iterations. In our case, the
errors are hardly improved with η. Even for values of η = 0.1 the results are satisfactory.
This is interesting because this means that the method can find a very good solution using
only two scales, and let the coarsest scale start with a very small image size. Moreover,
the RubberWhale and Urban2 sequences present a similar behavior, but the results are
more noticeable for η = 0.1 and η = 0.25.

Next, the figures 4.6, 4.7 and 4.8 show the AAE evolution with respect to α and γ for
Yosemite with Clouds, RubberWhale and Urban2 sequences, respectively. Note that the
graphics are very stable for a large range of values, especially for Yosemite with Clouds
and RubberWhale. We do not include Yosemite’s graphic because it is very similar to
Yosemite with Clouds.
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Table 4.3: AAE and EPE results for different values of η and Nscales.
Spatial Temporal

Sequence η Nscales AAE EPE AAE EPE

Yosemite

0.1 2 1.602o 0.076 1.314o 0.062
0.25 2 1.605o 0.076 1.310o 0.062
0.5 4 1.594o 0.075 1.303o 0.061
0.65 7 1.589o 0.075 1.300o 0.061
0.75 10 1.586o 0.075 1.297o 0.061
0.85 17 1.586o 0.075 1.297o 0.061
0.95 54 1.586o 0.075 1.297o 0.061

Yosemite with Clouds

0.1 2 2.461o 0.101 2.182o 0.091
0.25 2 2.382o 0.099 2.017o 0.083
0.5 4 2.372o 0.101 1.944o 0.080
0.65 5 2.359o 0.100 1.933o 0.079
0.75 10 2.367o 0.100 1.927o 0.079
0.85 17 2.379o 0.101 1.922o 0.079
0.95 54 2.393o 0.103 1.931o 0.079

RubberWhale

0.1 2 3.779o 0.117 5.725o 0.185
0.25 3 3.616o 0.109 5.091o 0.162
0.5 5 3.491o 0.104 4.919o 0.155
0.65 8 3.491o 0.104 4.847o 0.153
0.75 12 3.467o 0.103 4.798o 0.152
0.85 20 3.458o 0.103 4.831o 0.154
0.95 63 3.426o 0.102 4.840o 0.159

Urban2

0.1 2 3.316o 0.570 7.592o 0.910
0.25 3 2.873o 0.426 6.110o 0.698
0.5 5 2.836o 0.408 5.787o 0.614
0.65 8 2.823o 0.392 5.931o 0.603
0.75 12 2.803o 0.395 5.823o 0.560
0.85 21 2.790o 0.385 6.043o 0.626
0.95 67 2.784o 0.377 6.170o 0.623
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We use a red curve for showing the best errors for every pair (α, γ). According to
the results, the behavior is quite interesting due to the fact that the curves approximate,
in the graphics, a straight line in the α − γ plane. The relation is α � 20γ, α � 10γ,
α � 3γ and α � 11γ in the sequences of Yosemite, Yosemite with Clouds, RubberWhale
and Urban2, respectively. This means that, if we respect these relations according we
increase the parameters, the errors still remain good.

In these graphics, we represent with a green dot the minimum error. We observe an
interesting behavior in the RubberWhale sequence, where we get slightly better results for
even higher values of α and γ, although the improvements are hardly appreciable.
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Figure 4.6: Yosemite with Clouds. Evolution of AAE with respect to α and γ.

Finally, we show the relation between the inner iterations and outer iterations
respect to the AAE in figures 4.9, 4.10 and 4.11 for the same sequences of the previous
experiment. We observe a very good stability according these parameters in the graphics.
Besides, the method converges very quickly to the final solution. In graphics, we also
show several color points for the minimum AAE and the values with an error below 0.5%,
1% and 3% with respect to the minimum. The last three values were calculated for the
smallest inner iterations× outer iterations relation, i.e., the minimum number of total
iterations.

After this experiment, we conclude that the outer iterations parameter is more
relevant in the convergence of the method. Normally, for inner iterations = 1 we
obtain very good accuracies; therefore, we may suppose that the inner iterations in these
experiments can be integrated in the outer iterations without a loss of precision.
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Figure 4.7: RubberWhale. Evolution of AAE with respect to α and γ.
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Figure 4.8: Urban2. Evolution of AAE with respect to α and γ.
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Figure 4.9: Yosemite with Clouds. Evolution of AAE with respect to inner iterations
and outer iterations.
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Figure 4.10: RubberWhale. Evolution of AAE with respect to inner iterations and
outer iterations.
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Figure 4.11: Urban2. Evolution of AAE with respect to inner iterations and
outer iterations.

4.2.1 Examples

Next, we depict the results for the test sequences of the Middlebury benchmark database
in figure 4.12. As in the previous chapter, we do not use Dimetrodon and Venus because
these sequences do not have enough images for the Temporal method. Table 4.4 show the
AAE and EPE obtained for α = 18 and γ = 7 in the Spatial method, and α = 2.5, γ = 2
in the Temporal method. In both cases, we have set the following parameters: η = 0.75,
ε = 0.0001, inner iterations = 1 and outer iterations = 15. Nscales is automatically
calculated so that the coarsest scale works with images around 16 x 16 pixels.

Table 4.4: AAE and EPE for the Middlebury test sequences.
Sequences Spatial AAE Spatial EPE Temporal AAE Temporal EPE

Grove2 2.455o 0.174 2.569o 0.184
Grove3 6.481o 0.693 7.031o 0.796
Hydrangea 2.442o 0.200 4.468o 0.346
RubberWhale 3.696o 0.111 5.435o 0.168
Urban2 2.561o 0.368 5.903o 0.628
Urban3 4.804o 0.544 6.681o 0.784
Dimetrodon 1.663o 0.086 - -
Venus 4.599o 0.292 - -
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Sequence True Flow Spatial Temporal

Figure 4.12: Results for the Middlebury test sequences using grayscale images.
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Finally, in figure 4.13 we show the results for the evaluation sequences using the same
parameter configuration (Spatial method).

Sequence Optical flow Sequence Optical flow

Figure 4.13: Results for the the Middlebury evaluation sequences using grayscale images.
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4.2.2 Influence of Color in Optical Flow Estimation

The previous experiments were made with a grayscale optical flow model. However,
a multi-channel approach should provide better results, so we extended extended our
original method into a multichannel scheme. Now, we evaluate the possible benefits of
color against grayscale information in a variational optical flow method. The experiments
are made with some synthetic sequences using RGB and grayscale images from the
Middlebury benchmark database and the MPI-Sintel dataset.

Our interest is to compare motion details between the best flows achieved for the same
sequence. We have made our evaluation using the best configuration of α and γ for every
sequence. The remaining parameters are set as in the previous experiments.

The best flows (and its motion details) for the Middlebury sequences of Grove3,
RubberWhale and Urban2 are shown in figures 4.14, 4.15 and 4.16, respectively. On
the other hand, the results for Bandage 1, Bandage 2 and Ambush 5 from MPI-Sintel
dataset are depicted in the figures 4.17, 4.18 and 4.19.

Once again, we represent the motion with the IPOL color scheme, that appears in
the first column of these figures. In the second column, we depict the true flow and the
motion fields for grayscale and RGB, respectively. The remaining columns present motion
details for the corresponding solutions.

The results are conclusive and confirm that the color information benefits the optical
flow estimation. In general, the motion contours are better preserved and the error
decreases perceptibly, especially in figures 4.14 and 4.19.

Figure 4.14 is a good example of this improvement, where the solution achieved by
the color image is closer to the true flow than its grayscale counterpart. If we observe the
motion details, we can see a more realistic solution that achieves a better preservation of
the leafs. The reasons behind this enhancement is that the difference between the leafs
and the background is much pronounced in the color image. In this sense, the grayscale
picture makes it hard for the method to distinguish the moving objects with respect to
the background.

For the same reasons, the definition of the contour is more accurate in figures 4.15 and
4.16. For instance, we observe an improvement in the details exposed in the red box of the
color solution of RubberWhale. The multi-channel information helps in the the shading
region. Nevertheless, the benefits are not so clear in both figures as the previous one.

The flows of figure 4.17 are more precise in its third row. Here, the diffusion in the
dragon tail (green box) is ameliorated due to the color information. On the other hand,
we can also see a significant decrease of the error in the head of the dragon at figure 4.18.

Finally, although neither of the motion fields of figure 4.19 offer good results, we
observe fewer outliers in the color solution.
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Figure 4.14: Motion details for the Grove3 sequence. First row depicts the color scheme,
the true flow and its details at the first, second and third columns, respectively. Second
row shows the original grayscale image, the flow field achieved and some details for the
comparison. Third row shows the results for the color image. According to the results,
we see that the leafs are more defined in the color solutions.
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Figure 4.15: Motion details for the RubberWhale sequence. First row depicts the color
scheme, the true flow and its details at the first, second and third columns, respectively.
Second row shows the original grayscale image, the flow field achieved and some details
for the comparison. Third row shows the results for the color image. The solutions seems
to be similar but, the errors decrease if we observe the motion details.
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Figure 4.16: Motion details for the Urban2 sequence. First row depicts the color scheme,
the true flow and its details at the first, second and third columns, respectively. Second
row shows the original grayscale image, the flow field achieved and some details for the
comparison. Third row shows the results for the color image. The color information
presents a better definition at the motion contours.
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Figure 4.17: Motion details for the Bandage 1. First row depicts the color scheme, the
true flow and its details at the first, second and third columns, respectively. Second
row shows the original grayscale image, the flow field achieved and some details for the
comparison. Third row shows the results for the color image. The motions details reveal
an enhancement in the contours.

Figure 4.18: Motion details for Bandage 2. First row depicts the color scheme, the true
flow and its details at the first, second and third columns, respectively. Second row shows
the original grayscale image, the flow field achieved and some details for the comparison.
Third row shows the results for the color image. The dragon head is closer to the true
flow than the grayscale solution.
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Figure 4.19: Motion details for Ambush 5. First row depicts the color scheme, the true
flow and its details at the first, second and third columns, respectively. Second row shows
the original grayscale image, the flow field achieved and some details for the comparison.
Third row shows the results for the color image. In both results, the solutions are not
accurate. However, the color solution is better that the grayscale flow.
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4.3 Numerical Results

In this section, we compare the numerical results (AAE and EPE) provided by the best
configurations of α and γ using color or grayscale in these two datasets. Furthermore, the
computational cost is very important if we need to choose the best scheme; therefore, we
take into account the running times required by the methods to justify if the computational
cost its reasonable. The values for the remaining parameters have been fixed as in the
previous section.

Tables 4.5 and 4.6 show the best AAE and the EPE results for both color spaces
while, its fourth and seventh columns, depict the percentage of error variation between
them. Once again, it is clear that the RGB information improves the numerical errors,
especially in the Middlebury sequences where most of the amelioration in the EPE exceeds
in 5.50% and the AAE in 4%.

Moreover, the enhancement is not so evident in the MPI Sintel sequences. It can
be appreciated that, in a few occasions, the color worsens the EPE. Nevertheless, this
deterioration is not excessive and the color information provides a reasonable improvement
in a high percentage of cases, especially in Ambush 5 and Sleeping 1.

The error amelioration is not enough to determine if a multi-channel scheme is justified.
Thus, Figures 4.7 and 4.8 show the execution times needed for obtaining all the previous
results. The size of the sequences from MPI Sintel is 1024 × 436 while, in the case of
Middlebury, the size of the images is variable: Grove2, Grove3, Urban2 and Urban3 are
640× 480, while Hydrangea, RubberWhale and Dimetrodon are 584× 388.

Tables 4.7 and 4.8 show the running times of each sequence and the percentage of
improvement provided by the grayscale with respect to the RGB images. As expected,
less information means less execution time. However, the difference is not excessively
pronounced and, even, in the case of Ambush 2 sequence, less time is required if we
use color information. This means that, using more information from the images, the
algorithm usually converges in less iterations. Moreover, we must consider that the
increment in the calculations has only affected the data term, so that more image channels
does not mean that the operations grow up proportionally. From these experiments,
we conclude that if our main goal resides in the precision of the results, the RGB
information is quite interesting but, if the performance is required, a grayscale method
is an alternative to consider. Besides, we can parallelize the multi-channel framework or
use other numerical schemes such as multigrid [Bruhn06].

The experiments were realized in a computer with the following features: Intel(R)
Core(TM) i7 CPU 860 @2.80GHz. We have used a single core in our tests.
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Table 4.5: AAE and EPE for the Middlebury dataset.
AAE EPE

Sequence Grayscale RGB % Grayscale RGB %
Grove2 2.198o 2.169o 1.34% 0.152 0.149 2.03%
Grove3 5.971o 5.661o 5.48% 0.659 0.612 7.68%
Hydrangea 2.142o 2.015o 6.30% 0.180 0.166 8.43%
RubberWhale 3.453o 3.305o 4.48% 0.103 0.097 6.18%
Urban2 2.438o 2.328o 4.72% 0.359 0.340 5.59%
Urban3 3.539o 3.394o 4.27% 0.386 0.401 -3.74%
Dimetrodon 1.588o 1.458o 8.91% 0.083 0.074 12.16%

Table 4.6: AAE and EPE for the MPI Sintel dataset.
AAE EPE

Sequence Grayscale RGB % Grayscale RGB %
Alley 1 3.343o 3.328o 0.45% 0.374 0.373 0.27%
Alley 2 3.100o 3.065o 1.14% 0.270 0.269 0.37%
Ambush 2 31.83o 31.12o 2.28% 25.14 25.22 -0.32%
Ambush 4 28.24o 27.92o 1.14% 34.73 34.72 0.03%
Ambush 5 29.59o 26.91o 6.80% 2.647 2.234 18.5%
Ambush 6 12.21o 11.95o 2.17% 12.72 12.62 0.79%
Ambush 7 6.924o 6.821o 1.51% 2.072 2.152 -3.72%
Bamboo 1 4.416o 4.237o 4.22% 0.307 0.291 5.50%
Bamboo 2 6.334o 6.084o 4.10% 0.706 0.665 4.11%
Bandage 1 7.367o 7.262o 1.44% 1.061 1.030 3.01%
Bandage 2 9.403o 9.242o 1.74% 1.145 1.074 6.61%
Cave 2 3.219o 3.166o 1.67% 1.707 1.741 -1.95%
Cave 4 13.19o 12.60o 4.68% 7.810 7.681 1.68%
Market 2 8.814o 8.628o 2.15% 1.561 1.607 -2.86%
Market 5 33.68o 32.84o 2.55% 27.37 25.08 9.13%
Market 6 6.491o 6.070o 6.93% 9.245 9.036 2.31%
Mountain 1 6.500o 6.296o 3.24% 1.407 1.273 10.5%
Shaman 2 6.367o 6.335o 0.50% 0.311 0.307 1.30%
Shaman 3 6.105o 6.038o 1.11% 0.508 0.520 -2.31%
Sleeping 1 1.394o 1.290o 8.06% 0.113 0.104 8.65%
Sleeping 2 1.589o 1.541o 3.11% 0.070 0.067 4.47%
Temple 2 7.579o 7.296o 3.88% 1.438 1.456 -1.24%
Temple 3 3.165o 2.991o 5.82% 0.958 0.886 8.13%
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Table 4.7: Runtime for the Middlebury sequences (in seconds).
Runtime

Sequence Grayscale RGB Speed-up (%)
Grove2 45 67 32.83%
Grove3 49 72 31.94%
Hydrangea 22 46 52.17%
RubberWhale 30 48 37.50%
Urban2 50 72 30.55%
Urban3 55 81 32.10%
Dimetrodon 28 47 40.42%

Table 4.8: Runtime for the MPI Sintel dataset (in seconds).
Runtime

Sequence Grayscale RGB Speed-up (%)
Alley 1 63 107 41.12%
Alley 2 49 81 39.51%
Ambush 2 199 150 -32.67%
Ambush 4 70 106 33.96%
Ambush 5 102 135 24.45%
Ambush 6 99 140 29.29%
Ambush 7 97 144 32.64%
Bamboo 1 64 116 44.83%
Bamboo 2 79 108 26.85%
Bandage 1 89 128 30.47%
Bandage 2 93 128 27.34%
Cave 2 84 113 25.66%
Cave 4 86 120 28.33%
Market 2 73 114 35.96%
Market 5 205 205 0.00%
Market 6 104 136 23.53%
Mountain 1 45 81 44.45%
Shaman 2 67 101 33.66%
Shaman 3 89 123 27.64%
Sleeping 1 31 63 50.79%
Sleeping 2 36 68 47.06%
Temple 2 92 131 29.77%
Temple 3 90 124 27.42%
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4.4 Conclusion

In this chapter, we implemented the Spatial and Temporal approaches of the method
proposed in [Brox04]. Both methods are very similar, with the main difference that the
Temporal method performs a continuous smoothing scheme in the Temporal dimension.
This is suitable if the optical flow functions are highly continuous. Nevertheless, the flow
discontinuities are typically degraded by the Temporal regularizer. We observe that, in
the presence of large discontinuities, it is better to use a nonlinear Temporal scheme, like
in chapter 3.

