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Abstract

There is limited information on the specific effects of long-chain PUFA (LCPUFA) on neuron development and functioning. Deficiency of

those essential fatty acids impairs escape and avoidance behaviour in fish, where Mauthner cells (M-cells) play a particularly important

role in initiating this response. Gilthead seabream larvae fed two different LCPUFA profiles were challenged with a sonorous stimulus.

Feeding n-3 LCPUFA increased the content of these fatty acids in fish tissues and caused a higher number of larvae to react to the stimulus

with a faster burst swimming speed response. This faster startle response in fish fed n-3 LCPUFA was also associated with an increased

immune-positive neural response, particularly in M-cells, denoting a higher production of acetylcholine. The present study shows the

first evidence of the effect of n-3 LCPUFA on the functioning of particular neurons in fish, the M-cells and the behaviour response that

they modulate to escape from a sound stimulus.

Key words: Mauthner cells: Fish larvae behaviour: Essential fatty acids: DHA: Burst swimming speed

Despite n-3 long-chain PUFA (LCPUFA) have been long recog-

nised as being important for brain development and function,

little is known on their specific effects on neuron activity

in relation to behaviour. n-3 LCPUFA play important roles

in neural growth, development of synaptic processing of

neural cell interaction and expression of genes that regulate

cell differentiation and growth(1). Essential fatty acid metab-

olism can influence many aspects of brain development,

including neuronal migration, axonal and dendritic growth

and the creation, remodelling and pruning of synaptic connec-

tions(2,3). Animal studies have shown that both neural integrity

and function can be permanently disrupted by deficits of n-6

and n-3 fatty acids during fetal and neonatal development(4,5).

While both n-6 and n-3 fatty acids are required, the n-3 fatty

acids, such as DHA (22 : 6n-3), appear to play a special role

in highly active sites such as synapses and photoreceptors

and deficiencies have particularly been linked to visual and

cognitive deficits(6,7).

In marine fish, n-3 LCPUFA are essential and play very

important physiological roles(8,9). Specifically, DHA and EPA

(20 : 5n-3) acids must be supplied in the diet and function as

critical structural and physiological components of the cell

membranes of most tissues that are necessary for fish

growth, welfare, survival and development(10,11). In particular,

DHA has been found to be required for the normal

development of the nervous system and sensory organs,

such that the larval brain and eye fatty acid compositions

reflect the diet(12,13). Moreover, DHA deficiency impairs

vision in juvenile herring (Clupea harengus)(14). Therefore,

dietary fatty acid contents could potentially affect behaviour,

stress reactions or pain and comfort, despite the lack of studies

on this subject in fish. Recently, dietary fatty acids have been

found to affect escape and avoidance behaviour in fish larvae

after a sound or visual stimulus(13,15). Fish can elude predatory

attacks by producing a stereotyped escape behaviour, which is

characterised by a rapid and powerful unilateral bending of

the body and caudal fin that involves most of its somatic mus-

culature(16). This behaviour is initiated by the activation of the

Mauthner cells (M-cells).

M-cells integrate diverse sensory inputs(17,18) and are able to

reset swimming rhythms in the course of its initiation of

escape behaviours(19). In chronic recordings of freely swim-

ming intact fish, the M-cells have been shown to fire an

action potential at the initiation of C-start responses(20–23).

Because the axons of each M-cell decussate, the firing of

one leads to a contraction of the trunk musculature that is con-

tralateral to the cell soma(20,24). To date there is no evidence

of an effect of the essential fatty acids on M-cell activity.

Therefore, the aim of the present study was to better

understand the effect of dietary n-3 LCPUFA on fish escape
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and avoidance behaviour and neural function. For that

purpose the effect of two different lipid sources, with different

n-3 LCPUFA content, fed to gilthead seabream (Sparus aurata)

during early larval and brain development on the fish reaction

to a sonorous stimulus and M-cells activity was investigated.

