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Abstract

We live in a reality dominated by visual content, more specifically, by high resolution visual
content. High resolution images are of crucial importance in a number of areas centered on
two main applications, namely the improvement of pictorial information for human inter-
pretation, and robust automatic machine vision. In order to fit with the new level of expected
visual quality, the low resolution contents quality must be augmented in a process called res-
olution enhancement. The technology-based solutions that increase the spatial resolution by
either reducing the pixel size and increasing the number of pixels per area unit or increas-
ing the chip size to accommodate more pixels in practice degrade the image quality and/or
increase the implementation costs to such a point that they are no longer considered to be
efficient.

With the rise of easily accessible computation power, spatial resolution enhancement us-
ing soft-processing became a promising alternative. From all the techniques of carrying out
the algorithmic spatial enhancement super-resolution algorithms distinguish themselves by
the unparalleled potential of improvement in the resulting image quality they can achieve.
Super-resolution algorithms take advantage of the fact that aliasing, arising in digital im-
ages due to limitations of the system sensors and/or optics, contains extra high-frequency
information with additional details about the scene. Super-resolution algorithms extract this
information and use it to reconstruct a higher-resolution image. This process is computa-
tionally expensive requiring hardware implementations in order to reach real-time execu-
tion. However, most of the contributions presented over the last 40 years address only the
algorithmic level and software implementations without taking into consideration the chal-
lenges of hardware implementation. Even the state-of-the-art implementations have their
performance limited by memory storage requirements or memory access latency resulting
in sub-optimal output quality.

The herein presented doctoral dissertation has tackled the key contemporary challenges
faced at the time of developing hardware implementations of the SR techniques for video
sequences, namely: the delivery of real-time execution capability, provision of high imple-
mentation efficiency, and preservation of software-level quality of the super-resolved image

i



observed at the output. The ultimate goal of this thesis has been to provide a hardware
implementation that is characterized by the above-mentioned properties.

The base software implementation did not consider hardware implementation challenges
and was characterized by high use of memory resources precluding its direct implemen-
tation in FPGA technology using only on-device memory. With the goal of overcoming
these weaknesses, we have proposed a modified execution flow that operates using finer-
grain elements, applying super-resolution using a single macroblock execution context. The
results of the proposed modifications lead to significant memory occupancy reduction at
the expense of increased memory traffic. The computed minimal and maximal value of
the expected factor of reduction in memory occupancy associated with the switch to the
macroblock-level flow was within the range of 3.5 to 16, depending on the algorithm pa-
rameter values. The computed minimal and maximal value of the expected factor of increase
in memory traffic associated with the change was within the range of 1.1 to 16.9.

For the needs of the planned hardware implementation a high-level implementation
methodology has been developed. The established methodology defines a hierarchy of lev-
els of abstractions, in which each of the models in the hierarchy is obtained based on the
model being one level higher in the hierarchy. This renders the models tightly-coupled, fa-
cilitating inter-model propagation of modifications. The use of intermediate representation
coded using generic SystemC increases design portability by allowing high-level synthesis
to target a range of HDL languages and technologies from the same higher-level descrip-
tion. The level of details of the provided methodology description facilitates the reuse of
the established flow in implementations of other similar algorithms.

The final architecture has met the targeted performance of 24 fps with operating fre-
quency of 109 MHz using the xc5vf70t-1 FPGA device (Xilinx Virtex5 technology). The
carried out comparison with the state-of-the-art has yielded satisfactory results as the ob-
served logical resources occupancy for the proposed system was up to 5 times lower than the
one reported for the state-of-the-art mapped using the same target FPGA technology. The
hardware implementation synthesis results: (i) have demonstrated the capability of reaching
real-time performance in FPGA technology, while preserving the quality of the super-re-
solved images at the level offered by the software implementation, and (ii) have proved the
correctness of the presented algorithmic level changes and the established implementation
methodology. The observed synthesis results justify the claim that the proposed implemen-
tation contributes to the advancement of the state-of-the-art by implementing the MB-level
processing flow (typical flow of image/video compression algorithms) and by delivering
higher implementation efficiency.
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Resumen

Vivimos en una realidad dominada por los contenidos visuales, y más específicamente, por
la alta resolución de los contenidos visuales. Las imágenes de alta resolución son de una
importancia crucial en varios campos de investigación centrados en torno a dos aplicaciones
principales: la mejora de la información visual para la interpretación humana, y el incre-
mento de la robustez de la visión artificial automática. Con el fin de alcanzar los nuevos
niveles de calidad visual demandados, la calidad de los contenidos de baja resolución puede
ser aumentada mediante un proceso denominado mejora de la resolución de la imagen.
Las soluciones de fuerte base tecnológica que aumentan la resolución espacial, ya sea re-
duciendo el tamaño de píxel y aumentando el número de píxeles por unidad de área, o bien
aumentando el tamaño del chip para dar cabida a más píxeles, en la práctica degradan la cal-
idad de la imagen y/o aumentan los costes de la aplicación hasta el punto de no considerarse
ya eficiente.

Con el aumento de la potencia actual de cálculo y de su fácil acceso, la mejora de la
resolución espacial usando procesamiento software se convierte en una alternativa prom-
etedora. De todas las técnicas que llevan a cabo la mejora de la resolución espacial, caben
destacar los algoritmos de súper-resolución por el potencial incomparable de mejora en
la calidad de la imagen resultante que pueden lograr. Los algoritmos de súper-resolución
aprovechan el hecho de que el aliasing existente en las imágenes digitales, que surge debido
a las limitaciones espectrales de los sensores y/o a las limitaciones de la óptica del sistema,
contiene información de alta frecuencia que permite incorporar detalles adicionales sobre
la escena. Los algoritmos de súper-resolución extraen dicha información y la utilizan para
reconstruir una imagen de mayor resolución. Este proceso es computacionalmente costoso
y requiere de implementaciones hardware con el fin de alcanzar velocidades de ejecución
en tiempo real. Sin embargo, la mayor parte de las contribuciones presentadas en los últi-
mos 40 años sólo abordan el nivel algorítmico y las implementaciones software sin tener en
cuenta los retos de una implementación hardware. Incluso las implementaciones del estado
del arte encuentran su rendimiento limitado por los elevados requisitos de almacenamiento
de memoria y/o por la elevada latencia de los accesos a memoria, lo que resulta en una
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calidad de salida sub-óptima. La presente tesis doctoral aborda los principales desafíos en-
contrados actualmente a la hora de desarrollar implementaciones hardware de las técnicas
de SR para secuencias de vídeo, dónde cabe destacar las siguientes: la capacidad de ejecu-
ción en tiempo real, una alta eficiencia de la implementación y la preservación de la misma
calidad de salida de la imagen súper-resuelta que la obtenida con el software. El objetivo
final de esta tesis ha sido proporcionar una implementación hardware caracterizada por las
propiedades antes mencionadas.

La implementación del algoritmo base en software no consideró en ningún momento de-
safíos cruciales de la implementación hardware, caracterizándose por una alta utilización de
recursos de memoria que impiden su aplicación directa en tecnologías basadas en FPGAs
utilizando solamente la memoria disponible en el dispositivo. Con el objetivo de superar
estas limitaciones, se ha propuesto un flujo de ejecución modificado que funciona con el-
ementos de grano más fino, aplicando la súper-resolución en el contexto de una ejecución
centrada sólo en macro-bloques. Los resultados de las modificaciones propuestas conducen
a una reducción significativa de la ocupación de memoria a expensas de un aumento del
tráfico de memoria. El valor mínimo y máximo calculado del factor de reducción en la
ocupación de la memoria asociada con el cambio del flujo de ejecución a nivel de macro-
bloques está entre 3,5 y 16, dependiendo de los valores de los parámetros del algoritmo. Al
mismo tiempo, el valor mínimo y máximo calculado del factor de aumento en el tráfico de
memoria asociado con dicho cambio de flujo está entre 1,1 y 16,9.

Para cubrir las necesidades de una implementación hardware planificada se ha desar-
rollado una metodología de diseño de alto nivel. La metodología establecida define una
jerarquía de niveles de abstracción, en la que cada uno de los modelos de la jerarquía se
obtiene basándose en el modelo de nivel superior de dicha jerarquía. Esto hace que los
modelos estén fuertemente ligados entre sí, lo que facilita la propagación de las modifica-
ciones entre modelos de la jerarquía. El uso de una representación intermedia codificada
usando SystemC genérico aumenta la portabilidad del diseño al permitir la síntesis de alto
nivel dirigida a una serie de lenguajes HDL y de tecnologías a partir de la misma descripción
de alto nivel. El nivel de detalles proporcionado por la descripción usando esta metodología
facilita la reutilización de otros flujos establecido en las implementaciones de algoritmos
similares.

La arquitectura final alcanzó las prestaciones deseadas de 24 fps con una frecuencia
de operación de 109 MHz utilizando el dispositivo FPGA xc5vj70t-l (Xilinx: tecnología
Virtex5). La comparación realizada con el estado del arte ha resultado satisfactoria, dado
que la ocupación de los recursos lógicos del sistema propuesto es hasta 5 veces menor que
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la reportada para el estado del arte usando el mismo tipo de tecnología FPGA. Los resul-
tados de síntesis de la implementación hardware: (i) han demostrado la capacidad de al-
canzar prestaciones en tiempo real usando tecnología FPGA, preservando al mismo tiempo
la calidad de las imágenes de salida súper-resueltas al mismo nivel que el ofrecido por la
referencia software, y (ii) han demostrado la fidelidad de los cambios realizados a nivel al-
gorítmico y la validez de la metodología de implementación establecida. Los resultados de
síntesis obtenidos suponen una contribución al estado del arte gracias a la implementación
del flujo de procesamiento a nivel de MB (flujo típico de los algoritmos de compresión de
imagen/vídeo) lo que supone una mayor eficiencia de la implementación.
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Chapter 1

Introduction

1.1 Challenges

We live in a reality dominated by visual content, more specifically, by High Resolution

(HR) visual content. High resolution images are of crucial importance in a number of areas
centered on two main applications, namely the improvement of pictorial information for
human interpretation, and robust automatic machine vision. In order to fit with the new level
of expected visual quality, the Low Resolution (LR) contents quality must be augmented in a
process called resolution enhancement. Image resolution describes the details contained in
an image: the higher the resolution of an image, the higher the amount of details it contains.
The resolution of a digital image can refer to: pixel resolution, spatial resolution, spectral
resolution, temporal resolution, and/or radiometric resolution. In this context, this PhD
Thesis focuses on contributing to the improvement of spatial resolution.

(A) Considering a digital image as composed of picture elements (pels), spatial resolution
of digital images is expressed (or measured) as the total number of these elements and
their density understood as the number of the elements per area unit. In the context of
digital images, a singular discrete pel is usually referenced as a pixel. In practice, the
spatial resolution of most of the imaging systems is limited by the properties of the
used sensor rather than the optical diffraction. The most intuitive solution to increase
spatial resolution is to reduce the pixel size (i.e. increase the number of pixels per
area unit) by sensor manufacturing techniques. However, as the pixel size decreases
so does the number of photons captured and the amount of light being integrated by
each pixel per time unit. In consequence the sensor is more susceptible to shot noise,
that can degrade the image quality severely. The acceptable value of the shot noise
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imposes a technology dependent limitation on the minimal pixel size. In case of 0.35
µm CMOS process the optimal pixel size is estimated at about 40 µm2. This size
has been already reached by the current image sensor technology. On the other hand,
increasing the chip size to accommodate more pixels, and thus augment the spatial
resolution, has its own limitations, being the most important the corresponding in-
crease in sensor area and capacitance. Increased capacitance results in slower transfer
rates limiting the temporal resolution and system applications. Increasing area size
results in higher fabrication costs and higher power dissipation. Along with the aris-
ing requirement of higher precision optics, these properties significantly increase the
production costs.

The above-mentioned technology-based solutions are considered to be not cost-effi-
cient. Moreover, their application does not provide solutions for legacy content al-
ready captured with old technology. Therefore, a new approach toward increasing
spatial resolution is required to overcome the limitations of the sensors and manu-
facturing technology. With the rise of easily accessible computation power, spatial
resolution enhancement using soft-(post)processing became a promising alternative,
especially if the computational resources can be shared with other processes.

(B) The goal of algorithmic spatial enhancement is to produce a HR approximation from
the known LR input. There are many methods of carrying out this process that differ
in the way they use the LR pels to estimate the values of the HR ones. The pels that
make up the HR representations can be: (ii) a direct copy of a pel from the LR image
or (ii) an estimated value. There is a clear trade-off between the computational cost
of the estimation step and the possibility of providing better results (one that would
approximate more closely the tentative ‘real’ HR representation of the LR image).
In most cases, upscaling is carried out by means of interpolation, where the HR pels
values are estimated based on the local neighborhood pels values (non-adaptive inter-
polation) and some characteristics of the region that the pel forms part of (adaptive
interpolation). Such approaches prefer inexpensive implementation over the quality
of results.

A smart alternative is to use Super-Resolution (SR) algorithms which analyze the LR
content (image or a sequence) in search of clues (in-image patterns and similarities)
on how to perform a better estimation. The mathematical basis of this kind of al-
gorithms is a generalization of the Nyquist sampling criterion. This generalization
establishes that it is possible to reconstruct a signal from several sampling sets in

2



1.1 CHALLENGES

Pre-processing

Multi-image fusion

Post-processing

LR observations with sub-pixel misalignmnents

Classical
Super-

resolution

Super-resolved observation

Fig. 1.1 Execution flow of the multi-image super-resolution image reconstruction based on sub-pixel
misalignments exploitation.

presence of aliasing, if the sampling periods prove to be different for every sampling
set. In case of a video sequence or a successive acquisition of several photographic
pictures, it is also possible to widen the space of the search of the ‘clues’ to include
other images and to take advantage of the information on how they relate among one
another. In this way, a significant improvement in the resulting image quality can be
achieved over the sensor resolution used to acquire the images. The SR approaches
that are of most relevance to this thesis are the fusion-based multi-frame methods.
These methods enhance the spatial resolution and the observed quality by gathering
‘unique’ data from a set of images in the spatial-temporal domain and integrating the
collected information (when possible) in a new quality-improved super-resolved im-
age. In this process, presented in Fig. 1.1, the quality of results heavily depends on
the availability of ‘unique’ data. Typically, it is sufficient to provide several images
that have been acquired with small spatial sub-pixel shifts between the captures. This
can be achieved for instance by recording a video sequence at high frame rates with a
hand-held camera.

In the context of limited spatial resolution, super-resolution comprises the methods
that allow increasing the spatial resolution beyond the native resolution of the sensor
and the enhancements offered by interpolation methods. However, the computational
complexity introduced by additional processing required for the SR process to pro-
vide results is very high. In fact, it is so high that, for the time being and to the best
of our knowledge, none of the available software implementations can carry out the

3
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SR enhancement in real-time for frame formats usually found in consumer electron-
ics applications (QCIF and higher). As many data processing algorithms, also most
SR methods offer great parallelization opportunities. Custom and many-core hard-
ware implementations of SR methods are expected to be able to exploit the existing
parallelism and greatly improve the observable performance. Nevertheless, hardware
implementations face problems and limitations of their own. Not all algorithms can be
efficiently mapped onto hardware, leading to inefficient use of resources that results
in limited performance. Even the implementation of more hardware-friendly algo-
rithms is likely to require significant trade-offs in order to make the implementation
feasible. A common case is the increasing of the observable execution performance
at the cost of sub-optimal outcome quality. Therefore, the ability of providing hard-
ware implementations of most of the SR algorithms capable of producing satisfactory
output quality with real-time performance still remains a challenge.

(C) In a typical design flow the reference algorithm is first analyzed, architecturally con-
strained, and then used to create a register-level and pin-accurate description in hard-
ware design language. In most hardware implementations the whole system func-
tionality is first prototyped in software. This somewhat intermediate step is used to
test the algorithm functionality and provide a high-level of abstraction reference to be
used in validation and testing. A common case is that the required register-level/pin-
accurate description is created from scratch. The designer manually codes the system
directly from the provided functional specification and algorithmic description. The
available base code is used only as a source of information on design functionality and
the reference in the process of verification. This approach leads to a highly optimized,
low-level implementation that requires a significant amount of time for system cre-
ation and validation. Due to non-propagative relationship between the software and
hardware descriptions, implementation of changes introduced to the base software,
as well as evaluation of their impact on the system performance, is complicated and
requires significant amount of effort and time.

The well-known drawbacks of direct manual implementation are becoming more and
more evident and hard to deal with as the contemporary electronic systems are shifting
towards Systems-on-Chip (SoCs) and in particular Multi-Processor SoCs (MPSoCs).
These systems are not only more complex but also call for solutions of additional is-
sues, especially in the context of the very competitive industry of consumer electron-
ics. Among most important challenges faced by electronic systems design methodolo-
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gies, the European Space Agency (ESA) [Age08] lists the following ones: (i) reduced
time-to-market, (ii) increased verification complexity that scales with the system com-
ponents and the need to use vendor-specific tools, (iii) huge design space to explore,
(iv) highly complex software development, and (v) the need for methodologies en-
abling concurrent design of hardware/software. All these issues can be alleviated by
using a set of tiered High-Level Abstractions (HLA) during system specification and
the initial phases of electronic system design. Thus, recently, an emerging trend in
the design and verification of electronic systems is to provide not one, but a set of
progressively more complex system models. In order to bridge the gap between the
algorithmic and Hardware-Description Language (HDL) descriptions, the automated
High-Level Synthesis (HLS) operates on an intermediate representation that imposes
limitations on the set of software language constructs that are allowed and introduces
additional ones to represent the missing HDL constructs. The intermediate repre-
sentation can be simulated at much higher speeds than the low-level high-accuracy
models. The execution flow and most of the software code remain unchanged dur-
ing the transformation to the intermediate representation. The coherency between the
representations, allows rapid system modeling, and facilitates propagation of changes
introduced to the base code onto the hardware implementation, as the HDL is gener-
ated automatically from the intermediate representation by an HLS tool.

Although the multi-tiered approach alleviates many of the issues associated with the
manual conversion, it faces some issues of its own, most importantly:

(i) The creation of the intermediate representation requires additional effort. The
learning curve is somewhat steep.

(ii) The HDL created by the synthesis tool is human illegible, this significantly limit-
ing the possibility of manual introduction of post-synthesis changes and tweaks.

(iii) Even the smallest change made to the intermediate description requires a syn-
thesis re-spin.

(iv) The relation between the input and the output of the synthesis is somewhat
non-deterministic. That is, small changes in the input may result in significant
changes in the created HDL. The observed changes are not always intuitive.

(v) The quality of HDL is somewhat inferior to the manually written one.

Thus, designing the implementation flow so that it provides a hierarchy of tightly-
coupled models and enhances the probability of a successful implementation of func-
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tionality in a cost-effective way while assuring high-level quality of the results con-
tinues to be a challenge.

1.2 Research motivation

Super-resolution image reconstruction (SRIR) comprises algorithms that attempt to recon-
struct the high resolution image corrupted due to the limitations of the imaging system.
Typically, these limitations arise in the system sensor and/or the optics, causing aliasing to
occur as the sampling process does not meet the requirements defined by the Nyquist sam-
pling theorem. Aliasing in digital images is often considered as a nuisance and (both optical
and digital) filters are designed to avoid aliasing in digital cameras. However, aliasing also
contains extra high-frequency information with additional details about the scene. Super-
resolution algorithms extract the information present in the aliasing effect to reconstruct a
higher-resolution image [Mil10].

In the context of limited spatial resolution, super-resolution allows to increase the spatial
resolution beyond the native resolution of the sensor and the enhancements offered by inter-
polation methods. The ability of additional detail extraction offered by the SR algorithms,
when compared with single frame interpolation (the usual case), greatly improves the re-
sults of the process of spatial image augmentation, leading, where possible, to significant
objective image quality enhancement expressed in the increase of peak-signal-to-noise ratio

(PSNR). The above strengths of SR techniques lead to a wide range of possible applications.
Among others, SR techniques are used in the following applications:

• Surveillance [RRYB13, ZH12, ATB12]: in this scenario use of SR provides savings
in system and storage costs. A typical use case consists of image loading (‘freezing’)
and then applying resolution enhancement to a selected region of interest (ROI). Most
common use case is automated recognition (e.g. vehicle license plate checking, face
recognition, etc.).

• Geographic or space or underwater imaging: uses SR for resolution and quality en-
hancement of images or acoustic signals acquired in environments that intrinsically
exhibit unfavorable capture conditions or limited bandwidth: e.g. underwater imag-
ing carried out using remotely operated vehicle (ROV) [YU14, QdLCC+14, CY13,
CYX+11], geo-satellite images of a determined geographic area [XZZ14, SKC+13,
VCB+10, ESHEK12, GSP86] or open space images captured by space rovers or
probes.
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• Medical imaging [OII+14, vABVG+14, AEH+14, VCT+10, Nik10]: there is a wide
scope of uses as these systems deployment set-ups allow for the captures to be easily
taken with (forced) sub-pixel misalignments and do not demand real-time require-
ments. Used in a multitude of applications, most importantly in Computer Tomog-

raphy (CT), Magnetic Resonance Imaging (MRI), medical ultrasound (a.k.a. ultra-
sonography) and super-resolution microscopy (e.g. Stochastic Optical Reconstruction

Microscopy, STORM).

• Consumer electronics: there is a wide range of applications mainly built around up-
scaling and conversions (legacy content). A typical application is the conversion
between different video standards [Mal06, NEC09, Goh13, KSS+12, GSH+11] e.g.
NTSC (National Television System Committee) and HDTV (High Definition Tele-
Vision). Another one is the SRIR setup with sensor-shifting to capture high resolu-
tion photos. By capturing and combining multiple captures with fixed (thus known)
subpixel movement it is possible to extend the resolution beyond the sensor limits,
provide true color (interpolation-free) demosaicing and moire free capture (e.g. Has-
selblad Multi-Shot Cameras series [Has14b, Has14a]). Early adopters of this tech-
nology in digital cameras include Olympus [Oly14], Ricoh/Pentax [Ric14] and Apple
[App14].

The majority of the above presented applications do not pose real-time constraints on
the execution speed. Thus, typically these applications requirements can be satisfied with
provision of a software implementations of SR that perform processing ’off-line’. Neverthe-
less, when introduced, real-time capabilities are expected to broaden even further the range
of possible applications and result in enhanced usability and user experience in the cases
that do not intrinsically require them.

Due to its vast applications and ill-posed nature, super-resolution has been a very active
area of research since its introduction in 1974. The most important contributions that are of
relevance to this work are presented in Fig. 1.2. Most of the contributions presented over
the last 40 years address only the algorithmic level and software implementations without
taking into consideration the challenges of hardware implementation. Lack of contempla-
tion of hardware considerations in the process of algorithm design complicates its hardware
implementation. This results in designed algorithms having high resource requirements pre-
cluding their efficient implementation without prior algorithmic-level modifications. Addi-
tionally, hardware implementation has to consider the existing trade-off between the execu-
tion speed and the resources required to obtain it. In order to take advantage of the available
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First SR algorithm [Ger74]

First multiple image SR in frequency domain [TH84]

First hallucination (neural network)
[Mjo85]

Non-uniform grid projection algorithm [MC03]

Shift and add [FM06]

First non-parameteric
[PC09]

1974 1984 1985 2003 2006 2009

First multiple image SR in spatial domain [PKS87]

1987

Fig. 1.2 Excerpt of the time line of proposals of SR algorithms.

parallelism all of the data would be required to be readily available from memories, the
execution units have to be replicated/pipelined, etc. On one hand the processing has to be
parallelized, on the other hand achievable parallelism is limited by the memory required for
its exploitation. All of the above has led to a point where it is not guaranteed that the pro-
posed contributions can be easily propagated onto hardware. Hence, there is a growing need
of provision of know-how or procedures and recommendations on how to consider the im-
plications of possible hardware implementations at the time of algorithm definition in order
to help to close the ever-growing gap between software and hardware implementations.

As pointed out, software based implementations are not capable of providing HR real-
time performance when mapped on available technology. The currently available hardware
implementations with real-time performance provide an output quality lower than their soft-
ware implementation counterparts. Even the state-of-the-art implementations using Field-

Programmable Gate Array (FPGA) technology have their performance limited by memory
storage requirements and/or memory access latency. Thus, only a limited number of itera-
tions or reference frames are implemented, leading to sub-optimal output quality. Based on
our experience with compression algorithms we find much similarity in the nature of pro-
cessing carried out by SRIR and compression algorithms and the problems faced by their
implementations. Both types of processing deploy complex algorithms that work with large
amounts of data and require hardware implementations to process them in real-time. More-
over, many of the compression algorithms pose hard real-time constraints on the execution
time. Hardware implementations of compression algorithms can provide solutions for how
to implement algorithms that process images so that their hardware implementations can
achieve real-time performance.
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This doctoral thesis provides an example of the required modifications that alleviate the
aforementioned problems and therefore could result in the future hardware implementations
of super-resolution based resolution enhancement, becoming efficient enough to allow their
use in mainstream consumer electronics. In this line, we propose an SRIR implementation
based on a non-iterative version of the Non-Uniform Grid Projection Algorithm (hereafter
the NUGP algorithm or NUGPA). Direct implementation of the reference version of this
algorithm is considered unviable due to high memory requirements. In this work we evaluate
and implement modifications to the NUGPA execution flow so that its processing can be
applied in a way that only requires a singular macroblock execution context to be readily
available from memories. This approach has achieved so much success in the context of
compression algorithms implementation that we hope to replicate it for the needs of SRIR.
This change has some significant implications on the overall algorithm execution flow that
have to be considered at the time of implementation. Thus, the algorithm is modified in such
ways that not only provide real-time performance and observed quality of the super-resolved
output that matches the level of the software state-of-the-art, but also facilitate efficient
hardware implementation. Only by providing all of these characteristics the high fidelity
resolution enhancement can find its way out of research facilities to everyone’s home. The
lessons learned during the process of NUGPA implementation are expected to contribute
to the understanding of the hardware implementation challenges and limitations knowledge
by the software/algorithmic designers. In the long term, this could contribute to the process
of providing more hardware-aware implementations, simplifying the process of hardware
implementation and most likely leading to increased efficiency and performance.

1.3 Objectives

The ultimate goal of this thesis is to provide solutions at the algorithmic and architectural
level to the fusion-based SR algorithm developed by the Institute for Applied Microelectron-

ics (IUMA) of the University of Las Palmas de Gran Canaria (ULPGC) that would allow
reaching real-time execution when implemented in FPGA devices. In order to achieve this
goal, this doctoral thesis is focused on reaching the following objectives:

1. Contextualize this work by exploring the state-of-the-art of super-resolution meth-
ods and their hardware implementations. In this process, the state-of-the-art of SR
algorithms and a complete classification of the available methods will be described.
The study is carried out in order to: (i) highlight strengths and weaknesses of the
NUGPA approach in comparison with other approaches, and (ii) justify the decision
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of using NUGPA as the base algorithm for hardware implementation capable of re-
al-time execution. Following, the known approaches to hardware implementations of
SR in FPGAs will be presented. At this point it is important to pay attention: (i) to
the parallelization strategies exploited, (ii) techniques applied for improving the final
performance of the system, (iii) avoidance of system bottlenecks, and (iv) required
trade-offs. Based on the obtained knowledge, an adequate development strategy will
be developed.

2. Provide algorithmic contributions to facilitate hardware implementation of the NUGPA
super-resolution kernel (SRK) using only on-chip memory. The available version of
the NUPGA does not contemplate hardware implementation in programmable logic
devices. Similarly, the available baseline software was not implemented with the view
of limiting the use of resources. Thus, in order to increase the chances of a successful
and efficient implementation using FPGA devices the algorithm data flow should be
revised and modified if needed.

3. Create a design flow and implementation methodology that increases the chances of
obtaining an efficient implementation. The methodology should consider the fact that
the SR algorithm and its software implementation are constantly under development
by facilitating rapid and robust propagation of the modifications made at the algorith-
mic level to the hardware implementation. The created design and implementation
methodology should be general enough to be able to be applied to other similar al-
gorithms. At the same time, the description should be specific enough to remove any
doubts on the steps required to provide high quality results. All these requirements
lead to a combination of Electronic System Level (ESL) and Register Transfer Level

(RTL) synthesis flow.

4. Demonstrate the viability of reaching real-time performance by providing a baseline
implementation of the NUGPA SR kernel in a FPGA device. Apart from the perfor-
mance goal, the implemented design must be able to fulfill additional expectations of
which the most relevant are listed below:

(a) Efficiency: in this specific case understood as minimization of resources (logi-
cal and memory) occupancy while providing a solution that meets the targeted
performance in terms of execution speed. The hardware implementation is ex-
pected to be successful in preserving the observed super-resolved image quality
at the level offered by software implementations.
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(b) Portability: this characteristic is related to the fact that we expect the imple-
mentation to implement solutions and mechanisms that facilitate migration to a
different technology (different FPGA family/vendor) without having to redesign
it completely from scratch. Having in mind that FPGA implementations are fre-
quently a required prototyping step for custom hardware, this migration should
also help in the road towards ASIC and SoC implementation targets.

1.4 Organization of this thesis

The present document is structured into seven chapters that somewhat follow the order of the
objectives given above. The first three chapters (chapters 1–3) are dedicated to presenting
the problematic, the state of the art and the motivations for developing this Doctoral thesis.
These chapters provide information required to fully understand the issues being raised
in this thesis by readers who might be not familiar with the topic of super-resolution, its
current state-of-the-art, and the NUGP algorithm in particular. The introductory nature of
these chapters serves to set the scene for presenting the main contributions of this work.
Each of the chapters of this work is considered to be self-confined, that is, understanding
of the main contributions presented in a chapter does not require previous reading of any
of the chapters preceding it. Thus, readers interested in particular objectives of this thesis
(modeling, methodology, or hardware implementation) may start reading directly from the
chapter of their choosing.

Chapter 2: IMAGE ENHANCEMENT USING SUPER-RESOLUTION

This chapter introduces the basic concepts of the super-resolution process and the
state-of-the-art of the SR methods. The presented data allow contextualizing the non-
iterative non-uniform grid projection algorithm within the state-of-the-art, show its
weaknesses and strengths, and justify its choice as a base for hardware implemen-
tation. The final objective of this chapter is to describe the available approaches to
hardware implementations of SR in FPGAs, exposing their weaknesses, highlighting
the scarce number of such implementations and the need of higher efficiency in terms
of resources occupancy in order to overcome the observed limitations.

Chapter 3: THE NON-UNIFORM GRID PROJECTION ALGORITHM (NUGPA)
Provision of efficient hardware implementation of any algorithm requires in-detail
knowledge on the algorithm control and data flow, as well as their dependency on the
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algorithm parameters configuration. This chapter focuses on presentation and eval-
uation of the base SR algorithm and its baseline software implementation. The de-
scription emphasizes the importance of using a single-pass (non-iterative) approach
in order to facilitate hardware implementation and identifies memory occupancy as
the likely factor precluding hardware implementation of the reference implementa-
tion. This chapter finalizes presenting results of a study on the quality of the super-
resolved image produced by the software implementation. The presented quantitative
data proves that, when appropriately configured, the base implementation is capable
of providing output whose quality of results is not only better than interpolation but
also on-par or better than the one provided by state-of-the-art hardware SR implemen-
tations.

Chapter 4: PROPOSED SUPER-RESOLUTION ALGORITHM

The NUGPA algorithm was expected to pose memory requirements that were pro-
hibitively high for a hardware implementation meeting the proposed objectives. In
order to tackle this problem the algorithm dependency on Frame-Level (FL) buffers
had to be eliminated. The focus of this chapter is the set of modifications of the
NUGPA execution flow proposed in order to facilitate its hardware implementation.
The chapter presents models and quantitatively evaluates memory occupancy and traf-
fic of both the reference and the proposed execution flows. The obtained data show
that the proposed modifications are expected to lead to reduction in memory occu-
pancy at the cost of increased memory traffic. The chapter concludes presenting an
example of system bottleneck identification data and then algorithmic-level transfor-
mation in order to optimize the system.

Chapter 5: IMPLEMENTATION METHODOLOGY

Most of the contributions to the state-of-the-art of SR methods focus on introduc-
ing algorithmic-level contributions that are aimed at improving the observable output
quality. The effectiveness of these proposals is usually proved mathematically or by
means of software implementations. The latter, in most cases, are not capable of ap-
plying the processing in real-time. Meeting real-time constraints usually requires the
algorithm to be mapped onto hardware. With the ever-growing complexity of the al-
gorithms the organization of the process of mapping becomes a challenge itself. In
our implementation we have opted for using a tiered hierarchy of abstraction models.
Each of the defined tiers of abstraction is accompanied by a verification set-up. The
use of multiple models of abstraction that are progressively more accurate allows re-
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ducing the gap separating the created system descriptions and greatly facilitates the
propagation of changes from one tier to another. This chapter focuses on the presen-
tation of the methodology established to carry out the process of mapping the NUGP
algorithm onto FPGA technology. The used models and refinement steps carried out
at each stage of mapping are organized and presented in the order that follows the
design and implementation flow stages. The presented description provides details on
how to set-up the verification environment in a way that leverages mixed-language
simulation allowing the same environment to be used for both ESL and RTL simula-
tions.

Chapter 6: HARDWARE IMPLEMENTATION

Definition of an implementation methodology is the first step required for success-
ful implementation. A well-defined methodology is the stepping stone of any hard-
ware implementation and significantly increases the probability of successful map-
ping. Even if provided with a well-defined implementation methodology, meeting the
implementation goals is not guaranteed as the designer has yet to tackle architecture-
level implementation challenges. Solutions for these challenges are constrained by the
targeted system characteristics (performance, output quality, efficiency, etc.) whose
implications have to be taken into consideration at the moment of balancing the im-
plementation trade-offs. Delivery of a hardware implementation that reaches the tar-
geted performance while maximizing the efficiency of resources utilization is not a
trivial task. This chapter presents the process and the results of implementation of
the NUGP algorithm operating at MB-level in FPGA technology. The description of
the implementation process provides information on the system architecture model
evolution, final organization, and the used abstraction levels. The tackled implemen-
tation challenges are presented in great detail along with the implemented solutions.
The observed synthesis results prove that the MB-level processing contributes towards
real-time implementations of the NUGPA by significantly reducing the implementa-
tions memory occupancy while preserving software-level output quality. The com-
parison with the state-of-the-art yields satisfactory results in terms of implementation
efficiency considered as the observed gain in the quality of the super-resolved output
(vs interpolation) per resource utilized.

Chapter 7: CONCLUSIONS AND FUTURE WORK

This chapter presents a recapitulation of the contributions provided in this doctoral
dissertation and highlights their relevance to the super-resolution field. This document
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concludes with a presentation of further research lines, which might complement and
enhance some of the aspects developed in this thesis.
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Chapter 2

Image enhancement using
super-resolution

2.1 Introduction

Super-resolution comprises algorithms that attempt to reconstruct the high resolution image
corrupted due to the limitations of the imaging system. Typically these limitations arise
in the system’s sensor resolution and/or the optics causing aliasing to occur as the sam-
pling process does not meet the requirements defined by the Nyquist sampling theorem.
Aliasing in digital images is often considered as a nuisance and (both optical and digital)
filters are designed to avoid aliasing in digital cameras. However, aliasing also contains
extra high-frequency information with additional details about the scene. Super-resolution
algorithms extract the information present in the aliasing to reconstruct a higher-resolution
image [Mil10].

Due to its ill-posed nature and vast applications, super-resolution has been a very ac-
tive area of research since its introduction in 1974. Over the last 40 years several methods
have been proposed under the umbrella of super-resolution. Most super-resolution algo-
rithms consist of two main stages: (i) meta data registration, where the images are precisely
aligned and analyzed, and (ii) image reconstruction, where the input data and meta data
are used to estimate a higher resolution image. The most recent and complete taxonomy
of super-resolution methods, presented in [NM14], classifies the introduced SR techniques
into four main families: (i) frequency based approaches, (ii) interpolation-based approaches,
(iii) regularization-based approaches, (iv) example-based approaches. The first three cate-
gories reconstruct (or super-resolve) the image from a set of lower resolution input images
(multiple-image context), while the last example-based approaches are capable of achiev-
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ing the same objective by exploiting the information provided by an image and a database
with a prori attained knowledge. Recently, super-resolution has gain a lot of attention from
industry which resulted in multiple software and hardware super-resolution-based solutions
destined for the medical, military and even consumer electronics market.

2.2 Super-resolution basics

The general definition of the super-resolution process given in the introduction will now be
refined. In particular: (i) the main characteristics of the super-resolution process will be
described, and (ii) a classification of the super-resolution methods will be introduced. The
Image Registration (IR) stage that forms a critical part of the multi-image approaches is
presented in details in Section 2.3.

2.2.1 Applications of super-resolution

In this work we define the objective of super-resolution in reference to the limitations of the
imaging system that the SR technique is designed to overcome. The limitations tackled by
the SR methods can be classified into the following three categories: optical, geometric, and
temporal.

2.2.1.1 Optical limitations

The diffraction-limited resolution theory was formulated by Ernst Abbe in 1873 and later
refined by Lord Rayleigh in 1896. These researchers contemplated the separation necessary
between two airy patterns in order to distinguish them as separate entities. They have ob-
served and specified an upper limit —the cut-off spatial-frequency— below which the two
point sources are considered to be resolved and can readily be distinguished. Beyond the
cut-off spatial-frequency structural details fail to be correctly transferred into the optical im-
age and cannot be resolved. In order to transcend the limitations of optical imaging systems
a sequence of images which meet the Rayleigh criterion can be used. By manipulating the
imaging conditions between the subsequent captures (i.e. using spatially-variant excitation
light, gathering light over a larger set of angles around the specimen, swapping spatial fre-
quency bands beyond the cut-off spatial frequency for one inside it (activators), changing
the excitation light, etc.) it is possible to generate and transfer complementary subsets of in-
formation to different observations. Given that these observations are stochastically unique,
then the extracted information can be fused, using an SR method, in order to form the final
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higher-resolution image. This method allows two particles that appear to be merged, i.e.
form a single point in a particular image, to be discriminated into two independent particles.
Even in the case of flawless fabrication, glass-based systems resolution is still hampered by
an ultimate limit in optical resolution that is imposed by the diffraction of visible light wave-
fronts. The use of complementary information from the context is considered to determine
the exact position of the two adjacent particles even below the Rayleigh limit, effectively
breaking the diffraction barrier limiting the optical imaging systems. Hence, SR methods
from this category have found great success in glass-based microscopy.

2.2.1.2 Geometric limitations

In practice, the spatial resolution of most of the imaging systems is limited by the properties
of the used sensor rather than the optical diffraction. The most intuitive solution to increase
spatial resolution is to reduce the pixel size (i.e. increase the number of pixels per unit
area) by sensor manufacturing techniques. However, as the pixel size decreases so does the
number of photons captured and the amount of light being integrated by each pixel per time
unit. In consequence the sensor is more susceptible to shot noise that can degrade the image
quality severely. The acceptable value of the shot noise imposes a technology dependent
limitation on the minimal pixel size. In case of 0.35 µm CMOS process the optimal pixel
size is estimated at about 40 µm2. This size has been already reached by the current image
sensor technology. On the other hand, increasing the chip size to accommodate more pixels,
and thus augment the spatial resolution, has its own limitations, being the most important
the corresponding increase in sensor area and capacitance. Increased capacitance results in
slower transfer rates limiting the temporal resolution and system’s applications. Increasing
area size results in higher fabrication costs. Along with the arising requirement of higher
precision optics, these properties significantly increase the production costs. The above-
mentioned ‘technology’ based solutions are considered to be not cost-efficient. Therefore, a
new approach toward increasing spatial resolution is required to overcome these limitations
of the sensors and manufacturing technology. With the rise of easily accessible computation
power, spatial resolution enhancement using soft-processing became a promising alterna-
tive. In the context of limited spatial resolution, super-resolution comprises the methods
that allow increasing spatial resolution beyond the native resolution of the sensor.
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2.2.1.3 Temporal limitations

As aforementioned, a camera captures an image by integrating and quantizing the light com-
ing from the scene during the exposure time. In presence of rapid movement, an objects’
reflected light can be integrated over multiple sensor elements, reaching beyond its actual
size. Such a case will manifest itself as a blur along movement trajectory, corrupting the
quality of the image and reducing the effective resolution (capability to distinguish fine de-
tails) in the affected area. The noticed blur is stronger the faster the object moves (or the
longer the exposure time is). In case of video sequences, another problem arises. Variations
that occur faster than the frame rate will either not be visible or captured incorrectly. The
latter case leads to false visual illusions caused by (motion-based) aliasing. A well-known
example of this phenomenon is the ‘wagon wheel effect’ [FDC84, FD87]. This visual illu-
sion manifests itself by the change of direction of a spinning wheel beyond a certain speed.
In the temporal context, super-resolution encapsulates methods that enhance the resolution
in terms of reduction of motion blur and motion aliasing using information from multiple
observations. In practice, spatial SR is carried out alongside temporal SR. The enhancement
in the joint space-time SR framework is carried out by using multiple sequences which have
been captured at different quantization times, with different frame rates and/or spatial reso-
lutions. Algorithms that enhance both of the resolutions are referenced as spatio-temporal

SR.

Major advantage of the super resolution approach is that it may cost less than other hard-
ware approaches and the existing LR imaging systems (usually cheaper) can be still utilized.
This is even more important in the context of low-cost implementations, where the funda-
mental limits of the imaging system and the SR methods need to be understood in order
to balance between expensive optical imaging system hardware and image reconstruction
algorithms to meet the implementation constraints.

2.2.2 Describing the super-resolution process

Super-resolution image reconstruction algorithms aim at reconstructing the high-fidelity
representation from one or more low-fidelity observations that are assumed to be corrupted
by the limitations of the imaging system data. The SR methods can be classified based
on many criteria. The most important criteria, in the context of video super-resolution, are
presented in Fig. 2.1.
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Fig. 2.1 Criteria used to classify super-resolution methods.

2.2.2.1 Processing domain

As aforementioned, the SR takes the LR observation(s) as the input data. These data are
usually provided as spatially ordered direct luminance values. Depending on the domain
in which the SR is carried out the SR algorithms can be divided into two families: (i) the
frequency and (ii) spatial domain ones.

The SR algorithms of the former group carry out the data processing on a frequency
domain representation of the input LR observation, explicitly using the aliasing that exists
in each LR observation to reconstruct an HR image. These algorithms begin by transforming
the LR images to the frequency domain before the super-resolved observation is estimated.
Once reconstructed, the observation is transformed back to the spatial domain. Depending
on the transformation employed for transforming the spatial data to the frequency domain,
these algorithms are generally divided into two groups: Fourier-based and Wavelet-based
methods. Wavelet-based methods are more recent but they tend to present difficulties in
efficient implementation of degraded convolution filters. The Fourier-based approaches are
based on the following three principles [PPK03]: (i) the shifting property of the Fourier
transform, (ii) the aliasing relationship between the Continuous Fourier Transform (CFT)
of an original HR image and the Discrete Fourier Transform (DFT) of LR observation, and
(iii) the assumption that the original HR image is band limited. Based on these properties
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TABLE 2.1 Frequency vs. spatial domain SR [BM11, Table 1.].

Observation model Frequency domain Spatial domain
Motion models Global translation Almost unlimited
SR Mechanism Limited, linear space-invariant Linear space-variant/-invariant
Noise model Limited, space-invariant Very Flexible

Degradation model De-aliasing
De-aliasing

A-priori information
Computation req. Low High
A-priori info Limited Excellent
Regularization Poor Excellent
App. performance Limited Wide
Applicability Good Almost unlimited

it is possible to design the system equation relating the aliased DFT coefficients of the
observed LR images to a sample of the CFT of an unknown input image.

A brief review of differences for the most important features of the frequency- and
spatial-domain-based approaches are tabulated in Table 2.1. The frequency-domain-based
SR approaches have a number of advantages over the spatial-domain ones. First of all, they
present an intuitive way to enhance the details of images by extrapolating the high-frequency
information presented in the low resolution images. Moreover, the frequency-domain-based
approaches have low computational complexity and offer high parallelization opportuni-
ties. Nevertheless, although being very sound and interesting from a theoretical point of
view, the frequency domain methods present many constraints that limit their application in
real world scenarios. The two most important factors limiting their applications are (i) the
limited capability to model motion and (ii) the limited possibility of incorporate spatial a

priori knowledge in the regularization stage. The motion models used by the frequency-
domain-based methods are limited to global displacements (shifts and rotations) between
the observed images. Also, the blur during the image acquisition process is modeled as
linear and space-invariant. Spatial domain methods have better evolved for coping with real
world problems.

2.2.2.2 Execution context

From the above-presented criteria, the most important one is the context, that is, the number
of images that are required to carry out the enhancement process. Based on this criterion we
divide the SR algorithms into two groups: (i) multi-image (or classical) and (ii) single-im-

age (or learning-based) SR methods. In learning-based SR, the missing high-resolution
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information is assumed to be available in the form of an a priori acquired knowledge that
has been learned from the low-resolution/high-resolution pairs of examples.

2.2.2.2.1 Multi-image super-resolution. The classical SR operates based on the as-
sumption that the high-frequency information is split across multiple low resolution images,
implicitly found there in aliased form. Each of the low resolution observations is investi-
gated in search of complementary information. If such information is found, the observa-
tion is considered as a linear constraint on the unknown high resolution intensity values.
If enough unique low resolution observations are available, then the set of equations be-
comes determined and can be solved leading to recovery of the high resolution image. Only
observations that cannot be obtained from the others are considered to have the property of
uniqueness. In practice, at least≥ scale2 unique representations are needed for the inversion
problem to become determined. Given a sufficiently large set of observations, the increase
in resolution can be of arbitrary value.

In order to work, multi-images methods require that the observations represent a unique
state of the scene. Thus, in classical SR the identification and provision of unique observa-
tion is of crucial importance. In the case of using one camera, uniqueness of the observations
is more probable when the observations are captured with sub-pixel misalignments. If the
LR observations are shifted by integer units, then each one contains the same information,
and thus they do not convey complementary details that can be used to reconstruct an HR
image. However, if the LR captures have different sub-pixel misalignments from each other
(and if aliasing is present), then each observation cannot be obtained from the others and
thus is unique. In this case, the complementary data contained in each LR observations can
be exploited to obtain an HR one.

The concept of sub-pixel misalignments exploitation in the process of unique LR obser-
vations creation is illustrated in Fig. 2.2. The origin of the sub-pixel misalignments can be
either caused by controlled (e.g. orbiting satellites, jitter camera) or uncontrolled motion
(i.e. vibrating imaging systems (hand-held) or local motion in the scene). Multiple views
of the scene can be obtained either by moving the camera to different positions (multi-view
acquisition) or by using multiple imaging systems (multi-modal acquisition). One of the
most promising acquisition approaches in terms of SR is to use sensors with different pixel
sizes. By using different pixel sizes the fact that pixel values are created by integrating
over a different amount of light, most likely resulting in different quantization, can be ex-
ploited. Knowledge of the acquisition set-up can be used to simplify the registration stage
and maximize the amount of new information.
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Fig. 2.2 Creation of unique observations creation with sub-pixel misalignments.

Given that the set of used images contains observations that are unique, the classical SR
image reconstruction can be carried out following the flow already presented in Fig. 1.1 on
page 3. The classical multiple-image SR flow comprises three main steps: (i) the pre-pro-

cessing, (ii) the actual reconstruction (multi-image fusion), and (iii) the post-processing. It
is most likely that each of the observations represents the scene under different capturing
conditions of the imaging system. Depending on the observation model the set of param-
eters that are considered variable can include motion, blur (optical, atmospheric, and/or
motion blur), zoom, multiple aperture, multiple images from different sensors, and differ-
ent channels of a color image. Thus, unless the scene motions are known a prori, before
being combined the images have to be registered to determine variations between one an-
other. The two most common types of compensation for the changes between LR images
are geometric registration and blur estimation. As long as the images to be used represent
the same scene and can be registered in a satisfactory way, super-resolution flow allows any
acquisition method to be used. The post-processing depends on the used kernel and on the
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Fig. 2.3 Execution flow of the single-image super-resolution image reconstruction.

super-resolution process application. Most state-of-the art algorithms carry out post-fusion
regularization and restoration.

2.2.2.2.2 Single-image super-resolution. The known drawback of the aforementioned
classical SR flow is the fact that it fails to provide satisfactory results when the available
observations do not fulfill the uniqueness requirement or only a single image is available.
In these cases, no complementary information is available to be extracted from other ob-
servations and fused. Therefore, the missing high-resolution details that are not present in
the available observations have to be estimated. Single-image methods do not look for the
complementary information. Rather, they learn the correlations between the low and high
resolution representations. Once learned, these correlations are represented by a dictionary
(or a database). The characteristics of the dictionary (e.g. size, structure, search method,
scalability, generalization capabilities, etc.) are of critical importance to the performance of
the SR process in terms of speed and output quality.

The typical single-image SR algorithm execution flow is presented in Fig. 2.3. The
processing is carried out in two stages: (i) dictionary creation and (ii) image hallucination.
In the former stage, a set of training images is used to learn the best ways of mapping of
the local geometry of the low resolution patch space onto the high resolution patch space.
This process takes a significant amount of time and hence is carried out off-line. During
execution, the super-resolution stage begins with a piece-wise search in the created dic-
tionary for an entry associated with the features recognized in the LR input. Following,
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the best match(es) are identified using the method’s match criteria (e.g. similarity, spatial
compatibility, smoothness, etc.). One or more of these matches are used to compute the
reconstruction weights that minimize the reconstruction error for the input LR patch. The
weights are used in combinations with the HR data associated with the matched entries to
hallucinate the HR patch. The estimated HR representation is projected onto the HR grid
and optionally back-projected to feed the error estimation loop and adapt (if necessary) the
processing of the subsequent patches. The initial HR representation of the entire frame
is further regularized and refined using the reconstruction constraint. The reconstruction
constraint’s penalty terms are also derived from the training set.

2.2.2.2.3 Combined or multi-patch approaches. The advantages of the described ap-
proaches can be combined. The combined framework is based on an observation (justified
statistically) that patches in a single natural image tend to redundantly recur many times
inside the image, both within the same scale, as well as across different scales. Given an
input image, the combined framework creates a pyramid of its scaled representations and
looks for recurrence of patches within and across the scales. Patches recurring within the
same image scale (with sub-pixel misalignments) can be regarded as if extracted from dif-
ferent observations of the same scene and used to impose constraints to the HR information.
This forms the basis for applying the multi-patch counterpart of the classical SR approach
as illustrated in Fig. 2.4. Recurrence of patches across different image scales, as illustrated
in Fig. 2.5, implicitly provides examples of low-resolution/high-resolution pairs of patches,
thus, giving rise to learning-based super-resolution from a single image. The great benefits
of the combined framework are the capability to obtain super-resolved observations from
as little as a single low resolution image, the eliminations of the external a priori-created
database and the off-line training phase.

2.2.3 Super-resolution in spatial domain

Spatial domain approaches offer powerful methods to deal with the ill-posed problem of im-
age restoration. The most recent and complete taxonomy of SR methods has been proposed
in [NM14] and is presented in Fig. 2.6. This figure uses the execution context as the main
classification criteria. The single- and multiple-images approaches are further sub-divided
into families based on the used SR technique.
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patches are used, e.g., 5 × 5, such patch repetitions occur
abundantly within and across image scales, even when we
do not visually perceive any obvious repetitive structure in
the image. This is due to the fact that very small patches
often contain only an edge, a corner, etc. such patches are
found abundantly in multiple image scales of almost any
natural image.

Moreover, due to the perspective projection of cameras,
images tend to contain scene-specific information in dimin-
ishing sizes (diminishing toward the horizon), thus recur-
ring in multiple scales of the same image.

We statistically tested this observation on the Berkeley
Segmentation Database1 (Fig. 2). More specifically, we
tested the hypothesis that small 5 × 5 patches in a single
natural grayscale image, when removing their DC (their
average grayscale), tend to recur many times within and
across scales of the same image. The test was performed
as follows: Each image I in the Berkeley database was
first converted to a grayscale image. We then generated
from I a cascade of images of decreasing resolutions {Is},
scaled (down) by scale factors of 1.25s for s = 0,−1, ..,−6
(I0 = I). The size of the smallest resolution image was
1.25−6 = 0.26 of the size of the source image I (in each di-
mension). Each 5×5 patch in the source image I was com-
pared against the 5×5 patches in all the images {Is} (with-
out their DC), measuring how many similar2 patches it has
in each image scale. This intra-image patch statistics was
computed separately for each image. The resulting inde-
pendent statistics were then averaged across all the images
in the database (300 images), and are shown in Fig. 2a. Note
that, on the average, more than 90% of the patches in an
image have 9 or more other similar patches in the same im-
age at the original image scale (‘within scale’). Moreover,
more than 80% of the input patches have 9 or more similar
patches in 0.41 = 1.25−4 of the input scale, and 70% of
them have 9 or more similar patches in 0.26 = 1.25−6 of
the input scale.

Recurrence of patches forms the basis for our single-
image super-resolution approach. Since the impact of
super-resolution is expressed mostly in highly detailed im-
age regions (edges, corners, texture, etc.), we wish to elim-
inate the effect of uniform patches on the above statistics.
Therefore, we repeated the same experiment using only
25% of the source patches with the highest intensity vari-
ance. This excludes the uniform and low-frequency patches,

1www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
2Distances between patches were measured using gaussian-weighted

SSD. Note that textured patches tend to have much larger SSD errors
than smooth (low-variance) patches when compared to other very similar-
looking patches (especially in the presence of inevitable sub-pixel mis-
alignments). Thus, for each patch we compute a patch-specific ‘good
distance’, by measuring its (gaussian-weighted) SSD with a slightly-
misaligned copy of itself (by 0.5 pixel). This forms our distance threshold
for each patch: Patches with distance below this threshold are considered
similar to the source patch.

(a) Classical Multi-Image SR (b) Single-Image Multi-Patch SR

Figure 3: (a) Low-res pixels in multiple low-res images impose
multiple linear constraints on the high-res unknowns within the
support of their blur kernels. (b) Recurring patches within a sin-
gle low-res image can be regarded as if extracted from multiple
different low-res images of the same high resolution scene, thus
inducing multiple linear constraints on the high-res unknowns.

maintaining mostly patches of edges, corners, and texture.
The resulting graphs are displayed in Fig. 2b. Although
there is a slight drop in patch recurrence, the basic observa-
tion still holds even for the high-frequency patches: Most
of them recur several times within and across scales of the
same image (more than 80% of the patches recur 9 or more
times in the original image scale; more than 70% recur 9
or more times at 0.41 of the input scale, and 60% of them
recur 9 or more times in 0.26 of the input scale.)

In principle, the lowest image scale in which we can still
find recurrence of a source patch, provides an indication
of its maximal potential resolution increase using our ap-
proach (when the only available information is the image
itself). This is pixel-dependent, and can be estimated at ev-
ery pixel in the image.

3. Single Image SR – A Unified Framework

Recurrence of patches within the same image scale
forms the basis for applying the Classical SR constraints
to information from a single image (Sec. 3.1). Recurrence
of patches across different scales gives rise to Example-
Based SR from a single image, with no prior examples
(Sec. 3.2). Moreover, these two different approaches to SR
can be combined into a single unified computational frame-
work (Sec. 3.3).

3.1. Employing in-scale patch redundancy

In the classical Multi-Image Super-resolution (e.g., [12,
5, 8]), a set of low-resolution images {L1, ..., Ln} of the
same scene (at subpixel misalignments) is given, and the
goal is to recover their mutual high-resolution source im-
age H . Each low resolution image Lj (j = 1, . . . , n) is
assumed to have been generated from H by a blur and sub-
sampling process: Lj =

(
H ∗ Bj

)
↓sj , where ↓ denotes a

subsampling operation, sj is the scale reduction factor (the
subsampling rate) between H and Lj , and Bj(q) is the cor-
responding blur kernel (the Point Spread Function – PSF),
represented in the high-resolution coordinate system – see
Fig. 3a. Thus, each low-resolution pixel p = (x, y) in each
low-resolution image Lj induces one linear constraint on
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there is a slight drop in patch recurrence, the basic observa-
tion still holds even for the high-frequency patches: Most
of them recur several times within and across scales of the
same image (more than 80% of the patches recur 9 or more
times in the original image scale; more than 70% recur 9
or more times at 0.41 of the input scale, and 60% of them
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In principle, the lowest image scale in which we can still
find recurrence of a source patch, provides an indication
of its maximal potential resolution increase using our ap-
proach (when the only available information is the image
itself). This is pixel-dependent, and can be estimated at ev-
ery pixel in the image.

3. Single Image SR – A Unified Framework

Recurrence of patches within the same image scale
forms the basis for applying the Classical SR constraints
to information from a single image (Sec. 3.1). Recurrence
of patches across different scales gives rise to Example-
Based SR from a single image, with no prior examples
(Sec. 3.2). Moreover, these two different approaches to SR
can be combined into a single unified computational frame-
work (Sec. 3.3).

3.1. Employing in-scale patch redundancy

In the classical Multi-Image Super-resolution (e.g., [12,
5, 8]), a set of low-resolution images {L1, ..., Ln} of the
same scene (at subpixel misalignments) is given, and the
goal is to recover their mutual high-resolution source im-
age H . Each low resolution image Lj (j = 1, . . . , n) is
assumed to have been generated from H by a blur and sub-
sampling process: Lj =

(
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↓sj , where ↓ denotes a

subsampling operation, sj is the scale reduction factor (the
subsampling rate) between H and Lj , and Bj(q) is the cor-
responding blur kernel (the Point Spread Function – PSF),
represented in the high-resolution coordinate system – see
Fig. 3a. Thus, each low-resolution pixel p = (x, y) in each
low-resolution image Lj induces one linear constraint on
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(b) Single-image multi-patch SR.

Fig. 2.4 Contributions of patches (Bi) recurring in LR images (Li) to the process of HR image (H)
reconstruction [GBI09].

Fig. 2.5 Example of patch recurrence across scales resulting in implicit LR-HR pairs identification.

2.2.3.1 (A) Multiple-images super-resolution in spatial domain

The multiple-images-based approaches comprise five families of techniques:

(A.1) Direct. The theoretical basis of these techniques is the non-uniform sampling theory
which allows for the reconstruction of functions from samples taken at non-
uniformly distributed locations.These methods follow the pure classical SR ap-
proach presented in Fig. 1.1. Given a set of LR observations, one of the LR
images is chosen as the target image and the others are registered against it. Fol-
lowing, the target image is scaled up by a specific scaling factor and the other
LR images are projected (that is scaled and warped or shifted) into the reference
grid using the data obtained from the registration stage. Then, the HR image
is generated by fusing all the images together. The missing data are created by
means of non-uniform interpolation. Finally, an optional deblurring/refinement
kernel may be applied to the result. The fusing process is usually implemented
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Fig. 2.6 Excerpt from the SR taxonomy proposed recently in [NM14].

as a weighted sum, thus, this approach is usually referenced to as shift and add

[FREM03, FREM04b, FREM04a, FM06, AIAOM13].

More recent direct methods carry out the registration and fusion at patch-level.
That is, the LR images are first divided into patches. Then every patch of the ref-
erence image is compared to a set of patches, including the corresponding patch
and some patches in its vicinity, in the remaining LR images. Based on the
similarity of these patches and their distances from the current patch, a weight
is associated to every patch indicating the contribution of this patch in the pro-
cess of producing the output HR patch. This approach helps to handle occlusion,
local and complex motions (e.g. facial expressions change). The family of meth-
ods that deploy this type of processing is referenced to as non-parametric direct
SR [PE09, PETM09, TMPE09, BBV10, CCL10, HS12, ZLRG12].

(A.2) Stochastic. Methods from this family consider HR image and motions among low
resolution observations as stochastic variables. These variables are used to con-
struct a Bayesian framework which is used to estimate the unknown values by
minimization of a cost function. The statistical approaches vary in the ways:
they treat the degradation process, the LR/HR observations priors (defined as
our beliefs about the sensitivity and specificity of a process/variable) they use
and the inference method used by the framework. The two most widely used
statistical approaches to SR are the maximal likelihood (ML) [CKK+96, SS94,
SS96, LSZ97, EHO01, HYCC07] and the maximum a posteriori (MAP) [GH97,
HBA97, BS99, RC01, TM10, CNYA12, KI12, YZS12, ZZLH12]. The ML ap-
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proach only considers the relationship among the low resolution observations
and the original high resolution. In contrast, the MAP approach incorporates
also the prior image model to reflect the expectation of the unknown high reso-
lution image. In most cases, the use of MAP-based approaches is encouraged as
the preferred one.

In mathematics, a process of introducing additional information in order to solve
an ill-posed problem is referred to as regularization. Thus, many of the stochas-
tic approaches are also referred to as regularization-based SR. More on stochas-
tic approaches to SR can be found in [Mil10].

(A.3) Set theoretic reconstruction. Set theoretic reconstruction assumes the SR process to
be a feasible linear optimization problem with rational data that can be solved by
generating a sequence of sets of possible solutions whose cardinality uniformly
decreases. The subsequent sets are subsets of the previous set containing the
desired images, that is the images that fulfill (or intersect with) a subsequent
constraint convex set. Defining constraints in terms of convex sets is flexible and
allows incorporating even non-linear and non-parametric constraints or priors.

In the context of SR, the most important set theoretic reconstruction algorithms
have been the ellipsoid method and the projections onto convex sets (POCS)
[SO89, EF97, HKK97, PA98, BS00, CTH03]. In the POCS method, the subse-
quent sets are determined by finding the intersection points of the constraint and
the current solution set. In the ellipsoid method the subsets are ellipsoid bound
by the constraints set. More on set-theoretic approaches to SR can be found in
[Mil10].

(A.4) Iterative back projection (IBP). IBP is similar in its approach to the back-projection
used in computer tomography image reconstruction. This method creates an ini-
tial guess of the high resolution image which is refined by iteratively projecting
the difference (the residual) between the observed low resolution images and the
simulated (back-projected) low resolution images [IP92, CD00, ZP00, ZRAP01,
JWB03, BEZN04, BEZN05, YB06, DHWG07, GDAG09].

(A.5) (Iterative) adaptive filtering. This SR approach is most appropriate when the mo-
tion model and the point spread function model commute. The filters usually
deployed for SR are the Kalman and Wiener adaptive filters. These methods are
in effect linear minimum mean square error estimators and do not allow inclu-
sion of non-linear a priori constraints. Although limited in terms of performance
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understood as the output quality, these approaches offer very fast execution and
have been mainly used in SR of video sequences [EF99b, EF99a, EF99c, CB07,
CB06, CB08, KKC+10].

Each of the above-presented approaches has its advantages and drawbacks. The direct
approach is basic and intuitive method of super-resolution with its implementations having
relatively low computational complexity. On the other hand, the direct approach assumes
that the blur and noise characteristics are identical across all low resolution images. These
methods rely on very accurate registration between images and thus are very sensitive to
any errors produced in the image registration stage which can be easily propagated to the
SR kernel. Moreover, the step-by-step forward approach with separation of the motion esti-
mation and image fusion steps does not guarantee optimality of the restoration. The IBP is
also understood intuitively and easily. However, this approach preserves the ill-posed nature
of the inverse problem. Thus, there are multiple possible solutions and the algorithm either
converges to one or it may oscillate between them. Although, the latter can be dealt with by
incorporating a priori knowledge about the solution, the inclusion of the a priori constraints
is not easily achieved in the IBP method and usually requires additional regularization terms.
The possibility to conveniently include the a priori information, along with their theoreti-
cal simplicity, is the biggest advantage of the set theoretic methods. Nevertheless, these
methods have high computational cost, slow convergence and lead to a solution that is not
guaranteed to be optimal. Moreover, the use of the POCS method has the disadvantage of
producing non-unique solution that depends on the initial guess. Practical implementations
of POCS also have problems in dealing with the reconstruction of discontinuities of edges
and details. Compared with other approaches, stochastic SR offer better robustness, flexibil-
ity in modeling noise characteristics and easiness of including the a priori knowledge of the
solution in the probability priors. In certain cases (e.g. the noise process is white Gaussian,
and MAP estimation with convex energy functions), this method ensures the uniqueness
of the solution. The uniqueness of the solution allows the use of efficient gradient descent
methods and is necessary for optimal reconstruction. Recently, approaches looking to com-
bine the properties of the stochastic approaches with other families have been undertaken.
The ML/MAP-POCS joint SR estimates the HR image by minimizing the ML/MAP cost
functional while enforcing the containment of the solution within the intersection of the
convex constraint. The advantage of the combined approach is that it ensures a single opti-
mal solution, which is not the typical case when POCS approach is used on its own, while
allowing any kinds of constraints and priors, even the ones that may present as impossible
for purely stochastic approaches.
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2.2.3.2 (B) Single-image super-resolution in spatial domain

Single-image SR is based on interpolation and hallucination of the high-fidelity details (usu-
ally high frequency part of the image) of the HR image. Single-image SR approaches com-
prise two families of techniques:

(B.1) Learning based. Learning-based approaches [BK00a, CZ01, BK00b, PRZ03, WT03,
JG05, ZPJ08, KCR09, ZH12, ZHD12] use pairs of LR and HR training inputs
to create a dictionary that relates the low-resolution data (or its features) with
their corresponding high-resolution representation. During run-time, the given
LR test input is used to traverse the dictionary in order to find the closest match
(or a set of closest matches) and retrieve the associated HR-data to be used in
the hallucination. The learning-based approaches are further divided based on
the way the learning is carried out, the structure of the dictionary, the way the
search is carried out and how the matches contribute to the hallucination process.
The most recent work [NM14] defines seven sub-families of example-based SR
approaches, namely: features pyramids, belief networks, projection, neural net-
works, manifold, tensors, and compressive sensing. Details on each of these
approaches can be found in [NM14].