The benefits of the TV-L1 methods are important. They produce piecewise-smooth
flow fields and they are robust against outliers. However, these kind of methods have
several drawbacks: (i) they create rounded shapes near the borders or corners of the
objects; (ii) typically, the edges usually do not coincide with the image contours. These
two problems are due to the fact that the regularization process does not depend on the
image information but on the flow field.

On the other hand, we studied the influence of color in variational optical flow methods.
We developed a multi-channel implementation of the previous Spatial method. Our results
confirm that: (i) the RGB color space offers several benefits in motion estimation without
using new assumptions in the energy model and (ii) the computational cost does not grow
up proportionally to the number of channels.

The multi-channel method decreases the number of outliers and also provides a better
preservation of the discontinuities. In general, the color information allows to increase the
accuracy, as we showed in the experiments. However, the improvement in many sequences
from the MPI-Sintel database is not so evident. These sequences include many complex
effects, such as fog, dust or blur that considerably increase the errors, independently of
the image type. In fact, we observe that the color information ameliorates the solution in
regions not affected by these perturbations.

The use of several channels suggests that the algorithm complexity will be higher
and the computational cost will augment proportionally. Nevertheless, from the
implementation point of view, the modifications introduced in the original model are
straightforward. Even more, the runtime does not increase in line with the number of
channels due to the following reasons: the changes only affect the data term and, typically,
the color information allows a faster convergence of the algorithm. This cost can also be
reduced if we use a multi-core infrastructure. We may conclude that the benefits of
color information in variational optical flow methods compensate the increment on the
execution time.

In the following chapter, we use a multi-channel scheme and introduce decreasing
functions in order to stop the diffusion at image boundaries to avoid the inconveniences
of TV-L1 methods while maintaining its advantages.



Chapter 5

Robust Discontinuity-Preserving
Optical Flow Methods

The preservation of motion discontinuities is still one of the main challenges in optical
flow methods. The variational solutions are obtained as the minimization of a continuous
functional where a smoothness term ensures that our optical flow is piece-wise continuous.
In the other hand, it is critical for the correct preservation of motion boundaries. This
is an important problem due to the fact that a poor preservation of flow edges makes
difficult to separate different moving regions.

These boundaries are normally associated with the contours of the objects.
Nevertheless, an object border does not necessarily imply a flow boundary. For example, it
is not strange that a scene presents adjacent objects that are moving in the same direction.
In this case, these ones probably belong to the same optical flow region without motion
discontinuities between them. Besides, it is challenging to differentiate between object
contours and textures.

Many works have proposed alternatives in order to cope with motion discontinuities.
Several optical flow methods [Proesmans94, Black93, Cohen93, Brox04, Zach07] use
anisotropic diffusion to reduce the effect of outliers and produce sharp boundaries. In
other works [Nagel86, Alvarez00], the regularization process is steered by a diffusion tensor
that depends on the image structures.

This idea has been used in more recent methods like [Sun08, Werlberger09]. The
difference is that they include robust function in order to avoid oversegmenting the flow
field. In [Zimmer09, Zimmer11], the authors include also a motion tensor in the data term.
Other smoothing strategies include bilateral filtering [Xiao06] or non-local regularizations,
like in [Werlberger10].

As we have seen in chapter 4, TV-L1 methods produce piecewise smooth motion fields
at the same time that they deal with outliers and textured areas. Nevertheless, they also

95
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Figure 5.1: Instabilities problem. Top row: first and second frames of a sequence of a
moving taxi. Bottom row: first column, the solution obtained with the Brox et al. method;
second column, the optical flow obtained with a discontinuity-preserving strategy (note
the instabilities that appear in some parts of the motion field); third column, the solution
obtained with a similar technique that deals with this type of instabilities.

tend to create rounded shapes near the borders of the objects. This problem can be solved
with a decreasing function that inhibits the smoothing in the areas where the gradient of
the is strong [Alvarez99].

This strategy is simple and offers interesting results in the literature [Wedel09a, Xu10].
In fact, it is probably the most used alternative. However, it is especially difficult
to determine the correct parameters for the decreasing function. This is problematic
due to the fact that if the parameter are underestimated, the solutions do not
improve with respect to a basic TV approach while, on the other hand, if it is
overestimated it is quite easy that it becomes an ill-posed problem and may introduce
some instabilities [Monzón13]. Figure 5.1 shows an example of these situations using the
Taxi sequence. In the second row, from left to right, we observe the mentioned rounded
shapes that usually appear in the Brox method, the instabilities in the form of blobs that
we may find in a typical discontinuity-preserving method and a correct solution that we
obtain from the method that will be explained in the following.

In our experiments, we notice that this is an important challenge, which is not
anecdotal and usually appears in most of the sequences. In fact, it is quite difficult
to establish a common parameter setting for several types of sequences.

Therefore, we analyze several discontinuity-preserving techniques and the influence of
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the parameters. In particular, we focus on study in the combination of robust functions
and diffusion tensors, including the use of exponential functions. Our study has led us to
propose two efficient strategies to overcome this problem. These approaches reduce the
effect of instabilities and the probability of failures in the selection of correct parameters
for a a broad variety of sequences.

Our first approach ensures a minimum isotropic regularization that prevents the
cancellation of the smoothness term by using a small constant. A similar idea was
introduced in [Ayvaci12] but, in that case, the regularization was carried out for each
component of the optical flow independently. This strategy allows a better performance at
flow discontinuities and it is more insensitive to the discontinuity parameter. Nevertheless,
user intervention is still necessary for choosing it.

In this sense, our second proposal estimates its value from the gradient of the image
and the regularization parameter. This means that the method is automatically adapted
to the image range at the same time that it provides good motion contours. In the
experiments, we observe that it usually obtains accurate flow fields which are close to the
best solutions, without any user intervention.

We also analyze a scheme similar to the robust diffusion tensors proposed
in [Werlberger09] or [Zimmer11]. The diffusion across image contours is controlled with
a robust decreasing function and maintained along the isocontours of the objects. In
this case, the method is very stable with respect to the anisotropic parameter. In the
experiments, we show the capabilities of these strategies and the benefits and drawbacks
with respect to a standard TV-L1 method.

The chapter is organized as follows: in Section. 5.1, we introduce a general framework
for the regularization strategies and we explain each proposal in detail. In Section 5.2, we
show our experimental results. First, we analyze each strategy and their behavior with
respect to the instabilities problem; then, we compare all the strategies together. Finally,
a summary of the main ideas and conclusion are given in Section 5.5.

5.1 Energy Functional

Let Ic1, I
c
2 : Ω ⊂ R2 → Rc be a sequence of images, with x = (x, y)T ∈ Ω, {Ic}c=1,...,C

and C the number of channels. w(x) = (u(x), v(x))T defines the optical flow between
two consecutive images. Functions u(x) and v(x) are the horizontal and vertical
displacements, respectively.

According to this notation, our energy functional reads as

E(w) =

�

Ω

D (I1, I2,∇I1,∇I2,w)dx+ α

�

Ω

R (∇I1,∇u,∇v)dx, (5.1)
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Table 5.1: List of the regularizers analyzed in this work and the corresponding diffusion
tensors, D. I stands for the identity matrix, n = ∇I1

|∇I1| and n⊥ a normalized vector in the

direction of the gradient and Ψ(s2) =
√
s2 + �2, Ψ�(s2) = 1

2
√
s2+�2

, Φ(s2) = 1
λ2 log (1 + λ2s2)

and Φ�(s2) = 1
1+λ2·s2 .

Method Z R (∇I1,∇u,∇v) D (∇I1,∇u,∇v)

Brox 1

Ψ (Z · (|∇u|2 + |∇v|2)) Z ·Ψ� (Z · (|∇u|2 + |∇v|2)) · I
DF e−λ|∇I1|

DF-β e−λ|∇I1| + β

DF-Auto e−λπ |∇I1|

RADT -
Φ
��

nT∇u
�2

+
�
nT∇v

�2�

+
�
n⊥∇u

�2
+
�
n⊥∇v

�2
Φ�((nT∇u)2 + (nT∇v)2)

+n⊥n⊥T

being D and R, the data and the regularization terms, respectively.

As in the original multi-channel scheme, we assume that the brightness and gradient
constancy assumptions are also fulfilled in our framework. Our data term is given by

D (I1, I2,∇I1,∇I2 , w) := Ψ

�
C�

c=1

(Ic2(x+w)− Ic1(x))
2

�

+ γΨ

�
C�

c=1

|∇Ic2(x+w)−∇Ic1(x)|2
�
, (5.2)

with Ψ(s2) =
√
s2 + �2 and � := 0.001.

We use the regularization terms presented in table 5.1: the Brox et al. [Brox04] method,
a robust anisotropic diffusion tensor (in the same way as [Werlberger09]) and three
variants of R (∇I1,∇u,∇v) := Ψ (g(|∇I1|) · (|∇u|2 + |∇v|2)). The decreasing function
that inhibits regularization at object contours is represented by g(·). Some typical
alternatives are

g (∇I1) = e−λ|∇I1|κ , g (∇I1) =
1

1 + λ |∇I1|2
. (5.3)

We use κ := 1 in our experiments. This value has been empirically determined as a
compromised between stability and accuracy, as explained in section 5.2.1.

Table 5.2 shows some well known regularisers in the literature, their formulation and
their main features. In Zimmer et al.. [Zimmer11], the regulariser is decomposed in
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eigenvalues (µ1, µ2) and eigenvectors (r1, r2) of the following structure tensor: Rρ :=�3
c=1 Kρ ∗

�
θc0

�
∇2I

c∇T
2 I

c
�
+ γ

�
θcx

�
∇2I

c
x∇T

2 I
c
x

�
+ θcy

�
∇2I

c
y∇T

2 I
c
y

���
.

5.1.1 Regularization Strategies

Brox approach

R (∇u,∇v) := Ψ
�
|∇u|2 + |∇v|2

�
.

The Brox method has been deeply analyzed in the chapter 4. In the present chapter
we compare its behavior with other schemes. In this sense, we have to remember that
the Brox method proposes a robustification of the Horn-Schunck regulariser. The Total
Variation function creates piecewise and continuous motion regions, but, at the same
time, it creates rounded and dislocated contours.

In Fig. 5.3 we can see the effect of robustification and how the diffusion process is cut
off with respect to the Horn-Schunck flow field.

Regularization with Decreasing Scalar Function (DF)

R (∇I1,∇u,∇v) := Ψ
�
e−λ|∇I1| ·

�
|∇u|2 + |∇v|2

��
.

The DF method includes a decreasing function to avoid smoothing at flow discontinuities.
We see that it effectively reduces the rounded effects at flow edges and obtain more
continuous flows. This is due to the fact that the decreasing functions disable the
smoothing at large image gradients. However, the parameters must be chosen carefully
in order to avoid a degradation of the motion fields.

Regularization with Decreasing Scalar Function and Constant Diffusion (DF-
β)

R (∇I1,∇u,∇v) := Ψ
�
(e−λ|∇I1| + β) ·

�
|∇u|2 + |∇v|2

��
.

The introduction of a small constant, β, ensures a minimum isotropic diffusion, which
reduces the effect of instabilities. This constant must be big enough for ensuring that
there always exists a smoothing process, but, it must be also sufficiently small to preserve
the good features of the former approach. In the experiments we carry out a study to
find a suitable value for β. We conclude that β := 0.0001 is this value.
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Table 5.2: Summary of some regularization strategies proposed in the literature. I, the
identity matrix. g(·) a decreasing function. n = ∇I1

|∇I1| and n⊥ its orthonormal vector.

R is the robust function that can be applied to ’all’ or only n,n⊥ directions. R is the
regulariser.

Rotationally Invariant

Method R. Norm R (∇I1,∇u,∇v)

Horn-Schunck [Horn81] - L2 |∇u|2 + |∇v|2

Alvarez et al. [Alvarez99] - L2 g(|∇I1|) · (|∇u|2 + |∇v|2)
Brox et al. [Brox04] all L1 Ψ (|∇u|2 + |∇v|2)
Monzón et al. [Monzón14a] all L1 Ψ(g(|∇I1|) + β) · (|∇u|2 + |∇v|2))

Nagel-Enkelmann [Nagel86] - L2
∇uTZ∇u+∇vTZ∇v,

Z =
∇I⊥1 ∇I⊥T

1 +β2I

|∇I1|2+2β2

Sánchez et al. [Sánchez13f] all L1 Ψ
�
∇uTZ∇u+∇vTZ∇v

�

Zimmer et al. [Zimmer11] n L1
Ψ
�
u2
r1
+ v2r1

�
+ (u2

r2
+ v2r2), (r1, r2)

eigenvalues of a structure tensor.

Non-Rotationally Invariant

Method R. Norm R (∇I1,∇u,∇v)

Zach et al. [Zach07] - L1 |∇u|+ |∇v|
Xu et al. [Xu10] all L1 g(|∇I1|) · (|∇u|+ |∇v|)
Werlberger et al.

[Werlberger09]
all Huber-L1

���g(|∇I1|2)nnT + n⊥n⊥T
�
∇u

��
�

+
���g(|∇I1|2)nnT + n⊥n⊥T

�
∇v

��
�

Cohen [Cohen93] all L1 |∇u|+ |∇v|
Wedel et al. [Wedel09a] all L1 g(|∇I1|) · (|∇u|+ |∇v|)
Ayvaci et al. [Ayvaci12] all L1 (g(I1,x) + β, g(I1,y) + β) · (|∇u|+ |∇v|)
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Regularization with Automatic Setup of Decreasing Scalar Function (DF-
Auto)

R (∇I1,∇u,∇v) := Ψ
�
e−λπ |∇I1| ·

�
|∇u|2 + |∇v|2

��
.

The DF-β method improves the parameter selection when using decreasing functions.
Nevertheless, the user still needs to find the appropriate value that solves the discontinuity
problem. The DF-Auto strategy offers an interesting improvement, since the discontinuity
parameter, λπ, is estimated automatically. The idea is to adapt its value in order to avoid
any possible instability.

The minimization of (5.1), with the regularisers proposed in this work, provides a
solution in the form

0 =∂uD − α div (Ψ� ·∇u) ,

0 =∂vD − α div (Ψ� ·∇v) .

The instabilities normally arise when the diffusivity approaches zero or, equivalently,
α · Ψ� ≈ 0. In this sense, one way to avoid the ill-posedness is to ensure the following
condition

α ·Ψ� =
α · e−λ|∇I1|

�
e−λ|∇I1| · (|∇u|2 + |∇v|2) + �2

≥ ξ > 0,

with ξ a small constant to avoid the cancellation of the divergence term. In our
experiments, we fix ξ := 0.05 and analyze the reasons behind this value.

Given that the numerator decreases much faster than the denominator and that the
problems appear for large values of the gradient of the image, λ can be calculated at the
beginning of the process by imposing the following constraint: αe−λ|∇I1| ≥ ξ > 0. Then,
we deduce a value of λ for each position as

λ(x) :=
− ln(ξ) + ln(α)

|∇I1(x)|
,

with |∇I1(x)| = max
c

{|∇Ic1(x)|}.
Note that the gradient of the image is a function of x. When the gradient is close to

zero, λ tends to ∞. Therefore, this calculation must discriminate whether a pixel belongs
to an homogeneous region or not. We propose to calculate λπ in each pixel as

λπ := min{λΩ,λ(x)},

with

λΩ :=
− ln(ξ) + ln(α)

f(∇I1)
, (5.4)
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where f(∇I1) is a statistical function of the image gradients.

One possible alternative is

f1(∇I1) = τ ·max
x∈Ω

{|∇I1(x)|},

with τ ∈ (0, 1].

Another alternative is to rely on the histogram of the gradient as

f2(∇I1) = |∇I1(x
�)|,

then, we reformulated the expression as

λΩ :=
− ln(ξ) + ln(α)

|∇I1(x�)| , (5.5)

where x� is such that |∇I1(x
�)| is the rank τ×|Ω| among the image gradients and τ ∈ (0, 1].

In both cases, τ determines the conservative behavior of λΩ. The first alternative, with
τ := 1, means that we use the maximum gradient of the whole image. In the experiments
and the previous work in [Sánchez14] can be seen that it prevents the occurrence of
instabilities, however, it restricts the detection of less prominent motion contours. Varying
the value of τ allows to detect more discontinuities. Nevertheless, it is difficult to fix a
good parameter for all types of sequences, as we can see on the left graphic in figure 5.2.

For the second alternative, we see on the right graphic in figure 5.2 that the errors
decrease with respect to τ and the best results are around 0.9 for all the sequences. In
this sense, a suitable value for τ is τ := 0.94. Since this strategy is more robust we will
use f2(∇I1) in the experiments. Other approaches can be used, such as statistics based
on the the average or median values of the image gradients.

We must note that the value of the regularization parameter α is influenced by the
decreasing function and, therefore, by the λ parameter. Thus, the automatic estimation
of λ offers an indirect benefit, which is a joint normalization with the smoothness weight.
In this sense, λ is adapted to the α value: when it is small, the value of λ also be small.
Even, if α is smaller than 1, the value of λ will become negative and the exponential will
turn increasing, which avoids canceling the regularization term.

