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Abstract

The computation of the nonlinear response of piled structures taking soil-structure interaction into account is tackled in this paper.

The structure is assumed to be founded on a group of piles, whose impedance and kinematic interaction functions are computed,

in the frequency domain, through a boundary elements-finite elements coupled formulation. On the other hand, the response of the

system is computed using a time-stepping procedure for the integration of the equations of motion for an inelastic superstructure,

which requires a time-domain representation of the above-mentioned impedance and kinematic interaction functions. This can

be achieved by the use of different methodologies, such as standard lumped-parameter models, higher-order consistent lumped-

parameter models, or hidden state variable models, among others. In this paper, the use of high-order consistent lumped-parameter

models for the deterministic representation of the impedance functions of deep foundations will be discussed together with different

aspects of the resulting equivalent systems such as degree of accuracy, physical representation of parameters or arising numerical

stability issues. Then, the use of this approach for the computation of the inelastic response of piled structures subject to seismic

excitation will be explored.
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1. Introduction

There exist many problems related to the fields of Structural Dynamics and Earthquake Engineering where the

soil-structure interaction phenomena must be taken into account. When this is realized by substructuring methods, it

is very common to characterize the dynamic response of the piled foundations by means of impedance functions that

are usually obtained directly in frequency domain. These functions are useful in many situations, but must be adapted

when used for problems involving non-linearities where it is necessary to solve the problem directly in time-domain.

One of the ways to use these functions directly in the time domain is through the construction of equivalent lumped-

parameter models (LPMs). These models were extensively developed in the field of structural dynamics by Wolf [1–5]

and Wolf and Paronesso [6–8] in the early nineties. Based on these models, Wu and Lee [9,10] tackled the problem

from a more systematic point of view, by fitting impedance curves through the concept of polynomial-fraction function
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form. Some recent applications of this methodology for SSI problems are those of Andersen [11] for the assessment

of lumped-parameter models in rigid footings, and Damgaard et al. [12] for the study of real time dynamic responses

of offshore wind turbines on monopiles. An extended review on this topic can be found in Andersen [13].

This work presents, very briefly, preliminary results concerning the implementation and use of a consistent LPM

approach for the time-domain characterization of pile foundation impedance functions. Impedance functions of piles

and groups of piles were calculated by a BEM-FEM coupled model previously developed by the group [14,15]. This

LPM implementation allows the study of the non-linear behaviour of a superestructure, using a substructure approach

like the one shown in [16]. An example of it will be also shown.

2. Methodology

2.1. Substructure approach of the superstructure under study

The superstructure analysis can be studied by means of a substructure approach in which the system is subdivided

into building-cap structure and soil-foundation stiffness and damping, represented by means of springs and dashpots,

as shown in figure 1(a). The superstructure can be defined by the mass of the building cap m, the mass of the pile

cap m0, the moment of inertia of the pile cap I0, the height of the building cap h, the viscous damping ratio ξ and the

structural stiffness k that could have a non-linear law of behaviour. Note that the horizontal u f and rocking ϕ f motions

of the foundation are here defined as relative to the foundation input motions.

The complex-valued frequency-dependent functions Z̃xx = kxx + ia0cxx, Z̃φφ = kφφ + ia0cφφ and Z̃xφ = kxφ + ia0cxφ

represent the stiffness and damping of the foundation in the horizontal, rocking and cross-coupled horizontal-rocking

vibration modes, respectively. The cross-coupled rocking-horizontal vibration mode has been considered identical

to the cross-coupled horizontal-rocking vibration mode in this approach. Hence, the equations of motion of the

system shown in figure 1(a), assuming small displacements, can be written in terms of relative motions as shown in

equations (1) to (3) [16], where equation (1) represents the horizontal force equilibrium of the structure, equation (2)

the horizontal force equilibrium of the structure-foundation system and equation (3) the moment equilibrium of the

structure-foundation system about a horizontal axis passing through the centre of gravity of the pile cap.

m(ü + ü f + üg + h(ϕ̈ f + ϕ̈g)) + ku + cu̇ = 0 (1)

m(ü + ü f + üg + h(ϕ̈ f + ϕ̈g)) + kxxu f + cxxu̇ f + kxφϕ f + cxφϕ̇ f + m0(ü f + üg) = 0 (2)

hm(ü + ü f + üg + h(ϕ̈ f + ϕ̈g)) + kφxu f + cφxu̇ f + kφφϕ f + cφφϕ̇ f + I0(ϕ̈ f + ϕ̈g) = 0 (3)