M-cell activity was determined by choline acetytransferase

distribution by immuno-labelling as a marker of cholinergic

neuron density, since the cholinergic neurotransmission

system has been found to be sensitive to dietary n-3 PUFA

in rats(25).

Material and methods

All animal studies complied with the guidelines for animal

experimentation of our laboratories and were approved by

the institutional review boards.

Experimental conditions

A total of 6600 gilthead seabream larvae of 22 d of age (post-

hatch) (5·06 (SD 0·59) mm in standard length) were randomly

distributed into six 170 litres fibre glass cylindrical tanks

and were fed in triplicate with two experimental diets. Diets

differed only in the lipid source to obtain different fatty acid

profiles. Lipid sources were fish oil rich in n-3 LCPUFA and

soyabean oil rich in linoleic acid (18 : 2n-6). The diets were

analysed for crude lipid content and fatty acid composition

(Table 1). Microdiets were prepared according to Atalah

et al.(26). No significant differences were found in the dry

lipid content (20·09; P.0·05.). All tanks were supplied with

filtered seawater (34 ppm salinity) at 19–208C, constant aera-

tion (125 ml/min), seawater flow (0·4 litres/min at the begin-

ning to 1·0 litres/min at the end) and artificial light (12 h

photoperiod). Feeds (2·5 g/tank per d) were manually sup-

plied fourteen times per d every 45 min during the light period.

Swimming speed behaviour

The swimming speed of the larvae from each tank was deter-

mined at 23, 27 and 34 d of age in a 1 litre black wall glass

beaker (10 cm diameter) keeping a water depth of 4 cm.

Each larva was transferred from the feeding tanks to the

glass beaker and then video-recorded using a Sony digital

video camera (DCR-TRV27; Sony, Tokyo, Japan). After record-

ing for 30 s, the larva was scared by a sound stimulus to induce

a startle response and determine a burst swimming speed.

Consistent sound stimuli were produced using a steel nut(13).

Sound stimuli were provided three times at 10 s intervals for

each larva. Afterwards, larval standard length was measured

by a profile projector (Nikon V-12A; Nikon, Tokyo, Japan).

This procedure was repeated using ten individuals from

each rearing tank. Frame-by-frame video image analysis was

conducted to calculate burst swimming speed(13,15). Burst

swimming speed was analysed only when the larva showed

an obvious startle response. The fastest movement always

appeared on the first frames after providing a stimulus as it

occurs in younger larvae(13). The speed was presented as a

function of the standard length of each individual to avoid

larval size interference(13,15).

Biochemical analyses

At the end of the study the larvae were sampled for lipid

and fatty acid composition of total lipids. The lipids were

extracted by chloroform–methanol mixture(27). Methyl esters

of fatty acids were prepared by transesterification with 1 % sul-

phuric acid and methanol using heneicosanoic acid (21: 0;

10 % of total lipids) as an internal standard(28). The fatty acid

methyl esters obtained were separated by a GC (Shimadzu

GC-14a, Kyoto, Japan) run using the operating conditions

described previously(29), quantified by flame ionisation detec-

tion and identified by comparison with well-characterised

external standards.

Table 1. Fatty acid composition of total lipids of gilthead sea
bream larvae fed with fish oil and soyabean oil microdiets
(% total determined fatty acids)