(B.2) Reconstruction based. The a priori knowledge is generalized in order to encapsu-
late techniques for reconstruction of primitives (and/or shapes), or statistics that
can be used to carry out the reconstruction. The SR is carried out by applying
the adequate reconstruction technique to each of the identified primitives (like
edges, ridges, corners, etc.) or using the provided statistics to form a gradient
based constraint to be applied to the reconstruction process [SZTS03, RB05,
Fat07, SLJT08, SSXS08, XSW09, HFL10, XSW10, SSXS11].

Some of the single-image methods allow their execution in a multi-images context.
These methods jointly exploit the information learned from a given high resolution training
data set, as well as that provided by multiple low resolution observations. Also, the statis-
tical approach can be incorporated in the example-based approach where the found patches
are used as the prior image model and then merged into a MAP framework cost function in
order to arrive at the closed form solution of the desired high-resolution image.
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2.2.4 Super-resolution of video sequences

The SR processing of video sequences is usually required to be dynamic, that is to produce
an output sequence that (at least) maintains the number of frames and the frame rate of
the input sequence. The scenario of dynamic SR imposes high constraints on the execution
time. In practice, the choice of algorithms for application of SR on video sequences is
limited to approaches that offer a favorable trade-off between performance, execution time
and resources requirements.

The existing approaches to SR of video sequences can be classified into the following
four categories: (i) the sliding-window-based approach [SKR07, NHBS07, NSLZ07, PJ07],
(ii) the sequential approach [EF99c, EF99b, FEM06, CB07], (iii) the simultaneous ap-
proach [BS99, ZM07, AMK03], and (iv) the learning-based approach [BBM03, DKA04,
KHX+06]. The first three approaches require multi-images/frames context, while the learn-
ing-based SR is capable of executing in a single-image/frame context. The learning-based
approach to SR of video sequences is straightforward: subsequently apply learning-based
SR of still images on each of the frames of the sequence. In the case of execution in multiple-
images context, this straightforward approach is not the preferred one. Its use is not efficient
as it leads to reloading of data and does not (even try to) take advantage of the relationships
between the subsequent frames of the sequence. As for now, software implementations of-
fer performance that is not sufficient for real-time execution, even though the single-image
context shows inherent parallelism that allows simultaneous multi-frame SR. The available
implementations of learning-based SR of video sequences have not been implemented in
hardware. Considering that in the case of video sequences availability of multiple LR im-
ages/frames is assured, the multi-image SR techniques constitute the preferred approach,
especially in the context of hardware implementation.

2.2.4.1 Multi-frame approaches to SR of video sequences

As aforementioned, the multi-image approaches require a number of frames to execute.
This set of frames, called the frame window (or the working window), forms the execution
context. The frame window comprises two types of images: the target image that is be-
ing super-resolved and a number of reference images (or reference frames (RF or RFnr)).
Frame window usually comprises the immediate neighbors of the to-be-processed frame as
illustrated in Fig. 2.7.

A consequence of using a multi-image context of execution is the requirement of regis-
tering the frames belonging to the current working window. In the context of SR of video
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Target image

Reference image 1 Reference image 2 Reference image 3 Reference image 4

Set of #RF reference images

Frame window (set of #RF + 1 images)

Fig. 2.7 Example of frame window comprising 5 images (4 reference images or reference frames
(RF); RF = 4) and one target image).

sequences there are two main approaches to image registration and (effectively) context up-
dating being deployed, namely: the anchored and the progressive approach. In the anchored
approach, one of the frames of the context is chosen as the target frame and the other frames
misalignments are registered in relation to this frame. In case of the progressive registration,
the current frame is registered in relational to its immediate temporal neighborhood made
up by the frames that precede it.

In practice, multi-image SR for video sequences is implemented using one of the three
following approaches illustrated in Fig. 2.8:

Sliding-window-based SR approach. Deploys anchored registration over a set of consec-
utive low resolution frames which are later combined producing one high resolution
image frame. The execution context is moved across the input frames to produce suc-
cessive high resolution frames sequentially. The major drawback of this approach is
that the temporal correlations among the consecutively reconstructed high resolution
images are largely unexploited. Also, memory occupancy associated with this ap-
proach is high as all required data from the context need to be readily available from
the memory.

Sequential SR approach. The sequential SR approach tries to exploit the temporally cor-
related information provided by the established high resolution images. Correct iden-
tification and exploitation of temporal correlation of HR images using their LR ob-
servations is a challenging problem. In an effort to do so, progressive registration and
previous HR frame can be used in tandem during the process of estimating the current
HR frame. This allows to reduce the cardinality of the execution context while still
including (by means of propagation) information from multiple frames. Reduction
of the execution context usually leads to significant reduction of memory occupancy
and computational complexity. On the other hand, the propagation may lead to er-
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High resolution sequence

Low resolution sequence

(a) Sliding frame window approach.

High resolution sequence

Low resolution sequence

(b) Sequential approach.

High resolution sequence

Low resolution sequence

(c) Simultaneous approach.

Fig. 2.8 Approaches to super-resolution of video sequences executing in multiframe context. Based
on [TM11].
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rors escalation and drift if robust fusion and outliers elimination mechanisms are not
deployed.

Simultaneous SR video approach. This approach tackles the problem of simultaneous re-
construction of multiple high resolution images. The typical approach is to impose
temporal smoothness constraint on the prior image model and produce multiple im-
ages from the context at once. Alternatively, multiple contexts could be processed in
parallel i.e. multiple sliding windows could be selected and used to reconstruct mul-
tiple high resolution frames simultaneously. In both cases, simultaneous SR poses
very high memory occupancy requirements, since high resolution and low resolution
images from multiple contexts are required to be readily available from memory at
the same time throughout the reconstruction process.

It should be noticed that on-line video SR is significantly more demanding in terms
of performance, execution speed and memory occupancy than SR of still images [Goh13].
The highest requirements are presented by the simultaneous SR where frames from multiple
contexts need to be stored and/or hardware resources have to be duplicated (or pipelined)
if the computations are to be parallelized. On the other end of the requirements spectrum
is the sequential approach, whose requirements in terms of resources and computational
power seem to be the lowest. Nevertheless, in order to be successful, this approach requires
algorithms that allow inclusion of a priori knowledge to regularize the SR process. Thus,
stochastic/regularization-based approaches are preferred over direct/IBP-based ones. The
former are known to be mathematically involved and suffer from high execution times. In
the context of real-time on-line dynamic SR of video sequences less involved (and thus
faster) algorithms are preferred. The interpolation-based, namely, the direct and IBP meth-
ods have found most success in meeting real-time constraints.

2.2.4.2 Dynamic super-resolution using sliding frame window

Dynamic SR using the sliding-frame-window approach is provided by moving the frame
window across the video sequence and performing the SR process once for each frame of
the sequence. After the processing of one frame is terminated, the least recently loaded
frame is discarded, the remaining frames are shifted, and a temporarily subsequent (next)
frame is loaded. For a sequence composed of n frames, processing of the whole sequence
is defined as carrying out the super-resolution process for each frame t : t ≤ n with the set
κ of frames contributing in the fusion process being limited to a size κ ≤ n (in practice
3 ≤ κ ≤ 17) and updated for each of the frames being processed. The set κ represents the
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sliding frame window with each of the frames in κ whose index is ̸= t acting as a reference
frame. Using this set-up, the process of sliding window updates, for an example where
n = 5, κ = 3 (containing up to one preceding and one succeeding frame) is illustrated in
Figure 2.9.

2.3 Image registration

In this work we consider images as a somehow limited 2D projection onto the image/sensor
plane of the real 3D representation of environment (natural/synthetic scene). Having a series
of captures of the same scene we consider them a spatio-temporal representation of the vari-
ations of that scene. The differences present between images are introduced due to different
imaging conditions. Some of these variations may manifest themselves as aliasing or exclu-
sive data which can be utilized in the process of image enhancement by the super-resolution
process. In order to use these data they need to be localized first. Thus, it is of most interest
to find the correspondence between the images in order to be able to fuse the details from
different images that represent the same piece of the scene. This correspondence describes
the spatio-temporal evolution of the images and due to its nature can be characterized in
terms of the motion of the contents between the captures caused by the contents movement
and/or the relative motion between an observer (an eye or a sensor) and the scene. Thus,
it is of crucial importance for the super-resolution process to be able to accurately quantify
the evolution of apparent movement between two (or more) captures.

In the context of computer vision, the pattern of apparent motion of objects, surfaces,
and edges in a visual scene caused by the relative motion between an observer (an eye or a
camera) and the scene is called the optical flow or optic flow [Gib50]. Optical flow is used
to obtain the unknown vector field of the apparent motion encountered in the 2D projection,
called motion field. Motion field relates the points in one image to their corresponding
points in the other. In order to detect and model the variations between two images, the
images have to be geometrically aligned with each other. Image registration is the process
of overlaying two or more images of the same scene taken at different times from different
viewpoints and/or by different sensors [ESHEK12]. Due to the optical flow mechanics,
image registration is an inverse problem in imaging that looks for a transformation that
relates the points in one image to their corresponding points in the other image. The problem
of image registration is an example of the more general problem of estimating motion in an
image sequence. In Fig. 2.10 we can see an example of a motion field produced by image
registration of two frames of the mobile sequence.
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Fig. 2.9 Replacement scheme for a sliding frame window comprising one succeeding and one pre-
ceding frame.
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(a) Input image a. (b) Input image b. (c) Computed motion field.

Fig. 2.10 Results of image registration: (a) and (b) input images, (c) computed motion field correlat-
ing images (a) and (b). Source [Boc09].

Image registration is of practical importance in many fields, not only in computer vision
[Bro92, ZF03]. Variants of image registration technique developed by Lucas and Kanade
are used in almost all motion-compensated video compression schemes such as MPEG and
H.263/4 [Ric04, Boc09]. More sophisticated image registration algorithms have also been
developed for medical imaging and remote sensing. Common applications include, among
others, objects tracking, correction of camera jitter (stabilization), image stitching (mosaic)
and 3D shape reconstruction from motion.

Before going into details, some naming conversions must be defined. In this work, we
will denote the images that are used in the registration process as, either, the target or the
sensed (also source or subject) [Bro92, ZF03]. The former image is kept unchanged and
is used as a basis for the transformation. The latter refers to images that are geometrically
transformed to be aligned with the target image. Finally, a transformation (or warping) is
the function used to modify the sensed image with the objective of approximating the target
image.

2.3.1 Classification of image registration techniques

As aforementioned, image registration carries out alignment of images of the same scene
taken at different times, from different viewpoints, and/or by different sensors. Hence, the
principal way to classify image registration methods is carried out based on the set-up used
for image acquisition. Based on this criterion we can divide image registration methods into
the following four groups [ESHEK12].

Multi-views analysis. These methods use images acquired from different viewpoints in
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order to gain a larger two dimensional view or a three dimensional representation of
the captured scene. Examples of such applications are image stitching (mosaicking
or panoramas [Sze10]) or SR reconstruction of remotely sensed images and shape
recovery in computer vision.

Multi-temporal analysis. These methods analyze images of the same scene taken at dif-
ferent times, and possibly under different conditions, in order to evaluate variations
appearing between the subsequent captures. Examples of such applications are auto-
matic change detection, monitoring tissues changes in medical images and SR recon-
struction of remotely sensed images.

Multi-modal analysis. These methods use images of the same scene obtained using differ-
ent sensors with the aim of integrating them into a more complex and detailed scene
representation. Examples of such applications are processing of magnetic resonance
images (MRI), enhancement of spectral resolution of images (hyperspectral imaging)
and fusion of remotely sensed images.

Scene-to-model registration. Acquired image is registered with a template image (natural
or synthetic). Examples of such applications are comparison of patient’s image with a
digital anatomical atlas (so-called atlas mapping), specimen classification, real-time
template matching, automatic quality inspection and registration of satellite images
into maps.

2.3.2 Fundamental components and steps of image registration

The presented definition of image registration as a process of image alignment is very gen-
eral and allows several acquisition scenarios. Thus, even though, the basic idea of car-
rying out image registration can be summarized as composed of two stages [Bro92]: (i)
determination of the points that correspond between the images and the nature of the corre-
spondence, (ii) determination of the transformation (and fine-tuning of its parameters) that
‘best’ models the establish relation, the ways in which it is implemented vary significantly.
Moreover, regardless of its implementation methodology, the image registration processes
is in general computationally demanding. To tackle the problem of computational intensity,
most of image registration algorithms are specifically designed for a specific application and
are not suitable for all types of problems or data. The observed broad spectrum of available
methodologies for image registration implementation lead to several possible classifications.
However, all registration techniques involve searching over the space of transformations of
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certain type (e.g. affine, polynomial or elastic) to find the optimal transformation for a par-
ticular problem. These two processes can be viewed as combinations of choices for the
following four components [Bro92].

Feature space. Feature space extracts the information in the images that will be used for
matching, According to their nature, feature spaces can be classified as feature-based
and area-based. Feature-based methods establish a correspondence between a number
of especially distinct points in images (i.e. edges or corners). In contrary, area-based
methods consider predefined size areas of the image as features and look to register
their correspondence either in spatial (direct methods) or frequency domain.

Similarity metric. Also called proximity or cost function. It is a measure that interconnects
the transformation and data to be transformed. It defines the ‘test’ carried out in order
to determine the relative accuracy of each transformation. The criteria used by the
similarity measure determines what types of matches are optimal and is usually a
trade-off on the required accuracy, acceptable speed, and complexity of the data.

Search space. It defines the class of transformations (and its range of values) that the sys-
tem is capable of performing in order to align the images. Search space define the car-
dinality and the structure of the set of possible tests (so-called candidates) for which
similarity measures will be computed in search for the ‘best’ match.

Search strategy. It is a pattern that decides how to choose the next transformation from the
search space, to be tested in the search for the optimal transformation. Search contin-
ues according to the search strategy until a transformation is found whose similarity
measure is satisfactory. The choice of the feature space requires a suitable error metric
as well as a suitable search technique to be chosen.

Combinations of the above described four components determine the flow of the image
registration process. For most image registration methods this leads to an execution flow
that can be generalized as consisting of the following four steps [ZF03, ESHEK12].

1. Feature detection. For feature-based algorithms salient and distinctive objects are
detected and represented. In area-based methods a predefined subsets of the image
are used instead of ‘features’. Tessellation, which could be seen as the counterpart of
the future detection, forms a part of the feature matching process and does not form a
separate step.
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2. Feature matching. The correspondence between the features detected in the sensed
image and those detected in the target is established.

3. Transform model estimation. The type and parameters of the so-called mapping func-
tions, aligning the images, are estimated based on the established feature correspon-
dence. In order to do so, the transformations from the search space are tested using
search strategy.

4. Image re-sampling and transformation. The sensed image is transformed by means
of the selected mapping functions. In general, the result of the coordinates trans-
form can be fractional. Image values in the non-integer coordinates are computed by
appropriate interpolation technique.

The choice of the appropriate image registration technique cannot be understated and
should be adjusted to suit the specific problem. The selection ought to consider the acqui-
sition manner, the relationship between the variations among the images and the choices
for the four components of image registration, all of which are established and presented in
[Bro92].

2.3.3 Feature domain

The first step in registering two images is to decide on the feature space to use for matching.
The feature space is the representation of the data that will be used for registration. This
may be the raw pixel values, i.e., the intensities, but other common feature spaces include:
edges, contours, surfaces, etc. The choice of feature space determines what is matched.
The type of features determines possible similarity metrics that can be used. The similarity
metric determines how matches are rated. Together the feature space and similarity metric
can ignore many types of variations which are not relevant to the proper registration and
optimize matching for features which are important.

Based on the feature space selection we distinguish two classes of methods: the so-
called area-based and feature-based image registration. Each of these classes can be further
divided based on the similarity metrics used to carry out the matching and/or transformation
step. A detailed description of these sub-classes is considered out of the scope of this work
and can be found in [Bro92, ZF03, ESHEK12]. A classification of the image registration
methods based on these criteria is presented in Fig. 2.11.

The choice of the feature space should consider the application and acquisition condi-
tions in order to reduce some of the unwanted (volumetric) variations while, where needed,
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Fig. 2.11 Classification of the most popular approaches to image registration.

allowing efficient implementation. If uncorrected variations have not been eliminated by the
feature space and similarity metric, then the search for the optimal match is also made more
difficult, since there are more likely to be several local optima and a less monotonic space
[Bro92]. This problem is solved to some extent by feature detection step and similarity
metric.

Feature-based class encapsulates the algorithms that work by extracting a sparse set of
features in the images which are then matched against each other. To provide efficient regis-
tration these methods rely on the existence of salient points in the input. The problem with
feature-based matching is that, typically, good, matchable features such as corner points
are sparse while poor easily mismatched features such as edges, are denser. Even when
reasonably unique features are available, establishing the correct correspondences can be
problematic, especially for cases when occlusion occurs. Image registration of images with
features occlusion is known to be the most challenging scenario for feature-based methods,
and is likely to lead to matching errors [BB95].
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Area-based approaches, sometimes referenced as correlation-like or template matching,
are less sensitive to these problems. These techniques do not rely on the presence of salient
points (called control points), rather, they consider areas of the image as features used in
matching—shifting the emphasis from feature detection to the feature matching step. The
matching step is carried out by directly minimizing point-to-point dissimilarities for prede-
fined sized regions/patches. The variable window sizes can be used near occlusion bound-
aries to handle multiple motions. This matching and minimization in most cases are carried
out in the spatial domain using directly the illumination values (so-called direct methods).
However, it is possible to carry out the process using representations in the frequency do-
main which offers advantages in noise sensitivity and computational complexity.

The limitations of the area-based methods originate from their basic idea: the predefined
size/shape window (rectangular windows are most often used) suits the registration of im-
ages which locally differ only by a translation. If images are deformed by more complex
transformations, this type of window is not able to cover the same parts of the scene in the
target and sensed images. Feature detection is not implemented by the area-based methods
rending them more sensitive to acquisition conditions (and noise). Hence, a more robust
and noise tolerant similarity metric are required to be used in these algorithms.

Some of the aforementioned limitations are alleviated by carrying out the processing
in the frequency domain. Frequency domain is less susceptible to differing conditions of
illumination since illumination changes are usually slow varying and therefore concentrated
at low-spatial frequencies. Similarly, the techniques using frequency domain are relatively
scene independent and useful for images acquired from different sensors since it is insen-
sitive to changes in spectral energy. The scene independence is further strengthened in the
case of phase-correlation methods that use only the phase information making the correla-
tion measure invariant to linear changes in brightness. By using the frequency domain, the
Fourier methods achieve excellent robustness against correlated and frequency-dependent
noise. On the other hand, if the images have significant white noise, noise which is spread
across all frequencies, then the location of the peak will be inaccurate since the phase dif-
ference at each frequency is corrupted. In this case, use of the spatial cross-correlation is
better. Also the Fourier methods are applicable only for images which have been at most
rigidly misaligned.

To summarize, the use of feature-based methods is recommended if the images contain
enough distinctive and easily detectable objects. This is usually the case of applications
in remote sensing and computer vision. Moreover, feature-based approaches have also the
advantage of being more robust against scene movement, and are potentially faster, if imple-
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mented in the right way. It should be noted that registration methods using simultaneously
both area-based and feature-based approaches have recently started to appear [HZ07].

2.3.4 Transformations

In the context of image registration a transformation can be defined as the mathematical
model that maps pixel coordinates from one image to another. Most registration techniques
involve searching over the space of transformations of a certain type to find the optimal
transformation for a particular problem. Thus, before the registration and alignment of
images happens, it is necessary to establish the basis of the possible search spaces and
applicability of these transformations. These transformations can be expressed by a variety
of models ranging from simple 2D translations to complex 3D movements of elastic body
models. This section will focus only on the models and mappings which are of relevance
for the task of 2D image registration.

2.3.4.1 Transformations primitives describing movement in 2 dimensions

Let x2d denote a geometric primitive of a point in 2-D space x2d defined using a pair of
values (x,y) as x2d = (x,y) ∈ R2. In computer graphics a point in 2-D space is usually
represented in homogeneous coordinates as x̃2d = (x̃, ỹ, w̃) ∈ P2, where P2 = R3− (0,0,0)
is called the 2D projective space. The conversion between the Cartesian and homogeneous
coordinates is described as

x̃2d = (x̃, ỹ, w̃) = w̃ · (x,y,1) = w̃ · x, (2.1)

where x = (x,y,1), created by extension of the coordinates number with third coordinate
equal to ‘1’, is called the augmented vector. Homogeneous coordinates have the advantage
of allowing all of the transformations to be expressed using multi-dimensional matrices with
mapping parameters.

Having established the representations of the 2D point, it is necessary to define and
describe the basic set of primitives that carry out the transformations listed in Fig. 2.12.
This description is based on the contents from [Sze10] covering only the transformations
that are used most extensively. A graphical illustration of these primitives is presented in
Fig. 2.12. Basic properties of the introduced below primitives are presented in Table 2.2.

Translation. Translation is a pure shift in 2D space which preserves the orientation (size,
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Fig. 2.12 Basic set of 2-D planar transformation [Sze10].

scale and shape) of the object. Having δ2d represent the translation distance, transla-
tion can be written as x′2d = x2d +δ2d .

Euclidean. Also known as 2D rigid body motion. It can be seen as a sequence of two
transformations: rotation and translation. It preserves the inter-pel distances, shape
and scales but allows changes of its orientation. Denoting rotation as R, rigid body
motion is modeled as x′2d = R · x2d +δ2d .

Similarity. Extends the Euclidean model by allowing the scale of the object to be changed.
This process is modeled as x′2d = s ·R · x2d +δ2d , where s is an arbitrary scale factor.
One thing to note is that the similarity transform still preserves angles between lines.
This translation is sometimes referenced as scaled rotation.

Affine. Affine transformation is modeled as x′2d = A2×3 · x2d , where x2d is such a represen-
tation of x2d in the homogeneous coordinates space that x2d = (x,y,1) and A2×3 is an
arbitrary 2×3 matrix with mapping parameters. Affine transformation preserves the
parallelism of lines.

Projective. Also known as a perspective transform or homography. Allows even higher
degree of freedom (DoF) than the affine transformation. Denoting H̃3×3 an arbitrary
3× 3 matrix with mapping parameters, the projective transformation is modeled as
x̃′2d = H̃3×3 · x̃2d . Straight lines remain straight after the transformation.
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TABLE 2.2 Hierarchy and properties of 2D coordinate transformations. An extract from [Sze10].

Transformation Matrix dim # DoF Preserves
Translation 2×3 2 orientation
Euclidean(rigid) 2×3 3 lengths
Similarity 2×3 4 angles
Affine 2×3 6 parallelism
Projective 3×3 8 straight lines

2.3.4.2 Global and local transformations mapping

Each of the presented transformations representing motion models can be constructed or
mapped by considering different extent of the available support (control points (CP; feature-
based methods) or pels (area-based)). The extent of support considered in the process of
mapping parameters estimate determines whether each individual technique is classified as
local or global. Global models use all available support for estimating one set of the map-
ping function parameters which accounts for all the variations between the images. In other
words, a single equation is considered valid for the entire image, and it is used to describe
the motion over the entire visual field. As these variances become more local, it will become
progressively more difficult for a global point-mapping method to model all of the changes
using one global transformation. In presence of significant and multiple local geometric
variances or local 3D features observed from different viewpoints (resulting in different
3D-to-2D projections) global methods may fail to account for the misalignment between
the images in a satisfactory way. In these cases, more than one transformation, which limit
their support by using only a local neighbourhood, would be preferable. To accomplish that,
local methods use not one, but a set of mapping parameters that vary across the different
pieces of the support in order to account for different models of (local) variations. In other
words, the mapping transformation is no longer a single mapping with one set of parameters
independent of position. This allows local methods to be more powerful and handle many
(combinations of) distortions that global methods cannot. Several authors have shown the
superiority of the local or at least locally sensitive registration methods above the global
ones in situations where local variations are present [YMB11, BAA05, CLT+08].

In all cases, there is a trade-off between the power of these methods and their corre-
sponding computational and implementation cost. As illustrated in Fig. 2.13 and Fig. 2.14
the choice of mapping of the transformations directly influences the size and complexity
of the search space. In practice, this manifests itself as execution time and memory re-
quirements. Local methods are well-known to have the largest and most complex search
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Fig. 2.13 Number of matchings as a function of template size, degrees of freedom and candidate
combinations. Optical flow uses only 1 DoF.
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Fig. 2.14 Number of similarity index evaluations as a function of template size, degrees of freedom
and candidates number. Optical flow uses only 1 DoF.
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spaces. On the other hand, is many cases local registration allow pieces of the input to
be registered without influencing other portions which have already been matched leaving
more room for parallelization. Moreover, for many registration problems, both local and
global distortions exist, and it is sometimes useful to take a hierarchical approach in find-
ing the optimal transformation. In this case, the regions with local variations are registered
using local methods with the rest of the support being described using one global transfor-
mation mapping. This may lead to significant reduction in computational complexity and
implementation cost [BAA05, CLT+08].

2.3.5 Search space

Let search space denote the set of created by superposition of all allowable transformations
with all their respective allowable parameters values in the defined feature space. Then,
the aim of feature matching is to find the combination of transformation and its parameters
from the search space which carries out the registration in an optimal way. To this end it
is necessary to devise methods that (i) identify the transformation (and its parameters), and
(ii) measure the quality of results on the preselected features in a quantitative way. The
former and the latter methods are called the search strategy and the similarity criterion,
respectively.

The matching operation in spatial domain that traverses the set of possible transforma-
tions computing the corresponding similarity test results for a set of allowed templates is
known as ‘template matching’ [TK08]. A search iteration is carried out by placing the
template over the reference at the test location and computing the similarity metric. The
similarity metric is constructed in a way that it returns higher values for templates placed
over a reference that is more similar (has smaller differences between the corresponding
intensities). The optimal transformation is the one for which the similarity measure reaches
its global optimum (maximum in case of similarities). Finding the global optimum of simi-
larity index is a multi-dimensional optimization problem, where the number of dimensions
corresponds to the degrees of freedom of the class of the expected geometrical transforma-
tion.

For example, in the case when the only allowable transformation is translation, then
the search space is the set of all translations over the range of parameters (in this case
displacement/horizontal and vertical shifts). Under the assumption of global mapping, the
matching process would be carried out by iteratively translating the sensed image by a value
from the defined range and quantifying how the template and the reference pels correlate.
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The only way to assure that the displacement that results in the optimal transformation can
be found, that is the global maximum of correlation, is for the matching to be carried out
exhaustively over all possible displacements.

2.3.5.1 Computational complexity as a function of search space

The computational intensity associated with template matching is determined by the size of
the search space, type of transformations mapping and the computational intensity of the
similarity measure estimation. The size of the search space is determined by the number
of degrees of freedom of the (expected) transformation model and the range and grain of
the allowable values of the parameters. The simplest solution of trying out all allowed
combinations from the search space results in the template being transformed (translated,
rotated, scaled, etc.) for each possible transformation of interest. This affects the number of
combinations that need to be tested, skyrocketing with the increase of the number of degrees
of freedom and/or search range.

The type of mapping determines the number of sets of parameters that have to be com-
puted to align the images being registered. This translates to the number of templates for
which the matching process has to be carried out. In global mapping only one template is
used. The number of templates used by local methods corresponds to the number of regions
that the target image has been divided into. In case of area-based correlation-like image
registration three types of templates can be defined based on the number of pels that they
contain: a singular pel, a full frame and a block of pels.

The choice of granularity of the template has a significant impact not only on the di-
mensionality of the search space but also on the quality of the results. Using a coarser-grain
template reduces the number of templates (towards the limit of one) at the cost of poten-
tial results quality degradation should local distortions be present. The use of a finer-grain
template has the disadvantage of increasing the number of templates used in matching in-
troducing additional operations in the similarity measure computation. Piece-wise (local)
search of transformations may result in a blocking effect, characterized by the appearance
of artifacts at patch boundaries. Effective treatment of these variations would requires ad-
ditional processing [Ric04]. Consequently, methods using fine-grain templates tend to have
the largest and most complex search spaces. An exception to that rule is the case of using
only one pel. This finest-grain template is an interesting case as it allows to reduce the
complexity of the motion model to purely translational. Significant reduction in computa-
tional complexity, relatively low memory requirements, and intrinsic parallelism have made
optical flow one of the preferred ways for hardware implementations in low cost systems.
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On the other hand, accurate estimation of the true transformations becomes more and more
challenging for fine-grain templates. The change from coarse-to-fine template is carried out
by limiting the extent of support used in matching. A well known trade-off of reduction
in support is the loss of ability to accurately represent structural information. This makes
fine-grain templates more susceptible to producing false motion estimation, especially when
applied on homogeneous regions of the image [CLT+08]. To some extent this problem can
be mitigated by using more robust (and more computationally intensive) similarity mea-
sures.

2.3.6 Search strategies

In most cases, trying out all of the combinations from search space with high cardinality
is too time-consuming to be practical. Due to its high computational intensity, the exhaus-
tive search is rarely implemented for registration of images using models with more than
2 degrees of freedom. In practice, exhaustive search is used as the baseline to evaluate the
quality of results of other algorithms with reduced computational intensity. The approaches
to reduce the computational complexity of template matching aim at lowering the number of
tests or making the test less expensive. The latter is implemented by using a mathematically
less involved similarity metric and/or allowing early termination at various stages of com-
putation should a threshold value be reached. The former can be enforced by limiting the set
of allowable transformations (arbitrarily or based on an a priori knowledge) and/or using
heuristic methods for matching. Reduction of transformations model limits the allowable
transformations to those with lower number of degrees of freedom. Heuristic algorithms
encapsulate a set of methods that limit the number of carried out tests by constraining the
search range of parameters for which the matching is carried out. In case of the area-based
matching, the space described by the set of combinations of parameter values of the search
range is referenced as the search area. The search area in spatial domain is described by its
(relative) span and the size of the template. An example of such a search area used in piece-
wise area-based correlation-like registration (block-matching) is presented in Fig. 2.15. This
particular case assumes translational model over a range of (search radiusx,search radiusy)
displacements and a square template composed of template sizex × template sizey pels.

The pattern used to traverse the search range/space is known as the search strategy.
Heuristic algorithms can be classified based on the deployed search strategy. It is diffi-
cult to present a complete classification of search strategies without sacrificing presentation
clarity. Each search strategy has its advantages, disadvantages, sometimes limited domains
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Fig. 2.15 Search area structure used in block matching of a template assuming translational model
over a range of displacements.
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Fig. 2.16 Classification of block-matching implementations based on the used search strategy.
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and usually offers a different grade of the accuracy/complexity trade-off. In general, the
selection of the search strategy is done per particular application and is determined by the
assumed constraints on the search space, required accuracy, available time/power budget
and the difficulty of finding the optimum. A simplified classification of search strategies
most widely deployed in implementations of block-matching (for spatial domain) is pre-
sented in Fig. 2.16. Rather than describing the presented implementations, it is more useful
to provide a brief presentation of the main ideas on which most of heuristic block-matching
algorithms are based on.

Sub-sampling. Sub-sampling is the simplest and most straight-forward way of reducing
the computational intensity of correlation-based piece-wise template matching. Sub-
sampling reduces the support used to calculate the similarity index. In case of area-
based block-matching this is implemented by estimating the match criteria across a
sub(sampled)-set of pels instead of doing so over all pels from a patch.

Multi-path/point search. Many block-matching techniques rely on the assumption that the
correlation surface within the defined search range is relatively smooth. This leads to
an expectation that once a ‘good’ match has been found, an even ‘better’ match is
assumed to be nearby. This is generally correct in many sequences with the exception
of sequences with periodic patterns such as the windows of the building shown in
Fig. 2.18(e). Multi-point strategies exploit these notions by repeatedly carrying out
the matching for a relatively small number of test points scattered across the search
range in a regular pattern. After finding the iteration’s ‘best’ match, the pattern is
refined (usually points are scattered over a smaller area), and the next iteration of the
search continues in the vicinity of the ‘best’ match over a much narrower range of
displacements. The test carried out can vary (change) from stage to stage, usually
becoming more strict for later stages. If the test varies from stage to stage, it usually
becomes more accurate for later stages. This process can be repeated several times
until the desired motion vector accuracy is achieved.

The literature provides many examples of such processing. The existing implemen-
tations differ in terms of the used update policy, the (spatial) pattern of the candidate
subset and the conditions defining the transition between the steps. In the context of
block matching, the most commonly used search strategies are the: (new) three-step-
search [KIH+81, LZL94], four-step-search [PM96], diamond search [ZM00], two
dimensional logarithmic search [JJ81], cross search [Gha90], and orthogonal search
[PHS87]. Examples of particular paths for these algorithms are presented in Fig. 2.17.
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Fig. 2.17 Example of particular paths for some multi-path search strategies.
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Early termination. These techniques assume that once a certain match criterion has been
achieved a further search is no longer necessary. The match criterion itself can be
changed as the search progresses. The most well-known implementation of early
termination techniques is the spiral search [KDM+05]. This technique assumes that
the matches close to zero displacement present the biggest probability of fulfilling
the criteria. Spiral search starts at the zero-displacement position and spirals out to
cover larger and larger displacement sizes. As soon as the match criterion has been
achieved, the search is terminated.

Early termination can also be used to lower the cost of similarity metric computation.
In this case, once the threshold of a cost value has been reached the computations
are terminated with candidates being rejected. An example of using a threshold for
early rejection are the Sequential Similarity Detection Algorithms (SSDAs) proposed
in [BS72].

The drawback of early termination is that, although it reduces the average execution
time (vs the exhaustive search), its total execution time is not deterministic. Moreover,
early termination is satisfied with finding a ‘good enough’ solution. Better solutions
may never be found if the threshold is triggered before they are even considered.
Sequences with slow motion are searched quickly whereas the search of fast and/or
complex motion takes considerably longer. In practice, spiral search requires a time
limit to be set. This severely limits its use for real-time processing of sequences with
fast movement.

Sub-block registration and adaptive block size. This process allows to adapt the template
size to better match characteristics of the actual images. Adaptive template size leads
to more accurate registration and in some cases reduces bandwidth and memory re-
quirements. This technique is extensively used in the state-of-the-art video coding/-
compression where adaptive block size can be used to provide a better fit within the
targeted bandwidth [CJ06, Ric04, Boc09]. The adaptability of the processing in-
creases the irregularity of the control flow and comes at the cost of higher complexity
of hardware implementation.

Predictive or spatially dependent registration. These methods assume that the motion
patterns of neighboring patches are correlated. These methods look at the results
of already carried out matches and form a prediction on the match for the current
patch. In most cases the prediction is based on the results of few immediate neigh-
bors. In most cases the predicted match forms an additional test candidate or a special
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case to provide earlier termination when favorable conditions are met. An example of
the latter use case is presented in [WLBR97]. Spatially dependent registration is ex-
tensively used by modern compression codes i.e. H.264 [Ric04] and High Efficiency

Video Coding (HEVC) [SOHW12].

Multi-scale search. Known also as hierarchical search or coarse-to-fine/pyramids meth-
ods. These methods exploit the fact that a displacement observed at a finer-grain rep-
resentation can be described as a smaller displacement at a coarser level. This allows
the search at finer level to be substituted by a carrying out the search at a coarser level
that is performed over a smaller set of discrete pels and then projecting the results
onto the finer level representation. An optional accuracy refinement step is possible.

In order to carry out the multi-scale estimation, a set of scales —representations of
the images being registered— are required. These representations form a hierarchical
structures of images referenced as pyramids. An example of such hierarchy is shown
in Fig. 2.18. Denoting the original images as scale 1 representation, the represen-
tations at different scales are created by iterative decimations (filtering and subsam-
pling) of the representation at previous scale. The search is cascaded over all levels,
starting from the coarsest one. Any search strategy can be used at any level. However,
in most cases full search is carried out at the coarsest level. The results are used to
estimate the initial displacement for the next finer level of the pyramid. The search
is then repeated. It is a common case that the search at finer level is executed over a
much narrower range of displacements.

While carrying out the search over a hierarchy of down-scaled representations is not
guaranteed to produce the same result as full search over the source, it usually works
almost as well and is much faster. In most cases, the coarse-to-fine estimation due to
the search being guided by results at coarser levels increases convergence whose lack
is known to be the biggest disadvantage of direct techniques. Performing the search
at a coarser level makes the process more robust against fine-grain variations char-
acterized by abrupt movement at different speeds and in different directions, which
are very likely to lead to false estimation at finer-scales. However, the search can be
potentially misguided, due apparent to false patterns created by distortions originat-
ing from the increased amount of aliasing in each layer of the hierarchy. In practice
it is hard to use more than two or three levels of a pyramid before important details
start to be blurred away. An example of aliasing introduced by the inter-scale filter
manifested as moiré patterns can be observed in Fig. 2.18(b) through 2.18(c).
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Fig. 2.18 Example of multi-scale template matching.

Since its initial deployment in [VR77], multi-scale processing image registration has
gain much popularity. Nowadays, usually referenced as hierarchical motions estima-
tion, it forms one of the key components of the current state-of-the-art image registra-
tion techniques [BAHH92, HZ07, WLBR97, LG00, CJ06].

2.4 Super-resolution hardware implementations

As pointed out, software based implementations are not capable of providing SR real-time
performance when mapped on the available technology. When introduced, real-time capa-
bilities are expected to broaden even further the range of possible applications and result in
enhanced usability and user experience in the cases that do not intrinsically require them.
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Hardware implementation has to consider the existing trade-off between the execution speed
and the resources required to obtain it. On one hand the processing has to be parallelized
to reach satisfactory performance, on the other hand achievable parallelism is limited by
the memory required for its exploitation. This section briefly describes the most important
approaches to hardware implementation of SR of images. In the case of commercial devices
information on the used algorithm are speculations deduced from the (scarce) available data.
The characteristics of the hardware implementations executing in the multi-frame context
introduced over the last 15 years are shortly summarized in Table 2.3.

2.4.1 Multi-frame SRIR implementations

In [CLL+06] Callico et al. present hardware implementation of two super-resolution image
reconstruction algorithms based on non-uniform interpolation referenced as, respectively,
Iterative Super-Resolution (ISR) and Non-Iterative Super-Resolution (NISR). Both of these
algorithms execute in a multi-frame context and fall into the family of fusion-based direct

SR methods working in the spatial domain. The presented implementation is mapped onto a
hybrid software/hardware system based on Commercial Off-The-Shelf (COTS) Picasso sys-
tem developed by Philips Research. The Picasso system is composed of a general-purpose
embedded ARM microprocessor and four Very Long Instruction Word (VLIW) processors.
The idea is to take advantage of software/hardware partitioning and output computationally
expensive tasks to the VLIW processors acting as hardware accelerators, while memory ac-
cess and flow control is managed by the ARM processor. In order to carry out SRIR the
platform had to be modified by addition of memory, arithmetic unit and implementation of
quarter-pixel motion estimation. Mapping results showed that NISR outperforms the itera-
tive approach in terms of execution time, and, if more than four reference frames are used,
also in super-resolved image quality measured as peak noise to signal ratio (PSNR). The
gain in performance comes at the price of higher memory requirements, which authors con-
sider the architecture bottleneck. Both algorithms implementations were far from meeting
real-time execution. The NISR is described as more suitable for systems which aspire to
meet real-time requirements.

In [CN07] Callico et al. implement a modified version of NISR on platform compris-
ing an ARM process and Programmable Logic Device (PLD). The implemented algorithm,
called eXtended Super-Resolution (XSR) introduces a new down-sampling method, called
smart down-sampling. During down sampling image is divided into three regions: motion
and textured (MT), flat (F), and no motion but textured (T). Pixels belonging to T regions in
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consecutive LR frames are assigned different HR samples values. XSR applied on T regions
is able to undo smart down-sampling, as it knows the inverse of sample selection scheme.
Flat regions are upscaled using interpolation and MT regions are super-resolved in the reg-
ular manner. The algorithm was mapped onto the Integrator CM922T-XA10 development
board. The board includes an Excalibur XA10 device and off-chip memory. The former
device comprises a programmable logic device, used to accelerate inverse discrete cosine

transform (IDCT) and handle off-board communication, and an ARM9 embedded proces-
sor that manages the rest of the tasks. The described system was capable of super-resolving
QCIF (176x144 pixels) resolution frames to CIF (352x288 pixels) resolution at the rate of
15 frames per second. The memory access latency and bus contention have been identified
as the system bottlenecks.

In [ABCC09] Angelopoulou et al. present a FPGA implementation of a super-resolution
image reconstruction based on iterative back projection that executes in a multi-frame con-
text. In this approach, additional details are reconstructed based on exploitation of sub-pixel
shifts caused by warping. In order to facilitate parallelization and minimize the execution
context memory occupancy, the processing is done at pixel level by means of weighted mean
optical flow, referred to as weight based (picture elements) merging. Weights estimation is
based on the inter-frames motion estimations for pel matching. The implementation reaches
an operating frequency of 80 MHz, which the authors claim is sufficient to allow real-time
execution outputting 25 VGA 2x super resolved frames. Nevertheless, the output quality
is compromised due to the low number of implemented iterations (up to 10) limited by the
available resources. The main weaknesses of this approach are its high memory require-
ments and the fact that, in order to output a super resolved image, multiple passes through
the hardware are required. The design bottleneck was identified to be the triple buffering
memory access scheme.

In [BB08] Bowen et al. present a similar implementation of IBP algorithm targeting
a development board hosting a FPGA device. The architecture onto which the algorithm
was mapped is shown in Fig. 2.19. Motion estimation data, pixel values, and weights of
aforementioned LR frames are loaded and used to fill-in the HR grids. Those two grids
are merged with previous frame initial approximation to form initial approximation for the
current frame. Missing pixels are reconstructed by means of modified nearest neighbor
interpolation forming an initial approximation of the HR image. This approximation is later
fed to the first iterative stage modules. Iterative stage modules carry out the refinement
process using values from previous iterations, original pixel, and weight related parameter
in similar fashion to the aforementioned weight based merging. Output of the last iterative

56



2.4 SUPER-RESOLUTION HARDWARE IMPLEMENTATIONS

Fig. 2.19 System architecture deployed by [BB08]; source [BB08].

stage is considered the super-resolved pixel. The authors claim, that, with a loaded pipeline,
their approach is capable of producing one super-resolved pel per cycle. The described
architecture, implementing 10 iteration stages, was mapped onto a Xilinx XC2V6000 FPGA
device reaching a frequency of 58 MHz. In this configuration the system was capable of
super-resolving 61 CIF formatted LR images to 1280x720 pels per second. Nevertheless,
a satisfying quality level requires at least 20 iteration stages, being out of reach for the
target device. The number of implemented iteration stages is said to be limited only by the
available on-chip memory.

In [STdA13] Singla et al. implement a modified version of the NISR on a low cost
NoC-based MPSoC platform comprising up to 4 Xilinx MicroBlaze soft-core processors.
The processors are equipped with a 64 kB of local memory and access to DDR3 controller
over an Arteris FlexNoc 2D-Mesh NoC. Each core executes its own copy of the algorithm
that applies SR processing on a (statically assigned) chunk of the input frame loaded from
off-device random access memory (RAM). Mapping onto Xilinx Spartan-6 LX45T FPGA
results in utilizing 88% of the available slices (∼6003 slices or ∼38420 LUTs) and 97%
of BRAMs (∼2025 Kb) while reaching operating frequency of almost 53 MHz. For this
configuration a complete SR (including ME) of a QCIF frame to CIF (2x SR) takes around
60 seconds.
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2.4.2 Single-image SRIR implementations

In [Mal06] Mallat et al. propose a novel approach for carrying out SR in the frequency do-
main based on bandlets [MP07, PM08]. The algorithm does not rely on motion estimation
but rather on a dictionary-based bandlet matching executing in a single-frame context. The
meta data describing the patches of the LR image (frequency representation) is produced
by means of geometric total variation estimation. Based on these metrics most suitable ge-
ometry reconstruction method, out of a provided a priori set, is found and applied. The
processing differentiates the processing (and the reconstruction sets) between fine grain
patches (areas rich in details) and coarse grain patches (plain/derived of details areas). The
above-described super-resolution image reconstruction method (with noise removal) based
on geometric spatio-temporal bandlets transformation is implemented by Let it wave LB-
101. The LB-101 is a technology converter for Broadcast/ProAV and Home Cinema appli-
cations capable of SD (Standard-Definition) to HD (High-Definition) upconversion as well
as a cross-conversion from 1080i to 720p and 1080i to 1080p format. The LB-101 is avail-
able as a standalone integrated circuit with reference design, a soft macro IP implementable
on Altera FPGAs and/or HardCopy Structured ASICs, or as a complete, easy to integrate
module mezzanine board. LB-101M FPGA implementation requires 70000 logic elements
(when mapped onto Altera Cyclone-II 70 device) and can be found in high-end electronics
devices, i.e. in Analog Way’s HD Optimizer.

In [NEC09] NEC has introduced its approach to single-image SRIR, namely the NEC
µPD9245GJEC SoC. The device implements NEC Electronics proprietary single-frame
super-resolution algorithm with blur reduction. Details on the algorithm have not been
disclosed, however, it is most likely to be a dictionary based hallucination in frequency do-
main similar to the one implemented by the LB-101. NEC claims that its design is capable
of upscaling: (i) quarter VGA (QVGA) resolution (320x240 pixels) to wide VGA (WVGA)
resolution (800x480 pixels), (ii) NTSC format resolution (720x480 pixels) to wide extended
graphics array (WXGA) resolution (1366x768 pixels) or super XGA (SXGA) (1280x1024
pixels), at the rate of 60 frames per second (fps). The µPD9245GJEC is also available
as a soft macro destined for NEC’s cell-based ASIC (CB-90 and CB-12) and gate array
(CMOS-12M) libraries.

Okuhata et al. in [OIOS13] present an image up-converter that claims to deploy ‘super-
resolution’ to provide a more accurate depiction of edge and details than those of conven-
tional interpolation algorithms. The algorithm checks each region in a given frame for pres-
ence of edges and then applies distinct interpolation functions to pixels which are part of an
edge as well as pixels located in ‘smooth’ regions of the image. The fact that this algorithm
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does not use a dictionary but a static set of coefficients suggests that the algorithm belongs
to the reconstruction based single-image family or SR methods. Nevertheless, based on the
given details this algorithm can also be classified as an adaptive form of linear interpola-
tion which is capable of selecting a suitable set of convolution coefficients according to the
edge orientation in the vicinity of the interpolated pel. When implemented using Verilog
and mapped onto an Altera Arria II GX EP2 AGX125 EF35C4 device the implementation
supports a maximum resolution of 1920x1080 pixels at a maximum frame rate of 60 fps at
a 148.5 Mhz operating frequency.

In [Goh14] Goshi proposes a novel SR method based on non-linear signal processing.
The algorithm detects edges in the input frame using a high pass filter and uses them as
the input to a non-linear function in order to create harmonic waves that have higher fre-
quency than the LR input. Once saturated by a limiter, the created high frequency details
are added to the upscalled version of the original input enhancing its quality. The quality
enhancement claim is justified by presentation of 2DFFT results that show additional high
frequencies in the output image. No complementary objective quality assessment values are
presented. The author claims successful implementations in FPGAs but does not provide
any implementation data justifying the claim.
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2.5 CONCLUSIONS

2.5 Conclusions

This chapter focused on the presentation of the basic concepts and the state-of-the-art of the
super-resolution process. Over the last 40 years several approaches to the super-resolution
problem have been developed. The most important approaches were described and orga-
nized in a complete taxonomy presented in this chapter. Super-resolution of video sequence
introduces an additional level of complexity to the already complex super-resolution prob-
lem. The challenges and approaches to super-resolution of video sequences have been in-
troduced. The non-uniform grid projection algorithm that is of relevance to this thesis has
been contextualized as belonging to the interpolation-based family of the direct classical
multi-frame super-resolution algorithms. The main advantage of this class of SR algorithms
is their relatively low computational load, which is essential in making them suitable candi-
dates for real-time implementations in hardware.

Finally, the chapter concluded with the presentation of the state-of-the-art of the super-
resolution hardware implementations in FPGAs. The availability of such implementations
is scarce. The main factors limiting the success of FPGA-targeted implementations have
been identified as being resource-related. In particular: (i) Most implementations have been
found to be limited by the available device memory. (ii) Iterative algorithms implemen-
tation have been found to be additionally limited by logical resources and tend to offer
lower-then-the-reference output image quality due to the limited number of implemented
iterations. In spite of the above drawbacks, FPGA devices are still the best platform for
multi-frame SR systems prototyping in hardware.
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Chapter 3

The non-uniform grid projection
algorithm

3.1 Introduction

In this work we tackle the challenge of providing real-time SR of video sequences by using
the non-uniform grid projection algorithm that has been proposed in [MC03]. NUGPA is
a fusion algorithm that looks for and exploits the non-redundant data encountered in a set
of images due to the warping associated with movement and aliasing caused by the band-
limited registration sensors. Using the classification presented in Section 2.2.3, NUGPA
falls into the interpolation-based fusion techniques of the direct multi-image family of spa-
tial domain methods. The main advantage of this class of SR algorithms — the relatively
low computational load, which is essential in making real-time applications possible —
comes at the price of a limited degradation model. Moreover, the optimality of the recon-
struction algorithm is not guaranteed, since the reconstruction step ignores the errors that
occur in the interpolation stage. In this work we assume that the blur, noise characteris-
tics, point spread function and decimation factor is common and space invariant in all LR
images. Additionally, we will consider the relative motion to be purely translational.

Over the years two versions of NUGPA have been developed by IUMA in coopera-
tion with Philips research, namely, the iterative and non-iterative (or single-pass) versions.
Based on the comparison of both versions presented in [MC03] we have opted for using the
non-iterative version due to its deterministic execution time and better quality of the super-
resolved image. Additionally, implementations of iterative algorithms (e.g. iterated back
projection) have been reported to not be able to implement sufficient number of iterations in
order to provide satisfactory quality of the output image [ABCC08, BB08]. The single-pass
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nature of the non-iterative NUGPA approach not only facilitates hardware implementations
but also increases the chances of providing software-level quality of the output. The other
main issue of the FPGA-targeted SR implementations, namely high memory requirements,
will be tackled in the following chapter.

3.2 The non-uniform grid projection algorithm

NUGPA carries out super-resolution image reconstruction in accord with the three-stages
classical flow of fusion-based algorithms presented in Fig. 1.1. The stages defined by the
classical approach, namely (i) pre-processing, (ii) multi-image fusion, and (iii) post-pro-
cessing, correspond to the motion estimation, fusion-based reconstruction and non-uniform
interpolation stages of the NUGPA, respectively. Due to this mapping, NUGPA is an exam-
ple of the interpolation-restoration direct methods. Detailed description of execution flow is
the focus of this section.

3.2.1 Image registration

In the first stage the warping function and its metrics are estimated. The warping function
usually is not known a priori, hence, regions which could contain supplementary informa-
tion have to be found at run-time. What is known is that these regions are believed to differ
only slightly from regions that they could enrich. In order to register images and find regions
that are most probable of containing additional information the NUGPA super-resolution
algorithms deploys a variant of block matching motion estimation. During image registra-
tion a set of neighboring pels (hereafter a macro-block (MB)) from the processed frame is
matched against pels from other frames from the sliding frame window. For each MB only a
limited set of pels (called search area, SA) confined within certain spatial vicinity (defined
by the so called search area radius, SAR; expressed in number of pels) participate in the
process of candidate set creation during motion estimation. The motion estimation process
calculates the so called hyperdata, which in our case comprise the motion vector (MV) and
the associated similarity criteria values. The motion vector is a vector that identifies the MB
for which the similarity indices have the value closest to the optimum being sought for. An
example of block-matching for a SFW comprising two reference frames, search area radius
equal to MB width (MBwidth ), comprising (2×MBwidth + 1)2 candidates, is illustrated in
Fig. 3.1 (for clarity only nine candidates are shown).
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SAD SAD

Sliding Frame Window

Search Area Motion VectorPatch being processed Best MatchCandidate

Fig. 3.1 Image registration using block matching motion estimation with sum of absolute differences
(SAD) used as the similarity criterion.

3.2.2 Fusion-based reconstruction

The hyperdata produced during the motion estimation stage are passed on to the SR kernel.
The restoration processes starts with HR grid creation. The dimensions of this grid are
determined by the used image registration precision (hereafter precisionir or precisionme).
First, the so called up-holes transformation is carried out. During this transformation a HR
grid gets filled with LR pels of the frame being super-resolved. Having g(x,y, t) representing
pixels of the LR frame captured at time instance t, with spatial coordinates (x, y), the new
HR spatial coordinates (x,y) are computed by multiplying the LR coordinates by the motion
estimation precision, in accord with (3.1).

(x,y) = (x∗ precisionir,y∗ precisionir) (3.1)
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Fig. 3.2 The NUGPA super-resolution kernel execution flow.

Having placed all LR pixels on the HR grid, pixels from the set of preceding and suc-
ceeding LR frames contained in the SFW are considered. At this point, most of the HR grid
coordinates do not contain valid data. Those coordinates are referred to as holes, and are
to be fused with data extracted from the current frame window. During the fusion, the re-
ceived hyperdata (i.e. MVs and SADs) determine which data will contribute to which hole
value estimation, and with what weight. It is allowed for more than one value to take part
in the process of forming the new super-resolved value. In the case of more than one pel
value contributing to the process, each contributing pel value is multiplied by its weight and
added together to form an intermediate super-resolved value. For each coordinate, a sum of
weights of the contributions is maintained and updated. Having considered all frames from
the frame window, the final holes values are computed by dividing the intermediate values
by the sum of weights associated with them. The data extracted from reference frames are
allowed to be used to modify only the holes values. This guarantees that the beforehand
placed LR values remain unchanged during the restoration stage. Execution flow of data
extraction, HR grid filling and fusion is illustrated in Fig. 3.2.
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3.2.3 Non-uniform interpolation

A common scenario is that not all holes of the HR grid are filled during the reconstruc-
tion stage. Unfilled positions values are estimated by means of interpolation. Finally, the
post-interpolation HR grid is adjusted to the expected outcome dimensions indicated by the
scale factor (hereafter scale or scalesr). The scale determines the relation between the ex-
pected super-resolved outcome and the LR input dimension. For scale values smaller than
the precisionir value, HR grid downsampling is carried out. When the aforementioned pa-
rameters values are equal, no further processing is needed and the post-interpolation HR
grid becomes the final super-resolved image produced by NUGPA.

3.3 Mathematical model of the non-iterative restoration-
interpolation classical super-resolution process

We have created in chapter 2 a complete taxonomy of different approaches and algorithms
developed in the literature for the SR process. In this section we introduce mathematical
models for the image registration stage and the restoration-interpolation stage in an attempt
of complementing existing algorithmic descriptions with a consistent closed form analyti-
cal model that captures the layered computation scheme of the SR process. The different
transformations operating over different image spaces are clarified and underlined.

In this section a mathematical description of the interpolation-restoration non-iterative
super-resolution is presented. Before we start exposing our analytical approach to the super-
resolution process, let us define the following terminology:

• precisionir: precision of the image registration (motion estimation) process that is a
value from a set Pir = 2i : i ∈ N (only powers of 2).

• precisioni: precision of the ith intermediate stage of image registration where i : i ∈
N∧1≤ i <

√
precisionir and precisioni = 2i.

• scalesr: scale of the increase in number of pixels (per dimension) between the input
and the output of the super-resolution system such that scalesr ≤ precisionir.

• card(Q): cardinality of a set Q defined as the number of elements it contains. The
traditional notation |Q| is not used in order to avoid ambiguity with absolute value
determinant.
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• X2: coordinate space in two dimensions in which image registration is carried out at
its lowest level of accuracy (full-pixel), such that X2 ⊂ N2.

• X2: coordinate space in two dimensions in which image registration (motion esti-
mation) is carried out at its highest level of accuracy specified by the value of the
precisionir parameter, such that X2 ⊂ N2∧ card(X2

) = card(X2) · precision2
ir.

• X̃i
2 : coordinate space in two dimensions in which the ith intermediate stage of image

registration (motion estimation) is carried out at the level of accuracy specified by
precisioni, such that X̃2 :⊂ N2∧ card(X2

) = card(X2) · precision2
i .

• X̂2 : coordinate space in two dimensions in which corresponds to the fidelity of the
final representation of the super-resolved image such that X̂2 :⊂ N2 and card(X̂2) =

card(X2) · scale2
sr ∧ card(X̂2) = card(X2

) · scale2
sr

precision2
ir

.

• x, y: coordinates describing the location of a pixel in X2 space such that (x,y) ∈ X2.

• x̃i, ỹi: coordinates describing the location of a pixel in X̃i
2 space such that (x̃i, ỹi)∈ X̃i

2.

• x,y: coordinates describing the location of a pixel in X2 space such that (x,y) ∈ X2.

• x̂, ŷ: coordinates describing the location of a pixel in the space of the super-resolved
image such that (x̂, ŷ) ∈ X̂2.

• κ: maximal number of low resolution images comprised in the frame window.

• pt(x,y): picture element (pel or pixel) sampled at the moment t located at the coordi-
nates (x,y).

• δx: value of displacement along the horizontal axis.

• δy: value of displacement along the vertical axis.

•
−→
∆ = (δx,δy): displacement vector along the horizontal and vertical axis in a 2-D
space.

• δx(x,y)(L→P): displacement along the horizontal axis of pixel located at (x, y) of frame
‘P’ with respect to the reference frame ‘L’.

• δy(x,y)(L→P): displacement along the vertical axis of pixel located at (x, y) of frame
‘P’ with respect to the reference frame ‘L’.
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•
−→
∆ (x,y)(L→P) = (δx(x,y)(L→P),δy(x,y)(L→P)): displacement vector in a 2D space of
pixel p(x, y) of the frame ‘P’ with respect to the reference frame ‘L’.

• Based on the above we find that the following relations are true:

card(X2)< card(X̃2)< card(X2
) (3.2)

card(X2)≤ card(X̂2)≤ card(X2
) (3.3)

3.3.1 Overview of the non-iterative restoration-interpolation classical
multi-image super-resolution

Calling f(x,y) the underlying continuous image, let us denote f(x,y,t) the low resolution input
image captured at time instance t. Now, let us assume that all the input sub-system effects
(lenses filtering, chromatic irregularities, sample distortions, information loss due to format
conversions, system blur, etc.) to be time invariant and encapsulated in h(x,y). So, assuming
linear effects in lens, sensors, and color processing, the input to the algorithm will be the
two dimensional convolution expressed as

g(x,y, t) = f (x,y, t)∗∗h(x,y). (3.4)

Calling S(x̂, ŷ, t) the image obtained after applying the SR algorithm, and SR(x̂, ŷ) to the SR
algorithm itself, the input and the output of the SR processing are related as

S(x̂, ŷ, t) = g(x,y, t)∗∗SR(x̂, ŷ) (3.5)

The typical SR algorithm itself can be seen as composed of two stages: (i) image registration
and (ii) restoration-interpolation. This is modeled as

SR(x̂, ŷ) = SRP(r(x,y),k(x,y)) (3.6)

where, SRP is an operator that represents the SR process that encapsulates the process-
ing carried out by image registration kernel r(x,y) and the super-resolution kernel (SRK)
represented by k(x,y). Both of theses operations are the focus of the following sections.
All of the relationships between the defined operations for real and simplified systems are
summarized in figures Fig. 3.3(a) and Fig. 3.3(b), respectively for the case of real-life and

69



CHAPTER3.–REFERENCE SUPER-RESOLUTION ALGORITHM
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DSP µP ASIC

DSP µP ASIC

DSP µP ASIC

Image enhancement subsystem

SR(x̂, ŷ)
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INT

STACK

HEAP
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DSP

FPGA

ASIC

RAM

S(x̂, ŷ, t)

(a) Real system.

f(x, y, t) h(x, y) SR(x̂, ŷ) S(x̂, ŷ, t)
t g(x, y, t)

(b) Simplified model.

Fig. 3.3 Organization of super-resolution image enhancement systems. Based on [MC03]

simplified systems.

Multi-image super-resolution image reconstruction (SRIR) is based on the fact that due
to aliasing images of the same scene captured at different time instances can contain com-
plementary information should sub-pixel warps be observed between theses representations,
as explained in Section 2.2.2.2.1. As the algorithm executes in a multi-images context,
the SRIR processing starts with the algorithm performing image registration followed by a
search for the regions captured at different time instances that are most likely represent the
same regions of the scene sampled with sub-pixel warps.

In order to be able to detect the sub-pixel movement and find additional information the
cardinality of the space (X2

) of image registration has to be higher than the one of the input,
that is, the registration process has to be done in a space oversampled with respect to the
input. This leads to the aforementioned assumption that card(X2

) > card(X2). Thus, the
first aspect to notice is that there are several coordinate spaces with different cardinality.
In our case the algorithm works with four resolutions: the low resolution space (X)2, the
intermediate-accuracy image registration space X̃2, the finest-accuracy image registration
space X2 and the super-resolution space X̂2. Thus, we have to model the transformations
between the defined coordinate spaces. To this end we use two operators: the downsampling,
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Fig. 3.4 Effect of using the upsampling operator on a 3×3 image and downsampling a corresponding
6×6 image (scale change factor of two; fi represents values estimated using interpolation ).

and the upsampling operators. The former carries out the transition from higher to lower
cardinality and in the case of transformation from (x,y) to (x̂, ŷ) is modeled as

downsample( f (x,y))d = { f (x,y) : x = x̂ ·d ∧ y = ŷ ·d ∧ x̂, ŷ ∈ X̂2∧ x,y ∈ X2
)}, (3.7)

where d is the scaling factor in each dimension defined in this particular case as

d =

√
card(X2

)

card(X̂2)
. (3.8)

The latter is used for transformations from lower to higher cardinality spaces (in our case
from (x,y) to (x,y)) and is modeled as

upsample( f (x,y))s =





f (x,y) : x = x/s ∧ y = y/s if x,y ∈ N

fi(x,y) otherwise
, (3.9)

where fi is an arbitrary function and s is the scaling factor in each dimension defined in this
particular case as

s =

√
card(X2

)

card(X2)
(3.10)

The relation between the upsampling and downsampling operators are illustrated in Fig. 3.4.
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3.3.2 Image registration for the non-uniform grid projection algorithm

The choice of the appropriate image registration method is made per application. The se-
lected image registration has to meet the registration requirements in terms of accuracy
and execution time, especially if real-time execution is being targeted. Our implementation
of the non-uniform grid projection algorithm carries out image registration by deploying
block matching—a direct area-based image registration in spatial domain with piece-wise
mapping. The used block-matching implementation limits the transformations model to
purely translational ones. This is a common design choice for systems aimed at real-time
processing. More complex transformations models (e.g. affine) prove to be simply be-
yond capabilities of today’s customer grade hardware. In fact, even real-time registration
of transformations with 2 DoF can be a very demanding task, especially in cases of large
search areas traversed using not efficient search strategies.