Robust Anisotropic Diffusion Tensor (RADT)

R(∇I1,∇u,∇v) := Φ
��

nT∇u
�2

+
�
nT∇v

�2�
+
�
n⊥∇u

�2
+
�
n⊥∇v

�2

with Φ(s2) = 1
λ2 log (1 + λ2s2).
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Figure 5.2: Average End Point Error (EPE) evolution with respect to τ using the two
strategies proposed for λ estimation, f1(∇I1) and f2(∇I1). We see the evolution of the
EPE error for several sequences. For the first proposal, we see that the results are
very stable. However, the second proposal seems more interesting, because the best τ
is bounded between 0.9 and 0.95.

This diffusion tensor resembles a robust variant of the Nagel-Enkelmann operator,
with decreasing functions to mitigate the diffusion across the boundaries of the objects.
The diffusion is performed unconditionally along the isocontours while in the gradient
direction it is modulated by a robust function.

The behavior of the diffusion tensors is depicted in Fig. 5.3. We see how robustification
techniques reduce the influence of noise and allow to obtain piecewise-smooth flow fields.
The solution given by the Nagel-Enkelmann method improves the Horn-Schunck solution
at the edges, as can be seen in the head of the girl.

Both, Brox and Nagel-Enkelmann methods, obtain piecewise-smooth motion fields.
However, the Nagel-Enkelmann method cannot preserve discontinuities when the gradient
of the image is small, as we see in the beard and the eyebrow. The Brox method detects
both of them, although it does not distinguish the hair tufts. The Total Variation tends
to smooth the flow destroying details. It also creates rounded shapes in high curvature
boundaries.

The flow fields obtained by the Alvarez and DF methods are very similar. The most
significant difference between them is the magnitude of the flow, especially in the eyebrow
and beard. Furthermore, the robustification has allowed to detect discontinuities with
small image gradients. In the DF approach, we see sharp discontinuities but small artifacts
close to the old man ear.

The solution obtained by RADT identifies the main objects in the scene. However,
it suffers the limitations of Nagel-Enkelmann and the motion edges are not so clear as in
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the Brox or DF flow fields. The discontinuities are not clearly preserved due to the small
gradients.

I1 I2 True Flow

Horn-Schunck [Horn81] Nagel-Enkelmann [Nagel86] Alvarez et al. [Alvarez99]

N
on

-R
ob

u
st
.

R
ob

u
st
.

Brox et al. [Brox04] RADT DF

Figure 5.3: Top row: two frames of the Shaman 2 sequence and its true flow. Middle row:
the flow fields obtained with the Horn-Schunck, Nagel-Enkelmann and Alvarez methods.
Bottom row: the solutions given by the Brox, a robust diffusion tensor and DF methods.
We see how robust techniques reduce the influence of outliers and their combination with
decreasing functions allows to obtain piecewise-smooth flow fields.

The minimum of the energy functional (5.1) can be found by solving the associated
Euler-Lagrange equations. The data term is given in (5.2) and the smoothing term is
adapted to the diffusion tensors presented in table 5.1. If we minimize (5.1), we obtain
the following system of equations:

0 =Ψ�
B ·

�
C�

c=1

Ic2(x+w)− Ic1(x)

�
· Ic2,x(x+w)

+ γΨ�
G ·

�
C�

c=1

�
Ic2,x(x+w)− Ic1,x(x)

�
· Ic2,xx(x+w)

+
C�

c=1

�
Ic2,y(x+w)− Ic1,y(x)

�
· Ic2,xy(x+w)

�

− α div (D (∇I1,∇u,∇v) ·∇u) ,
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0 =Ψ�
B ·

�
C�

c=1

Ic2(x+w)− Ic1(x)

�
· Ic2,y(x+w)

+ γΨ�
G ·

�
C�

c=1

�
Ic2,x(x+w)− Ic1,x(x)

�
· Ic2,xy(x+w)

+
C�

c=1

�
Ic2,y(x+w)− Ic1,y(x)

�
· Ic2,yy(x+w)

�

− α div(D (∇I1,∇u,∇v) ·∇v), (5.6)

with Ψ�(s2) = 1
2
√
s2+�2

. In order to simplify these equations, we have used the following
notation:

Ψ�
B :=Ψ�

�
C�

c=1

(Ic2(x+w)− Ic1(x))
2

�
,

Ψ�
G :=Ψ�

�
C�

c=1

|∇Ic2(x+w)−∇Ic1(x)|2
�
, (5.7)

and D (∇I1,∇u,∇v) the diffusion tensors shown in Table 5.1.

We discretize the equations using centered finite differences and solve the system by
means of the iterative SOR method. Due to the nonlinear nature of these formulas, the
resolution of these equations requires two fixed point iterations, in order to converge to a
steady state. The warping of I2 are approximated using Taylor expansions.

These equations are embedded in a multi-scale strategy that allows to recover large
displacements. Starting from the coarsest scales, we obtain a solution to the above system,
and then upgrade the value of the optical flow for the next finer scale. We use motion
increments, wm+1 = wm+dwm, so that, in each scale, we compute each increment, dwm,
and the final optical flow is obtained as an accumulative value for all increments. Details
on the discretization of this scheme are given extensively in chapter 4.

5.2 Experimental Analysis

In this section, we analyze separately the different proposals for discontinuity-preserving
optical flow methods using some standard image sequences. In particular, we use a set of
images with geometric figures (a square, a star and two rectangles), presenting pronounced
discontinuities and large displacements and the test and evaluation sequences from the
MPI Sintel [Butler12] and Middlebury [Baker07b] benchmark databases, which allows us
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to show the results in a more general setting. The optical flows are represented using the
IPOL color scheme.

The aim of the experiments is to analyze the influence of the regularization in the
preservation of discontinuities. Therefore, our study will basically concentrate on the
α and λ parameters. In the majority of the experiments, γ has been set to zero. The
remaining parameters have been fixed as in chapter 4.

5.2.1 Analysis of the DF Method

Fixing the value of the κ parameter

In previous works like in [Xu10] or [Wedel09a], the exponential function was defined in
terms of two parameters:

g (∇I1) = e−λ|∇I1|κ . (5.8)

Obviously, this means that the probability of a wrong configuration of the exponential
function is bigger. Therefore, we compare the evolution of the Average Angular Error
(AAE) in figure 5.4 and the Average End-Point Error (EPE) in figure 5.5 for the Yosemite,
Hydrangea, Grove3, Urban2 and Urban3 sequences with respect to the λ parameter and
for three values of κ.

In the case of Yosemite, the results are much more stable with respect to λ and κ than
the other graphics. On the other hand, the graphics for Urban2 and Urban3 are more
unstable, which is probably due to the small values of α. We observe that, typically, when
λ increases, the AAE improves and the method provides better results, even for higher
values of the smoothness parameter. In the EPE graphics, the error evolution is quite
similar. As expected, when κ increases, the value of λ must decrease to achieve better
solutions. At the light of these results, we fix κ := 1 in all the variants of the decreasing
function in order to reduce their complexity.

Analysis of the λ parameter

Next, we use figures 5.6 and 5.7 for showing the influence of λ over the motion field with a
constant α. As expected, we observe that a small λ does not completely stop the diffusion
at contours and underestimates the magnitude of the optical flows.

However, the use of a large α and a correct λ produces that the resulting solutions
are accurate and the discontinuities are correctly preserved, specially in the geometric
figures. Besides, we observe that the exponential allows to fill the occluded regions with
the value from the background. This is achieved because, on the one hand, it overweights
the regularization with respect to the data term and, on the other hand, it does not mix
the information with the flow inside the figures.
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Figure 5.4: Each row depicts the AAE for the sequences using different values of κ: 0.2
in the first column, κ: 1 in the second and κ: 2 in the third.
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Figure 5.5: Each row depicts the EPE for the sequences using different values of κ: 0.2
in the first column, κ: 1 in the second and κ: 2 in the third.
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Nevertheless, we appreciate how the instabilities problem appears when λ is large
and numerous outliers appear in the solutions. These are typically located at flow
discontinuities and, in the case of the star, also inside the figure, probably as the result of
smoothing with the outliers at contours. A similar behavior can be observed in the the
other sequences.

In figure 5.8 we show the evolution of the AAE with respect to the discontinuity
parameter for the sequences of figures 5.6 and 5.7.

We observe that the exponential clearly improves the basic model of Brox et al.
represented in the graphics when DF uses λ = 0. The improvement is more important
in the geometric figures, where there is an important leap in accuracy after a suitable
value. However, we also notice that the solutions rapidly become very unstable for bigger
λ values. The best results are normally obtained for large values of α. In the case of
Grove2, the best result is obtained for a small α.

After these experiments, we conclude that the approach is very promising and the
decreasing function enhances edge detection. However, it is clear that it strongly depends
on the value of the discontinuity parameter. The method works fine in circumstances
where the decreasing function does not cancel the regularization term. When this happens,
it considerably increases the errors as we have seen in these experiments. This problem
is addressed in the DF-β and DF-Auto alternatives.

5.2.2 Analysis of the DF-β Method

In this section, we analyze the influence of β in the DF-β method. We set to zero the
gradient parameter (γ) and use large values for α and λ. Then, we increase β from 0.0001
to 0.01 and observe the results. In figure 5.9, we use the synthetic sequence of the double
rectangle and two real sequences. In the geometric one, we observe that the enhancement
achieved with a small value of β is very good, eliminating the outliers of the DF method.
However, when β >= 0.001, the resulting flow is very smoothed without the separation
between both rectangles.

Interestingly, we observe in the realistic sequences (mainly in the one with a car) a
relative stability in the results for different β values and the blobs of the DF solution
are clearly removed. We also notice that a bigger parameter produces a more continuous
motion field. In fact, the hand of the second sequence disappears when β := 0.01 and the
car contours are dislocated like in Brox solutions.

We may conclude that the value that provides the best results is β := 0.0001, so we
fix it in the experiments.
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α = 500, λ = 0.075 α = 500, λ = 0.085

α = 500, λ = 0.16 α = 500, λ = 0.20

α = 500, λ = 1 α = 500, λ = 0.54

Figure 5.6: Results of the DF method for different values of λ. From top to bottom, the
first frame of each sequence, the true flow and the optical flows obtained.
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α = 50, λ = 0.12 α = 500, λ = 0.02

α = 50, λ = 0.34 α = 500, λ = 0.18

α = 50, λ = 0.66 α = 500, λ = 0.8

Figure 5.7: Results of the DF method for different values of λ. From top to bottom, the
first frame of each sequence, the true flow and the optical flows obtained.
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Figure 5.8: Error evolution with respect to λ using the DF method. We observe that the
parametric range which provides accurate results is small and highly unstable.
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Figure 5.9: Results of the DF-β method for different values of λ. The odd rows show the
first and second images (or the true flow when it exists) and the optical flow obtained
with the basic DF method. The even rows show the results for β := 0.0001, 0.001, 0.01,
respectively.
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5.2.3 Analysis of the DF-Auto Method

The DF-Auto approach is, in our opinion, the most interesting proposal due to the
automatic setup of λ. In Section 5.1, we observe that the DF-Auto uses a ξ parameter
to avoid the cancellation of the divergence term. In this section, we analyze the influence
of this parameter. We use large values for α and λ in order to study the influence of ξ
when outliers appear in the solutions. Figures 5.10, 5.11 and 5.12 show the results for the
double rectangle, Hydrangea and Bandage 2, respectively.

Figure 5.10: Results of the DF-Auto method for different values of ξ. First row: the first
frame, the true flow and the DF solution; Second and third rows: Estimations using DF-
Auto for ξ := 0.00001, 0.0001, 0.001 and ξ := 0.05, 0.1, 0.99, respectively.

In figure 5.10, we see that the DF-Auto provides better solutions than the original
DF method. Small values of ξ still yields instabilities in the optical flow, however, when ξ
is increased, the outliers progressively disappear. For larger values, the solutions become
smoother and, finally, the flow discontinuities are not preserved.

The strategy correctly preserves the flow discontinuities when the corresponding
gradients are similar in the whole image. However, when the gradients in the
discontinuities are much smaller than the maximum gradient, this method works poorly.
In this case, the discontinuities tend to be smoothed due to the difference with respect to
the maximum gradient.
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Figure 5.11: Results of the DF-Auto method for different values of ξ. First row: the first
frame, the true flow and the DF solution; Second and third rows: Estimations using DF-
Auto for ξ := 0.00001, 0.0001, 0.001 and ξ := 0.05, 0.1, 0.99, respectively.

Figure 5.11 depicts the same evolution but using the Hydrangea sequence. The
behavior is similar to the previous sequence and the instabilities disappear when we
increase the value of ξ. However, we observe a stronger regularization of the motion
field. This is due to the big difference between the maximum gradient and the gradients
of other discontinuities, that yields the quantization of the flow in a few planar regions.
In figure 5.12, the ξ evolution in the bandage 2 sequence is quite stable for the range of
ξ := 0.001, 0.05, 0.1, 0.99 with a lower degradation than the other sequences.

Once we have finished these experiments, we observe that ξ := 0.05 achieves accurate
and stable results when using the automatic approach. Therefore, we fix this value for
the DF-Auto.
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Figure 5.12: Results of the DF-Auto method for different values of ξ. First row: the first
frame, the true flow and the DF solution; Second and third rows: Estimations using DF-
Auto for ξ := 0.00001, 0.0001, 0.001 and ξ := 0.05, 0.1, 0.99, respectively.
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5.3 Experimental Results

Once analyzed the different approaches, we now compare them and highlight their main
features. We include in this analysis the RADT method. First, we study the stability of
the methods with respect to λ; second, we carry out a comparison between the different
diffusion schemes in order to study their dependence on λ and their effects over the
regularization. Both studies are focused on the relation between α and the discontinuity
parameter. Then, we present numerical results using the best parameter settings for
Middlebury and Sintel datasets.

We finish the comparison with experiments that summarize the features of our
proposals respect to Brox and a classical decreasing function, showing their parametric
stability and the consequences that they carry out over the flow contours. Then, we
analyze the influence of the smoothness weight with respect to different values of γ. The
parameters α, γ and λ are modified in each experiment.

5.3.1 Error Evolution with Respect to λ

Here, we compare the EPE stability regarding to the discontinuity parameter for several
sequences from the Middlebury and the MPI Sintel datasets in figures 5.13 and 5.14
respectively.

In the graphics, we depict the error evolution of the DF method with a blue line.
According to the results, the exponential function consistently improves the Brox method
(DF with λ = 0), specially in the graphics of Shaman 2, Bamboo 1, Urban3 or
RubberWhale. Nevertheless, once we achieve the best solution, the graphics are quite
unstable and the blobs begin to appear.

We notice that the results of the Shaman 2 sequence are better, providing more stable
results for a large range of λ values. In this case, its images present very bright and dark
areas allowing to increase the parameter and still yielding good solutions.

In contrast, we observe a smoother evolution (violet line) when we include the small
constant of the DF-β approach. In this case, the effects over the motion field are quite
similar even with an extreme parameters. The regularization never gets canceled due to
the β constant and, for most of the sequences, the results improve when DF strongly
deteriorates the solutions.

Interestingly, the results of the DF-Auto proposal (red line) are close to the best
solutions that an exponential scheme can provide. The diffusion is controlled locally for
every pixel using the histogram information. It has the positive effect of adapting the
discontinuity parameter to homogeneous and discontinuous regions.

The automatic method adjusts its values according to the pixel information. As a
consequence, the decreasing function is more incisive in areas with strong gradients while
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Figure 5.13: Average End Point Error (EPE) evolution with respect to λ for MPI
Sintel and Middlebury sequences. The use of decreasing functions improves the solutions
obtained with the Brox approach (DF with λ = 0).

it is more permissive in zones with low variations. This behavior is not possible for the
DF and DF-β methods. These approaches use a unique parameter value for the whole
image. Thus, the control of the diffusion only depends on the gradient strength.

Finally, a green line depicts the evolution of the RADT method. In this case, the
regularization becomes quite similar to the Horn-Schunck method when λ = 0 and makes
that the starting error is usually bigger than other strategies. For this reason, we have
used a range of λ ∈ [0, 50] and we have normalized the results between [0, 1] to fit into the
graphics. However, the RADT approach provides the most stable evolution with errors
that remains almost constant for large values of λ. This is reasonable, because, unlike the
other schemes, there always exists a regularization along the isocontours of the objects.
For a sufficiently large value of λ, the robust function cancels the regularization across
the borders of the object. Then, the results only depend on the isocontour smoothing,
which is always the same regardless of λ.

From these graphics, we conclude that the basic DF scheme is very unstable and
the range of interest values is very small in practice. In contrast, the DF-β and
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Figure 5.14: Average End Point Error (EPE) evolution with respect to λ for MPI Sintel
sequences. The use of decreasing functions improves the solutions obtained with the Brox
approach (DF with λ = 0).

RADT approaches are much more stable and reduces the parameter setup. The DF-
β preserves the accuracy of the basic method but yielding a better stability. Even, in
some sequences the error improves. The DF-Auto method is close to the best result for
many of the sequences and, in most cases, it provides results which are near the best
solutions. On the other hand, the RADT technique is very stable in general. However,
the accuracy is typically worse. The use of more advanced techniques, like in [Zimmer11],
may turn this method more competitive.

