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RESUMEN 

La presente memoria resume el trabajo de investigación realizado por Miguel 

Ángel Tejedor Hernández con motivo de su proyecto fin de carrera (PFC). En concreto, el 

presente trabajo describe una comparativa de diferentes cadenas de procesamiento de 

imágenes hiperespectrales de tumores cerebrales humanos. El documento sigue la 

estructura clásica de un trabajo de investigación en dicho campo, presentando en primer 

lugar las motivaciones y objetivos que han motivado la comparativa de diferentes técnicas 

de análisis hiperespectral respondiendo a una necesidad claramente existente en este 

campo de estudio, pues actualmente no existen mecanismos fiables para delimitar el 

tejido tumoral con el fin de extraerlo en su totalidad y de forma precisa durante una 

operación de neurocirugía. A continuación se realiza un estudio en profundidad del estado 

del arte en dicho campo, desde el concepto de píxel hiperespectral hasta los algoritmos 

existentes que fundamentan la base de este estudio. Posteriormente se detallan los 

módulos de pre-procesado y clasificación que se han combinado en forma de diferentes 

cadenas de procesamiento orientadas a clasificar datos hiperespectrales de forma 

supervisada. En este sentido, el núcleo del presente trabajo viene dado por la comparativa 

de las cadenas de procesamiento consideradas en el marco de dos casos de estudio 

centrados en la utilización de imágenes hiperespectrales de tejido tumoral, obtenidas 

mediante sensores hiperespectrales durante intervenciones quirúrgicas y adquiridas de las 

biopsias cerebrales extraídas durante dichas intervenciones. Como resultado del estudio 

cuantitativo y comparativo realizado al analizar los resultados de clasificación obtenidos 

utilizando diferentes cadenas de procesamiento en relación con información de referencia 

(muestras etiquetadas) disponible para dichas imágenes, se ofrecen una serie de 

conclusiones y recomendaciones generales acerca del mejor uso posible de los módulos de 

pre-procesado y clasificación que integran dichas cadenas. Dichas recomendaciones 

suponen un aspecto innovador en la literatura especializada dedicada al análisis de datos 

hiperespectrales, y pensamos que serán de gran utilidad para los usuarios de este tipo de 

datos interesados en aplicaciones relacionadas con la clasificación supervisada de los 

mismos. 
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Chapter 1 

Introduction 

1.1. Objectives 

The main objective of this dissertation is to analyze different types of processing 

chain for hyperspectral imaging that allow to obtain accurate and efficient results for this 

type of data, combining the advantages of each technique applied while minimizing the 

disadvantages associated with the separate application of each technique. For this, the 

next overall objective is proposed below: to study, to evaluate and to compare the 

different existing techniques for hyperspectral classification process and to draw some 

conclusions with regard to the efficiency approaches for human brain cancer detection. 

In order to achieve this general objective, several specific objectives have also been 

accomplished:  

O1. To develop a state of the art study on hyperspectral imaging in the medical 

field (data format and representation), acquiring the necessary knowledge 

of the hyperspectral analysis. 

O2. To gain knowledge of tools and programs management to work with this 

type of processing data. 

O3. To analyze the images used to better understand their behavior in certain 

applications (source, characteristics, special properties, types of tissue...). 
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O4. To compare the most important data processing techniques currently in 

the literature for hyperspectral imaging and to establish those that provide 

better results or more accurately. 

O5. To perform a comprehensive study regarding supervised algorithm SVM, 

one of the main techniques for supervised classification. 

O6. To implement a set of processing chains using the chosen techniques and 

classification testing. 

O7. To evaluate the proposed experiments focusing on the influence of using 

different types of pre-processes before the classification process. 

O8. To design and develop a final system for hyperspectral image classification 

in order to detect tumor samples. 

O9. To validate a final classification system using real hyperspectral images of 

human brain tumors. 

O10. To draw conclusions from quantitative and comparative study performed, 

and propose possible future work. 

1.2. Context and motivations 

The work developed in this dissertation is the analysis and study of different 

automatic processing techniques for hyperspectral classification focused on of human 

brain tumour samples using supervised methods. This work is included in the actual 

research lines funded by the European Commission through the FP7 FET Open programme 

ICT-2011.9.2, the European Project HELICoiD “HypErspectral Imaging Cancer Detection” 

under Grant Agreement 618080. 

Hyperspectral images are an extension of the concept of digital image, in the sense 

that each pixel in a hyperspectral image is not only formed by a single discrete value, but 

by a wide range of values for different spectral measurements recorded by a sensor or 

measuring instrument in different wavelength values. The collection of all the wavelength 

values (one per spectral band) which are associated to a given pixel is called a spectral 

signature. As a result, we can understand a hyperspectral image as a collection of 
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spectroscopic measurements that provide very detailed of information on the properties 

of the materials appearing on the scene. 