In order to solve the system under study in time domain, the step-by-step Newmark linear acceleration method

has been implemented [17]. But first, it’s necessary to transform the frequency-dependent impedance functions in a

proper combination of discrete-elements (masses, dampings and springs) whose response is equivalent, as detailed in

the following section. A time step short enough has to be ensure in order to obtain stability conditions in time domain.

The condition of ∆t < 0.551TN, where TN is the shortest natural period of the system, has to be accomplished [17].

2.2. Impedance curves fitting by optimization of the poles and LPM schemes of different orders used in this study

As stated by Andersen [13], the impedance functions, defined in the frequency domain, can be expressed as Z̃(a0) =

Z0S (a0) where Z0 denotes the static stiffness Z(0) and a0 denotes the dimensionless frequency, typically a0 = ωd/cs

in the case of piles and groups of piles where d denotes the pile diameter and cs is the soil shear-wave velocity. The

frequency-dependent stiffness dimensionless coefficient S (a0) is then decomposed into a singular part S s(a0), and a

regular part S r(a0): S (a0) = S s(a0)+S r(a0) = k∞+ ia0c∞+S r(a0). In this expression, k∞ and c∞ are two real constants

which are selected so that Z0S s(a0) provides the entire stiffness in the high-frequency limit a0 → ∞.

The regular part S r(a0) is the remaining part of the stiffness. Generally, a closed expression for S r(a0) is unavail-

able. Hence, the regular part of complex stiffness is usually obtained by fitting a rational filter to the results obtained

in a numerical or semi-analytical model, here the BEM-FEM model previously mentioned [14,15]. Once numerical

solution provided by the BEM-FEM simulation is obtained, Z̃(a0), is taken as the “exact” solution, and regular part of

the stiffness coefficient is found as S r(a0) = Z̃(a0)/Z0 − S s(a0). A rational approximation can be written as [13]:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.246&domain=pdf
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In order to solve the system under study in time domain, the step-by-step Newmark linear acceleration method

has been implemented [17]. But first, it’s necessary to transform the frequency-dependent impedance functions in a

proper combination of discrete-elements (masses, dampings and springs) whose response is equivalent, as detailed in

the following section. A time step short enough has to be ensure in order to obtain stability conditions in time domain.

The condition of ∆t < 0.551TN, where TN is the shortest natural period of the system, has to be accomplished [17].

2.2. Impedance curves fitting by optimization of the poles and LPM schemes of different orders used in this study

As stated by Andersen [13], the impedance functions, defined in the frequency domain, can be expressed as Z̃(a0) =

Z0S (a0) where Z0 denotes the static stiffness Z(0) and a0 denotes the dimensionless frequency, typically a0 = ωd/cs

in the case of piles and groups of piles where d denotes the pile diameter and cs is the soil shear-wave velocity. The

frequency-dependent stiffness dimensionless coefficient S (a0) is then decomposed into a singular part S s(a0), and a

regular part S r(a0): S (a0) = S s(a0)+S r(a0) = k∞+ ia0c∞+S r(a0). In this expression, k∞ and c∞ are two real constants

which are selected so that Z0S s(a0) provides the entire stiffness in the high-frequency limit a0 → ∞.

The regular part S r(a0) is the remaining part of the stiffness. Generally, a closed expression for S r(a0) is unavail-

able. Hence, the regular part of complex stiffness is usually obtained by fitting a rational filter to the results obtained

in a numerical or semi-analytical model, here the BEM-FEM model previously mentioned [14,15]. Once numerical

solution provided by the BEM-FEM simulation is obtained, Z̃(a0), is taken as the “exact” solution, and regular part of

the stiffness coefficient is found as S r(a0) = Z̃(a0)/Z0 − S s(a0). A rational approximation can be written as [13]:
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(a) (b)
Fig. 1. (a) superstructure model under study [16]; (b) discrete-element scheme used.