5.3.2 Comparison of the Regularization Strategies

Next, we compare the effects over the motion fields for several sequences using the different
strategies and their EPE graphics with respect to λ. The first row of figures 5.15, 5.16, 5.17
and 5.18 show the original image and the resulting graphics for the rectangles, Yosemite
with clouds, Grove2 and Alley 1 sequences. The second and third rows show the different
flow fields and the true flow.
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Note that, in these flows, we have intentionally taken a value of λ which is slightly
bigger than its optimal value for comparing the stability of DF, DF-β and RADT. These
flows are represented in the graphics by the vertical lines and the X marks. Note that
these points do not always appear for the DF graphic because the error is normally too
big.

In general, the flow discontinuities obtained with the Brox method are not aligned
with the object contours. For instance, the method cannot distinguish between the two
rectangles of figure 5.15 and the leafs in Grove2 and the hair tufts of the woman in
Alley 1 are heavily smoothed. The motion contours are better preserved using the other
strategies, principally dealing with the geometric figures.

On the other hand, these four figures are a good example of the high parametric
dependence of the DF method, where numerous instabilities appear while the others
schemes offer a reasonable quality. In fact, the solution of our first proposal is quite
similar to the DF method, but with an important reduction of blobs.

The RADT strategy provides good solutions, like for instance, in figure. 5.18 where
the method correctly detects the woman’s arm and the apple in her hand. Nevertheless,
the diffusion is not completely stopped at the object contours, especially at the skyline
in the Yosemite sequence. Note that this behavior is similar in the Shaman 2 results
showed in figure 5.3, where the small gradients do not allow to steer the diffusion process
conveniently.

Finally, we observe an interesting issue in the graphic of figure 5.17 that we must
consider. According to the error evolution, the differences between the Brox results and
the other approaches are not remarkable. However, the flow fields demonstrate better
boundaries definition but, with some small instabilities that worsen the average error of
the whole flow. In this sense, it is possible for an oversmoothed solution to have the same
error as a flow which is overall more accurate but with some outliers due to instabilities.

In summary, we observe the same behavior as in the previous section. From the
Rectangles sequence we can appreciate the limitations of the Brox method and the benefits
of using the other strategies. The motion contours are much better preserved even though
the EPE errors are not so different with respect to Brox. The graphics show the instability
problems of the DF method and we can clearly see the blobs in the flow images. This
means that there is a correlation between the choice of λ, the appearance of instabilities
and the increase of EPE errors. The RADT method preserves good motion discontinuities
but the flow field is smoother than DF-β and DF-Auto. However, the latter still introduce
some instabilities around the contours, probably at occluded regions, which are not present
at RADT.
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Figure 5.15: First row: The Rectangles sequence and its EPE graphic with respect to λ.
Second row: the true flow and the solutions obtained with Brox and RADT methods,
respectively. Third row: DF, DF-β and DF-Auto solutions using the λ value that appears
in the graphic (0.52). The DF detects the discontinuities but introduces some instabilities.
The DF-β and DF-Auto variants eliminate these instabilities but create slightly rounded
flows. The RADT approach creates straight edges but these are not so sharp.
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Original Image Stability analysis (EPE)
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Figure 5.16: First row: Yosemite sequence and its EPE graphic with respect to λ. Second
row: the true flow and the solutions obtained with Brox and RADT methods, respectively.
Third row: DF, DF-β and DF-Auto solutions using the λ value that appears in the graphic
(0.68). The flow field obtained by Brox visually resembles the true flow, except in the
skyline and the mountain discontinuities. The textures in the mountains create slightly
segmented flows in the other methods. DF also introduces instabilities in high gradient
regions. DF-β and DF-Auto eliminate these instabilities. RADT provides a good flow
except in the skyline.
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Original Image Stability analysis (EPE)
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Figure 5.17: First row: Grove2 sequence and its EPE graphic with respect to λ. Second
row: the true flow and the solutions obtained with Brox and RADT methods, respectively.
Third row: DF, DF-β and DF-Auto solutions using the λ value that appears in the graphic
(0.48).In contrast to the Brox method, the discontinuity-preserving strategies offer an
accurate flow at motion edges. In general, the behavior is similar to Yosemite in Fig.
5.16.
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Original Image Stability analysis (EPE)
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Figure 5.18: First row: Alley 1 sequence and its EPE graphic with respect to λ. Second
row: the true flow and the solutions obtained with Brox and RADT methods, respectively.
Third row: DF, DF-β and DF-Auto solutions using the λ value that appears in the graphic
(0.6). The main differences are located in the woman’s arm and in the apple.
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5.3.3 The Improvement in the Parametric Stability

Next, we compare our two proposals with respect to the original model (Brox) and the pure
decreasing function of the DF method. First, we use the synthetic sequences of Urban2
and Shaman 2 for showing the behavior of the methods with respect to the discontinuity
parameter in figures 5.19 and 5.20, respectively. The first row presents the original image
and the average End-Point Error (EPE) evolution. The second row depicts the true flow,
the result of using Brox and the flow obtained with the DF-Auto approach. The third
and fourth rows show the motion fields for DF and DF-β strategies when increasing λ.

In figures 5.21 and 5.22, we reproduce a similar experiment but using a pair of frames
from the sequences of Rheinhafen and Ettlinger-Tor. In all these figures, our intention is
to show the parametric stability and the effects over the flow contours for λ := 0.1, 0.5, 1.0.

Finally, we analyze the influence of the smoothness weight with respect to different
values of γ.

Once again, the Brox solutions have problems dealing with motion contours, except in
the Urban2 sequence where its flow edges are better aligned with the object borders. We
also notice that a strong regularization has made disappear some cars in the Rheinhafen
and Ettlinger-Tor.

Interestingly, our exponential strategies are accurate at the flow edges. The corners
of the buildings in Urban2 are better preserved compared with the Brox solution and
the borders of the vehicles in Rheinhafen and Ettlinger-Tor sequences are better defined.
However, we also observe a staircasing problem in the floor of the street in Urban2. This
negative effect occurs because the decreasing function depends on the image gradient
treating some image borders as flow edges.

On the other hand, the graphics reaffirm that the DF method is highly unstable once
the best flow is reached while our proposals present a good stability. In fact, the DF-
β approach almost eliminates the instabilities or, at least, they are strongly reduced as in
the Urban2 sequence.

The automatic parameter of the DF-Auto method adapts its value according to the
image gradient providing good optical flows without relevant blobs. This simplifies the
parametric configuration required by the other alternatives.

Regarding to the parametric configuration, our previous experiments where centered
in the relation between the regularization parameter and λ. Now, the purpose of the
figures 5.23 and 5.24 is to observe the dependency of the exponential strategies with
respect to the gradient parameter.

We use the synthetic sequences of Grove2 and Urban3 from Middlebury and Alley
1 and Shaman 2 from the Sintel dataset. The DF, DF-β and DF-Auto methods are
represented with a blue, red and green line, respectively.
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The first and second columns show the EPE evolution with respect to α for γ = 0
and γ = 1. In chapter 4, we concluded that γ = 7 provides the best results for the entire
Middlebury dataset. We use this value for the graphics of the third column of both figures.
We fix λ := 0.2 for DF and DF-β.

According to the results, the behavior of DF and DF-β are similar in many cases.
The results of DF-Auto are more stable in general, especially in the Urban3 and Shaman
2 sequences. This means that the search space of the α and γ parameters is reduced for
the DF-Auto method, so these are easier to configure.
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Figure 5.19: Urban2 sequence. First row: original image and its EPE graphic with
respect to λ. Second row: the true flow and the solutions obtained with Brox and DF-
Auto methods, respectively. Third and fourth rows: Flow fields for increasing values of
the λ parameter (DF and DF-β approaches, respectively). We observe fewer artifacts
over the flow with the new proposals. The automatic approach finds a well-preserved
solution.
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Original Image Stability analysis (EPE)
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Figure 5.20: Shaman 2 sequence. First row: original image and its EPE graphic with
respect to λ. Second row: the true flow and the solutions obtained with Brox and DF-
Auto methods, respectively. Third and fourth rows: Flow fields for increasing values of
the λ parameter (DF and DF-β approaches, respectively). We can observe that DF-
Auto adapts the discontinuity parameter to achieve a good preservation of the motion
contours.
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Original Image Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.21: Rheinhafen sequence. First row: Original image, Brox and DF-
Auto solutions. Second and third row: Flow fields for increasing values of the λ parameter
(DF and DF-β approaches, respectively). We observe an interesting stability of the λ
parameter when using DF-β approach. The new proposals present a better definition of
the motion contours in comparison of Brox method.
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Original Image Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.22: Ettlinger-Tor sequence. First row: Original image, Brox and DF-
Auto solutions. Second and third row: Flow fields for increasing values of the λ parameter
(DF and DF-β approaches, respectively). Some cars disappear in the flow because of a
strong regularization when using Brox. However, the exponential methods preserve these
vehicles and allow an improvement in the object borders.
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Figure 5.23: EPE evolution with respect to α for some Middlebury sequences. From top
to bottom, the γ parameter is 0, 1 and 7. We settle λ = 0.2 for DF and DF-β methods
while it is automatically calculated in DF-Auto.
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Alley 1 Shaman 2
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Figure 5.24: EPE evolution with respect to α for some Middlebury sequences. From top
to bottom, the γ parameter is 0, 1 and 7. We settle λ = 0.2 for DF and DF-β methods
while it is automatically calculated in DF-Auto.
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5.3.4 Regularization Strategies for Stereomatching

In the previous experiments, we used standard sequences widely seen in optical flow
studies. Next, our intention is to show examples of the regularization strategies dealing
with a stereo dataset. In this case, the problem differs because now, we have two views
of a static scene taken from different viewpoints.

Figures 5.25, 5.26, 5.27, 5.28 and 5.29 present a similar structure with respect to the
previous figures but using stereo pairs from the CMLA dataset [Dagobert] and a new color
scheme for the vectorial representation. In particular, we calculate optical flows with the
shiny versions of Salon, Pillar, Oranges, Bastet and Shrub sequences where the camera
makes a fronto-parallel displacement of 50 pixels. In the experiments, we set α := 25,
γ := 1 and λ := 0.1, 0.5, 1.0 for the non-automatic approaches. In Brox, we settle α := 18
and γ := 7 according to the conclusions of chapter 4. These experiments have been made
using the IPOL demos of Sánchez et al.1 [Sánchez13b] and Monzón et al.2 [Monzón16b].
In this sense, we renamed the Brox results as IPOL-Brox.

As expected, the DF approach is very unstable where the new proposals are not.
The automatic strategy achieves very good results at the boundaries and preserves many
details despite of staircasing effects in some areas. On the other hand, DF-β is very stable
and the risk of failures due to the discontinuity parameter is not too elevated.

For instance, in figure 5.25, the objects have been detected with precision. We note
that, even small artifacts such as the sticks of the center table and the lamps, present a
good definition of their contours. A similar effectiveness appears in the sequence of the
pillar (figure 5.26). In fact, these two sequences are very similar.

In constrast, IPOL-Brox does not have the staircasing problem. In both figures, its
TV scheme offers an interesting accuracy and the rounded shapes are not too pronounced
like in other sequences. However, the accuracy of the automatic approach is better in the
arm-chairs and the lamps.

In figure 5.27, the limits of the oranges are well defined and the occlusions has a limited
impact in the flow fields. The regularization parameter allowed to fill the information
inside these regions with the correct values where Brox introduces some mistakes and does
not correctly separate the oranges. Here, although the increment of λ for the DF strategy
derived into instabilities at the contours, it is also true that the method is much stable
regarding to other occasions.

On the other hand, despite of some small incongruences in the left arm of the Bastet
depicted in figure 5.28, many details such as the diadem, the nose and the clothes of the
statue are well preserved with DF-Auto. Even, we can observe the bracelets of the right
arm. These details are not clear in the flow obtained by the IPOL-Brox method.

1http://www.ipol.im/pub/art/2013/21/
2http://www.ipol.im/pub/art/2016/172/
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The DF-β and DF-Auto solutions in figure 5.29 have a few errors in the leafs.
Fortunately, these instabilities does not appear too much and, in contrast, the small
details of the arbust are usually well preserved. We also observe a staircasing problem in
the floor. In this zone, IPOL-Brox presents a better behavior. In these last two figures,
it is clear that the DF method only works well enough for small values of λ. If we
overestimate the parameter, the motion fields are very poors.

Finally, we make a brief comparison between different optical flow methods using
their corresponding IPOL demos. Figure 5.30 shows the results for the Horn and Schunck
method using the demo3 of Meinhardt-Llopis et al. [ML13], the demo4 of the TV-L1
method presented in [Sánchez13a] and the one5 of Garrido et al.[Garrido15] besides IPOL-
Brox and DF-Auto approaches. We renamed the Horn and Schunck method as IPOL-HS
in this experiment.

Here, we observe that the DF-Auto and TV-L1 schemes present an accurate
preservation of the motion details, specially DF-Auto which solution correctly preserves
many details as we observe in figure 5.28. Horn and Schunck achieves a correct result
but it also loses many details and makes a huge mistakes. Garrido et al. provides a poor
solution. These experiments have been made with the corresponding IPOL demos for
each method using their default parameters.

3http://demo.ipol.im/demo/20/
4http://demo.ipol.im/demo/26/
5http://demo.ipol.im/demo/112/



5.3. Experimental Results 135

Left Image Right Image

Ground Truth IPOL-Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.25: Salon sequence. First row: Left and right images. Second row: Ground
Truth, IPOL-Brox and DF-Auto solutions. Third and fourth rows: Flow fields for
increasing values of the λ parameter (DF and DF-β approaches, respectively). The
solutions are very accurate, especially at the contours. This accuracy is also present
in the IPOL-Brox solution despite of strongest regulariser in the column and some other
areas. As expected, the DF method is very unstable respect to λ.



136 Chapter 5. Robust Discontinuity-Preserving Optical Flow Methods

Left Image Right Image

Ground Truth IPOL-Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.26: Pillar sequence. First row: Left and right images. Second row: Ground
Truth, IPOL-Brox and DF-Auto solutions. Third and fourth rows: Flow fields for
increasing values of the λ parameter (DF and DF-β approaches, respectively). Here,
the TV scheme of Brox present an interesting accuracy in the solution and the rounded
shapes are not too pronounced as usual. However, the accuracy of the automatic approach
is better in the arm-chairs and the lamp at the bottom of the scene.
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Left Image Right Image

Ground Truth IPOL-Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.27: Oranges sequence. First row: Left and right images. Second row: Ground
Truth, IPOL-Brox and DF-Auto solutions. Third and fourth rows: Flow fields for
increasing values of the λ parameter (DF and DF-β approaches, respectively). In this
scene, all the approaches present good solutions but with a slightly better behavior of the
DF-Auto proposal.
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Left Image Right Image Ground Truth

IPOL-Brox DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-Auto DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.28: Bastet sequence. First row: Left and right images and their corresponding
Ground Truth. Second row: IPOL-Brox solution and DF evolution with respect to λ.
Third row: DF-Auto solution and results for increasing values of the λ parameter (DF-
β approach). This figure remarks the superior stability of the new proposals respect to
the original exponential method.
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Left Image Right Image Ground Truth

IPOL-Brox DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-Auto DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5.29: Shrub sequence. First row: Left and right images and the corresponding
Ground Truth. Second row: IPOL-Brox solution and DF evolution with respect to λ.
Third row: DF-Auto solution and results for increasing values of the λ parameter (DF-
β approach). Here, we observe the staircasing problems that generate the exponential
functions. The IPOL-Brox regularization is much better in the floor. Nevertheless, the
column and the pot are worst conserved compared to the flow achieved by DF-Auto.
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Original Image IPOL-Brox [Sánchez13b] DF-Auto

Garrido et al. [Garrido15] IPOL-HS [ML13] TV-L1 [Sánchez13a]

Figure 5.30: Comparison between IPOL-Brox [Sánchez13b], DF-Auto, Garrido et
al. [Garrido15], IPOL-HS [ML13] and TV-L1 [Sánchez13a] methods using the Bastet
sequence.
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Table 5.3: Average EPE for the test sequences of Middlebury and Sintel training datasets
λ Middlebury Sintel-final Sintel-clean

IPOL-Brox - 0.326 7.823 5.062
0.1 0.294 7.995 5.195

DF 0.3 0.326 9.048 6.312
0.5 0.559 10.467 7.903
0.1 0.295 8.035 5.190

DF-β 0.3 0.292 8.643 5.823
0.5 0.312 9.194 6.405

DF-Auto - 0.298 8.429 5.929

5.4 Numerical Results

Next, we present numerical results using the complete datasets of Middlebury and Sintel.
Table 5.3 shows the average EPE, using different λ values for DF and DF-β. We observe
that the best average error forMiddlebury is achieved by DF-β with λ = 0.3. Interestingly,
the error does not strongly vary for the other λ values. On the other hand, DF attains
its best result at λ = 0.1. However, the error considerably increases for the other values.
DF-Auto scheme obtains a good solution close to the best error. This behavior is similar
for the exponential approaches using the Sintel dataset. However, IPOL-Brox presents
better numerical errors despite of its worst behavior at motion contours (see Fig. 5.32).
Once again, we renamed the Brox method as IPOL-Brox because the comparison have
been made with our own implementation.