This fact involves the provision of a large amount of information with a high level 

of detail. The scientific community dedicated to the analysis of hyperspectral data has 

identified the need to interpret such data properly and obtain relevant information for 

different fields with little effort [1]. Therefore, the basis for defining and testing a flexible 

chain of collection and processing of hyperspectral data to produce efficient results should 

be set. 

In the literature, there are a variety of methodologies and techniques applicable, 

which may be considered as combinable functional blocks within the entire processing 

chain. Considering the main purpose of processing as the classification and 

characterization of hyperspectral pixels to produce a thematic map that identifies different 

classes or regions of interest in the image, the steps which are executed a priori and a 

posteriori are known as pre-processing and post-processing techniques respectively. This 

work has taken into account large part of the research for this discipline and is intended to 

increase or deepen the understanding of how the choice of a particular pre-processing 

affects, besides the choice of the classification algorithm, to obtain high levels of accuracy 

and make an approach to the most appropriate sequence of applications to define a 

general standard processing chain or a processing chain applicable to a given case. 

The number and variety of processing tasks in hyperspectral imaging is enormous 

[2]. However, this dissertation is mainly focused on the integration of three of those 

techniques: 

 Classification consists of assigning a label (class) to each pixel of a 

hyperspectral data cube [2]. 

 Dimensionality reduction consists of reducing the dimensionality of the 

input hyperspectral scene to facilitate subsequent processing tasks [3]. 

 Spectral unmixing consists of estimating the fraction of the pixel area 

covered by each material present in the scene [4]. 

In the present work, these techniques will be applied to two kinds of samples: ex 

vivo samples and in vivo samples, in which it is intended to classify different types of 

tissues using a supervised architecture called Support Vector Machine (SVM). Finally, it 
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should be noted that experiments performed represent a part of the whole process 

suffered by a hyperspectral imaging since it is collected by the sensor until the user takes 

advantage of the interpretation made. Therefore, the accuracy that can be obtained will 

always be conditioned by the transformations carried out on the data previously and 

effectiveness in the definition of the parameters which apply. 

1.3. Petitioner 

The development of this Master Thesis is carried out as a request from the Faculty 

of Telecommunications Engineering and Electronics (EITE) of the University of Las Palmas 

de Gran Canaria (ULPGC) as an official requirement for obtaining the title of Engineer in 

Telecommunications, once the student has passed all the credits that comprise this 

degree. 

1.4. Memory organization 

This dissertation is organized into six chapters as follows.  

 Chapter 2 provides an introduction and review of the state of the art in the 

context of hyperspectral imaging in the medical field, paying particular 

attention to the supervised classification techniques in this field and 

different preprocessing methods, which are described in more detail in 

chapter 3.  

 Chapter 4 presents the different process considered in this research. 

 Chapter 5 performs a comprehensive experimental validation of the results 

obtained after applying the different processing chains considered to 

hyperspectral data of tumor tissues. This chapter also includes a general 

discussion of the results obtained by the different processing chains in 

different study cases, extrapolating conclusions about the performance of 

each processing chain in terms of the accuracy obtained in the 

classification. 

 Chapter 6 provides the conclusions about the studies conducted and future 

research lines. 
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 The paper concludes with the bibliographic references taken into account 

in the drafting of the report and other references enabling the extension of 

the concepts presented in this work. 

To conclude this chapter, Table 1.1 provides a list of the acronyms used throughout 

the dissertation document. Hereinafter, these acronyms will be used instead of the full 

terms for simplicity. 

Acronyms 

AA 
AMEE 
ANC 
ASC 

FastICA 
FCLSU 

HELiCoiD 
HSI 

HySime 
ICA 

JADE 
K 

KPCA 
LIBSVM 

LPP 
LSU 
MIR 
ML 

MNF 
NIR 
NPE 
OA 
OSP 
PCA 
RBF 
SPP 
SSEE 
SVM 
UV 

VCA 
VD 
VIS 

Average Accuracy 
Automatic Morphological Endmember Extraction 

Abundance Non-negativity Constraint 
Abundance Sum-to-one Constraint 

Fast Independent Component Analysis 
Fully Constrained Linear Spectral Unmixing 
HypErspectraL Imaging Cancer Detection 