S r(a0) ≈ Ŝ r(ia0) =
1 − k∞ + p1(ia0) + p2(ia0)2 + ... + pM−1(ia0)M−1

∏N
n=1(ia0 − sn)(ia0 − s∗n)

∏M−N
n=N+1(ia0 − sn)

, 2N ≤ M (4)

The curve-fitting of the rational filter to the regular part of the dynamic stiffness is made by a least-squares tech-

nique, where the roots sn are identified as the optimization variables in addition to the coefficients of the numerator

polynomial. In order to get a stable solution in the time domain, the poles of Ŝ r(ia0) should all reside in the second

and third quadrant of the complex plane, i.e. the real parts of the poles must all be negative.

On equation (4), an asterisk (*) denotes the complex conjugate. Experience shows that as many as possible of the

roots should appear as complex conjugates [13]; e.g. if M is even, N = M/2 should be used. This provides a good fit

in most situations and may, at the same time, generate the LPM with fewest possible internal degrees of freedom.

Once calculated, the poles and the coefficients in the numerator have little insight into the physics of the problem.

In order to obtain physical meaningful coefficients, a recasting of equation (4) into partial-fraction form should be

carried out: Ŝ r(ia0) =
∑M

m=1 Rm/(ia0− sm), where sm are the poles of Ŝ r(ia0), and Rm are the corresponding residues. If

the conjugate complex and the corresponding residues are added together, a second-order term with real coefficients

appears, so the partial-fraction form can be rewritten as shows equation (5). The real coefficients α0n, α1n, β0n and β1n

are given by simple mathematical operations between poles and residues of the complex conjugate terms [13].

Ŝ r(ia0) =

N∑

n=1

β0n + β1nia0

α0n + α1nia0 + (ia0)2
(5)

The approximation of the impedance functions consists of the sum of the singular part of the stiffness, and N

second-order terms (the regular part of the stiffness, equation (5)) as shows figure 1(b). The second-order discrete-

element model chosen has only one internal degree of freedom, and the four parameters (k1n, k2n, γn and ̺n) can be

determined from the equilibrium formulation for its own node and pile cap (node 0), in comparison with the second-

order term shown in equation (5). In order to calculate ̺n, a quadratic equation has to be solved: a̺2
n+b̺n+c = 0 where

a = α4
1n
− 4α0nα

2
1n
, b = −8α1nβ1n + 16β0n and c = 16β2

1n
/α2

1n
. This equation results in two solutions for ̺n, for which

real values must be ensured. Deciding which one of the two values of ̺n to take is critical: a positive value is beneficial

because the majority of the discrete parameters will then be also positive which will be better to ensure stability in time

domain. But, if the value of ̺n results in a mass much bigger than others corresponding to others degrees of freedom,

contemplating the negative value could be beneficial. When ̺n has been determined, the three remaining coefficients

can be calculated using the following expressions: k1n = ̺nα
2
1n
/4 − β1n/α1n, k2n = ̺nα0n − k1n, γn = ̺nα0n/2.

3. Results

A particular case will be introduced for the study of the influence of the foundation type on the response of the

superstructure introduced in section 2.1, with the aim of validating the proposed LPM and checking the influence of

the quality of the adjustment of the impedance curves. As introduced previously, all the possible roots will be forced
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Fig. 2. “El Centro” earthquake spectrum and fitting of impedance curves with different LPM orders (M2N1, M4N2, M6N3 and M8N4).

to be complex conjugates (N = M/2) in the fitting process of impedance curves (horizontal, rocking and crossed),

therefore in this paper only the cases of M = 2 and N = 1 (M2N1), M = 4 and N = 2 (M4N2), M = 6 and N = 3

(M6N3), M = 8 and N = 4 (M8N4) are studied.

One of the main objectives of this work is to show the potentiality of this model for the analysis of any type of

nonlinearity in piled superstructures. As an example, the elastoplastic response of the superstructure columns will be

shown in a second part of this section.