In Table 5.4, we compare our strategies with some of the methods presented in the
Middlebury ranking. We have chosen the techniques that are somehow related to our
approaches. However, note that these are usually much more complex and it is difficult
to draw clear conclusions. We see that the results of DF-β and DF-Auto are better than
IPOL-Brox. In Figure 5.31, we show the computed flows for three sequences. We observe
that the DF-Auto method preserves the contours of the moving objects, even better than
OFH and EpicFlow in many cases. However, we see that the errors at the occlusions
are bigger. This is reasonable because the method does not include any mechanism to
deal with this problem. Note that we have use the Middlebury color scheme in these
experiments.

In Tables 5.5 and 5.6, we show the errors for each sequence of the test dataset of Sintel,
which are published on the web page. We compare with other related methods, such as
EpicFlow, LDOF, Horn and Schunck and IPOL-Brox. We observe that, as in the previous
table, the methods achieve similar results. The proposed methods present competitive
results despite of their simplicity. We also notice that the DF scheme required much more
training to obtain a suitable configuration, whereas DF-β and DF-Auto did not.
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Table 5.4: Best Average EPE for the evaluation sequences of Middlebury dataset
Average EPE Rank

OFH [Zimmer11] 0.360 41.0
EpicFlow [Revaud15] 0.3925 54.3
DF-β 0.4450 68.7
DF-Auto 0.4563 66.9
Brox [Brox04] 0.5013 68.3
TV-L1-improved [Wedel09b] 0.5438 62.7
LDOF [Brox11b] 0.5613 79.2

Table 5.5: Results by sequence on the MPI Sintel Clean test subset
Epic Flow LDOF HS IPOL-Brox DF DF-β DF-Auto

P. Market 3 0.807 1.177 1.450 1.191 1.263 1.263 1.468
P. Shaman 1 0.501 1.612 1.895 1.857 1.649 1.651 1.581
Ambush 1 9.037 34.70 32.97 20.63 22.65 22.69 33.44
Ambush 3 5.657 8.960 10.60 9.233 9.391 9.325 9.880
Bamboo 3 1.030 1.036 1.339 1.106 1.237 1.228 1.344
Cave 3 5.075 7.550 12.41 8.635 8.923 8.929 11.40
Market 1 2.211 3.233 4.650 4.456 4.396 4.392 5.820
Market 4 22.05 38.43 42.94 37.99 38.18 38.06 40.79
Mountain 2 0.225 1.179 0.233 1.025 1.028 1.028 1.094
Temple 1 0.818 1.460 2.056 1.484 1.397 1.395 1.443
Tiger 0.630 1.254 1.064 0.954 1.101 1.097 1.134
Wall 4.330 5.372 6.950 6.554 6.419 6.418 6.375

Table 5.6: Results by sequence on the MPI Sintel Final test subset
Epic Flow LDOF HS IPOL-Brox DF DF-β DF-Auto

P. Market 3 1.290 2.832 2.118 2.057 2.003 2.002 2.080
P. Shaman 1 0.641 2.269 2.463 2.457 2.158 2.159 1.983
Ambush 1 35.18 44.96 40.55 44.92 43.59 43.69 45.50
Ambush 3 8.695 14.13 15.38 14.80 14.32 14.37 15.72
Bamboo 3 1.087 1.107 1.419 1.196 1.355 1.353 1.483
Cave 3 6.207 9.227 13.01 9.704 9.681 9.711 11.31
Market 1 3.150 4.179 5.397 4.809 4.758 4.753 5.401
Market 4 26.55 39.21 40.01 38.26 39.19 39.17 40.79
Mountain 2 1.646 1.618 1.544 1.691 1.767 1.766 1.905
Temple 1 1.295 1.606 2.069 1.741 1.846 1.841 1.909
Tiger 1.147 1.637 1.584 1.799 1.906 1.907 1.987
Wall 4.904 7.294 7.889 7.660 7.594 7.596 7.438
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Table 5.7: Results on the MPI Sintel Clean test subset
Rank EPE all EPE matched EPE unmatched d0-10 s40+

EpicFlow [Revaud15] 7 4.115 1.360 26.60 3.660 25.86
IPOL-Brox [Sánchez13b] 44 7.283 3.150 40.93 5.705 46.80
DF-β 46 7.391 3.153 41.89 5.492 47.84
DF 47 7.406 3.164 41.94 5.504 47.95
LDOF [Brox11b] 48 7.563 3.432 41.17 5.353 51.70
DF-Auto 53 8.480 3.945 45.40 6.445 56.78
HS [Horn81] 55 8.739 4.525 43.03 7.542 58.24
AnisoHuber[Werlberger09] 61 12.64 7.983 50.47 10.457 77.84

Table 5.8: Results on the MPI Sintel Final test subset
Rank EPE all EPE matched EPE unmatched d0-10 s40+

EpicFlow [Revaud15] 9 6.285 3.060 32.56 5.205 38.02
LDOF [Brox11b] 46 9.116 5.037 42.34 6.849 57.30
DF 49 9.188 4.758 45.31 6.821 53.78
DF-β 50 9.196 4.765 45.33 6.829 53.88
IPOL-Brox [Sánchez13b] 51 9.198 4.869 44.48 6.856 53.96
HS [Horn81] 53 9.610 5.419 43.73 7.950 58.27
DF-Auto 54 9.723 5.200 46.59 7.483 57.74
AnisoHuber [Werlberger09] 60 11.93 7.323 49.37 9.464 74.80

In Tables 5.7 and 5.8, we show the global errors. In the Clean dataset, the
IPOL-Brox method provides slightly better results than the strategies with exponential
weighting, whereas in the Final set occurs the opposite. However, the differences are not
meaningful. DF-Auto results are slightly worse because of the errors in a few sequences
with very large displacements and occlusions, like Ambush 1.

Figure 5.32 shows several optical flows. We see that DF-Auto detects many details and
contours in comparison with the other methods. For instance, in the Wall sequence, it
preserves the details of the motion at the face and hair, and the flow is not so regularized
at the contours. In this case, EpicFlow fails to detect the correct motion in two regions.
In Perturbed Shaman 1, EpicFlow provides good results at discontinuities. DF-Auto also
provides good results, better than LDOF and IPOL-Brox. With Temple 1, it fails to
detect the motion of the little dragon. This is due to the problem of small structures with
large displacements, for which the pyramidal structure is not suitable.
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OFH [Zimmer11] EpicFlow [Revaud15] Brox et al. [Brox04] DF-Auto

Figure 5.31: Comparison of several optical flow methods using the Middlebury evaluation
dataset. From top to bottom: The results obtained with OFH, EpicFlow, IPOL-Brox and
DF-Auto for Grove, Urban and Teddy, respectively.



5.4. Numerical Results 145

Perturbed Shaman 1 Temple 1 Wall

Figure 5.32: Comparison of several optical flow methods using the Sintel Clean test
dataset. From top to bottom: The ground truth of three sequences and the results
obtained with EpicFlow [Revaud15], LDOF [Brox11b], IPOL-Brox [Sánchez13b] and DF-
Auto, respectively
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5.5 Conclusions

In this chapter, we studied several strategies for preserving discontinuities in TV-L1 optical
flow methods. In particular, we focused our efforts in the use of decreasing functions and
anisotropic diffusion tensors. Our experiments showed the benefits and drawbacks of all
the strategies. Then, we analyzed the ill-posed problem that may arise when decreasing
functions are used in the regularization term.

The RADT method is very stable and it does not usually introduced instability over
the computed flow field. In this case, the regularization is always present in the isocontour
direction and it detects some details that the other methods do not, such as in Alley 1 or
Grove2. However, we also notice the motion contours are typically smoother, its accuracy
is smaller and it is the most complex approach. Regarding to these, the exponential
strategies are very easy to implement from the basic Brox et al. method.

We observed that the pure exponential function is highly unstable and demonstrated
that the problem of instabilities is not anecdotal, since they appear in any kind of sequence.
As consequence, we proposed two efficient techniques to overcome this situation. In the
experiments, we compared the strategies and showed the better performance at motion
boundaries of our proposals with respect to Brox, RADT and DF methods.

Our first proposal is very stable and it achieves competitive solutions. In fact, it
usually attains the best results for a large range of parameters. Nevertheless, we still
need a correct selection of the parameter.

In this sense, the automatic method computes the best parameter and adapts its
value to the varying range of image gradients. The experiments showed that, without any
user intervention, this approach preserves motion contours while avoiding instabilities.
It also provides good results which are usually close to the best solutions. Besides, our
study of the gradient parameter (γ) also demonstrated a better behavior and an easier
configuration of its value.

From these experiments, we conclude that an exponential strategy offers a precise
definition of motion contours only if the parameters are correctly chosen. Otherwise, it
could provide poorest results than the Brox approach and may turn unstable.

Interestingly, our two proposals yield good optical flows with more stable solutions for
a large range of parameters. Furthermore, we also tested the automatic method with an
stereo dataset and observed very accurate results that preserves many details.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Optical flow is a major theme in the field of computer vision. Despite of more than thirty
years of optical flow studies, there are still some limitations in the current methods like the
occlusion handling, the large displacements and the preservation of motion boundaries.
In this context, the aim of this work was contributing in these problems in two ways:

• The management of the temporal information in optical flow methods.

In chapter 3, we proposed a variational method that uses temporal coherence for
finding more continuous flow fields. This method mixes a nonlinear flow constancy
assumption (FCA) in the energy model and a nonlinear flow regularization scheme
(FRS) at the PDE level. The first conveniently relates flow fields at different time
instants while the second produces continuous flows in time. The approach also
includes a robust anisotropic diffusion operator based on the Nagel-Enkelmann one
and a technique of backward flow to find correspondences back in time. We named
the method as TCOF.

We tested it with synthetic and real sequences to compare the solutions with
respect to its spatial counterpart. We observe that, when using real sequences,
TCOF allows finding continuous flow fields in time and the noise is reduced with
respect to the spatial solution. This is an interesting behavior and shows that
the proposed assumptions correctly fit with the standard nonlinear brightness and
gradient constancy terms.

TCOF provides important improvements, specially in the presence of large
displacements. The proposed scheme is more general than using the continuous
temporal regularization of the flow, with the advantage that it conveniently deals
with continuous and non-continuous velocities.
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• Efficient strategies for dealing with the discontinuity-preserving problem.

In chapter 4, we conducted a thorough analysis of the Brox et al method. We
observed that it produces piecewise-smooth flow fields and it is robust against
outliers. However, it also creates rounded shapes at the motion contours and these
ones usually do not coincide with the image contours. Then, we introduced the
spatial approach into a multichannel framework and evaluated the benefits. We
concluded that the improvement is evident and the computational cost does not
grow up too much and it is justified.

The color information improves the motion boundaries but the method still produces
rounded shapes. This occurs because the regularization process does not depend on
the image information but on the flow field. Introducing a decreasing function in
the regularization term is a possible solution of this situation. For this reason, we
studied several discontinuity-preserving techniques in chapter 5. In particular, we
analyzed the use of decreasing functions and anisotropic diffusion tensors.

We noticed that this strategy effectively provides accuracy at the flow edges but,
if we do not carefully choose the parameters, it considerably increases the errors in
the computed motion field. The reason is due to the fact that a wrong parameter
introduces instabilities in the form of independent blobs of vectors with large
magnitude. Furthermore, we have seen that this big problem occurs in most of
the sequences.

In this sense, we proposed two efficient strategies to overcome this situation. The
first strategy combines the decreasing function with a small constant that ensures
a minimum isotropic smoothing while the second is a fully automatic approach
that adapts the diffusion depending on the histogram of the image gradients. We
compared their error evolution with respect to the discontinuity parameter and they
correctly reduce the instabilities problems. Besides, both proposals present a good
performance at flow discontinuities.

Our first proposal is very stable and provides very competitive solutions close to the
best results. Nevertheless, we think that the automatic approach is better because
it normally obtains the best solutions and without any user intervention. In our
opinion, this feature make the DF-Auto method interesting for real applications.

6.2 Future Work

The different methods described in this thesis achieve good results but there still remain
several issues that can be done.

The spatio-temporal method could be more consistent using the redundancy that
usually appears between consecutive frames. In some occasions, the information in the
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following frames is quite similar. We can use this situation for choosing future frames for
creating a better matching criteria.

The problem due to the occlusions is another important issue that can be improved
with techniques of backward flow. The major effort should be oriented to improve the
filling strategies and removing outliers.

The proposals exposed in chapter 5 improve the detection of flow limits. In this sense,
applying these regularization strategies in the temporal method could be a good solution
to achieve a more consistent flow. The information of the whole sequence could gradually
increase the quality of the flow.

On the other hand, we think that the automatic strategy offers good solutions but it
could be improved if we include the β constant in the calculation. This could allow us to
choose a smaller τ in f(∇I1) (5.5), so that we may detect more discontinuities. The use
of this constant will still ensure a good stability.

This kind of regularization schemes fails to detect all the motion discontinuities if there
exists a broad range of image and flow gradients. In future works, we will investigate
more reliable ways of combining this information in order to determine the correct flow
discontinuities. For instance, we observe staircasing problems in some solutions. This
is because the decreasing function depends on the image gradient treating some image
borders as flow edges. A possible solution may be including the flow information in
the function. In this sense, the flow gradient can be helpful to distinguish the motion
boundaries from textured zones.

Another issue that we want to address is to develop temporal approaches for video
stabilization. The temporal information could be useful for this type of applications.

In this thesis, we used a pyramidal structure to estimate large displacements. However,
it is interesting to use other strategies like for instance, nearest neighbors, to obtain a
region-based matching method for determining the correspondences between the images.
Then, the method is based on a segmentation of the images and an exhaustive search for
the plausible displacements.





Appendix I: Estimation of the
backward flow

The nonlinear temporal method exposed in chapter 3 requires backward flow for its
computation. This can be directly obtained from the forward optical flow when the
transformation is bijective. Nevertheless, the presence of occlusions and disocclusions
makes this problem difficult. A occluded region occurs when several correspondences
arrive to the same position in the target image and disocclusions when no correspondences
can be established in one location. Thus, the relation between the information in these
cases is not bijective and it is not possible to estimate the inverse map directly.

There is a wide range of methods [Barron94, Zitová03, Maintz98] that requires
the estimation of the inverse optical flow. Typically, these approaches compute the
correspondences from one image to another, which is normally non congruent with its
registration in the opposite direction. There exist many symmetric registration methods
that look for congruent solutions in both directions. These symmetric methods have
arisen in the fields of optical flow and in non-rigid registration problems in general. The
estimation of the inverse optical flow, or the inverse registration map, is necessary in
this kind of methods and has shown to provide better results than the one-directional
solutions.

Another interesting application is in the field of medical imaging for computing
anatomical atlases. Atlases are useful for studying and comparing the anatomy of different
patients. In order to compute these atlases, a reference model is registered with respect
to several patient models. Then the inverse registrations from the patient models to the
atlas are needed for averaging the values and create a more realistic model.

The inverse flow has also been used in methods where it is necessary to track the flow
in previous time instants. If we have a large sequence of images, then it is interesting to
obtain continuous and congruent flows through the frames. The backward flow allows
to search for the correspondences in the previous frames and create spatio-temporal
constraints that yield continuous flow fields in time.

Here, we present four algorithms proposed in Sánchez et al. [Sánchez15]. These ones
use directly the forward optical flow and the image intensities for their solutions. We
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assume that the forward flow has been computed and we need to estimate the inverse
flow with high precision. These algorithms can be classified in two main groups: (i) flow-
based methods that only depend on the input flow field; and (ii) image-based methods
that also rely on the information of the images. We will show that the former are efficient
in running time and memory requirements, whereas the latter are more accurate and
stable. The interpolation strategy is an important issue: vectors are typically given in
float precision, so we need to interpolate among several values to get the result in a discrete
position. Most state-of-the-art methods use nearest neighbor or linear interpolation. We
compare both strategies.

The proposed methods automatically deal with occlusions. In this regard, we may
find two possible situations: occlusions due to objects that move faster in the scene,
typical in fronto-parallel stereoscopic sequences; or, in the most general case, occlusions
produced by any static or moving object. The former situation is interesting in that it
only depends on the forward flow, which leads to the aforementioned flow-based methods;
see [Sánchez13d]. In a general setting, the flow itself is not enough and we also need to use
the images (image-based methods), so that the color information allows us to discriminate
between several candidates; see [Sánchez13e].

Disocclusions are more difficult to deal with, since no vector points at these regions.
In this case, there is a lack of information and the best we can do is to guess their values
from the surrounding estimates. These regions can be filled in a post-processing step. We
analyze three filling strategies based on the minimum and average values around the area,
and an oriented filling strategy.

I.1 Notation and General Framework

Let I1(x) and I2(x) be two color images in a sequence, with x = (x, y), and w(x) =
(u(x), v(x)) the vector field that establishes the correspondences between the pixels of
the images. w(x) is said to be dense if it is a mapping of every pixel in the first image
to the pixels in the second image. We define the backward flow, w∗(x) = (u∗(x), v∗(x)),
as the inverse of w(x). w∗(x) puts in correspondence the pixels in the second image with
the pixels in the first image. The forward and backward flows can be related as:

w(x) = −w∗(x+w(x)) or w∗(x) = −w(x+w∗(x)). (I-1)

This relation can be intuitively derived from the graphic depicted in figure I-1. The
corresponding positions are given by the warping function, x2 → x1 +w(x1).