Fatty acids Fish oil diet Soyabean diet

14 : 0 0·53 0·85
14 : 1n-7 0·02 0·04
14 : 1n-5 0·16 0·05
15 : 0 0·54 0·22
15 : 1n-5 ND 0·03
16 : 0 ISO* 0·06 0·03
16 : 0 23·37 17·94
16 : 1n-7 6·83 0·48
16 : 1n-5 0·38 0·06
16 : 2n-4 1·09 0·08
17 : 0 1·22 0·26
16 : 3n-4 0·29 0·09
16 : 3n-3 0·03 0·02
16 : 3n-1 0·07 0·04
16 : 4n-3 0·58 0·11
16 : 4n-1 0·16 0·08
18 : 0 2·38 1·92
18 : 1n-9 þ n-7 12·11 19·65
18 : 1n-5 0·18 0·46
18 : 2n-6 9·35 34·11
18 : 2n-4 0·17 ND
18 : 3n-6 0·14 ND
18 : 3n-4 ND 2·40
18 : 3n-3 ND 1·47
18 : 4n-3 1·26 0·07
18 : 4n-1 0·14 0·02
20 : 0 0·07 0·17
20 : 1n-9 þ n-7 2·75 1·84
20 : 1n-5 0·22 0·06
20 : 2n-9 0·07 0·03
20 : 2n-6 0·22 0·14
20 : 3n-6 0·12 ND
20 : 4n-6 1·06 0·45
20 : 3n-3 0·31 0·22
20 : 4n-3 0·61 0·06
20 : 5n-3 12·73 4·97
22 : 1n-11 0·58 0·28
22 : 1n-9 0·36 0·13
22 : 4n-6 0·09 0·09
22 : 5n-6 0·24 0·11
22 : 5n-3 0·49 0·07
22 : 6n-3 13·89 10·91

ND, not detected.
* ISO indicates the position of the methyl terminal or subterminal.
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Immunofluorescence study

A total of thirty larvae per tank (n 90) were collected and

fixed in 10 % buffered formalin at the end of the experiment.

Each larva head was mounted in a gelatin block in a horizon-

tal orientation to obtain better visualisation of neuronal

structures. Gelatin-embedded larva head blocks were cryopro-

tected in 30 % sucrose and serially cut on a Slee Mainz cryostat

at 10mm. Each gelatin section for immunofluorescence slides

was collected on gelatin-coated slides. The antibody was

tested to determine the optimal working concentration and

quality of the signal and seabream larvae were processed for

the demonstration of immunoreactivity. The slides were cov-

ered with 5 % rabbit serum and 0·2 % Triton in PBS for 1 h.

Incubations with anti-choline acetyltransferase primary anti-

body (1:250; Millipore, Billerica, MA, USA) were carried

out for 48 h at 48C in a 0·1 M (PBS) solution with 0·1 %

Triton X-100 and 2 % goat serum (Vector). As a secondary anti-

body we used a anti-goat IgG FITC conjugate (1:250, antibody

developed in rabbit affinity-isolated antigen-specific antibody

(Sigma, Madrid, Spain) diluted in PBS and applied for 1 h in

a dark room at room temperature. A propidium iodide com-

plex at a concentration of 1:104 was applied for 5–10 min at

room temperature and was used for nuclei contrast staining.

In order to see the M-cell green immunofluorescence, a

Zeiss LSM 510 confocal system (Zeiss, Thornwood, NY, USA)

was used. In order to prevent fluorescence data from being

compromised, in each batch of samples processed all treat-

ments were always included. Negative controls were run by

replacing each primary antibody by PBS to test for the speci-

ficity of an antibody involved.

Statistical treatment of data

Data were statistically analysed with the SPSS software (SPSS

11.5 for Windows; SPSS, Inc., Chicago, IL, USA). The values

are reported as means and standard deviation. The normality

of the variable distribution was verified using Levene’s test,

not requiring any transformation. The values of fatty acid

levels were expressed as means and standard deviation, and

Student’s t test was employed to compare the results of fatty

acids and behavioural studies. Significance was accepted at

P,0·05.

Results

Under the stimulus challenges conducted during the study,

the number of larvae (twenty larvae/diet per challenge) that

reacted to the sound stimulus was related to larval age and

diet. Thus, at 23 d of age a low percentage of larvae reacted

to the stimulus, whereas at 27 d this number significantly

(P,0·03) increased (Fig. 1 (a)). At 32 d, a similar proportion

of larvae reacted when they were fed fish oil, whereas the

percentage of reacting larvae was lower in those fed soyabean

oil (P,0·05; Fig. 1 (a)).