3.3.2.1 Provision of sub-pixel accuracy

The non-uniform grid projection algorithm falls into the category of classical multi-frame
super-resolution. As aforementioned, these algorithms are based on exploiting aliasing
and/or variations created due to sub-pixel variations between the captures. Thus, in or-
der to be able to provide any enhancement these algorithms require that the registration be
carried out with higher-than-full-pixel accuracy. The techniques described up till now have
been designed to carry out the registration without considering the sub-pixel domain. Even
though, a sub-pixel estimate could be created based on the results of the full-pixel ones
(e.g. weighted average of a set of ‘best’ results), the accuracy offered by this approach is in
most cases insufficient. There are several techniques that allow to obtain a better accuracy
[TH86, GSP86]. One common approach, and the one used by the authors of this work, is
to modify a well known full-pixel technique and perform (some of) its steps at a finer, sub-
pixel level. This approach operates on a pyramid of images where the search is cascaded
through different accuracy levels. The representations of each level of the pyramid are cre-
ated by re-sampling the previous coarser-level representation. Alternatively, interpolation
can be avoided by using re-sampling based on Taylor series approximation. However, this
approach is too complex to allow real-time execution.

In our implementation, sub-pixel accuracy has been provided by preforming the search
in three steps cascaded over three levels of accuracy. The estimations are cascaded from
coarser-to-finer. Before being used, the results from the coarser-level are projected onto the
finer-grain coordinates space. These coordinates after the projection are used as the refer-
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Fig. 3.5 Image registration using iterative refinement across three scales.

ence point of finer-level search area. The search area encompasses coordinates that corre-
spond to fractional coordinates at the coarser-level. The missing values of these coordinates,
the so-called holes, are estimated using bilinear interpolation. Once the re-sampling is done
the search continues. The coarsest-level corresponds to the full-pixel granularity search
algorithm as the first stage of motion estimation, followed by a sub-pixel motion refine-
ment. An example of a particular search carried out using the implemented block-matching
algorithm is illustrated in Fig. 3.5. In order to estimate the hyperdata (results of the registra-
tion process) with quarter-pixel accuracy the searches are cascaded over three levels. Each
finer-granularity level corresponds to re-sampling with a magnification factor of 2.

3.3.2.2 Similarity criterion

The last component of the image registration puzzle is the selection of the similarity cri-
terion. In this work, we carry out the similarity criterion selection under the assumption
that the images being registered have been captured with insignificant variances in inten-
sity. This is the typical case. This assumption allows to avoid normalization which is
required if the above is assumption is not made. The most widely used similarity criterion
for correlation-based image registration in spatial domain, among others, are the: Cross-
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Correlation Function (CCF), Mean Square Error (MSE), Mean Absolute Error (MAE),
Sum of Absolute Differences (SAD) and the Pixel Difference Classification (PDC).

Cross-correlation is the basic criterion. It has proved itself to be useful for images which
are misaligned by small rigid or even affine transformations. The problem with CCF and
MSE is that, both of these criteria require square root computations, which implementation
in hardware is costly. The criteria based on l2 norm penalize heavily large projection er-
rors. These errors are usually caused by variations that should be eliminated (e.g. outliers),
but are also related to aliasing in higher frequencies. By suppressing the use of these data
we may effectively limit the availability of the complementary information on which SRIR
operates. The MAE, SAD and the PDC criteria are based on computing the absolute dif-
ferences, making them computationally much simpler and easier to implement in hardware.
Moreover, these methods deploy l1 norm which can handle outliers much better than l2 and
is more robust. The possible disadvantage of these functions is the fact that they are not dif-
ferentiable at the origin. This makes them not well suited for gradient-descent approaches.
This is not the case of the modified three-step search. A crucial disadvantage of the PDC is
that its use results in many ‘ties’ that require additional computations to be broken. Also,
when compared with SAD, it requires additional comparisons even in the tie-less scenario.
The fact that SAD neither requires the final division nor has to deal with fractional values
(and their representation) makes it the preferred similarity criteria for hardware implemen-
tations.

3.3.2.3 Compilation determinable parameters

Current version of the implemented block-matching defines a set of customizable param-
eters. These are referenced as the (template) Macro-Block width (MB width or MBwidth),
Search Area Radius (SAR), the registration precision (precisionir) and the number of sensed
images used in registration (simply, reference frames (RF)).

Registration precision defines the finest-level accuracy, and indirectly the number of
levels in the search hierarchy/pyramid. The reference software operated at quarter-pixel
accuracy, corresponding to registration precision of 4 (precisionir = 4).

Setting the value of the macro-block width allows to choose the size used to tessellate
the image (and matching). The size of MB significantly influences registration accuracy, as
well as the computational and memory requirements. Smaller MB size relaxes memory re-
quirements, at the cost of higher computational complexity and higher probability of ‘false’
motion vectors [BAA05]. This macro-block width is defined at compilation time and can
be set to one of the supported values (4, 8 or 16). The chosen value is interpreted as the
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one dimensional span of the template expressed in (full) pels, that is, as the number of pels
in horizontal/vertical direction that make up the template. Current version supports only
square-shaped templates (block). Run-time variable template size is not yet supported.

NUGPA specifies two dimensions of search areas: one with fixed and with one parametriz-
able number of candidates. Both of the templates include all of the pels of the candidate
template, but (can) differ in the number of included pels from its immediate vicinity. The
fixed template includes only the pels which are the immediate neighbours of the candidate
template. This effectively fixes the maximal number of candidates to 4×MBwidth +4. The
customizable template allows inclusion of a larger range of the candidate template neigh-
bors. The maximal distance at which a pel will be included in the search area is defined by
the value of the search area radius parameter. The customizable template is used to define
the search area used for matching at the full-pixel (coarsest) level. The candidates set is
built by picking up every pel of a spiral-shaped path around the initial guess pixel (upper
left corner of the block), turning SAR times, and starting with the top-left pixel in every
turn. The cardinality of the set of candidates is modeled as

card(Cp)= 1+2× precisionir×(1+2+. . .+SAR)= 1+2× precisionir×SAR×(SAR+1),
(3.11)

where Cp represents the set of candidates of the parametrizable search area. The fixed
template is used for performing the second and thirds step of search. Both of the defined
templates are illustrated in Fig. 3.6 for the case of using a square-shaped template of MBwidth

width and a search area radius of SAR pels.

As aforementioned, the number of sensed frames is specified by setting the value of
the RF parameter. Our algorithm uses the sliding-window-frame approach in which the
registration process is carried out for each possible combination of the source and sensed
images from the frame window. Thus, the time required for image registration grows pro-
portionally with the number of used sensed images. The same frame window is used by the
super-resolution process that follows image registration. Thus, this value has a significant
impact not only on the execution time of image registration but also on the quality of the
super-resolution process as a whole.

3.3.3 Mathematical model of the image registration stage

As aforementioned, area-based image registration in spatial domain is carried out by means
of template matching. In this work only the case of purely translational model in 2D space
with piece-wise (block) mapping is considered. In this case, image registration is modeled
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Fig. 3.6 Search area templates used by different steps of the implemented matching.

as a function of a set T of N blocks τi, i ∈ [1,N]∧ ∈ N, a search space described as candi-
date set C with M elements, and a similarity function ε . The outcome of image registration,
called the hyperdata, contains (i) a set of the minimal value of the dissimilarity criterion
e(τ→C), (ii) a set of displacement vectors

−→
∆ (τ→C) and (iii) auxiliary data. The hyperdata

uniquely identify, for each of the defined template blocks, the candidate for which the min-
imal dissimilarity score has been observed. In classical SR the sets T (templates) and C

(candidates) are exclusive and refer to regions of images of the same natural scene captured
observed with different viewing conditions (temporal or spatial).

Before the matching takes place, image registration process starts off by creating higher
resolution representations of the input images. To this end, all the images undergo the
upsampling transformation with the fi encapsulating an interpolation algorithm and scale

s =

√
card(X2

)
card(X2)

:

g(x,y, t) = upsamples(g(x,y, t)). (3.12)

Regions of these representations obtained through tessellation will be used as the tem-
plates τ being registered.

3.3.3.1 Modeling exhaustive optical flow matching

The modeling will start off with presentation of the model of exhaustive template matching
of a single pel. This model will be then gradually extended in order to model the version
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of block-matching used by the non-uniform grid projection algorithm implementation. The
exhaustive template matching of a single pel describes the case in which the template is a
singular pixel and the candidate set is the whole sensed frame (effectively N = M). Let us
define ε as a function that given intensities of a pair of pels returns a value that measures
their similarity, being the pair a template-pel pτ : τ ∈ [1,N] located at (x,y), and a candidate-
pel pc : c ∈ [1,M] from the candidate set C located at coordinates (x+ δxc,y+ δyc). Then,
this value, denoted as e(τ→c), for the assumed purely translational model, is modeled as

e(τ→c) = ε(τ→c)(pτ(x,y), pc(x+δxc ,y+δyc)). (3.13)

The dissimilarity criterion is constructed in such a way that it assumes lower values for
‘better’ matches. Thus, the ‘best’ match for the template from the candidate set of pels is
found by minimizing the dissimilarity function computed over all the pels of the candidate
set (exhaustive search). Considering (3.13) in the context of all c ∈ [1,M], it can been seen
that in the investigated case the candidate set corresponds to the whole search space and
is exhaustively traversed by using all possible displacements between the template and the
candidate pels. Let us define a set of all possible displacements ∆τ

C that uniquely identifies
each and every candidate from the candidate set C for a template τ . Then, the search for
the best match of a single pel as the search for a displacement vector

−→
∆ (τ→C) for which the

dissimilarity function reaches its minimum can be modeled as:

−→
∆ (τ→C) , arg min

∆=(δxc ,δyc)∈∆τ
C

ετ→c(pτ(x,y), pc(x+δxc ,y+δyc)). (3.14)

3.3.3.2 Modeling exhaustive region-based matching

Now, let us relax the assumption that the template contains only one pixel. This requires
changes in the similarity criterion, so that it would allow all the pels contained within the
limits of the pattern to contribute to the overall similarity score (sub-sampling is not consid-
ered here). Let us define a region W (x,y) as a local neighborhood centered at coordinates
(x,y) and comprising pels whose coordinates are within the distance or radius of m pels
[±m,±m] from the center of the set. Coordinates that point outside of the image bound-
aries form a corner case of the process. In this description it is assumed that these pels are
detected handled by the function that computes the dissimilarity score. Now let us define
ε(Wτ→Wc) as a function that computes the dissimilarity score given two regions Wτ(x,y) and
Wc(xc,yc) centered, respectively, at coordinates (x,y) and (xc,yc) : xc = x+δxc;yc = y+δyc .
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Then the e(Wτ→Wc) is computed as

e(Wτ→Wc) = ε(Wτ→Wc)(Wτ(x,y),Wc(xc,yc)). (3.15)

Assuming that ε(Wτ→Wc) can be modeled as a combination, denoted as ϒ, of similarity mea-
sures computed element-wise over the pels of the two regions leads to

e(Wτ→Wc) =
m

∑
mx=−m

m

∑
my=−m

ϒ(ε(τ→c)(pτ(x+mx,y+my), pc(x+mx +δxc ,y+my +δyc))).

(3.16)
Considering the template matching for sets of pels and assuming that all candidate regions
Wc from the candidate set C to be matched with the template region are uniquely identified
by a set of possible displacements ∆

Wτ

C , the minimization problem (3.14) becomes

−→
∆ (Wτ→C) , arg min

∆=(δxc ,δyc)∈∆
Wτ
C

ε(Wτ→Wc)(Wτ(x,y),Wc(x+δxc ,y+δyc)). (3.17)

3.3.3.3 Sum of absolute errors as a robust matching criterion

The template matching implemented by NUGPA deploys the sum of absolute differences as
the matching criterion. The value of SAD is computed between the template and the can-
didate patch located at coordinates identified by a vector representing relative displacement
between the regions. Let us define a region as a series of n = mx×my pels luminance values
represented as a lexicographically ordered vector pi = [pi1, pi2, . . . , pin−1, pin]

T . Then, the
dissimilarity e(Wτ→Wc) is determined by computing the sum of differences SADτ→c between
the representations of the template pτi and candidate pci . That is,

e(Wτ→Wc) = SADτ→c =
n

∑
i=1
|pci− pτi|. (3.18)

Block matching is considered an effective scheme for textured regions, but exhibits per-
formance degradation when carried out for regions with high homogeneity [BAA05]. In
order to prevent quality degradation, homogeneous regions are identified and handled dif-
ferently. For this purpose, additional SAD between pels belonging to a candidate MB ci

and average pel value for this MB (pci
computed as in (3.19)) is estimated, in accord with

(3.20). This value, represented as SADintra
ci

, forms a part of the hyper data and is passed on
to the SR kernel.

pci
=

∑
n
j=1 pc j

n
(3.19)

78



3.3 MATHEMATICAL MODEL OF THE NON-ITERATIVE CLASSICAL SUPER-RESOLUTION

SADintra
ci

=
n

∑
j=1
|pci
− pc j | (3.20)

3.3.3.4 Modeling of heuristic region-based matching

As aforementioned, due to its computational cost the exhaustive (or full) search is not used
in practice. Practical implementations of block-matching rely heavily on heuristic search
strategies, which operate only on a subset of the possible candidate set C defined for a
particular search space. In order to model heuristic search (or search strategies) let us define
a function Φ that given the set of possible candidates C, the search strategy α and the
reference coordinates xr,yr produces a set of allowable candidates Cα on which the heuristic
search operates.

Cα = Φ(C,α,(xr,yr)) (3.21)

3.3.3.5 Modeling hierarchical sub-pixel matching

In order to be able to achieve sub-pixel accuracy NUGPA carries out image registration in
three steps, each executing at different accuracy-level. The results of registration are cas-
caded between the steps. The cascade is formed in the direction of the finer steps. The
results of template matching at a coarser-level are used as the initial point to guide the
matching in the subsequent, finer-accuracy space. Before the matching takes place the re-
sults have to be projected onto the finer-step’s grid and the vicinity of the initial guess has
to be re-sampled in order to create values included in the subsequent-step’s search area.
Re-sampling is carried out using the already defined upsampling operator with fi being an
bilinear interpolation kernel and the projection scale sK→F from coarser K to finer F step

sK→F =

√
card(F)

card(K)
. (3.22)

The projection operation is carried out by multiplying the values of the coarser-accuracy
results by the projection scale. Denoting the displacement returned from template matching
carried out at the coarser as

−→
∆ K

(Wτ→C) = (δ K
x(Wτ→C)

,δ K
y(Wτ→C)

), the projection scale sK→F , then
corresponding displacement at a finer-level is modeled as

−→
∆

F
(Wτ→C) = (δ F

x(Wτ→C)
,δ F

y(Wτ→C)
) = (sK→F ·δ K

x(Wτ→C)
,sK→F ·δ K

y(Wτ→C)
) = sK→F ·

−→
∆

K
(Wτ→C)

(3.23)
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Let’s label the accuracy levels from the coarsest (step 1) to the finest (step 3), respec-
tively as full-pixel (FP), half-pixel (HP) and quarter-pixel (QP). Then, using the new terms
and the defined operations the hierarchical matching of a single region Wτ carried out by the
NUGPA is modeled as a series of three subsequent minimizations, that is

−→
∆

FP
(Wτ→CαFP )

, arg min
∆=(δxc ,δyc)∈∆

Wτ

CαFP

SAD(Wτ→Wc)(Wτ(x,y),Wc(xc,yc)), (3.24)

−→
∆

HP
(Wτ→CαHP )

, arg min
∆=(δxc ,δyc)∈∆

Wτ

CαHP

SAD(Wτ→Wc)(Wτ(x,y),Wc(x̃c, ỹc)), (3.25)

−→
∆

QP
(Wτ→C

αQP )
, arg min

∆=(δxc ,δyc)∈∆
Wτ

C
αQP

SAD(Wτ→Wc)(Wτ(x,y),Wc(xc,yc)), (3.26)

where, the candidate sets used in the sub-pixel matching are created as

CαHP = Φ(C,αHP,(sFP→HP · x+δ
HP
x(Wτ→CαFP )

,sFP→HP · y+δ
HP
y(Wτ→CαFP )

)), (3.27)

CαQP = Φ(C,αQP,(sHP→QP · x+δ
QP
x(Wτ→CαHP )

,sHP→QP · y+δ
QP
y(Wτ→CαHP )

)). (3.28)

Registration of the whole image is carried out by repeating the above process for all
regions of the source image. In case of performing the registration for multiple sensed
images, the whole registration process is repeated for each combination of the source-sensed
images. In the case of a set κ containing k images of which each is divided into w template
regions containing up to m×m pels, then, using the defined terms, the image registration
process for image t : t ∈ κ is executed M× (k− 1) times for each template region of each
frame i ∈ κ ∧ i ̸= t. The result of the image registration process (the hyperdata) of the
image t over a set of k− 1 sensed images (all images except the image t) are w× (k− 1)
displacements in X2 space and (corresponding) computed sums of absolute differences,
forming a set {−→∆ QP

(Wτ→Ci)
,SAD(Wτ→Ci),SADintra

ci
} for τ : 1 ≤ τ ≤ w∧ τ ∈ N; i : i ∈ κ ∧ i ̸= t

and quarter-pixel accuracy of the X2 space.

3.3.4 Mathematical model of the restoration-interpolation stage

In case of the non-uniform grid projection algorithm the second stage of the SR process is
the restoration-interpolation. As the name suggests, at the highest level of abstraction, the
restoration-interpolation stage can be seen as composed of two stages: (i) the reconstruction

80



3.3 MATHEMATICAL MODEL OF THE NON-ITERATIVE CLASSICAL SUPER-RESOLUTION

or fusion of the information extracted from the input images, and (ii) interpolation used to
compute the data that are still missing. The reconstruction process carries out the fusion of
the image to be super-resolved with the non-redundant data found in the HR projections of
the remaining κ images. The non-redundant data are extracted from the locations identified
by the hyperdata. In that sense, this part of the reconstruction process can be seen as an
inverse of the image registration step. As it was the case with image restoration, the first
step of the reconstruction process is the up-sampling of the input low resolution frames
g(x,y, i) : i ∈ κ to the resolution of image registration. The resulting HR representations
g(x,y, i) : i∈ κ are created using the up-sampling operator (3.9) with the interpolation kernel
fi defined to return a constant value of /0. This is modeled as

g(x,y, i) = upsample

√
card(X2)
card(X2) (g(x,y, i)). (3.29)

The super-resolution kernel k(x,y) processing is carried out by applying the fusion ker-
nel FK on the frames from the set κ , carrying out interpolation process INT on the output
of the fusion and downsampling the obtained representation. Let us defined the hyperdata
obtained from the image registration of an image t from a set κ containing k images, over
all of the remaining images of this set as Ωκ

t . Then,

k(x,y) = downsample
√

precisionir
scalesr (INT (FK(g(x,y,κ),Ωκ

t ), int(x,y)), (3.30)

where int(x,y) represents the interpolation kernel used in the interpolation process.

Let us define the fusion operator ⊕ that carries out the operation of projecting pels of
one region onto another. Using this operator the fusion of an image over a set of images is
modeled as (3.31) where ŝ(x,y, t) represents the outcome of the fusion process for frame t.

ŝ(x,y, t) =
k

∑
i=1,i̸=t

g(x,y, t)⊕g(x,y, i) (3.31)

Then the fusion process of the image captured at the time t with another image from κ

can be modeled as an act of performing a series of fusions of regions of these images. Let
⊕ operate in a way that allows it to carry out the projection of the region that is its right-
hand argument onto a grid defined for region which is its left hand argument. Assuming,
cardinality of τ to be w and that the fusions of each region result in an immediate update of
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the reference region, this processing carried out by the FK can be modeled as

ŝ(x,y, t) = FK(g(x,y,κ),Ωκ
t ) =

k

∑
i=1,i̸=t

w

∑
r=1

Wr(xr,yr)⊕Wemax
r→i

(xr +δxr→i,yr +δyr→i). (3.32)

It is a common case, that after all of the frames have been fused, the projection grid con-
tains many coordinates that have not been assigned a value and maintain the initial value /0.
The creation of values for these coordinates is carried out using the int(x,y) function defined
as in (3.33), where fi(x,y) encapsulates the non-uniform interpolation kernel. The non-
uniform interpolation computes the missing values using mean computed over its neighbor.
Only the non-missing values contribute in the process. The current version of the algorithm
uses location-independent weights which are equal for all participating pels.

int(x,y) =





fi(x,y) if ŝ(x,y, t) = /0

ŝ(x,y, t) otherwise
(3.33)

The restoration and the interpolation transformations are carried out in the (x,y) coor-
dinates space. Should precisionir ̸= scalesr then the fused image after interpolation has to
undergo a transition from X2 to X̂2 space. This step is carried out using the down-sampling
operation (3.7) with scale d = precisionir

scalesr
and is modeled as

S(x̂, ŷ, t) = downsampled(INT (ŝ(x,y, t), int(x,y),)), (3.34)

where S(x̂, ŷ, t) represents the super-resolved frame.

3.4 Quantitative evaluation of the non-uniform grid pro-
jection algorithm

This section will focus on evaluating the performance, in terms of the observed super-
resolved image quality, of applying NUGPA on luminance component of an image. First,
the topic of image quality assessment will be introduced and details on the proximity mea-
sures used in this study will be provided. Then, the test set-up and the results of the study
on the quality of the super-resolved image as a function of algorithm parameters as well
as a brief comparison with most popular solutions of the problem of image resolution en-
hancement. The subject of the study will be the reference software that implements the flow
presented in Section 3.2. This software has formed the starting point in our struggle for
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provision of real-time SRIR in hardware.

3.4.1 Image quality assessment

The ultimate goal of super-resolution is to increase image quality. Quality assessment for
a digital video/image, especially compressed ones, is not as straightforward as in case of
analog video signals and forms a dynamic research domain on its own. Analog video sig-
nal could be evaluated with some measurements like (non-)linear distortions, noise, etc.,
whose physical meaning is clear and easily understandable. Assessment of digital sig-
nal, due to quantization and compression, requires a profound understanding of the human
psycho-visual system if the provided mathematical models are to offer meaningful corre-
lation with the results of subjective quality assessment of human observers. Hence, over
the last 30 years several evaluation criteria have been proposed in order to evaluate the
quality of digital images and compare the improvements offered by image enhancement
algorithms [SSBC10]. These methods —the image quality assessment (IQA) methods—
can be classified into two categories: the objective and subjective evaluation methods. The
former methods are aimed at quantifying the perceived quality by designing (and using)
mathematical models that are able to predict the quality of an image accurately and auto-
matically (without surveillance of a human observer). An ideal objective method should
be able to mimic the quality predictions of an average human observer and be accurately
reproducible [MEMS14]. The main drawback of the real-life objective evaluation is that
it still bears limited relationship to the amount of visible distortion perceived by humans.
The subjective evaluation methods are carried out by humans who quantitatively evalu-
ate the image. These methods are seen as the ultimate test of the image quality as they
take into account intangible attributes (that are most likely) not included in the mathe-
matical models used by the objective methods. In practice, however, subjective percep-
tual evaluation is usually too inconvenient, difficult to set-up, time-consuming and expen-
sive to be used. Even though a number of standard test procedures have been developed
[ITU02, ITU98a, ITU94a, ITU08, ITU98b, ITU98c, ITU94b] subjective perceptual evalua-
tion is still not as reliable as one might hope. Reliable subjective perceptual measurements
are still the focus of intensive on-going research. Thus, in the case when reference image
is available, objective evaluation is used to benchmark image processing algorithms and
choose the algorithm that provides the higher quality images.

The objective IQA methods can be further classified based on the availability of a ref-
erence image, which is considered to be distortion-free and have perfect quality, into three
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groups: (i) the full-reference image quality assessment where the undistorted, perfect qual-
ity reference image is fully available, (ii) the reduced-reference image quality assessment
where only some features of the reference image are employed in evaluation, and (iii)
the no-reference image quality assessment in which there is no access to reference im-
age [MEMS14]. When the reference image is available, as is the case considered in this
study, quantification the degree of similarity between the produced outcome and the desir-
able outcome is possible. In other words, it is desired to measure how closely does the
super-resolved image approximate the reference if the latter is available. This measurement
is done using the so called proximity measures that quantify the ‘distance’ between the
two images in a perceptually meaningful way [TK08]. In order to assure ease of compari-
son with most of the publications on image enhancement algorithms, this study will focus
on presenting proximity measures obtained using the most widely used objective full ref-
erence IQA methods, namely the PSNR and Multi-Scale Structural SIMilarity (MSSIM)
[WBSS04, WBS05, WSB03a].

3.4.1.1 Peak signal-to-noise ratio

PSNR is by far the most widely used proximity measure. This is mostly due to its simplicity,
clear physical meaning, ease of efficient implementation, sensitivity to small changes in
picture degradation and ability to be accurately reproducible. For measuring PSNR, first
the mean square error of the obtained image/video frame vs the reference (both composed
of N pels) is computed by averaging the squared intensity differences between the distorted
( ˆpelSR(i)) and the reference (pelre f (i)) image pixels:

MSE =
1
N

N

∑
i=1

( ˆpelSR(i)− pelre f (i))2. (3.35)

The MSE is the norm of the arithmetic difference between the reference and the test
signals. It is an attractive measure for the (loss of) image quality due to its simplicity and
mathematical convenience. PSNR is then calculated as the logarithmic ratio between the
peak signal (maximal value of the signal; determined by number of bits used to represent
video signal) and the square root of the MSE [Boc09, Appendix C]:

PSNR = 10∗ log10
(maxvalue)

2

MSE
. (3.36)

PSNR is usually expressed in decibel.
The simplicity and ease of implementation of PSNR are significant advantages making
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it the most wide-spread objective quality measure. While it is true that PSNR, under cer-
tain conditions [Boc09], can provide relevant information about the image and its similarity
with the reference, PSNR usefulness is limited as long as the perceptual video quality is
considered as it has been proven that it does not correlate well with perceptual video qual-
ity [EF95, PS00, WB02, WSB03b, WBSS04, OLL+04]. Also, by using MSE/PSNR it is
implicitly assumed that errors at different locations are statistically independent which is
not guaranteed without extra processing. A last thing to keep in mind is that PSNR values
depend on the input image size, being higher for bigger images.

3.4.1.2 Structural similarity index

The MSE/PSNR measures are based on the assumption that an image signal whose quality
is being evaluated can be considered as a sum of an undistorted reference signal and an error
signal. Even though this assumption is true, the derived concept that objectively quantified
strength of the error signal corresponds to the visibility of the errors and the perceived
quality is not always sound. Two distorted images with the same PSNR/MSE may have
very different types of errors, some of which are much more visible than others [WBSS04].

In the last three decades, a great deal of effort that has been dedicated to the devel-
opment of IQAs methods that would take advantage of known characteristics of the hu-
man visual system and provide a higher correlation with quality perceived by human ob-
servers have resulted in introduction of several new-generation quality assessment meth-
ods [WBSS04, HMM99, LWBK02, WLB02]. The time when quality assessment models
were based only on a digital model of eye have ended and nowadays this model is being
extended to include a digital model of primary visual cortex. These methods, referenced
usually as perceptual image quality assessment methods, attempt to weight different as-
pects of the error signal in reference to their visibility determined by taking into account
the psychophysical characteristics of the human visual system (HVS). The error sensitivity
approach estimates perceived errors to quantify image degradations, while the new philos-
ophy considers image degradations as perceived changes in structural information variation
and tries to capture the loss in parts that the HVS hypothetically extracts for cognitive un-
derstanding.

One should bear in mind that most studies still provide PSNR as the baseline that is
accompanied by a more accurate measure. As for the time of writing, there has been no
agreement on the optimal measurement that should be used to complement the PSNR re-
sults, but Structural SIMilarity (SSIM) [WBS05] seems to be the algorithm that has gained
the most popularity and acceptance and is the IQA used in most of the recent academic
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publications. Natural image signals are highly structured: their pixels exhibit strong depen-
dencies, especially when they are spatially proximate, and these dependencies carry impor-
tant information about the structure of the objects in the visual scene. Structural similarity
considers the HVS as highly adapted for extracting structural information from the scene.
Thus, rather than looking at the individual differences at pixel levels it assumes the structural
similarity as a better measure of perceived quality — instead of measuring the error (like in
case of PSNR) SSIM focuses on measuring the structural changes. The structural similarity
index was first proposed in [WBSS04]. Over the years many variations that based on the
structural similarity paradigm have been proposed. The most used ones are the single-scale
SSIM [WBS05], multi-scale SSIM [WSB03a], SSIM for ranged pictures (R-SIM) [MB08]
and Speed SSIM [WL07]. Results of various surveys [MEMS14, SSBC10] recommend the
use of MSSIM in full-reference IQA.

3.4.1.2.1 Single-scale structural similarity. Structural similarity is based on the hy-
pothesis: (i) that distortions in an image that come from variations in lighting, such as con-
trast or brightness changes, are non-structural distortions, and that these should be treated
differently from structural ones, (ii) and that one could capture image quality with three
aspects of information loss that are complementary to each other: (a) correlation distortion,
(b) contrast distortion, and (c) luminance distortion. In other words, SSIM compares local
patterns of pel intensities that have been normalized for luminance and contrast. This is
done in order to capture the loss of structure in the signal, structure that the HVS hypothet-
ically extracts for cognitive understanding. In particular, both the SSIM Index and the HVS
are highly sensitive to degradation in the spatial structure of image luminances.

The basic (single-scale) SSIM algorithm requires that the two images being compared
be properly aligned and scaled so they can be compared pel by pel. The computations
are performed in a sliding P×Q (typically 11× 11) Gaussian weighted window. Three
similarity functions are computed on the windowed image data: luminance similarity l(x,y),
contrast similarity c(x,y), and structural similarity s(x,y), which for two images X and Y

are calculated as follows.

l(x,y) =
2µX(x,y)µY (x,y)+C1

µ2
X(x,y)+µ2

Y (x,y)+C1
, (3.37)

c(x,y) =
2σX(x,y)σY (x,y)+C2

σ2
X(x,y)+σ2

Y (x,y)+C2
, (3.38)
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s(x,y) =
σXY (x,y)+C3

σX(x,y)+σY (x,y)+C3
, (3.39)

where

µx(x,y) =
P

∑
p=−P

Q

∑
q=−Q

w(p,q)X(x+ p,y+q), (3.40)

µy(x,y) =
P

∑
p=−P

Q

∑
q=−Q

w(p,q)Y (x+ p,y+q), (3.41)

σ
2(x,y) =

P

∑
p=−P

Q

∑
q=−Q

w(p,q)[X(x+ p,y+q)−µX(x,y)]2, (3.42)

and

σXY (x,y) =
P

∑
p=−P

Q

∑
q=−Q

w(p,q) · [X(x+ p,y+q)−µX(x,y)] · [Y (x+ p,y+q)−µY (x,y)],

(3.43)
where w(p,q) is a Gaussian weighing function such that ∑

P
p=−P ∑

Q
q=−Q w(p,q) = 1, and C1,

C2 and C3 are small constants that provide stability when the denominator approaches zero.
Typically:

C1 = (K1L)2,C2 = (K2L)2,C3 =C2/2, (3.44)

where L is the dynamic range of the image (255 for 8-bit grayscale images) and K1≪ 1 and
K2≪ 1 are small scalar constants. The three similarity functions are then combined into the
general form of the SSIM index:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (3.45)

where α , β and γ are parameters used to adjust the relative importance of the three compo-
nents. Assuming the α = β = γ = 1 and C3 =C2÷2 (typical case) and using (3.37), (3.38)
and (3.39) in (3.45) the final form of the index becomes:

SSIM(x,y) =
(2µX µY +C1)(2σXY +C2)

(µ2
X +µ2

Y +C1)(σ
2
X +σ2

Y +C2)
. (3.46)

3.4.1.2.2 Multi-scale structural similarity. Single-scale version of the SSIM does not
take into account the fact that the capability to perceive details by human observers differs
with the viewing conditions like sampling density of the image, viewing distance, and the
observer’s HVS perceptual capabilities [SBPL11]. This phenomena is well known and has
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been exploited intensively in Computer-Generated Imagery (CGI) applications where the
level of details of a texture or a model varies with the viewing conditions — depending
on the distance from the observer and display density different sets of textures/models are
being displayed [Dur96, DH97]. Multi-scale SSIM tackles the issues of incorporating the
influence of these conditions on image quality by creating multiple scaled-down versions of
the compared images and carrying the assessment not only for the original images but for all
created versions. The scaled-down versions used in the assessment are created by iteratively
applying a low-pass filter and downsampling the filtered image by a factor of 2 as illustrated
in Fig. 3.7. This effectively removes the limitation of the evaluation being appropriate for
only one specific viewing condition.

Let us label the original image as scale 1, and the highest scale M as corresponding
to the most downsampled image (obtained after M− 1 iterations). At the i-th scale, the
contrast comparison and the structure comparison are calculated and denoted as ci(x,y) and
si(x,y), respectively. The luminance comparison is computed only for the highest scale
(scale M) and is denoted as lM(x,y). The overall evaluation is obtained by combining the
measurements at different scales using

MSSIM(x,y) = [lM(x,y)]αM ·
M

∏
i=1

[ci(x,y)]βi · [si(x,y)]γi, (3.47)

where, as in (3.45), αM, βi, γi are used to adjust the relative importance of different compo-
nents. The values of these cross-scale parameters need to be evaluated empirically during
the calibration process. The number of iterations required for the MSSIM to give rele-
vant values is reasonably small. The authors of this method use five levels in their work
[WSB03a]. For bigger images (in terms of number of pels) it may be justified to use more
levels.

3.4.2 Output quality as a function of SR parameters

The goal of the study presented in this section has been to provide a quantitative evaluation
of the reference software implementation of NUGPA (hereafter SRiuma or SRiuma) and to
determine the impact that the SR algorithm parameters, tabulated and briefly described in
Table 3.1, have on the quality of the obtained super-resolved images. For the purpose of
algorithm performance quantification a set of 120 combinations of the algorithm parameters
values—MBwidth (4, 8 and 16), SAR (2, 4, 8 and 16), number of RFs (2, 4, 8, 12 and 16),
and the scale (2 or 4)—has been defined to be used in simulations.
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Fig. 3.7 Multi-scale structural similarity measurement system. F: low-pass filter; 2↓ downsampling
by 2. Modified version of [WSB03a].

3.4.2.1 Experimental set-up

The reference image (and thus the output) format has been chosen to be the YUV 4:2:0p
8bit CIF (288x352 pels) sequence. This resulted in the LR input being a QCIF (144x176
pels) or a 72x88 pels frame format for the tested values of the super-resolution zoom (scale)
of 2 and 4, respectively. Even though, due to high computational complexity and the fact
of proven better correlation between the objective proximity measures (MSE, PSNR) with
the results of subjective evaluation, it is common to use images of lower resolutions (32x32,
64x64, 128x128) [ESHEK12, chapter 2], in this study higher resolution inputs have been
used in order to facilitate better quality of details inspection and more accurate MSSIM
index assessment.

Results of the study presented in [WBS05] suggest that the use of the color components
does not significantly change the performance of the used quality measurement model. This
was expected as it is a well-known fact that most of the energy is express by the luminance
component [IP91]. These carried out experiments considered only the quality of luma com-
ponent, which is the only one for which super-resolution is carried out. The simulations
were carried out in accord with the flow presented in Fig. 3.8:

1. First the YUV 4:2:0p 8bit low resolution (QCIF or 72× 88 pels) sequences were
obtained from the CIF reference sequence. In order to do so, the CIF sequence was
loaded, and decimated, forming a sequence that was then stored.

2. The LR sequences were used as input for tested algorithms (the choice of the bench-
mark is the focus of the next subsection), resulting in CIF YUV 4:2:0p 8bit output.
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TABLE 3.1 Algorithm parameters and their values used in the study on image quality.

Parameter Value Description
MBwidth 4, 8,

16
Number of pels that a MB contains in each dimen-
sion. Determines the memory used for storage of a
MB and the number of MBs in a frame.

FRcols 176 Number of pel columns in a LR frame.
FRrows 144 Number of pel rows in a LR frame.
precisionir 4 The ratio between the 1D dimensions of the finest

accuracy grid used in image registration and the full-
pixel grid used for input representation.

scale 2, 4 The ratio between the 1D dimensions of the outcome
accuracy grid and the full pixel grid used for input
representation;

SAR 2, 4,
8, 16

The absolute distance (in full-pixel coordinates)
used to determine if a pel is contained within the
limits of the SA; With MBwidth determines the SAsize.

intwindow 2 The absolute distance (in finest IR accuracy coor-
dinates) used for the determination of the neighbor-
ing MB’s pels that can contribute to the interpolation
process.

3. The output luma pels ( ˆpelSR) and the original CIF sequence pels pelre f were post-
processed by the IQA that quantified the grade of similarity between these two pro-
duced representations by calculating, among others, the PSNR and SSIM indices. In
calculations both images are consider a lexicographically ordered sets containing N

pels (total number of pels in the image).

(a) MSE has been computed using (3.35).

(b) PSNR was then computed based on the MSE value using (3.36) which for an 8
bit pel representation becomes

PSNR = 10∗ log10




2552

1
N

N

∑
i=1

( ˆpelSR(i)− pelre f (i))2



. (3.48)

(c) Single-scale structural similarity index has been calculated as follows:

i. First, the C constants were computed using (3.44) with K1 = 0.01, K1 =
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SR iuma
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Image
Quality
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Reference
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CIF              YUV 4:2:0
Decimated  YUV 4:2:0

Original

Fig. 3.8 Data flow of the experiments used to assess the output quality of SRIR.

0.03, and dynamic range (L) of 255 (8-bit grayscale).

ii. Then, the mean intensity µX were computed. The luminance comparison
was then a function of µX and µY .

µX =
1
N

N

∑
i=1

xi (3.49)

iii. Following, the mean intensity was removed from the signal. In discrete
form, the resulting signal was the x− µX . Standard deviation (the square
root of variance) was used as an estimate of the signal contrast. An unbiased
estimate in discrete form was given by

σX =

(
1

N−1

N

∑
i=1

(xi−µX)
2

) 1
2

. (3.50)

The contrast comparison was then a function of σX and σY .

iv. Third, the signal was normalized (divided) by its own standard deviation,
so that the two signals being compared have unit standard deviation. The
structure comparison s(x,y) was conducted on these normalized signals (x−
µX)σX and (x−µY )σY .

v. Finally, the three components were combined as in (3.46).

(d) Multi-scale similarity index has been computed by using

i. First, the C constants were computed using (3.44) with K1 = 0.01, K1 =

0.03, and dynamic range (L) of 255 (8-bit grayscale).

ii. Low pass filter, implemented as convolution (Matlab filter2 function) of
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a 11-by-11 window with Gaussian distribution (standard deviation = 1.5)
with the image being filtered, was applied and its results were downsampled
by 2.

iii. Contrast and structure similarities were computed as in the aforementioned
single-scale SSIM flow.

iv. The iteration counter was incremented. If the final iteration has been reached
the luminance index lM(x,y) was computed. Otherwise, steps 3(d)ii–3(d)iii
were repeated.

v. The computed SSIM indices were combined using parameters values from
[WSB03a] (M = 5, β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001,
β4 = γ4 = 0.2363 and , α5 = β5 = γ5 = 0.1333) and (3.47) which became

MSSIM(x,y) = [l5(x,y)]0.1333 ·
5

∏
i=1

[ci(x,y)]βi · [si(x,y)]γi. (3.51)

3.4.2.2 Determination of the image quality benchmark

This initial aim of this study was to compare the results of our algorithm with two com-
petitive solutions: one interpolation and one SRIR implementation. Before the assessment
of the proposed SRIR implementation was to be carried out the image quality benchmark
needed to be chosen. In order to do so the available competitive solutions presented in the
state of the art Section 2.4 have been looked at. A natural competitor and the one that had
been successfully implemented in hardware [ABCC08, BB08] would have been the IBP
algorithms. Unfortunately, to the best knowledge of the authors, software implementations
of these implementations were either not available [ABCC08, BB08] or the available soft-
ware [LCA07] was found to be unable to process real-life video sequences without severely
corrupting the output.

In order to determine the interpolation algorithm to be used as the quality benchmark
simulations for three test sequences using six interpolation algorithms have been carried
out as presented in Fig. 3.9. The sequence used in the experiments are briefly described in
Table 3.2. These sequence form part of the Xiph.org Video Test Media [derf’s collection]

available online [Xip15].

The produced images allowed computing the PSNR and MSSIM indices. The com-
puted PSNR and MSSIM indices are presented in Fig. 3.10 and Fig. 3.11, respectively.
The results for the nearest neighbour, bilinear, bicubic, lanczos2 and lanczos3 interpo-
lation [BB09, Key81, Get11, MN13] have been obtained by means of invocation of the
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Fig. 3.9 Data flow of the experiments used to choose the benchmark algorithm.

imresize() function from the Image Processing Toolbox of the MatLab programming en-
vironment [Mat96]. The non-uniform mean nearest neighbours (neighbourhood of 5x5 pels)
algorithm have been implemented in software using ANSI C. From the resulting MSSIM
values it can be seen that the mean nearest neighbors implementation has consistently out-
performed the other five implementations reporting the highest index value in all test cases.
In terms of the reported PSNR, the use of the mean nearest neighbors interpolation leads
to superior results in 5 out of 6 performed tests, being outperformed only in one case by
the bilinear interpolation. Based on these results the decision to use the non-uniform mean
nearest neighbors as the benchmark for image quality assessment of our algorithm has been
made.

3.4.2.3 PSNR and MSSIM as a function of algorithm parameters

Once the benchmark algorithm has been chosen, the flow presented in the previous section
has been used to carry out simulations for all of the aforementioned 120 combinations. Test
sequences used in experiments are the same that have been used in the benchmark determi-
nation tests. The experiments were conducted on a Sun Ultra 24 Workstation, hosting one
Intel Core 2 Quad cpu Q9300@2.5 GHz, 3.25GB of RAM memory, and using Windows
XP Professional operating system with Service Pack 3. The produced output has been post-
processed using functions from the Matlab MeTriX MuX Visual Quality Assessment Package

library [Gau07]. Let us remind that the version of the SR software used in this study is not
robust, thus it is not capable of eliminating outliers and it does not include mechanisms to
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Fig. 3.10 Average PSNR (300 initial frames) observed for the interpolated foreman, mobile and paris
sequences.
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Fig. 3.11 Average output MSSIM (300 initial frames) observed the interpolated foreman, mobile and
paris sequence.
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TABLE 3.2 Test sequences used in the experiment.

Sequence Visualization Description
Foreman Presents a worker performing rapid random

head movements, while talking to the cam-
era. The sequence then changes to present the
working site. This sequence presents global
and rapid local movement, along with context
change.

Mobile An electrical train moving on the table, a spin-
ning planetary system and a calendar hanging
on the wall. The train is moving horizontally,
whereas the calendar is pulled to present ver-
tical movement. The ball rotates representing
a mixture of both types of movement. Global
movement is present as the camera is moving
to the left. This sequence contains rich and
fine grain textures.

Paris Presents a couple sitting by a table and talk-
ing. While talking, the woman is juggling a
ball, and the men is playing with a pen. The
sequence presents rapid local movements.
Global movement is absent.

correctly handle context changes, nor capable of correctly handling non-translational move-
ment (panning, rotations, etc.). Also, noise attenuation by averaging is significantly limited
as no proximity-based fusion weights computation is carried out (weights are set equal to 1).

The focus of this section is the presentation of the PSNR and MSSIM indices obtained
for the foreman, mobile and paris sequences. These three sequences have been found to be
representative for all of the carried out test. The PSNR values computed for the foreman,
mobile and paris sequences for SR scales of 2 and 4 are presented in Fig. 3.12 and Fig. 3.14,
respectively. The corresponding MSSIM values are shown in Fig. 3.13 and Fig. 3.15, re-
spectively. From these figures one can see that there is a strong correlation between the
trends observed for both scales. In other words, a change of the SRIR parameters has a
similar effect on the way the observed outcome quality is changed for a given sequence for
both scale values. Even though, there is a strong correlation between the observed outcome
quality for results obtained for different scale values, that can be clearly seen when com-
paring both of the aforementioned figures side by side, the way the algorithm parameters
impact the outcome quality is not as straightforward. The observed correlations have been
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found to be heavily dependent on the used test sequence. In order to analyze the way that
each of the parameters impact the output quality the change in the outcome quality indices
observed for the combinations for which other-than-the-analyzed parameters are fixed has
been investigated.

In the case of the foreman sequence, the highest PSNR and MSSIM values have been
observed for the macro-block comprising 8x8 pels, SAR of 16 pels, and 4 reference frames
(2 in each temporal direction; (SFW comprising 5 frames)) for both tested scales values.
For this sequence the change of the MB size parameter manifests itself as a (< 0.5dB)
translation towards lower PSNR values. The magnitude of the observed translation is about
two times bigger in the case of the switch to MB size of 4 than for the case of switch to the
value of 16. In the case of the foreman sequence, increase in search radius has always led
to a higher PSNR, with the noticed gain being higher for combinations with higher number
of available reference frames. The observed impact of the change in the number of used
reference frames on the output quality has been the greatest from all of the tested parameters
(for a fixed scale). For foreman, better results have been reported for smaller number of
available reference frames (2 and 4) which outperform interpolation in most cases. For
the case with 8 reference frames SRIR, managed to surpass interpolation in some cases (3)
when provided with large search areas. From the carried out tests none of the combinations
with 16 reference frames managed to match the quality of the benchmark interpolation. The
gap between the computed values for different RFs numbers is reduced with the increase of
the search area radius. The noticed values converged the fastest for the medium MB size
(8x8) and the slowest for the largest tested MBs (16x16). The described type of correlation
between the output’s quality observed for scale value of 2 holds true also for scale value of
4. The difference between the two diagrams are the overall lower PSNR and MSSIM values
and the fact that, in case of PSNR, the use of SRIR resulted in significantly better (> 2.0
dB) quality than the benchmark interpolation for all 60 tested parameters combinations. As
far as MSSIM is considered, SRIR managed to outperform the interpolation only in some
cases (≈ 20%) with medium/large MBs and relatively large search areas.

In the case of the mobile sequence, the highest PSNR and MSSIM values have been
observed for the macro-block comprising 16x16 pels, SAR of 2 pels, and 8 (scale = 2) or
16 reference frames (scale = 4). The outcome quality has been observed to be better for
larger macroblocks with the exception of PSNR observed for the cases with 2 reference
frames and scale of 4. In contrast with the trends observed for foreman, for the mobile test
sequence use of more RFs resulted, in most cases, in higher quality index—showing that the
algorithm was able of taking advantage of additional information contained in these frames.
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Fig. 3.12 Average PSNR observed for the super-resolved and interpolated foreman, mobile and paris
sequences (initial 300 frames; scale=2).
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Fig. 3.13 Average MSSIM observed for the super-resolved and interpolated foreman, mobile and
paris sequences (initial 300 frames; scale=2).
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Fig. 3.14 Average PSNR observed for the super-resolved and interpolated foreman, mobile and paris
sequences (initial 300 frames; scale=4).
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Fig. 3.15 Average MSSIM observed for the super-resolved and interpolated foreman, mobile and
paris sequences (initial 300 frames; scale=4).
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The only exception were the results for combinations with scale of 2 and 16 reference frames
for which the worst metrics values has been observed for the smallest search area (2 pels).
Also, increasing search radius resulted, in most cases, in decreasing the outcome quality
as opposed to the cases observed for the foreman sequence. Once again, the difference
between the diagrams obtained for different values of the scale parameter are the overall
lower quality indices and the behavior of the aforementioned exceptions. For the mobile
sequence the use of SRIR resulted in higher observed PSNR values than interpolation for
119 out of 120 tested parameters combinations. As far as MSSIM is considered, SRIR
outperformed interpolation for most cases (≈ 84%) with the exception of cases when the
smallest tested MB size is used in conjunction with scale = 2.

In the case of the paris sequence, the highest PSNR values have been observed for the
macro-block comprising 8x8 pels, maximal search area (SR of 16 pels), and 4 (scale = 2) or
8 reference frames (scale = 4). The highest MSSIM values have been observed also for the
cases with medium MB size, but this time using the minimal search area (SR of 2 pels) and
2 (scale = 2) or 4 reference frames (scale = 4). The differences in the computed PSNR and
MSSIM values, with the exception being the combinations with 16 reference frames, are
relatively small. In case of PSNR, most of the combinations with medium MB size, again
with the exception being the combinations with 16 reference frames, managed to provide
better-than-interpolation quality of results. Depending on the value of the scale parameter,
the worst PSNR has been noticed for either the smallest (scale = 2) or the largest (scale =
4) tested MB sizes. The increase of search area has had an insignificant influence on the
observed quality for this test sequence. The increase in value of this parameter results in an
initial increase of the observed PSNR and MSSIM that quickly reaches its peak and enters
a state of saturation that, in case of PSNR, finally leads to a decrease in quality. This can
be clearly observed for the combinations with the smallest MB size. The duration of the
increase/saturation periods is correlated with the number of RFs used, with longer periods
being observed for higher number of RFs used. These relations manifest themselves clearly
for the case of scale = 4, where, in the case of medium and small MBs and sufficiently
large search areas, some of the combinations with higher number of RFs do not reach the
saturation state allowing them to outperform some of the ones with lower RF number. In
terms of observed MSSIM values, interpolation have managed to outperforms SRIR for all
test combinations with scale = 4 and all but two cases with scale = 2.

The PSNR and MSSIM indices computed for all the test combinations have been com-
pared with the ones computed for the benchmark. The results—average gain/loss of PSNR
and MSSIM vs the baseline interpolation quality—for scales 2 and 4 are presented in figures
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Fig. 3.16 Gain/loss in average PSNR vs interpolation for the foreman, mobile and paris sequences
(initial 300 frames; scale=2).
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Fig. 3.17 Gain/loss in average observed MSSIM vs interpolation for the foreman, mobile and paris
sequences (initial 300 frames; scale=2).
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Fig. 3.18 Gain/loss in average observed PSNR vs interpolation for the foreman, mobile and paris
sequences (initial 300 frames; scale=4).
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Fig. 3.19 Gain/loss in average observed MSSIM vs interpolation for the foreman, mobile and paris
sequences (initial 300 frames; scale=4).
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Fig. 3.16 and Fig. 3.18 (PSNR), and Fig. 3.17 and Fig. 3.19 (MSSIM), respectively. From
figures presenting the PSNR gain it can be seen that for the case of the higher scale SRIR
have managed to outperform interpolation for all test sequences and for 100% of test combi-
nations. In the case of scale value of 2, SRiuma software has outperformed the interpolation
in terms of provided PSNR in about ≈ 30%, ≈ 95% and ≈ 60% of the tested combina-
tions, respectively for the foreman, mobile and paris sequence. The combinations that fail
to provide a gain are not shared between the sequences, which complicates the process of
determination of the optimal configuration and leads to the requirement of calibration. De-
termination of the optimal configuration is out of the scope of this thesis. Nevertheless, it is
important to be aware of the existing correlations between the performance and algorithm
parameters at the time of designing a hardware implementation. Finally, the gain noticed
for combinations with scale = 2 is significantly smaller than the one observed for the higher
scale value. For the performance measured using the MSSIM index, the results do not look
as good and the percentage for which the SRIR processes outperforms interpolation has
been observed to drop significantly, especially when paris sequence is considered. For scale
of 4 approximately ≈ 28%, ≈ 100% and ≈ 6% of the tested combinations, respectively
for the foreman, mobile and paris sequence, outperform interpolation in terms of provided
MSSIM. For scale of 2 these numbers fall to approximately ≈ 20%, ≈ 60% and ≈ 0% of
the tested combinations, meaning that the SRIR process has not been successfully carried
out for the paris sequence.

A side-by-side comparison of computed PSNR and MSSIM values for the used test
sequences has led to conclusion that, even though, SRIR is capable of outperforming the
baseline interpolation in terms of PSNR (especially for higher scale values) in many cases
this gain does not result in better structural similarity. Results of a study on correlation
between the gradients of PSNR and MSSIM (measured as the difference vs the value of
indices computed for interpolation), illustrated in figures Fig. 3.20 and Fig. 3.21, respec-
tively for scale = 2 and scale = 4, have shown many differences in predictions of the output
quality (denoted in figures as value = 0). From these figures it can be seen that most of the
gradients are in accord (denoted as value > 0) for the combinations for which scale = 2. On
the other hand, in the case of scale = 4 only the gradients for the mobile and for the foreman
sequences (≈ 20%) correlate. In case of the paris sequence the two measures did not agree
even for one configuration for which scale was set to 4.

Some of the trends that manifest themselves in the presented results for all of the se-
quences need to be further explained:

• Combinations with lower number of RFs outperforming the ones with higher number
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of RFs. For most of the carried out tests the combinations with lower number of RFs
consistently outperformed the ones with more RFs. The main cause of this behavior
is the lack of robustness of the implementation of the algorithm that has been used in
tests. Lack or robustness means that in case of sequences with context changes and/or
non-translational movements many outliers are likely to be used in the fusion step
of the algorithm. The probability of outliers participation in the process increases
(significantly) with the number or RFs, thus combinations with higher RF number
have a higher risk of being affected by the lack of outliers elimination. This trends
manifests itself clearly for the foreman and paris sequences.

• Increase of SAR resulting in decreased quality. It is a common case that the image
registration process in not an ideal one. Moreover, the measures used in the process
of ME are not guaranteed to be always accurate and usually represent a trade-off be-
tween accuracy and computational complexity. Thus, it is possible that the motion
vectors determined during ME do not represent the true motion vectors. Use of non-
true motion vectors during the fusion is most likely to corrupt the outcome quality.
Increasing the search area beyond the bounds where the true motion takes place in-
creases the probability of false-motion vectors being chosen over the true ones. The
probability of non-true motion vectors selection is further increased for smaller MBs
especially for the ones located in plain/non-textured areas [CLS+08]. Both of this
trends manifest themselves clearly for the mobile sequence, where most of the mo-
tions are slow, gradual and linear and thus in nearest spatial vicinity of the a MB
being registered. When rapid-movements are present increasing the radius of search
area is most likely to result in gain of quality as it has been observed for the foreman
sequence.

• Greater gain observed for scale = 4 than for scale = 2. The difference in processing
carried out for different scale values is limited to the (down)scaling step of the algo-
rithm in which values for some (high resolution) pels are being discarded. For higher
scales, lower resolution input is used meaning that more pels are being discarded and
are not present in the input image. Discarding many pels leads to significant loss of
details. This significantly hinders the performance of the interpolation process lead-
ing to higher gain noticed for SR vs the benchmark. Additionally, for higher values
of the SR scale the intermediate HR grids contain lower percentage of the pels di-
rectly copied for the LR input whose values are not allowed to be modified during the
processing. This leaves more room for improvement using SRIR, given a sufficiently
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large set of reference images.

• Loss in MSSIM for combinations with gain in PSNR. This was expected, as the core
version of the SR software does not have the property of being robust, thus many
outliers take part in the fusion process, with the same impact as the non-outliers.
This is almost guaranteed to lead to compromised image structure (and decreased
MSSIM), but can result (on average) in only small MSE changes in cases where the
average difference in luma values of outliers and the reference is low enough.

Presented figures prove that, even though, for some test (algorithm values) combinations
SRiuma has not been capable of outperforming the baseline interpolation on a regular basis,
there is at least one combination that provides a better-than-interpolation quality of results
for each of the tested sequences (with the exception of MSSIM for paris). Experiments
have shown that it is quite difficult to indicate one configuration that would guarantee the
best performance over a set of sequences. Depending on the test sequence optimal value
of macro-block size, search area, and reference frames varies. Thereby, when designing a
hardware implementation a large set of super resolution parameters values should be taken
into account, and the resulting organization/architecture should be made as customizable as
possible.

3.5 Conclusions

The focus of this chapter was the non-uniform grid projection algorithm. The chapter started
with a brief description of the algorithm flow, the used motion estimation and the fusion-
based SR kernel. Next, the mathematical models of the algorithm and the aforementioned
stages were developed. Following the theoretical introduction, the objective quality of the
super-resolved image produced by the reference software implementation was quantitatively
and qualitatively evaluated. For the needs of this evaluation, average PSNR and MSSIM
values have been computed for three representative test sequences and 120 configurations of
the software implementations. The obtained results have shown that the analyzed NUGPA
software implementation:

(i) can provide better than interpolation quality of results expressed as PSNR or MSSIM,

(ii) the quality of the output super-resolved image is very sensitive to the changes in values
of algorithm parameters,
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Fig. 3.20 Correlation between PSNR and MSSIM indices (scale=2).
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Fig. 3.21 Correlation between PSNR and MSSIM indices (scale=4).
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(iii) obtaining satisfactory results requires the configuration to be fine-tuned for the partic-
ular input sequence,

(iv) does not implement sufficient mechanisms to limit the impact of outliers on the ob-
servable output quality, and

(v) presents less variance in observed quality of results for smaller macroblock sizes.

106



Chapter 4

Proposed super-resolution algorithm

4.1 Introduction

As seen in chapter 2, the main two factors limiting the success of hardware implementations
are the iterative nature of processing and high resource occupancy. The choice of the non-
iterative non-uniform projection algorithm described in chapter 3 solves the former issue,
promising efficient hardware implementation. Unfortunately, the memory occupancy of the
non-iterative algorithm presented in the previous chapter remains prohibitively high for an
FPGA implementation that intends to avoid using any off-device memory. A quick eval-
uation of the reference software implementation and the algorithm data flow identified the
frame buffers used by the fusion kernel as the main factor contributing to the total memory
occupancy. The implemented execution flow required at least two of the frames being pro-
cessed to be readily available from memory throughout the fusion process. Thus, in order
to eliminate the frame-level buffers, the algorithm’s execution flow needs to be modified. In
particular, the data path’s flow granularity has to be refined in order to reduce the algorithms
memory requirements.

Execution flow granularity is one of the main characteristics of any algorithm. The spec-
trum of possible granularity choices spans from one pel (finest granularity) up to a (set of)
frame(s) (coarsest granularity). The choice of the execution flow has a significant impact
on the implementation’s characteristics, among others, memory/logic occupancy, system’s
throughput and scalability. The deciding factor that determines the choice of the granularity
of the execution flow is the type of targeted implementation and its bottlenecks. Software
(super-resolution) implementations are (usually) not limited by the available memory but
rather by the memory hierarchy and access latency. Thus, these implementations tend to
apply processing on the coarsest type of elements possible, usually a (multiple of a) whole
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frame. By doing so, a higher amount of data can be loaded at once using coalesced ac-
cesses, leading to the minimization of the number of memory accesses, the delay caused
by of memory access latency, and optimization of the overall observed implementation’s
performance.

On the other hand, processing of coarse grain structures like a whole frame requires
significant amount of memory. In most cases, the required amount of memory is too big
to fit into the internal device memory forcing the use of external memory. Moreover, when
targeting a PLD/FPGA device the use of a coarser granularity leads to higher entropy of the
system that increase the complexity of logic required to model the system at the hardware
level. That may result in higher fan-out, increase the occupancy of resources and extend
the critical route latency [Koc13], meaning that significant trade-offs may have to be made
in order to achieve performance that allows the SR processing to be applied in real-time.
Thus, hardware implementations do not process coarse grain structures, but rather carry out
the SR transformation for finer granularity elements. The most successful implementations
available up-to-the-date apply SR on the finest grain possible — a single pel. This approach,
known as the optical flow, allows to tailor the processing by breaking it into stages (itera-
tively executed for subsets of the data) that fit within a defined memory budget, and then
use streaming to meet the target performance (throughput) [BB08, ABCC09].

Nevertheless, hardware implementation of optical flow faces problems of its own. Due
to the extremely fine granularity of the flow, its implementation requires a very deep pipeline.
Implementation of deep pipelines has to deal with the overhead introduced by inter-stages
glue logic and/or latches, high logic occupancy (less room for optimization — low reuse of
resources), high power dissipation due to repeated transfers of pels belonging to the refer-

ence structures (RS; corresponds to RF or SA). All of the above have a significant impact
on the overall system efficiency in terms of resource occupancy. In many cases, these re-
quirements are so high that only a sub-optimal version of the algorithm can fit in the device,
leading to a sub-optimal quality of the super-resolved image.

In this work we propose a novel flow for the non-iterative NUGPA. The proposed flow
internally applies full SR processing on a small set of pels (called macro-block). By effec-
tively forming a cross-over point between the flows that use coarse or very fine granularity
elements, the proposed flow is expected to allow to combine their strengths while alleviating
their weaknesses.
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4.2 Execution flows of the NUGPA

As aforementioned, SRIR is typically carried out in two steps: extraction of data that char-
acterizes the input and reconstruction (where possible) of missing data. The former task
encapsulates a series of computations needed to estimate values of metrics characterizing
the input data. These metrics are used in the latter step (called the super-resolution kernel,
SRK) to identify pels from reference structures that when merged with the data being up-
scaled can lead to additional details reconstruction. The SRK processing ends producing a
higher resolution image (called the super-resolved image).

In order register the images and extract the hyperdata the NUGPA uses block matching

(BM) motion estimation. Detailed description and evaluation of motion estimation is pre-
sented in [BAA05] and [CLT+08]. This section focuses solely on the SRK, presenting and
comparing in detail the reference and the proposed execution flows.

4.2.1 Reference coarse grain execution flow

The base for the study has been a software implementation of a complete SR system, com-
prising ME and NUGPA SR kernel coded using ANSI C. The SRK execution flow imple-
mented by this software is presented in Fig. 4.1. The SRK flow comprises two internal
subflows: one for the luma component and another for the chroma components processing.
Chroma picture elements carry a significantly lower energy concentration than luma pels,
and thus have a significantly lower impact on the subjective quality of the super-resolved
image [IP91]. Therefore, super-resolution is applied only on the luma pels. Spatial resolu-
tion of chroma components is augmented using bilinear interpolation [GW08], meaning that
no additional details are being reconstructed for these components. The luma pels undergo
full NUGPA processing presented in Fig. 4.1:

1. The frame to be processed is loaded from memory. As the luma and chroma compo-
nents are to undergo different processing, thus, when presented with a YUV formatted
LR input, the software starts the processing by separating one type of the picture ele-
ments from the other.

2. Value ‘0’ is used in step 7 to identify the pels whose value has to be created using
interpolation. This allows to eliminate the need of an extra memory to store the map
of pels to be interpolated. In order to distinguish the input LR pels with value equal
to ‘0’ (called zeroes) from the pels marked for interpolation (called holes) the original

109



CHAPTER4.–PROPOSED SUPER-RESOLUTION ALGORITHM

Fig. 4.1 The frame-level execution flow of the NUGPA super-resolution kernel.

value of the zero is changed to be equal to ‘1’. This process will be referenced to as
the zeroes2ones (or zeros2ones) transformation.

3. Two HR representations of the transformed LR frame, the holesGrid and the srGrid,
are created. The HR representations dimensions are several times bigger than the
LR ones. For quarter pixel ME the growth is of a factor of 4 for each dimension
(resulting in total size growth of 16 times). The srGrid is constructed directly from
the output of the zeroes2ones transformation. For holesGrid, pels belonging to the
borders (outer rows and columns) of the zeroes2ones outcome are duplicated before
the spatial augmentation takes place. Border duplication is carried out in order to
(somewhat) solve the aperture problem that could arise in ME.

4. Steps 1–3 are repeated until all frames from the sliding frame window have their HR
representations.
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5. Candidate pels specified by the ME metrics are extracted from all holesGrid of frames
belonging to the SFW. Extracted data are fused with the srGrid.

6. Each element of the srGrid is divided by the sum of weights associated with it. Steps
5–6 make up the shiftAdd transformation.

7. The outcome of the shiftAdd transformation is usually composed of many pels with
value equal to zero. These pels values get estimated by computing the mean value of
pels belonging to a square-shaped neighborhood centered at the hole’s position. The
process in which a hole is assigned a value is called holesFilling.

8. The srGrid after holesFilling is the super-resolved frame, with the scale factor equal
to precision of used in image registration (equal to 4 for quarter pixel precision).
When a different scale factor is specified, srGrid has to be adjusted to the expected
dimensions. This task is carried out by the scale function. This function discards
certain pels, producing the final super-resolved representation of the luma component.

9. Finally, the synchronization of the luma and chroma flows takes place. This step is
needed in order to provide the super-resolved frame in YUV format.

10. The SFW update policy is applied. Typically, one of the reference frames is discarded
(in the FIFO order) and a new frame is loaded in its place.

11. Steps 1–10 are repeated for each processed frame.

The presented processing is carried out at frame-level. Transitions from one step to
another take place only after step’s transformation has been applied on all pels fo the frame
being super-resolved. The above-presented processing requires that HR representations of
all frames from SFW be available from memory throughout the complete duration of the
super-resolution process.