Typically, w(x) is not bijective and it is not possible to estimate w∗(x) in the whole
domain, like in occluded and disoccluded regions.
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Figure I-1: Relation between the forward, w(x), and backward, w∗(x), optical flows.

Since occlusions and disocclusions are common in most natural sequences, w(x) is in
general not invertible. Thus, we have to deal with these two problems in order to find
dense inverse functions. These are easy to detect but their solutions have to be overcome
from different perspectives. Looking at figure I-2, we observe that occlusions appear in
the direction of the moving objects and disocclusions appear in the opposite side.

We also find two possible situations: occlusions may appear when moving objects
occlude other background objects, like depicted in figure I-2; on the other hand, occlusions
may also occur when objects displace behind other objects, like in figure I-3. The former
situation is typical in fronto-parallel stereoscopic sequences, so we will refer this situation
as the stereoscopic occlusion. It can be efficiently solved, like proposed in [Sánchez13d].
The latter usually appears in general optical flow problems [Sánchez13e].

We call this last situation the street-lamp occlusion, as it typically appears in traffic
sequences where a car moves behind a street lamp. Looking at figure I-3, we observe
that occlusions are not only present in front of the square but also inside it, since these
pixels fall exactly behind the bar in the second image. The effect of this occlusion is like
projecting the bar into the square at a distant equivalent to its motion.

The problem of occlusions can be solved by means of a selection process. Several
vectors point at the same position, and we need to select the appropriate one. The
selection problem may only depend on the vector field itself, as it happens in the
stereoscopic occlusion. In this case, we can select the value corresponding to the biggest
motion. On the other hand, the more general case of the street-lamp occlusion requires
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I1 I2

Figure I-2: Stereoscopic Occlusion: when the blue square moves horizontally, it creates a
disocclusion and occlusion before and after the square, respectively.

not only the values of the optical flow but also the image intensities: we have to select
the motion associated with the pixel that is finally visible in the second image.

In the disocclusion problem, there is no information available for a given position. This
can be addressed as a filling procedure, selecting the information on the neighborhood
of the pixel. Notice the symmetric behavior between occlusions and disocclusions from
figures I-2 and I-3.

I1 I2

Figure I-3: Street-lamp Occlusion: the blue square moves behind the static central bar.
Occlusions appear in front of the square and also inside the square, induced by the static
bar.

Figure I-4 shows two examples of inverse optical flows. The motion fields are shown
using the IPOL color scheme. In this case, we have used two sequences from the
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Figure I-4: Two examples using sequences from the Middlebury benchmark database: the
first column shows the Grove2 and Urban3 sequences, respectively; the second depicts
the forward optical flows; the third, the inverse optical flows; and the last one, the
corresponding disocclusions.

Middlebury benchmark database. The forward optical flows are known (second column)
and the inverse flows are calculated using one of our algorithms (third column). We also
show the disocclusion maps in the fourth column.

In the following section we explain the algorithms. These algorithms have been
grouped in two categories: nearest neighbor algorithms that use a single value from the
forward flow; and interpolation algorithms that compute an average between the values
that get close to a position. These are explained in subsections I.1.1 and I.1.2, respectively.
Nearest neighbor algorithms only need one image pass, while the others need two passes.

These categories are further divided in flow- and image-based strategies. The flow-
based strategy uses the information of the forward optical flow, whereas the image-based
strategy also uses the information of the image intensities. The former can be applied in
the stereoscopic occlusion case and the latter in the more general street-lamp occlusion.

I.1.1 Nearest Neighbor Algorithms

Our first algorithm is based on the optical flow information. It is highly efficient and
provides good results for the stereoscopic occlusion case. Algorithm 1 depicts the steps
to compute the backward flow. This algorithm is very fast since only one pass through
the image is necessary. It does not use any temporal buffer because the operations are
carried out in the output backward flow.

|·| stands for the Euclidean norm of a vector. At the beginning, we initialize the inverse
flow to zero. In each pixel, x = (x, y), we compute the corresponding position in the other
image, x+w(x). Normally, this position will lie in the middle of four pixels.
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We obtain the neighbors around this position, given by {x1,x2,x3,x4}, and the
interpolation weights, w1, w2, w3, w4, shown in figure I-5. Then, we estimate the magnitude
of the forward flow and compare it with the magnitude of the already stored backward
flows.

xw

x1

x3

x2

x4

w4 w3

w2 w1

Figure I-5: Weights.

If the value of the forward magnitude is bigger than the previous stored value, and the
corresponding weight is bigger than a given threshold, then we keep the negative value
of the flow at that position. This threshold has been set to 0,25 because it represents
the situation when the correspondence falls exactly in the middle of the pixel. Another
alternative is to use distances instead of areas. Nevertheless, the behavior is very similar,
but we will prefer areas for the interpolation algorithms.

In this way, occlusions are automatically handled by the algorithm: if there are
collisions in one position, we retain the flow with higher magnitude. In the last step,
we fill disocclusions, which correspond to the positions that have not been visited in the
backward flow.

If we want to deal with the street-lamp occlusion case, then we need more information
than the optical flow. Now the objects with the smallest motions can occlude other fast
moving objects. Thus, the magnitude of the flow cannot be a discriminant.

We use the intensities of the images as discriminant. We select the motion
corresponding to the pixel with the most similar intensities in both images. Algorithm
2 shows the steps of the new method. This algorithm is also efficient and applies to any
configuration. Additionally, we need a buffer to store the pixel similarities, so that, in
case of an occlusion, we retain the value corresponding to the most similar value.

The input data includes the forward flow and both images. At the beginning, we
initialize the buffer to a big number. Then, the algorithm goes over each position of the
vector field, carrying out the same steps as in the previous algorithm. The main difference
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is that it estimates the similarity between the images at the given positions. It assigns
the negative value of the original flow to each of the neighbors, if it has the best similarity
and lies close to the destiny pixel.

Notice that similarities are stored in a buffer, so that when there are several pixels
that arrive to the same position, i.e., in the case of occlusions, the algorithm retains the
value corresponding to the most similar pixels in both images. In this case, the use of the
buffer allows us to automatically deal with occlusions. This algorithm is also very fast,
since only one pass through the image is necessary.

For the similarity measure, we have used the RGB color information. This may pose
some drawbacks if there are brightness changes, which is typical in real sequences. Other
robust similarity measures can be used, based on the gradient or the curvature of the
images. The noise of the images may also affect the similarity measure. A simple approach
to mitigate this problem is to convolve the images with a Gaussian kernel.

Figure I-6: Dealing with street-lamp occlusions: left, the Urban2 sequence; middle, result
of Algorithm 1; and right, result of Algorithm 2. The first algorithm does not detect the
motion of the bars and the second algorithm introduces some errors due to brightness
changes (see yellow ellipses).

Figure I-6 shows an example of the street-lamp occlusion case. We have modified
the Urban2 sequence from the Middlebury benchmark database by introducing two static
bars. We show the results for Algorithms 1 and 2. We observe that the first algorithm
can not correctly deal with the static bars. On the other hand, the second algorithm can
cope with this situation, but it does not detect the correct motion in a few pixels of the
front building. This region coincides with an occlusion and the colors are very similar in
several regions.

I.1.2 Interpolation Algorithms

Given the discrete nature of images, normally the correspondences fall among several
pixels in the other image. In fact, many correspondences may get around one pixel. It
could be more convenient to use all this information and compute an average between
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these values. In the previous algorithms, we have selected one value; therefore we are
introducing a shift on the positions of the inverse flow.

In this section we propose two algorithms addressing this problem. We note that,
although it is interesting to compute an average between the correspondences that get
around a pixel, at flow discontinuities or occlusions we have to average only with the
values of their corresponding regions. This is necessary to avoid degrading these areas.

In order to compute the inverse flow, we calculate the weighted average of the flows,
using the following equation:

w∗(x) = −

�
xi∈Ni

wiw(xi)

�
xi∈Ni

wi

, (I-2)

where Ni ≡ {xi : |xi +w(xi)− x| < 1}, i.e., Ni is the set of correspondences that fall
around x.

The first algorithm in this section relies on a procedure that is in charge of computing
the weighted average (I-2). This formula is computed iteratively, as we find new values
around a position.

This procedure receives the forward optical flow, w, its magnitude, d, the weight as
depicted in figure I-5, wght, and the values stored at this position d∗, w∗ and wght∗.
If the current flow magnitude, d, is within a threshold (MOTION TH) of the stored flow
magnitude, then we accumulate the values for w∗ and wght∗, in order to progressively
estimate (I-2). Otherwise, if the current magnitude is bigger than the stored one, then
we initialize these variables to the current values. In this procedure, we use a constant,
MOTION TH, that is used to detect similar motions. By default, its value is equal to 0, 25.
The second condition allows us to preserve the flow discontinuities and select the correct
value at occlusions.

Algorithm 3 is an improvement with respect to Algorithm 1. The steps of both
algorithms are essentially the same, with the following differences: the new method
uses the buffers avg h and wght∗ to accumulate the value of the additions in (I-2);
an additional buffer, d∗, to store the calculated flow magnitudes; and four calls to the
previous procedure, to select the correct motion in each position. Finally, the algorithm
calculates (I-2) using the accumulation buffers. This is carried out through another image
pass.

This algorithm is also efficient. It uses two image passes to compute the inverse flow:
one for creating the intermediate buffers and another for calculating (I-2). The number
of operations in the second pass reduces to two divisions and two assignments per pixel.
The main advantage is that the accuracy of the calculated inverse flows is higher.

The fourth algorithm relies on another procedure that plays the same role as the
previous one. If the magnitudes of the current and stored flows are similar, then
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the procedure accumulates the information. Otherwise, the procedure keeps the flow
associated with the most similar pixel intensity. Thus, the main difference is that the
discriminant for selecting a value depends on the RGB similarity.

Algorithm 4 computes flow averages and uses the image intensities to select the correct
flow. This new method uses the buffers, avg h and wght∗ to accumulate the value of the
summations in (I-2); an additional buffer, dI, to store the calculated RGB differences of
both images; and four calls to the previous procedure, to select the correct motion in each
position. A final image pass is necessary to calculate (I-2).

The performance of this algorithm is similar to the previous algorithm. The benefit is
that it properly works for stereoscopic and street-lamp occlusions. Nevertheless, it carries
out some more operations for calculating the RGB differences between the images. Note
that these interpolation algorithms can also cope with occlusions and respect the flow
discontinuities.

The algorithms explained in this section can be easily extended to higher order
dimensions. This is useful, for instance, in three dimensional medical images. In this
case, the problem of occlusions and disocclusions is not important and the accuracy of
these methods can be even higher.
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Algorithm 1: Inverse Flow

Input: w
Output: w∗

1 Initialize w∗ to 0

2 foreach position x do
3 xw ← x+w(x)

4 Find the four neighbors of xw : {x1,x2,x3,x4}
5 Compute the bilinear interpolation weights: w1, w2, w3, w4 (see figure I-5)

6 d ← |w(x)|2
7 d1 ← |w∗(x1)|2
8 d2 ← |w∗(x2)|2
9 d3 ← |w∗(x3)|2

10 d4 ← |w∗(x4)|2

11 if w1 ≥ 0, 25 and d ≥ d1 then
12 w∗(x1) ← −w(x)
13 end

14 if w2 ≥ 0, 25 and d ≥ d2 then
15 w∗(x2) ← −w(x)
16 end

17 if w3 ≥ 0, 25 and d ≥ d3 then
18 w∗(x3) ← −w(x)
19 end

20 if w4 ≥ 0, 25 and d ≥ d4 then
21 w∗(x4) ← −w(x)
22 end

23 end

24 FillDisocclusions
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Algorithm 2: Inverse Image-based Maximum Flow

Input: I1, I2,w
Output: w∗

1 Initialize each position of a buffer to a big number

2 foreach position x do
3 xw ← x+w(x)

4 Find the four neighbors of xw : {x1,x2,x3,x4}
5 Compute the bilinear interpolation weights: w1, w2, w3, w4 (see figure I-5)

6 d1 ← |I1(x)− I2(x1)|2
7 d2 ← |I1(x)− I2(x2)|2
8 d3 ← |I1(x)− I2(x3)|2
9 d4 ← |I1(x)− I2(x4)|2

10 if w1 ≥ 0, 25 and buffer(x1) ≥ d1 then
11 w∗(x1) ← −w(x)
12 buffer(x1) ← d1
13 end

14 if w2 ≥ 0, 25 and buffer(x2) ≥ d2 then
15 w∗(x2) ← −w(x)
16 buffer(x2) ← d2
17 end

18 if w3 ≥ 0, 25 and buffer(x3) ≥ d3 then
19 w∗(x3) ← −w(x)
20 buffer(x3) ← d3
21 end

22 if w4 ≥ 0, 25 and buffer(x4) ≥ d4 then
23 w∗(x4) ← −w(x)
24 buffer(x4) ← d4
25 end

26 end

27 FillDisocclusions



162

Procedure SelectMotion(d,w, wght, d∗,w∗, wght∗)

1 if wght ≥ 0, 25 then
2 if abs(d− d∗) ≤ MOTION TH then
3 w∗ ← w∗ +w ∗ wght
4 wght∗ ← wght∗ + wght

5 else if d ≥ d∗ then
6 d∗ ← d
7 w∗ ← w ∗ wght
8 wght∗ ← wght

9 end

10 end

Algorithm 3: Inverse Average Flow

Input: w
Output: w∗

1 Initialize buffers d∗, avg h, wght∗ to 0

2 foreach position x do
3 xw ← x+w(x)

4 Find the four neighbors of xw : {x1,x2,x3,x4}
5 Compute the bilinear interpolation weights: w1, w2, w3, w4 (see figure I-5)

6 d ← |w(x)|2

7 SelectMotion (d,w(x), w1, d
∗(x1), avg h(x1), wght

∗(x1))
8 SelectMotion (d,w(x), w2, d

∗(x2), avg h(x2), wght
∗(x2))

9 SelectMotion (d,w(x), w3, d
∗(x3), avg h(x3), wght

∗(x3))
10 SelectMotion (d,w(x), w4, d

∗(x4), avg h(x4), wght
∗(x4))

11 end

12 foreach position x do
13 if pixel x is not a disocclusion then

14 w∗(x) ← −avg h(x)
wght∗(x)

15 end

16 end

17 FillDisocclusions
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Procedure SelectImageMotion(dI,w, wght, dI∗,w∗, wght∗)

1 if wght ≥ 0, 25 then

2 d ← |w|2
3 if abs(d− d∗) ≤ MOTION TH then
4 w∗ ← w∗ +w · wght
5 wght∗ ← wght∗ + wght

6 else if dI∗ ≥ dI then
7 d∗ ← d
8 dI∗ ← dI
9 w∗ ← w · wght

10 wght∗ ← wght

11 end

12 end
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Algorithm 4: Inverse Image-based Average Flow

Input: I1, I2,w
Output: w∗

1 Initialize buffers avg h, wght∗ to 0

2 Initialize buffer dI to a big number

3 foreach position x do
4 xw ← x+w(x)

5 Find the four neighbors of xw : {x1,x2,x3,x4}
6 Compute the bilinear interpolation weights: w1, w2, w3, w4 (see figure I-5)

7 d1 ← |I1(x)− I2(x1)|2
8 d2 ← |I1(x)− I2(x2)|2
9 d3 ← |I1(x)− I2(x3)|2

10 d4 ← |I1(x)− I2(x4)|2

11 SelectImageMotion (d1,w(x), w1, dI(x1), avg h(x1), wght
∗(x1))

12 SelectImageMotion (d2,w(x), w2, dI(x2), avg h(x2), wght
∗(x2))

13 SelectImageMotion (d3,w(x), w3, dI(x3), avg h(x3), wght
∗(x3))

14 SelectImageMotion (d4,w(x), w4, dI(x4), avg h(x4), wght
∗(x4))

15 end

16 foreach position x do
17 if pixel x is not a disocclusion then

18 w∗(x) ← −avg h(x)
wght∗(x)

19 end

20 end

21 FillDisocclusions
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I.1.3 Filling Disocclusions

The last step of the algorithms is to fill disocclusions. These are regions with no
correspondences in the source image, so we get empty spaces in the backward flow. It is
not possible to find an exact solution if only two images are taken into account. Probably,
the use of more frames may allow us to uniquely identify the values inside these regions.

The best we can do is to guess the information from the neighbor values. We propose
three filling strategies: on the one hand, we use a minimum fill strategy that looks for
the minimum value around the disocclusion; then, we propose an averaging solution that
computes the average from the values around the region; finally, we propose an oriented
filling scheme that searches the value in the opposite direction to the flow.

I.1.4 Minimum Fill Strategy

The min-fill strategy is justified in the case of stereoscopic occlusions. In this situation,
disocclusions are associated with the lowest moving objects, so it seems reasonable to
select the minimum motion. In [Sánchez13d], we analyzed two min-fill strategies.