Hyperspectral imaging 
Hyperspectral Subspace Identication by Minimum Error 

Independent Component Analysis 
Joint Diagonalization of Eigenmatrices 

Kappa coefficient 
Kernel Principal Component Analysis 

Library of SVM [Online: https://www.csie.ntu.edu.tw/~cjlin/libsvm/] 
Locality Preserving Projections 

Linear Spectral Unmixing 
Mid-infrared 

Machine Learning 
Minimum Noise Fraction 

Near-infrared 
Neighborhood Preserving Embedding 

Overall Accuracy 
Orthogonal Subspace Projection 

Principal Component Analysis 
Gaussian Radial Basis function 

Spatial Pre-Processing 
Spatial Spectral Endmember Extraction 

Support Vector Machine 
Ultraviolet 

Vertex Component Analysis 
Virtual Dimensionality 

Visible 
Table 1.1: List of acronyms used in this dissertation. 
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Chapter 2 

2. Hyperspectral Imaging 

2.1. Hyperspectral imaging concept 

The observation of a particular object is based on the capture of electromagnetic 

radiation from the interaction between the object and the radiation source by a measuring 

instrument or sensor. Electromagnetic radiation received several names depending on the 

wavelength that characterizes it, as shown in Figure 2.1. For measuring the emitted or 

reflected radiation by a given surface is necessary to quantify the amount of energy flux 

that proceeds from the same. For this the radiance measure is used, which depends on 

factors such as the perceived brightness, reflectance, viewing angles, among others. [5] 

Spectral detection techniques are based on the fact that all materials in the real 

world reflect, absorb and emit electromagnetic energy differently in different 

wavelengths. [6] 
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Figure 2.1: Electromagnetic spectrum. 

Currently, there is a wide range of instruments or sensors capable of measuring 

spectral singularities in different wavelengths [7]. The availability of these instruments has 

provided a redefinition of the digital image concept through the extension of the idea of 

pixel. 

It is important to remember that the associated value with each pixel is defined by 

a numerical value called digital level. This is a numeric value, not visual, but can easily be 

translated into a visual intensity or gray level by any digital-analog converter. Thus, in a 

purely spatial schema one pixel is constituted by a single discrete value, while in a spectral 

schema one pixel consists of a set of values. These values may be understood as N-

dimensional vectors [8], where N is the number of spectral bands in which the sensor 

measures information. 

Extending the concept of pixel results in what is known as multidimensional image. 

The order of magnitude of N allows a distinction when talking about multidimensional 

images. Thus, when the value of N is small, typically a few spectral bands [9], one speaks of 

multispectral images, whereas when the order of N is hundreds of bands [10], there is talk 

of hyperspectral imaging, which are also known as hypercubes. 
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Hyperspectral imaging (HSI), like other spectral imaging, collects and processes 

information from across the electromagnetic spectrum. The goal of hyperspectral imaging 

is to obtain the spectrum for each pixel in the image of a scene, with the purpose of 

finding objects, identifying materials, or detecting processes. [11][12] 

Much as the human eye sees visible light in three bands (red, green, and blue), 

spectral imaging divides the spectrum into many more bands. This technique of dividing 

images into bands can be extended beyond the visible as shown in figure [13]. In 

hyperspectral imaging, the recorded spectra have fine wavelength resolution and cover a 

wide range of wavelengths. 

 

Figure 2.2: Comparison between hypercube and RGB image. Hypercube is a three-dimensional dataset of 

a two-dimensional image on each wavelength. The lower left is the reflectance curve (spectral signature) 

of a pixel in the image. RGB color image only has three image bands on red, green, and blue wavelengths 

respectively. The lower right is the intensity curve of a pixel in the RGB image. 

Hyperspectral sensors look at objects using a vast portion of the electromagnetic 

spectrum. Certain objects leave unique fingerprints in the electromagnetic spectrum. If the 

difference between each of these wavelengths is a few nanometers, it can be obtained for 

each pixel an “almost continuous” spectral response of the photographed material at that 

pixel. This response is called spectral signature which is unique to each material. Known as 

spectral signatures, these fingerprints enable identification of the materials that make up a 

scanned object and it can be used to identify specific substances in an image. For example, 

a spectral signature for tumor tissue helps surgeons find tumor areas. 

Most hyperspectral image pixels are mixed pixels. This is because the spatial 

resolution of the sensor cannot separate different materials in a pixel. The denotation of 

mixed pixel is given by the presence of pixels composed by the combination of several 

pure spectral signatures. In the process of spectral unmixing we find an efficient possibility 
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to express the composition of each mixed pixel in proportion to the pure pixels present. 