4.2.2 Proposed finer grain execution flow

The used SRiuma reference software originally operated at frame-level, posing memory stor-
age requirements precluding the planned FPGA implementation using only the on-device
available Block RAM (hereafter BRAM) memory. In this work we propose a novel flow
for a non-iterative fusion algorithms that mitigates the problem of high memory occupancy
associated with the presented coarse-granularity flow. In contrast with the frame-level pro-
cessing, which requires that HR representations of all frames from SFW be available from
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memory throughout the complete duration of the super-resolution process, the proposed ap-
proach requires that only search areas, instead of whole frames, be available from memory.
As a result, the requirements for memory storage are reduced, at the expense of increasing
the number of memory accesses. Processing of a patch instead of only a singular pel allows
more optimized logic synthesis which is expected to result in moderate (lower than for the
optical flow) logic occupancy allowing full algorithm implementation on the targeted FPGA
device.

The proposed execution flow of the NUGPA is presented in Fig. 4.2. This flow is similar
to the FL flow (compare with Fig. 4.1). The main differences between the flows are: 1. the
size of the basic element being stored in local memories, 2. substitution of reference frames
by search areas, 3. the fact that transition to the subsequent step of the algorithm is car-
ried out after one macro-block (not one frame) has been processed, and 4. the necessity of
managing inter-macroblock dependencies, not present in frame-level processing, that signif-
icantly complicate the holesFilling process. These changes result increase the complexity
of memory management and call for different buffering schemes in order to mitigate the
expected increase in memory traffic.

4.3 Evaluation of memory occupancy of the reference and
the proposed NUGPA execution flows

In order to quantify the memory storage requirements and their reduction associated with
the change to the proposed macroblock-level (MBL) flow a theoretical study based on the
available software implementation has been carried out.

First, the memories used by the implementations had been identified. Then, their size
and its dependency on the SR parameters have been evaluated. These steps have led to
the creation of equations determining memory size for each type of identified memories.
Based on these equations the memory storage requirements of each step of the investigated
execution flows have been quantified and compared.

4.3.1 Identification of memory storage requirements

In order to provide a quantitative evaluation of the memory storage requirements of the
reference and the proposed NUGPA execution flows: (i) the memory storage requirements
of the flows’ steps had to be identified and modeled as a function of algorithm’s parameters,
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Fig. 4.2 The macroblock-level execution flow of the NUGPA super-resolution kernel.

(ii) the memories instantiated by each step had to be identified and their size modeled using
the equations established in step (i).

4.3.1.1 Memory types and their dependency on algorithm parameters

From an analysis of the NUGPA flow and the structures defined in the code of the software
implementation we have inferred that the parameters that determine the size of memories
are: (i) the number of frame rows FRrows and columns FRcols from which the size of the
LR representations is derived, (ii) the macroblock width MBwidth which determines the size
of the macroblock (we assume MBs are square shaped), (iii) the ME precision precisionme

which determines the size of the HR representations, (iv) the SR scale scale which deter-
mines the size of the super resolved representations, (v) search area radius (SAR) which
determines the size of the search area, and (vi) the interpolation window intwindow which
determines the size of the memories used to solve data dependencies in holesFilling. Short
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TABLE 4.1 Equations for memory occupancy estimation of the identified memory types used by the
investigated software implementations.

Memory type Equation for size in elements Group
MBlr = MB2

width
MBhr = MBlr ∗ precision2

me MB
MBsr = MBhr/scale2

FRlr = FRrows ∗FRcols
FRhr = FRlr ∗ precision2

me /frame
FRsr = FRhr/scale2

SAlr = (MBsize +2∗SAR)2 /SA
SAlr = precision2

me ∗SAlr
intbu f f er = (FRrows +2∗MBsize)

Auxiliary∗intwindow ∗ precisionme
reorderbu f f er = (SFW −1)∗FRlr/MBlr

descriptions of these parameters, along with the range of values tested, has already been
presented in Table 3.1 on page 90.

Based on the SR parameters dependency ten memory types, presented in Table 4.1,
are defined, systematized and divided into two groups: (i) MB/frame/SA representations
and (ii) auxiliary memories. The MB/frame/SA representations comprise three subtypes
of representations: the low resolution (LR), high resolution (HR), and super-resolved (SR)
representations. The LR representation precision corresponds to the full-pixel accuracy of
the ME process. The HR representation is the LR input upscaled to the maximal precision
used in the ME process (precisionME). The SR representation is the output format obtained
from the HR representations by means of decimation.

The frame-level implementation uses only the MB/frame types of memories. The auxil-
iary memories encapsulate memories required for operation at MBL and are not used by the
FL implementation (SA memories are also MBL specific). The auxiliary memories are used
for hyperdata (ME metrics) reordering and storing (in the reorderbu f f er, (RB)) and for pels
buffering (in the intbu f f er) in order to handle data dependencies arising in the interpolation
process. The LR and HR representations of frames are absent from the MBL implemen-
tation: instead the search area (SA) and macroblock (MB) representations are used. The
memories used in order to store the sums of weights maintained for each pel of the HR
representation during the fusion process, required to compute the final high resolution pel
value, for weights sum smaller than 256 (case considered in this work) are of size of the
MB/FRhr representation.

The goal of memory identification is to form equations that model the size of all defined
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memory types as a function of the SR parameters presented in Table 3.1. All memory sizes
depend on frame (FR) and/or MB size. The HR and SR representations are additionally
influenced by precisionme value which specifies grids resolution (size), and, in the case
of the latter representations, also by the SR scale value. The search area radius (SAR) is
used for SA size determination. The most upper left pel of the currently processed MB is
considered the reference point of the search area. The SA spans from the reference point
in all direction over the number of pels specified by the search area radius. The search area
additionally includes a MBsize pels in the right and bottom direction in order to be capable
of loading all pels of MB whose most upper left pel is within the SAR distance from the
search area reference point. A large SA usually leads to a more accurate determination of
the motion, at the cost of: an increase of the number of computations required to carry
out motion estimation, and additional memory storage requirement in SRK. The intwindow

determines the size of buffer for data dependency resolution in the holesFilling step.

The resulting equations that model the size of identified memory types as function of
the SR parameters are presented in Table 4.1, where sub-indexes LR, HR, SR represent,
respectively, the low resolution, high resolution, and super-resolved representations of a
frame (FR), macroblock (MB) and search area (SA).

4.3.1.2 Memory occupancy of execution flows’ steps

The analyzed SR software forms the base for a hardware implementation, and as such, it
should be viewed as a representation of a system comprising prototypes of not only software
but also hardware entities. Therefore, in order to present a more comprehensive memory
requirements evaluation, each of the steps of the algorithm execution flows is considered
a representation of a hardware entity and is to be analyzed independently. The goal of the
analysis is to identify the type and size of memories that these entities use.

The zeroes2ones entity receives the input data LR pels, applies the zeroes2ones transfor-
mation and stores the LR data in output memories. Thus, the memory requirements of the
entity are two LR FRs (at FL) or one LR MBs plus one LR SA (at MBL).

The duplicateBorders entity which carried out the duplicate borders transformation has
been eliminated from the software implementation and the transformation is now emulated
by a modified addressing scheme used by the shiftAdd entity. This optimization is similar
to the one described in Section 4.6.1.

After being processed by the zeroes2ones entity the LR data are passed to the entities
that perform the up-holes transformation. The outcome of this transformation is a HR rep-
resentation of the LR input. For the FL flow the input of the upHoles and upGrid entities,
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which carry out the up-holes transformation, is a LR frame, thus, each of these entities re-
quires one instance of memory of HR frame type. For MBL the inputs are a LR MB and a
LR SA, respectively.

The shiftAdd entity receives the HR representations produced by the upHoles and up-

Grid entities and stores them in local memories. When all frames/SAs of the SFW are
available from local memories, the shiftAdd transformation is carried out. The relevant data
are extracted from the RFs/SAs and added to the HR representation of the FR/MB being
processed (received from upGrid, stored locally). For each pel of the HR representation a
sum of weights is maintained and used to compute the final HR pel value. For weights sum
smaller than 256 this memory size is equal to the size of HR FR/MB representation. For
frame-level implementation this translates to requirements of SFW+2 memories of size (in
elements) of a HR FR type. In the case of MB-level operation, SFW-1 memories of size HR
SA and three of size HR MB are required.

The holesFilling (interpolation) is performed in a pel-by-pel manner. For frame-level
operation the interpolation input and output is a HR frame. Thus, two memories of HR
frame size are required. Nevertheless, the input can be shared with the shiftAdd lowering
the memory requirements to one HR frame. For MB-level operation the input data are the
pels of HR MB being processed. Thus, not all data necessary for the interpolation process
are readily available from the input memory and the interpolation cannot be carried out for
pixels belonging to borders of the MB. The pels that cannot be processed due to unfulfilled
data dependencies have to be stored until the data dependencies are resolved. The number
of pels that have to be stored is determined based on the width of the frame and the intwindow

parameter that specifies the number of neighbouring pels that contribute to the interpolation
process.

The outcome of the holesFilling is received by the scale entity. This entity, given a HR
input, produces its SR version that has the size determined by the scale parameter value.
Thus, when operating at FL this entity requires one FR of HR and one of SR size. When
operating at MBL the memory requirements are of one MB of HR and one MB of SR size.

The above description of the entities concludes the description of the entities shared by
both implementations. The system operating at MB-level produces for each given LR MB
its SR representation. Nevertheless, the outcome of the SR process, and the input of the
display routine, is supposed to be a super-resolved frame. Also the input from ME is not
streamed in the order required by MBL flow.

In order to handle the aforementioned MB-level specific issues two entities that are not
present in the frame-level system have been defined, namely: the reorderBuffer and the
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TABLE 4.2 Equations for memory requirements of the algorithm steps defined for the analyzed soft-
ware implementations.

Entity/Step Frame-level MB-level
zeroes2ones 2∗FRlr MBlr +SAlr
upHoles FRhr SAhr
upGrid FRhr MBhr
shiftAdd FRhr ∗SFW SAhr ∗ (SFW −1)

+FRhr +2∗MBhr
+FRhrweights +MBhrweights

holesFilling FRhr MBhr + intbu f f er
scale FRsr MBsr
reorderBuffer — reorderbu f f er
frameReconstruction — FRsr

frameReconstruction entities. The former entity handles the reordering of the ME metrics
produced by the block matching entities to an order suitable for the MB-by-MB processing.
The buffer used for reordering (of reorderbu f f er type), called the reorder buffer, needs to
store (SFW-1) ME data words for each MB of a frame being super-resolved, requiring an
entry for each RF of the SFW. The amount of memory required for this buffer implemen-
tation is significant. The task of managing the buffer is carried out by the reorderBuffer

entity.

The frameReconstruction is introduced in order to allow seamless interoperability with
the display controller, which expects at its input a super-resolved frame (and not a super-
resolved MB). This entity reconstructs the super-resolved frame from super-resolved MBs
produced by the MB-level system.

In this work we assume that the task of the synchronization of luma and chroma compo-
nents does not require additional memory resources as the luma pels are stored in the output
memories of the frameReconstruction entity, and the much less computationally demanding
process of interpolation of chroma pels is left to be implemented in software and will not
use internal FPGA resources.

Based on the carried out analysis equations modeling each entity memory requirements
have been created. These equations are presented in Table 4.2. This analysis assumes se-
quential execution of code encapsulated by defined entities. This assumption allows sharing
of input/output memories between the communicating entities (i.e. the output memory of
entity upGrid is utilized as the input memory of shiftAdd, and the output of entity shiftAdd

is used as the input of holesFilling).
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TABLE 4.3 Computed minimal and maximal memory occupancy of the super-resolution kernel for
frame- and MB-level flows and QCIF input.

Execution flow Frame-level MB-level
Computed value of Min Max Min Max
Memory occupancy [KB] 3317 9158 122 1051
Vs. frame-level equivalenta[%] 100 100 3.67 11.47
Vs. MB-level equivalenta[%] 1416 871 100 100
a with the same values of parameters.

4.3.2 Quantitative analysis of memory occupancy of the frame- and
MB-level execution flows

Having determined the memory structures used by each entity, the amount of memory (in
bytes) required by each entity has been evaluated. The memory storage requirements of the
frame- and the MB-level implementations have been computed based on the equations from
Table 4.1 and Table 4.2. The computations have been carried out for a set of 96 combinations
of SR parameters values. The tested combinations set has been created by sweeping through
the MBsize (4, 8 and 16), SAR (2, 4, 8 and 16), number of RFs (2, 4, 8 and 16), and the scale
(2 and 4) parameters values.

The minimal and maximal values of memory storage requirements obtained for the
frame- and MB-level flows are presented in Table 4.3. (The results are obtained for mem-
ories with each element requiring 1 byte. The only exception is the reorder buffer, whose
entries occupy 12 bytes.) The comparison shows that the change to the MB-level flow is
expected to result in a significant reduction of Total Memory storage Requirements (TMR).
Minimal memory required by the FL and MBL implementations is 3316 KB and 122 KB,
respectively. Maximal memory use is 9158 KB for FL and 1051 KB for MBL execution
flows. The carried out study shows that for the considered range of values of the chosen pa-
rameters the macroblock-level implementation uses no more than 14.7% of the equivalent
FL system (for a QCIF input).

4.3.2.1 Frame-level flow memory occupancy as a function of super-resolution param-
eters

The expected minimal (3317 KB) and maximal (9158 KB) memory storage requirements
for the FL version have been computed, respectively, for minimal and maximal value of the
RF number and scale parameters. The SAR parameter does not influence the FL memory
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TABLE 4.4 Memory occupancy of the frame-level super-resolution kernel for investigated algorithm
parameters values.

Number of reference frames
2 4 8 16

Scale
2 3317 4109 5693 8861 Memory
4 3614 4406 5990 9158 size [KB]

requirements. The total occupancy for different MB sizes have been investigated. The MB
size does not have a significant impact on the TMR of the frame-level implementation.
Thus, FL implementation total memory storage requirements for different MBwidth values
are approximated as being constant. The estimated total memory storage requirements for
FL implementation are presented in Table 4.4.

From all of the considered parameters the frame-level super-resolution kernel memory
storage requirements are mostly determined by the number of used RFs. Each additional
reference frame support results in an increase of TMR approximated at around 4% of the
maximal TMR noticed for the FL implementation. Both implementations were tested with
two values of the scale parameter (2 and 4). The switch to higher value adds a constant value
of 3/4 the size of a HR frame to the TMR. This makes up for less than 3% of the maximal
total memory requirements noticed for the frame-level SRK.

4.3.2.2 MB-level flow memory occupancy as a function of super-resolution parame-
ters

The MBL implementation TMR for tested combinations of parameters values are presented
in Fig. 4.3(a). The minimal TMR are noticed for the MBwidth of 8 (comprising 8x8 pels)
with other parameters set to minimal values. Maximal TMR were noticed for the MBwidth

of 4 (4x4 MBs) with other parameters set to maximal values. The MBwidth of 4 results in
significantly higher number of entries in the RB leading the TMR being determined by the
RB size. For other MB sizes the RB impact is of much lesser importance leading to lower
TMR. High memory occupancy noticed for the MBwidth of 16 (16x16 MBs) is caused by
the increased size of buffers that depend on the MBsize (representations of MB, grids and
interpolation buffer). The change of the scale value influences both of the investigated flows
in the same manner — adding a constant value of 3/4 the size of a HR FR. For MBL flow
the impact of scale change is more significant due to smaller TMR. For MBL the TMR
increase linearly with the increase of the SAR. Like for to the FL version, the TMR of the
MBL version scale linearly with the number of RFs.
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In order to measure the effect of the SAR and RF values on the TMR we introduce
the memsizeinc and memsizeinc/RF figures. The memsizeinc figure represents the percentage of
additional memory requirements (memsize) noticed for a given SAR and RF combination
(memsize(SAR, MBsize,scale,RF)) against the memory requirements noticed for SAR imple-
mentation with only two RFs (memsize(SAR, MBsize,scale,2)). The memsizeinc/RF represents
the percentage of increase in TMR associated with addition of one RF. The memsizeinc and
memsizeinc/RF have been computed using (4.1) and (4.2), respectively.

memsizeinc = 100×
(

memsize(SAR,MBsize,scale,RF)

memsize(SAR,MBsize,scale,2)
−1
)

(4.1)

memsizeinc/RF =
memsizeinc

RF
(4.2)

Computed memsizeinc and memsizeinc/RF values, presented in Fig. 4.3(b), show that the
relative increase in memory occupancy introduced by inclusion of additional RFs is higher
for smaller MBs. For 4x4 MBs the cost of switching from 2 to 16 RFs can require up to
318% of additional storage (about 22.8% per RF). For 8x8 and 16x16 MB the cost is 232%
(16.6%) and 226% (16.1%), respectively. The increase in TMR introduced by additional
RFs lowers for higher scale values due to lower share of the holesGrids in the TMR and
increases with increasing the SAR (larger SAs). The memsizeinc/RF for FL, based on values
from Table 4.4, is computed at 11.9% and 11% for scale value of 2 and 4, respectively.

The Fig. 4.3(b) shows that the impact of the SAR is stronger for bigger MBs — resulting
in higher peak-to-peak difference between memsizeinc values estimated for subsequent RF
values. This is caused by the fact that holesGrids/SA size is proportional to the squared sum
of SAR and MBwidth. This sum value is more sensitive to changes in the SAR for bigger
MBs.
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TABLE 4.5 Computed memory storage requirements of defined entities of the analyzed software
implementations

Flow Frame-level MB-level
❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵Entity

Share in TMR [%]
Min Max Avg Min Max Avg

zeroes2ones 0.55 1.5 1 0.01 1.07 0.22
upHoles 4.33 11.95 7.99 0.11 15.27 2.97
upGrid 4.33 11.95 7.99 0.03 2.77 0.55
shiftAdd 54.8 84.92 70.16 0.6 76.68 19.15
holesFilling 4.33 11.95 7.99 0.12 3.73 0.93
scale 1.12 10.96 4.9 0.01 0.7 0.11
reorderBuffer — — — 0.73 80.68 20.44
frameReconstruction — — — 10.51 93.24 55.66
Vs. frame-level equivalenta 100 100 100 2.93 14.73 8.2
a with the same values of parameters.

4.3.2.3 Share of steps in total memory storage requirements

The frame-level memory occupancy is dominated by the memories instantiated by the shif-

tAdd entity. The carried out study has identified this entity as the one with the highest
minimal (54.8%), maximal (84.92%) and average (70.16%) share in total memory storage
requirements. The rest of the entities average share is lower than 8%.

The change from frame-level to macro-block-level flow significantly changes the distri-
bution of entities share in total memory storage requirements. The impact of the shiftAdd

entity is significantly lowered. This entity, with the minimal, maximal and average share of
0.63%, 77.94% and 20.46%, respectively, remains (by far) the one with the most share in the
TMR of all intrinsic (non-adapter) entities of the SRK. However, the total memory occu-
pancy is mainly determined by the frameReconstruction entity, with the minimal, maximal
and average share of 13.13%, 94.61% and 59.73%. The entity with the third most important
impact on the TMR, with average share of 14.8%, is the reorderBuffer (adapter) entity.

High frameReconstruction share shown in Table 4.5 is caused by the fact that the output
memory of this entity is of frame-level type. This entity share rises slightly with the increase
in MB size and lowers significantly for higher SAR and RF number values, for which the
share of entities comprising memories for search area processing (zeroes2ones, upHoles,
and shiftAdd) increases. The reorderBuffer entity dominates the TMR for the smallest MB
size (4x4) and scenarios with high number of reference frames with small SAR.

The frameReconstruction entity is the one not only with the highest maximal, but also

122



4.3 EVALUATION OF MEMORY OCCUPANCY

with the highest minimal share (> 13%) in TMR. The latter is mainly caused by the fact that
this entity output memory is of frame-level type and only depends on the frame size (con-
stant), ME precision (constant) and the scale (variable) parameters. In fact, for scale factor
value of 4, low number of RFs (lowering the impact of the shiftAdd), medium (when SAR
is small) and large MB sizes (that lower the impact of RB), this entity becomes dominant
with up to more than 94.5% of share in the TMR.

For small MB size the number of MBs in a frame is high. The number of entries (per RF)
in the RB, and thus its size, is directly related to the number of MBs in a frame. Thereby, for
small MB size (4x4) and high number of RFs the RB dominates the TMR with a share as
high as 71%. For maximal MBs size (16) and minimal number of RFs the RB size becomes
insignificant with share of less than 0.5%.

The shiftAdd entity memory occupancy depends on the number of RFs, MB size and
SAR. Increase in any of these parameters results in shiftAdd entity memory storage require-
ments growth. The increase in RFs results in a significant increase not only in shiftAdd, but
also in RB requirements. Nevertheless, changes in MB size effect in opposite changes in
these two entities requirements. Decrease of the MB size causes a significant increase in the
number of necessary entries in RB and a decrease in the number of pels that make up a SA.
The latter leads to a reduction of the size of the HR SA representations. For big MB sizes,
the size of the RB becomes insignificant, while the memory requirements of the shiftAdd

increase. As the frameReconstruction memory storage requirements do not depend on the
SAR and RFs parameters, for large MB sizes, high number of RFs and large SARs the shif-

tAdd entity dominates the memory requirements, reaching up to almost 78% of TMR. The
RFs number and SAR impacts significantly also the upHoles entity, but this entity memory
occupancy is never higher than the one of shiftAdd.

As shown, the MB-level implementation TMR are mostly dominated by the storage
requirements of the frame-to-MB adapters. Nevertheless, these entities do not form an
intrinsic part of the SRK and are only used for seamless frame-to-MB adjustments. Thus,
their inclusion in the comparison may lead to a false interpretation of the changes in the
memory requirements of the intrinsic parts of the SRK associated with the switch to MB-
level processing flow.

In order to investigate the changes in memory storage requirements of the intrinsic SRK
entities the adapter entities have to be excluded from the TMR evaluation. In Fig. 4.4 a
graphical presentation of the changes in memory requirements of the intrinsic SRK entities
is shown. The requirements of the scale entity are the ones that suffer the most significant
change. This entity requirements are significantly lower for MBL due to the fact that the
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Fig. 4.4 Maximal and minimal percentage share of entities (excluding the adapters) in total memory
requirements of the super-resolution kernels.

entity input is a HR MB instead of a HR frame. The increase in memory storage require-
ments noticed for the upHoles and shitfAdd is caused by the fact that the difference in size of
holesGrids and srGrid is greater for the MB-level implementation (SA size/MB size instead
of frame size/frame size). Apart from increasing the requirements of the aforementioned en-
tities, the aforementioned change lowers the minimal share for the rest of the entities, and
the maximal requirements of the upGrid entity. Increased share of the holesFilling entity is
related to additional memory used for data dependency management which is not required
in the FL system. This memory size does not vary with SAR, number of RFs or scale, lead-
ing to increased share in TMR for configurations with low values of these parameters. The
introduction of the interpolation buffer memory (of intbu f f er type) lowered the maximal and
minimal share of the upGrid entity, as both the introduced memory and the upGrid entity
share similar dependency on the SR parameters.

To recap, for tested combinations of parameters values the frameReconstruction and re-

orderBuffer dominate the memory requirements for 4x4 MBs. The shiftAdd has never been
the entity with maximal share for this MB size. For large MBs (16x16) the reorderBuffer
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never poses maximal requirements, which are noticed for frameReconstruction or shiftAdd.
For medium MB size (8x8) it is possible to find a combination of SR parameters values for
which each of the three blocks will have the maximal share in the TMR.

4.4 Evaluation of memory accesses count carried out by
the macroblock- and frame-level NUGPA execution flows

In order to compute the count of memory accesses carried out by the MBL and FL SRKs,
equations modeling the access counts as a function of the algorithm parameters have been
created for each NUGPA step. This task has been carried out in three steps:

(i) determination of static and dynamic parameters that influence the count number,

(ii) identification of steps’ memory access patterns, and

(iii) formation of equations modeling these patterns.

4.4.1 Modeling memory accesses

The carried out analysis of the software implementations has shown that for some parts of
code the number of accesses does not depend only on the algorithm parameters (presented
in Table 3.1) but also on run-time determinable values derived from received ME metrics.
These values are used as arguments in the evaluation of conditions that control the imple-
mentations’ execution flow and the number of carried out memory accesses.

4.4.1.1 Probability model of conditional memory accesses

In order to model the run-time determinable behavior of some of the memory accesses we
have used a set of figure representing the probability of the state that directly conditions
the execution of these accesses. For the purpose of this study three such figures have been
defined, namely, the SoWgt1p, the subpixMvp and the holesp.

The SoWgt1p figure represents the probability of the sum of weights of pels computed
by the shiftAdd step to be greater than ‘1’. Thus, this figure value defines how many pels
undergo the normalization step and thus require one additional read access.

The holesp figure represents the probability of the value of a pel to be read from the
input by the holesFilling step to be equal to ‘0’. This probability determines the percentage
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of pels for which the interpolation process is to be carried out resulting in up to 24 additional
read accesses.

The subpixMvp figure models the probability of the motion vector to represent subpixel
movement. The extraction of pels from reference structures (this term encapsulates the
holesGrids and the SAs) during the shiftAdd transformation is only carried out for RSs for
which the associated mv is of subpixel type. Thus, this probability value determines the
fraction of total number of pels (up to RFnr) for which additional accesses are required.
Indirectly this figure value impacts the other two figures values. Increase in subpixMvp

probability results in more pels being read and fused. The additional pels either share the
projection coordinates with other merged pels (increasing the SoWgt1p), or do not — filling
a hole — lowering the holesp value.

The values of these probability figures can be evaluated directly once the values of
the received ME metrics are known. The subpixMvp is computed by dividing the count
of mvs for which at least one scalar component value, after being divided by the value
of precisionme, has a non-zero residual value (represented by mvWithSubpixMvcount), by
the number of received MVs (mvReceivednr). The holesp value is computed by subtract-
ing the count of unique coordinates that have been assigned a new (non-zero) value dur-
ing the fusion (pelsWithValgt1count) from the number of addresses in the address space
(pelsInHrFramenr; equal to size of a HR frame) and dividing the outcome by the number
of addresses in the address space (pelsInHrFramenr). Similarly the SoWgt1p is computed
by dividing the count of unique coordinates assigned new value formed by fusing two or
more pel values (valO f 2orMoreMergedPelscount) by the number of addresses in the ad-
dress space (pelsInHrFramenr).

In this work, the subpixMvp, holesp, and the SoWgt1p values for quantification of mem-
ory access counts have been evaluated empirically by executing the software for multiple
combinations of algorithm parameter values and computing the figures values as described
above using (4.3), (4.4), and (4.5), respectively.

subpixMvp =
mvWithSubpixMvcount

mvReceivednr
(4.3)

holesp =
pelsInHrFrnr− pelsWithValgt1count

pelsInHrFrnr
(4.4)

SoWgt1p =
valO f 2orMoreMergedPelscount

pelsInHrFrnr
(4.5)
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4.4.1.2 Modeling memory traffic of the frame- and MB-level execution flows

Once the figures modeling conditional accesses have been defined, an analysis of memory
access patterns of each of the steps of the generalized NUGPA has been carried out. The
presented study models the behavior of the steps for the system with fully loaded SFW
(system with number of reference frames contained in the SFW = RFnr; this state — by
far — predominates throughout the execution time for sequences composed of more than
RFnr frames) and does not take into account buffering and data reuse schemes deployed by
the FL and MBL implementations. In this work we consider that the steps carrying out
the synchronization and data sending as not intrinsic parts of the SRK. Thus, these steps
memory access patterns are not analyzed.

The zeroes2ones step reads the received pels from memories, applies the zeroes2ones

transformation and writes the data in corresponding LR memories. Thus, this steps carries
out one read and one write access per each received pel.

The outcome of the zeroes2ones step is accessed by the grids creation steps. Both of
these steps carry out the up-holes transformation. The difference is that the upGrid step
(construction of a srGrid) accesses memory representing the LR FR/MB and the upHoles

step (construction of holesGrids) accesses memories to write the LR RS. The outcome of
up-holes transformation is a HR representation of the LR input. Thus, the step requires one
read and precision2

me write accesses per every input pel.

Nevertheless, if the block matching ME is carried out in accord with the order appropri-
ate for the FL flow, then the data received by the SRK from motion estimation have to be
reordered to allow correct processing by the MBL implementation. The tasks of reordering
the hyperdata is carried out by the reoderBuffer step, which receives, reorders and writes the
data in memory (of reorderbu f f er type). Then, for each processed MB, the required hyper-
data are read from the memory and passed onto the shiftAdd step where they are stored local
structures. For investigated implementations one meta data element in RB encapsulates four
values, meaning that the number of accesses for transferring one RB entry is 4. Thus, for
each MB being processed, the requirements for the MBL reoderBuffer step are of four read
and four write accesses per each RF contained in the SFW.

Once the meta data are available the weights are computed and stored in registers for im-
mediate use, thus this step does not contribute to the Total Memory Access Count (TMAC).

The shiftAdd, in order to extract the required pels, accesses the HR representations of the
RS (holesGrids), reads their content and writes it in local memory. This action is repeated
up to RFnr number of times per each processed MB/FR. Then, the srGrid is being accessed
for reading. For each pel read from the srGrid up to RFnr local copies of holesGrids are
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accessed for reading of the reference pel. The holesGrids read accesses performed by the
shiftAdd step are conditional, that is, the pels are read only if the hyperdata associated
with the MB being processed meet some conditions. In the case of our implementation,
the accesses are carried out only if the mv value corresponds to a sub-pixel motion —this
access probability is modeled by the subpixMvp. Thus, the exact count of memory accesses
depends on the probability of the motion vector being a subpixel one.

All pels read in the extraction process are projected onto the srGrid and fused —their
values are multiplied by their weights and summed. Sums of weights are also computed.
The resulting sums of values of pels and weights are written to local memories. The weights
sums are read coordinate-by-coordinate in the normalization step that takes place after the
shiftAdd transformation is completed. If the weight value is greater than ‘1’ (probability
modeled by SoWgt1p) the corresponding sum of pels is read and the new value for that
coordinate is computed by dividing the value of the sum of pels by its corresponding sum
of weights. After computation the new value is stored in the output memory of the shiftAdd

step.

To recap, per each processed pel of the srGrid the shiftAdd step requires: (i) RFnr +1 of
non-conditional reads and writes and up to RFnr conditional reads to extract the pels, (ii) two
write accesses following the fusion, (iii) one non-conditional read and one non-conditional
write and one conditional read and one conditional write to normalize computed pel value.

The holesFilling step is performed in a pel-by-pel manner. This step starts off by ac-
cessing the input memory and reading a pel value. If the read value is greater than zero it is
written into the output memory and processing of the subsequent pel is started. Otherwise,
this step accesses the input memories and reads up to 24 values required for computation of
the new value at the coordinate. The computed new value is written to the output memory.
Thus, this step requires one non-conditional read and write and up to 24 conditional reads
per each pel read from the input. The number of conditional accesses depends on the num-
ber of coordinates with value equal to zero. The probability of these conditional accesses is
modeled by the holesp figure.

The outcome of the holesFilling step is read by the scale step. This step, given a HR
input, produces its SR representation that has the size that meets the expected output size
specified by the scale parameter value. Thus, statistically the step performs one read and
one write per precision2

me/scale2 pels contained in the input memory.

Once the study on memory access patterns and their dependency on the conditional
flow have been carried out, the equations describing the memory access counts of each
step —as a function of the number of input pels (inpels) the step has to process in one
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TABLE 4.6 Equations modeling the count of accesses to memories carried out by the algorithm
steps defined for the analyzed software implementations (innr represents the number of pels
passed as the input of every step).

Entity Read access count Write access count
zeroes2ones innr innr
upHoles innr innr ∗ precision2

me
upGrid innr innr ∗ precision2

me

shiftAdd
innr ∗ (2+R fnr +SoWgt1p) innr ∗ (4+R fnr)
+R fnr ∗ subpixMvp

holesFilling innr ∗ (1+holesp ∗24) innr
scale innr ∗ scale2

sr/precision2
me innr ∗ scale2

sr/precision2
me

reorderBufferab RFnr ∗4 RFnr ∗4
frameRecon-

innr innrstructionb

a access per each MB being processed.
b only present in the MBL flow.

iteration— have been created. The resulting equations are presented in Table 4.6, where
inpels represents the number of pels in either a MB/FR or SA/FR (for upHoles) or a sum of
both (for zeroes2ones). The equations model the behavior of the steps for the system with
fully loaded SFW in saturation state and do not take into account buffering and data reuse
schemes that could be deployed by FL and MBL implementations. Accesses to registers
are not taken into account for the computation of memory access count required by the
processing steps.

4.4.1.3 Equations modeling memory traffic

The equations presented in Table 4.6 do not take into account the differences between the
FL and MBL flows (except for the introduction of the entities that encapsulate MB-to-FL
adapters). From these equations one can see that the MBL flow memory counts are ex-
pected to be (not too much) higher due to the introduction of additional steps and memories
required for seamless substitution of the FL SRK.

Nevertheless, only once the differences between the implementations of the flows are
taken into account the equations modeling a realistic memory access counts can be con-
structed. The most important of these differences for the memory access counts are the
buffering schemes and data reuse options put in place. The creation of refined equations for
both of the flows is the topic of this subsection.
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The main characteristic of the FL flow is that it uses a RS that comprise all pels of
a frame. As the implementations instantiate local memories for all RS of SFW, for FL
implementation this means that once a HR RF is written into local memory it remains readily
available till being discarded from the SFW. The need to re-create a once discarded RS never
arises as the SFW slides only in one direction and therefore once a frame is discarded and
falls out of the scope of the SFW it is not referenced again.

On the contrary, the local HR RS used by the MBL implementation contains only the
pels that belong to the execution context of by the MB that is currently being processed. This
leads to a significant reduction in memory size requirements, but as the MBs are processed
in raster scan order, it also results in the necessity of re-creating from scratch the same
(once created and discarded) holesGrids for MBs of the subsequent frames. The re-creation
of holesGrids takes place even if the MBs with the same location within the frame reference
the same RF (thus, the same RS).

The investigated MBL implementation does not implement any kind of reference struc-
ture pels buffering. Thus, for each processed MB all pels of the RS are received, undergo
full up-holes transformation and are written to local shiftAdd memories. This impacts the
steps of the RS/holesGrids preparation flow: the zeroes2ones, the upHoles and the extrac-
tion stage of the shiftAdd transformation. Instead of preprocessing (on average) one RS of
HR FR type per processed FR (as in FL), the MBL flow needs to re-create and copy into
local memory RSs of HR SA type RFnr ∗MBnr times for processing of each frame.

The number of pels contained in the square-shaped neighborhood that need to be read
from memory by the holesFilling step ranges from 8 to 24 and its statistical distribution
depends, among other parameters, on the frame size. For this study, we overestimate the
high ceiling value as 24 accesses required per computation of the new value of one hole,
which resembles an overestimation of the worst case scenario (since the computation of
new values of holes belonging to the frame borders always requires less than 24 accesses).

The data dependencies management necessary for correct execution of the MBL flow
requires the introduction of the interpolation buffer (intbu f f er). This memory further in-
creases the total memory access count. The number of the additional accesses depends on
the interpolation radius (intwindow) and HR macro-block size. The count of additional writes
is modeled as 2 ∗ intwindow ∗MBwidth ∗ precisionme− int2

window which for constant value of
intwindow (= 2) is equal to 4∗ (MBhr−1). The introduction of the interpolation buffer does
not impact much the total memory access counts.

The equations modeling the memory access counts required by NUGPA steps that take
into account buffering schemes deployed by the FL and MBL implementations, the conse-
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TABLE 4.7 Equations modeling the count of accesses of the identified algorithm steps required for
processing of one frame.

❳❳❳❳❳❳❳❳❳❳❳❳Entity
Accesses

Read Write

Implementation Frame-level
zeroes2ones FRlr 2∗FRlr
upHoles FRlr FRhr
upGrid FRlr FRhr

shiftAdd
3∗FRhr +FRhr ∗SoWgt1p 4∗FRhr
+FRhr ∗ (RFnr ∗ subpixMvp

holesFilling FRhr ∗ (1+holesp ∗24) FRhr
scale FRsr FRsr

reorderBuffer — —
frameReconstruction — —

Implementation MB-level
zeroes2ones SAlr ∗RFnr ∗MBnr +FRlr SAlr ∗RFnr ∗MBnr +FRlr
upHoles SAlr ∗RFnr ∗MBnr SAhr ∗RFnr ∗MBnr
upGrid FRlr FRhr

shiftAdd
SAhr ∗RFnr ∗MBnr SAhr ∗RFnr ∗MBnr
+FRhr ∗RFnr ∗ subpixMvp +3∗FRhr
+FRhr ∗ (2+SoWgt1p)

holesFilling
FRhr +4∗MBnr ∗MBhr

FRhr ∗ (1+holesp ∗24) −4∗MBnr
scale FRsr FRsr

reorderBuffer 4∗RFnr ∗MBnr 4∗RFnr ∗MBnr
frameReconstruction FRsr FRsr

quences of smaller (that a whole frame) reference structures and workload processing in a
MB-by-MB manner are presented in Table 4.7. As before, these equations are defined for
the system in saturation state (system with fully loaded SFW). Thus, due to the reuse of RFs
for the FL flow on average only one HR RS holesGrid needs to be constructed and copied
into local shiftAdd memories. For MBL all SAs have to be received and all holesGrid have
to be re-constructed and copied into local shiftAdd memories for every processed MBs.

In summary, due to greatly increased number of re-transferred reference pels (and the
need to process them again), without considering the implementation specific buffering
schemes aimed at minimizing the number of pels being (re)transferred (plenty of room for
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TABLE 4.8 Noticed minimal, maximal and average values of probability figures.

Sequence holesp subpixMvp SoWgt1p
MIN MAX AVG MIN MAX AVG MIN MAX AVG

foreman 0.59 0.87 0.76 0.48 0.64 0.55 0.01 0.64 0.22
mobile 0.57 0.87 0.75 0.5 0.63 0.55 0.01 0.64 0.22
paris 0.75 0.91 0.85 0.16 0.33 0.24 0.01 0.33 0.11

optimization), the TMAC of the MBL flow is expected to skyrocket with the increase of
SAR and RFnr.

4.4.2 Quantitative evaluation of memory traffic

The equations used for modeling of memory access counts presented in Table 4.7 use three
figures to represent probabilities of conditional accesses carried out by the shiftAdd and
holesFilling steps. Thus, the following step of the study was the evaluation of the values of
these probabilities.

Once the probability of these accesses has been determined the aforementioned equa-
tions have been used to determine the total memory access counts required by the FL and
MBL implementations for the same set of 96 combinations of algorithm parameter values.
The results of both studies are presented in this section.

4.4.2.1 Evaluation of values of the probability parameters

In order to determine the values of the holesp, subpixMvp, SoWgt1p several simulations
have been carried out for the aforementioned set of 96 combinations of algorithm parameter
values for three test sequences, namely, the foreman, mobile and paris sequences. For this
purpose 96 simulation runs have been carried out. The tested combinations set has been
created by sweeping through the MBwidth (4, 8 and 16), SAR (2, 4, 8 and 16), number of RFs
(2, 4, 8 and 16), and the scale (2 and 4) parameter values. This set is the same as the one used
for the study and optimization of memory requirements. The defined probability figures
characterize the algorithm rather than its implementations flows. Thereby, simulations have
been carried out only for the frame-level flow and have been considered valid for the MBL
flow.

The simulations produced 96 values of the holesp, subpixMvp, SoWgt1p figures. The
minimal, maximal and average values observed for the defined probability figures are pre-
sented in Table 4.8. These values have been analyzed in order to evaluate the relations be-
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TABLE 4.9 Computed average values of probability figures for groups sharing algorithm parameter
value.

Probability Reference frames Search area radius MB size ∇

figure 2 4 8 16 2 4 8 16 4 8 16 RF SAR MB
Foreman sequence

holesp 0.86 0.81 0.73 0.62 0.75 0.76 0.76 0.76 0.76 0.75 0.76 0.079 0.004 0.01
subpixMvp 0.54 0.54 0.55 0.57 0.58 0.55 0.54 0.53 0.52 0.57 0.56 0.009 0.018 0.036
SoWgt1p 0.01 0.07 0.23 0.57 0.24 0.22 0.21 0.21 0.2 0.23 0.22 0.186 0.01 0.017

Mobile sequence
holesp 0.86 0.81 0.73 0.61 0.75 0.75 0.76 0.76 0.77 0.75 0.74 0.84 0.004 0.018
subpixMvp 0.53 0.55 0.56 0.58 0.57 0.56 0.55 0.54 0.53 0.58 0.56 0.015 0.008 0.035
SoWgt1p 0.02 0.07 0.23 0.58 0.23 0.23 0.22 0.22 0.22 0.24 0.22 0.186 0.005 0.016

Paris sequence
holesp 0.90 0.88 0.84 0.78 0.85 0.85 0.85 0.85 0.84 0.85 0.86 0.042 0.001 0.012
subpixMvp 0.2 0.23 0.26 0.29 0.25 0.25 0.24 0.24 0.28 0.25 0.21 0.029 0.003 0.036
SoWgt1p 0.00 0.03 0.11 0.29 0.11 0.11 0.1 0.1 0.12 0.11 0.09 0.186 0.002 0.012

tween the algorithm parameters and the defined probability figures. In order to determine the
parameter whose changes influences the most the defined probability figures values we have
defined the ∇ figure that represents the dynamics of the correlation between the changes of
the SR parameter values and probability figures values. The ∇ figure values have been com-
puted as follows. First the values obtained from simulations have been grouped based on the
value of a chosen algorithm parameter. Then, the average values of probability figures have
been computed for each group. Following, absolute differences of the subsequent groups’
averages have been computed. The ∇ figure has been assigned the value of the average of
these absolute differences. The computed average values of probability and the ∇ figures
are presented in Table 4.9, with values that benefit the SR image quality in bold.

The Table 4.9 does not present data for different values of scale parameter as for different
scale values we have obtained the same probability values. This is explained by the fact that
the scale parameter does not influence the control flow of the shitftAdd and holesFilling

steps.

The results highlighted the RFnr parameter as the one that has the greatest impact on the
holesp and SoWgt1p probabilities. The increase in RFnr leads to significant and progressive
decrease (which is good in this case) in the count of holesGrid coordinates that are not as-
signed a value during the fusion stage of the shiftAdd step. The dynamic of the correlation
changes between RFnr and the aforementioned figures is by far greater than for other inves-
tigated parameters. The average values noticed for groups created based on RFnr values are
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Fig. 4.5 Observed values of probability figures as a function of the number of reference frames.

presented in Fig. 4.5.

The impact of the RFnr on the subpixMvp is also significant, but, for carried out sim-
ulations, the value of this figure has been more susceptible to changes of the MB size.
Nevertheless, the influence of the change in the MB size on the change of the subpixMvp

is not easily determined as the effect of the change from one MB size to other results in
different direction of changes in subpixMvp for different test sequences used.

The dynamic of the impact of the SAR value change has been quantified as of the least
importance from the three investigated parameters. Even major changes in SAR value did
not influence significantly the average values of defined probability figures. This is not
a surprise as the size of the SA does not impact the number of pels being merged or the
probability of receiving a subpixel mv.

4.4.2.2 Evaluation of memory traffic

Having determined the values of the holesp, subpixMvp, SoWgt1p, TMACs of the FL and
MBL have been computed for the same 96 combinations of the algorithm parameter values
used in the study on probabilities using the equations presented in Table 4.7.

Computed minimal and maximal values of the TMACs for foreman, mobile and paris
sequences are presented in Table 4.10. The results show that for FL the maximal TMACs
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TABLE 4.10 Computed minimal and maximal memory access counts of frame- and MB-level super-
resolution kernels.

Flow Frame-level MB-level MAX/MIN
Sequence Min Max Min Max FL MBL
Foreman 13561068 15831891 16619173 1689979357 1.17 101.7
Mobile 13589454 15568313 16635409 1690506449 1.16 101.6
Paris 13690830 15028993 16777890 1689999505 1.1 100.7

have been of no more than 1.17 times higher than the minimal TMACs. For MBL the maxi-
mal TMACs have been more than 100 times higher than the minimal ones. The remarkably
small difference between the minimal and maximal TMACs of the FL implementation is
caused by the moderate reuse of RS data. Due to the fact that the RS represents a whole
frame, once a RS is loaded all possible reference pels are readily available from memory
and do not need to be re-transmitted for subsequent frames that reference this RS. Thus,
when working with fully loaded SFW (the state of the systems considered in this study) on
average the system has to receive and construct only one RS per processed frame, indepen-
dently of the maximal number of RFs in the SFW. Therefore due to extensive RSs reuse the
increase of the TMAC caused by the RFnr is significantly reduced (still, the RFnr impacts
the number of pels projected). Moreover, the influence of the MB size and SAR on the FL
TMAC is not direct as these parameters are not referenced by the equations used for model-
ing of TMACs (Table 4.7). Rather, the values of these parameters influence the value of the
probability figures that impact both flows in the same manner.

In case of the MBL flow reference data reuse is limited and troublesome in implemen-
tation as the RS only contains the part of the frame that represents the search area of the
MB that is being processed. The investigated version of MBL did not implement any data
buffering or schemes aimed at data reuse of the RS pels. Hence, for subsequent frames,
the RS pels have to be re-transmitted in order to re-construct the holesGrid referenced by
the currently processed frame MBs resulting in significant changes in TMAC for different
algorithm parameter values. Moreover, as the SA of adjacent MBs overlap, the total sum of
transmitted SA/RS pels is (much) greater than the number of pels in a RF. For a 4x4 MB and
a SAR of 16, the number of pels that are contained within all possible SAs, when compared
with equivalent FL RS, is increased by the factor of 81 times. When combined with RFnr of
16 RS, it results in a total increase by the factor of 1296.

In order to quantify the impact of the algorithm parameter values on the FL and MBL
TMACs difference the increase noticed in TMACs associated with the change from FL to
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MBL processing has been investigated. The increase has been quantified by dividing the
computed MBL TMAC by TMAC computed for an equivalent FL implementation. The
obtained increase values computed for all the tested combinations (with scale = 2) and
sequences are presented in Fig. 4.6. For all the tested sequences the TMACs follow the
same trend resulting in the observed minimal TMAC increase by a factor of 1.22, 1.23 and
1.22, and the maximal TMAC increase by a factor of 117, 113, and 117, for the foreman,
mobile, and paris sequence, respectively. The choice of the MB size is of most importance.
The lowest increase (minimal of 1.22, maximal of 14) has been noticed for the highest
investigated value of MB width (16). The increase factors noticed for all tested combinations
(with scale = 2) for MB size of 16x16 are presented in Fig. 4.7. The increase noticed for
switching from MB size of 16x16 to MB size of 8x8 and 4x4 is presented in Fig. 4.8. When
compared with the TMACs of 16x16 MB the TMACs of 8x8 and 4x4 MBs are increased by a
factor of up to 2.7, and up to 8.7, respectively. The moderate differences noted for different
MB sizes are caused by the increased number of SA pels that have to be transmitted for
smaller MB sizes. The relation between the SAR and RF values and the TMAC can be
approximated as linear for all MB sizes. The change from FL to MBL flow always has
resulted in significant increase of TMAC.
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Fig. 4.7 Increase in TMAC observed for the change from FL SRK with MB size of 16x16 (labeled
as MB16) to equivalent MBL SRK implementation.
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Fig. 4.8 Increase in TMAC observed for the change from MBL SRK with MB size of 16 to equiv-
alent MBL SRK implementation with MB size of 4x4 and 8x8 (labeled as MB4 and MB8,
respectively).
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TABLE 4.11 Computed memory access counts of defined entities of the analyzed software imple-
mentations.

Flow Frame-level MB-level
❍❍❍

❍❍❍Entity
Share Min Max Avg Min Max Avg

[%] [%] [%] [%] [%] [%]
zeroes2ones 0.48 0.56 0.53 1.16 3.89 2.96
upHoles 2.72 3.18 3.03 7.48 33.06 24.33
upGrid 2.72 3.18 3.03 0.03 2.59 0.87
shiftAdd 20.64 48.61 30.17 26.08 62.56 51.93
holesFilling 41.95 70.17 59.72 0.42 57.77 17.85
scale 1.33 5.72 3.52 0.01 4.55 1.01
reorderBuffer — — — 0.01 0.21 0.04
frameReconstruction — — — 0.01 4.55 1.01

4.4.2.3 Share of execution flows’ entities in total memory access count

Computation of memory access count has been carried out for every entity making up the
SRK and for each of the 96 test combinations. The values of these computations have been
used in order to determine the impact of each of the entities on the TMAC of the SRK. The
results of the study — the minimal, maximal and average share of the count carried out by
the entities in the TMAC —are presented in Table 4.11 and visualized in Fig. 4.9. Presented
data show that the total count of accesses carried out by the SRK is mainly influenced by
the shiftAdd, the holesFilling, and, in case of MBL implementation also by the upHoles,
entities.

The frame-level memory traffic is mostly generated by the accesses carried out by the
holesFilling entity. As shown in Table 4.11 this entity has been the one with the highest
minimal (42%), maximal (70%) and average (59%) share. The average share of this entity
is almost two times higher than the average share of the shiftAdd entity (30%, second most
significant share in TMAC). The third most influential, with average share of 3.52%, is the
scale entity.

Again, the change from frame-level to macroblock-level flow significantly changes the
distribution of entities share in TMAC. The impact of the holesFilling entity is significantly
lowered. This entity with the minimal, maximal and average share of 0.4%, 58% and 18%,
respectively, becomes the third most important contributor (based on average share), after
the shiftAdd and upHoles entities. The shiftAdd entity is by far the one that generates the
most traffic with minimal, maximal and average share of 26%, 63% and 52%, respectively.
The most significant changes have been noticed for the upHoles and zeroes2ones entities.
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Fig. 4.9 Share of defined entities in the total memory access count of the frame- and macroblock-
level NUGPA super-resolution kernels.

The former entity presents an increase in the average share by a factor of 8, and with mini-
mal, maximal and average share of 7.5%, 33% and 24%, it has become the entity with the
second highest share in TMAC. The latter entity average share has increased almost 6 times
reaching 2.96%.

The main cause of the increased share of the shifAdd, upHoles and zeroes2ones entities
of the macroblock-level flow is the necessity of re-transmitting, re-creating and copying of
the holesGrids for every MB being processed. The amount of data that undergoes this re-
processing skyrockets with the increase in values of SAR and RFnr. For 4x4 MB, QCIF
frame, SAR=16 and RFnr=16 the count of generated memory accesses observed for the
zeroes2ones, upHoles, shifAdd is, respectively, 865, 1296, 212 times the one generated
by a FL equivalent (worst case). However, the increase of SAR and RFnr values lowers
the probability of the necessity of interpolation, lowering the count of accesses performed
by the holesFilling. An increase in MB size improves the figure of merit across all test
combinations. These are examples of tradeoffs to be made at design time.

The average share of the memory accesses of introduced adapter entities on the TMAC
is of 0.04% and 1.01%, respectively for the reorderBuffer and frameReconstruction, being
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almost of no significance. The writes to the intbu f f er buffer required for data dependency
resolution increase the count of accesses carried out by the holesFilling entity by no more
than 2%.

4.5 Evaluation of the trade-offs of the proposed execution
flow

In this section we compare and evaluate the trade-offs of switching from FL to MBL flow
by comparing the factors of reduction in memory occupancy and the increase in memory
access counts associated with the aforementioned change.

The results of the study presented in Section 4.3.2 have shown that, for the QCIF frame
format, the change from the frame-level to the MB-level execution scheme can lead to of a
TMAC by a factor between 6.8 and 40, depending on the NUGP algorithm parameter val-
ues. The minimal and maximal TMR computed for the MBL flow correspond to 3.7% and
11.5% of memory occupancy of equivalent (having the same values of algorithm parame-
ters) frame-level version. The results have shown that both flows’ memory requirements are
mostly influenced by the number of reference frames. For the MB-level flow also the size
of a macroblock is significant as it determines the requirements of the adapter entities.

The results presented in Section 4.4.2 have shown that, for the QCIF frame format,
changing from frame-level to MB-level execution flow, without implementing ad-hoc buffer-
ing mechanisms, can lead to an increase in total memory access count by a factor between
1.22 and 117. Notice that not implementing ad-hoc buffering mechanisms is a worst case
scenario for memory traffic, and hence a stress test, in particular for the macroblock-level
flow.

The results shows that for the tested combinations the algorithm parameter that influ-
ences the most the memory access count of the frame-level flow is the number of reference
frames used. For the macroblock-level flow all of the NUGPA parameters have a major im-
pact on the memory access count. Nevertheless, the most significant impact was observed
for changes in MB size value, for which the highest noticed factor of maximal count in-
crease versus equivalent frame-level count ranges from 14 (for MB size of 16x16) to 117
(MB size of 4x4). For the MB-level flow, the noticed maximal count could be as much as
102 times greater than the observed minimal count. For the frame-level flow, the observed
maximal was only 1.21 times higher than the noticed minimal. Observed frame-level flow
results highlight the efficiency and importance of the deployed memory buffering policy.
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Fig. 4.10 The factor of reduction in memory occupancy versus the factor of increase in memory
traffic (for scale=4). MB4, MB8 and MB16 stand for MBwidth = 4,8 and 16, respectively.

As the sets of investigated algorithm parameters that has been used in both studies has
been the same. Thus, it is possible to confront both factors values and analyze the relation
of memory reduction/traffic increase as a function of the algorithm parameter values. This
relation, for the results of estimation of memory traffic for the worst case observed and
scale parameter set to 4, is presented in Fig. 4.10. The diagram for scale value equal to 2
is similar, with the difference that the memory occupancy reduction versus traffic increase
factor (a suitable figure of merit, hereinafter T MR/T MACratio) is about 2–3 times higher.
Scale = 4 is the worst case for this factor.

The computed increase of memory access count associated with the change from frame-
level to macroblock-level NUGP algorithm flow is significant. The range of computed val-
ues of the factor of increase in memory access count (of 1.22 to 117) is wider than the range
of computed values of the factor of reduction observed in total memory size requirements
(of 6.8 to 40). Nevertheless, an analysis of the Fig. 4.10 shows that, in spite of the increase
in total memory traffic, for 76 out of 96 tested combinations the observed factor of memory
occupancy reduction has been greater than the observed factor of increase in memory access
count.
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Out of the 20 combinations for which the T MR/T MACratio is lower than ‘1’, two have
been observed for MB size of 16x16, five for MB size of 8x8 and 13 for MB size equal
to 4x4. The set of combinations for which the increase in memory traffic is greater than
the reduction noticed in memory requirements for the largest MB size only contains combi-
nations with the search area radius (SAR) and reference frame number (RF) values higher
than 8. For MB size of 8x8, only combinations with SAR value greater than 8 results in the
T MR/T MACratio value being lower than ‘1’. For the smallest evaluated MB size (equal to
4) for all combinations with SAR value greater than 8, almost all with SAR value of 8 and
one combination with SAR equal to 4 the increase in memory traffic is greater than noticed
factor of memory reduction. It is clear that the advantages brought by finer granularity of
the MB-level SRIR flow are limited for cases of the smallest MB size and the highest SAR
values. Thus, optimizations of data reuse and buffering policies should focus on lowering
the memory traffic particularly for these combinations of SRIR parameters’ values.

4.6 Optimization of memory traffic

The study on entities’ share in total memory occupancy and memory traffic has identified
the zeroes2ones, upHoles/upGrid and shiftAdd entities as the ones that have the greatest
influence on the T MR/T MACratio precisely for the values of parameters for which the con-
tention in traffic has been observed. The analysis has shown that the observed skyrocketing
increase in memory traffic is generated by the zeroes2ones, upHoles and shiftAdd entities.
Most of this traffic is caused by the lack of implementation of buffering mechanisms as
per our worst case macroblock-level scenario. There is large room for optimization and
a high possibility that the impact of optimizations on memory traffic will be significant.
Hence, these entities have been chosen to be analyzed in details in order to optimize their
implementation and execution and come up with a buffering policy that would significantly
reduce the memory traffic generated by the entities.

4.6.1 Optimization technique

As stated before, the zeroes2ones, upGrid, upHoles and shiftAdd entities have been iden-
tified as the ones with the largest room (and necessity) for optimization, especially as far
as number of carried out accesses is concerned. An analysis of memory access patterns of
these entities has shown that most of the accesses generated by these entities are used for
transmission of search area pels. Thus, the optimization effort has been focused on finding
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a mechanism that would lead to reduction of the number of these transmissions.

Once the zeroes2ones transformation has been applied on the LR input pels of the to-
be-super-resolved MB and its SA, these pels are projected onto HR grids. The projection is
carried out in two stages: (i) computation of HR coordinates for the LR pels, and (ii) place-
ment of the LR pels at the computed coordinates. The HR coordinates that have not been
assigned a LR pel value during the projection step are initialized with the value of ‘0’. The
LR-to-HR coordinates mapping depends only on the LR coordinates’ values (limited, or-
dered set of fixed values) and the resolution of the motion estimation (fixed value). Thus, it
is known as soon as these values are determined.

Following the execution flow of the reference implementation, the majority of accesses
to memory made during the process of pels extracted, projection and fusion, are carried out
in order to read non-LR pels values (coordinates initialized with the value of ‘0’). Thus,
if the identified coordinates do not point at a LR-pel, the coordinate must be addressing a
coordinate initialized with ‘0’ and this value can be assigned without performing the actual
access to the memory. Otherwise, the HR coordinate of the to-be-loaded pel can be used to
obtain its LR coordinates and the pel value can be loaded directly from the LR representa-
tions of the reference structures and the MB being actually processed. This approach allows
to use the LR representations of the reference structures in the pre-fusion pert of the exe-
cution flow (zeroes2ones, upHoles/upGrids and the extraction stage of the shiftAdd) at the
expense of (slightly) increasing the computation complexity of the shiftAdd step. The iden-
tification of non-LR pels has been implemented by introducing a new addressing scheme
that is capable of determining whether or not the to-be-extracted HR coordinate addresses a
LR pel.

4.6.2 Optimization results

Introduction of the described addressing scheme has led to a significant reduction in memory
traffic of both execution flows. When compared with the reference versions (i.e. without
optimizations) the observed minimal, maximal and average memory access count have been
reduced by 13.8%, 13.3%, 12%, and 25.6%, 87.4%, 81%, respectively for the FL and MBL
flow. The much higher rate of reduction in access count observed for the finer grain flow
has lowered the minimal and maximal factor of increase in memory traffic associated with
the change to the MBL flow to 1.1 and 16.9, respectively from 1.22 and 117. This is an
optimization that offers clear trade-offs for design implementation with fitting local memory
and held down communications traffic.
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Implementation of the new addressing scheme has allowed to eliminate most of the
HR representations and effectively has lowered the memory occupancy of the FL and the
MBL flow. The observed maximal memory occupancy has been reduced from 9158 KB and
1051 KB to 2475 KB and 718 KB, respectively for the frame-level and macroblock-level
implementations. The minimal occupancy has been reduced from 3317 KB and 122 KB to
1832 KB and 113 KB, respectively. In summary, the introduced optimizations have lowered
the minimal, maximal, and average memory occupancy by 73%, 44.8%, 62.5%, and 31.7%,
6.9%, 22.7%, respectively for the FL and MBL flow. As a result the new addressing scheme
has also lowered the observed minimal and maximal value of the factor of reduction in
memory occupancy associated with the change to the MBL flow to 3.5 and 16, respectively
(from 6.8 and 40). Despite the noticed decrease, the change from frame-level to MBL flow
is still significant enough, with held down memory traffic, as to likely turning the MBL
approach the preferred one.

Additionally, introduction of the new addressing scheme has further reduced the number
of test combinations for which the increase in memory access counts is still greater than
the reduction in memory occupancy achieved. A superposition of the factors of reduction
in memory occupancy versus the factor of increase in memory traffic computed for the
reference and the optimized versions is presented in Fig. 4.11. The figure shows that for
scale of 4 (worst case) the number of combinations for which the observed increase in
memory traffic is greater than the occupancy reduction has been reduced from 12 to 5.
Considering all 96 test combinations the number of these combinations have been reduced
from 20 to 9. Notice that for these combinations, the memory size is still significantly
reduced, nevertheless a moderate surge in traffic is expected that has to be dealt with or
tolerated.

4.7 Conclusions

The NUGPA algorithm presented in the previous chapter was expected to pose memory
requirements that preclude its hardware implementation. In order to tackle this problem
the algorithm’s dependency on frame-level buffers had to be eliminated. In this chapter the
proposed changes to the NUGPA execution flow that facilitate hardware implementation
have been presented and quantitatively evaluated.

The chapter started with a brief description of the reference and the proposed execution
flows. Following, in order to quantify the memory occupancy and memory traffic of both
flows, and their change associated with switching to the MBL flow, a theoretical study
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Fig. 4.11 The factor of reduction in memory occupancy versus the factor of increase in memory
traffic for initial and optimized macroblock-level implementations (for scale=4). MB4, MB8
and MB16 stand for MBwidth = 4,8 and 16, respectively.

based on the available software implementation was carried out. The results of the study,
which considered a set of 96 combinations of SR parameters values, have shown that MB-
level implementation is expected to lead to a reduction in memory occupancy at the cost
of significantly increased memory traffic. For the tested configurations the macroblock-
level implementation used no more than 14.7% of the memory occupancy computed for an
equivalent frame-level system (for a QCIF input).

Following the initial study, system’s bottleneck identification and algorithmic-level op-
timization of the system has been carried out. The presented optimization was the modified
addressing scheme which has led to significant reduction in size of memories used in the
pre-fusion part of data flow. The significance of this optimization has been quantitatively
estimated using the set-up established for the initial study. The expected minimal and maxi-
mal value of the factor of reduction in memory occupancy associated with the change to the
MBL flow is of 3.5 and 16. The expected minimal and maximal factor of increase in mem-
ory traffic is of 1.1 and 16.9, respectively. Considering all evaluated combinations, the factor
of reduction in memory occupancy is expected to be greater than the factor of increase in
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memory traffic for 87 out of the 96 configurations. Notice that for the remaining 9 configu-
rations the memory occupancy is still significantly reduced. Nevertheless, a moderate surge
in traffic is expected that has to be dealt with or tolerated. The results reported for memory
traffic should be treated as the worst case scenarios, as the evaluated MB-level system did
not implement nor considered any architecture-level optimization. When introduced, these
optimizations (e.g. buffering schemes) are expected to significantly lower the number of
memory accesses and boost the expected implementation efficiency of the proposed MBL
flow.
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Chapter 5

Implementation methodology

5.1 Introduction

The goal of any hardware implementation is to create a system description that, when im-
plemented on the targeted device, results in a hardware system having the same observable
behavior as the provided reference, while meeting the performance requirements. In the
typical design flow the reference algorithm is first analyzed and architecturally constrained,
before being used to create a register-level and pin-accurate description in a hardware de-
sign language. This description can then be used to create a gate level description used to
configure the targeted hardware. In most hardware implementations the whole system func-
tionality is first prototyped in software. This intermediate step is used to test the algorithm
functionality and provide a high-level of abstraction reference to be used in validation and
testing.

Historically, the only option to obtain the required register-level/pin-accurate description
was to manually code the system directly from the provided algorithmic (or functional)
description. Recently, an emerging trend in the design and verification of electronic systems
is to provide not one, but a set of system models. The idea behind this flow is to enhance
the probability of a successful implementation of functionality in a cost-effective manner by
providing a hierarchy of tightly-coupled models that become progressively more accurate.

In our implementation, we have opted to follow the second flow, referenced in literature
as the electronic system level (ESL) methodology. In this chapter, we will present the es-
tablished methodology for implementation and verification of our design in FPGA devices.
The provided description will contain details on the design flow, used models of abstrac-
tion and refinement steps required to obtain a model that can be used to create the final
pin-accurate register-level model. To facilitate re-using of the established methodology and
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allow its application in other implementations: (i) the description will be structured and pre-
sented in a way that follows the design flow, and (ii) most of the technology-specific details
will be generalized, were possible.

5.2 Modeling of hardware-targeted systems

The design flow for system implementation presented in the previous section requires a
series of abstractions forming a hierarchy to be created before the targeted hardware can be
configured and ready for testing. Typically, the following representations are being created:

1. System description at the algorithmic/functional level (hereafter the representation 1).

2. System description at the structural level (logical (behavioral or structural) description
level) (hereafter the representation 2).