3.1. Validation

The results obtained by the step-by-step procedure in the time domain are compared with those obtained by the

direct method in the frequency domain, since for the validation of the method, the superstructure works within the

linear range. The impedance curves of the piles foundation were obtained using the BEM-FEM model previously

developed by the research group [14,15], and have been taken as the exact ones in order to compare results. These

curves correspond to a group of 3x3 inclined piles, whose rake angle is 20◦ following a distribution shown schemati-

cally into figure 2, and the properties used in order to obtain the curves are: d = 1.5 m, L = 20 m, where L is the pile

length, Ep/Es = 1000 (soft soil), where Ep and Es are the pile and soil Young’s modulus respectively, νs = 0.4, where

νs is the soil Poisson’s ratio, ρp/ρs = 1.6, where ρp and ρs are the pile and soil densities, s = 9 m, where s is the pile

spacing, ξs = 5%, where ξs is the soil internal hysteretic damping coefficient, Es = 2.25 · 107 Pa and cs = 70 m/s.

For the superstructure model (figure 1(a)) the following values of the properties have been chosen: m = 106 kg,

m0 = 2.5·105 kg, h = 4 m, I0 = 2·105 kg/m2, ξ = 5% and k = 108 N/m. As excitation, “El Centro” earthquake has been

selected, whose frequency spectrum is shown in figure 2 and as can be seen from it, most of energy of this particular

earthquake is concentrated around 10 rad/s. The kinematic interaction factors of the pile foundation, obtained through

BEM-FEM [14,15], have been taken into account in order to obtain displacements ug and rotations ϕg at the base of

the structure (figure 1(a)), transforming free field spectrum UFF through Fast Fourier Transform algorithms.

In view of the resulting displacements and rotations of the superstructure (figure 3), it is verified that the degree

of freedom corresponding to the rotation ϕ f is the most sensitive of the three that make up the superstructure to the

order of the fitting of impedance curves (figure 2). If the temporal evolution of this degree of freedom is observed

(ϕ f ), the use of an LPM of order M2N1 is insufficient because the response separates much more than the others from

the reference one, by 4.32% (the others: M4N2 = 1.42%, M6N3 = 1.39%, M8N4 = 1.37%); the main reason why it

occurs it’s a bad fitting of impedance curves for this LPM order, mainly the rocking ones. On the other hand it can
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(a) (b)
Fig. 1. (a) superstructure model under study [16]; (b) discrete-element scheme used.

S r(a0) ≈ Ŝ r(ia0) =
1 − k∞ + p1(ia0) + p2(ia0)2 + ... + pM−1(ia0)M−1

∏N
n=1(ia0 − sn)(ia0 − s∗n)

∏M−N
n=N+1(ia0 − sn)

, 2N ≤ M (4)

The curve-fitting of the rational filter to the regular part of the dynamic stiffness is made by a least-squares tech-

nique, where the roots sn are identified as the optimization variables in addition to the coefficients of the numerator

polynomial. In order to get a stable solution in the time domain, the poles of Ŝ r(ia0) should all reside in the second

and third quadrant of the complex plane, i.e. the real parts of the poles must all be negative.

On equation (4), an asterisk (*) denotes the complex conjugate. Experience shows that as many as possible of the

roots should appear as complex conjugates [13]; e.g. if M is even, N = M/2 should be used. This provides a good fit

in most situations and may, at the same time, generate the LPM with fewest possible internal degrees of freedom.

Once calculated, the poles and the coefficients in the numerator have little insight into the physics of the problem.

In order to obtain physical meaningful coefficients, a recasting of equation (4) into partial-fraction form should be

carried out: Ŝ r(ia0) =
∑M

m=1 Rm/(ia0− sm), where sm are the poles of Ŝ r(ia0), and Rm are the corresponding residues. If

the conjugate complex and the corresponding residues are added together, a second-order term with real coefficients

appears, so the partial-fraction form can be rewritten as shows equation (5). The real coefficients α0n, α1n, β0n and β1n

are given by simple mathematical operations between poles and residues of the complex conjugate terms [13].