In larvae fed fish oil, burst swimming speed after sound

stimuli increased with age being highest in larvae of 34 d

(P,0·03; Fig. 1 (b)). However, in larvae fed soyabean oil

burst swimming speed only increased at 27 d in comparison

with 23 d and it was even reduced in 34-d-old larvae when

they were fed soyabean oil (Fig. 1 (b)). Therefore, at day 34

burst swimming speed after sound stimulus of larvae fed fish

oil was significantly higher (P,0·02) than that of fish fed soy-

bean oil (Fig. 1 (b)).

Confocal microscopy analysis showed a greater acetyl-

choline immunopositive response (green fluorescence) in

larvae fed the fish oil microdiet than in those fed the soyabean

oil microdiet (P,0·03; Fig. 2). Fluorescence quantification

showed a significantly higher immunoposititve response in

larvae fed fish oil than in larvae fed the soyabean oil microdiet

(Fig. 3).

The larvae fed the fish oil diet showed the highest DHA and

EPA (P,0·03) content in the whole body (Table 2). The fatty

acid composition of larval fish (Table 2) at 36 d after hatching

showed that larvae fed with soyabean oil microdiets lost n-3

LCPUFA content (both EPA and DHA in the same proportion)

in comparison with larvae fed with a fish oil microdiet in

which the content of DHA and EPA (P,0·004) is higher in

whole body compared with fish fed soyabean oil. Larvae fed

the fish oil microdiet showed a reduction in monoenoics

and unsaturated fatty acids, while showing the highest content

of n-3 fatty acids. Larvae fed with soyabean oil microdiets
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Fig. 1. Larval reaction after the sound stimuli along larval development.

(A) Number (%) of reacting sea bream larvae for each experimental group

after the sound stimuli fed diets containing fish oil ( ) and soyabean oil ( ).

(B) Burst swimming speed (standard length/s) in sea bream larvae fed micro-

diets enriched with different types of lipids: fish oil ( ) and soyabean oil ( ).
a,b Mean values with unlike letters were significantly different between

animals of same treatment (n 30, P,0·05). c,d Mean values with unlike letters

were significantly different between animals of different treatment (n 30,

P,0·05).
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were rich in fatty acids of the n-6 series, particularly 18 : 2n-6

showed a significant reduction (P,0·04) compared with levels

found in fish fed the fish oil diet. Soyabean oil larvae showed

a higher content of monoenoics and SFA, which may reduce

membrane fluidity. These fatty acid incorporation results

demonstrated good assimilation of the diet by the larvae.

Discussion

In the present study, the reduction in dietary n-3 PUFA caused

a significant reduction in the contents of these fatty acids in

the fish. In gilthead seabream, brain fatty acid composition

is also modified by the n-3 LCPUFA content of the diet(13),

and therefore, being necessary for the normal development

of nervous system and sensory organs, these fatty acids

could affect physiological functions in the brain. In fact, a

diet unbalanced in n-3 PUFA may cause changes in cell per-

meability and synaptic membrane fluidity(30), or modifications

in the number and affinity of receptors, in the function of ion

channels and on the activity of neurotransmitters(31). Thus,

alterations in brain fatty acid composition could potentially

affect behaviour.

An important behaviour to escape from predation is the

startle response, which is initiated by a sudden stimulus and

results in rapid reaction. In the present study, the substitution

of soyabean oil by fish oil in microdiets for larval gilthead

seabream markedly increased n-3 LCPUFA content in fish tis-

sues and affected fish behaviour in terms of the startle

response to a sonorous stimulus. Thus, during fish develop-

ment, a higher but not statistically different number of larvae

reacted to the stimulus when they were fed fish oil, rich in

n-3 LC-PUFA. Moreover, a n-3 LC-PUFA increase in the

diet also led to a faster swimming speed burst in those

larvae that reacted to the sonorous stimulus at 32 dph. There-

fore, dietary reduction in n-3 LC-PUFA impaired fish larval

response to the stressor, reducing the escape behaviour

in larvae with a lower content of n-3 LC-PUFA in their body

tissues. These results highlight the important role of these

fatty acids in response to a sonorous stimulus, in agreement

with their importance for sensory organ functioning(32).