3. System description at the physical circuit components level (hereafter the representa-
tion 3).

In electronics, the process of creation of a lower-level of abstraction from a higher-level
one is referred to as synthesis. When the synthesis is automated, the tool/computer program
that carries out the synthesis is called a synthesis tool. In reference to the above presented
representations, there are two types of synthesis processes:

High-level synthesis, the process by which a functional description of a desired behavior
is turned into a description in terms of logic functions and processes equivalent to an
description in a hardware description language. Encapsulates the transformation of
representation 1 into representation 2.

Logical synthesis, the process by which an abstract form of desired circuit behavior (de-
scribed in terms of logic functions and processes) is turned into a design implementa-
tion in terms of logic gates. Common examples of this process include synthesis of the
hardware description languages, including VHDL and Verilog, resulting in generation
of a hardware configuration file. Encapsulates the transformation of representation 2
into representation 3.

5.2.1 High-level synthesis

The goal of HLS is to increase the efficiency of the process of hardware design and veri-
fication, by means of: (i) provision of rapid ways of design space exploration facilitating
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the process of design architecture optimization, and (ii) support for multiple levels of ab-
straction allowing the design to be modeled with various levels of details with the required
inter-model transformation of the representations being facilitated by automated HLS tools.

Assuming that the algorithmic level description is provided in software design language,
then, the HL synthesis becomes the process of obtaining a hardware level description from
software level one. The difference between the so called software and hardware design lan-
guages is that the former (for example ANSI C) have no notion of time (nor event sequenc-
ing), limited concurrency (hardware is inherently concurrent) and no hardware specific data
types (e.g. ‘Z’ state for tri-state buffers, etc.). Thus, a need for conversion that bridges the
two worlds arises.

There are two ways for carrying out the HL synthesis, namely, the HL synthesis can be
carried out manually or by using a HL synthesis tool.

5.2.1.1 Manual conversion

In this methodology, hardware description is carried out manually by a designer. The hard-
ware description is created from scratch. The available base code is used only as a source
of information on the design functionality and to produce the reference output used in the
process of verification. This approach leads to a highly optimized, low level implementa-
tion that requires a significant amount of time for system creation and validation. As shown
in Fig. 5.1 use of manual conversion decouples the (software) system model and the HDL
model. Due to non-propagative relationship between the software and hardware implemen-
tation, implementation of changes introduced to the base software, as well as evaluation of
their impact on the system performance, is complicated and requires significant amount of
effort and time. To recap up, the main drawbacks of manual conversion are as follows:

(i) There is no ‘global’ (or ‘root’) system model and the created descriptions are decou-
pled requiring multiple system tests.

(ii) System evaluation is performed at the end of the flow.

(iii) Design space exploration is carried out using the end of the flow description (time
consuming) modeling/simulation.

(iv) Limited re-usability in new designs.

(v) Manual propagation of changes due to lack of conversion automation.
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Fig. 5.1 Manual HL synthesis.

5.2.1.2 Computer aided conversion

In this approach the base software code is somewhat used to create the HDL description.
In order to bridge the gap between the algorithmic and HDL descriptions the automated
HL synthesis operates on an intermediate representation. This representation imposes lim-
itations on the set of allowed software language constructs and introduces additional con-
structs to represent (some of) the missing HDL constructs. The execution flow and most
of the software code remain unchanged during the transformation to the intermediate rep-
resentation. The coherency between the representations, as presented in Fig. 5.2, facilitates
propagation of changes introduced to the base code onto the hardware implementation and
allows rapid system modeling using the intermediate representation which can be simulated
at much high speeds then HDL. The HDL is generated automatically from the intermediate
representation by the HL synthesis tool.

Although, this approach solves many of the issues associated with manual conversion it
faces some issues of its own:

• The creation of the intermediate representation requires additional effort. The learning
curve is somewhat steep.

• The HDL created by the synthesis tool is human illegible, this significantly limiting
the possibility of manual introduction of post-synthesis changes or tweaks.

• Even the smallest change made to the intermediate description requires a synthesis
re-spin.

• The relation between the input and the output of the synthesis is somewhat non-
deterministic. That is, small changes in the input may result in significant changes
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Fig. 5.2 Computer aided HL synthesis.

in the created HDL. The observed changes are not always intuitive.

• The quality of produced HDL is somewhat inferior to the one manually written.

5.2.2 Electronic System-Level design

Contemporary electronic systems have shifted towards Systems-on-Chip (SoCs) and in par-
ticular Multi-processor SoCs (MPSoCs). These systems are not only more complex but also
call for solutions of additional issues, especially in the context of very competitive industry
of consumer electronics. Among most important challenges faced by electronic systems
design methodologies, the European Space Agency (ESA) [Age08] lists the following ones:
(i) reduced time-to-market, (ii) increased verification complexity that scales with the system
components and the need to use vendor-specific tools, (iii) huge design space, (iv) highly
complex software development, and (v) need for methodologies enabling concurrent design
of hardware/software.

All of the above issues can be solved (at least to some extent) by the use of tiered hi-
erarchy of high-level abstractions during system specification and during initial phases of
electronic system design. Abstraction levels are used to quantify the degree of details simu-
lated in the model and expressed in terms of the accuracy of the representation. In literature,
the set of complementary methodologies that enable the design, verification, and debug-
ging through the hardware and software implementation is referenced to as the ESL design

and verification methodology. The multi-tiered structure allows to have several system de-
scriptions each focusing only on the relevant implementation’s details and allowing better
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work partitioning, and significantly faster design and simulation times. Due to its multi-
tier nature, ESL methodology leverages the computer aided conversions for the tier-to-tier
transitions.

5.2.2.1 Representation accuracy

As aforementioned, ESL uses multiple levels (or tiers) of abstraction. The modeled levels
of abstraction are characterized by their accuracy understood as the level of details that are
included in (or, in other words, abstracted from) the model. The model’s accuracy on its
own is defined in reference to certain aspects of the model. In practice two main aspects of
a model can be distinguished: timing (or temporal) accuracy and structural accuracy. Many
models introduce additional components of accuracy by considering different levels of ab-
stractions for functionality, and by separating transmissions (interfaces) from functionality
(in this context, computations) in the context of temporal accuracy. A particular level of
abstraction is defined by providing accuracy in some or all domains.

In the context of temporal accuracy the following models can be distinguished:

A. Untimed (UT) models. Refer to model communication interfaces and functionality.
Does not use time to regulate the execution. Assume execution and data trans-
port to be immediate and requiring no time.

B. Timed Functional (TF) models. Refer to model interfaces and functionality. Use
’time’ to regulate the execution. Implement the notion of time by dealing with
system changes at specified boundaries (i.e. cycle, system event and deltas).
Latency is modeled with execution and data transport requiring (non-zero) time.

C. Cycle Accurate (CA) models. Require that during a cycle all entities that request to
act are given an opportunity to execute for one cycle.

C.1 Bus Cycle Accurate (BCA) models. Refer to models of interfaces not func-
tionality. Timing is cycle accurate and tied to some global clock. Require
complete timing down to the notion of bus transfer, so that the description
could be defined down to the exact order that they appear in the real system.
Even though, data transport is carried out at a coarse level using transac-
tions, complete information, in terms of when the bus transfers occur, is
required. BCA does not infer pin-level accuracy.
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C.2 Pin Cycle Accurate (PCA) models. Refer to model interfaces not functional-
ity. Timing is cycle accurate, with communication modeled at the level of
single pins.

C.3 Register Transfer (RT) accurate models. Refers to functionality. Infers low-
level accuracy with timing of all components. Complete detailed descrip-
tion with every bus and every bit fully modeled.

D. Phase accurate models. Require that during a cycle all entities that request to act
are given an opportunity to execute many times during one cycle. The resulting
changes to the system are being considered with sub-cycle accuracy by means
of additional time quanta called delta phases.

In the context of structural accuracy the following levels of details can be distinguished.

A. Pseudo resources. Provide description of the system in terms of structural units which
do not consider the design as composed of entities which have their direct coun-
terparts in hardware.

B. Functional units. Provide description of the system as composed of coarse elements,
defined at the architectural level, grouped by their function in the system (i.e.
processing unit, memory, register, etc.). At this level units interfaces are estab-
lished. Behavior of the defined elements is defined in terms of the input-output
relationships.

C. Pipelines. Behavior of the defined elements is defined for each stage of their execu-
tion pipeline.

D. Pins. The state of the system is defined in terms of pins and bits states, also in context
of the sub-cycle events (i.e. interrupts).

Both, the temporal and structural aspects of representation accuracy are interdependent, that
is, in order for the abstraction accuracy to be meaningful the model has to simulate time with
a required fidelity and use structures that operate at the given time resolution level, and vice

versa. This interdependence is illustrated in Fig. 5.3, where pseudo-instructions represent
the notion of untimed execution.
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Fig. 5.3 Abstraction levels accuracy in system modeling. Based on [Fos11].

5.2.2.2 Models of abstraction

The bare-metal details of a hardware design can be abstracted using a variety of models. The
used levels of abstraction can fall somewhere in between the two opposing extremes: the
gate level and algorithmic level models. Considering the aforementioned accuracy models
and dependencies the most commonly used levels of abstraction are the ones presented in
Fig. 5.4:

A. Register Transfer Level (RTL) model. RTL is a timed model that specifies the de-
sign at the level of bit-accurate logical entities. The details of physical imple-
mentations are abstracted by using logic functions and registers. The notion of
time is abstracted by dealing with system changes on clock cycle boundaries.
RTL communications are carried out by wiggling pins over a period of time.
Transfers are pin-cycle-accurate and execution is fully timed.

B. Bus Functional Model (BFM). Non-synthesizable timed model that abstracts the de-
tails of computations and puts the emphasis on verification of correctness of
communication interfaces and system bus transfers. Mainly used for verifica-
tion of testbench communication. The transfers are usually pin-cycle-accurate
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and carried out with using pin-level interfaces. Variations of the BFM that carry
out interface verification at (a higher level) of transactions are known as Trans-

action Verification Models (TVM).

C. Behavioral Synthesizable (BSynth). BSynth is a timed model that specifies the de-
sign at the functional/behavioral level using only synthesizable constructs. This
model can be used to obtain RTL/gate level description using an appropriate HL
synthesis tool. Transfers are pin-cycle-accurate and fully timed. Computations
execution is carried out with some notion of time. Various temporal accuracy
specifications can be used.

D. Transaction Level Model (TLM). TLM is typically used in reference to modeling
of hardware only. TLM abstracts communication (pins and events of the com-
munication) by introduction of transactions to model data transfers and system
behavior. A single transaction abstracts a collection of individual events oc-
curring over some period of time. Transaction level communication is carried
out by function calls. Communications, as well as functionality can be timed
functional but not cycle accurate.

E. System Level Model (SLM). SLM encapsulates models with level of abstraction higher
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than RTL.

F. Functional Level Model (FLM). FLM encapsulates models with level of abstrac-
tion higher than TLM. These models represent an executable specification of
hardware and software components.

F.1 System Architectural Model (SAM). Used for design architecture exploration,
algorithm determination and functional verification. Defined interfaces and
functionality are modeled as untimed, with no pin-level details used for
modeling communications. Computations are modeled using sequential ex-
ecution.

F.2 System Performance Model (SPM). Used for design space exploration, time
budgeting and architecture benchmarking. Introduces some high-level no-
tion of time and concurrent behavior modeling.

5.2.2.3 Implementation considerations

Independently of the abstraction-tiers used, the final representation of the design is the de-
vice configuration file. In the past, this file would be created by means of using the manual
conversion approach and logic synthesis from RTL model. Nevertheless, manual creation of
the RTL model results in decoupling of the reference and implementation. A contemporary
alternative, one that allows designers to work at a higher level of abstraction and leverage
the advantages of high-level synthesis, is to follow the ESL design flow. The ESL flow starts
with an algorithmic description in a software design language (e.g. C++). The designer typ-
ically begins by developing the System Architectural Model and interconnects protocol in
a high-level of abstraction hardware design language (e.g. SystemC). Defined Functional
Level Models are refined until the results obtained from the System Performance Model
are satisfactory. Then high-level synthesis tools handle the micro-architecture and trans-
form untimed (or partially timed) functional code into fully timed RTL implementations,
automatically creating cycle-by-cycle detail for hardware implementation. Optionally, the
System Level Model (e.g. TLM) is developed and refined before the high level synthesis
is carried out. The resulting (RTL) implementations are then used directly in the logic syn-
thesis to create a configuration file. This means that independently of used hierarchy of
abstraction levels an HDL (RTL) description of the design will be generated at some point.

The direct manual conversion flow would most likely use one of two of the standardized
hardware design languages: VHDL [IEE02] or Verilog [IEE06]. These hardware design lan-
guages provide specialized means for creation of accurate HDL/RTL level descriptions in
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an efficient manner. Nevertheless, the scope of the levels of abstractions used by ESL is very
broad, reaching well beyond the scope of abstraction provided by these languages. Thus,
lately, there has been a growing interest in complementary languages that could be employed
for descriptions at a much higher level of abstraction. The motivation behind such efforts
is the simultaneous increase in design complexity, with multi-million gate designs, and the
increase in pressure to get designs out faster with first-time design success. Among those
high-level languages, SystemC [Ins06], SystemVerilog [IEE09], and SpecC [GJZGSZ00]
represent the most widespread. These languages fuse a well-known syntax with powerful
constructs, enabling the modeling and simulation of complex systems; in particular Sys-
temC has grown more and more popular. Most HLA languages are implemented as a set of
classes and macros which extend the base language by providing an event-driven simulation
kernel, together with signals, events, and synchronization primitives, deliberately mimick-
ing the hardware description languages like VHDL and Verilog. In fact, these languages not
only reduce the gap between software and hardware descriptions but also allow much faster
and robust verification flow.

As presented in Fig. 5.5 the scope of supported levels of abstraction differs significantly
among different hardware design languages. Up to the date, no programming language
is capable of handling all of the defined levels of abstraction. Thus, the implementation
work-flow should consider the tiers of abstraction that are planned to be used, and use the
appropriate language(s) to drive the design down to the bare-metal configuration file.

5.2.3 The SystemC language

SystemC, also known as the IEEE standard 1666 [Ins06], is a set of C++ classes and
macros that deliberately mimic the functionality found in hardware description languages
(i.e. VHDL and Verilog). While the latter are often used for Register Transfer Level de-
scriptions, SystemC is generally applied to system-level modeling, architectural exploration,
software development, functional verification, and high-level synthesis. While HDL lan-
guages are often used for Register Transfer Level descriptions, SystemC is generally ap-
plied to system-level modeling, architectural exploration, software development, functional
verification, and high-level synthesis [Age08]. The architecture of the SystemC language is
shown in Fig. 5.6. The main components of the standard are events, signals, hardware-level
data, the simulation kernel (written in C++) and synchronization primitives. When com-
bined, these components allow the execution of an event-driven simulation of concurrent
systems at a higher-than-RTL level of abstraction [Age08]. This allows the introduction of
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System-Level Models which focus on the actual functionality of the system more than on
its implementation details.

From all available levels of modeling, SystemC emphasizes the use of two levels and
two description modes. These two levels of modeling are the high abstraction Transaction

Level Modeling ([Ghe06], [CG03]), and the Register Transfer Level. The description mode
is either a behavioral untimed mode, or a low level cycle-accurate timed mode ([Gro02],
[CMMC08]). (All of these modes/levels have been already described in Section 5.2.2.2.)
SystemC permits all combinations of modes and levels, but only timed descriptions, using a
specific subset of the language, lead to reasonable quality of the hardware-level description
obtained using high-level synthesis. In literature these descriptions are referred to as being
synthesizable.

In the context of the SystemC language, the Transaction Level Modeling can be defined
as the modeling style where, at least one of the two system components, the communication
and computation, introduces an approximate concept of time. In 2008, the OSCI committee
has proposed a TLM library composed of a set of SystemC primitives that allow designers
to implement several transaction level communication protocols with different degrees of
accuracy (i.e. Programmers View, Programmers View with timing, etc. [CG03]). This
nomenclature was superseded in 2009 with the release of TLM 2.0 [Gro09] which specifies
the following two terms to describe the accuracy of the timed mode [BM10]:
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Fig. 5.6 SystemC language architecture. Based on [Swa01, Figure 1].

A. Loosely timed (LT). Implements temporal decoupling of system models with block-
ing interface. The process that is given the control executes all tasks till it blocks.
Then the control is passed back to the scheduler and passed onto another module
that requests it. This allows some models to run ahead in their own time, up to
the quantum boundary. There is no common time reference. Time is tracked
locally (in quantums) or not at all. This mode requires explicit synchronization
in order to work.

B. Approximately timed (AT). Every model is synchronized to a common simulation
time. The time elapsed when the module runs corresponds to the time of the
system. Processes are kept in lock-step in simulation time using wait() and/or
notify() statements allowing the use of non-blocking interfaces. Each process
is synchronized with a SystemC scheduler. The level of the modeled delays is
customizable (ranges from approximate to detailed).

The core concept of TLM is to model only the level of detail that is needed. The elim-
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Fig. 5.7 Expected simulation speed for different levels of abstraction.

ination of the un-necessary details leads to huge gains in simulation speed [Fos10, Gro02].
Moreover, since the detailed implementation has not been finalized yet, it is still possible
to perform consistent changes to the design, enabling an effective evaluation of different
architecture alternatives (including the partitioning of the functionality between hardware
and software). An coarse-grained approximation of the simulation performance offered at
different levels of abstraction is presented in Fig 5.7. From this figure it can be seen that
by using a higher level of abstraction and reduction of timing accuracy a significant speed
up can be obtained. The relative speed up obtained from carrying out of the initial simu-
lation at the above-presented level of accuracy of timing vs the RTL simulation time is of
orders of magnitude. This difference has an immense impact on the time and quality of the
verification stage, allowing faster and more thorough validation.

5.3 Design and implementation methodology

To accelerate hardware implementation of the super-resolution kernel we have opted for the
design verification methodology presented in Fig. 5.8. The established methodology has
been based on the methodologies co-developed by the author and successfully used in the
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Fig. 5.8 Implementation and verification methodology.

IUMA projects described in [SHFC+08, TSC+09, TCH+09, CEN+13b, CEN+13a]. The
methodology follows the typical ESL flow. First, the provided reference code is used to
create a functional high-level of abstraction model. Then, this model is iteratively refined,
and, using high-level synthesis methodology, transformed into RTL microarchitecture. The
latter is used to create the required hardware configuration file by means of logical synthesis.

In the case of NUGPA hardware implementation, the provided base code had been
written in ANSI C. This code has been instrumented and used as the base for functional
level analysis. The results of the analysis stage allowed to determine the workload of each
functional structure and guided the specification of hardware modules prototypes and hard-
ware/software partitioning. Following, the C functions have been grouped by functionality
and encapsulated as SystemC modules. In this work encapsulation is defined as the pro-
cess of defining a hardware entity prototype. In the case of the super-resolution core, it
has been decided that only the super-resolution kernel will be implemented in hardware,
leaving block-matching, a well-defined and known problem, for a standalone implementa-
tion [HN10]. During functional partitioning it has been decided that the processing of the
chroma components will not be implemented using FPGA resources, but rather it will be
carried out in parallel using one of the SoC’s microprocessors. As pointed out in [IP91]
chroma component values are not worth being super-resolved and hence they are being
simply interpolated.
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The functionality encapsulated by the super-resolution kernel (luma) was to be itera-
tively refined in order to allow its high-level synthesis. On the contrary, the functional part
of block matching and chroma processing were not refined. After initial encapsulation, only
the part of the code carrying out the communication was being changed in order to reflect
the modifications introduced in the super-resolution kernel. Most of the design decisions
and profiling have been made during the decomposition and refinement stages, including
the analysis of the impact on resources occupancy and critical path latency. The refinement
re-iterations have been guided with the performance measurements (latency, cycle time and
resource utilization) obtained for the high-level synthesis results. This assured the highest
quality of results of the final system.

In order to obtain the HDL representation of the system, the TLM description had to
be refined into a synthesizable one. A SystemC description is considered synthesizable if it
utilizes a synthesizable subset of the SystemC language. The set of constructs considered
synthesizable is vendor-specific. In our case, the preparation of synthesizable model for the
high-level synthesis involved substitution of language constructs not supported by the cho-
sen SystemC compiler by the ones being supported. Among the required modifications the
most significant ones were: dynamic memory allocation elimination, array/memory dimen-
sionality reduction, pointer arithmetic elimination, combinational loops breaking, inlining
of functions, allocation of arrays in RAMs and floating point data elimination. Once the
code was synthesizable, a RTL description of the core was synthesized and used in logical
synthesis. More details on encapsulation, refinement and strategies used for our imple-
mentation are provided in the following sections. Verification methodology is presented in
Section 5.4.

In the established implementation methodology C code development and verification
(we had to implement the MB-level flow) has been carried out using Microsoft Visual Stu-
dio. This environment was also used to carry out SystemC encapsulation and simulations
using the Open System C Initiative (OSCI) simulator (now hosted on Accellera website)
[Acc08]. The SystemC code has been synthesized using the Celoxica Agility Complier
[Cel06]. The result was revised using the tool and the created RTL was further optimized
using Synplify 2009.06 Premier. The optimized HDL/EDIF was then used to obtain the
vendor-specific configuration file using the Xilinx Synthesis Technology (XST) tool from
the Xilinx ISE 14.6. The mixed-language and RTL simulations were carried out using
ModelSim 6.4. It is important to note that ModelSim uses its own version of the SystemC
simulator (not the reference OSCI one). The used tools and their role in the established
implementation methodology are presented in Table 5.1.
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Later in the development, a second set of tools has been used. The first set, the one
centered around the use of the Celoxica Agility Compiler had to be abandoned due to this
tool being discontinued in 2012 (with license expiring in 2013). The set of tools to which
the work have been migrated is presented in Table 5.2. In this environment the HL-synthesis
has been handled by the Cadence C-to-Silicon tool. For compatibility reasons the Cadence
Incisive Simulator was used for SystemC/mixed-language simulations. The rest of the tools
deployed in the flow remained unchanged. From our experience, the Cadence-based deploy-
ment proved to be much more reliable and more efficient in terms of execution/simulation
speed, quality of results and ease of use.

5.3.1 Established ESL design flow

One of the objectives of the algorithm analysis and refinement was the determination of
code functional groups. These groups formed the base for initial system decomposition into
prototypes of hardware entities. These entities encapsulated the functionality of the code,
allowing it to be used in ESL simulations. The SystemC description of the system was used
in modeling and underwent the refinement carried out following the methodology proposed
in [TSC+09].

1. As a first step, a transaction level model of the super-resolution kernel was created,
using the TLM-2.0 standard. This was a high level functional model in which inter-
block communication involves the exchange of transaction objects using TLM-2.0
interfaces. The TLM-2.0 model was verified using the same test cases applied to the
C model and was used as the reference model for the subsequent micro-architecture
exploration and RTL implementation. Each of the kernel functional blocks was re-
fined, implemented and verified independently.

2. In the modeling phase, the code was made synthesizable, that is, it was modified for an
initial high level synthesis in the SystemC editor. Among the changes made was the
replacement of the TLM-2.0 socket interfaces with SystemC signal channels, creating
a pin-level interface, and the addition of timing information using wait() statements.
The refinement methodology employed involves a modeling phase, high level synthe-
sis, optimization and logic synthesis.

3. High level synthesis was performed next using HLA-synthesis tool (Agility Compiler
or C-to-Silicon), in order to obtain an area and delay estimation summary.
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TABLE 5.1 Tools and their role in the Agility Complier centered deployment.

Tool Purpose Description

Microsoft
Visual Studio

Analysis
C code execution.

Functional verification
ESL simulation SystemC code execution us-

ing SystemC 2.2 and TLM 1.0
[Acc08]

Celoxica Agility
Compiler 1.2/1.3

HL-synthesis SystemC refinement and RTL
creation.

Mentor Graphics
ModelSim 6.4

ESL simulation Functional and performance
checks.

RTL simulation Mixed language simulation.
Synopsys Syn-
plify 2009.06
Premier

Logic synthesis RTL optimization and EDIF
creation.

Xilinx ISE 14.6 Placement and mapping Final results assessment.

TABLE 5.2 Tools and their role in the C-to-Silicon centered deployment.

Tool Purpose Description
Microsoft
Visual Studio

Analysis
C code execution.

Functional verification
Cadence C-to-Silicon 12 HL-synthesis SystemC refinement and

RTL creation.
Cadence
Incisive
Simulator

ESL simulation Functional and perfor-
mance verification.

RTL simulation Mixed language simula-
tion.

Synopsys Synplify 2009.06
Premier

Logic synthesis RTL optimization and
EDIF creation.

Xilinx ISE 14.6 Placement and mapping Final results assessment.
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4. In order to determine if the results were satisfactory at this stage, initial reference val-
ues were set for the target operation frequency and for the FPGA area consumption,
depending on functional block complexity and other factors. If the area and delay
results obtained did not meet the requirements, an iterative process involving the op-
timization of the SystemC code in the editor and the execution of the HLA-synthesis
tool to obtain area and delay results was performed.

5. Once the synthesis results obtained with the HLA-synthesis tool were satisfactory,
logic synthesis was performed next, leading to a further improvement in area and
delay results. The performance constraints were check again after obtaining final
area and delay results based on the FPGA programming information. Unsatisfactory
results led to further modeling/refinement iterations.

5.3.2 Structural decomposition and encapsulation

In order to take advantage of the parallel nature of hardware implementation, the software
sequential execution flow had to be remodeled. This process involved two main tasks:
(i) system decomposition into modules (code encapsulation), and (ii) definition of inter–
module communication schemes. Partitioning a design into modules has the advantage
of allowing (but not guaranteeing) parallel execution. Module partitioning and refinement
formed a crucial part of the performance optimization process. In the context of hardware
implementation, the inter-module communication should be planned with the view of facil-
itating non-blocking execution of communicating modules. (Inter-module communication
is the topic of Section 6.3.2.2).

The process of code encapsulation into modules should be carried out in a fashion that
assures the lowest number of synchronization points and non-blocking processing of the
newly created modules. For the purpose of code encapsulation, we defined two types of
inter-module relationships: the unidirectional and the bidirectional relationship. The clas-
sification was based on the data passing flow: if modules interchanged data mutually, that
is both modules acted as initiators and targets, their relationships were denominated as bidi-
rectional. Otherwise, the relationship was classified as unidirectional, meaning that, con-
sidering a pair of modules, only one module acted as the initiator and the other was acting
only as the target. Generic examples of uni- and bidirectional relationships are presented in
Fig. 5.9.

Execution flow of modules with bidirectional relationship is characterized by the fact
that one of the modules outsources some amount of workload to the other and waits for
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its response. If the remaining workload of the sending module cannot be carried out con-
currently during the time necessary for response reception, the module is blocked until the
response is received. This is likely to result in lowering the amount of exploitable paral-
lelism. For this kind of relationship, work redistribution and module inter-communication
implementation is troublesome. Usually, a better solution is to convert the module relation-
ship to a unidirectional one. This is done by decomposition of the waiting module into two
modules, of which one carries out the computation and sends the data, and the other receives
the data and post-processes them.

Considering the above-presented classification, it was established that the system after
the decomposition should comprise only modules that feature unidirectional relationships.
In order to enforce unidirectional relationships, a module should be created only from parts
of code that have been isolated from the rest of the code. The isolation is a process of
assuring that the code can be executed on its own, once provided, in a single synchronization
event, with the required input. First, module synchronization points in the code had to be
determined, along with data dependencies. Then, global variables referenced by the code
had to be replicated as local ones, added to the list of input arguments, and, if changed
by the code to be encapsulated, also to the list of the output arguments. Finally, the code
referenced by function calls had to be made local or inlined. Once the code has been isolated
it constituted an independent part of functionality and could be encapsulated as a SystemC
module.

The goal of the encapsulation was to obtain a SystemC module that internally executes
the code being encapsulated. In SystemC a module is an isolated piece of code that com-
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municates with the rest of the code by means of SystemC communication constructs. The
module is required to define at least one thread process that can be mapped to execute the
encapsulated functionality, communications or both. Otherwise the module will be consid-
ered to be purely combinational. The thread process execution has to be implemented as an
infinite loop. Once instantiated, the module reads input data from the input interfaces and
stores then in the input data structure of the functional block. The original C code included
in the SystemC module is invoked to process the data stored in the input structure. The C
code output is stored in the output data structure. This data are written to the output interface
and received by a subsequent recipient.

In this work, the SystemC modules were defined by using a template that comprises
two files whose structure is shown in Listings 5.1 and 5.2. The encapsulation process was
carried out as follows.

1. The ‘to-be-encapsulated’ code was copied and used to define an internal method of
the module.

2. The missing sections of the template file were filled out based on the isolated code
(and its dependencies). In particular:

a. communication interfaces and code to pass (and parse) the input/output argu-
ments were defined,

b. a wrapper function that invoked the input/output management code and the iso-
lated functionality was created,

c. the module’s constructor was defined in such manner that it initialized module’s
variables and created (and mapped) a separate thread for the execution of the
wrapper function(s),

d. required files for implementation of the above were added in the file include
section.

Requirements of isolation made functions a natural candidate for modules, as their en-
try points and input/output arguments in the code are easily determined. Thus, first system
partitioning into modules was carried out in a top-down fashion, based on software parti-
tioning into functions, roughly representing the steps of software execution flow presented
in Fig. 4.2. Nevertheless, this partitioning turned out to be too coarse grained for most of
the defined functional groups. In particular, the computationally intensive (i.e. ShiftAdd and
holesFilling) functions required further refinement.
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Listing 5.1 SystemC encapsulation template header file for module MODULE_NAME.

1 / / / T h i s f i l e name : MODULE_NAME. h
2 / * −−−−−−−−−−F i l e I n c l u d e S e c t i o n−−−−−−−−−−−−− * /
3 # i n c l u d e " s y s t e m c . h" / / /< SystemC l i b r a r y .
4 # i n c l u d e " t lm . h" / / /< TLM l i b r a r y .
5 ( . . . ) / / /< i . e . TLM namespace c o n s t r u c t s .
6

7 SC_MODULE( MODULE_NAME ) { / / /< Module d e f i n i t i o n .
8

9 / * −−−−−−−−−−I n t e r f a c e s S e c t i o n−−−−−−−−−−−−−− * /
10 / / Shou ld c o r r e s p o n d t o t h e i n p u t / o u t p u t argument s
11 # i f d e f _TLM_ / / /< TLM .
12 / / F i l l w i t h TLM i n t e r f a c e d e c l a r a t i o n .
13 # e n d i f
14

15 # i f d e f _PIN_LEVEL_ / / /< Pin− l e v e l .
16 / / F i l l w i t h pin− l e v e l i n t e r f a c e d e c l a r a t i o n .
17 # e n d i f
18

19 # i f d e f _TIMED_SIMULATION_
20 sc_ in <bool > c l k ; / / /< R e q u i r e d c l o c k s i g n a l
21 # e n d i f
22

23 / * −−−−−−−−−−I n t e r n a l V a r i a b l e s S e c t i o n−−−−− * /
24 ( . . . ) / / /< F i l l w i t h v a r i a b l e s d e c l a r a t i o n .
25

26 / * −−−−−−−−−−F u n c t i o n s S e c t i o n−−−−−−−−−−−−−− * /
27 ( . . . ) / / /< F i l l w i t h f u n c t i o n s d e c l a r a t i o n .
28 void e n c a p s u l a t e d C o d e ( ) ; / / /< E n c a p s u l a t e code d e c l a r a t i o n .
29 void e n c a p s u l a t e d C o d e _ w r a p p e r ( ) ; / / /< Wrapper d e c l a r a t i o n .
30

31 / * −−−−−−−−−−C o n s t r u c t o r S e c t i o n−−−−−−−−−−−− * /
32 SC_CTOR(MODULE_NAME) : { / / /< Module c o n s t r u c t o r .
33 / / /< F i l l w i t h v a r i a b l e s i n i t i a l i z a t i o n
34 ( . . . )
35

36 SC_THREAD(MODULE_NAME_main) ; / / /< F u n c t i o n / t h r e a d mapping .
37 # i f d e f _TIMED_SIMULATION_
38 s e n s i t i v e << c l k . pos ( ) ; / / /< Clock s e n s i t i v i t y mapping .
39 # e n d i f
40 }
41 } ;
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Listing 5.2 SystemC encapsulation template source file for module MODULE_NAME.

1 / / / T h i s f i l e name : MODULE_NAME. cc
2 / * −−−−−−−−−−F i l e I n c l u d e S e c t i o n−−−−−−−−−−−−− * /
3 # i n c l u d e "MODULE_NAME. h" / / /< Module header f i l e .
4 ( . . . )
5

6 void MODULE_NAME: : e n c a p s u l a t e d C o d e ( i n p u t , o u t p u t ) / /
7 {
8 / * −−−−−−Computa t ions −−−− * /
9 ( . . . )

10 }
11

12 void MODULE_NAME: : e n c a p s u l a t e d C o d e _ w r a p p e r ( )
13 {
14 / / /
15 / * −−−−V a r i a b l e s D e f i n i t i o n −−−−−−−− * /
16 ( . . . ) / / / e . g . a l l o c a t i o n o f a r r a y s f o r o u t p u t .
17

18 / * −−− I n i t i a l i z a t i o n −−−* /
19 ( . . . )
20 / / / ^ The above e x e c u t e s o n l y once .
21

22 / * −−−−−−Main Loop−−−−−− * /
23 whi le ( t r u e ) { / / /< e x e c u t e s i n d e f i n i t e l y .
24

25 / * −−−−−−−−R e c e i v e Data −−−− * /
26 / / / Get t h e i n p u t argument s
27

28 ( . . . )
29 / * −−−E x e c u t e t h e E n c a p s u l a t e d Code−−− * /
30 e n c a p s u l a t e d C o d e ( a rgumen t s ) ;
31 ( . . . )
32

33 / * −−−−−−−−Send Data −−−−−− * /
34 / / / Re tu rn t h e o u t p u t argument s .
35

36 } / / End o f main loop
37 / * −−−−−Memory Clean Up −−−− * /
38

39 } / / End o f t h e wrapper method
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When deciding on further partitioning of a module, one should consider the tradeoff
between small and larger module implementations. The smaller the module, the smaller
the workload it encapsulates, and hence, the time needed for processing. This significantly
reduces the time necessary for module synthesis, optimization re-spins, simulation, and val-
idation. Nevertheless, even though the overall execution time is lowered, the part of the
execution time spent on inter-module communication is higher. Moreover, systems em-
ploying communication through shared memories, if composed of smaller modules, tend to
require more memory, both, in overall size and number of instances. This is mainly caused
by the increased number of shared memories used for data passing, whose size cannot be
made smaller than a technology specific fundamental BRAM construct. Also, one should
not forget that carrying out the isolation process for each module can add up to a significant
amount of men-hours.

Final factor to be taken into account at the time of system partitioning was system’s cus-
tomization. In this work customization is defined as the capability of the system to support
a range of super-resolution parameters, allowing their customization at (HL) synthesis time.
In our approach this support was implemented by defining a base system organization and
a strategy of its adaptation to suit different parameters values at synthesis time. System’s
performance scalability was planned to be achieved by means of modules replication and
require only minor changes in internal code of system’s modules. To make this possible,
system partitioning and code encapsulation had to be made aware of, and take into account,
code dependency on super-resolution parameters. By identifying and taking into account
data dependencies at the time of encapsulation, the code exhibiting the same data depen-
dencies could be grouped and arranged in a way that effectively has led to reduction of the
number of modules in which data dependencies were present.

Taking into consideration the above, the final methodology used for system decomposi-
tion into modules was as follows.

1. For a given function, identify main execution steps and groups of (sub-)functions that
carry them out.

2. Evaluate groups’ dependencies on the algorithm parameters. If it would relax the
dependencies, partition the groups based on the dependencies.

3. For each identified (sub-)functions group:

(a) Isolate the group’s code and encapsulate it as a SystemC module.
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(b) Check if its relation with the rest of the code is unidirectional. If so, pass on to
the step 3e.

(c) If the relation is not unidirectional, analyze the possibilities of non-blocking con-
current execution for the bidirectional relationship. If non-blocking concurrent
execution is viable, pass on to the step 3(e).

(d) Pass on to the step 1 to start recursive partitioning of the function.

(e) Analyze the created module performance and optimization possibilities. If the
performance meets the targeted one, consider this group code encapsulation as
concluded. If more groups are to be processed at this level of recursion, pass on
to the next group. Otherwise return to the entry point for this recursion.

The presented partitioning scheme was used for all non-iterative functions. Due to their
nature, implementation of iterative functions required a different approach. If execution time
of a module encapsulating an iterative function surpassed the targeted limits, estimation of
time necessary for processing a single iteration was carried out. Only if the resulting time
still surpassed the limit, the module was to be partitioned. Otherwise, the module was to
be replicated. The iteration time estimation was used to determine the maximal number
of iterations that one module could carry out within the time limit. Knowing the number
of iterations and the iteration per module ratio, the number of replications necessary for
targeted performance was determined and instantiated.

5.3.3 Untimed/loosely timed TLM model

TLM refers to an abstraction level in the description of a system that provides a model of
the communications among elements that describe the behavior of the system in a func-
tional, not pin-accurate, way. That is, in a TLM model the focus is on the data that are
passed between two modules, rather than on the detailed way the transfer is accomplished
or the detailed functionality inside the communicating elements. Since the detail of the
timing-accuracy and pin-accuracy level is omitted, these models are fast for system simula-
tion and prove themselves useful to validate the circuit functionality and explore high level
architectural options.

In order to create a TLM-2.0 model of the super-resolution kernel from the C model
described in the previous section, the basic features of the TLM-2.0 standard were used:
initiators, targets, transaction objects and sockets [Gro09]. Initiator modules initiate new
transactions, while target modules respond to transactions initiated by other modules. A
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transaction object is a data structure passed between initiators and targets. Sockets are
used to pass transactions objects between initiators and targets. Transaction objects are sent
through initiator sockets in initiator modules and received through target sockets in target
modules. Transaction objects are of generic payload type, which is a general purpose trans-
action type implemented in the TLM-2.0 standard, and feature a series of attributes. For
the purpose of creating the core model the following standard attributes were used: com-
mand, address, data pointer, data length and response status. The socket interface through
which the transaction objects are sent can be blocking or non-blocking. Our model uses the
blocking interface, which is associated with the loosely-timed coding style, which focuses
on functional execution with minimal or no timing detail. In this case, the model is untimed
(as no clock is used) since the goal is the creation of a model whose functionality can be
verified with minimal simulation overhead and which serves as the reference model for the
subsequent RTL implementation.

5.3.4 ESL refinement methodology

As discussed in the previous section, the functional blocks that comprise the TLM model
of the core were SystemC modules with socket interfaces. These socket interfaces are used
for data transfer between functional blocks. Within the SystemC modules, the original C
code is used to perform the block’s function. In order to create an optimized HDL model, a
refinement methodology that involves a modeling phase, high level synthesis, optimization

and logic synthesis is used. This methodology is applied to each of the functional blocks,
which were refined, implemented and verified independently. The following subsections
will discuss each of these steps.

5.3.4.1 Modeling

The ultimate objective of the modeling phase was the creation of a synthesizable SystemC
model of a functional block and a corresponding testbench. The system functional blocks
were verified independently. The tool used in this phase was the Microsoft Visual studio
2010 with version 2.2 of the OSCI SystemC library [Acc08]. Provision of a synthesizable
model can be narrowed down to making sure that the description uses only synthesizable
constructs and data types. Nevertheless, a series of additional steps are required in order to
obtain meaningful high level synthesis results. These steps are discussed in the following
paragraphs. Only after these steps have been implemented, the functional block was verified
using the same testbench used to verify the C model. The testbench was modified to use the
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same (refined) interface used by the functional block. Verification using this testbench was
repeated for each modification introduced to the model.

5.3.4.1.1 Addition of clock and reset signals. The first step on the road to synthesiz-
able description was the addition of input ports for the clock and reset signals. In order to
implement the reset signal, a construct of the high level synthesis tool was used. In Agility
Compiler the function ag_global_async_reset_is() allows the definition of a global asyn-
chronous reset for the whole design. This signal is to be invoked in the constructor of the
top level module of a functional block. C-to-Silicon allows to define synchronous reset
at (sub)module level using reset_signal_is() function. Reset signal constructs are vendor-
specific extensions of the SystemC syntax not included in the OSCI standard. Thus, reset
signal was not used for simulation with Microsoft Visual Studio which uses the OSCI simu-
lator. In the functional block modules, internal and output signals are initialized outside the
thread process loop, while variables are initialized in the module constructor. After adding
the clock signal, the thread processes within the modules were made sensitive to the rising
edge of this clock signal. This was assured by immediately following the thread to function
mapping declaration with the following line of code: sensitivie « clock_signal.pos();.

5.3.4.1.2 Refinement to synthesizable communication interfaces. The used HL syn-
thesis tools are not capable of synthesizing the used TLM communication interfaces. Thus,
the next step of the modeling phase was the replacement of the TLM socket interfaces with
synthesizable SystemC signal channels. In our implementation, the pin-level interface com-
prises a set of three channels: a request, validate and data signal. Using this interface, the
module that transfers data is a source module, and the module that receives data is a sink

module. The sink module asserts the request signal, and waits until the source module is
ready to transfer the data. When the source module is ready, it asserts the validate signal,
meaning that the data are valid. When the sink module detects that the validate signal has
been asserted, it de-asserts the request signal and reads the data signal. Likewise, when the
source module detects that the request signal has been de-asserted, it de-asserts the validate
signal. The validate signal can remain asserted for more than one clock cycle if multiple
data words need to be transferred. In this case the source module will not de-assert the
validate signal when the request signal is de-asserted, only when the transfer of all the data
words is complete.

Each TLM-2.0 socket interface of the functional block was replaced with this request,
validate and data signal interface. If the module acted as a source module (it had an output
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socket) the request signal would be an input signal, while the validate and data signals would
be output signals. If the module acted as a sink module (it had an input socket) the request
signal would be an output signal, while the validate and data signal would be input signals.

When a functional block acted as a sink to receive data, the data word or words received
would be stored in an input structure. Each input data port had an associated structure,
as data reception happens in parallel using point to point interfaces. The structures were
used in a way that permitted only one write per cycle. Likewise, when a functional block
acted as a source to send data, data words were read from output structures and sent through
the corresponding interfaces. (Memory related implementation challenges are the topic of
Section 6.3.2.)

5.3.4.1.3 Introduction of timing information. Although, synthesis is possible without
doing this, the entire core module would be implemented as a combinational circuit. For
such a case area requirements of the module usually exceeded the used device FPGA re-
sources. Thus, the next step performed in order to prepare the SystemC module of the
functional block for the initial high level synthesis, was the addition of timing information
to the computational part of the module. Adding timing information involves adding Sys-
temC wait() statements to the code. (Cadence C-to-Silicon offers an option for automated
wait() statements introduction.) The pin-level interface used to replace the TLM-2.0 socket
interfaces was already cycle-accurate as it required introduction of the necessary timing in-
formation so that the input and output interfaces could work as described earlier. Therefore,
in this section we will focus on the computational part of the modules.

Several factors must be taken into account when adding wait() statements to the code.
Every wait() statement added to the code means that the functional block will require an
additional clock cycle to carry out its processing, as the processes are sensitive to the rising
edge of the clock (the common case) and a wait() statement means the processes will wait for
the next clock cycle and therefore data will be registered. Therefore, the number of cycles
required to process a macroblock can be controlled directly, with the addition or removal
of wait() statements. Also, since the operation frequency is determined by the critical path
of the design, code lines with many arithmetic or logic operations done serially were split
by adding wait() statements and creating intermediate registers. Results of the synthesis
encouraged limiting the number of arithmetic and logic operations done in between two
wait() invocations (representing one cycle) in order to better utilize the hardware resources
of the targeted device.
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5.3.4.2 High level synthesis and optimization

Once the functional code of an module was modified during the modeling phase and made
synthesizable, the HL-synthesis tool was run next in order to perform high level synthe-
sis. The HL-synthesis tool was configured to use EDIF as the output format and to target
a specific FPGA device, with default optimizations enabled. Once high level synthesis was
successfully performed, the tool generated an area and delay estimation summary. Exam-
ples of HL-synthesis reports generated by the HL-synthesis tools are presented in Fig. 5.10
and 5.11. This report provided a breakdown of FPGA resources used for each file that com-
prised a functional block, and the longest combinational paths in the design. We used the
number of LUTs required to estimate the area requirements for the functional block, and the
(expected) maximum logic and routing delay from flip-flop to flip-flop (critical path) to es-
timate the frequency of operation. The area requirement was compared to a reference value
that depended on block complexity. The results observed for this methodology presented
in [TSC+09] suggested that the used logic synthesis tool is able to optimize the critical
path to reach the targeted frequency for values up to 150 % of the targeted one. Thus, in
the process of refinement, the critical path latency at this stage was allowed to reach up to
150% of the targeted value. If either, the area requirement or critical path were above the
permitted values for the functional block, an iterative process involving the optimization of
the SystemC code in the editor and the execution of HL-synthesis tool to obtain area and
delay results was performed, in order to bring the values obtained in the report as close as
possible to the reference values. In this optimization phase, the goal was not only to adjust
the frequency but also the number of cycles, so that the performance goal of achieving over
24 frames per second for QCIF video sequences was met, while at the same time satisfying
area requirements.

5.3.4.2.1 Resource utilization optimization. In order to reduce resource occupancy, ad-
ditional changes were made to the code of each functional block in the optimization stage.
The most impactful optimizations of area proved to be memory related. In particular, imple-
mentation of arrays using device block RAM memories instead of LUTs/distributed memory
resulted in the greatest logic utilization reduction.

After the transformation to timed mode, the core module code was simplified by turning
multidimensional arrays into single-dimensional arrays. There were two main reasons for
this modification. The first reason was that operating with arrays of more than one dimen-
sion required nested control flow loops to generate indices for each dimension, and more
registers for the index values and address generation, complicating the hardware required
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Fig. 5.10 Example of high level synthesis report generated by Agility Compiler.

Fig. 5.11 Example of high level synthesis report generated by C-to-Silicon Compiler.
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and leading to worse synthesis results. The second reason was the fact that Agility Compiler
does not provide templates for multi-dimensional array mapping to block RAM memories.
Additionally, it is of particular interest to convert multidimensional arrays that hold constant
values to single-dimensional arrays, as this would allow the specification of these arrays as
read only memories (ROM) in the high level synthesis stage, to further reduce area require-
ments.

The synthesis tools used required guidance in inferring the use of the targeted de-
vice memory resources. In order for Agility Compiler to infer array-to-RAM mapping
the mapping has to be explicitly expressed using a dedicated function (ag_constrain_ram(

the_array, read_access)). As this function cannot be invoked within a (thread) process, in
practice memory mapping requires for the array to be encapsulated as a separate module.
This process was carried out using the template presented in Listing 5.3. In C-to-Silicon
the designer is presented with a table of inferred memories/arrays and has the possibility to
choose the preferred implementation using the Allocate IP dialog and choosing the appropri-
ate option (i.e. builtin, prototype) from a drop-down list of the action column. For batch ex-
ecution of synthesis the designer needs to explicitly specify the mapping in the synthesis in-
vocation script by means of the attribute allocate_builtin_ram /path_to_array/array_name.
It is worth noticing that the basic memory element supported by these tools allows one sam-
ple to be read from memory and/or written to memory in each clock cycle. This means that
the input and output interfaces will receive or transfer one sample per cycle (after the read
address is stable), and that the core module will read from or write one sample to memory
per clock cycle for processing. Multiple write ports are not supported by the used tools.
Multiple read ports are implemented by replication of the basic memory construct.

All memories have been isolated from their respective functional blocks and encapsu-
lated as an independent SystemC module. The memories used in our design are synchronous
and feature one read and one write port. Memory synthesis requires significantly more time
to complete than synthesis of logic. Isolation and encapsulation of large memories as sepa-
rated modules played a significant role in reducing the time of synthesis of the modules car-
rying out computational part of the core. All instantiated memory instances (implemented
as block RAMs) have been grouped into one module instantiated in the top level module of
the design.

Other optimizations and modifications of the code aimed at resources utilization op-
timization were associated with the replacement of the input and output structures of each
functional block with input and output memories. Sections of code that read from or write to
these structures would instead access the corresponding memory using functions that have
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Listing 5.3 Declaration of the array ARRAY_NAME as an isolated module MOD-
ULE_NAME_RAM that results in Agility Compiler inferring the use of device BRAMs.

1 / / / T h i s f i l e name : MODULE_NAME_RAM. h
2 / * −−−−−−−−−−F i l e I n c l u d e S e c t i o n−−−−−−−−−−−−− * /
3 # i n c l u d e " s y s t e m c . h" / / /< SystemC l i b r a r y .
4 # i n c l u d e " a g i l i t y . h" / / /< A g i l i t y e x t e n s i o n s .
5 SC_MODULE( MODULE_NAME_RAM ) { / / /< Module d e f i n i t i o n .
6 / * −−−−−−−−−−I n t e r f a c e s S e c t i o n−−−−−−−−−−−−−− * /
7 sc_ in <bool > Clock ;
8 sc_ in <bool > R e s e t ;
9 sc_out < s c _ u i n t <8> > Outpu t ;

10 sc_ in < s c _ u i n t <8> > I n p u t ;
11 sc_ in < s c _ u i n t <3> > A d d r e s s _ I n p u t ;
12 sc_ in < s c _ u i n t <3> > Addres s_Outpu t ;
13 / * −−−−−−−−−−I n t e r n a l V a r i a b l e s S e c t i o n−−−−− * /
14 s c _ u i n t <8> ARRAY_NAME[ 8 ] ; / / Dec lare RAM
15 / * −−−−−−−−−−F u n c t i o n s S e c t i o n−−−−−−−−−−−−−− * /
16 / / D e f i n e t h e a c c e s s i n t e r f a c e .
17 void w r i t e ( ) {
18 s c _ u i n t <3> Index ;
19 w a i t ( ) ;
20 whi le ( 1 ) {
21 i n d e x = A d d r e s s _ I n p u t . r e a d ( ) ;
22 ARRAY_NAME[ Index ] = I n p u t . r e a d ( ) ; / / Mapped t o " W r i t e P o r t " .
23 w a i t ( ) ;
24 }
25 }
26 void r e a d ( ) {
27 s c _ u i n t <3> Index ;
28 w a i t ( ) ;
29 whi le ( 1 ) {
30 i n d e x = Addres s_Outpu t . r e a d ( ) ;
31 R e s u l t = ARRAY_NAME[ Index ] ; / / Mapped t o " ReadPort " .
32 w a i t ( ) ;
33 }
34 }
35 / * −−−−−−−−−−C o n s t r u c t o r S e c t i o n−−−−−−−−−−−− * /
36 SC_CTOR( MODULE_NAME_RAM ) { / / /< Module c o n s t r u c t o r .
37 SC_CTHREAD( read , Clock . pos ( ) ) ; / / /< Clock s e n s i t i v i t y mapping .
38 SC_CTHREAD( w r i t e , Clock . pos ( ) ) ; / / /< Clock s e n s i t i v i t y mapping .
39 / / Dec lare a r r a y as a memory w i t h s y n c h r o n o u s read a c c e s s
40 a g _ c o n s t r a i n _ r a m ( ARRAY_NAME, ag_ram_synchronous ) ;
41 ag_add_ram_por t ( ARRAY_NAME, a g _ p o r t _ r e a d o n l y , "ReadPort" ) (&

MODULE_NAME_RAM: : r e a d ) ; / / Add and map p o r t s a c c e s s e d by read
42 ag_add_ram_por t ( ARRAY_NAME, a g _ p o r t _ w r i t e o n l y , " W r i t e P o r t " ) (&

MODULE_NAME_RAM: : w r i t e ) ; / / Add and map p o r t s a c c e s s e d by w r i t e
43 / / /< I n i t i a l i s e t h e RAM
44 f o r ( i n t i =0 ; i <8 ; i ++ ) {
45 ARRAY_NAME[ i ] = i ;
46 }
47 }
48 } ;
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been created for this purpose. The number of variables and arrays used for temporal results
was reduced, whenever possible, by writing to memories directly in order to reduce area
requirements. Also, for separate memory spaces the writes/reads carried out by subsequent
modules for different processing iterations could be overlapped.

Final area optimization was obtained after replacement of the synthesizable C-data types
and operations, with their SystemC hardware-friendly counterparts. The SystemC types (i.e.
sc_uint, sc_int, etc.) have been found to yield better high-level synthesis results, as they al-
low the specification of the exact register widths in bits. Use of multiplications (combined
with optional summation) and shifts instead of division and modulo, where possible, led to
further optimization as the former operations can be directly mapped to specialized hard-
ware resources/accelerators.

5.3.4.2.2 Critical path optimization. In the original C code, shared variables and arrays
were read in many different branches, meaning that the resultant hardware registers would
have high fan-out. This applies in particular to the more complex blocks and/or blocks that
carry out their processing serially, re-utilizing the same variables in many cases. This leads
to an increase in area requirements and makes it harder to optimize the critical path. To
alleviate these problems, in some cases (i.e. the modules encapsulating the ShiftAdd and
the holesFilling functionality), further decomposition into sub-modules/multiple modules
was required. Finer-grain modules improve synthesis results and times as it is easier for HL
synthesis tools to optimize smaller functionality. Also, decomposition lowers the costs of
module replication which allows to process the data in parallel which has the potential to
lower the overall execution time expressed in elapsed number of cycles.

Once area has been optimized to bring it as close as possible to the reference value, the
critical path was optimized. To optimize the critical path, the HL-synthesis tool report is
used, as it provides a list of the code lines in the longest combinational path, the FPGA
resources in the path and the delays between them. It must be taken into account that opti-
mizing one value might lead to the worsening of another, as reducing the area requirement
and obtaining a high operation frequency are frequently mutually exclusive goals. In order
to reduce this critical path, the synthesis report was studied to determine which code lines
contribute to the critical path. For example, let us consider a line that features a calcula-
tion involving four consecutive arithmetic operations which were done combinationally. In
the case of the code shown in Listing 5.4, the latency of the combinational path could be
optimized by breaking into smaller load and registering intermediate results.
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Listing 5.4 Critical path optimization example.

1 / * −−−−−−−−−−O r i g i n a l C−code−−−−−−−−−−−−− * /
2 i k _ = ( ( ( i +minK ) *SAMPLE_MAP_ROWS_COLS + base_addr_sm + j l ) >> 2 ;
3

4 / * −−−−−−−−−−O p t i m i z e d l a t e n c y−−−−−−−−−−−−− * /
5 i k = i +minK ;
6 w a i t ( ) ;
7 i k _ s a _ a u x = i k *SAMPLE_MAP_ROWS_COLS;
8 w a i t ( ) ;
9 i k _ s a = i k _ s a _ a u x + base_addr_sm ;

10 w a i t ( ) ;
11 i k _ s a _ j l 0 = i k _ s a + j l ;
12 w a i t ( ) ;
13 i k _ = i k _ s a _ j l 0 > >2;

5.3.4.2.3 Execution time optimization. After optimizing both area and critical path, the
number of cycles required to process a macroblock was optimized. In order to determine
the total number of cycles that a functional block requires to process a macroblock, code is
added to the functional block to subtract the start and finish SystemC simulation times and
divide by the clock period, obtaining the number of cycles. Reducing the number of cycles
involves removing wait() statements that are not in the critical path. Wait() statements that
represent an unnecessary wait for the next clock cycle, can be removed. Let us consider the
code from Listing 5.4. This code was optimized and provides lower latency then the original
code. Nevertheless, in this case, the HL synthesis tool could infer the hardware elements
to perform the associated operations in parallel, but the hardware elements are used serially
due to the addition of wait() statements. Using the code presented in Listing 5.5 results in
slightly higher latency while reducing the execution time by two cycles. This is possible as
the multiply and accumulate (as well as add and shift) operations can be combined to one
operation when arguments are shared.

5.3.4.3 Logic synthesis and implementation

Once the functional blocks have been optimized and area and delay estimation values were
satisfactory, HL synthesis tool was run again, this time using VHDL as the output format. As
for the case when EDIF was set as the output format, default optimizations were enabled. An
additional option specified was flatten hierarchy, so that only one VHDL file was generated
for the functional block, instead of one for each of the modules that comprise the functional
block.

The VHDL code obtained was used to perform logic synthesis with Synplify 2009.06
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Listing 5.5 Execution time optimization example.

1 / * −−−−−−−−−−O r i g i n a l C−code−−−−−−−−−−−−− * /
2 i k _ = ( ( ( i +minK ) *SAMPLE_MAP_ROWS_COLS + base_addr_sm + j l ) >> 2 ;
3

4 / * −−−−−−−−−−O p t i m i z e d l a t e n c y−−−−−−−−−−−−− * /
5 i k = i +minK ;
6 w a i t ( ) ;
7 i k _ s a _ a u x = i k *SAMPLE_MAP_ROWS_COLS;
8 w a i t ( ) ;
9 i k _ s a = i k _ s a _ a u x + base_addr_sm ;

10 w a i t ( ) ;
11 i k _ s a _ j l 0 = i k _ s a + j l ;
12 w a i t ( ) ;
13 i k _ = i k _ s a _ j l 0 > >2;
14

15 / * −−−−−−−−−−O p t i m i z e d e x e c u t i o n t ime−−−−−−−−−−−−− * /
16 i k = i +minK ;
17 i k _ s a _ a u x = i k *SAMPLE_MAP_ROWS_COLS;
18 w a i t ( ) ;
19 i k _ s a = i k _ s a _ a u x + base_addr_sm ;
20 w a i t ( ) ;
21 i k _ s a _ j l 0 = i k _ s a + j l ;
22 i k _ = i k _ s a _ j l 0 > >2;

Premier. This tool is configured to use the target FPGA. For synthesis, the resource sharing

option is disabled, retiming is enabled and no timing constraints are set, so that the tool will
attempt to obtain the highest frequency possible. These settings have been found to give the
best results for the project discussed in [TCH+09].

After obtaining logic synthesis results, the EDIF output file generated by Synplify was
used to obtain final area and delay results using XST. The tool is configured to use the target
FPGA and other options are set to default values.

5.4 Verification methodology

The used implementation methodology, allowed us to take advantage of the multi-tier veri-
fication typical for ESL. Our methodology established three levels at which validation was
to be carried out, presented in Fig 5.8. These levels correspond to three levels of abstrac-
tion defined in our methodology. The first level of verification, is aimed at validation of a
functional model implementing the MB-level flow. Passing this level validates the correct-
ness of the MB-level flow description. The second level of validation is meant to assure
the functional correctness of the created SystemC description of the MB-level implemen-
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tation. Passing this level also validates the correctness of the encapsulation process. The
final, third level is used to validate the RTL model and verify that it is meeting the expected
performance.

Each of the defined levels of verification involved carrying out simulations and verifi-
cation of their results by means of comparison of the output against the reference. Inde-
pendently of the level, the base for comparison were file ‘dumps’ representing the state of
processing at a determined point of execution. Depending on the level of the description
being validated different simulation tools were used. The tools used in the simulations and
their role in the flow have already been presented in Tables 5.1 and 5.2. The reference im-
age (and thus the output) format has been chosen to be a YUV 4:2:0p 8bit CIF (288x352
pels) sequence (we use only the Y component in comparisons). The LR input resolution de-
pends on the value of the super-resolution zoom (scale). The set of sequences used in tests
was the exact same set used in the study on reference software quality. This set comprised
three sequences, namely, the foreman, mobile and paris sequence, whose description has
been already provided in Table 3.2. These sequences have been chosen as they constitute a
representative set of possible real life sequences of interest.

5.4.1 Algorithmic model validation

At this stage, system description was represented by definitions of functions, classes and
sequential control flow coded in C language. Verification required the simulation data of
the frame-level and MB-level software implementations. These data, once obtained, were
compared. In case of output inconsistency, the output produced by each of the functions of
the MBL implementation was revised and compared with its FL counterpart output. Once
the whereabouts of the location of the occurrence of the first point of error were roughly
identified, the cause was determined using lock-step run-time debugging. In some cases,
debugging sessions of both implementations were concurrent advanced in lock-step, allow-
ing for the values being computed to be investigated and compared at run-time.

The introduction of the frame-to-MB adapters allowed to seamlessly substitute the frame-
level implementation of the super-resolution kernel with a MB-level one. This facilitated
the re-use the remaining code of the frame-level implementation with the code including
the functions responsible for input/output load/store, image decimation and block matching
being the most important part reused. This led to the setup used at this stage of valida-
tion which is presented in Fig. 5.12. As aforementioned the reference image (and thus the
output) format was the YUV 4:2:0p 8bit CIF (288x352 pels) sequence. The LR input res-
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Fig. 5.12 Verification data flow used to assess the correctness of the implementation.

olution depended on the value of the super-resolution zoom (scalesr). The validation and
verification tasks were carried out in the following steps:

1. First the YUV 4:2:0p 8bit low resolution QCIF and 72x88 pels sequences were ob-
tained from the CIF reference sequence. In order to do so, the CIF sequence was
loaded, and decimated, forming a QCIF (or 72x88 pels) sequence that was then stored.

2. The LR sequences were used as input for the reference software implementation, re-
sulting in CIF YUV 4:2:0p 8bit output. This output was considered as the expected
output and was used in verification of the algorithmic model of the MB-level imple-
mentation.

3. The LR sequences were used as input for the tested system model. The execution of
the model was simulated resulting in CIF YUV 4:2:0p 8bit output.

4. The output luma pels of the implementation being tested and the reference software
pels were compared. If the observed results were identical for each and every pel
and for all frames of the obtained sequence, the verification iteration was considered
successful. In comparison we treat both images as lexicographically ordered sets
containing all pels in the frame. Only after the outputs generated by all simulations
were identical, the current system model was considered as verified.

5.4.2 ESL verification

Once the functional correctness of the C code of the MB-level software implementation was
validated, SystemC description of that system was prepared. The C code used to carry out
the super-resolution process on the luma component was encapsulated as a SystemC module
representing the super-resolution kernel. This code was to be validated and verified based on
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Fig. 5.13 Generic validation setup used for HDL validation.

the files obtained during validation. The validation was carried out following a generic HDL
validation setup. In this setup, presented in Fig. 5.13, at the highest level of organization,
the system comprises two modules, namely, the module being verified and the TestBench

(TB) module. The former is usually referenced to as the Design Under Test (DUT). The
latter encapsulates the rest of the code used in validation. It is important to notice that the
testbench is not required to be synthesizable at any point in the development.

In our case, the testbench code was responsible of: (i) loading the motion estima-
tion metrics, input pels (macroblock and search area), and design configuration, (ii) their
propagation to the DUT, (iii) reception and storage of the data produced by the DUT, and
(iv) monitoring of DUT execution with (optional) provision of real-time feedback to the
designer. Most code implementing this functionality was copied from the C code used in
functional validation of the algorithmic model. In order to reduce the simulation time, the
block matching was not implemented in code but emulated by loading the ME metrics from
the file obtained from the MB-level algorithmic simulations. The output obtained during
the step 3 of the algorithmic model validation was considered as the expected output and
used in verification of the ESL and RTL models of the MB-level implementation. The rest
of the changes were required in order to adapt to the communication protocol using the
TLM/pin-level interfaces.

Debugging of the design was based on storing and revising intermediate results of the
processing. In order to do so, additional output interfaces were instantiated through which
data collected at so called ‘validation points’ were transferred to the testbench. In most
cases, the validation points were placed in between subsequent modules, collecting the data
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Fig. 5.14 Example of the distribution of validation points in the used ESL level validation setup.

transferred from one onto the other. These points were implemented by replication of the
transfer channels to the external interfaces. In some cases, in order to track the progress of
module’s internal processing and gain access to its local variables, validation points were
instantiated as a part of the module. Implementation of these points required (i) definition
of additional communication interface in the DUT’s sub-module and their connection to the
external interface of the DUT, and (ii) introduction of additional code to manage the com-
munication over the instantiated interface. The code implementing the validation points in
the testbench and DUT modules was placed in between the #ifdef (...) #endif com-
piler preprocessor statements. This allowed the code to be ignored by the compiler during
HL synthesis. The receiving end of the transfers from validation points was the monitoring
functionality implemented by the testbench. Once received, the data were checked to assert
correct execution, provide feedback to the designer console, and/or store the received data
as file dumps. A high level view of the used validation setup after introduction of validation
points is shown in Fig. 5.14.