The first strategy uses a connected component labeling process to group the regions. It
assigns a label to each region, finds a unique minimum around each area, and then assigns
the value to each position inside. This strategy is simple and fast. It works correctly if
the size of the regions is small. However, when regions are large, it may assign values
which are far from the position.

The second strategy finds the minimum value that is near the current position. We
go through the image and try to fill disocclusions using a fix-sized window. The size of
the window may not be large enough to attain values outside the region. In this case,
the process is run again to fill the remaining disocclusions. The default window radius is
5 in the experimental results. In the experimental results, we use this strategy, since it
usually provides better results, as shown in [Sánchez13d].

I.1.5 Average Fill Strategy

An alternative to the min-fill strategy is to use an average filling. Instead of selecting a
unique value, we compute an average in a fix-sized window. The process is similar to the
previous approach: we accumulate the values and assign the average to its corresponding
position if the number of values is greater than a threshold. This threshold is equal to
the windows radius (5 in the experiments). This process is carried out iteratively until
every disocclusion is successfully filled.
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This approach is a compromise between both types of occlusions: it is not going to
work as well as the min-fill strategy for the stereoscopic case, but it should outperform
this strategy for the street-lamp occlusion.

Figure I-7: Comparison of filling strategies. In the first row: first column, the left image;
second, the true flow; and third, the inverse flow with disocclusions in pink. In the second
row: first column, the solution using the min-fill strategy; second, using the average-fill
strategy; and third, using the oriented-fill strategy.

I.1.6 Oriented Fill Strategy

We propose another strategy that takes into account the information of the flow
orientation. If one object moves in one direction, it seems reasonable that the motion
at disocclusions corresponds to the motion that is in the opposite direction.

In this sense, what we do is the following: we first compute the search vector for each
position as − w(x)

|w(x)| ; then, it iterates until it finds a value outside the disoccluded region
in this direction.

Note that we use the forward flow to estimate the vector orientation. This probably
works well for the stereoscopic occlusion, since normally the motion corresponds to the
backward object. In the street-lamp case, this strategy works properly if the disocclusion
falls inside the correct object.

An improvement to this strategy is to use, not only one vector in the opposite direction,
but also its orthogonal vectors, so that the filling process searches for information in more
directions. This can be efficiently addressed through an oriented diffusion process.
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In figure I-7 we compare these filling strategies. We use a simple sequence of a star
moving fifteen pixels horizontally. This sequence is interesting because disoccluded regions
are large and complex (see the image on the first row and last column). The performance
of the average-fill strategy (second row in the middle) is the poorest. The min-fill strategy
provides good results, but when the search window is not large enough, then it takes values
from the motion of the star. Finally, the oriented-fill strategy provides the best results in
this case.

I.1.7 Analysis of the Inverse Optical Flow Algorithms

In order to evaluate the methods, we use an error measure based on the following
reprojection error : we compute the backward flow twice, (w∗(x))∗; then, we compare the
result with the original true flow using the average End-point Error (EPE) and Angular
Error (AAE), as explained in [Baker07b]. figure I-8 shows the three functions – w(x),
w∗(x) and (w∗(x))∗– for the Urban2 sequence. The last two functions have been computed
using Algorithm 1 and the min-fill strategy.

Notice that (w∗(x))∗ is slightly different than w(x), especially at occlusions. In the
experimental results we will be using the EPE and AAE between these two functions
for comparing the accuracy of the algorithms. We will use the test sequences from the
Middlebury benchmark database [Baker07b], which provides the correct ground truths.
Unfortunately, there are some sequences in the database that mix the information of
occlusions with the optical flows, so we will only use these when possible.

Another alternative is to use a symmetric error metric based on (I-1) as
|w(x) +w∗(x+w(x))|. This has been previously used in the symmetrical optical flow
method explained in [Alvarez07]. However, we need to use an interpolation method to
estimate w∗(x + w(x)), which will introduce a bias in the computed errors, especially
at discontinuities. The advantage of the previous metric is that it only depends on the
inverse calculations.

I.1.8 Analysis of Inverse Flow Accuracy

In this section we analyze the methods without taking into account disocclusions. Figures
I-9 and I-10 show the results for Algorithm 1.

Disocclusions are marked in pink. We can see that the precision of the inverse optical
flow seems high and occlusions are correctly handled by the algorithm. Disocclusions are
large in some sequences like, for instance, in the building or tree sequences.

The EPE and AAE results are shown in Tables I-1 and I-2, respectively. The best
result per row is in bold letters and the second in italics. The first algorithm provides
good results but these are the poorest in the table. This method is interesting because of
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I1 w(x)

w∗(x) (w∗(x))∗

Figure I-8: Reprojection error: first image in the top row, the Urban2 sequence from the
Middlebury database; second image, the true flow; first image in the bottom row, the
inverse flow, w∗(x); and, second in the bottom, the inverse of the inverse flow, (w∗(x))∗.

its simplicity: it only depends on the optical flow, does not use any additional buffer and
requires less calculations. The third algorithm has the same features as the first one, but
it computes averages with several values per position. Its accuracy is slightly better for
most sequences and much better in sequences where the flow is continuous or divergent,
like in Dimetrodon and Yosemite.

The best EPE results are obtained for Algorithms 2 and 4. These two rely on the
image intensities in order to select the appropriate inverse value. This means that the
pixel information is more discriminant and reliable than the flow data.

It is interesting to note that, while the second algorithm outstands in most of the EPE
results, the fourth wins in the AAE comparisons. This is because Algorithm 4 is based
on the average value, which may benefit a better estimation of the flow direction. This
effect is more noticeable in the Dimetrodon and Yosemite sequences as well.

We may conclude that image-based algorithms (Algorithms 2 and 4) outperform
algorithms based on the flow (Algorithms 1 and 2). On the other hand, these algorithms
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Table I-1: Reprojection error (EPE) for the Middlebury sequences.

Sequence Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Dimetrodon 0,014 0,006 0,007 0,006
Grove2 0,020 0,008 0,018 0,009
Grove3 0,094 0,044 0,089 0,045
Hydrangea 0,019 0,009 0,017 0,010
RubberWhale 0,010 0,003 0,006 0,004
Urban2 0,027 0,011 0,025 0,011
Urban3 0,030 0,010 0,027 0,010
Venus 0,015 0,006 0,015 0,006
Yosemite 0,009 0,004 0,004 0,004

Table I-2: Reprojection error (AAE) for the Middlebury sequences.

Sequence Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Dimetrodon 0,359o 0,203o 0,154o 0,138o

Grove2 0,438o 0,229o 0,466o 0,242o

Grove3 1,205o 0,736o 1,233o 0,671o

Hydrangea 0,463o 0,259o 0,356o 0,250o

RubberWhale 0,441o 0,195o 0,273o 0,169o

Urban2 0,318o 0,163o 0,307o 0,150o

Urban3 0,320o 0,171o 0,366o 0,178o

Venus 0,257o 0,087o 0,257o 0,093o

Yosemite 0,261o 0,132o 0,122o 0,111o

are more complex and require more memory resources than their corresponding flow
versions.

The interpolation Algorithms 3 and 4 behave similar to their corresponding nearest
neighbor algorithms, but they outperform the latter in the presence of divergent or
continuous flow fields, like in Dimetrodon or Yosemite.

figure I-11 compares the solution of a flow-based algorithm (Algorithm 1) with respect
to an image-based algorithm (Algorithm 2). In the latter case, we note that some values
may fail due to the sampling of the image, as can be seen in the last image. It appears
some flow errors in the building because the intensities of the building get confused with
the intensities in the background. This may be worse in natural sequences, where the
presence of noise and brightness changes is more important. However, this problem only
appears in the area of occlusions.
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I.1.9 Street-lamp Occlusions

Next, we study the performance of the algorithms with respect to the street-lamp
occlusion. We modify two Middlebury sequences, Grove2 and Urban2, adding five static
bars in front of the scene. This easily simulates the effect of the objects moving behind a
fence.

In figure I-12 we show the results for Grove2. The motion of the objects in this
sequence is not big, so the effect of the bars is limited. Nevertheless, we appreciate the
width of bars being smaller in the first result (Algorithm 1) than in the second solution
(Algorithm 2). This means that the first algorithm has partially selected the motion of
the background instead of the motion corresponding to the bars.

Table I-3 presents the EPE and AAE errors for each algorithm. We observe that
image-based algorithms clearly outperform flow-based ones. In fact, flow-based methods
are unwilling to deal with this kind of occlusions.

Table I-3: Reprojection errors for Grove2 with bars.

Error Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

EPE 0,035 0,008 0,033 0,009
AAE 0,947 0,201 1,048 0,216

figure I-13 shows the results for the Urban2 sequence with bars. The motion in this
sequence is bigger; therefore the effect on the bars is more important. The first algorithm
is unable to detect the bars in the front building and they completely disappear in the
backward flow. The second algorithm correctly handles the motion of the bars and the
rest of objects.

Looking at Table I-4, we observe that the EPE and AAE of image-based algorithms
are much smaller than those of flow-based methods. Even, the fourth algorithm provides
an important improvement in AAE with respect to the algorithm 2.

Table I-4: Reprojection errors for Urban2 with bars.

Urban2 (5 bars) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

EPE 0,065 0,011 0,063 0,011
AAE 0,824 0,163 0,877 0,151

These experiments show that image-based algorithms correctly deal with any kind of
occlusions. This is at the expense of using intensity information and an additional buffer
for storing the comparisons between the image intensities.
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I.1.10 Analysis of Filling Strategies

In this section, we study the behavior of the filling strategies explained in Section I.1.3.
The experiments in this section were performed using Algorithm 2.

Tables I-5 and I-6 show the EPE and AAE for the Middlebury sequences, respectively.
We have only used the sequences where the flow is also defined at occlusions. If we
compare these results with the results presented in Tables I-1 and I-2, we observe that
the errors increased considerably.

Table I-5: Reprojection errors (EPE) for the filling strategies.

Sequence Minimum fill Average fill Oriented fill

Grove2 0,023 0,039 0,040
Grove3 0,166 0,264 0,206
Urban2 0,083 0,130 0,041
Urban3 0,149 0,166 0,055
Venus 0,021 0,038 0,017
Yosemite 0,008 0,006 0,005
Grove2 with bars 0,092 0,065 0,094
Urban2 with bars 0,160 0,132 0,160

Looking at these tables, we conclude that the best performing strategies are the
oriented-fill and the min-fill approaches. The oriented-fill approach seems to have a better
behavior. The average-fill strategy behaves better for the sequences with the static bars
(two last sequences).

Table I-6: Reprojection errors (AAE) for the filling strategies.

Sequence Minimum fill Average fill Oriented fill

Grove2 0,595o 1,010o 1,014o

Grove3 1,972o 3,417o 2,761o

Urban2 0,472o 1,293o 0,371o

Urban3 1,725o 2,262o 0,676o

Venus 0,325o 0,791o 0,284o

Yosemite 0,171o 0,184o 0,133o

Grove2 with bars 3,062o 1,346o 3,112o

Urban2 with bars 2,851o 1,129o 2,878o

This means that this strategy is better for the street-lamp occlusions. This kind of
occlusions is difficult to deal with, because they produce a disocclusion at a place that
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may be far from the object that originated it (see figure I-13 for example). The minimum
and the oriented strategies may not assure a correct filling.

In any case, dealing with the filling of the street-lamp case is not easy. An alternative
would be to use a maximum-fill strategy, but there is no way to differentiate between
the stereoscopic and the street-lamp occlusions. A good approach would be to use the
oriented-fill for the stereoscopic and the average-fill for the street-lamp case, but we have
not found an easy mechanism to differentiate between these two situations.

I.1.11 Recursive Application

In this section, we study the effect of applying the algorithms multiple times. This will
give us an idea of how the solutions degrade when we apply the methods recursively. For
this experiment, we use the Yosemite and the Urban3 sequences.

In Tables I-7 and I-8 we show the EPE and AAE results for the Yosemite sequence,
respectively. We compare the solutions applying the inverse optical flow 2 times (w2∗(x)
), 10 times (w10∗(x)), 20 times (w20∗(x)) and 100 times (w100∗(x)). In this case, we use
the average-fill strategy.

Table I-7: Reprojection errors (EPE) for the Yosemite sequence with recursive application.

Error Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

w2∗(x) 0,011 0,006 0,006 0,006
w10∗(x) 0,046 0,011 0,018 0,011
w20∗(x) 0,094 0,012 0,037 0,014
w100∗(x) 0,614 0,013 0,395 0,026

The results for Algorithms 2 and 4 are surprisingly very stable. In fact, the former
hardly degrades the results and, even computing the inverse flow 100 times, we obtain a
very similar result. On the contrary, Algorithms 1 and 3 strongly degrade the solutions,
the first one being the worst.

Table I-8: Reprojection errors (AAE) for the Yosemite sequence with recursive
application.

Error Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

w2∗(x) 0,321o 0,182o 0,184o 0,155o

w10∗(x) 1,141o 0,287o 0,458o 0,265o

w20∗(x) 2,163o 0,316o 0,794o 0,325o

w100∗(x) 12,101o 0,335o 7,350o 0,620o
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figure I-14 shows the results w10∗(x), w20∗(x) and w100∗(x) for Yosemite. In the first
row, we show the results for Algorithm 1 and, in the second, the results for Algorithm 2.
The last row shows that the latter image-based algorithm is stable, while the first shows
the unstability of flow-based algorithms.

Similar results can be seen in Tables I-9 and I-10 for the Urban3 sequence. In this
case we have used the oriented-fill strategy.

Table I-9: Reprojection errors (EPE) for the Urban3 sequence with recursive application.

Error Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

w2∗(x) 0,058 0,053 0,055 0,052
w10∗(x) 0,225 0,082 0,211 0,082
w20∗(x) 0,438 0,093 0,409 0,093
w100∗(x) 1,957 0,100 1,907 0,104

Table I-10: Reprojection errors (AAE) for the Urban3 sequence with recursive application.

Urban3 (AAE) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

w2∗(x) 0,575o 0,856o 0,676o 0,895o

w10∗(x) 1,973o 1,351o 2,320o 1,354o

w20∗(x) 3,750o 1,551o 4,288o 1,526o

w100∗(x) 12,026o 1,693o 12,446o 1,600o

We can see in figure I-15 that the results of Algorithm 2 (second row) degrades less
severely than the results of Algorithm 1 (first row). These results seem reasonable, since
flow-based algorithms use the flow information as discriminant. This information degrades
with every inverse calculation, so the errors accumulate in every iteration. On the other
hand, image-based algorithms rely on the image information, which is not modified.
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Figure I-9: Middlebury test sequences. First column, the source image; second, the true
flow; third, the inverse optical flow using Algorithm 1, with disocclusions in pink.
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Figure I-10: Middlebury test sequences. First column, the source image; second, the true
flow; third, the inverse optical flow using Algorithm 1, with disocclusions in pink.
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Figure I-11: Flow-based versus image-based algorithms. Comparison between Algorithms
1 and 2.
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Figure I-12: Street-lamp occlusion for Grove2. First row, the source image and the true
flow. Second row, the backward flows for Algorithms 1 and 2.
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Figure I-13: Street-lamp occlusion for Urban2. First row, the source image and the true
flow. Second row, the backward flows for Algorithms 1 and 2.
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w10∗(x) w20∗(x) w100∗(x)

w10∗(x) w20∗(x) w100∗(x)

Figure I-14: Yosemite recursive. First row, results for Algorithm 1. Second row, results
for Algorithm 2.

w10∗(x) w20∗(x) w100∗(x)

w10∗(x) w20∗(x) w100∗(x)

Figure I-15: Urban3 recursive. First row, results for Algorithm 1. Second row, results for
Algorithm 2.
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I.2 Summary and Conclusions

We have proposed four new efficient algorithms for estimating the inverse optical flow.
We have classified these in flow-based methods, that only use the forward optical flow as
input, and image-based methods, that also use the information of the images. The former
are limited for sequences with stereoscopic occlusions, whereas the latter are more general
and can also deal with the street-lamp occlusion case.

We have seen the importance of occlusions and disocclusions in the estimation of the
backward flow. All the algorithms can easily handle occlusions, but disocclusions have
to be processed separately. In order to fill dissoclusions, we have proposed three filling
strategies, based on the minimum and average flows, and an oriented filling process.

Flow-based algorithms are easy to implement and efficient in running time and memory
requirements. However, image-based algorithms yield the most accurate results, at the
expense of using more buffers and calculations. Typically, we need a buffer for dealing
with occlusions. On the other hand, nearest neighbor algorithms need one image pass,
while interpolation algorithms need two image passes. The latter also need more buffers
to store the accumulative values.

We have shown that the accuracy of the methods is high in general. If we do not take
into account disocclusions, then the errors are smaller than 1% of a pixel in Euclidean
distance and less than 1o in angular error. Errors increase considerably when we deal with
disocclusions. The oriented fill strategy seems to provide the best results, followed by the
min-fill strategy. Nevertheless, in the presence of street-lamp occlusions, the average fill
strategy outperforms the other approaches.

We have also shown that image-based algorithms are also more stable. When we
calculate the inverse flow many times, the results of flow-based methods rapidly degrade.
This is due to the fact that the flow itself is modified and the errors are accumulated.
This kind of methods might only be used when a few iterations are needed. These are
interesting if speed or memory requirements are the first considerations.