[14][15] 

With the advantage of acquiring two-dimensional images across a wide range of 

electromagnetic spectrum, HSI has been applied to numerous areas, engineers have built 

hyperspectral sensors and processing systems for applications in astronomy, agriculture, 

biomedical imaging, geosciences, physics, and surveillance. [13] 

The primary disadvantages of these techniques are cost and complexity. Fast 

computers, sensitive detectors, and large data storage capacities are needed for analyzing 

hyperspectral data. Significant data storage capacity is necessary since hyperspectral cubes 

are large, multidimensional datasets, potentially exceeding hundreds of megabytes. All of 

these factors greatly increase the cost of acquiring and processing hyperspectral data. 

2.2. Medical hyperspectral imaging 

2.2.1. Brain tumours 

Due to the increase in the incidence and mortality from brain tumor in world 

population in recent decades, the number of research papers related to its diagnosis has 

grown exponentially. An early diagnosis of such diseases can be vital to prevent a benign 

tumor evolves into a more aggressive cancer. 

Brain tumors are due to abnormal growth of cells derived from brain components 

in the case of primary tumors or tumor cells localized elsewhere in the organism in the 

case of metastases. According to evolution, size and dimension can be grouped into four 

degrees of danger. This classification is ranging from grade I tumors (benign tumors of 

slow growth) to grade IV tumors (malignant cancers with very rapid growth). [16] 

The 77% of malignant brain cancers belongs to the group of tumors called gliomas. 

These tumors affect glial cells responsible for supporting neurons and information brain 

processing. Depending on the type of glial cells affected (astrocytes, oligodendrocytes, 

ependymal cells, etc.) are different types of gliomas, being multiform glioblastoma 

(astrocytoma grade IV) the most aggressive and less likely to survive [17][18]. Figure 2.3 

shows magnetic resonance imaging of a patient afflicted with a multiform glioblastoma. 
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Figure 2.3: Magnetic resonance of patient suffering from multiform glioblastoma. 

Symptoms and treatment of these tumors depend largely on the patient's age, the 

type of tumor and its location in the brain. However, these tumors tend to infiltrate into 

healthy brain tissue, so that surgery is complex and sometimes impossible. That is why it is 

vitally important research and study of non-invasive techniques that provide the most 

accurate diagnosis possible. 

Proper removal (resection) of brain tumor eliminates malignant tissue and 

prevents the tumor is reproduced. Increase resection area with an additional safety 

margin maximizes the chances of patient survival, but in the case of brain tumors, 

excessive resection can lead to significant damage of all kinds (motor, cognitive, visual, 

etc.). For this reason, a technique to determine accurately and minimally invasive glioma 

limits is necessary. 

2.2.2. Hyperspectral imaging applied to tumour 

detection 

Spectral imaging is a technology that integrates conventional imaging and 

spectroscopy methods to obtain both spatial and spectral information from an object. 

Although this technology was originally developed for remote sensing, it has been 

extended to the biomedical engineering field as a powerful analytical tool for biological 

and biomedical research [19]. 

Hyperspectral imaging field is an emerging imaging modality for medical 

applications. It offers great potential for noninvasive disease diagnosis and surgical 
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guidance. Light delivered to biological tissue undergoes multiple scattering from 

inhomogeneity of biological structures and absorption primarily in hemoglobin, melanin, 

and water as it propagates through the tissue [20][21]. One of the important advantages 

of this technique is that it can acquire reflectance, absorption, or fluorescence spectrum 

for each pixel in the image. It is assumed that the absorption, fluorescence, and scattering 

characteristics of tissue change during the progression of disease [22], which can be used 

to detect the biochemical changes of objects that cannot be identified with traditional gray 

or color imaging methods [19]. Therefore, the reflected, fluorescent, and transmitted light 

from tissue captured by HSI carries quantitative diagnostic information about tissue 

pathology [22-25].  

In recent years, advances in hyperspectral cameras, image analysis methods, and 

computational power make it possible for many exciting applications in the medical field. 

These applications mainly cover the ultraviolet (UV), visible (VIS), and near-infrared (near-

IR or NIR) regions. Table 2.1 defines the spectral range from UV to mid-IR (200 to 25,000 

nm) [26].  

Short name Full name Spectral range (nm) 

UV Ultraviolet 200 to 400 

VIS Visible 400 to 780 

NIR/near-IR Near-infrared 780 to 2500 

MIR/mid-IR Mid-infrared 2500 to 25.000 

Table 2.1: Spectral range definitions. 

Visible light penetrates only 1 to 2 mm below the skin and thus obtains information 

from the sub-papillary [27], while light in the NIR region penetrates deeper into the tissue 

than VIS or mid-IR radiation [28]. NIR light is preferred for surgical guidance due to its deep 

penetration into the tissue, which can help the surgeon see through connective tissue for 

visualizing critical anatomical structures of interest that are not visible and detecting 

molecules with detectible spectra [13]. By expanding light beyond the visual spectrum, 

additional information can be obtained to further characterize the cells of interest [29]. 