In contrast with the present study, younger and less

developed gilthead seabream burst swimming response to a

sound stimulus was not affected by dietary n-3 LCPUFA,

whereas they had a high burst swimming speed after a light

stimulus(13). This suggests that despite the fact that neural

and muscular responses were well developed in those

young larvae since they were able to react to a visual stimulus,

the reception to the sound stimulus was not sufficiently devel-

oped to produce a consistent response according to dietary

differences. The mechanoreceptive neuromast cells associated

with the lateral line system and the inner ear (auditory nerve)

are the major receptors for external vibrational and gravita-

tional stimuli in fish. The lateral line system of teleost fish

typically consists of a row of pores along the tail, body and

head, leading into an underlying fluid-filled lateral line
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Fig. 2. Quantification of green fluorescent intensity by confocol microscopy

according to the immunopositive response of Mauthner cells in sea bream

larvae fed microdiets with fish oil and soyabean oil. a,b Mean values were sig-

nificantly different between animals of different treatment (n 30, P,0·05).

(A)

(B)

Fig. 3. Confocol microscopy image of the acetylcholine immunopositive

response of Mauthner cells longitudinal sections from larvae fed with (A) fish

oil microdiet and (B) soyabean oil microdiet. Scale bar 10mm.
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canal. The neural impulses from these receptors are trans-

mitted along the anterior and posterior lateral line nerves to

the octavolateralis area of the medulla(33). In the fish used in

the present study the lateral line was better developed,

whereas in the former trial, conducted with younger larvae,

the lateral line had not started to appear until the end of the

experiment (15–20 d). A further development of the sensorial

organs in the larvae of the present study would allow a differ-

ent perception of the stimulus by larvae fed different n-3 LC-

PUFA suggesting the importance of these fatty acids for the

normal functioning of the lateral line.

The Mauthner neurons are known to receive sensory

information not only from the auditory nerve(34,35), but also

from the optic tectum(36), the lateral line mechanosensory

system(37), the somatosensory channels(38) and via the electro-

sensory system in weakly electric fish(37). Thus, a variety of

sensory modalities could modulate the relative excitation or

inhibition of the M-cells before a startling stimulus driving

it beyond threshold levels. Escaping behaviour in fish has

been particularly related to M-cells. This pair of reticulospinal

neurons initiates fast startle responses in fishes and amphi-

bians and constitutes an important model system in the studies

of vertebrate neurons and their control of behaviour(16). In the

present study, faster startle response in fish fed n-3 LCPUFA

was also associated with an increased immunopositive

neural response, particularly in M-cells, denoting a higher

production of acetylcholine. Acetylcholine release in the hip-

pocampus has been found to be reduced under neuronal acti-

vation in rats receiving a chronically n-3 PUFA-deficient

diet(25,39). n-3 LC-PUFA, and particularly DHA, markedly

affect membrane fluidity and functioning and have been

found to be important for neurocyte myelination and synapse

construction, with both functions being sensitive to nutritional

deficiencies(40). Moreover, these fatty acids are nutritional

antioxidants that prevent the formation of cerebral lipid

peroxides(41), stabilising the oxidant/antioxidant status of the

membrane structures in the brain(42), and protecting them

from several neurological and neuropsychiatric disorders(43).

Most of the DHA accumulation occurs during late pre-natal

and early post-natal development, coinciding with the for-

mation of synapses(44). Similarly, DHA accumulates in the

brain and the sensorial organs of the fish during larval devel-

opment and it is retained in the neural tissues even during

periods of starvation(32,45). Adequate dietary availability of

DHA during this period is essential for optimal development

and functioning of the central nervous system. Inadequate

intake of DHA is thus associated with impaired attention and

learning performance as well as modifications in emotional

status including elevated behavioural indices of anxiety,

aggression and depression(46).

The present study shows the first evidence of the import-

ance of n-3 LCPUFA for the adequate functioning of particular

neurons, the M-cells, and, subsequently, for the behavioural

response that they modulate to escape from a sound stimulus.