Although the proposed algorithms are efficient, they can still be improved. The major
effort should be oriented to improve the filling strategies. This problem can be tackled
using more temporal information, so that the unknown information can be discovered
from a different time instant. Another improvement is to integrate the filling process
with the main part of the algorithm, as it happens with occlusions.



Appendix II: Details of
implementation of the ROF method

In this appendix we present pseudo-codes and a brief explanation of the parameters of
our multichannel implementation of the IPOL-Brox method1 [Sánchez13b].

The algorithm implements the numerical scheme in equation (4.10) for a multi-channel
framework. It takes a set of color images as input data and computes the optical flows
between every pair of consecutive images. We separate the algorithm in two modules: one
procedure that computes the optical flows in each scale, and the main algorithm that is
in charge of handling the pyramidal structure. This method depends on the parameters
given in table II-1.

In the procedure, MAXITER is the maximum number of iterations allowed for the
convergence of the SOR method. Its value is constant and is high enough to let the method
converge. In the source code, the SOR loop is unrolled in order to avoid boundary tests
when computing div(dum+1) and div(dvm+1). This means that the first and last columns
and rows, and the four corners of the images, are computed separately.

In theory, as we have seen before, the method needs three levels of iterations.
Nevertheless, we have found in the experiments that the inner iterations can be integrated
in the outer iterations without a loss of precision. For this reason we have decided to
estimate the values of Ψ�

S, div u, div v and div d inside the outer iterations. We prefer
this option in order to avoid the estimation of ∇du. The other computations, at the
beginning of the inner loop, may also be integrated in the outer loop.

The main process is given in algorithm 6. In order to turn the method more stable to
the input parameters, it first normalizes the images between 0 and 255; it convolves the
finest scale images with a small Gaussian kernel; then, it creates the pyramidal structure
for the whole sequence; and, finally, it goes over the set of scales computing the optical
flows at different resolutions.

1http://www.ipol.im/pub/art/2013/21/
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Table II-1: Parameters of the method
Parameter Explanation

α Regularization parameter. It determines the smoothness of
the output. The bigger this parameter is, the smoother the
solutions we obtain.

γ Parameter that determines the influence of the gradient
constancy assumption.

Nscales Number of scales in the pyramidal structure. If the flow field
is very small (about one pixel), it can be set to 1. Otherwise,
it should be set so that (1/η)N−1 is larger than the expected
size of the largest displacement.

η Downsampling factor. It is used to downscale the original
images in order to create the pyramidal structure. Its value
must be in the interval (0, 1). With η = 0.5, the images are
reduced to half their size in each dimension from one scale to
the following.

ε Stopping criterion threshold. It is the threshold used to stop
the SOR iterations, given in equation (4.11).

inner iterations Number of inner iterations in the numerical scheme. It
corresponds to index n in equation (4.10).

outer iterations Number of outer iterations in the numerical scheme. It
corresponds to index m in equation (4.10).
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Procedure BroxOpticFlow(Ic1, I
c
2, u, v,α, γ, ε, inner iterations, outer iterations)

Input: Ic1, I
c
2,α, γ, ε := 0.001, inner iterations := 1, outer iterations := 10,ω :=

0.9
Output: u, v

1 Compute, for all channels, Ic1,x, I
c
1,y, I

c
2,x, I

c
2,y

2 Compute, for all channels, Ic2,xx, I
c
2,yy, I

c
2,xy

3 for no ← 0 to outer iterations− 1 do
4 Compute Ic2(x+w), Ic2,x(x+w), I2,y(x+w) using bicubic interpolation

5 Compute Ic2,xx(x+w), Ic2,xy(x+w), Ic2,yy(x+w) using bicubic interpolation

6 Compute ux, uy, vx, vy
7 Compute Ψ�

S using equation (4.3)
8 Compute div u, div v, div d using equations (4.6) and (4.8)
9 du ← 0

10 dv ← 0
11 for ni ← 0 to inner iterations− 1 do
12 Compute Ψ�

D,Ψ
�
G using equation (4.3)

13 Compute Au,Av,Du,Dv,D using equation (4.9)
14 while error > ε and nsor < MAXITER do
15 du ← (1− ω) du+ ω (Au−Ddv + α div du) /Du
16 dv ← (1− ω) dv + ω (Av −Ddu+ α div dv) /Dv
17 Compute error with equation (4.11)
18 nsor ← nsor + 1

19 end

20 end
21 u ← u+ du
22 v ← v + dv

23 end



Algorithm 5: Pyramidal structure management

Input: Ic1, I
c
2, u, v,α, γ, Nscales, η, ε, inner iterations, outer iterations

Output: u, v
1 Normalize multi-channel images between 0 and 255
2 Convolve the images with a Gaussian of σ ← 0.8
3 Create the pyramid of images Ic,s1 , Ic,s2 using η (with s ← 0, . . . , Nscales − 1)
4 αc ← α· nchannels
5 for s ← Nscales − 1 to 0 do
6 BroxOpticFlow(I1, I2u

s, vs,α, γ, inner iterations, outer iterations)
7 if s > 0 then
8 us−1(x) := 1

η
us(ηx)

9 vs−1(x) := 1
η
vs(ηx)

10 end

11 end



Appendix III: Details of
implementation of the RDPOF
method

Here, we present several details and the parameters of the discontinuity preserving
strategies proposed in this dissertation. Table III-1 shows the three alternatives: the
first corresponds to the exponential approximation while the others are the two proposals
for solving the instability problems. We named the strategies DF, DF-β and DF-Auto,
respectively. The regularization behavior relies on Ψ(∇I1); thus, we show the difference
in the second column of the table.

Strategy Ψ(∇I1) Index

DF e−λ|∇I1| 1
DF-β e−λ|∇I1| + β 2

DF-Auto e−λauto|∇I1| 3

Table III-1: Regularization strategies. The first alternative offers regularization with a
decreasing scalar function. The second ensures constant diffusion when using the previous
scheme. The third provides an automatic adaptation of the parameter that controls the
decreasing scalar function.

We describe the algorithm that implements the numerical scheme in Equation (4.10).
It takes two color images as input data and computes the optical flow. Our algorithm
depends on the parameters given in Table III-2 and the constants of Table III-3. The
first parameter is an integer for selecting the diffusion behavior (see Table III-1). The
weighting parameters used in the energy functional are α and γ; λ is used in the non-
automatic strategies for controlling the diffusion at image borders.

The remaining parameters are the following: Nscales, η stand for the number of
scales and the downsampling factor in the pyramidal scheme and σ0 used in the image
convolution; the parameters for the numerical scheme, given by the inner and outer
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iterations, and the stopping criterion threshold (ε); β, ξ and τ are constants that support
the regularization strategies as explained in the previous section.

Table III-2: Parameters of the method.
Parameter Explanation
method type Integer that selects the regularization strategy (see Table III-

1).
α Regularization parameter. It determines the smoothness

strength. The bigger this parameter is, the smoother the
solutions we obtain. In our algorithm, it is adapted to the
number of channels.

γ Parameter that determines the influence of the gradient
constancy assumption.

λ Used in DF and DF-β methods. It determines the influence
of the exponential function in the regularization. Its value is
automatic using the DF-Auto approach.

We separate the algorithm in two modules: one procedure that computes the optical
flow at each scale and the main algorithm that is in charge of handling the pyramidal
structure. The main Algorithm 6 creates the pyramidal structure, in a very similar way to
the ROF method, and calls Algorithm 7 for computing the optical flow, starting from the
coarsest scale. It adapts the result at each scale to be used as the initial approximation
at the following scale.

Algorithm 7 calculates Ψ using the regularization scheme defined by the parameter
method type. The result is used before the inner-iterations to calculate the Ψ equations
using procedure ExponentialCalculation.

When using DF or DF-β strategies, the program looks for the maximum gradient in
every pixel of the multichannel image in order to calculate the exponential function.

On the other hand, for the DF-Auto approach, we use procedure automatic lambda

to calculate λ and the maximum gradient per pixel for the exponential, as in the previous
case. This permits to accelerate the method by doing a unique search over the image.
This allows us to solve both problems at once. Finally, we have used the OpenMP library
to parallelize the algorithm making it faster and achieving fast running times (see the
on-line demo2).

2http://demo.ipol.im/demo/172/



Table III-3: Constant parameters of the method.

Parameter Explanation
Nscales Number of scales in the pyramidal structure. If the flow field is

very small (about one pixel), it can be set to 1. Otherwise, it
should be set so that (1/η)N−1 is larger than the expected size
of the largest displacement. Nscales is automatically calculated
so that the image size, at the coarsest scale, is around 16× 16
pixels.

η Downsampling factor. It is used to downscale the original
images in order to create the pyramidal structure. Its value
must be in the interval (0, 1). With η = 0.5, the images are
reduced to half their size in each dimension from one scale to
the following. We fix it to η := 0.75.

σ0 It is used in the image convolution made before the optical flow
calculation. We use σ0 := 0.6.

ε Stopping criterion threshold. It is the threshold used to stop
the SOR iterations, given in Equation (4.11). Its value is
ε := 0.001.

inner iter Number of inner iterations in the numerical scheme. It
corresponds to index n in Equation (4.10 used in this method).
We use inner iter := 1

outer iter Number of outer iterations in the numerical scheme. It
corresponds to indexm in Equation (4.10 used in this method).
We use outer iter := 10

β Used in DF-β method. It is a constant that ensures a minimum
diffusion. We fix its value to β := 0.001.

ξ Used in DF-Auto method. It is a constant that determines if
the diffusivity is sufficient to avoid the ill-posedness. Its value
is ξ := 0.05.

τ Used in DF-Auto method. It is a constant that determines
the conservative behavior of the automatic λ. It prevents the
occurrence of instabilities. We fix it value to τ := 0.94.



Algorithm 6: Pyramidal structure management

Input: Ic1, I
c
2, u, v,method type,α, γ,λ, Nscales, η = 0.5, ε := 0.001, inner iter :=

1, outer iter := 10, nchannels
Output: u, v

1 Normalize multi-channel images between 0 and 255
2 Convolve the images with a Gaussian of σ ← 0.8
3 Create the pyramid of images Ic,s1 , Ic,s2 using η (with s ← 0, . . . , Nscales − 1)
4 αc ← α· nchannels
5 for s ← (Nscales − 1) to 0 do

6 RobustDFmethods(Ic,s1 , Ic,s2 , us, vs,method type,αc, γ,λ, inner iter, outer iter)

7 if s > 0 then
8 us−1(x) ← 1

η
us(η x)

9 vs−1(x) ← 1
η
vs(η x)

10 end

11 end



Algorithm 7: RobustDFmethods(Ic1, I
c
2, u, v,method type,α, γ,λ, inner iter, outer iter)

Input: Ic1, I
c
2,method type,α, γ,λ, ε := 0.001, inner iter := 1, outer iter :=

10,ω := 0.9
Output: u, v

1 Compute, for all channels, Ic1,x, I
c
1,y, I

c
2,x, I

c
2,y

2 Compute, for all channels, Ic2,xx, I
c
2,yy, I

c
2,xy

3 ExponentialCalculation (I1x, I1y,α,λ,method type,Φ)

4 for no ← 0 to outer iter − 1 do

5 Compute Ic2(x+w), Ic2,x(x+w), I2,y(x+w) using bicubic interpolation

6 Compute Ic2,xx(x+w), Ic2,xy(x+w), Ic2,yy(x+w) using bicubic interpolation

7 Compute the flow gradients ux, uy, vx, vy
8 Compute ψ�

S and Ψ
9 Compute div u, div v, div d using equations (4.6) and (4.8)

10 (du, dv) ← (0, 0)

11 for ni ← 0 to inner iter − 1 do

12 Compute ψ�
D,ψ

�
G

13 Compute Au,Av,Du,Dv,D using Equation (4.9)
14 nsor ← 0

15 while error > ε and nsor < MAXITER do
16 du ← (1− ω) du+ ω · Au−Ddv+α div du

Du

17 dv ← (1− ω) dv + ω · Av−Ddu+α div dv
Dv

18 Compute error with Equation (4.11)

19 nsor ← nsor + 1

20 end

21 end
22 (u, v) ← (u+ du, v + dv)

23 end



Procedure ExponentialCalculation(Ic1,x, I
c
1,y,α,λ, β,method type,Φ)

Input: Ic1,x, I
c
1,y,α,λ, β := 0.001,method type

Output: Φ
1 switch method type do
2 case 1:2

3 βv ← 0
4 if method type = 2 then βv ← β

5 Compute maximum gradient (gmax)

6 foreach pixel p do
7 Φ(p) ← e(−λ·gmax) + βv

8 end

9 case 3:
10 λΩ ← AutomaticLambda (Ix, Iy,α,λp, gmax)

11 foreach pixel p do
12 λauto ← λΩ

13 if λΩ > λp(p) then
14 λauto ← λp(p)
15 end

16 Φ(p) ← e(−λauto·gmax)

17 end

18 end

19 endsw



Procedure AutomaticLambda
Input: Ix, Iy,α, τ := 0.94, ξ := 0.05
Output: λΩ, λp, gmax

1 foreach pixel p do
2 gmax(p) ← Compute the maximum gradient for each image channel at every

pixel

3 λ(p) ← − log(ξ)+log(α)
gmax(p)

4 if max gradient(p) < gmax(p) then max gradient(p) ← gmax(p)

5 end

6 gradient sorted ← sort(max gradient)
7 pos ref ← τ · image width · image height

8 λΩ ← − log(ξ)+log(α)
gradient sorted(pos ref)

9 return λΩ





Appendix IV: Work flow for the
RDPOF IPOL demo

In this section, we explain the work flow and details of the demo associated with the IPOL
article: ‘Robust Discontinuity Preserving Optical Flow Methods’.

We show in figure IV-1 the main page of the paper. Here, the readers can see typical
information such as the authors, date of the publication, number of pages or the abstract.
Furthermore, they can also download the research work in different resolutions and the
original source code.

Figure IV-2 shows the main page of the corresponding on-line demo. Note that in this
web page, the users can select a pair of consecutive images or upload their own ones for the
optical flow calculation. Once the users make the selection, the images are preprocessed,
their size checked and converted to the image file format expected by the software shown
in the demo. Then, the system guides the work flow into another step where the users
can set the input parameters and choose the optical flow algorithm that they want to use
(figure IV-3).

Next, the input images are processed by the software according to the user decisions.
Once the flow calculation is finished, the result is shown as we can see in figure IV-4). In
this particular demo, the system shows different results and a summary of information
such as running time and errors. This particular sequence does not have true flow so, the
demo can only calculate the Average Backprojection Error. Note that the demo allows
showing the results with other schemes by changing the values of the object at the top
right corner of the figure.

On the other hand, if the input images were submitted by the user, this experiment
is archived storing the given images, parameters and data that the authors of the demo
want to store. In this sense, you can access this archive at any moment visualizing a web
page similar to the one depicted in figure IV-5. In our opinion, the archive functionality is
quite interesting because any user can determine if the algorithm fits well for his particular
needs. This simple idea extend the dimension of the authors publication. In our particular
case, we used standard images in the paper for our experiments. However, the on-line
demo allows that any researcher can use our proposals into medical images, stereo datasets
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or any other option.

Finally, note that this work flow will be similar for any other IPOL work but adapted
for the features of a particular demo.

Figure IV-1: Main page of the on-line publication ‘Robust Discontinuity Preserving
Optical Flow Methods’. The main page depicts the paper to visualize its contents on-line
or you can download the paper in full and low-resolution. You can also download the
original code that is the one used in the on-line demo.



Figure IV-2: IPOL demo for the article. You can choose standard images from several
datasets or upload your own pair of images for testing the proposed methods.



Figure IV-3: The parameters page allows us choosing the optical flow approach and the
parameters for our experiment.



Figure IV-4: Web page with the results achieved by the method. We observe several
options for visualizing them. At the upper-right corner, we can select different schemes
for the motion representation.



Figure IV-5: Archive page. The IPOL users can upload their own images (with or without
true flows), whose results are stored by the demo in the archive.
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normale supérieure 2012.



216 BIBLIOGRAPHY

[Lu13] J. Lu, H. Yang, D. Min, M. N. Do. Patch Match Filter: Efficient
Edge-Aware Filtering Meets Randomized Search for Fast Correspondence
Field Estimation. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2013.

[Lucas81] B. D. Lucas, T. Kanade. An iterative image registration technique with
an application to stereo vision. Proceedings of the 7th international
joint conference on Artificial intelligence - Volume 2, pags. 674–679, San
Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[Luettgen94] M. Luettgen, W. Karl, A. Willsky. Efficient multiscale regularization with
applications to the computation of optical flow. IEEE Transactions on
Image Processing, vol. 3, num. 1, pags. 41–64, 1994.

[Maintz98] J. Maintz, M. Viergever. A survey of medical image registration. Medical
Image Analysis, vol. 2, num. 1, pags. 1–36, 1998.

[Markandey90] V. Markandey, B. Flinchbaugh. Multispectral constraints for optical flow
computation. Computer Vision, 1990. Proceedings, Third International
Conference on, pags. 38–41, Dec 1990.
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