In case of observed inconsistencies the debugging was carried out as follows:

1. The generated inconsistencies were analyzed in order to approximate the time of their
first occurrence, system state at that time and possible whereabouts of the point of
error in the data flow.

2. The data loaded and transferred to the DUT were revised and compared with the
expected ones.
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3. Validation points were introduced in between the modules indicated by the results
of the first step. In case of no indications of the whereabouts of the point of error,
the validation points were activated starting from the last in the flow in an effort to
identify the point of first noticeable inconsistency.

4. Additional validation points were added in the execution flow of the module where the
first inconsistencies were generated. The execution data captured at validation points
were being compared with the expected ones and the design was being modified to
assure consistency of these data.

5. If the modifications of the module resulted in DUT output consistency, the functional
correctness of the module was considered as attained. Otherwise, the data from the
validation point located in between of modules were revised, starting from the point
corresponding to the output of the module recently modified. Once the first incon-
sistencies were observed, procedures from step 4 were carried out for the module
responsible for generating the data.

5.4.3 RTL verification

Once verified, the ESL description was made synthesizable and used as the input in the HL
synthesis. The generated system description was the RTL description in VHDL (or EDIF).
In order to validate the correctness of the HL synthesis translation, RTL simulations were
performed. The above-presented ESL validation setup was (re)used also in RTL simulations.
This was made possible by means of mixed-language simulation in which VHDL design
units were instantiated into the SystemC design.

In order for the HDL entity to be correctly instantiated in the SystemC code, the former
has to: (i) be declared as a foreign module, (ii) have its interfaces bound to the HDL imple-
mentation, and (iii) be instantiated in the SystemC source. The first two of these tasks are
implemented using a header file, referenced hereafter as the module’s wrapper. The HDL
module instantiation in the SystemC source is carried out by referencing the declared wrap-
per’s constructor. Internally the constructor instantiates a foreign module and links it to the
appropriate HDL entity (specified using constructor arguments (Cadence) or hardcoded into
the constructor definition (ModelSim)).

Both of the used flows provide tools allowing automated creation of the foreign module
declaration. Using ModelSim console a foreign module declaration can be generated us-
ing invoking scgenmod MODULE_HDL, where MODULE_HDL is the HDL entity name.
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Fig. 5.15 High level view of the setup with SystemC wrappers used in RTL level validation.

This command execution results in the foreign module declaration for the specified entity
being written to the ModelSim console. A generic example of a wrapper created using the
scgenmod for the VHDL entity defined in Listing 5.6 is presented in Listing 5.7.

For the Cadence-based flow, verification wrappers are automatically generated after a
successful HL synthesis. The wrapper is written to the model_dir specified in the simu-
lation configuration. The filename of the wrapper is module-name_ctos_wrapper.h. The
wrapper can be recreated by using the completing the Generate Verification Wrapper dia-
log invoked in CtoS GUI. Wrappers used by CtoS have similar structure to the ones used
in ModelSim. However, CtoS wrappers contain additional code providing additional func-
tionality that significantly facilitates the verification process. Most importantly, in addition
to the design under test (DUT), the original SystemC model can also be instantiated as a
reference model (REF) inside the wrapper allowing cycle-by-cycle comparison of the DUT
output and the original SystemC model to be carried out.

In the described case, wrappers implementation required only minor modifications,
namely, changes resulting in inclusion of the wrapper declaration header and passing the
correct instantiation arguments (full name of the HDL entity and verification arguments (Ca-
dence only; described in [Cad10])). A generic example of these modifications is presented
in Listing 5.8. Wrappers deployment resulted in the RTL verification setup presented in
Fig. 5.15. Once the HDL description has been compiled and the wrappers readily available,
this setup allowed the RTL to be verified using SystemC verification code.

RTL verification was carried out in three stages. In the first stage, the whole super-
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Listing 5.6 A sample VHDL design unit to be instantiated in a SystemC design.

1 −− F i l e : c o u n t e r . v h d l
2 −− −−−−−−−−E n t i t y d e c l a r a t i o n −−−−−−−−−−−−−
3 e n t i t y c o u n t e r i s −− Pin− l e v e l i n t e r f a c e s u s i n g HDL t y p e s
4 port ( c o u n t : b u f f e r b i t _ v e c t o r (8 downto 1) ;
5 c l k : in b i t ;
6 r e s e t : in b i t ) ;
7 end ;
8 −− −−−−−−−−A r c h i t e c t u r e d e f i n i t i o n −−−−−−−−−−−−−
9 a r c h i t e c t u r e on ly of c o u n t e r i s

10 . . .
11 end on ly ;

Listing 5.7 SystemC foreign module declaration for the HDL module defined in Listing 5.6.

1 / / / F i l e : c o u n t e r _ m t i _ w r a p p e r . h
2 / * −−−−−−−−−−SystemC module d e c l a r a t i o n−−−−−−−−−−−−− * /
3 c o u n t e r _ m t i _ w r a p p e r
4 : p u b l i c s c _ f o r e i g n _ m o d u l e { / / d e c l a r e d as f o r e i g n module
5 / * −−−−−−−−−−I n t e r f a c e d e c l a r a t i o n−−−−−−−−−−−−− * /
6 p u b l i c : / / Pin− l e v e l i n t e r f a c e s u s i n g c o r r e s p o n d i n g s y n t h e s i z a b l e t y p e s
7 sc_ in <bool > c l k ;
8 sc_ in <bool > r e s e t ;
9 sc_out < s c _ l o g i c > c o u n t ;

10 / * −−−−−−−−−−C o n s t r u c t o r d e f i n i t i o n −−−−−−−−−−−−− * /
11 c o u n t e r _ m t i _ w r a p p e r ( sc_module_name nm)
12 : s c _ f o r e i g n _ m o d u l e (nm , "work . c o u n t e r ( on ly ) " ) ,
13 / / ^ L ink t o HDL d e s i g n : " l i b r a r y . e n i t i t y ( a r c h i t e c t u r e ) "
14 c l k ( " c l k " ) , / / B i n d i n g o f i n t e r f a c e s : SystemC ( "HDL" )
15 r e s e t ( " r e s e t " ) , / / Type c o m p a t i b i l i t y i s r e q u i r e d
16 c o u n t ( " count " ) {}
17 } ;

Listing 5.8 Instantiation of HDL entity using ModelSim/CtoS SystemC wrappers.

1 # i f d e f MTI_MODEL / * −−−HDL i n s t a n t i a t i o n u s i n g ModelSim wrapper−−− * /
2 # i n c l u d e " c ou n t e r _w ra pp er _m t i . h" / / Module as f o r e i g n module
3 . . .
4 c o u n t e r _ m t i _ w r a p p e r d u t ( " dut " ) ; / / Wrapper i n s t a n t i a t i o n
5 # e l s e i f CTOS_MODEL / * −−−HDL i n s t a n t i a t i o n u s i n g CtoS wrapper−−− * /
6 # i n c l u d e " c o u n t e r _ c t o s _ w r a p p e r . h" / / Module as f o r e i g n module
7 . . .
8 c o u n t e r _ c t o s _ w r a p p e r d u t ( " dut " , ( . . . ) ) ; / / Wrapper i n s t a n t i a t i o n
9 # e l s e / * −−−−−−−−−−SystemC module i n s t a n t i a t i o n −− * /

10 # i n c l u d e " c o u n t e r . h" / / SystemC d e f i n i t i o n
11 . . .
12 c o u n t e r d u t ( ) ; / / SystemC module i n s t a n t i a t i o n
13 # e n d i f
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resolution core was considered the DUT with only one HDL-to-SystemC wrapper being
instantiated. In a progressive manner, each of the DUT’s sub-modules was instantiated us-
ing a wrapper and its corresponding HDL and verified separately using the testbench of the
whole system. In the second stage, instantiation of multiple wrapper modules was allowed.
The number of modules whose functionality was implemented in HDL was progressively
extended, starting with the module located at the end of the data path. This stage ended with
all of the internal (sub)modules of the DUT being instantiated using wrappers. This verifi-
cation order of module instantiation was meant to increase the effectiveness of mismatches
detection (by having HDL DUT output being always the output of the last module) and fa-
cilitate faster debugging re-spins (mainly used for the somewhat limited verification options
offered by the Agility-based flow). The final, third stage of validation followed the flow
of the second stage, with the exception that only one module, encapsulating the functional-
ity of various (subsequent) modules, was instantiated. The modules to be substituted with
their HDL description were instantiated as submodules of a newly created SystemC mod-
ule. After ESL verification, this entity was synthesized and its wrapper used to substitute
its SystemC counterpart. The scope of the modules encapsulated by the HDL instantiated
in the wrapper was progressively extended till it included the complete functionality of the
DUT. An example of the tested system’s organization for the above-described stages for the
defined RTL validation setup, presented in Fig. 5.15, is shown in Fig. 5.16.

5.5 Conclusions

In this chapter, the used implementation, design and verification methodology has been pre-
sented. The established methodology defines three tiers of modeling, namely the functional,
ESL and RTL level. These tiers form a hierarchy in which each of the used models is ob-
tained based on the model being one level above it. This renders the models tightly-coupled,
facilitating inter-model modifications propagation and code re-use. Even though, the estab-
lished implementation flow internally distinguishes between design and verification flows,
both of these flows deploy the same hierarchy of abstractions.

This chapter started with a brief introduction of the basic methodology and modeling
concepts considered relevant to the ESL electronics systems design and verification. Next,
an overview of the established implementation flow and used toolchain was presented. The
tasks and stages of the design and verification flow, as well as the inter-dependencies be-
tween these flows, were defined and described. Following, the design flow was described
in details. The used models’ and refinement steps carried out at each stage of implementa-

191



CHAPTER5.–METHODOLOGY

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

SystemC

SystemC

SystemC

(a) All stages: initial iteration.

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

SystemC

SystemC

SystemC

(b) Stage one: second iteration.

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

SystemC

SystemC

SystemC

(c) Stage one: third iteration.

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

VHDL

SystemC

SystemC

SystemC

(d) Stage two: second iteration.

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

VHDL

VHDL

SystemC

SystemC

SystemC

(e) Stage two: third iteration.

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

VHDL

SystemC

SystemC

VHDL

(f) Stage three: second iteration.

Output
receiver

Input
loader

Execution
monitor

Design Under Test moduleTestbench module

Top SystemC module Verification points

VHDL

VHDL

VHDL

SystemC

VHDL

(g) Stage three: third iteration.

Fig. 5.16 Illustration of the defined RTL verification stages for the setup presented in Fig. 5.15: (a)
initial iteration (shared by all stages), (b)–(c) iterations of the single wrapper verification stage
(stage one), (d)–(e) iterations of the multiple wrappers verification stage (stage two), and,
(f)–(g) iterations of the progressive wrapper verification (stage three).
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tion were organized and presented in the order that follows the implementation flow stages.
Description of the most important stages, that is: modules decomposition, provision of
synthesizable SystemC model, and synthesis results optimization, was extensive and pro-
vided with real-life examples. Finally, details of the established verification flow were pre-
sented. For each of the defined verification levels a short description of the used verification
methodology, setup and verification goals were provided. The presented description pro-
vided details on the flow of setting-up the verification environment in a way that leverages
mixed-language simulation allowing the same environment to be used for both, the ESL and
RTL level simulations.
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Chapter 6

Hardware implementation

6.1 Introduction

Software super-resolution implementations usually work with all SFW frames available
from memory, and output a super-resolved frame only after it has been completely pro-
cessed. This scheme is meant to minimize memory communications, and is known as the
frame-level processing. Memory communications are minimized by coalesced memory ac-
cesses, and by high reuse of loaded data. Nevertheless, this approach requires significant
amount of memory storage, and thus, results in implementations that tend to make extensive
use of external memory. Moreover, when targeting programmable logic devices (PLDs),
like FPGAs, high register re-utilization may result in high fan-out. This increases both the
logical complexity and the critical route latency.

The SRiuma reference software operated at frame-level. As aforementioned, frame-level
processing implementation in FPGA device is troublesome, if not unviable for an imple-
mentation that restrains itself from using off-device memory. Due to the high memory
requirements implementation of the SR kernel working at frame-level, targeting the avail-
able technology and using only on-device memory, was considered. In Section 4.2.2 of this
work we have proposed a possible solution to the problem of high memory requirements
of the frame-level flow, namely the MB-level flow. The proposed flow internally works
with a smaller set of pels, allowing to significantly reduce memory occupancy at the cost
of increasing memory traffic. The expected memory reduction and traffic increase associ-
ated with the switch to the proposed flow has been theoretically modeled and quantitatively
evaluated in Section 3.4.

Hardware implementation of the MB-level flow is the focus of this chapter. The imple-
mentation in the targeted FPGA device was carried out using the methodology established
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Fig. 6.1 Established design flow for computer aided implementation based on ANSI C code encap-
sulation and refinement.

in chapter 5. Following this methodology, we have modeled several levels of abstraction
before reaching the pin-accurate level used for synthesis. The results of synthesis allowed
to determine system bottlenecks and to guide the process of architecture and organization
refinement. Reaching real-time performance required multiple refinement iterations and
tackling and solving a number of implementation challenges. Details of these tasks are
presented in this chapter.

6.2 Hardware implementation of the NUGP algorithm us-
ing FPGAs

The base for the hardware implementation was the ANSI C SRiuma software code. Having
available a high level software, the implementation followed the computer aided HDL cre-
ation using ESL methodology established in Section 5.2.2. This methodology is presented
in Fig. 6.1. The implementation flow starts from the existing code and transforms it into an
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ESL description. This description after additional refinement becomes synthesizable allow-
ing automatic HDL generation. For our implementation the SystemC (version 2.2, [Ins06])
ESL description language was used. In our implementation we have chosen to model the
system using the following three levels of abstraction: (i) the functional level (untimed),
(ii) the loosely-timed Transaction Level Modeling ([Ghe06], [CG03]), and (iii) the timed
pin-accurate Register Transfer Level.

Functional level description contains regular software that has been isolated and encap-
sulated as SystemC modules. This description was used to validate the proposed MB-level
flow and to provide a golden model for the TLM and RTL levels of abstraction. This model
was the one used for algorithmic optimization validation and evaluation.

The TLM description focuses on accelerating the architecture design space exploration
by implementing coalesced function-based transfers of coarse grained data. The TLM level
description is used for rapid architecture modeling with minimal time spent on inter-modular
communication and synchronization design. The created TLM description in loosely timed

mode implemented synchronization is based on events and blocking communication over
high level interfaces i.e. sockets. Thereby, it is not capable of cycle-accurate execution
and should be used only for functional validation of the system. For system’s quantitative
performance estimation the pin-accurate timed mode was used.

The pin-accurate register-level modeling is characterized by fine grain (pin level) com-
munication interfaces based on basic SystemC types, custom inter-module synchronization,
and global execution synchronization with the simulation kernel. This mode offers cycle-
accurate execution (in lock-step) allowing accurate system performance evaluation.

The HDL description was generated automatically from the pin-accurate model using
the HLS tools. The resulting HDL was validated by means of mixed-language simulation,
using the verification setup used for ESL verification.

6.2.1 Super-resolution system overview

The NUGPA super-resolution system at the highest level can be seen as comprising three
blocks: (i) the block matching, (ii) the super resolution kernel, and (iii) the I/O management
code. As aforementioned, BM implementation is considered out of the scope of this work.
For better simulation performance, BM has been emulated by introduction of additional
I/O management code that loads motion estimation output from files. As aforementioned,
hardware implementation of the BM algorithm to be used with our implementation was be-
ing developed concurrently [HN10]. The SRK module comprises the logic that carries out
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Fig. 6.2 High-level organization of the NUGPA system operating at macroblock-level.

the NUGPA, that is, given the macro-block to-be-processed and the data associated with it
(the ME metrics, search areas, etc.), it outputs the MB’s super-resolved representation. The
original SRK code was transformed in order to operate at MB-level. The deployed block
matching algorithm operated in a frame-by-frame manner, meaning that, after the modifica-
tions, the SRK code had become incompatible with the rest of the system. To address this
issue two adapter modules were designed, one to receive and reorder the output of the BM
module, and the other to reconstruct the super-resolved frame from MB pels output by SRK.
Implementation of the above-mentioned modifications led to the super-resolution reference
code structure presented in Fig. 6.2. Using the nomenclature established in Section 5.4.2,
the super resolution kernel and the adapters code formed the design under test, and the I/O
management code with BM emulation code was encapsulated forming a prototype of the
testbench module. As aforementioned, the implementation of the above presented architec-
ture was carried out following the methodology presented in Section 5.2.2.

6.2.2 Super-resolution core: architecture evolution

The initial functional model of the kernel was based on the decomposition established during
the study on the proposed flow’s memory occupancy and memory traffic. In that study, the
super-resolution kernel comprised the following code sections:

1. The zeroes2ones section, which carries out the zeroes2ones transformation.

2. The upHoles section, which constructs the high resolution grid of a search area.

3. The upGrid section, which constructs the high resolution grid of a macroblock.
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4. The shiftAndAdd section, which extracts the pels from the created high resolution grid,
fuses them, and projects them onto a single high resolution grid of a macroblock.

5. The holesFilling section, which estimates values of the missing data of a grid.

6. The scale section, which projects a subset of pels from a high resolution grid onto
another grid in order to adjust the grid’s size to the expected one.

Following the decomposition process presented in Section 5.3.2 a functional SystemC model
was created. In this model each of the above-described code sections was encapsulated as
a separate SystemC module. Encapsulation of the code into SystemC modules allowed the
functional model to be used for system prototyping, design space exploration, and func-
tional verification of architectural changes. In addition, the functional model allowed the
impact that the modifications at the algorithmic level have on the system’s architecture to be
rapidly prototyped and checked.

Once refined and validated, the functional model system was transformed into a higher-
accuracy TLM model following the methodology presented in Section 5.3.1. As implied
by the name, TLM is focused on modeling (inter-module) communications. In comparison
with the functional model, the TLM model allowed to:

• Refine and validate inter-module communications as all data communication is re-
quired to be carried out using instantiated SystemC channels.
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• Represent and test more refined memory architecture as at this stage the design mem-
ories were no longer modeled using abstract structures instantiated in global memory
space, but rather instantiated as separate modules.

The TLM model, whose initial architecture is presented in Fig. 6.3 was used to test
SRK’s modules parallel execution, inter-module communication and synchronization. Once
these aspects of the design were validated, further refinement was carried out in order to
obtain synthesizable pin-accurate timed model. This model allows evaluation of the perfor-
mance and efficiency of the obtained implementation and identify the parts of the design
which needed further optimization. During the optimization stage all modifications to sys-
tem’s architecture, organization and inter-module communication scheme implemented at
the lowest-level were being propagated to the TLM model. By keeping these models tightly
coupled, the lower-level model verification was accelerated by performing partial validation
at the TLM level.

The architecture of the timed pin-accurate model is presented in Fig. 6.4. The organiza-
tion that was validated for implementation is described in the following section. Design of
the pin-level model, which when synthesized, results in an implementation that meets the
targeted performance required a significant amount of effort. Implementation challenges
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Fig. 6.5 Organization of the pin-accurate model.

associated with this stage of the super-resolution core implementation are presented in Sec-
tion 6.3.

6.2.3 Super-resolution core: implemented/timed model architecture
and organization

The functional architecture of the super-resolution core that meets the targeted performance
and functionality is presented in Fig. 6.5. Internally the core maintains the division into three
main parts: (i) the reorder buffer management, (ii) super-resolution kernel, and (iii) frame
reconstruction. Nevertheless, in order to fit within the established execution cycle budget
(computed in Section 6.3), many of the functional blocks had to be further decomposed into
smaller modules. The Reorder Buffer management task had to be divided in two stages en-
capsulated as two modules: the ReorderBufferReap and the ReorderBufferSew. The former
module operates at frame-level storing the ME outcome in memories in an order suitable
for MB-level processing. Thus, the ReorderBufferReap module controls the reception of
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the motion estimation metrics, data reordering and storing accesses to the Reorder buffer

memory. Only once all the reference frames data of the current SFW has been received,
the ReorderBufferSew is allowed to process them. The ReorderBufferSew manages data
requests arising from within the super-resolution kernel, carries out data loads from the
Reorder buffer memory and feeds read data to the ShadPrep module of the SRK.

The super-resolution kernel carries out two main tasks: (i) grids construction and fusion,
and (ii) interpolation. Thereby, the modules that make up the SRK can be seen as belonging
to one of two groups, depending on their tasks. The ShadPrep, the UpHoles, the ShadStep,
and the UpGrid modules carry out grids construction. Grids fusion is performed by the
ReapSteps and NormalizeMB modules. The process of holes filling is carried out by the
HolesFillingPrep and MeanNearest modules.

The input of the SRK comprises the LR pels of the macro-block and its search areas
(one per each frame in the SFW), and a set of flags. These flags describe the macroblock
and search area location within the frame, and identify the inter macro-block data dependen-
cies. The ShadPrep receives the flags and requests the ME outcome (MVs and SADs) from
the ReorderBufferSew module. Once these parameters are available, current macroblock
location within the search area is determined and the fusion weights are computed for each
search area from the current SFW. Computed location coordinates and weights, along with
the MVs and flags, are passed on to the ShadStep modules.

The LR macroblock pels are fed from the super-resolution core input to the UpGrid

module. Each received pel undergoes the zeroes2ones transformation and is stored in the
input memory of the ReapSteps module. As a result, the input memory of ReapSteps holds
the HR (4x up-scalled) representation of the LR MB. Having finished its task, the UpGrid

module sends a synchronization signal to the ReapSteps module.

Search areas pels are received by the UpHoles modules. Each UpHoles module’s task
is to store received pels in the input memory of the corresponding ShadStep module. The
ShadSteps examine the flags, identify (based on the MVs and coordinates received from
the ShadPrep) and extract the pels that are used for SA Grid creation. The constructed SA

Grid is stored in the input memory of the ReapSteps module. Having finished its task, each
ShadStep sends a synchronization signal to the ReapSteps module.

Having received the synchronization signals from the ShadSteps and the UpGrid mod-
ules, ReapSteps starts its operation. The ReapSteps module task consists of loading data
from grids, fusing them, and storing the outcome in input memories of the NormalizeMB.
First, the module receives the flags and weights from one of the ShadSteps modules. Then,
for each HR coordinate it loads pels from the input memories (HR MB Grid and SA Grids)

202



6.2 HARDWARE IMPLEMENTATION OF THE NUGP ALGORITHM USING FPGAS

and fuses them. At the level of a singular HR coordinate the outcome of the fusion operation
are (i) the values of the weighted sum of pels loaded from the input memories, and (ii) the
sum of weights of non-zero pels that contributed to the fusion operation. Those values are
stored in the input memory of the NormalizeMB module. For each HR coordinate the Nor-

malizeMB module loads the two values produced by the ReapSteps. Then, it divides the
weighted sum by the sum of weights and stores the outcome in the input memory of the
HolesFillingPrep module.

The HolesFillingPrep and MeanNearest modules carry out the process of holes filling.
These modules estimate new values for the HR grid coordinates that have not been assigned
a value during the fusion process. The outcome produced by the grids construction and

fusion part of the SRK is passed on to the HolesFillingPrep module. The data are used to
construct a structure called pelmap. This structure is composed of pels of the macroblock
currently being processed and some pels of the previously processed MBs. The pels that
are used for pelmap construction are determined based on the macroblock location within
the frame. The inter macroblock data dependencies are managed by excluding some parts
of the pelmap from processing. Pels that are to be processed by the MeanNearest modules
from a continuous region called the work region. The work region spread is identified by the
coordinates of its upper-left and lower-right corner. Pels with not resolved inter macroblock
dependencies are excluded from the work region. A copy of these pels is stored in local
memories until the data dependencies are resolved. Only then these pels are included in the
work region and are processed by the MeanNearest modules.

Once created, the pelmap is stored in the input memories of MeanNearest modules.
Based on the received coordinates, each MeanNearest determines its particular work region
and processes it in a pel-by-pel manner. For each loaded pel the coordinates at which it will
be stored in the input memory of the next module are computed. If pel’s value is non-zero,
it is stored in the input memory of the MBcollector, and a next pel is loaded. Otherwise,
before being stored the pel is assigned a new value computed by means of mean nearest
neighbors interpolation.

The MBcollector module receives the super-resolved pels and carries out frame recon-
struction. Due to the inter macroblock dependencies, the number of super-resolved pels in
the input memories of the MBcollector is variable. The exact number of super-resolved pels
to extract, their location in the input memory and the frame buffer memory are determined
based on received flags and the value of the scale parameter. Having received and processed
all MB belonging to a frame, the module outputs the content of the frame buffer memories
through the core’s output ports.
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6.3 Implementation challenges

The performance target for the implementation had been set for the system to be capa-
ble of super-resolving 24 QCIF progressive formatted YUV4:2:0 frames per second (fps).
This roughly corresponds to the 24p format [Ski05]. The targeted frequency ftargeted was as-
signed the value of 109 MHz. This value was the one reported in [TSC+09, TCH+09] for an
implementation of an H.264 baseline decoder that followed the established ESL design flow
and targeted the same family of FPGA devices. The maximal number of cycles limitcycles

available for one 4x4 MB processing was estimated by dividing the targeted frequency es-
timate by the number of MBs (MBsnr) to be processed in one second, as in (6.1). Based on
the targeted performance of 1584 4x4 MBs per second and an operation frequency estimate
of 109 MHz, the limitcycles value was estimated to be 2867 cycles. The idea of one MB
processing encapsulates: internal module processing, synchronization, and inter-module
communication.

limitcycles =

⌊
ftargeted

MBsnr ∗ f ps

⌋
=

⌊
109∗106

1584∗24

⌋
= 2867 (6.1)

This section presents the implementation design challenges tackled in order to fit within
the established execution budget.

6.3.1 Provision of synthesis-time customization

The performance and enhancement capabilities of the super-resolution process depend on
the values of the super resolution parameters. Apart from the impact that these values have
on the super-resolved image quality, investigated in Section 3.4.2.3, the super resolution
parameters also significantly influence the efficiency of NUGPA hardware implementation
understood as a function of target device resources occupancy and execution time. There is
a clear trade-off between the algorithm performance and the cost of the resulting implemen-
tation. Provision of efficient implementation is greatly facilitated if the designer is allowed
to balance these trade-offs in order to deploy an architecture that provides the expected
performance while maximizing the implementation efficiency in the particular deployment
context.

To allow the implementation to fit various execution contexts efficiently we have opted
for allowing HL synthesis-time architecture customization. To do so, the design’s code had
to take into account the ranges of possible parameters values, and their impact on the internal
organization, synchronization and performance. Support for a range of execution parame-
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ters have introduced further constraints on the design, requiring that: (i) the modules are
granted enough execution cycle budget to carry out the processing for the most demanding
parameters configuration, that is the one with the greatest workload, and (ii) the module’s
control flow is aware of the current internal organization. More specifically, the memories,
communication ports (pins), processing loops flow (number of iterations and break condi-
tions), workload distribution, and performance had to allow a range of different parameter
values. This requirement was met by means of parameterization of the design code, and
conditional modules instantiation.

Modules parameterization required evaluation of the control flow dependencies on the
parameter values and a synchronization scheme that facilitates customizable modules or-
ganizations (variable number of internal modules). Code parameterization is a somewhat
straightforward process whose purpose is to assure that the processing (or part of process-
ing) that is found to be dependable on a parameter value has its control flow coded based
on macros (#define PARAMETER_VALUE) which actual values are set at synthesis-time.
Nevertheless, the process is error prune and its correct implementation requires evaluation
of the workload dependencies on the parameters and parallelization possibilities. In our
case, the evaluation was based on the memory occupancy and traffic estimation presented
in Sections 4.3 and 4.4.

6.3.1.1 Customization challenges.

The SRK core’s data path, hardware resources occupancy and attainable performance, are
all determined by the run-time values of the SRK parameters. These parameters influence
the following three aspects of the SRK hardware implementation: (i) hardware resources oc-
cupancy (encapsulates utilization of the targeted device memory, specific accelerators and
generic (logic) resources), (ii) execution time (measured in cycles), and (iii) critical path
latency. Increase in value of all of the SRK parameters, with the exception of the mac-
roblock width, leads to increase in the amount of workload that requires to be processed (at
some point in the data path). If the additional workload is to be processed sequentially the
execution time will increase proportionally. Due to higher resources reuse, sequential pro-
cessing results in additional latency introduced by increased fan-out and higher description
complexity at logical level (more variables in equations).

Memory occupancy growth has been already estimated using theoretical equations de-
scribing each of the modules memory requirements as a function of SRK parameters. The
equations used in our study are the ones that have been established in Section 4.3.1.1. The
theoretical estimation did not consider the impact of data segmentation and fragmenta-
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tion caused by encapsulation into BRAMs, nor other memory-related implementation chal-
lenges. Nevertheless, the carried out study provides sufficient information on how the SR
parameters impact the overall memory occupancy. Estimation of the impact that the algo-
rithm parameters have on the device specific accelerators and logical resources is compli-
cated without knowing the actual implementation organization/architecture and synthesis
constraints. For the sake of portability, our implementation does not explicitly use any of
the hardware accelerators (e.g. Xilinx DSP48 blocks), but leave the room for the synthesis
tool to infer its use from generic HDL description.

The impact on the critical path is determined by the introduction of the additional re-
sources and/or sharing of the already instantiated ones. As this process is carried out by
the synthesis tools, which optimize the design globally, its outcome cannot be reliably pre-
dicted. The use of higher level(s) of abstraction further complicates this estimation. Thus,
the impact of the parameters on the critical path latency had to be determined empirically
by reviewing the results of the synthesis for different SRK parameter values combinations.

The impact of the SR parameters values on the execution time (measured in cycles) can
be, with certain accuracy, estimated and optimized using approximately timed high-level
abstraction models.

6.3.1.2 System-level implications of the SRK parameters values

The parameters that impact the execution performance and implementation efficiency of the
NUGPA super-resolution kernel are the ones that specify: (i) macroblock size (MBwidth),
(ii) input and output frame size (FRcols, FRrows and scale) (iii) internal processing accuracy
(precisionme), and (iv) search area size and reference frame number (SAR and RF). (For
more information on these parameters refer to Table 3.1 on page 90.) The impact that
the above presented parameters have on the core’s organization is discussed below. The
presented SR kernel currently allows only one precisionme to be specified (=4). Thus, this
parameter impact on the design implementation is not discussed here.

• Macroblock size.

In our design, all modules latency and memory occupancy are dependent on the mac-
roblock size. This is mainly due to the fact that the macroblock is the base processing
element and most memories and processing loops are defined based on its size. In-
creasing macroblock size does not increase the overall workload to be processed and
does not decrease the cycle/pixel budget. Some variations of system performance is
expected due to increased memory sizes (and address space) which could result in
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changed memory latency, fan-out, etc. Nevertheless, this could be partially compen-
sated by more coalesced memory accesses and less frequent inter-module synchro-
nization. To recap, changes of MB size have a significant impact on the resources
occupancy of all modules and have been handled using parameterized description of
memories and execution loops, requiring no changes in the internal organization.

• Frame size.

Number of rows and columns of the input frame has a direct impact on the amount of
workload and thus the cycle/pel budget. Moreover, the adapters memories occupancy
and access latency is determined by the number of MBs to be processed, which is
derived from the frame and MB size. Apart from these dependencies, the core part of
the MB-level processing kernel can be considered free of dependencies on the former
parameter as it operates on macroblocks in a way that is unaware of the input/output
frame size. To recap, frame dimensionality has a significant impact on the adapter
modules and has been handled using parameterized description.

The scale value defines the spatial resolution of the super-resolved frame in reference
to the input frame size. Its value is used to decide which subsets of the super-resolved
samples are to be discarded in order to meet the specified outcome spatial resolution.
Customization of this process is provided by parameterization of the decimation loop,
the frame buffer definition and the process of pels placement in the frame buffer.

In the presented implementation, the luma component of the super-resolved frame is
fully reconstructed in hardware. This scheme requires significant amount of internal
memory for frame buffering. In fact these storage requirements are the ones limiting
the maximal supported output resolution to 352x288 pels.

• Search area radius.

The increase of the search area radius results in an increase of the number of candi-
dates for comparison, effectively increasing the number of cycles needed for template
matching part of the motion estimation process. For SRK, this parameter, along with
macroblock width, defines the search area size and the number of reference pels that
have to be received from the input and stored internally. Thus, search area radius
has a significant impact on initial (pre-fusion) steps of the kernel, determining their
memory occupancy and number of cycles spent on data passing/memory accesses.
The increase noticed in these requirements with the increase of the search area ra-
dius value is significant. Provision of support for the targeted range of values of this
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parameter required modifications at the architectural level. In order to fit within the
cycle budget the reception of pels from the input and their extraction for fusion had to
be isolated into two stages instantiated by separate modules joined by shared memory.
This separation effectively doubled the available cycle execution budget and allowed
further optimization (data packing, memory replication) to be introduced. To recap,
support for larger search areas required decomposition of the search area-related tasks
into smaller chunks instantiated as separate modules. The carried out decomposition
allowed to fit within the execution cycle budget.

• Number of reference frames.

For each additional frame in the SFW, new data have to be received (and stored),
processed and included in the fusion process. Additional data to be received and pro-
cessed includes the search area pels and ME metrics. Thus, this parameter impacts
modules responsible for performing the pre-processing (reception of input data, pa-
rameter estimation and grids creation), and performing the initial stages of the fusion
task.

Reference frames are represented by search areas, which are used to build grids from
which the pels to be used in the fusion process are extracted. Due to the elimination
of the HR grids, the increase of the number of cycles needed for communication and
extraction, rather than the increase of memory occupancy, is the primary factor lim-
iting the customization options. Having the execution time in mind, the architecture
was designed in such a way that introduction of additional frames into the SFW could
be handled by module replication with conditional instantiation without the necessity
of increasing the data path depth or module re-designing. To be able to fit within the
assigned cycle budget the processing of multiple reference frames had to be carried
out concurrently. As aforementioned, parallelism has been exploited by isolation of
the reception and extraction tasks, their encapsulation and (conditional) replication.
Increased number of references also impacts the post-fusion normalization process as
the pre-normalization sums can hold greater values. This is handled by parameteri-
zation of the division module. One thing to notice is that greater values need more
bits for their representation, resulting in increased memory requirements and divi-
sion latency. To recap, customizable number of reference frames has been handled
by separation of the pels reception and pels extraction tasks, encapsulation of these
tasks into separate modules, and parallelization of processing by replication of these
modules (one pair per reference).
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The above-presented considerations have led to the creation of a customization-friendly
organization in which each SFW frame has a dedicated pair of UpHoles and ShadStep mod-
ules being instantiated. The pels of each search area are received by a dedicated upHoles

module and processed by a dedicated ShadStep. All ShadStep modules are synchronized
with the ShadPrep and ReapSteps modules which are aware of the total number of refer-
ence frames in the pipeline (one UpHoles + ShadStep pair per frame in the SFW). The
instantiation and synchronization is conditioned on the synthesis values of the number of
the reference frames. Memory definition and accesses are carried out using parameterized
code and loops.

6.3.2 Memory related challenges

The achievable performance for an implementation in FPGA devices of a computer vi-
sion/image processing algorithm is more likely to be limited by the available memory re-
sources than by the computational ones. This is true also in the case of super-resolution.
An example of such an implementation is the state-of-the-art implementation presented
in [BB08], in which the number of refinement iterations was limited due to insufficient
memory resources, leading to sub-optimal quality of the results (measured in PSNR). Even
though, in case of insufficient internal storage, the memory can be extended by using ex-
ternal memory. This option still remains a costly solution, in terms of area, power and
men-hours required for implementation. Apart from the additional resources, this solution
requires significant changes in the data path in order to manage the memory wall problem
[NFMM13]. These changes, i.e. vectorization and/or pipelining of computations, introduce
another level of complexity to the design and verification process. Thus, memory hierar-
chy and organization plays a fundamental role in the process of provision of high level of
performance, requiring much consideration at the time of implementation.

This section presents some of the memory related concerns that were taken into consid-
eration at the time of implementation of the super-resolution kernel and that have proved
to play a crucial part in the process of meeting the performance goals. Among others, the
topics that required most attention were the following ones: (1) efficient use of resources for
the implementation of arrays, (2) assurance of parallel accesses to memory by subsequent
modules which limits the need for serialization of execution, and (3) provision of sufficient
memory throughput for the computation intensive modules to meet the targeted memory
budget.
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6.3.2.1 Resource efficient memory implementation

First synthesis re-spins brought to our attention the fact that the used compilers (Agility
Compiler in particular) tend to make an extensive use of look-up tables for arrays imple-
mentation. This problem was solved by using compiler specific Random Access Memory

(RAM) instantiation macros, as described in Section 5.3.4.2.1. The use of these macros
allowed the synthesizer to correctly infer the use of available device Block RAM (BRAM)
resources.

Block RAMs are commonly available in most of the commercial FPGA devices and their
utilization is encouraged. Nevertheless, it must be noticed that RAM macros use limits the
portability of system description, as they require that the targeted device offers dedicated on-
chip memories and that the compiler supports the used vendor-specific SystemC extensions.
In order to relax the latter, in our implementation the used RAM (macros) were constrained
to have only one read and one write port per memory. This limitation complicates the
design process and limits memory throughput offered by one RAM instance, but has the
advantage of facilitating migration to other FPGA technologies as one port memories are
always present in BRAM-enabled FPGA devices. Furthermore, one port could not be shared
between modules, and BRAM read accesses are characterized by a latency of two clock
cycles (one to latch the address, and a subsequent one to latch data on the output). Those
limitations required a new memory access scheme and rethinking of system division into
modules. In the final scheme, when more than one read per clock was necessary, the memory
had to be partitioned and/or replicated. Where possible, memory accesses were grouped, so
that they could be carried out in bursts. Burst accesses are characterized by the fact that
in each cycle (except the initial cycle of the first access, and last cycle of the last access
in the burst) both the address and data latches store new values. The one port per module
limitation resulted in enforcement of a policy of exclusive memory accesses. In accord with
this policy, each module was required either to have an exclusive access (also called two-
way exclusiveness) to a memory or to perform only and exclusively either the read or the
write accesses (shared exclusiveness).

6.3.2.2 Inter-module communication

In order to take advantage of the parallelism offered by hardware, a system has to be decom-
posed into modules which have execute in parallel. The task of decomposition has already
been described in Section 5.3.2. The task of choosing the inter-module communication
scheme that leads to maximization of exploitable parallelism is the focus of this section.
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(a) (b)

(c)
(d)

Main InputOutput ControlDataModule Register BRAM

Fig. 6.6 Evaluated inter-module communication schemes: (a) direct transmission with local stor-
age in registers, (b) direct transmission with local storage in memories, (c) indirect transmis-
sion with shared input/output memories and, (d) indirect transmission with shared input/output
memories and dedicated input/output submodules.

For our implementation, deployment of the inter-module communication schemes that
are presented in Fig. 6.6 has been considered. First system implementations deployed a
data passing scheme based on direct transactions from source (the initiator in SystemC
nomenclature) to the sink (the target) module. This scheme, shown in Fig. 6.6(a), required
long synchronization periods lasting a significant number of cycles that were directly re-
lated to the number of data elements to send. This became a probable system performance
bottleneck in case most of the internal register arrays of the module, due to prohibitively
high implementation costs, were to be eliminated and implemented in BRAM memories
(Fig. 6.6(b)). In many cases, received data no longer fit in the reduced register set, and
therefore they had to be, either used directly after being received, or stored in BRAM mem-
ories. Storing data in memories meant that the data had to be loaded before being used,
thereby it effectively doubled the data reception cost for a direct transmission scheme.

Furthermore, for modules implemented using only one thread, direct transmission re-
quired that during the synchronization period all other processing of modules participating
in the transmission had to be suspended. This problem was solved by the introduction of an
indirect transmission scheme based on shared input/output memories (Fig. 6.6(c)). In this
line, a shared memory is defined and accessed by more than one module. In this scheme,
data are stored before, and read after the synchronization takes place. Thus, duration of syn-
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chronization periods are minimized and their duration does not depend on the cardinality of
the set of transmitted data.

In order to match requirements of modules with highest workload, a version of the in-
direct transmission scheme with separated input/output management threads, presented in
[TSC+09], could be used. In this scheme a total of three threads are present, as shown
in Fig. 6.6(d). The input thread maintained synchronization with the previous module and
copied the data into memory accessible by the main thread. The main thread processed the
data and stores the outcome of the carried out processing in a memory accessible by the
output thread. The output thread stored data in the shared output memory and managed
synchronization with the following module (input) thread. Due to the exclusive memory
accesses policy, each of module’s threads was granted with only one-way memory access
rights. Thus, implementations that made use of separate communication threads required
dedicated doubled memories used for communication between the input/output threads and
the main thread. In this scheme the output thread is granted one-way write exclusiveness,
allowing it to write data directly into the input memory of the next module. Once the output
accesses are concluded, the thread marks data in shared memory as valid and synchronizes
with next module’s input thread waiting for data reception acknowledgement. When the
input thread reaches the synchronization point, it immediately signals data reception ac-
knowledgement to the output thread, updates data offset value and marks the data as ready
for processing by the main thread. Once a reception acknowledgement is received by the
output thread, it ends the synchronization period, the thread updates its data offset value and
resumes processing.

In order to allow the above-described type of processing, our implementation of indi-
rect communication uses shared memories with separated memory spaces employing the
exclusive memory accesses policy in order to pass data from the source to the sink module.
A simplified architecture of a shared memory with unified and separated memory spaces
(hereafter doubled memory map) is presented, respectively, in Fig. 6.7(a) and Fig. 6.7(b). It
is important to notice that this scheme assumes that the modules relation is of unidirectional
type. That is, only one module, of the pair that accesses it, is accessing the write port and
the read port is accessed exclusively by the other module. The write and read address spaces
of a doubled memory are separated. These address spaces are swapped after each modules
synchronization. Having processed one macro-block, the source module stores the outcome
in shared memory and synchronizes before switching to the alternative (doubled) memory
space mapping. The sink module synchronizes, swaps its memory space, so that it coincides
with source’s previous memory mapping and starts processing the input data. This scheme
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Fig. 6.7 Defined memory mappings: (a) single and (b) doubled.

prevents data hazards, minimizes the number of cycles spent on synchronization that could
be used for processing, and allows simultaneous read and write accesses. Furthermore, as
the data are stored in memory, there is no direct transmission and the module is free to load
and process the data at its pace.

Moreover, BRAM memories have a fixed (vendor and technology dependable) minimal
allocation size, which in most cases was greater than the required memory size, even after
doubling. Thereby, memory size doubling did not result in a significant increase of the
number of BRAM instances required for implementation. In the case of the targeted Virtex
5 FPGA technology the Block RAMs are fundamentally 36 Kbits in size.

The final version of the system employed the direct transmission scheme only for data
reception from the input. The rest of the system employed the indirect transmission scheme.
The variant with separated input/output threads for most modules turned out to be an overkill
and a waste of memory resources, and was not implemented. The sole exception to this rule
was the MBcollector which implements a two-threads architecture with the additional thread
used to handle the output communications. The memories used for passing data between
the modules implemented doubled memory mapping.

6.3.2.3 Memory throughput assurance

In order to increase memory throughput, our implementation uses a mix of memory repli-
cation and data coalescing techniques. The former is based on using multiple memory
instances storing additional copies of data that are readily available for access. This allows
multiple simultaneous loads at the cost of multiplied memory storage requirements. Data
coalescing allows accessing several data elements during one transmission cycle by their
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Fig. 6.8 Examples of data coalescing and memory replication: (a) data coalescing without memory
replication, (b) data coalescing with four-way memory replication, (c) data coalescing with
extended width of memory elements, and (d) data coalescing and data passing using shared
memories.

concatenation and transmission over wide (in the sense of number of bits) communication
buses. The drawbacks of data coalescing are: increased complexity of data elements ex-
traction, and, for irregular memory accesses, increased complexity of address generation.
Moreover, multiple data sources and wide data buses may result in higher resource utiliza-
tion, fan-out and critical path latency.

In Fig. 6.8 some variants of data coalescing and memory replication investigated for
implementation by the source (initiator) and sink (target) modules are presented. For direct
connections (Fig. 6.8(a), 6.8(b), and 6.8(c)), that is when the two modules transfer the data
over point-to-point interfaces without storing them in any intermediate structures, the target
modules have to be capable of receiving and processing the coalesced (or extended) data
word in the time reserved for one transmission. As soon as the processing is terminated the
outcome is stored in memory, and the registers are used for reception of subsequent data.
The storage element can be either the coalesced data word or a singular data element. The
choice of storage element granularity is made based on the received data bit width and the
number of the words (to be) received. If the data can be processed in that time and the data
fit in the register sets they can be received and locally stored in registers. Otherwise, they
have to be stored in memory before processing can be applied.

The internal architecture of a module can be characterized as either with single, or with
replicated input/output memories. Considering the scenario in which these memories have
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the same width, the number of subsequent accesses and cycles used for synchronization
needed for the latter scheme is reduced. Thereby, for a coalesced data word comprising four
data elements, the initiator module with only one memory of data element width requires
four memory accesses in order to create a data word and send it (as shown in Fig. 6.8(a)).
If the initiator could access multiple memories, the time needed for data loading would be
reduced proportionally to the number of memories that can be accessed concurrently. For
the given scenario, for the initiator to be capable of loading a word that comprises four
data elements/chunks in time of one memory access, four-way replication, resulting in four
available memories, would be sufficient.

Considering the case of direct transmission and assuming that memory access time is
equal to data transmission period, in order to send/receive one coalesced data word per data
transmission period, the data word has to be created-from/broken-up-into chunks during
the cycle budget reserved for data transmission. In order to meed this requirement the total
module memory throughput of at least one data word per data transmission period is needed.
The above can be achieved by means of memory replication as shown in Fig. 6.8(b) allowing
concurrent accesses to replicated memories in order to load all the necessary data elements,
which will be concatenated in order to form the coalesced word, during the time reserved for
one data word transmission. In this case, on the target side the received word is broken up
into into data chunks, with each data element being immediately stored in a different mem-
ory instance. Data word creation is performed during the data transmission period, thus,
no time dedicated for processing is consumed. Nevertheless, data word creation just before
its sending may result in longer latency for data sending, as the data to be sent may need
more time to stabilize due to data elements concatenation. Moreover, memory replication
multiplies the number of memory resources needed for instantiation.

In order to alleviate the drawbacks of memory replication, a scheme based on mem-
ories storing data elements of bit-width equal to the coalesced data word bit width were
introduced where necessary. In this scheme, modules also use internal memories/regis-
ters of packet width. When used in both the initiator and target modules, as presented in
Fig. 6.8(c), this scheme allows loading, sending, and storing of a whole coalesced data word
per one data transmission period. The main disadvantage of this scheme is the fact that the
coalesced word has to be created and broken up into chunks outside the communication
processing, consuming some part of the time that otherwise could be used for processing. It
should be noticed that, for sequential data accesses, performance of both solutions, that is,
memory replication and memories storing coalesced words with increase bit-width, can be
approximated as being equal. Nevertheless, the latter allows significant reduction in number
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of memory instances if the total size of the memory after consolidation is smaller than the
minimal (vendor and technology dependent) size of a BRAM instance.

Data coalescing plays an important role in provision of sufficient memory throughput
where it was most required. An example of this is the implementation of the entity respon-
sible of carrying out the interpolation process (holes filling), presented in Section 6.3.3.2.
This process required up to 24 pel values to be loaded for each encountered hole. In order
to meet the performance threshold pels were concatenated into bundles of four 8 bit values
(32 bit data word) and stored in four memories (four-times replication). This organization
allowed loading of all the necessary pels in time of four memory accesses, leaving more
time for processing and facilitating meeting of the performance requirements.

The introduction of an indirect communication scheme, using an inter-module shared
memory as shown in Fig. 6.8(d), solved the problem of long synchronization periods en-
countered in direct communication. As a result, the time spent on data unpacking became
independent of the number of accesses required for (coalesced) data word creation, as long
as these words were readily available from the shared memory. Relaxed performance re-
quirements let the initiator module to carry out data word creation at its own pace and, only
after all data have been processed, synchronize with the target. A side effect of this is a
seamless coalescing scheme in which (sub)modules dedicated to data coalescing could be
introduced into the system, in order to carry out the communication and data coalescing in
parallel with computations. In cases when the memory throughput offered by this solution
is not sufficient, the effective memory throughput could be further increased using memory
replication —so that multiple concurrent accesses to the shared memory can be carried out
in parallel.

6.3.3 Data dependency in holes filling

The amount of the additional information possible to be extracted and fused with the to-be-
super-resolved LR pels is determined by the acquisition setup, deployed image registration
(motion estimation) performance and the super-resolution kernel parameters values. Some
of the crucial parameters are the search area size and number of frames in the sliding frames
window (SFW). With the increase of these parameter values, the possibility of encountering
additional information increases as more candidate-pels are being used in motion estimation.
However, even in case of a favorable setup, the usable information tends to be scarce and
its distribution is non-uniform. A common scenario is the one in which for most of the
coordinates of the HR representation of the macroblock there’s no additional information.
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In other words, the post-fusion pel value associated with the HR coordinate is zero. For the
sake of satisfactory output quality, these coordinates cannot be left with this value. Thus, for
all coordinates with zero value (holes) new values need to be estimated. The estimation of
these values, in the case of the considered (SRiuma) implementation of the NUGP algorithm
is carried out by means of the non-uniform mean-nearest neighbor interpolation. The new
value to substitute the one held by a ‘hole’ pel is estimated based on its neighbor pels’
values.

6.3.3.1 Problem statement and implications

The interpolation process requires that a square-shaped neighborhood of the coordinate
which value is being computed, be readily available for access. The boundaries of this
neighborhood are determined by the value assigned to the intwindow parameter and frame
borders (which effectively crop the neighborhood). The intwindow parameter specifies the
maximal distance (computed as the absolute difference of HR coordinates) from the to-
be-filled coordinate that a pel coordinate can have in order for its value to be allowed to
contribute to the process of new value creation. A graphical interpretation of the interpo-
lation window and the way it is used to specify the neighborhood spread is presented in
Fig. 6.9. In order to determine the set of pels needed for a MB interpolation it is necessary
to consider the interpolation neighborhood of all pels that constitute a MB. Thus, the set
that contains all pels that can contribute to interpolation of all pels of a MB is defined as a
superposition of pels contained in neighborhoods of all pels contained within the MB. As
shown in Fig. 6.9, this set comprises all pels of the MB currently being processed and a
set of pels belonging to adjacent MBs that are within the distance of intwindow from the MB
borders.

When super-resolution is carried out at frame-level the necessary neighborhood pels are
always readily available from the memory as the HR grids represent a complete frame. The
switch to the macroblock-level processing leads to elimination of the frame-level memo-
ries, introduces data partitioning into MBs and significant changes in the execution flow.
All of the aforementioned changes effect in a situation in which only a subset of pels mak-
ing up the frame is available at a given moment. Thus, for some coordinates not all of the
pels required in the interpolation process are available. Namely, a subset of pels from the
MB borders that fall within the so called interpolation window requires pels belonging to
the adjacent borders of adjacent MBs. For most MBs, the information necessary to carry
out the processing for these pels may not be available at the time of reception of this mac-
roblock. As a consequence of not all frame pels being readily available from the beginning
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of the process, data dependencies arise and cause complications in the implementation of
the interpolation process. In particular, the rightside columns and the downside rows of the
macroblock being processed, that fall inside the interpolation window, cannot be processed
as not all of the pels that make up their neighborhoods are readily available.

When processing is carried out at MB-level, the value of the intwindow and MBsize pa-
rameters, apart from determining the overall amount of data for which the interpolation
process has to be carried out, also determine the current workload, defined as the data for
which the processing can be started at the moment of MB reception. When looked at from a
different perspective, these parameters specify the pels whose processing does require pels
from different macroblocks, and which effectively, present data dependencies and cannot be
processed at reception time.

For constant (non-variable) size MBs, a MB can have up to 8 immediate neighbors. The
actual number depends on MB’s location within the frame. The data that presents MB de-
pendencies can be further divided internally into 8 regions with different data dependencies.
A simplified representation of this division is presented in Fig. 6.10(a), where the depen-
dencies are labeled as: U, L, R and B, meaning that they dependent on upper, left, bottom
or right neighbor’s pels, respectively. Regions marked with labels consisting of two letters
present dependencies on pels of two neighboring MBs. The dependencies are mutual, and
none of the coordinates that present data dependency can be processed until both pels val-
ues are readily available. Considering that MBs are processed in raster scan order, those
8 dependencies (no dependencies being the 9th type of dependency) can be generalized as
resolvable or non-resolvable at the time of reception. The former type comprises data de-
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Fig. 6.10 Data dependencies regions and types within the interpolation window at the time of a mac-
roblock reception.

pendencies that depend only on previously processed MBs received and can be processed if
the data were stored and are available. The latter type comprises dependencies that cannot
be resolved at the time of MB reception as they reference data that will be provided in the
future and cannot be made available beforehand. One should note that the dependencies are
not equally present for all MBs of a frame. Some of the dependencies do not arise for MBs
that belong to the frame borders as some of their immediate neighbors do not exist. Assum-
ing raster scan order of execution and that the left and upper neighbors pels can be made
readily available, the dependencies of the U, L and UL type are resolvable at the time of MB
reception. On the other hand, regions with the B and R dependencies are non-resolvable at
that time. When new data are introduced into the system and processed, the non-resolvable,
at the time of reception, dependencies of the previously processed MBs may become re-
solvable. The R dependencies become resolvable as soon as the next MB (right neighbor)
is to be interpolated (with the exception of the MBs that do not have neighbor to the right).
The B type dependencies hold until a complete row of MBs is processed (with the exception
of the MBs that do not have neighbors below, for which the B type dependencies are not
present). A generalized view on the division of the interpolation neighborhood into regions
based on dependency resolution at the moment of MB reception is presented in Fig. 6.10(b).

An additional side-effect of data dependencies is the necessity of supporting process-
ing workload which cardinality varies along the frame coordinates. The workload increases
along with the horizontal and vertical coordinates as the macroblocks from second row/col-
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umn process some data of the upper/left neighbors. Macroblocks in the last row/column,
due to the lack of the bottom neighbors are responsible of processing more of their data.
The least and the most workload has been observed for the first and the last macroblock of
the frame, respectively.

6.3.3.2 Implemented solution

During the development the following issues had to be tackled: (1) the value of the intwindow

parameter had to be determined, (2) the actual workload for each MB had to be determined,
(3) future processing of the temporarily unresolvable dependencies had to be allowed, and
(4) sufficient memory throughput had to be assured.

6.3.3.2.1 Interpolation window size specification. When processing is carried out at
MB-level, the value of the intwindow parameter, apart from determining the amount of the
workload of the interpolation process, also determines the set of pels that present data de-
pendencies and the size of interpolation buffers needed for data dependencies management.
For our implementation, we have considered the use of three values of the interpolation win-
dow, namely the window radius of 1, 2 or 3 pels was contemplated. Based on the observed
experimental results for these configurations the interpolation window value has been fixed
to 2. Use of this value has an advantage of preventing the interpolation windows of the non-
immediate neighbors to overlap due to its value being smaller than the half of the spread of
the minimal MB width/height.

6.3.3.2.2 Workload determination. As aforementioned, the amount of data with re-
solvable dependencies is directly related with MBs placement within the frame. Mac-
roblocks belonging to the frame borders present different data dependencies that mac-
roblocks from further within the frame, and effectively required different amount of work-
load to be processed. Going into details, MB placement determines the existence (or non-
existence) of its immediate neighbors, which specifies which data dependencies hold. In
our implementation, the actual workload is being determined based on the distance (in HR
coordinates) of the MB borders from the frame borders as this determines the existence
of MB’s neighbors and the limits of the neighborhood (that cannot extend beyond frame
borders). Considering this criterion, 9 possible MB positions within the frame can be distin-
guished. The distinguished 9 MB positions and the corresponding codifications of them as
MB placement flags are presented in Fig. 6.11. Gray squares without a number, centered on
the squares that contain a number, represent the immediate neighborhood of the latter. The
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Fig. 6.11 Placements of MBs within a frame that change the number of pels within interpolation
window.

MBs located in each of frame corners (marked as 1–4 in Fig. 6.11), belonging to a frame bor-
der but not located in the corners (5–8), and not belonging to frame borders (9) are assigned
a different type. The distinguished MB positions are codified as a set of four bits, referred
to as MB placement flags, namely: bottom_border_flag (or f lagsMB

bottom), left_border_flag

( f lagsMB
le f t), right_border_flag ( f lagsMB

right) and top_border_flag ( f lagsMB
top ). Each of the flags

was set if the current MB’s border also belonged, respectively, to the bottom, left, right and
top border of the frame. The f lagsMB

top and f lagsMB
bottom flags, are set if MB’s upper or bottom

border corresponded to frame upper or bottom border (the MB is located in the first, or last
row), respectively. In a similar fashion, the f lagsMB

le f t and f lagsMB
right flags are set if the MB

was located, respectively, in the first, or last column of the frame. Based on these flags the
actual workload was determined and enforced by means of limiting the range of addresses
accessed during the execution of interpolation. In our implementation the MB placement is
expected to be determined and codified outside of the SRK module and then passed to the
super-resolution kernel as a part of the input. The MB placement within the frame was set
by the testbench and then propagated along the data path being passed from one module on
to next one along with the (corresponding) MB pels.
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6.3.3.2.3 Data buffering. Data dependencies resulted in the necessity of buffering the
data that cannot be processed at the moment of MB reception until the data dependencies
can be resolved. The data that have to be buffered are the ones belonging to the regions with
unresolvable dependencies. As presented in Fig. 6.10(b), with the regard to the received
MBs, these regions included the intwindow right-most columns and down-most rows. The
right-most columns’ pels could be processed with the following macroblock and, thus, are
stored in local registers. The down-most rows’ pels have to be stored until the pels of the
macroblocks below them are available. This means that intwindow rows of a whole row (plus
1, due to dependency on bottom-right neighbor) of macroblocks have to be buffered. This
set proved to be too numerous to be stored in registers and its storage was implemented using
standalone module encapsulating RAM instance referenced in this work as the intbu f f er.

For the used interpolation method, the pels that make up the execution context are the
ones presented in Fig. 6.10(a). In our implementation, at MB-level the actual execution of
holes filling is carried out over a set that comprises all of pels belonging to the execution
context that are readily available. This set corresponds to a subset of the set presented in
Fig. 6.10(a) which comprises the MB pels plus the pels of the left and upper neighbor that
are stored in the buffers. In our implementation this set is stored in the so called pel map.
A high-level view of the pel map organization is presented in Fig. 6.12. Once available, the
MB pels are stored in a dedicated pel map area (defined address range). The regions with
unresolvable dependencies (labeled as B/BL/BR and R/UR/BR) are stored in registers and
RAMs until the dependencies are resolved. At that time, these pels correspond to the upper
and left neighbor of the currently processed MB. Thus, when loaded from the buffer they
are stored in the pel map in regions mapped to the corresponding regions of these neighbors.
The current content of the pel map and the buffers loads/stores are managed based on the
MB placement. Actual workload is specified based on the range (or number) of addresses
for which holes filling is to be executed. The used address range is limited based on the
received MB placement flags. A thing to notice is that the actual pel map implementation
uses 1D linear addressing in order to meet the requirements of RAM instantiation.

6.3.3.2.4 Memory throughput assurance. For implemented interpolation window pa-
rameter value of 2 (intwindow = 2), up to 24 values can contribute to the process of one hole

value estimation. For high number of holes the sheer number of accesses becomes a likely
system bottleneck.

In order to tackle high performance requirements that the holes filling process poses and
to meet the target performance this process has been decomposed into two stages, one that
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carries out memory management and the other that implements the interpolation. Each of
these stages was encapsulated as a separate SystemC module, the HolesFillingPrep and the
MeanNearest module, respectively. In accord with the scheme presented in Section 6.3.2.2
data passing between these modules was carried out using a shared memory with doubled
memory address space. This memory represented the pel map structure and acted as the
output/input of the respective modules. The HolesFillingPrep module was responsible for
loading the appropriate MB context pels, management of the interpolation buffers and data
dependencies.

There were many reasons justifying the carried out decomposition into submodules.

(i) Decomposition into two submodules effectively (almost) doubles the cycle budget for
the holes filling transformation, allowing to use more cycles for each of the tasks.

(ii) Smaller modules result in better performance of the tools in terms of optimization of
the critical path latency (at the cost of overall area growth)

(iii) Decoupling of data preparation from computations lowers the cost (in terms of area)
of the computation units replication as replication of data preparation logic is limited.
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(iv) Finally, the remaining idle cycles leave some room for customization, in terms of
broader ranges of algorithm parameters and/or data, without the need of module’s
redesign.

Even the decomposition the holes filling transformation did not assure that the worst
case scenario can be processed within the (now doubled) cycle budget. Additional steps, fa-
cilitated by the decomposition were introduced. The MeanNearest module was replicated,
allowing for the workload to be split between two computational units. In order to increase
the memory throughput, additional cycles were used on implementation of data packing.
Before being stored in pel map, the received context pels (8 bit values) are packed into one
32 bit word. The pel map memory used for data passing was also replicated, resulting in
total of 4 pel maps being instantiated (2 for each MeanNearest module). Memory dupli-
cation requires additional resources but effectively doubles the overall memory throughput
allowing for the MeanNearest module to issue up to two accesses simultaneously loading
quadrupled elements, effectively accessing up to 8 pels in one cycle. All of the above mod-
ifications and tweaks reduced the number of required memory accesses while also reducing
the amount of processing that needs to be carried out by a singular MeanNearest module
instance. The data flow of the holes filling implementation after the described modifications
is presented in Fig. 6.13.

6.3.4 Variable size of search area

In frame-level processing flow, all pels belonging to a search area (SA) are readily available
from the frame buffer of the super-resolution kernel. After switching to MB-level pro-
cessing, the frame buffer was removed. This resulted in the necessity of search area pels
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extraction from a different source and their propagation to the super-resolution kernel.

6.3.4.1 Problem statement

In our implementation, the search area pels are extracted outside of the super-resolution ker-
nel and fed to it as input. Only the SA pels which coordinates are valid frame coordinates are
used in the SR processing. The SA pels which coordinates point outside of frame borders
are not available and cannot be loaded. The pels that are not loaded can be, either, (i) as-
signed a value equal to zero (hereinafter zero padded) and sent to the kernel, or (ii) not sent
at all. The former scheme is easier to be managed as the number of pels that are sent to the
kernel, search area grid (storage structure), and the MB upper left corner coordinates within
the search area grid are constant throughout the execution, for a given SRK parameters con-
figuration. On the other hand, zero padding can be considered a waste of processing power
and cycles. This waste could be avoided by sending a set comprising only the available
pels, which cardinality is not constant. A side effect of not sending the padding pels is the
decoupling of the geometrical relations of pels being send from the actual search area. This
leads to the requirement of the actual search area to be reconstructed from the pels bundle
being received prior to its use. In both cases, the way in which the frame borders clip the
search area and effectively limit the regions of valid data has to be somehow signaled to the
core.

6.3.4.2 Implemented solution

In order to avoid the necessity of padding and only transfer the relevant (non-padded) pels,
our implementation allows receiving SAs that contain variable number of pels. In order to
do so, two issues had to be solved: (i) the structure of the received pels bundle and the limits
of valid data had to be signaled to the kernel, and (ii) the placement of the MV reference
point, the upper left corner of the MB, within the received search area to be determined
in order to allow correct MV processing and data extraction further in the data path. Both
of the above are determined by the MB and search area location within the frame and the
search area radius.