Ŝ r(ia0) =

N∑

n=1

β0n + β1nia0

α0n + α1nia0 + (ia0)2
(5)

The approximation of the impedance functions consists of the sum of the singular part of the stiffness, and N

second-order terms (the regular part of the stiffness, equation (5)) as shows figure 1(b). The second-order discrete-

element model chosen has only one internal degree of freedom, and the four parameters (k1n, k2n, γn and ̺n) can be

determined from the equilibrium formulation for its own node and pile cap (node 0), in comparison with the second-

order term shown in equation (5). In order to calculate ̺n, a quadratic equation has to be solved: a̺2
n+b̺n+c = 0 where

a = α4
1n
− 4α0nα

2
1n
, b = −8α1nβ1n + 16β0n and c = 16β2

1n
/α2

1n
. This equation results in two solutions for ̺n, for which

real values must be ensured. Deciding which one of the two values of ̺n to take is critical: a positive value is beneficial

because the majority of the discrete parameters will then be also positive which will be better to ensure stability in time

domain. But, if the value of ̺n results in a mass much bigger than others corresponding to others degrees of freedom,

contemplating the negative value could be beneficial. When ̺n has been determined, the three remaining coefficients

can be calculated using the following expressions: k1n = ̺nα
2
1n
/4 − β1n/α1n, k2n = ̺nα0n − k1n, γn = ̺nα0n/2.

3. Results

A particular case will be introduced for the study of the influence of the foundation type on the response of the

superstructure introduced in section 2.1, with the aim of validating the proposed LPM and checking the influence of

the quality of the adjustment of the impedance curves. As introduced previously, all the possible roots will be forced
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to be complex conjugates (N = M/2) in the fitting process of impedance curves (horizontal, rocking and crossed),

therefore in this paper only the cases of M = 2 and N = 1 (M2N1), M = 4 and N = 2 (M4N2), M = 6 and N = 3

(M6N3), M = 8 and N = 4 (M8N4) are studied.

One of the main objectives of this work is to show the potentiality of this model for the analysis of any type of

nonlinearity in piled superstructures. As an example, the elastoplastic response of the superstructure columns will be

shown in a second part of this section.
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length, Ep/Es = 1000 (soft soil), where Ep and Es are the pile and soil Young’s modulus respectively, νs = 0.4, where

νs is the soil Poisson’s ratio, ρp/ρs = 1.6, where ρp and ρs are the pile and soil densities, s = 9 m, where s is the pile

spacing, ξs = 5%, where ξs is the soil internal hysteretic damping coefficient, Es = 2.25 · 107 Pa and cs = 70 m/s.

For the superstructure model (figure 1(a)) the following values of the properties have been chosen: m = 106 kg,

m0 = 2.5·105 kg, h = 4 m, I0 = 2·105 kg/m2, ξ = 5% and k = 108 N/m. As excitation, “El Centro” earthquake has been

selected, whose frequency spectrum is shown in figure 2 and as can be seen from it, most of energy of this particular

earthquake is concentrated around 10 rad/s. The kinematic interaction factors of the pile foundation, obtained through

BEM-FEM [14,15], have been taken into account in order to obtain displacements ug and rotations ϕg at the base of

the structure (figure 1(a)), transforming free field spectrum UFF through Fast Fourier Transform algorithms.

In view of the resulting displacements and rotations of the superstructure (figure 3), it is verified that the degree

of freedom corresponding to the rotation ϕ f is the most sensitive of the three that make up the superstructure to the

order of the fitting of impedance curves (figure 2). If the temporal evolution of this degree of freedom is observed

(ϕ f ), the use of an LPM of order M2N1 is insufficient because the response separates much more than the others from

the reference one, by 4.32% (the others: M4N2 = 1.42%, M6N3 = 1.39%, M8N4 = 1.37%); the main reason why it

occurs it’s a bad fitting of impedance curves for this LPM order, mainly the rocking ones. On the other hand it can
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also be observed in a qualitative way that the response for an LPM of order M4N2 is not accurate in some maximum

values of the response, but could be valid in most study cases.

Based on the above it may be concluded that for this particular case an optimal order of LPM is M6N3 because it

employs the minimum amount of internal degrees of freedom and a high quality in the response is obtained. Note that

same order of LPM has been used for various impedances, i.e. for the optimum LPM chosen (M6N3), there are three

internal degrees of freedom for Z̃xx = kxx + ia0cxx, three for Z̃xφ = kxφ + ia0cxφ, three for Z̃φx = kφx + ia0cφx and three

for Z̃φφ = kφφ + ia0cφφ, which together with three of the superstructure yields a system of fifteen degrees of freedom.

This wouldn’t have to be like that, as different orders of LPM for different impedance curves could have been chosen.