Further studies are being conducted to understand the role

of these essential fatty acids on neural development and

functioning.

Table 2. Fatty acids content (% total determined fatty acids, n 3) of
35 d old sea bream larvae fed with fish oil microdiet (fish oil larvae) and
soyabean oil microdiet (soyabean larvae)

(Mean values and standard deviations)

Fish oil larvae Soyabean oil larvae

Fatty acid Mean SD Mean SD

14 : 0 1·08 0·21 0·69 0·08
14 : 1n-7 0·18 0·02 0·10 0·02
14 : 1n-5 0·11 0·03 0·02 0·02
15 : 0 0·32 0·03 0·27 0·02
15 : 1n-5 0·03 0·00 0·02 0·01
16 : 0ISO 0·08 0·01 0·06 0·02
16 : 0 19·33 1·69 22·66 1·98
16 : 1n-7 3·64 0·15 1·66 0·19
16 : 1n-5 0·21 0·02 0·16 0·03
16 : 2n-6 0·13 0·06 0·18 0·02
16 : 2n-4 0·50 0·10 0·26 0·03
17 : 00 0·42 0·01 0·22 0·06
16 : 3n-4 0·06 0·02 0·02 0·00
16 : 3n-3 0·08 0·05 ND* -
16 : 3n-1 0·16 0·01 ND* -
16 : 4n-3 0·65 0·11 0·67 0·05
16 : 4n-1 0·08 0·03 0·14 0·11
18 : 0 9·74 1·24 11·73 0·32
18 : 1n-9 9·57 0·77 12·56 2·24
18 : 1n-7 3·84 0·63 2·35 0·90
18 : 1n-5 0·33 0·05 0·35 0·08
18 : 2n-9 0·23 0·03 0·12 0·15
18 : 2n-6 4·77b 0·37 15·37a 0·63
18 : 2n-4 0·09 0·00 0·06 0·06
18 : 3n-6 0·10 0·03 0·11 0·01
18 : 3n-4 0·09 0·12 0·09 0·03
18 : 3n-3 1·19 0·37 0·98 0·07
18 : 3n-1 0·06 0·00 ND*
18 : 4n-3 0·32 0·02 0·09 0·04
18 : 4n-1 0·03 0·00 0·01 0·00
20 : 00 0·17 0·06 0·26 0·06
20 : 1n-9 þ n-7 1·41 0·02 1·28 0·18
20 : 1n-5 0·29 0·01 0·22 0·06
20 : 2n-9 0·13 0·02 0·11 0·02
20 : 2n-6 0·47 0·02 0·93 0·14
20 : 3n-6 0·16 0·01 0·12 0·03
20 : 4n-6 2·43 0·13 1·7 0·13
20 : 3n-3 0·20 0·13 0·21 0·01
20 : 4n-3 0·32 0·02 0·07 0·00
20 : 5n-3 7·44a 0·07 3·53b 0·39
22 : 1n-11 0·29 0·20 0·29 0·05
22 : 1n-9 0·11 0·04 0·10 0·02
22 : 4n-6 0·16 0·02 0·04 0·01
22 : 5n-6 0·75 0·11 0·51 0·04
22 : 5n-3 2·00 0·11 0·67 0·01
22 : 6n-3 26·26a 0·85 18·86b 2·03
Saturated 30·40 3·19 35·35 2·24
Unsaturated 13·40 1·19 15·48 2·33
Monoenoics 15·56 1·19 16·93 3·41
Polyunsaturated 48·84 1·82 44·87 1·53
n-3 38·45 1·42 25·08 2·51
n-6 8·97 0·50 18·99 0·89
n-9 11·45 0·65 14·17 2·59
n-3 HUFA 40·35 0·87 39·83 2·42
AA/EPA 0·33 0·01 0·49 0·10
EPA/DHA 0·28 0·01 0·19 -

ND, not detected.
a,b Mean values within a row with unlike superscript letters were significantly differ-

ent as determined by Student’s t test honestly significant difference (n 3,
P,0·05).

* ND #0·005
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