The number of pels in search area depends the SAR and MBwidth SRK parameters and
the SA placement within the frame. This relation is similar in nature to the problem of
determination of the number of neighbors that a MB has which solution has been presented
in Section 6.3.3.2.2. The SA placement determination has been solved in the same manner,
that is by providing a description of the SA placement codified using four values which are
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fed to the SRK alongside the SA pels. An additional problem with the search area is that it
could be clipped by frame borders while spanning over a variable number of macroblocks.
The number of MBs included in each direction of the SA had to be known, as it is required
in order to determine the location of the upper left corner of the MB being processed and the
overall limits of valid data in the SA structure, which are defined in relation to that point.
To handle this problem, if a SA border points out of the frame limits (and is clipped), the
corresponding flag from a set of SA-flags is assigned the number of MBs that fall within
the SA in that direction. If search area is contained within the frame (and not clipped) the
corresponding flag is cleared (assigned the value of ‘0’). The MB placement flags are used to
detect the cases when the MB border overlaps with the frame border. In this case, signaled
by the MB placement flag being set, the corresponding SA placement flag is considered
invalid and the span of search area in that direction is set equal to zero. The SA placement
and the MB placement flags allowing determining the location of the MV reference point
and the limits of valid data regions based on the value of SAR and MBwidth. These data are
crucial in order to correctly compute the linear address that is used further in the data path
(in order to access data stored in RAM). The former value is determined by the left and top

flags in accord with (6.2). The latter also depends on the remaining right and bottom flags,
and is determined using (6.3).

re f MV
x =





0 i f f lagMB
le f t = 1,

SAR i f f lagMB
le f t = 0 and f lagSA

le f t = 0,

f lagSA
le f t×MBwidth +1 otherwise

re f MV
y =





0 i f f lagMB
top = 1,

SAR i f f lagMB
top = 0 and f lagSA

top = 0,

f lagSA
top×MBwidth +1 otherwise

(6.2)
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limitSA
x =





re f MV
x +MBwidth i f rightMB = 1,

re f MV
x +MBwidth +SAR i f f lagMB

right = 0 and f lagSA
right = 0,

re f MV
x +(1+ f lagSA

right)×MBwidth otherwise

limitSA
y =





re f MV
y +MBwidth i f f lagMB

bottom = 1,

re f MV
y +MBwidth +SAR i f f lagMB

bottom = 0 and f lagSA
bottom = 0,

re f MV
y +(1+ f lagSA

bottom)×MBwidth otherwise
(6.3)

The mechanism of SA-flags values computation for a clipped search area is presented
in Fig. 6.14. In this figure, two out of four borders of the search area span over frame
borders, and hence have to be clipped. The right and upper SA borders span over two, and
one MB, respectively, before being clipped, thus, corresponding right ( f lagSA

right) and top

( f lagSA
top) flags of the SA flags set values would be 1 and 2. The bottom and left borders

span over the frame without crossing the frame borders, therefore the corresponding SA
flags, the f lagSA

bottom and f lagSA
le f t would be cleared (zeroed) as these borders are not clipped

by frame boundaries. By assigning the search area start to be placed at (0,0) coordinates, the
placement horizontal and vertical coordinates of the MV reference ( marked with a black
circle) can be reconstructed as re f MV

x = SAR and re f MV
y = f lagSA

top×MBsize, respectively.
The span of the clipped search area can be described by the search area limit (white dot
with black lining). In this example the placement horizontal and vertical coordinates of
that point are be computed as limitSA

x = re f MV
x +( f lagSA

right + 1)×MBwidth and limitSA
y =

re f MV
y + SAR+MBheight . These values are used to compute the linear addresses used to

extract the pels indicated by motion vectors.

This type of codification allowed to precisely determine SA grid dimensionality, MB’s
positioning within the SA grid and correct processing of SA with variable size, including
only the required pels. If zero padding would be implemented, the grayed regions of the
search area in Fig. 6.14 would have to be padded with zeros and sent to the kernel. The
reduction in traffic is depends on the search area radius (SAR), input frame dimensionality
and MB size (or width for square shaped MBs), and does not depend on the frame content.
The expected reduction as function of used SR parameters for the case of QCIF reference
frame is presented in Table 6.1. Search area size was computed using the equation for SALR

from Table 4.1 presented on page 114. As shown, when implemented, this scheme can result
in saving of up to around 13% of accesses to pels that need to be transmitted per reference
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Fig. 6.14 Example of search area clipping by frame borders.

QCIF frame.

6.3.5 Grids construction and management

The reference software internally operates on grids which are used to represent images/frames
at different stages of processing. These grids are instantiated as 2-dimensional arrays that,
in the initial implementation, were precision2

me (HR grids) or scale2 (SR grids) times larger
than the input images (LR grids) from which they were created. This became a possible
system bottleneck and required optimization.

6.3.5.1 Problem statement

A HR grid is constructed from a LR image by means of upsampling with the factor of
increase in size equal to precisionme. During the upsampling process the array is zeroed
and the loaded LR pels are placed at locations determined by the computed horizontal
(coordinateHRx) and vertical (coordinateHRy) grid (HR) coordinates. A SR grid is con-
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TABLE 6.1 Expected savings gained by using the implemented scheme and allowing variable search
area size vs padding with zeros for a QCIF (176x144 pels) reference frame. Total numbers
of search area pels was computed using the equation for SALR from Table 4.1.

MBwidth
Search Pels/Accesses Saved accesses

MBnrradius Per SA Total Total [%] Per MB
4 2 64 101376 2544 2.5 1.6 1584
4 4 144 228096 7616 3.3 4.8 1584
4 8 400 633600 38784 5.8 24.5 1584
4 16 1296 2052864 224000 10.9 141.4 1584
8 2 144 57024 1904 3.3 4.8 396
8 4 256 101376 5056 5 12.8 396
8 8 576 228096 15104 6.6 38.1 396
8 16 1600 633600 74496 11.8 188.1 396

16 2 400 39600 1664 3.8 16.8 99
16 4 576 57024 3776 6.6 38.1 99
16 8 1024 101376 9984 9.8 100.8 99
16 16 2304 228096 29696 13 300 99

structed from HR grids by means of downsampling with factor of
√

precision2
me/scale2.

During this process, the SR grid is zeroed and the pels from locations determined by the
computed horizontal (coordinateHRx) and vertical (coordinateHRy) grid (HR) coordinates
are placed at locations determined by the computed horizontal (coordinateSRx) and verti-
cal (coordinateSRy) grid (SR) coordinates. The downsampling operation retains scale2 pels
from each precision2

me pels bundle.

The proposed system defined two types of the HR grids, namely, the MB HR and SA
HR grids. As aforementioned, growth in dimensions of the HR representations depends
on the internal precision of processing specified by setting the value of the precisionme

parameter. Our implementation considers only the scenario of the quarter-pixel precision
(precisionme = 4). For this scenario, the presented approach results in grids being more
than 16 times larger than the LR representation, significantly increased memory storage oc-
cupancy and the number of cycles required for memory zeroing. The number of elements
in the MB HR grid — 28, 210, 212 for 4x4, 8x8, 16x16 macroblock sizes, respectively — is
significantly lower than the targeted cycle budget for all possible combination of algorithms
values planned to be supported. Thus, storage of HR grids representing MB was considered
an unlikely system’s bottleneck. And in case it would become one, the actual number of
memory access could be reduced using coalesced memory accesses/data words. The cardi-
nality of the SA LR and HR set is given in (6.4) and (6.5), where SAR represents the search
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area radius. Assuming that the execution time corresponds to the maximal number of ac-
cesses that can be carried out during this period, and using it as the maximal cardinality of
the SA set in (6.5) the maximal value of SAR can be estimated. Using the targeted budget of
2867 cycles (for MB4x4) and quarter-pixel precision, we get 2867 > 16× (4+2×SAR)2,
which leads to SAR ≤ 4. This value represents an overestimate as it does not take into
account the cycles required for synchronization and internal processing. Even so, this archi-
tecture gives no hope for/of meeting the targeted performance.

card(SALR) = (MBwidthLR +2×SAR)× (MBheightLR +2×SAR) (6.4)

card(SAHR) = card(SA)LR× precision2
me (6.5)

A thing to notice is that the SA HR grids are used to carry out the zeroes2ones, the
up-holes and the part of shift and add responsible of extracting the to-be-fused pels from
search area. The fusion process accesses only the subset of the search area HR grid which
cardinality is limited the cardinality of the MB HR grid, and thus, its memory occupancy
and execution time does not increase with SA growth. The remaining two transformations
that access the SA HR grids, zeroes to ones and up holes, were encapsulated by the UpHoles

module.

6.3.5.2 Implemented solution

Theoretical analysis showed that the straight forward management of the grid construction
implemented in the reference software leads to a system bottleneck.

In the proposed implementation, the problem with SA HR grids was solved by an inter-
mediate memory addressing scheme that presented with (HR) grid coordinates was able to
provide correct data operating on the LR representation. This scheme, already presented in
Section 4.6.1, is based on the fact that the SA grids structure is regular with relevant data
being only the LR data stored at addresses with coordinates for which the relation (6.6) and
(6.7), where % represents the arithmetic modulo operator, are true.

coordinateHRX % precisionme = 0 (6.6)

coordinateHRY % precisionme = 0 (6.7)

If the HR coordinate points at a full-pixel location, its LR coordinate counterpart address is
computed as in (6.8) and the LR value identified by the LR coordinate is loaded. If the HR
coordinate addresses a sub-pixel location no LR coordinate address is generated, instead,
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the macroblock pel value located at the HR coordinate is set to zero.

coordinateLR

(
coordinateHRX

precisionme
,
coordinateHRY

precisionme

)
(6.8)

Use of the above presented approach allows reducing the size of search area grids to the
size of the input (LR) content. By substituting SALR from (6.4) with the targeted budget of
2867 cycles (for MB4x4) we get 2867> (4+2×SAR)2, which leads to theoretical limitation
on search radius of SAR ≤ 24. Even though in reality this margin/number was expected to
be smaller, due to some cycles being spent on other tasks, it allows supporting the targeted
range of SAR values without the need of using data word coalescing. The reduction in the
observed execution time comes at the expense of, in the worst case scenario, one modulo,
one comparison, and two division operations. The implementation of division and modulo
is much simplified when precisionme is assigned a value being a power of two. In that case,
division is performed by right shifting the dividend, and modulo operation is carried out by
extraction of a number of least significant bits of the operand. Implementation of division
for other precisionme values can be troublesome and introduce unacceptable latency.

The implementation of the above-mentioned modifications results in reduced memory
occupancy at the cost of increased logical occupancy (LUTs). We consider this ‘trade’ to
be a favorable one for two main reasons. First, the memory requirements for the reference
implementation scale exponentially with the increase of search area size while the traded
logical occupancy can be considered insignificant. Second, the memory is more likely to
become the main system’s bottleneck.

Further improvement could be obtained through modification of the ME process so that
it would (i) provide the samples of the best candidate macroblock along the MV and SADs,
and (ii) use coalesced data word in transmissions. This effectively would remove the ne-
cessity of the UpHoles block implementation, simplify the ShadStep module execution flow
and allow to obtain additional speed up by preforming coalesced data accesses.

The modified addressing was implemented for the MB HR grid creation and accesses
carried out to it from the ReapSteps modules. All other MB HR grids in the data path
required access to all HR coordinates of the MB HR grid.

Further execution speed up was achieved by using coalesced memory access to the SR
HR grids. By accessing x chunks of data at once we could speed up the storing/loading by
x. Execution could be further sped up by using a custom vendor specific RTL RAMs with
optimized reset, as this would help to significantly reduce the number of cycles required
for zeroing of the memories. Most importantly, both of these techniques do not results in
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reduction in memory occupancy. Moreover, implementation of the vendor-specific RAM
IPs would have to be enforced by manual modifications of the resulting RTL description
using vendor specific libraries. This would significantly limit the portability of the design.
Thus, a different solution was sought for.

6.3.6 Frame window size determination

The concept of sliding frame window was used in order to provide support for dynamic
super-resolution. The exact number of frames that are included in the SFW varies through-
out the execution. This behavior requires some mechanism to be handled properly.

6.3.6.1 Problem statement

As stated in Section 2.2.4.1, the SFW can be seen as composed of two sets of frames: the
frame being processed and a neighborhood comprising its preceding and succeeding frames.
For the first frame of the sequence there are no previous reference frames available, thus, the
SFW only contains the frames succeeding the one being processed. Having processed each
frame the SFW has to be updated to include the processed frame in the preceding frames set.
Analogously, when reaching the end of the sequence the number of SFW frames decreases,
as there are no further frames (past the sequence limits) to be added to succeeding frames
subset of the SFW.

6.3.6.2 Implemented solution

In our implementation, a variable number of frames in the SFW is managed by means of
internal counters and external flags signaling state transitions. At any given moment, after
being initialized, the system can be in one of three states, corresponding to the scenarios
in which: (i) the preceding frames number has to be incremented, (ii) the SFW is fully
occupied, and (iii) the succeeding frames number has to be decremented. The distinction
between the preceding and succeeding frames set is not reflected in the implementation,
as processing of these sets is the same, and the system needs to know only the number of
reference structures to access.

For the first frame there are no previous reference frames and more than the maximal
allowable succeeding frames available. Thus, initialization is carried out by setting the
number of reference frames to the number of maximal value of the following reference
frames (set at synthesis time). This value is incremented with each following SFW update,
until the maximal allowed number is reached. This corresponds to the SFW being fully
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occupied. Once the last frame of the sequence is contained within the limits of the SFW, in
order not to reference frames beyond the limits of the sequence, the following update has
to result in decrementing the number of reference frames. For the same reason, the number
of reference frames is decremented with each following SFW update, reaching the maximal
number of preceding reference frames at the time of processing of the last frame of the
sequence. The frames number update conditions are summarized in (6.9), where, n is the
number of frames in the sequence, ni

RF represents the count of the reference frames in the
SFW for ith frame of the sequence (from 1 to n), maxPFS and maxSFS, refer to the maximal
cardinality of the preceding and succeeding frames set.

ni
RF =





maxSFS i f i = 1,

ni−1
RF +1 i f 1 < i≤ maxSFS +1

ni−1
RF i f maxPFS +1 < i≤ n−maxSFS

ni−1
RF −1 i f n−maxSFS < i≤ n

maxPFS i f i = n.

(6.9)

In the presented implementation, the presence of the first frame of a sequence and the
last frame within the SFW limits is signaled by setting or clearing a corresponding flag.
These flags are referenced as the new sequence (NS) and window limit reached (WLR) flag,
respectively. These signals generation logic does not form a part of the SR Kernel, and their
values are considered one of the input parameters of the core. In our case these signals are
set by the testbench module.

After being received from the input, these flags travel along the data path with location
flags. These flags and an internally stored frame counter are used in the process of deter-
mination of the SFW cardinality carried out by the ShadPrep module. The frame count,
WLR and NS flags are checked for the first MB of each frame. If the WLR signal is set, the
end of the sequence is within the forward frame window limits and the number of frames
comprising SFW is to be decreased. Otherwise, the frame count is checked. If the locally
stored frame number is lower than the number of frames to be included in the preceding
frames set, the number of frames is increased. The count of frames is incremented with first
MB of each frame and zeroed when the new NS flag is set. The number of reference frames
currently in the SFW is propagated to ReapSteps with first MB of each frame. This value is
checked in order to determine the ShadSteps with which the ReapSteps should synchronize
and from which it will request data. The implemented process of SFW cardinality determi-
nation based on flags values is the one from (6.10) and (6.11), where i represents the locally
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TABLE 6.2 An example of the SFW cardinality computations, WLR flag and u(i) values for a se-
quence comprising 300 frames (n = 300) and the maximal number of frames allowed in the
proceeding and succeeding frames sets equal to 2 (maxSFS = 2 and maxPFS = 2).

Frame Flag Update
ith ni

RF WLR NS u(i)
1 2 0 1 N/A
2 3 0 0 +1
3 4 0 0 +1

4· · ·297 4 0 0 0

298 4 0 0 0
299 3 1 0 -1
300 2 1 0 -1

stored frame number and u(i) represents the current iteration update. An example of the
SFW cardinality computations, NS/WLR flags and u(i) values for a sequence comprising
300 frames ( n = 300) and the maximal allowed number of the preceding and succeeding
frames set equal to 2 (maxSFS = 2 and maxPFS = 2) are presented in Table 6.2.

ni
RF =





maxSFS i f i = 1,

ni−1
RF +u(i) i f 1 < i≤ n

(6.10)

u(i) =





−1 i f NSi = 0 and WLRi = 1,

0 i f ni−1
RF < maxSFS +maxPFS

and WLRi = 0,

1 otherwise.

(6.11)

6.3.7 Division operation

Division operation is not a construct synthesizable by the used HL-synthesis tools. Thus,
this operation had to be either emulated by other operations (i.e. bit shifts (+ addition) or
multiplication) or implemented using a custom hardware module.

6.3.7.1 Problem statement

The typical software implementations use an algorithm based on counting the number of
subtractions carried out until the reminder becomes negative (e.g. [HN10]). Algorithm 1
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Algorithm 1 Division by successive substractions algorithm.
1: procedure DIVISION(dividend,divisor) ◃ Division of dividend by divisor
2: reminder← dividend
3: quotient← 0
4: if quotient ≥ divisor then
5: while reminder >= 0 do ◃ While the reminder is positive
6: reminder← reminder−divisor
7: quotient← quotient +1
8: end while
9: else

10: ... ◃ Handle division by zero exception.
11: end if
12: return quotient ◃ Return the result
13: end procedure

presents pseudocode of such an approach. This algorithm is known in literature as the gen-
eralized division. The main drawback of this algorithm is its variable execution time. Ad-
ditionally, the execution time is dependent on the run-time values being used in the process.
When a dividend >> divisor the number of iterations (∼cycles) required for execution is
increased significantly. These properties prohibit efficient hardware implementation.

In order to facilitate meeting the targeted cycle constraints, division was decided to be
implemented as a separate module. This solution was expected to allow data load and
store operations to be executed in parallel with the division, and facilitate performance cus-
tomization based on division module replication or pipelining. In order to alleviate the
aforementioned issues we considered two options: (i) use of a vendor specific divider IP or
(ii) provision of a custom implementation. In most cases the former is the better choice, as it
offers the best performance and its introduction requires the least effort. Nevertheless, in our
implementation we have decided to tackle the problem of division operation implementa-
tion by provision of a custom divider module. There were two main reasons for that choice,
namely customization possibilities and portability provision. The range of operations sup-
ported by the vendor-specific IP were considered to reach beyond our needs, leading to
waste of resources allocated for execution of operations never used in our implementation.
Moreover, use of vendor-specific solution leads to limited portability of the design and in-
creases the effort required for migration to other FPGA devices. Apart from facilitating
the possible migration, a custom implementation allows to optimize for the particular use
scenarios encountered in the system.
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6.3.7.2 Implemented solution

During the development the following issues had to be tackled: (1) division algorithm suit-
able for hardware implementation in FPGAs had to be chosen, (2) the chosen algorithm had
to be customized and prepared for implementation in SystemC, and (3) implementation had
to assure meeting the targeted cycle/latency budget.

6.3.7.2.1 Suitable algorithm determination. In the process of implementation several
division algorithms were taken into consideration, among others, the general, non-restoring,
converge, pre-inverted divisor and reciprocal division algorithms. All of these algorithms
are presented and evaluated, also in terms of possible hardware implementation, in [DBS06].
Generalized division algorithm was not implemented due to variable number of cycles that
it required, that became prohibitively high for dividends much greater than divisors. Con-
vergence algorithms were not used due to the large precision of the intermediate represen-
tations, required by these algorithms to converge, that required a number of bits surpassing
the one supported by the hardwired multiplication blocks. The pre-inverted divisor methods
were discarded due to the wide range of possible divisor values that would require large
look up tables.

6.3.7.2.2 Base 2 non-restoring division of integers. The implementation presented in
this work uses the base 2 non-restoring division algorithm. The used algorithm is a variation
of the one presented in [DBS06]. Having X represent the dividend, D the divisor, Q the
quotient and R the remainder such that

X = Q ·D+R, |R|< |D|, X ,Q,D,R ∈ N (6.12)

the base 2 non-restoring division algorithm can be executed as follows:

(1) Scale the divisor, so that it is greater than the dividend.

(2) Check the result of X ·D and determine first reminder (r0) and quotient digit value
(q0).

(3) Compute the subsequent p reminders and quotient digits value, where p specifies the
required precision.

(4) Correct the final reminder and quotient value if needed. Invert the scaling of the
quotient.
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Scaling of the divisor allows simplifying hardware implementation of the division. Cor-
rect scaling should result in the divisor having additional ‘leading’ digit over the dividend.
The only side effect of (over)shifting too much to the right could be the generation of ‘re-
dundant’ sign extension digit. Let m define the scaling implemented as shift by m positions
to the left. The result of X ·2m ·D can be determined by looking at sign bits of the arguments.
If X ·2m ·D < 0, then the first reminder (r0) is incorrect, thus, the corresponding digit of the
quotient (bit in case of base 2 system) (q0) is cleared. Otherwise, the reminder is correct
and the corresponding digit is set as in (6.13).

r0 =





X +2m ·D i f X ·D < 0,

X−2m ·D i f X ·D≥ 0
q0 =





0 i f r0 ·D < 0,

1 i f r0 ·D > 0.
(6.13)

The following reminder is computed based on the correctness of the current reminder. Up-
dating the remainder can result in: (i) correct remainder ri, when ri ·D > 0 — corresponding
to quotient digit qi = 1, or (ii) incorrect remainder ri, when ri ·D < 0 — corresponding to
quotient digit qi = 0. In case of the reminder ri being incorrect, then:

(i) the correct subsequent remainder is the ri = 2 · ri−1,

(ii) the base for next quotient digit determination is ri+1 = 2 · (2 · ri−1)−D, and

(iii) the value of base for next quotient digit determination could be obtained as a result of
delayed correction by adding D as in ri+1 = 2 · (2 · ri−1−D)+D.

Defining the current reminder as ri = 2 ·ri−1−D, the subsequent p < m reminders (ri+1) are
derived from the preceding one (ri−1) and the current quotient digit qi, as follows:

qi =





0 i f ri < 0,

1 i f ri ≥ 0
ri+1 =





2 · (2 · ri−1−D)+D = 2 · ri +D i f qi = 0,

2 · (2 · ri−1−D)−D = 2 · ri−D i f qi = 1.
(6.14)

The remainder obtained in the last step (i = p) could also be incorrect. In the case of
rp ·D < 0, remainder restoration, carried out by addition of D ·2m, is required. Finally, the
scaling applied to the divisor has to be inverted in order to obtain the final quotient value.
The quotient scaling is carried out as in (6.15).

Q = q0 ·2m +q1 ·2m−1 +q2 ·2m−2 + · · ·+qp−1 ·2m−p+1 +qp ·2m−p. (6.15)

The above-described algorithm forms the base and reference used for SystemC code
generation and validation. The control flow of the resulting implementation of the base 2
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Algorithm 2 Base 2 non-restoring division algorithm with delayed correction.
1: procedure DIVISON(dividend,divisor,m, p)
2: ◃ Division of dividend by divisor with precision p
3: divisor2m ← divisor << m ◃ Prescale the divisor by the factor m > p
4: {quotient0,quotient1, . . . ,quotientp−1,quotientp}← 0
5: if dividend ·divisor ≥ 0 then
6: reminder0← dividend−divisor
7: else
8: reminder0← dividend +divisor
9: end if

10: i← 0
11: while i≤ p do ◃ While the target precision p is not reached
12: if reminderi ·divisor ≥ 0 then
13: quotienti← 1
14: reminderi+1← 2 · reminderi−divisor2m

15: else ◃ In case of reminderi ·divisor < 0
16: quotienti← 0
17: reminderi+1← 2 · reminderi +divisor2m

18: end if
19: i← i+1
20: end while
21: quotient = {quotient0,quotient1, . . . ,quotientp−1,quotientp}
22: if reminderp ·divisor < 0 then
23: reminderp← reminderp +divisor2m

24: end if
25: return (quotient,reminderp >> m) ◃ Return the result
26: end procedure

non-restoring division is presented in Algorithm 2.

6.3.7.2.3 Division implementation. The execution time of the non-restoring division
depends on the required precision p as this parameter determines the number of main loop
iterations. In our implementation required precision is determined by the number of bits of
the greater of the dividend and divisor. This relation between the execution time tdiv of the
division and the bit width of the operands can be approximated as in (6.16).

tdiv ∼ max(dividendbitwidth,divisorbitwidth)≈ log2(max(divident,divisor)) (6.16)

In our implementation, division is required during the fusion and interpolation stages. For
the former, the required number of bits satisfactory for divisor representation depends on
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the maximal number of frames in the reference frames in the SFW (nmax
RF ) and maximal

(allowed) value of the fusion weight (weightmax
f usion). In case of the latter stage, the maximal

divisor bit width is derived from the cardinality of the pel neighborhood specified by the
interpolation window and the maximal value of the contribution weight (weightmax

int ). For
both stages, the dividend adds additional dependency on the maximal pel value (pelmax

val ) with
respect to the divisor dependencies. Thus, in both cases the dividend bit width dominates
the overall requirements. These relations are summarized in (6.17) and (6.18), and, (6.19)
and (6.20), respectively, for the fusion and interpolation stages.

divisorbitwidth
f usion ∼ log2

(
⌈nmax

RF ⌉×⌈weightmax
f usion⌉

)
(6.17)

dividendbitwidth
f usion ∼ log2

(
⌈nmax

RF ⌉×⌈weightmax
f usion⌉×⌈pelmax

val ⌉
)

(6.18)

divisorbitwidth
interpolation ∼ log2

(
(int2

window +1)2×⌈weightmax
int ⌉

)
(6.19)

dividendbitwidth
interpolation ∼ log2

(
(int2

window +1)2×⌈weightmax
int ⌉×⌈pelmax

val ⌉
)

(6.20)

Substituting the parameters with their respective values we obtain the same requirement
of 13 bits. Thus, implementation arguments bitwidth can be limited to 13 bits.

dividendbitwidth
f usion ≈ log2 (16×1×256)< log2(25+8)< 13 (6.21)

dividendbitwidth
interpolation ≈ log2 (25×1×256)< log2(25+8)< 13 (6.22)

The use of 13 bits to represent the value of dividend and 12 to represent the divisor
resulted in the necessity of 12 rounds and a latency of 13 cycles for internal computations
[DBS06]. Assuming that capturing the input and latching the output require 1 cycle each, the
total number of cycles can be estimated as Nrounds+3. For the mentioned configuration this
gives 18 cycles meaning that up to 160 divisions could be carried out during the targeted
2867 cycles limit. The NormalizeMB had to be capable of performing up to 240 (holes)
divisions and 256 load/store operations in the time reserved for one 4x4 MB processing.
Thus, the limit in the number of cycles for a division was estimated at around 9 cycles. This
was more than the maximal number of cycles required for division to be carried out.

In order to meet the targeted performance, the division module could have been repli-
cated with the workload being distributed to multiple instances. Nevertheless, this solution
would further complicate the execution flow and require additional logic for available di-
vision input/output ports selection. Thus, in the final implementation the divider module
was not replicated. Instead, the division was decomposed in to two stages that were later
pipelined. This allowed the module to start and terminate a new division every 9 cycle (with

239



CHAPTER6.–HARDWARE IMPLEMENTATION

full pipeline).

Finally, a pipelined version of the divider module was implemented. In this version the
division loop was split into two stages. The internal loops of the two stages are basically
equivalent, with the exception of the starting values and ending condition. The second stage
includes additional code for final reminder and quotient computation resulting in additional
cycle of latency. This latency is matched by an additional 1 cycle stall in the first stage of the
division resulting in Nrounds +4 being required for the division result to be readily available
at the output. Nevertheless, by using a pipelined architecture the effective throughput (with
loaded pipeline) is almost doubled, as the input/output data can be set every 9 cycles. This
performance has been found sufficient for our implementation needs.

Once the division implementation met the performance target, the existing execution
flow of the modules using division had to be modified in order to allow efficient outsourcing
of computations and concurrent execution. These modules shared a bidirectional relation-
ship with the newly created division modules. As aforementioned, this type of relationship
requires tight synchronization scheme, in order to maximize periods of non-blocking exe-
cution. The processing carried out by the divider module has been pipelined allowing one
division to be issued every 9 cycles. To maximize performance the pipeline should be kept
full and two division operations should be issued before the first outcome is received. If
the processing carried out in the internal loop of the outsourcing module is organized in
a way that allows synchronizing with the divider every 9 cycles (the number of cycles re-
quired for a pipeline stage execution) then the maximal pipeline utilization can be achieved
reducing the division operation processing time by a factor of (nearly) 2, while avoiding the
consequences of replication of the division module.

6.4 Results

The results of the hardware implementation of the MB-level NUGPA core in and advanced
FPGA technology are presented in Table 6.3. Implementation in the xc5vf70t-1 [Xil09]
device (labeled as Tech1 in TABLE 6.3) for MB size of 4x4 pels, scale equal to 2, and SFW
containing 3 frames (RF=2) occupied 10291 LUTs, 16 DSP blocks, and 66 Block RAMs.
This corresponds to device resource occupancy of, respectively, 22%, 12% and 44.6%. Total
memory usage was 2.376 MB (44%). No off-chip memory was required. The final clock
frequency is of 109 MHz, resulting in the capability to apply 2 x super-resolutions on 25
QCIF frames per second.
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TABLE 6.3 Resulting hardware performance for two FPGA devices in comparison with [BB08] for
the particular case of RF=2, scale=2, SA=2, and MB=4. N/A stands for not available.

SRiuma Reference [BB08]
Technology Iteration stages [Xil07]

Tech1 [Xil09] Tech2 [Xil07] 10 20
Occupancy [LUT] 10291 13031 35707 68317
BRAM 66 132 134 234
DSP blocks 16 2 N/A N/A
Frequency [MHz] 109 68 58 58
Frame rate [fps] 25 16 61 61

6.4.1 Core-level implementation evaluation

Apart from presenting the observed implementation results, Table 6.3 contains data that
allow a direct comparison with the state-of-the-art implementation presented in [BB08].
In terms of raw performance the MBL level implementation, offers lower frame rate and
supports lower range of spatial resolutions. Nevertheless, the competitive implementation
only features 10 iterative stages, that is, roughly a half of the number of 20 stages assigned
by the authors as the threshold for producing satisfying outcome quality. Thus, in order to
offer a better comparison of implementation efficiency, an approximation of the resources
required to implement a solution featuring 20 iteration stages is also presented. The logic
and memory requirements for this configuration were estimated by addition of the cost of
implementation of additional 10 iteration stages to the cost of implementation of the system
already sporting 10 iteration stages. On the other hand, the implementation presented in this
work was also mapped and routed for the device [Xil07] targeted in [BB08]. The results for
this implementation are labeled as Tech2 in Table 6.3, and can be used for direct comparison.

The implementation presented in this work was optimized in order to offer base soft-
ware quality while minimizing resources utilization. In order to measure the efficiency
of the FPGA implementations, the LUTs per SR boost cost (boostCostSR) figure of merit
is proposed. This figure represents the number of look-up tables the implementation re-
quired in order to offer an increase of 1% in measured average (objective) quality of the
super-resolved image over the image produced using bilinear interpolation. It is desired
to keep this figure as low as possible. The boostCostSR is estimated as in (6.23), where
the LUTnr stands for the number of LUTs required for implementation and the PSNRSRi

and the PSNRinti values represent, respectively, the PSNR value of the super-resolved, and
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TABLE 6.4 PSNR observed at the output (average over 90 initial frames; CIF; luma component).

Implementation [Xil07] Average PSNR [dB]
SRiuma

1 22.38 29.42[Xil09] 22.79
IBP weighted (20 iterations) [BB08] 20.46 27.80 22.22
Nearest-neighbor interpolation 18.78 26.68 19.89
Bilinear interpolation 20.46 28.07 21.23
Bi-cubic interpolation 20.29 28.10 20.92

mobile foreman paris
1 MBwidth = 4, RF=4 (2+2), SAR = 16, and scale=2

TABLE 6.5 Objective quality boost (boostCostSR; defined in (6.23); lower is better) over interpola-
tion cost in LUTs for the particular case of RF=2, scale=2, SA=2, and MB=4.)

Implementation boostCostSR
[LUT

%

]

versus nearest-neighbor interpolation
SRiumaTech2 1269 680 894
weighted IBP [BB08] 16275 6546 5832

versus bi-cubic interpolation
SRiumaTech2 2753 1266 1458
weighted IBP [BB08] No gain 30804 10994

Sequence paris mobile foreman

interpolated ith frame of the test sequence comprising a set of n frames.

boostCostSR =

(
n×LUTnr

100

)/(
n

∑
i=1

PSNRSRi−PSNRinti
PSNRinti

)
(6.23)

The boostCostSR for the proposed implementation was computed based on the imple-
mentation results presented in this section for Tech2 and the average PSNR value noticed
for 90 initial frames of the paris, foreman and mobile test sequences (luma component) pre-
sented in Table 6.4. The values for IBP were kindly provided by the authors of [BB08].
Other values were obtained with the set-up used for reference software evaluation (Sec-
tion 3.4.1). The resulting values of the boostCostSR for the foreman, mobile and paris se-
quences are presented in Table 6.5.

The results of the study show that for the tested sequences the boostCostSR noted for the
proposed implementation is at least 6.5 times lower than the one for the [BB08] implemen-
tation. The main reasons for such a big difference are: (i) the use of the block matching
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TABLE 6.6 Observed resource occupancy for some SRK parameters values combinations with
scale = 2, MBwidth = 4, RF = 2, and SAR = 2 . (Synplify 2009.06 Premier, values syn-
thesis in isolation, only FF-FF latency considered.)

Occupancy Latency
Instance Share in total

Module [LUTs] [LUTs] [%] [ns]
UpGrid 122 122 1.1 5.06
UpHoles 47 47 × 2 0.9 2.25
ShadPrep 393 393 3.4 4.92
ShadStep 250 250 × 2 4.3 4.50
ReapSteps 359 359 3.1 4.82
NormalizeMB 158 158 1.4 4.28
HolesFillingPrep 3492 3492 29.9 7.55
MeanNearest 2173 2173 × 2 37.2 5.99
Divisor 174 174 ×3 4.5 4.46
ReorderBufferReap 191 191 1.7 3.93
ReorderBufferSew 529 529 4.6 7.85
MBcollector 1007 1007 8.6 9.22

Sum of all submodules 11713 100 -
Kernel 10291 - - 9.16

(BM) ME, and (ii) the non-iterative nature of the implemented algorithm. The former leads
to higher PSNR, while the latter helps to reduce the overall occupancy. The impact of the
ME algorithm manifests itself especially in results for sequences with abundance of local
movement i.e. foreman and mobile. Those movements cannot be traced accurately using
frame-level ME. For those sequences the PSNR obtained using frame-level estimation is
significantly lower, leading to higher boostCostSR.

6.4.2 Implementation results for each module

The resulting resources occupancy and critical path latency observed for each of the core’s
submodules are presented in Table 6.6. Resource figures are taken from the utilization report
issued at the end of implementation in Synplify 2009.06 Premier. Occupancy and latency
is measured using the so called ‘Out-of-Context’ flow to synthesize and implement the sub-
module instance in isolation. This ensures that the design is not distorted in order to route
to device pins. LUT figures do not include LUTs used as pack-thrus, but do include LUTs
used as memory. Default Synplify 2009.06 Premier settings were used. Other configura-
tions may yield different results. Because surrounding circuitry will affect placement and
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timing, no guarantee can be given that these figures will be repeatable in a larger design.

Most of the logical resources have been allocated for the implementation of the inter-
polation process. This task accounted for around 47% of total occupancy (with dedicated
divisors). This was expected, as this task is by far the most computationally complex part
of the processing. The very high occupancy observed for the HolesFillingPrep was not ex-
pected as this module tasks are mostly of management nature. The occupancy requirements
of this module are made high by: (i) the logic required to manage the inter-MB data de-
pendencies, and (ii) complex address generation due to memory replication, data packing
and workload distribution. Both of the above increase the complexity of the module control
flow and the number of variables used for its description using logical equations. Moreover,
the latter, paired with delays caused by high fan-out due to data reuse (replication), is the
main reason for the elevated critical path latency. These two modules are firm candidates
for further decomposition and refinement.

In terms of the critical path latency, the core’s performance is limited by the efficiency
of implementation of the adapters. In particular, the MBcollector with latency of 9.22ns is
the system bottleneck, followed by ReorderBufferSew with latency of 7.85ns. Both of these
modules access large memories and require somewhat complex address generation. In the
particular case of the MBcollector address generation is not only computationally expensive
but also implements complex control flow in order to handle different MB placements within
the frame. Moreover, adapters do not form an intrinsic part of the SR system and their
(at least partial) elimination, either by introduction of modifications to the ME process or
outsourcing of processing to other parts of the implementation platform, is planned. Thus,
the effort put into their optimization has been significantly lower than for the SRK module.
To recap, address generation of the MBcollector and HolesFillingPrep modules forms the
system’s performance bottleneck. A very likely solution to this problem would be to create
a set of look-up-tables/ROM memories with pre-computed values. This approach is widely
used in recent compression systems (e.g. Scalable Video Coding (SVC), HEVC, etc.). In
the case of this system’s modules, a good starting point would be to provide tables with pre-
compiled values of row addresses and strides, organized in a way that would allow simple
addressing of their content e.g. addressing based on placement flags and values obtained for
the preceding accesses and concatenation. It is expected that, when optimized, this approach
would significantly reduce the computational complexity and the number of cycles needed
for execution at the cost of increased memory occupancy.

The least complex modules are the UpHoles and UpGrid modules. Both of these mod-
ules perform almost identical tasks. The difference, apart from different data set and work-
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load cardinality, is that the former module’s control flow is simplified due to HR holes
grids elimination allowed by new addressing scheme in ReapSteps. By leaving the UpGrid

module unchanged, we were able to quantify the impact of the aforementioned algorithmic
change on the implementation efficiency. By applying the new addressing scheme on the
UpGrid output, we expect its occupancy and latency to reach the values observed for the
UpHoles, which corresponds to reduction in occupancy to ∼30% and latency to ∼50%.

Based on the data presented in the Table 6.6 we estimate the cost of supporting an
additional reference frame to be in the range of ∼410 and 450 LUTs. This value includes
the cost of:

• Additional instance of UpHoles and ShadStep modules (∼320 LUTs).

• Additional logic required to manage additional communication channels and work-
load in ReapSteps (∼30 LUTs).

• Additional logic (little) required to manage additional communication channels in
ShadPrep (∼10 LUTs).

• Higher bitwidth of normalization arguments (∼15 LUTs).

• LUTs used for instantiation of memories in the data path of the newly instantiated
modules (∼40 LUTs).

The increase in the latency of the ShadPrep caused by additional RFs introduction is ex-
pected to be insignificant. The occupancy and latency of the ReapSteps module increase to
∼636 LUTs and ∼6 ns and does not become a bottleneck. Extension of the division argu-
ment’s bitwidth to 18bits results in occupancy and latency of the Divisor module of ∼223
LUTs and ∼7.61ns. The latter surpasses the latency observed for HolesFillingPrep becom-
ing the bottleneck of the SR kernel implementation (still, MBcollector remains the system’s
bottleneck with 9.26ns). This problem might be mitigated by more aggressive unrolling of
the division loop and introduction of additional latches separating the unrolled iterations.

In the presented implementation, we use a custom divider IP. We opted for that solution
instead of using the default option for the targeted technology, the LogiCORE IP Divider,
in order to preserve design portability to other technologies.

6.5 Conclusions

The focus of this chapter was the hardware implementation of the proposed MB-level flow
of the NUGPA. This chapter started with a brief presentation of the methodology established
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for this implementation. Next, the evolution of the system’s architecture was presented using
a series of diagrams presenting the architecture model at different levels of abstraction. Each
of the ESL-level abstractions used in the implementation was briefly described in a way that
highlighted its intended usage and limitations.

The final architecture, organization and the challenges tackled in order to meet the tar-
geted performance of 24 fps with operating frequency of 109 MHz using the xc5vf70t-1

device (Xilinx Virtex5 technology), were presented. The faced challenges description fol-
lowed a common outline of stating the faced problem and describing the implemented solu-
tion. The reasoning behind the undertaken decisions and design choices was clearly stated.
This structure facilitates transfer of knowledge and of the obtained ‘know-how’, allowing
future designers to easily determine if the solution implemented in this work could be of
relevance to their design. A particular case of design considerations was the implementa-
tion of a custom division accelerator, which was not motivated by the need for system’s
performance optimization but rather by the determination to preserve system portability.

Finally, the obtained implementation (post-HDL optimization) results have been pre-
sented, discussed and compared with the state-of-the-art solution [BB08]. The observed
implementation results prove that the MB-level processing contributes towards real-time
implementations of the NUGPA by significantly reducing the implementations memory oc-
cupancy. The comparison with the state-of-the-art has yielded satisfactory results as the ob-
served occupancy for the proposed system was up to 5 times lower than the one reported for
the reference state-of-the-art implementation, when mapped using the same target technol-
ogy. In order to measure the efficiency of the implementation, a suitable figure of merit that
considers output quality gain per resource occupancy has been formulated. Using this figure,
we have proved that the presented implementation, whose optimality is not claimed in this
work, does contribute to the state-of-the-art by implementing the MB-level processing flow,
and advances the state-of-the-art of the SR implementations in terms of implementations
efficiency.
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Chapter 7

Conclusions and future work

7.1 Introduction

The main objective of this doctoral research has been to demonstrate real-time execution ca-
pabilities for the NUGP algorithm by means of delivering a hardware implementation that
uses only on-device memory resources. In order to reach this objective we have introduced
algorithmic-level modifications to the reference algorithm execution flow. These changes re-
duce its high memory occupancy requirements precluding high-performance hardware im-
plementation. Developed theoretical models of the proposed and the reference flows have
been used to identify their bottlenecks and quantitatively evaluate the gains and expenses
associated with the change to the proposed finer-grain flow. For hardware implementation
we have established a methodology that takes into account the ever-evolving nature of the
algorithm’s software implementation and uses a tiered hierarchy of abstractions from which
the level of pin-accurate HDL description is obtained in an automated manner. Using the es-
tablished methodology the proposed architecture has been successfully mapped onto Xilinx
Virtex FPGA technology.

This chapter presents a recapitulation of the contributions provided by this doctoral the-
sis and restates their relevance to the super-resolution field. In order to do so, the conclu-
sions will be drawn from the carried out research, and further research lines which might
complement and enhance some of the aspects developed in this work will be presented.
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7.2 Conclusions

1. The review of the SR algorithms taxonomy presented in this work has identified the
non-iterative direct and iterative back projection as the algorithms of the multi-frame
SR family best suited for hardware implementation. A closer look at the state-of-the-
art of hardware implementations in FPGA has highlighted:

(i) the trend of using execution flows that apply SR on fine-grain elements in order
to increase exploitable parallelism and reduce memory utilization,

(ii) the fact that the iterative approaches have to settle for sub-optimal output quality
due to being limited by the amount of available resources, and

(iii) the predominant impact of on-device memory occupancy and off-device mem-
ory access latency on the system’s capabilities.

This review has demonstrated that there are still many challenges within the field in
terms of hardware implementations efficiency and quality, as well as facilitation of
hardware implementation by considering the context of limited resources typical of
FPGA targets.

2. This doctoral thesis has tackled key contemporary challenges faced at the time of de-
veloping hardware implementations of the SR techniques for video sequences, namely:
the delivery of real-time execution capability, provision of high implementation effi-
ciency, and preservation of software-level quality of the super-resolved image ob-
served at the output. The ultimate result of this thesis has been to provide a hardware
implementation that is characterized by the above-mentioned properties.

3. We have created a complete taxonomy of the different approaches and algorithms
developed in the literature to carry out super-resolution.

4. We have introduced mathematical models for the image registration stage and for the
reconstruction stage of the non-iterative restoration-interpolation process. In an at-
tempt of complementing the existing algorithmic descriptions with a consistent closed
form analytical model that captures the layered computation scheme of the SR pro-
cess. The different transformations operating over different image spaces are clarified
and underlined.

5. The starting point of this research work was a software implementation of the non-
iterative version of the non-uniform grid projection algorithm coded in ANSI C.
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The review of the state-of-the-art has contextualized the NUGP algorithm as be-
longing to the interpolation-based family of the direct classical multi-frame super-
resolution algorithms, which is considered suitable for efficient hardware implemen-
tations. The presented quantitative results of the study on the objective quality of
the super-resolved images produced by the reference software implementation prove
the capability of the algorithm to provide quality better than other algorithms used
by state-of-the-art hardware implementations. Considering the single-pass nature of
the non-iterative version of the NUGP algorithm, we have concluded that this version
of the algorithm meets the prerequisites for delivering a hardware implementation
that meets real-time performance while preserving high quality of the super-resolved
images.

6. The base software implementation did not consider hardware implementation chal-
lenges and was characterized by high use of memory resources precluding its direct
implementation in FPGA technology using only on-device memory. With the goal
of overcoming these weaknesses, we have proposed a modified execution flow that
applies SR on a finer-grain element When implemented, this flow has removed the
algorithm’s dependency on frame-level buffers requiring only single MB execution
context to be readily available from on-device memory. The theoretical models, de-
veloped based on the software implementation, of the proposed and reference flows
have been used to identify these flows’ bottlenecks, and quantitatively evaluate the
gains and expenses associated with the change to the proposed finer-grain flow.

7. The results of the proposed modifications lead to significant memory occupancy re-
duction at the expense of increased memory traffic. The computed minimal and max-
imal value of the expected factor of reduction in memory occupancy associated with
the switch to the MB-level flow was within the range of 3.5 to 16, depending on
the SRK parameter values. The computed minimal and maximal value of the ex-
pected factor of increase in memory traffic associated with the change was within
the range of 1.1 to 16.9. The exact value of these factors depends on the parameters
value combination used to configure the SR kernel. For 87 out of the 96 investigated
configurations (more than 90%) the factor of memory occupancy reduction has been
greater than the factor of increase of memory traffic, proving the effectiveness of the
proposed approach.

8. For the needs of the planned hardware implementation we have developed a high-
level implementation methodology. The established methodology defines a hierarchy
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of levels of abstractions, in which each of the models is obtained from the model
being one level higher in the hierarchy. This renders the models tightly-coupled, fa-
cilitating inter-model propagation of modifications. By using SystemC to code the
intermediate models we have been able to reuse most of the ANSI C code. This fa-
cilitates rapid propagation of modifications made at the functional level through the
intermediate models down to the HDL description. The use of intermediate represen-
tation increases design portability by allowing high-level synthesis to target a range of
HDL languages (VHDL, Verilog, etc.) from the same higher-level description. Fur-
thermore, by using C-based languages throughout the abstraction hierarchy we leave
open the possibility of rapid migration of the models to other C-based languages,
most notably the OpenCL standard. The level of details of the provided methodology
description facilitates the reuse of the established flow in implementations of other
similar algorithms.

9. We have provided a hardware implementation that is characterized by real-time per-
formance and efficiency, while preserving portability and software-level quality of the
output super-resolved images. The final architecture has met the targeted performance
of 24 fps with operating frequency of 109 MHz using the xc5vf70t-1 device (Xilinx
Virtex5 technology). The carried out comparison with the state-of-the-art has yielded
satisfactory results as the observed logical resources occupancy for the proposed sys-
tem was up to 5 times lower than the one reported for the state-of-the-art mapped
using the same target FPGA technology [BB08]. The hardware implementation syn-
thesis results: (i) have demonstrated the capability of reaching real-time performance
in FPGA technology, while preserving the quality of the super-resolved images at the
level offered by software implementation, and (ii) have proved the correctness of the
presented algorithmic level changes and the established implementation methodology.

10. The portability of the design has been preserved by using several tiers of abstraction
code in generic SystemC which allow the high-level description to be synthesized
for a range of different languages (VHDL, Verilog, etc.) and targets (Altera, Actel,
Xilinx, etc.) without (or with) vendor specific optimization enabled. The portabil-
ity of the design is further reinforced by not using (explicitly) any vendor-specific
accelerators (MACs, adders, dividers, etc.).

To recap, this thesis: (i) has successfully carried out knowledge transfer from the domain
of compression algorithms to the domain of SR algorithms. (ii) has quantitatively evaluated
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the impact of algorithm modifications, (iii) has provided a high-level methodology of im-
plementation that facilitates rapid propagation of modifications, and (iv) has delivered an
efficient hardware implementation in FPGAs that reaches real-time capabilities while pre-
serving the quality of the output super-resolved images. The observed synthesis results
justify the claim that the proposed implementation contributes to the advancement of the
state-of-the-art by implementing the MB-level processing flow (typical flow of image/video
compression algorithms) and by delivering higher implementation efficiency.

7.3 Future work

This work accomplishments leave room for new research lines focused on pushing further
the state-of-the-art of SR implementations in hardware:

• The proposed implementation could be explored for further improvement, in particu-
lar:

(i) Implementation of the algorithmic level improvements proposed by Quevedo
in [Gut15]. These enhancements would improve the robustness of the fusion
kernel by detecting and eliminating outliers, leading to a further increase in the
observable output quality.

(ii) Extension of the range of supported SRK parameters values. Additionally, ex-
plore the possibilities of supporting variable macroblock size used in recent com-
pression algorithms.

(iii) Mapping onto heterogeneous platforms and encapsulation as an IP. This task
would require an exploration of changes that could lead to a better hardware/-
software partitioning, motion estimation methods, buffering scheme, elimina-
tion of adapters, and appropriate interconnections interface selection (e.g. AHB,
AXI, etc.).

• The work of Singla et al. [STdA13] presents an approach that uses multiple kernels
of NUGPA applying SR in parallel on exclusive chunks of the input frame in order to
speed-up the processing time. The presented approach is limited by memory accesses
latency. As our approach uses only on-device memory its extension to such a con-
figuration could allow alleviating these issues and is expected to result in significant
execution speed-up. To provide performance scalability by means of replication, the
architecture proposed in this work would require some modifications. In this line, it
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would be interesting to explore: (i) further possibilities of reduction of memory oc-
cupancy, (ii) the possibility of elimination of the frame-level adapters from the SR
kernel (in order to prevent their replication), and (iii) methods for efficient workload
distribution. Apart from performances increase, the replication of kernels opens the
possibility of supporting the multi-camera approach proposed in [Gut15], in which
each camera’s input is processed by a dedicated kernel instantiation.

• Multi-core and many-core platforms are undoubtedly the emerging trend in high per-
formance computing (HPC). The appearance of hybrid solutions that use these plat-
forms in tandem with FPGAs [PCC+14, WHK+14, MJK12], suggests new ways of
conducting design space exploration for SR mappings onto these platforms. It would
be of great interest to implement a SR algorithm onto several of these platforms,
compare results of the mapping, analyze the arising implementation challenges, and
the algorithmic- and architecture-level modifications their efficient mapping would
require.

• In this line, we could take advantage of the ANSI C and SystemC implementations of
NUGP algorithm developed for this thesis, as this code provides straight forward route
for implementation using C-based languages like OpenCL or CUDA. OpenCL would
be the preferred choice as it is an open and well defined standard supported on many
platforms (CPU, GPUs, MP-SoCs, etc.) including FPGAs [Alt15]. OpenCL is ex-
pected to allow re-using most of the code in mappings on various platforms (NVIDIA
Tegra 1000, Kalray, Intel Xeon Phi, Movidius Myriad 2, Amd APP, Altera Cyclone
V, Xilinx EX-850 etc). The methodology established in this work is expected to fa-
cilitate this process as ESL flows using C-based languages (e.g. SystemC) have been
reported to be the preferred starting point for OpenCL implementations in FPGAs
[Eco12].

• The established methodology has been successfully used for mapping of SVC de-
blocking filter onto FPGA [CEN+13a, CEN+13b]. These studies extend the estab-
lished methodology by describing steps that lead to a successful HDL migration to
ASIC technology. It would be of interest to provide a manual (HDL) mapping and
compare the results of the ESL-centered and manual HDLs mapping, both onto FP-
GAs and ASICs. This would allow quantitative evaluation of the difference in quality
of the resulting HDL descriptions produced by these flows.

• Finally, it would be interesting to use the established methodology for implemen-
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tation of other high complexity image processing algorithms and/or using different
toolchains. This would (i) further reinforce the credibility of the methodology’s ef-
fectiveness, robustness and utility in other applications, and (ii) allow revising the
methodology’s strengths and limitations. Additionally, it would be of use to compare
the SystemC-based flow with flows centered on using other high-level of abstraction
languages.
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Resumen en castellano

Se presenta en este capítulo una visión general del trabajo de investigación realizado en esta
Tesis Doctoral, poniendo especial énfasis en las contribuciones en el campo de las imple-
mentaciones sobre FPGAs del algoritmo de proyección de cuadrícula no-uniforme (Non-
Uniform Grid Projection Algorithm or NUGP algorithm) para super-resolución de imágenes
y secuencias vídeo en tiempo real, los logros alcanzados y las líneas de investigación futuras.

B.1 Introducción

Vivimos en una realidad dominada por el contenido visual, más específicamente, por la alta
resolución (HR) del contenido visual. Las imágenes de alta resolución son de crucial im-
portancia en varias áreas centradas en torno a dos aplicaciones principales: la mejora de la
información gráfica para la interpretación humana y para la visión artificial robusta y au-
tomática. Con el fin de lograr los nuevos niveles de calidad visual demandados, la calidad
de los contenidos de baja resolución (LR) debe ser aumentada mediante un proceso denom-
inado mejora de la resolución. La resolución de la imagen define los detalles contenidos
en una imagen: cuanto mayor sea la resolución de una imagen, mayor será la cantidad de
detalles que contiene. La resolución de una imagen digital se puede referir a: resolución
de los píxeles, resolución espacial, resolución espectral, resolución temporal, y/o resolución
radiométrica. En este contexto, esta tesis doctoral se centra en contribuir en la mejora de la
resolución espacial.

La mejora de la resolución espacial se enfrenta a una serie de retos, de entre los cuales
caben resaltar los siguientes:

(A) Las soluciones de base tecnológica no se consideran eficientes en cuanto a sus costes.
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Con el aumento de una potencia de cálculo de fácil acceso, la mejora de la resolu-
ción espacial utilizando un nivel de post-procesamiento algorítmico se convierte en
una alternativa prometedora, sobre todo si los recursos computacionales pueden ser
compartidos con otros procesos.

(B) En el contexto de una resolución espacial limitada, la súper-resolución abarca méto-
dos que permiten incrementar la resolución espacial más allá de la resolución nativa
del sensor y de las mejoras ofrecidas por los métodos de interpolación. Sin embargo,
la complejidad computacional introducida por el procesamiento adicional requerido
para el proceso de SR para proporcionar resultados es muy alta. No todos los algo-
ritmos pueden ser mapeados de forma eficiente en hardware, lo que lleva a un uso
ineficiente de los recursos que supone un rendimiento limitado. Por lo tanto, la ca-
pacidad de proporcionar implementaciones hardware de la mayoría de los algoritmos
SR capaces de producir una calidad de salida satisfactoria con prestaciones de tiempo
real sigue siendo un desafío.

(C) Es habitual es que el nivel usado en la descripción a nivel de registros/pin-accurate
se cree a partir de cero. El diseñador codifica manualmente el sistema directamente
desde la especificación funcional proporcionada y de la descripción algorítmica. De-
bido a la relación no propagativa entre las implementaciones software y hardware, la
propagación de los cambios introducidos en el software de base, así como la evalu-
ación de su impacto en el rendimiento del sistema, es complicado y requiere una gran
cantidad de tiempo y esfuerzo. Estos aspectos podrían ser aliviados mediante el uso
de un enfoque multinivel asistido por ordenador en lugar de la conversión manual.

Como ya se ha señalado, las implementaciones basadas en software no son capaces de
proporcionar un rendimiento de alta-resolución en tiempo real cuando se mapean sobre las
tecnologías disponibles. Las actuales implementaciones hardware disponibles con presta-
ciones en tiempo real proporcionan una calidad de salida menor que sus correspondiente
implementaciones software. Basándonos en nuestra experiencia con algoritmos de compre-
sión, encontramos muchas similitudes entre la naturaleza de los procesos llevados a cabo
por SRIR y los algoritmos de compresión, así como entre los problemas a los que se en-
frentan sus implementaciones. Las implementaciones hardware de estos algoritmos pueden
proporcionar soluciones sobre la forma de implementar algoritmos que procesan imágenes
de tal forma que sus implementaciones hardware puedan lograr prestaciones en tiempo real.

Esta Tesis Doctoral se centra en proporcionar un ejemplo de algoritmo de procesamiento
de imágenes y de las modificaciones necesarias para mitigar los problemas antes menciona-
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dos, lo que podría resultar en implementaciones hardware de algoritmos de mejora de la res-
olución de las imágenes basados en súper-resolución, siendo lo suficientemente eficientes
como para permitir su uso en las aplicaciones más relevantes de electrónica de consumo.
Este algoritmo no sólo debe proporcionar un rendimiento en tiempo real y una la calidad
observada de salida súper-resuelta que coincida con el nivel proporcionado por el software
encontrado en el estado del arte, sino que también debe facilitar una implementación hard-
ware eficiente. Sólo cuando se logren todos estos requerimientos, se podrá encontrar la
manera de llevar las mejoras de resolución de alta fidelidad desde las instalaciones de inves-
tigación hasta las casas de los usuarios.

B.2 Imágenes de súper-resolución y secuencias de vídeo

La súper-resolución comprende el conjunto de algoritmos que trata de reconstruir imágenes
de alta-resolución corruptas debido a las limitaciones del sistema de imagen. Típicamente
estas limitaciones surgen en el sistema de sensores y/o en la óptica causando aliasing como
ocurre en el proceso de muestreo que no cumple los requerimientos especificados por el
teorema de muestreo de Nyquist.

El aliasing en imágenes digitales suele considerarse como una degradación y los filtros
(tanto ópticos como digitales) se diseñan para evitar el aliasing en las cámaras digitales.
Sin embargo, el aliasing contiene además información extra de alta frecuencia con detalles
adicionales sobre la escena. Los algoritmos de súper-resolución extraen la información
presente en el aliasing para reconstruir una imagen de mayor resolución [Mil10].

B.2.1 Aplicaciones de la súper resolución

En este trabajo definimos el objetivo de súper resolución en referencia a las limitaciones del
sistema de imagen que las técnicas de SR diseñan para superarlas. Las limitaciones abor-
dadas por los métodos de SR se pueden clasificar en las siguientes tres categorías: (i) óptica,
(ii) geométricas, y (iii) temporales. Las limitaciones ópticas se pueden superar mediante la
manipulación de las condiciones de la imagen entre las subsecuentes capturas para generar
y transferir subconjuntos complementarios de información a diferentes observaciones que
se pueden fusionar, usando un método de SR, para formar la imagen final de una mayor res-
olución, permitiendo efectivamente romper la barrera de difracción que limita los sistemas
ópticos de las imágenes. Las limitaciones geométricas del sensor usado se pueden superar
efectivamente mediante el incremento de la resolución espacial más allá de la resolución
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nativa del sensor usando un procesado algorítmico para mejorar la resolución espacial. En
el contexto temporal, los métodos de encapsulado de súper-resolución mejoran la resolu-
ción en términos de reducción del motion blur y del motion aliasing usando información
de múltiples observaciones. En la práctica, la SR espacial se lleva a cabo conjuntamente
con la SR temporal. La mejora en la unión de estas técnicas se lleva a cabo mediante el
uso de múltiples secuencias que han sido capturadas en diferentes tiempos de adquisición,
con diferentes relaciones de trama y/o resoluciones espaciales. Los algoritmos que mejoran
ambas resoluciones se conocen como SR espacio-temporales.

B.2.2 Clasificación de las técnicas de súper-resolución

Debido a su compleja naturaleza y vastas aplicaciones, la súper-resolución ha sido un área
muy activa desde su introducción en 1974. Durante los últimos 40 años varios métodos
se han propuesto bajo el nombre de súper-resolución. La más reciente y completa tax-
onomía de métodos de súper-resolución, presentado en [NM14], los clasifica en cuatro
familias principales: (i) métodos basados en frecuencia, (ii) métodos basados en interpo-
lación, (iii) métodos basados en regularización, (iv) métodos basados en aprendizaje. Las
tres primeras categorías reconstruyen (o súper resuelven) la imagen a partir de un conjunto
de imágenes de entrada de menor resolución (contexto multi-imagen), mientras la última
categoría, basada en aprendizaje, es capaz de alcanzar el mismo objetivo explotando la in-
formación proveniente de una imagen y una base de datos con un conocimiento alcanzado
a priori.

Los métodos de SR se pueden además clasificar basándose en el contexto de su eje-
cución, que es el número de imágenes que son requeridas para llevar a cabo el proceso
de mejora. Basándonos en este criterio, dividimos los algoritmos de SR en dos grupos:
(i) métodos SR multi-imagen (o clásicos) y (ii) métodos de imagen única (o basados en
aprendizaje). En la SR basada en aprendizaje, la pérdida de la información de alta resolu-
ción se asume que puede estar disponible en forma de un conocimiento adquirido a priori y
que ha sido aprendido de los pares de ejemplo de baja resolución/alta resolución.

B.2.3 Contextualización del algoritmo NUGP

El algoritmo de proyección de cuadrícula no uniforme pertenecen a la familia de técnicas
directas que aplican SR en el dominio espacial trabajando en la ejecución de contexto multi-
imagen.
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Fig. B.1 Flujo de ejecución de la reconstrucción por súper-resolución multi-imagen basado en de-
splazamientos sub-pixel.

B.2.3.1 Súper resolución multi-imagen

Los algoritmos de SR clásicos operan basándose en la suposición de que la información
de alta frecuencia esta accesible a través de múltiples imágenes de baja resolución, que
aparece implícitamente en la forma de aliasing. Cada observación de baja resolución se
analiza en búsqueda de dicha información complementaria. Si tal información se encuentra,
la observación se considera como una restricción lineal sobre los valores desconocidos. Si
es suficiente con una observación única de baja resolución, entonces el conjunto de ecua-
ciones se puede llegar a determinar y puede ser resuelto, llevando a la recuperación de la
imagen de alta resolución. Solo las observaciones que no se pueden obtener de las otras se
consideran que tienen la propiedad de unicidad. En el caso de usar una cámara, la unici-
dad de la observación es más probable cuando las observaciones se capturan con desplaza-
mientos sub-pixel. El origen del desplazamiento sub-pixel puede ser causado ya sea por
movimientos controlado (e.g. satélites orbitando, jitter de cámara, etc.) o no controlado
(e.g. vibración del sistema de imagen al sostener con la mano o el movimiento local en la
escena). En la práctica, para que el problema inverso de escalado con factor de escala SR
esté bien definido, hacen falta al menos un número escala2 de observaciones que cumplan
los requisitos de unicidad. Dado un conjunto de observaciones suficientemente grande, el
incremento en la resolución puede ser un valor arbitrario.

El flujo clásico de SR multi-imagen comprende 3 pasos principales: el pre-procesado,
la reconstrucción (fusión multi-imagen) y el post-procesado. Dado que el conjunto de imá-
genes usadas contiene observaciones que son únicas, la reconstrucción clásica de imágenes
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por SR se puede llevar a cabo tal y como se muestra en la Fig. B.1. A menos que el
movimiento sea conocido a priori, antes de combinar las imágenes éstas tienen que ser
registradas para determinar las variaciones entre ellas. Desde el momento en el que las imá-
genes de entrada representen la misma escena y puedan ser registradas de forma satisfacto-
ria, el flujo de SR permite que cualquier método de adquisición sea usado. El pos-procesado
depende del núcleo de SR usado y del proceso de aplicación de la SR. La mayoría de los
algoritmos del estado del arte llevan a cabo una regularización post-fusión y restauración/re-
construcción.

B.2.3.2 Técnicas directas

La base teórica de las técnicas directas es la teoría de muestreo no-uniforme, la cual permite
la reconstrucción de funciones de muestras tomadas de una posición distribuida no uni-
formemente. Esos métodos siguen la estrategia SR clásica presentada en la Fig. B.1. Dado
un conjunto de observaciones de LR, una de las imágenes de LR es elegida como imagen ob-
jetivo y las otras son registradas frente a ésta. A continuación, la imagen objetivo es escalada
usando un factor de escala específico, y las otras imágenes de LR son mapeadas (es decir:
escaladas y desplazadas) dentro de la cuadrícula objetivo, usando la información obtenida en
el registro. Los datos perdidos son obtenidos por medio de una interpolación no uniforme.
Finalmente, se podría aplicar un núcleo opcional de enfocado/refinamiento a la imagen re-
sultante. El proceso de fusión es normalmente implementado como una suma de valores
multiplicados por pesos, y es por lo que esta estrategia normalmente se referencia como de-

splazamiento y suma (shift and add) [FREM03, FREM04b, FREM04a, FM06, AIAOM13].