3.2. Inelastic response of the superstructure

Finally, the use of this approach for the computation of the inelastic response of the superstructure subjected to

seismic excitation is explored. The same parameters as in the previous validation section have been used, and only

the optimal LPM order (M6N3) has been studied. With the aim of illustrating the use of the methodology when

non-linearities arise in the superstructure, a bilinear force-deformation relationship with initial stiffness k = 108 N/m,

post-yield stiffness ratio α = 0.20 and yield deformation u f = 0.02 m has been considered for the columns. Figure 4

illustrates the response obtained when the system is subjected to the “El Centro” Earthquake.

As a result of this type of elastoplastic behaviour, systems with lower yield strength yield more frequently and

for long intervals, and with more yielding, the permanent deformation of the structure after the ground stops shaking

tends to increase. Part of the input energy imparted to an inelastic system by an earthquake is dissipated by yielding

[18]. More detailed results will be shown in future works.

4. Conclusions

In this paper, a consistent Lumped Parameter Model has been used in order to take into account the frequency-

dependency of pile foundations when computing the seismic response of nonlinear piled structures in the time domain.

To do so, the LPM is organized using a combination of parameters with physical meaning (masses, dampers and

springs). This meaningful parameters and systematic structure of constants allows an easy control over the numerical

instabilities in time domain as will be shown in future works. Validation tests in the linear range show that the

numerical scheme can be used to study the problem at hand. Besides, initial tests in the non-linear range suggest

that the numerical scheme is also able to handle superstructure nonlinearities. It is shown that the implemented LPM
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schemes are quite robust, as accurate results are obtained even with a low order scheme, and as the order increases,

the accuracy increases, as might be expected. As a practical example of application, the non-linear behaviour of

the columns of the superstructure has been studied following a perfect elasto-plastic model with hardening. A more

detailed study of non-linear behaviour of other interesting types of structures will be shown in future works.
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values of the response, but could be valid in most study cases.
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for Z̃φφ = kφφ + ia0cφφ, which together with three of the superstructure yields a system of fifteen degrees of freedom.

This wouldn’t have to be like that, as different orders of LPM for different impedance curves could have been chosen.

3.2. Inelastic response of the superstructure

Finally, the use of this approach for the computation of the inelastic response of the superstructure subjected to

seismic excitation is explored. The same parameters as in the previous validation section have been used, and only

the optimal LPM order (M6N3) has been studied. With the aim of illustrating the use of the methodology when

non-linearities arise in the superstructure, a bilinear force-deformation relationship with initial stiffness k = 108 N/m,

post-yield stiffness ratio α = 0.20 and yield deformation u f = 0.02 m has been considered for the columns. Figure 4

illustrates the response obtained when the system is subjected to the “El Centro” Earthquake.

As a result of this type of elastoplastic behaviour, systems with lower yield strength yield more frequently and

for long intervals, and with more yielding, the permanent deformation of the structure after the ground stops shaking

tends to increase. Part of the input energy imparted to an inelastic system by an earthquake is dissipated by yielding

[18]. More detailed results will be shown in future works.

4. Conclusions

In this paper, a consistent Lumped Parameter Model has been used in order to take into account the frequency-

dependency of pile foundations when computing the seismic response of nonlinear piled structures in the time domain.

To do so, the LPM is organized using a combination of parameters with physical meaning (masses, dampers and

springs). This meaningful parameters and systematic structure of constants allows an easy control over the numerical

instabilities in time domain as will be shown in future works. Validation tests in the linear range show that the

numerical scheme can be used to study the problem at hand. Besides, initial tests in the non-linear range suggest

that the numerical scheme is also able to handle superstructure nonlinearities. It is shown that the implemented LPM
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schemes are quite robust, as accurate results are obtained even with a low order scheme, and as the order increases,

the accuracy increases, as might be expected. As a practical example of application, the non-linear behaviour of

the columns of the superstructure has been studied following a perfect elasto-plastic model with hardening. A more

detailed study of non-linear behaviour of other interesting types of structures will be shown in future works.

Acknowledgements

This work was supported by the Ministerio de Economı́a y Competitividad (MINECO) of Spain and FEDER

through research Project BIA2014-57640-R. In addition, Francisco González is recipient of the research fellowship
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