Muchos de los métodos directos recientes llevan a cabo el registro y la fusión descom-
poniendo la imagen en zonas menores o bloques. Eso significa que las imágenes de LR
son primero dividas en bloques. Luego cada bloque de las imágenes objetivo es com-
parado con el conjunto de bloques, incluyendo el correspondiente bloque y algunos blo-
ques de su alrededor, en las imágenes LR de referencia. Basándose en la similitud de esos
bloques y en sus similitudes con respecto al bloque actual, se asociado un peso a cada
bloque, indicando la contribución de ese bloque en el proceso de producir un bloque de
salida. Esta estrategia ayuda a manejar mejor una oclusión, local y movimientos complejos
(por ejemplo, cambios faciales de la expresión). La familia de métodos que hace uso de
este tipo de procesamiento es normalmente referenciada como SR directa no-paramétrica

[PE09, PETM09, TMPE09, BBV10, CCL10, HS12, ZLRG12].
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B.2.3.3 Súper-resolución de secuencias de vídeo

Los métodos existentes para la SR de secuencias de vídeo pueden ser clasificados en las
siguientes 4 categorías: (i) métodos basado ventana deslizante de fotogramas (Sliding Frame

Window, SFW) [SKR07, NHBS07, NSLZ07, PJ07], (ii) método secuencial [EF99c, EF99b,
FEM06, CB07], (iii) método simultáneo [BS99, ZM07, AMK03], and (iv) método basado
en el aprendizaje [BBM03, DKA04, KHX+06]. Las 3 primeras estrategias requieren un
contexto multi-imágenes/fotograma, mientras que la SR basada en aprendizaje es capaz de
ejecutarse en el contexto de un solo imagen/fotograma. Considerando asegurada la disponi-
bilidad de las secuencias de vídeo, la técnica de SR multi-imagen constituye la estrategia
preferente, especialmente en el contexto de una implem entación hardware.

Las estrategias multi-imagen requieren de un cierto número de fotogramas para eje-
cutarse. Este conjunto de fotogramas, llamado ventana de fotogramas (o ventana de tra-

bajo), forma el contexto de la ejecución. La ventana de fotograma comprende dos tipos de
imágenes: la imagen objetivo que está siendo súper-resuelta y un número de imágenes de

referencia (o fotogramas de referencia (RF)).

Una consecuencia de usar un contexto multi-imagen para la ejecución del algoritmo, es
necesario registrar los fotogramas pertenecientes al contexto actual. En el contexto de SR
de secuencias de vídeo hay dos tipos principales de estrategia que están siendo utilizadas
para el registro de imagen y actualización del contexto: el método de fijación y el método
progresivo. En el método de fijación, uno de los fotogramas del contexto es elegido como el
fotograma de referencia y los otros fotogramas desalineados se registran en relación a este
fotograma. En el caso del registro progresivo, el fotograma actual es registrado en relación
a sus vecinos temporales inmediatos a partir de los fotogramas anteriores.

El algoritmo NUGP implementa la estrategia de SR basada en la ventana deslizante
ilustrada en la Fig. B.2. Esta estrategia utiliza un registro fijo sobre un conjunto de fotogra-
mas de baja resolución consecutivos, los cuales son combinados más tarde produciendo un
fotograma de alta resolución. El mayor inconveniente de esta estrategia es que la correlación
temporal entre las sucesivas imágenes de alta resolución reconstruidas queda prácticamente
sin explotar. Además, la ocupación de memoria asociada con esta estrategia es alta, debido
a que todos los datos requeridos del contexto tienen que estar disponibles para su lectura de
la memoria.

Normalmente se requiere que el procesamiento SR de secuencias de vídeo sea dinámico,
es decir, que produzca una secuencia de salida que (al menos) mantenga el número y la tasa
de fotogramas de la secuencia de entrada. Debe notarse que la SR dinámica de secuencias
de vídeo tiene una demanda significante mayor en términos de rendimiento, velocidad de
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Fig. B.2 Estrategia de ventana deslizante de fotogramas para la SR de secuencias de vídeo ejecután-
dose en un contexto multi-fotograma. Basado en [TM11].

ejecución y memoria ocupada comparada con la SR de imágenes estáticas [Goh13]. En
el contexto de la SR dinámica de secuencias de vídeo, a causa de su enorme carga com-
putacional, se usan algoritmos de menor complejidad para poder mejorar la velocidad de
ejecución y por tanto facilitar la posibilidad de poder llevar a cabo el procesamiento en el
tiempo destinado para ello. Las implementaciones de los algoritmos basados en interpo-
lación, los métodos directos y los métodos IBP (Iterative Back Projection), resultan ser más
satisfactorios con respecto a las limitaciones de ejecución en tiempo real.

B.3 El algoritmo de proyección sobre la cuadrícula no-uni-
forme

En este trabajo se aborda el desafío de proporcionar la implementación de un algoritmo de
SR capaz de procesar vídeo y trabajando en tiempo real, usando un algoritmo de proyección
sobre una cuadrícula no-uniforme , tal y como el que ha sido propuesto en [MC03].

B.3.1 Flujo de ejecución del algoritmo NUGP

NUGPA es un algoritmo de fusión que utiliza los datos no redundantes encontrados en
un conjunto de imágenes afectadas por deformación asociada con el movimiento y por el
aliasing causado por la limitación en banda de los sensores. Usando la clasificación men-
cionada, NUGPA encaja con la fusión basada en la interpolación de la familia de métodos
directos que aplican la transformación en el dominio espacial, usando para ello múltiples
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imágenes. La principal ventaja de esta clase de algoritmos de SR (la baja carga computa-
cional y que hacen posible crear aplicaciones en tiempo real) tiene como contrapartida un
modelo de degradación limitado. NUGPA lleva a cabo la reconstrucción de la imagen de
súper-resolución en tres etapas: (1) la estimación de movimiento, (2) la reconstrucción
basada en la fusión y (3) la interpolación no-uniforme.

B.3.1.1 Estimación de movimiento

En la primera etapa se estima la función de deformación y las métricas que la caracterizan.
Con el objetivo de registrar las imágenes y encontrar las regiones con mayor probabilidad de
contener información adicional, el algoritmo de súper-resolución NUGP utiliza una versión
de la estimación de movimiento basada en coincidencias de bloques. Durante el registro de
la imagen un conjunto de píxeles que forma un bloque (en adelante, un macro-bloque (MB))
del fotograma que está siendo procesado se compara con los bloques de otros fotogramas
de la SFW. Para cada MB sólo los píxeles que pertenecen a un conjunto limitado (llamado
área de búsqueda, SA) y delimitado a cierta proximidad espacial (llamado radio del área de

búsqueda, SAR; expresado en número de píxeles) participa en el proceso de creación de un
conjunto de candidatos que serán usados en el proceso de registro de la imagen. El proceso
de estimación de movimiento calcula los llamados híper-datos que, en nuestro caso constan
del vector de movimiento (MV) y de los índices de similitud asociados basado en la suma de

diferencias absolutas SAD (Sum of Absolute Differences). Estos vectores de movimiento
son vectores que identifican al MB cuyos índices de similitud tienen el valor más próximo a
los que se buscan. En la B.3 se muestra un ejemplo de coincidencia de bloques para un SFW
que contiene dos fotogramas de referencia, donde el radio del área de búsqueda es igual al
ancho del MB (MBwidth), y contiene 2×MBwidth+1)2 candidatos (para mayor claridad sólo
se muestran nueve candidatos).

B.3.1.2 Reconstrucción basada en la fusión

Los híper-datos generados durante la etapa de estimación de movimiento se introducen en
el núcleo de SR. EL proceso de reconstrucción se inicia con la creación de la cuadrícula HR.
Las dimensiones de la cuadrícula se determinan en base a la precisión usada en el registro de
imágenes (en lo sucesivo precisionme). En primer lugar, la cuadrícula de HR se rellena con
los píxeles del fotograma de LR que está siendo procesado. Las nuevas coordenadas espa-
ciales de HR se calculan multiplicando las coordenadas LR por la precisión de la estimación
de movimiento.
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Fig. B.3 Estimación de movimiento basada en la coincidencia de bloques utilizado por NUGPA us-
ando el criterio de similitud basado en la suma de diferencias absolutas SAD (Sum of Absolute
Differences).

Tras colocar todos los píxeles LR en la cuadrícula de HR, se consideran los píxeles que
provienen de un conjunto de los fotogramas contenidos en el SFW. En este punto, la mayoría
de las coordenadas de la cuadrícula de HR no contienen datos válidos. Esas coordenadas
se conocen como huecos (holes). Los valores de los huecos están creados en base de la
fusión de los datos extraídos de los fotogramas de la ventana de trabajo. Durante la fusión,
los híper-datos recibidos (es decir, MVs y SADs) determinan qué datos contribuirán a la
estimación del valor de los huecos y con qué peso. Se permite más de un valor para tomar
parte en el proceso de la formación de un nuevo valor súper-resuelto del hueco.

B.3.1.3 Interpolación no-uniforme

En la mayoría de los casos, no todos los huecos de la cuadrícula de HR se rellenan durante
la fusión. A los huecos que no han obtenido un valor durante el proceso de fusión se les
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Fig. B.4 Flujo de datos del experimento utilizado para evaluar la calidad de la salida de SR.

asigna un valor estimado mediante interpolación. Por último, la cuadrícula de HR post-
interpolación se ajusta a las dimensiones esperadas especificadas por el factor de escala (en
lo sucesivo scale). La escala determina la relación entre la dimensión de la imagen de salida
súper-resuelta y la dimensión de la imagen de entrada de baja resolución. Para valores
de escala más pequeños que el valor de la precisión (ME) debe reducirse el muestreo de
la cuadrícula de HR. Cuando los valores de los parámetros anteriormente mencionados son
iguales, el ajuste no es necesario y la cuadrícula post-interpolación se convierte directamente
en la imagen súper-resuelta producida por NUGPA.

B.3.2 Evaluación cuantitativa de la calidad de la imagen súper-resuelta
del algoritmo NUGP

Para evaluar el rendimiento en términos de la calidad de la salida percibida, se aplica el
NUGPA a los componentes de luma (componente Y del formato YUV) y se utiliza el flujo
que se muestra en la Fig. B.4.

La secuencia de referencia (y por lo tanto también la de salida) será una secuencia en
formato YUV 4:2:0p de 8 bits y tamaño CIF (288x352 píxeles). El uso de este formato
supone la entrada de LR correspondiente al formato QCIF (144x176 píxeles) o un formato
72x88 píxeles para los valores del factor de escala de la súper-resolución (scale) de 2 y 4,
respectivamente. El caso común es utilizar imágenes de todavía menor resolución (32x32,
64x64, 128x128) [ESHEK12]. Las secuencias utilizadas en los experimentos se describen
brevemente en la Tabla B.1. Estas secuencias forman parte de la ‘Xiph.org video Test Media

- derf’s collection’ disponible on-line [Xip15].

En la Tabla B.2 se muestra la media de valores de PSNR de 90 fotogramas iniciales
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TABLE B.1 Secuencias de test utilizadas en los experimentos.

Sequence Visualization Description
Foreman Presenta un obrero realizando rápidos movimien-

tos de la cabeza al azar mientras habla a la cámara.
La secuencia cambia a presentar el sitio de trabajo.
Esta secuencia presenta movimiento local y global
rápido y un cambio de contexto acentuado.

Mobile Presenta un tren eléctrico en movimiento en la
mesa, un sistema planetario en forma de móvil
y un calendario colgado en la pared. El tren
se mueve horizontalmente, mientras que el cal-
endario se mueve de arriba abajo presentando un
movimiento vertical. Una bola que gira presenta
una mezcla de ambos tipos de movimiento. Existe
un movimiento global ya que la cámara se mueve
hacia la izquierda. Esta secuencia contiene gran
cantidad de textura con muchas detalles presentes.

Paris Presenta una pareja hablando sentada junto a una
mesa. Mientras hablan, la mujer está tirando una
pequeña pelota al aire, y el hombre está haciendo
mover un lápiz entre sus manos. La secuencia pre-
senta movimientos locales rápidos. El movimiento
global está ausente.

TABLE B.2 PSNR observado de la secuencia de salida (media sobre los 90 fotogramas iniciales;
CIF; componente luma; MBwidth = 4, RF=4 (2+2), SAR = 16, y scale=2).

Implementation Media de PSNR [dB]
SRiuma 22.38 29.42 22.79
IBP con pesos (20 iteraciones) [BB08] 20.46 27.80 22.22
Nearest-neighbor interpolation 18.78 26.68 19.89
Bilinear interpolation 20.46 28.07 21.23
Bi-cubic interpolation 20.29 28.10 20.92

mobile foreman paris
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de las secuencias paris, foreman y mobile (componentes de luma) mejoradas usando var-
ios métodos de SR y de interpolación. La Tabla B.2 proporciona una comparación con el
estado del arte de las implementaciones hardware [BB08], demostrando que NUGPA es ca-
paz de proporcionar imágenes de muy alta calidad. En nuestros experimentos solo se ha
comparado la calidad del componente luma (Y) el cual se ha llevado a cabo el proceso de
súper-resolución. Los resultados presentados en [WBS05] indican que la incorporación de
los componentes de color no altera el rendimiento del modelo de evaluación de una forma
significativa.

B.3.3 Flujo de ejecución con granularidad fina

Los principales factores que limitan la implementación hardware son la naturaleza iterativa
de los procesos y el consumo de recursos. La selección del algoritmo NUGP soluciona la
primera limitación, permitiendo una implementación hardware eficiente. Desafortunada-
mente, la ocupación de memoria de la versión no iterativa del algoritmo mostrado en el
capítulo anterior hace prohibitiva su implementación en una FPGA que no emplee memoria
externa.

La referencia software usada originalmente (software SRiuma) trabajaba a nivel de fo-
tograma y por este motivo sus requerimientos del almacenamiento en memoria son muy
elevados, resultando en que la implementación hardware usando solo bloques de memoria
RAM (Block RAM, BRAM) sea inviable. Una rápida evaluación de la referencia software
y del flujo de datos del algoritmo identifica los buffers de fotograma completo usados por
el núcleo de fusión como los principales consumidores de memoria. El flujo de ejecución
implementado requiere que al menos dos de los fotogramas que están siendo procesados
estén disponibles para ser leídos en la memoria durante el tiempo en que se lleva a cabo el
proceso de fusión. Por lo tanto, para eliminar los buffers de fotogramas completos el flujo
de ejecución necesita ser modificado. En concreto, la granularidad del flujo de datos debe
ser ‘refinada’ para reducir los requerimientos de almacenamiento en memoria del algoritmo.

Para afrontar este problema hemos propuesto un flujo que internamente aplique un pro-
ceso completo de SR a un pequeño conjunto de píxeles (llamado macro-bloque, MB) y
que por lo tanto represente un punto medio entre los flujos de proceso con granularidad
“gruesa” y “fina”. En comparación con el procesamiento a nivel de fotograma, el cual re-
quiere que la representación de HR de todos los fotogramas de la SFW estén disponibles
en la memoria de salida durante todo el proceso de súper-resolución, la estrategia a nivel de
macro-bloque requiere que solo las áreas de búsqueda (SA), en lugar de todo el fotograma,
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estén disponible en la memoria. Como resultado, se reducen los requerimientos de almace-
namiento de memoria con el inconveniente de incrementar el número de accesos a memoria.
El procesado de un bloque de píxeles en lugar de un solo píxel permite optimizar la lógica
de síntesis, consiguiendo así que ocupe un menor espacio y permitiendo la implementación
del algoritmo completo en el dispositivo FPGA seleccionado.

El flujo de ejecución propuesto para el NUGPA es similar al flujo a nivel de fotograma.
La principal diferencia entre los flujos son: (i) los tamaños de los elementos básicos guarda-
dos en las memorias locales, (ii) la sustitución de los fotogramas de referencia por áreas
de búsqueda, (iii) el hecho de que la transición de un paso del algoritmo al siguiente se
produce cuando un macro-bloque, y no un fotograma, es procesado, y, (iv) la necesidad
de tener en cuenta dependencias entre macro-bloques, lo cual no ocurre cuando el flujo de
ejecución se lleva a cabo a nivel de fotograma, y que complica significativamente el proceso
de la localización y rellenado de los huecos (holes filling). La elección del flujo de eje-
cución ha supuesto un impacto importante en las características de implementación, como
la ocupación de la memoria y la lógica, el rendimiento y la escalabilidad del sistema, en-
tre las principales. Estos cambios resultan en diferentes estrategias de almacenamiento en
memorias intermedia, incrementan la complejidad del manejo de la memoria y mitigan el
incremento en el tráfico de la memoria.

B.3.4 Evaluación del flujo de ejecución a nivel de macro bloque

Los factores de reducción en ocupación de la memoria y del incremento en el tráfico de las
comunicaciones asociado con el cambio de flujo realizado desde el nivel de fotograma al
nivel de macro-bloque, han sido cuantitativamente evaluados. También han sido cuantitati-
vamente evaluados el factor de reducción de ocupación de la memoria (Total Memory stor-

age Requirements, TMR) y del incremento del tráfico de las comunicaciones (Total Memory

Access Count, TMAC), asociados con el cambio del flujo de nivel de fotograma a nivel de
macro bloque.

B.3.4.1 Estudio de la metodología empleada

El estudio de la reducción en la ocupación de memoria debido al cambio de flujo desde el
nivel de fotograma al flujo a nivel de macro-bloque se ha llevado a cabo tal y como se explica
a continuación. En primer lugar, se ha identificado la memoria empleada en cada etapa del
algoritmo, y se ha clasificado dentro de cada uno de los tipos de memoria definidos. A
continuación, para cada uno de los tipos de memoria definidos, se ha evaluado el tamaño de
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la memoria y las dependencias con los parámetros del algoritmo.

Para evaluar el impacto del cambio de flujo desde nivel de fotograma al flujo a nivel de
macro-bloque, en el tráfico de la memoria se han introducido, en primer lugar, figuras para
modelar los accesos condicionales a la memoria. A continuación, se han identificado los
patrones de acceso a memoria de cada etapa del algoritmo, así como sus dependencias con
respecto a los parámetros del algoritmo. Esto ha llevado a la creación de ecuaciones gen-
erales para modelar el número de accesos a memoria realizado en cada etapa del algoritmo.

Basándonos en las ecuaciones definidas, la ocupación de memoria y el número de acce-
sos a memoria de cada etapa del algoritmo han sido cuantificados, para las dos estrategias
de flujo de ejecución (flujo a nivel de fotograma y flujo a nivel de macro-bloque) para las
96 combinaciones de los parámetros del algoritmo NUGP. El conjunto de las 96 combina-
ciones empleadas para llevar a cabo las pruebas ha sido construido combinando los distintos
valores de tamaño de macro-bloque (MBwidth = 4, 8 y 16), radio del área de búsqueda (SAR
= 2, 4, 8 y 16), número de fotogramas de referencia soportados (RF = 2, 4, 8 y 16), y el
aumento del factor de escalado espacial (scale = 2 y 4).

B.3.4.2 Evaluación cuantitativa de la reducción de la memoria y del aumento del
tráfico

Los resultados de este estudio han demostrado que, para el formato de fotograma QCIF, el
cambio desde el nivel de fotograma al esquema de ejecución a nivel de MB, puede conducir
a una reducción de la memoria en un factor de entre 6, 8 y 40, y un incremento en los
accesos totales a memoria en un factor de entre 1, 22 y 117, dependiendo de los valores de
los parámetros del algoritmo NUGP. Los requisitos de memoria totales mínimos y máximos
calculados para el flujo de MBL son de 122 KB y de 1051 KB.

Dado que los conjuntos de parámetros del algoritmo que se han analizado y que se han
utilizado en ambos estudios han sido los mismos, es posible confrontar los valores de ambos
factores y analizar la relación de la reducción de la memoria frente al aumento del tráfico
(un factor adecuado de mérito, en adelante TMR/TMACratio) como una función de los
valores de los parámetros del algoritmo. El estudio realizado ha demostrado que para 20 de
las 96 combinaciones probadas, el factor observado de aumento en el tráfico de memoria
ha sido mayor que el factor de reducción observado en la ocupación de la memoria. Esto
era esperado, dado que el rango de valores calculados anteriormente (de 1,22 a 117) es
mayor que el rango de valores finalmente calculados (de 6,8 a 40). Un análisis de estas 20
combinaciones ha demostrado que en trece de ellas se ha observado un tamaño de MB 4,
lo que significa que las ventajas aportadas por la granularidad más fina del flujo del SRIR
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a nivel de MB están limitadas para los casos de tamaño de MB más pequeño y valores de
SAR superiores a 8. El crecimiento exponencial del tamaño de las memorias utilizadas
para la gestión del reordenamiento de fotograma a MB para las métricas del ME ha sido
identificado como la principal causa de esta limitación.

Por lo tanto, las optimizaciones en la reutilización de datos y las políticas de buffering
deben centrarse en reducir el tráfico de la memoria sobre todo para las combinaciones de
valores de los parámetros SRIR antes mencionadas.

B.3.4.3 Optimización a nivel algorítmica

Un análisis de los patrones de acceso a memoria ha mostrado que la gran mayoría de los
accesos a la memoria durante la construcción de las rejillas de alta resolución y el proceso
de extracción de los píxeles (de RFs) se lleva a cabo para coordenadas de alta resolución
que no llevan valores de píxeles de baja resolución sino un valor constante de ‘0’. El mapeo
de las coordenadas de LR a HR (y su inverso) para los píxeles de LR depende sólo de los
valores de las coordenadas de LR (conjunto ordenado de valores fijos y limitado) y de la
resolución de la estimación de movimiento (valor fijo) y se determina tan pronto como se
determinan estos valores. Por lo tanto, es posible distinguir (en tiempo de ejecución) entre
las coordenadas que identifican los píxeles de LR y los que no apuntan a píxeles LR (y por
lo tanto, conteniendo el valor constante de ’0’) dadas sólo las coordenadas HR. Además, el
valor adecuado del píxel de LR se puede cargar directamente de las representaciones de LR
de las estructuras de referencia y del MB que está siendo procesado.

La identificación de los píxeles que no son de LR ha sido implementada mediante la
introducción de un nuevo esquema de direccionamiento que es capaz de determinar si la
coordenada HR a extraer direcciona o no un píxel de LR. Si es así, el píxel se carga desde
la memoria de LR. De lo contrario, al píxel se le asigna un valor constante sin realizar el
acceso real a memoria. La desventaja es un (ligero) incremento de la complejidad computa-
cional del proceso de fusión. La introducción del esquema de direccionamiento descrito ha
posibilitado una reducción significativa en el tráfico de la memoria para los dos flujos de
ejecución. En comparación con las versiones de referencia (es decir, sin optimizaciones) el
mínimo, máximo y el recuento medio observado para los accesos a memoria se han reducido
en un 13,8%, 13,3%, 12% y 25,6%, 87,4%, 81%, respectivamente, para los flujos FL y MBL
respectivamente. La mayor tasa de reducción en el recuento de accesos observado para el
flujo de grano fino ha rebajado los factores del incremento del tráfico de memoria mínimo y
máximo asociada con el cambio en el flujo de MBL a 1,1 y 16,9, respectivamente, de 1,22 y
117. Esta es una optimización que ofrece interesantes compromisos para la implementación
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del diseño con memoria local a medida y manteniendo el tráfico de las comunicaciones.
La implementación del nuevo esquema de direccionamiento ha permitido eliminar la

mayoría de los contenidos de alta resolución. También ha disminuido la ocupación total de
memoria, tanto para el flujo de FL como de MBL. La ocupación de memoria máxima se
ha reducido de 9158 KB y 1051 KB a 2475 KB y 718 KB, respectivamente, para las im-
plementaciones a nivel de fotograma y de macro-bloque. La ocupación mínima desciende
desde 3317 KB y 122 KB a 1832 KB y 113 KB, respectivamente. En resumen, la opti-
mización introducida ha rebajado el mínimo, máximo, y la ocupación media de la memoria
en un 73%, 44,8%, 62,5% y 31,7%, 6,9%, 22,7%, respectivamente para el flujo FL y MBL.
En consecuencia, el nuevo esquema de direccionamiento también ha reducido los valores
mínimos y máximos observados del factor de reducción en la ocupación de memoria para
el cambio al flujo de MBL a 3,5, y 16, respectivamente (de 6,8 y 40). A pesar de la no-
table disminución, el cambio de flujo desde el nivel de fotograma al de MB es todavía lo
suficientemente significativo, manteniendo el tráfico de memoria, como para mantener la
aproximación MBL como la más adecuada.

Todo lo anterior ha reducido aún más el número de combinaciones de prueba para las
que el incremento en el recuento de accesos a memoria es todavía mayor que la reducción
lograda en la ocupación de memoria. Una superposición de los factores de reducción en la
ocupación de memoria frente al factor de aumento en el tráfico de memoria calculado para
las versiones de referencia y optimizada se presenta en la Fig. B.5. La figura muestra que
para una escala de 4 (peor caso) el número de combinaciones para las que el incremento
observado en el tráfico de memoria es mayor que la reducción de la ocupación se ha visto
reducido de 12 a 5. Teniendo en cuenta todas las 96 combinaciones de prueba, el número de
estas combinaciones se ha visto reducido de 20 a 9. Hay que tener en cuenta que para estas
combinaciones el tamaño de la memoria todavía se reduce significativamente, sin embargo,
se espera un aumento moderado en el tráfico que tiene que afrontarse o tolerarse.
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B.4 Metodología de diseño y verificación

El objetivo de cualquier implementación hardware es crear una descripción del sistema que,
cuando se implemente en el dispositivo de destino, resulte en un sistema hardware que
tenga el mismo comportamiento observable que la referencia proporcionada, al tiempo que
se alcanzan los requisitos de rendimiento establecidos. En el flujo de diseño típico primero
se analiza el algoritmo de referencia, arquitecturalmente limitado, y luego se usa para crear
una descripción a nivel de registro y pin-accurate usando un lenguaje de diseño de hardware
y siguiendo un método de implementación específico. Esta descripción puede ser luego
utilizada para crear una descripción a nivel de puertas utilizada para configurar el hardware
de destino. En la mayoría de las implementaciones hardware la funcionalidad completa del
sistema se prototipa primeramente en software. Este paso intermedio se utiliza para probar
la funcionalidad del algoritmo y proporciona una referencia de alto nivel de abstracción para
ser utilizada en la validación y las pruebas.

B.4.1 Visión general de la metodología de diseño y verificación

En la implementación propuesta, se ha optado por seguir el segundo de los flujos antes
mencionados, referenciado en la literatura como metodología a nivel de sistemas electróni-
cos (electronic system level, ESL). Para acelerar la implementación hardware del núcleo de
súper-resolución se ha optado por la metodología de verificación del diseño presentada en la
Fig. B.6. La metodología establecida se ha basado en la metodología de co-desarrollada por
el autor y utilizada con éxito en los proyectos descritos en [SHFC+08, TSC+09, CEN+13b,
CEN+13a]. La metodología sigue el flujo ESL típico. En primer lugar, el código de refer-
encia proporcionado es usado para crear un modelo funcional de alto nivel de abstracción.
Luego, este modelo se refina de forma iterativa, y, usando una metodología de síntesis de
alto nivel, se transforma en una micro-arquitectura RTL. Este último paso se realiza para
crear el archivo de configuración hardware necesario mediante síntesis lógica.

B.4.1.1 Flujo de diseño

En este caso de estudio, el código base proporcionado había sido escrito en ANSI C. Este
código ha sido instrumentalizado y utilizado como base para el análisis a nivel funcional.
Los resultados de la etapa de análisis permitieron determinar la carga de trabajo de cada
estructura funcional y guiaron la especificación de los prototipos de los módulos hardware,
así como de la partición hardware/software. A continuación, las funciones C se agruparon
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Implementation

Analysis
(Algorithm Profiling)

Functional Partitioning
(HW/SW)

HW Encapsulation

Refinement

High-Level Synthesis

Logical Synthesis

Verification

Functional Verification

ESL Simulation

RTL Simulation

Fig. B.6 Visión general de la metodología de implementación.

por funcionalidad y se encapsularon como módulos SystemC. Mediante el uso de lenguaje
SystemC, basado en C, se permite el flujo de ejecución y la mayoría del código de soft-
ware permanece inalterado durante la transformación a la representación intermedia. En el
caso del núcleo de súper-resolución, se decidió que sólo el núcleo de súper-resolución sería
implementado.

Se ha implementado el núcleo de SR en hardware, dejando fuera el bloque de estimación
de movimiento, dado que es un problema bien definido y conocido para la que ya existen
implementaciones independientes [HN10]. Durante la partición funcional se decidió que el
tratamiento de los componentes de croma (U y V en el formato YUV) no se llevaría a cabo
utilizando los recursos de la FPGA, sino que se llevaría a cabo en paralelo usando uno de
los microprocesadores del SoC. Los valores de los componentes de la crominancia están
simplemente interpolados.

La funcionalidad encapsulada por el núcleo de súper-resolución (luma) debe ser iterati-
vamente refinada con el fin de permitir su síntesis desde alto nivel. Por el contrario, la parte
funcional del bloque de estimación de movimiento y la funcionalidad de los módulos de
procesamiento de croma no se refinan después del encapsulamiento inicial. Sólo se cambia
el código que lleva a cabo la comunicación a fin de aplicar los cambios introducidos en el
núcleo de súper-resolución. La mayor parte de las decisiones de diseño se han realizado
durante las etapas de partición y refinamiento, incluyendo el análisis del impacto en la ocu-
pación de los recursos y la latencia de la ruta crítica. Las iteraciones para el refinamiento
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se han guiado mediante las mediciones de rendimiento (latencias, tiempos de ciclo y uti-
lización de recursos) obtenidas a partir de la síntesis de alto nivel. Esto asegura la mejor
calidad de los resultados del sistema final.

Mientras que los lenguajes HDL se utilizan a menudo para las descripciones de los
Niveles de Transferencia de Registros (Register Transfer Level, RTL), SystemC se aplica
generalmente al modelado a nivel de sistema, la exploración de la arquitectura, el desar-
rollo del software, la verificación funcional y la síntesis de alto nivel [Age08]. Con el fin de
obtener la representación HDL del sistema, la descripción TLM tuvo que ser refinada en una
descripción sintetizable. Una descripción SystemC se considera sintetizable si se utiliza un
subconjunto sintetizable de lenguaje SystemC. El conjunto de construcciones consideradas
sintetizables es específico para cada herramienta de síntesis del alto nivel. En nuestro caso,
la preparación del modelo sintetizable para la síntesis de alto nivel implicaba la sustitución
de las construcciones del lenguaje no soportadas por el compilador SystemC elegido. Entre
las modificaciones necesarias, las más importantes fueron: la eliminación de la asignación
de la memoria dinámica, la reducción dimensional de la memoria a una dimensión, la elim-
inación de los punteros aritméticos, la ruptura de los bucles combinacionales, la expansión
de funciones en el momento de su referencia (function inlining), la asignación de matrices
en memoria BRAM y la eliminación de datos en punto flotante. Una vez que el código fue
sintetizado, se sintetizó una descripción RTL del núcleo y se utilizó en la síntesis lógica.

La verificación del diseño ha sido planeada para cada nivel de abstracción jerárquica, es
decir, para los niveles: funcional/algorítmico, nivel del sistema electrónico ESL (Electornic

System Level) y RTL.

Verification of the design has been planned for each tier of the abstraction hierarchy,
namely, the functional/algorithmic, ESL and RTL tiers.

B.4.1.2 Validación del modelo algorítmico

En la etapa algorítmica, la descripción del sistema estuvo representada por las definiciones
de funciones, las clases y el flujo de control secuencial codificado en lenguaje C. La ver-
ificación requiere los datos de simulación de las implementaciones de software a nivel de
fotograma y a nivel de MB. Estos datos, una vez obtenidos, se compararon con el dato
proveniente de la salida de referencia.

La introducción de los adaptadores de granularidad fotograma a macro-bloque permi-
tieron sustituir el núcleo de súper-resolución que llevaba a cabo el procesamiento a nivel
de fotograma con el que se procesaban los datos MB a MB sin necesidad de tener que
hacer cambios en otras partes del sistema. Esto facilitó la reutilización de las funciones
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Fig. B.7 Flujo de datos del experimento utilizado para verificar el modelo funcional.

responsables de la carga/almacenamiento de las imágenes, el diezmado de la imagen y la
estimación de movimiento. Este hecho condujo a la configuración utilizada en la etapa de
validación que se presenta en la Fig. B.7. El formato de la imagen de referencia (y por
lo tanto de salida) es una secuencia YUV 4:2:0p con codificación de 8 bits y tamaño CIF
(288x352 píxeles). La resolución de entrada de LR depende del valor del factor de escala
de súper-resolución. Una vez el procesamiento se llevó a cabo, las imágenes de salida pro-
ducidas por la implementación se compararon con las imágenes del software de referencia.
Para considerar que la verificación era correcta, se buscaba que los resultados observados
fueran idénticos para las luminancias de todos los fotogramas. Sólo después de que las sali-
das generadas por todas las simulaciones hubieran sido idénticas, el modelo del sistema fue
considerado como verificado.

B.4.1.3 Validación del modelo ESL

Una vez validado el modelo funcional del sistema con el núcleo SR propuesto frente a la
referencia, se pasó a la creación de la descripción SystemC del nuevo sistema. Para validar
la descripción SystemC se usaron los datos de referencia obtenidos durante la validación a
nivel algorítmico. La validación se llevó a cabo siguiendo una configuración de validación
genérica del HDL. De acuerdo a esta configuración, a nivel más alto de la organización, el
sistema comprende dos módulos: el módulo objeto de la verificación DUT (Desing Under

Test) y el módulo del banco de pruebas TB (Test Bench), que encapsula el resto del código
utilizado en la validación. Es importante destacar que el banco de pruebas no tiene por qué
ser sintetizable en ningún punto del desarrollo.

La depuración del diseño está basada en el almacenamiento y revisión de los resultados
intermedios de procesamiento. Para ello, se han utilizado interfaces adicionales de salida,
a través de las que se trasmiten al TB los datos recogidos en los llamados “puntos de va-

280



Appendix B. Resumen en castellano

lidación”. En la mayoría de los casos, los puntos de validación se han situado en lugares
intermedios entre los distintos módulos, recolectando y traspasando datos de unos a otros.
Estos puntos se han implementado a través de la replicación de canales de transferencia a
las interfaces externas. En algunos casos, con el fin de seguir el progreso del procesamiento
dentro de los módulos de computación y/o poder investigar los valores de variables y señales
internas, los puntos de validación se instanciaron como una parte de estos módulos. El re-
ceptor de los datos recogidos en los puntos de verificación fue el hilo de monitorización
implementado por el módulo del banco de pruebas. Una vez recibida, la información se
comprobaba para determinar la correcta ejecución, proporcionando la información por con-
sola y/o almacenando dicha información. La mayor parte del código del testbench ha sido
trasladada desde el código C usado para la validación del modelo de algoritmo. Con el fin
de disminuir los tiempos de simulación, el proceso de estimación de movimiento no se ha
implementado como código, sino que se ha emulado mediante la carga de los híper-datos
(métricas ME) a partir de los archivos obtenidos en las simulaciones del algoritmo a nivel
funcional. La salida observada para el modelo de algoritmo de la implementación a nivel
de MB se considera como la salida esperada y ha sido usada en la verificación de la im-
plementación a nivel de MB de los modelos ESL y RTL. El resto de cambios han sido
realizados con el fin de adaptarse al protocolo de comunicaciones a través de las interfaces
a nivel de pin o TLM.

B.4.1.4 RTL

Una vez verificada, la descripción ESL se convirtió en sintetizable y se usó como entrada
en la síntesis de alto nivel. La descripción del sistema generada es la descripción RTL en
VHDL o EDIF. Con el fin de validar el HDL sintetizado, se llevaron a cabo distintas sim-
ulaciones. La configuración de la validación ESL presentada anteriormente fue reutilizada
en las simulaciones RTL. Esto fue posible a través de una simulación de lenguaje mixto en
la cual las unidades de diseño VHDL se instanciaron en el diseño en SystemC. La instan-
ciación de los módulos HDL en el SystemC se llevó a cabo mediante unos “encapsulados”
que comunican las interfaces RTL con las de SystemC. Una vez que la descripción HDL fue
compilada y los encapsulados fueron introducidos en el sistema, se usó el entorno de verifi-
cación presentado en la Fig. B.8 para validar la exactitud de la descripción HDL incrustada
en el código SystemC.
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Fig. B.8 Entorno de verificación RTL basado en encapsulados SystemC de VHDL.

B.5 Implementación en FPGA

En este capítulo se explica en detalle la implementación hardware. Esta implementación se
ha llevado a cabo a través de la metodología establecida en la sección anterior. De acuerdo a
esta metodología, se han modelado distintos niveles de abstracción para alcanzar el nivel de
descripción usado en la síntesis lógica. El resultado de la síntesis ha permitido determinar
el cuello de botella del sistema y ha servido de guía para el proceso de refinamiento de
la arquitectura y la organización de los flujos de procesamiento. El proceso para alcanzar
prestaciones de tiempo real implica asumir distintos retos de implementación y múltiples
iteraciones de refinamiento.

B.5.1 Visión general del sistema de súper-resolución

El sistema de súper-resolución basado en el algoritmo NUGP, en el nivel más alto de or-
ganización, comprende tres bloques: (i) la estimación de movimiento, (ii) el núcleo de
súper-resolución SRK (Super Resolution Kernel), y (iii) el código que gestiona los inter-
faces de entra/salida. Como ya se ha mencionado, la implementación de la estimación de
movimiento está fuera del objetivo de este trabajo. Para mejorar el rendimiento de la sim-
ulación, la estimación de movimiento se ha emulado mediante la introducción de código
adicional que gestiona la carga de los resultados de estimación de movimiento a partir de
archivos con los resultados de estimaciones de movimiento. Como ya se ha indicado, la
implementación hardware del algoritmo de BM se ha desarrollado en paralelo [HN10]. El
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Fig. B.9 Visión general del sistema de súper-resolución con el núcleo de procesamiento propuesto.

módulo SRK incluye la lógica de gestión del NUGPA, esto es, dado el macro-bloque a
procesar y los datos asociados (las métricas del ME, las áreas de búsqueda, etc.), genera la
representación súper-resuelta del MB.

El código original del SRK se transformó con el fin de operar a nivel de MBs, dado que
el algoritmo de estimación de movimiento original operaba a nivel de fotograma, es decir,
computaba las métricas fotograma tras fotograma. Tras las modificaciones, el código del
SRK se volvió incompatible con el resto del sistema. Para hacer frente a esta situación, se
desarrollaron dos módulos de adaptación: un primer módulo para recibir y reordenar las
salidas de la estimación de movimiento, poniéndolas en el orden adecuado para el proce-
samiento MB a MB, y un segundo módulo para reconstruir el fotograma súper-resuelto de
los MBs generados por el SRK. La implementación de las modificaciones indicadas estruc-
tura el código de referencia de súper-resolución como se indica en la Fig. B.9. En referencia
a la nomenclatura establecida, el núcleo de súper-resolución y el código de adaptación for-
man el denominado dispositivo bajo test, mientras que la gestión de las I/O con la emulación
del código BM se ha encapsulado formando un prototipo del módulo de banco de pruebas.

In reference the established nomenclature, the super resolution kernel and the adapters
code formed the design under test, and the I/O management code with BM emulation code
was encapsulated forming a prototype of the testbench module.
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B.5.2 Desafíos en la implementación

El objetivo de prestaciones para la ejecución ha sido establecido para que el sistema sea
capaz de súper-resolver 24 fotogramas por segundo (fps), de tamaño QCIF y con formato
YUV 4:2:0 progresivo, que se corresponde con el formato 24p [Ski05]. A la frecuencia
objetivo ftargeted se le asignó el valor de 109 MHz. Este valor fue presentado en las publi-
caciones [TSC+09, TCH+09] para la implementación de un decodificador H.264 baseline,
que siguió el flujo de diseño ESL establecido y que iba dirigido a la misma familia de dis-
positivos FPGA. El número máximo de ciclos limitcycles disponibles para un procesamiento
de un MB 4x4 se estimó dividiendo la estimación de la frecuencia objetivo, por el número de
MBs (MBsnr) que vayan a procesarse en un segundo, como se muestra en la ecuación (B.1).
Basándose en las prestaciones requeridas de 1584 MBs 4x4 por segundo y una estimación
de la frecuencia de operación de 109 MHz, el límite de ciclos se estimó en limitcycles ciclos.
La idea de procesar un MB abarca los siguientes elementos: el procesamiento interno del
módulo, la sincronización y la comunicación entre módulos.

limitcycles =

⌊
ftargeted

MBsnr ∗ f ps

⌋
=

⌊
109∗106

1584∗24

⌋
= 2867 (B.1)

Con el fin de cumplir con los objetivos de ejecución establecidos, se han abordado una
serie de desafíos que se presentan brevemente a continuación:

• Implicaciones a nivel de sistema de los valores de los parámetros del SRK. El
valor de los parámetros del SRK tiene un impacto directo en el rendimiento y en la
eficiencia de ejecución de la implementación del núcleo de súper-resolución, NUGPA.
A fin de tener ese impacto en cuenta, el código del diseño se ha parametrizado usando
las macros que representan valores determinables en tiempo de síntesis para la sin-
cronización, la definición de la memoria, la definición de los iteradores de bucle y la
replicación del módulo condicional.

• Desafíos relacionados con la memoria. El rendimiento alcanzado por una imple-
mentación en dispositivos FPGA de un algoritmo de procesamiento de imágenes por
ordenador, es más probable que esté limitado por los recursos de memoria disponibles
que por los recursos computacionales.

– Implementación de memoria usando recursos eficientes. El uso de look-up ta-
bles y de memorias distribuidas para la implementación de las matrices es alta-
mente ineficiente. Con el fin de forzar al sintetizador a que infiera correctamente
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el uso de los dispositivos de bloques de RAM (BRAM) disponibles se han uti-
lizado macros específicas del compilador para la replicación de memorias de
acceso aleatorio.

– Comunicación entre módulos que permita la ejecución de módulos en paralelo.

Con el fin de aprovechar el paralelismo ofrecido por el hardware, el sistema tiene
que descomponerse en módulos que puedan ejecutarse en paralelo, haciendo uso
de un esquema de comunicación basado en memoria compartida con espacios
de direcciones separados de escritura y lectura, intercambiados después de los
eventos de sincronización.

– Garantía del rendimiento de memoria. Con el fin de aumentar el rendimiento de
la memoria, la implementación propuesta utiliza una mezcla de replicación de
memoria y de accesos a memoria coalescentes. Se logran ganancias adicionales
mediante el uso de memorias compartidas con ampliación de doble mapa de
memoria e interfaces de comunicación y replicación de memoria.

• Dependencia de datos en el rellenado de los huecos. El proceso de interpolación
requiere que las coordenadas de una vecindad de píxeles en forma de cuadrado, cuyo
valor está siendo calculado, estén disponibles de forma inmediata para su acceso.
En nuestra implementación, la carga de trabajo actual se determina en función de la
distancia (en coordenadas de alta resolución) de los bordes de los MB a partir de
los bordes del fotograma utilizando un conjunto de indicadores. Los píxels que no
puedan ser procesados en el momento de la recepción debido a dependencias de datos
se almacenan temporalmente hasta que las dependencias de datos se puedan resolver.

• Tamaño variable de la zona de búsqueda. Después de cambiar a procesamiento a
nivel de MB, el buffer de fotograma se eliminó. Esto dio lugar a la necesidad de ex-
tracción de los píxeles del área de búsqueda a partir de fuentes diferentes. En nuestra
implementación, los píxeles del área de búsqueda cuyas coordenadas son coordenadas
válidas de fotograma se extraen fuera del núcleo súper-resolución y se realimentaron
de nuevo como entradas. El SA se reconstruye internamente en base a un conjunto
definido de indicadores que señalan la posición del SA dentro del fotograma.

• Construcción y gestión de las cuadrículas. Las cuadrículas de alta resolución del
sistema se construyen a partir de una imagen de LR por medio de interpolación con
el factor de escala igual a la precisión. En nuestra implementación, el problema con
las cuadrículas de alta resolución del SA fue resuelto usando un esquema de direc-
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cionamiento de memoria intermedia que, junto con las coordenadas de HR de la
cuadrícula, fue capaz de proporcionar datos correctos operando en la representación
de LR.

• Determinación del tamaño de la ventana de fotogramas. El concepto de ventana
deslizable de fotogramas se utilizó con el fin de proporcionar capacidades de súper-
resolución dinámica. El número exacto de fotogramas que se incluyen en la SFW
varía a lo largo de la ejecución. En nuestra implementación, un número variable de fo-
togramas en la SFW se gestiona por medio de contadores internos y de señalizadores
externos que señalan transiciones de estado de la SFW.

• Operación de división. La operación de división no es una construcción sintetizable
por las herramientas de síntesis de alto nivel utilizadas. En nuestra implementación,
esta operación fue emulada tanto por medio de otras operaciones (es decir, desplaza-
mientos de bits (+ sumas) o multiplicaciones) como implementándola utilizando un
módulo hardware personalizado.

B.5.3 Arquitectura del núcleo de súper-resolución: arquitectura im-
plementada y organización

La arquitectura funcional del núcleo de súper-resolución que alcanza las prestaciones y la
funcionalidad perseguidas se presenta en la Fig. B.10. Internamente, el núcleo mantiene
la división en tres partes principales: (i) la gestión del buffer de reordenación, (ii) el nú-
cleo de súper-resolución, y (iii) la reconstrucción del fotograma. Sin embargo, con el fin
de cumplir con el número de ciclos de ejecución establecido, muchos de los bloques fun-
cionales tuvieron que ser descompuestos en módulos más pequeños. La tarea de gestión
de reordenación del búfer (Reorder Buffer management) tuvo que ser dividida en dos eta-
pas, encapsuladas como dos módulos: el ReorderBufferReap y el ReorderBufferSew. El
primero de los módulos opera a nivel de fotograma, almacenando el resultado del ME en la
memoria siguiendo un orden adecuado para procesar a nivel de MB. Por lo tanto, el módulo
ReorderBufferReap controla la recepción de las métricas de estimación de movimiento, el
reordenamiento de datos y el acceso de almacenamiento al buffer de reordenamiento. Sólo
una vez que se han recibido todos los datos de los fotogramas de referencia del SFW actual,
el ReorderBufferSew puede procesarlos. El ReorderBufferSew gestiona las solicitudes de
datos que surgen dentro del núcleo de súper-resolución, lleva a cabo la carga de datos del
buffer de reordenamiento y proporciona datos leídos al ShadPrep del SRK.
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Fig. B.10 Visión general de la organización del modelo pin-accurate.

El núcleo de súper-resolución lleva a cabo dos tareas principales: (i) construcción de
la cuadrícula y fusión, y (ii) interpolación. De este modo, los módulos que componen el
SRK pueden verse como pertenecientes a uno de los dos grupos, dependiendo de sus tareas.
Los módulos UpGrid, ShadPrep, UpHoles y ShadStep, llevan a cabo la construcción de las
cuadrículas. La fusión de las cuadrículas es realizada por los módulos ReapSteps y Normal-

izeMB. El proceso de rellenado de huecos se lleva a cabo por los módulos HolesFillingPrep

y MeanNearest.

La entrada al SRK comprende los píxeles LR del macro-bloque y de sus áreas de
búsqueda (uno por cada fotograma en el SFW), y un conjunto de indicadores (flags). Es-
tos indicadores describen el macro-bloque y el área de búsqueda dentro del fotograma e
identifican las dependencias de datos entre macro-bloques. El módulo ShadPrep recibe
los indicadores y solicita resultados de ME (MVs y SADs) del módulo ReorderBufferSew.
Una vez que estos parámetros están disponibles, se calcula la localización actual del macro-
bloque dentro de la zona de búsqueda y los pesos para cada área de búsqueda de los actuales
SFW.
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Las coordenadas de localización calculadas y los pesos, junto con los MVs y los indi-
cadores, se transmiten a los módulos ShadStep.

Los píxeles del macro-bloque de LR se proporcionan desde la entrada principal de
súper-resolución al módulo UpGrid. Cada píxel recibido se somete a la transformación
zeroes2ones y se almacena en la memoria de entrada del módulo ReapSteps. Como resul-
tado, la memoria de entrada de ReapSteps mantiene la representación de HR (interpolados
4x) de los MBs de LR. Después de haber terminado su tarea, el módulo UpGrid envía una
señal de sincronización al módulo ReapSteps.

Los píxeles del área de búsqueda son recibidos por los módulos UpHoles. La tarea de
cada uno de los módulos de UpHoles es almacenar los píxeles recibidos en la memoria
de entrada del módulo ShadStep correspondiente. Los módulos ShadSteps examinan los
indicadores, identifican (en base a los MVs y a las coordenadas recibidas del ShadPrep) y
extraen los píxeles que se utilizan para la creación de la cuadrícula del SA. La cuadrícula
del SA construida se almacena en la memoria de entrada del módulo ReapSteps. Después
de haber terminado su tarea, cada ShadStep envía una señal de sincronización al módulo
ReapSteps

Habiendo recibido las señales de sincronización de los ShadSteps y el módulo UpGrid,
el ReapSteps inicia su funcionamiento. La tarea del módulo ReapSteps consiste en la carga
de datos de las cuadrículas, la fusión de las mismas, y el almacenamiento del resultado en
la memoria de entrada del módulo NormalizeMB. En primer lugar, recibe los indicadores y
los pesos de uno de los módulos ShadSteps. Luego, para cada coordenada de HR se cargan
píxeles de las memorias de entrada (la cuadrícula de HR de MB y la cuadrícula del SA) y
las fusiona. Los resultados de la operación de fusión para cada coordenada de HR son los
valores de la suma ponderada de los píxeles con valor no-nulo cargados desde las memorias
de entrada, y la suma de los pesos de los píxeles no-nulos que contribuyeron a la operación
de fusión. Dichos valores se almacenan en la memoria de entrada del módulo NormalizeMB.
Para cada coordenada de HR, el módulo NormalizeMB carga los dos valores producidos por
los módulos ReapSteps. Entonces, se divide la suma ponderada por la suma de los pesos y
se almacena el resultado en la memoria de entrada del módulo HolesFillingPrep.

Los módulos MeanNearest y HolesFillingPrep llevan a cabo el proceso de rellenado
de huecos. Estos módulos calculan los valores de píxel para las coordenadas de HR de la
cuadrícula, cuyos valores no fueron estimados durante el proceso de fusión. El resultado
producido por las partes de construcción de la cuadrícula y fusión del SRK se transmite
al módulo HolesFillingPrep. Los datos se utilizan para construir una estructura llamada
el mapa de píxeles. Esta estructura se compone de píxeles del macro-bloque que se está
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procesando actualmente y de los MBs procesados previamente. Los elementos de la imagen
que se utilizan para ver el mapa de píxeles de la construcción se determinan en función
de la ubicación del macro-bloque dentro del fotograma. Las dependencias de datos entre
macro-bloques se gestionan mediante la exclusión del procesamiento de algunas partes del
mapa de píxeles. Los píxeles que se van a procesar por el módulo MeanNearest forman
una región continua llamada la región de trabajo. La región de trabajo se identifica por
sus coordenadas ubicadas en la esquina superior izquierda e inferior derecha. Sólo los
píxeles pertenecientes a la región de trabajo son procesados por los módulos MeanNearest.
Los píxeles con dependencias entre macro-bloque no resueltas son excluidos de la región
de trabajo. Una copia de estos píxeles se almacena en las memorias locales hasta que se
resuelven las dependencias de datos.

Una vez creado, el mapa de píxeles se almacena en la memoria de entrada del módulo
MeanNearest. Sobre la base de las coordenadas recibidas, cada módulo MeanNearest de-
termina su región de trabajo y la procesa píxel a píxel. Para cada píxel cargado se calculan
las coordenadas en las que se almacenará en la memoria de entrada del siguiente módulo.
Si el valor del píxel es diferente de cero, se almacena en la memoria de entrada del módulo
MBcollector, y se carga el siguiente píxel. En caso contrario, antes de almacenar un nuevo
píxel, el valor de píxel se calcula usando una interpolación del vecino más próximo (mean

nearest neighbors interpolation).

El módulo MBcollector recibe los píxeles súper-resueltos y lleva a cabo la reconstruc-
ción del fotograma. Debido a las dependencias entre macro-bloques, el número de píxeles
súper-resueltos en las memorias de entrada del módulo MBcollector es variable. El número
exacto de píxeles súper-resueltos que se tienen que extraer, su ubicación en la memoria
de entrada y la memoria buffer del fotograma son determinados en base a los indicadores
recibidos y del valor del parámetro del factor de escalado. Habiendo recibido y procesado
todos los MBs que pertenecen a un fotograma, el módulo envía el contenido de las memorias
de fotograma a través del puerto de píxeles súper-resueltos.

B.5.4 Resultados

La Tabla B.3 resume los resultados de la implementación hardware, y muestra una com-
paración con la implementación del estado de la técnica presentada en [BB08]. El sistema
ha sido implementado en un dispositivo FPGA avanzado[Xil09]. La implementación resul-
tante (etiquetada como Tech1 en la Tabla B.3). para tamaño de MB de 4x4 píxeles, factor
de escala igual a 2, y SFW con 3 fotogramas (RF = 2) ocupó 10291 LUTs, 16 bloques DSP,
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TABLE B.3 Resultados de las prestaciones hardware para dos dispositivos FPGA en comparación
con [BB08] para el caso particular de RF=2, factor de escala=2, SA=2, y MB=4 MB. N/A
significa no disponible.

SRiuma Referencia [BB08]
Dispositivo Etapas iterativas [Xil07]

Tech1 [Xil09] Tech2 [Xil07] 10 20
Lógica [LUT] 10291 13031 35707 68317
BRAM 66 132 134 234
Bloques DSP 16 2 N/A N/A
Frecuencia [MHz] 109 68 58 58
Tasa de fotogramas [fps] 25 16 61 61

y 66 bloques RAM. Esto corresponde a una ocupación de los recursos del dispositivo del
22%, 12% y 44,6%, respectivamente. El uso total de memoria fue de 2376 MB (44%). No
se requirió del uso de memoria externa al chip. La frecuencia final del reloj fue de 109 MHz,
dando como resultado la posibilidad de aplicar súper-resolución con factor de escala 2 a 25
fotogramas QCIF por segundo.

Esto es significativamente menor que la aplicación dada en [BB08], que ofrece una ve-
locidad de fotogramas de 61 fps y una mayor resolución de salida. Sin embargo, la imple-
mentación alternativa sólo cuenta con 10 etapas iterativas, es decir, la mitad de las 20 etapas
asignadas por los autores como el umbral para producir resultados de calidad satisfactoria.
Por lo tanto, con el fin de ofrecer una comparación más equitativa de los recursos usados por
el estado del arte, también se presenta una aproximación de las prestaciones alcanzadas por
una solución con 20 etapas iterativas. Los requisitos de lógica y memoria para esta config-
uración se estimaron mediante la suma de los costes de ejecución de 10 etapas de iteración
adicionales a el coste implementación del sistema con 10 etapas más de iteración. Por otro
lado, la aplicación que se presenta en este trabajo también fue mapeada y ruteada para el
dispositivo [Xil07] usado en [BB08]. Los resultados de esta implementación se etiquetan
como Tech2 en la Tabla B.3, y pueden ser utilizados para una comparación directa.

La implementación que se presenta en este trabajo ha sido optimizada para conseguir
la calidad del software de base y reducir al mínimo los requisitos hardware. Con el fin de
medir la eficacia de las implementaciones FPGA, se propone utilizar como figura de mérito
el uso de look-up tables (LUT) frente a las mejoras de SR (boostCostSR). Esta figura de
mérito representa el número de LUTs requeridas por la aplicación y necesarias para obtener
un incremento del 1% en calidad promedio (objetiva) medida. El objetivo es mantener esta
figura de mérito lo más baja posible. El boostCostSR se estima tal y como se muestra en
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TABLE B.4 Figura de mérito boostCostSR frente al coste de interpolación en términos de LUTs para
el caso particular de RF=2, factor de escala=2, SA=2, y MB=4).

Implementación boostCostSR
[LUT

%

]

versus nearest-neighbour interpolation

SRiuma Tech2 1269 680 894

IBP con pesos [BB08] 16275 6546 5832

versus bi-cubic interpolation

SRiuma Tech2 2753 1266 1458

IBP con pesos [BB08] No gain 30804 10994

Secuencia paris mobile foreman

la ecuación (B.2), donde LUTnr representa el número de LUTs necesarios para la imple-
mentación y los valores PSNRSRi y PSNRinti representan, respectivamente, el valor PSNR
del fotograma súper-resuelto e interpolado para el fotograma i de la secuencia de prueba,
que comprende un conjunto de n fotogramas.

boostCostSR =

(
n×LUTnr

100

)/(
n

∑
i=1

PSNRSRi−PSNRinti
PSNRinti

)
(B.2)

El boostCostSR se calculó para la implementación propuesta, basándose en los resul-
tados de la implementación presentados en esta sección para Tech2 y en el valor medio
PSNR para los 90 fotogramas iniciales de las secuencias de prueba paris, foreman y mobile
(componente de luminancia) presentados en la Tabla B.2. Los valores de IBP fueron am-
ablemente proporcionados por los autores de [BB08]. Otros valores se obtuvieron utilizando
la configuración utilizada para la evaluación del software de referencia. Los valores resul-
tantes de la figura boostCostSR para las secuencias paris, foreman y mobile se presentan en
la Tabla B.4.

El estudio muestra que, para las secuencias de prueba utilizadas, la figura boostCostSR

para la implementación propuesta es al menos 6,5 veces inferior a la de la implementación
presentada en [BB08]. Las principales razones de una diferencia tan grande en la boostCostSR

radican en el uso del block-matching (BM) ME, y en la naturaleza no iterativa del algoritmo
implementado. La primera conlleva un mayor PSNR, mientras que la segunda permite re-
ducir la ocupación total del dispositivo usado. El impacto que tiene el algoritmo de ME en
los resultados se manifiesta de una manera clara en resultados para secuencias con abun-
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dancia de movimientos locales como foreman y mobile. Estos movimientos no pueden ser
trazados con exactitud usando un ME a nivel de fotograma. Para estas secuencias el PSNR
obtenido usando una estimación a nivel de fotogramas es significativamente más bajo, apun-
tando a mayores valores de boostCostSR.

B.6 Conclusiones

El principal objetivo de esta tesis doctoral ha sido demostrar la capacidad de ejecución en
tiempo real del algoritmo NUGP por medio de una implementación hardware que usa solo
recursos de memoria internas al dispositivo. Para alcanzar este objetivo, primero, se han
introducido modificaciones a nivel de algoritmo en el flujo de ejecución del algoritmo de
referencia para reducir sus elevados requisitos de ocupación de memoria, lo que descartaba
una implementación hardware de alto rendimiento. Se han usado modelos teóricos que de-
sarrollan el flujo propuesto y el flujo de referencia para identificar los cuellos de botella
y evaluar cuantitativamente las ventajas y desventajas asociadas con el cambio en el flujo
propuesto de granularidad más fina. Los resultados de las modificaciones propuestas mues-
tran una reducción significativa de la ocupación de memoria a cambio de incrementar el
tráfico de memoria. Los valores esperados máximos y mínimos que se han calculado del
factor de reducción de la ocupación de la memoria asociada con el cambio al nuevo flujo
propuesto estaban entre el rango de 3,5 y 16, dependiendo de los valores de los parámetros
SRK. Los valores calculados máximos y mínimos del factor del incremento de tráfico en
memoria asociados al cambio realizado estaban en el rango de 1,1 y 16,9 respectivamente.
El valor exacto de estos factores depende de la combinación del valor de los parámetros usa-
dos para configurar el núcleo de SR. Para 87 de las 96 configuraciones investigadas (más del
90%) el factor de reducción de memoria ocupada ha sido mayor que el factor del incremento
del tráfico de la memoria, demostrando la efectividad de la estrategia propuesta.

Para nuestra implementación hardware hemos establecido una metodología que tiene en
cuenta la naturaleza de constante evolución del algoritmo y su implementación software, al
tiempo que usa una jerarquía escalonada de abstracciones a partir de las cuales el nivel de
descripción HDL pin-accurate es obtenido de una manera automatizada. Por medio del uso
de SystemC como lenguaje de codificación de los modelos intermedios hemos sido capaces
de reutilizar la mayoría del código C. Esto facilita la propagación rápida de las modifica-
ciones hechas a nivel funcional, a través de modelos intermedios, hasta la descripción HDL
final. El uso de representaciones intermedias incrementa la portabilidad del diseño, permi-
tiendo una síntesis de alto nivel para conseguir un rango de lenguajes HDL (VHDL, Verilog,

292



Appendix B. Resumen en castellano

etc.) a partir de la misma descripción de alto nivel. Además, usando lenguajes basado en
C se deja abierta la posibilidad a través de toda la abstracción jerárquica de una rápida mi-
gración de los modelos a otros lenguajes basados en C, en particular al estándar OpenCL. El
nivel de detalles de la descripción metodológica proporcionada facilita la reutilización del
flujo establecido en las implementaciones de otros algoritmos similares.

Usando la metodología establecida, la arquitectura propuesta ha sido mapeada satis-
factoriamente usando una tecnología FPGA Xilinx Virtex 5. La arquitectura final ha con-
seguido un rendimiento de 24 fotogramas por segundo con una frecuencia de operación
de 109 MHz usando el dispositivo xc5vf70t-1 xc5vf70t-1. La comparación con el estado
del arte llevada a cabo muestra resultados satisfactorios dado que la ocupación de recur-
sos lógicos observados por el sistema propuesto fue hasta 5 veces menor que el reportado
en el estado del arte, mapeado usando la misma tecnología FPGA [BB08]. Los resultados
obtenidos de la síntesis para la implementación hardware: (i) han demostrado la capaci-
dad de alcanzar un rendimiento en tiempo real en tecnología FPGA, mientras se mantiene
la calidad de las imágenes súper-resueltas al mismo nivel que el ofrecido por las imple-
mentaciones software, y (ii) ha proporcionado la corrección de los cambios de nivel de los
algoritmos presentados y la metodología propuesta. La portabilidad del diseño se ha preser-
vada gracias al uso de gran cantidad de niveles del código de abstracción en el SystemC
genérico, el cual permite una descripción de alto nivel para ser sintetizada por un amplio
rango de lenguajes (VHDL, Verliog, etc.) y tecnologías diferentes (Altera, Actel, Lattice,
Vantis, Lucent, etc.) sin (o con) una optimización específica del proveedor. La portabilidad
del diseño es además reforzada por no usar (explícitamente) ningún acelerador específico
(MAC, sumadores, divisores, etc.).

En resumen, en este trabajo ha llevado a cabo satisfactoriamente la transferencia de
conocimiento del dominio de los algoritmos de compresión al dominio de los algoritmos
de mejora de imagen usando SR, evaluado cuantitativamente el impacto de las modifica-
ciones, proporcionado una metodología de alto nivel de las implementación que facilita una
propagación rápida de las modificaciones y proporcionando una implementación hardware
eficiente en FPGAs que permite el procesamiento en tiempo real mientras mantiene la cali-
dad de las imágenes súper-resueltas producidas.
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B.7 Líneas futuras de investigación

Los logros alcanzados en este trabajo abren el camino para nuevas líneas de investigación
focalizadas en indagar más en el estado del arte de la implementación de SR en hardware:

• La implementación propuesta podría ser analizada y modificada para lograr mayores
mejoras, en particular: (i) Implementación de las mejoras a nivel de algoritmo prop-
uestas por E. Quevedo en [Gut15]. (ii) Extensión del rango de los valores de los
parámetros SRK soportados y exploración de las posibilidades para soportar efec-
tivamente tamaños de macro-bloque variables. (iii) Mapeado en plataformas het-
erogéneas y encapsulado en una IP.

• Implementación del sistema con escalado basado en replicación. El trabajo de G.
Singla [STdA13] presenta una aproximación que usa múltiples núcleos del NUGPA,
aplicando la SR en paralelo en bloques exclusivos del fotograma de entrada para au-
mentar la velocidad de procesado. La aproximación presentada está limitada por la
latencia de los accesos a memoria. Como la aproximación presentada solo usa memo-
ria interna, su extensión a este tipo de configuraciones podría aliviar los problemas
asociados de memoria logrando un aumento significativo de la velocidad.

• Las plataformas multi-core y many-core suponen una tendencia emergente indudable
en el ambiente de cómputo de alto rendimiento (High Performance Computing, HPC).
La aparición de soluciones híbridas que usan estas plataformas en conjunto con FP-
GAs [PCC+14, WHK+14, MJK12], sugieren explorar el espacio de diseño para el
mapeado de SR en esas plataformas.

• Finalmente, sería interesante usar la metodología propuesta para implementar otros al-
goritmos de procesado de imagen de alta complejidad, usando diferentes herramientas
en la cadena de diseño.
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