HSI acquires a three-dimensional dataset called hypercube, with two spatial 

dimensions and one spectral dimension. Figure 2.4 [19] shows the concept of the 

hypercube data captured by a spectral imaging system. These dates can be visualized as a 
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three-dimensional (3-D) cube or a stack of multiple two-dimensional (2-D) images because 

of its intrinsic structure, in which the cube face is a function of the spatial coordinates and 

the depth is a function of wavelength [19]. Spatially resolved spectral imaging obtained by 

HSI provides diagnostic information about the tissue physiology, morphology, and 

composition [13]. 

 

Figure 2.4: The concept of spectral data cube. The data cube contains two spatial dimensions (x and y) 

and one spectral dimension, in which the cube face is a function of the spatial coordinates and the depth 

is a function of wavelength. 

According to the electromagnetic theory, different biochemical constituents 

commonly have different spectral signatures [30]. These signatures are usually generated 

by the interactions between materials and electromagnetic waves, such as electron 

transition, atomic and molecular vibration or rotation. The biological and pathological 

changes in tissues and organs also have a close relationship with the spectra. Spectral 

characteristics in different wavelength regions yield a distinguishable spectral signature, 

making pathological changes distinguishable. Therefore, the spectral imaging technology 

also can be extended to the biomedical engineering field to estimate the physiological 

status of biological tissues, since it can take advantage of the spatial relationships among 

the different spectra in a neighborhood. This technology opens new prospects for life 

science by which scientists can identify and quantify the relationships among biologically 

active molecules, observe living organisms noninvasively, perform histopathological and 

fluorescent analyses, and enhance biological understanding of diseases [19]. 
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Image analysis enables the extraction of diagnostically useful information from a 

large medical hyperspectral dataset at the tissue, cellular, and molecular levels and is, 

therefore, critical for disease screening, diagnosis, and treatment. Hypercube with high 

spatial and spectral resolution may potentially contain more diagnostic information. 

However, high spatial and spectral dimensions also make it difficult to perform automatic 

analysis of hyperspectral data. In particular, it is complex in many aspects: (1) high data 

redundancy due to high correlation in the adjacent bands, (2) variability of hyperspectral 

signatures, and (3) curse of dimensionality [7]. With abundant spatial and spectral 

information available, advanced image classification methods for hyperspectral datasets 

are required to extract, unmix, and classify relevant spectral information. The goal is not 

only to discriminate between different tissues (such as healthy and malignant tissue) and 

provide diagnostic maps, but also to decompose mixtures into the spectra of pure 

molecular constituents and correlate these molecular fingerprints (biomarkers) with 

disease states. Although hyperspectral image analysis methods have been intensively 

investigated in the remote sensing area, their development and application in medical 

domain lag far behind. The relationships between spectral features and underlying 

biomedical mechanisms are not well understood. The basic steps for hyperspectral image 

analysis generally involve preprocessing, feature extraction and feature selection, and 

unmixing and/or classification [13]. 

2.2.3. Hyperspectral imaging data sets 

Throughout this dissertation two different data are used: ex vivo samples and in 

vivo samples. In the first stage of this work, all the experiments were performed with ex 

vivo samples. In the second stage, once the in vivo samples were obtained, the main 

processing chains were repeated using such data. This section explains how datasets used 

along this work were obtained. 
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2.2.3.1. Ex vivo samples 

The ex vivo samples are formed by living tissues which were removed from a real 

patient in a surgery. Then, several pictures were taken with a hyperspectral camera from 

different angles. The camera used has 1040 spectral bands ranging from 380 to 1028 

nanometers. For each picture the hyperspectral data cube is formed from the files 

generated by the hyperspectral camera. In this regard, we have 11 hyperspectral data 

cube, which have 3 different angles and can contain up to 3 different tissue types: healthy, 

tumor and necrosis. 

 The process to obtain the samples is detailed below: 

1. The hyperspectral data cube is formed from the files generated by the 

hyperspectral camera. 

 

Figure 2.5: Hypercube 2 band 350. 

2. The image is cropped in order to it can be processed more easily thanks to 

its reduced size and for separating the different samples (healthy, tumor 

and necrosis) in each image. 
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Figure 2.6: Hypercube 2 band 350 separated by classes: healthy, tumor and necrosis. 

3. The samples are filtered because these contain a lot of noise. The filters 

used are Hyperspectral Subspace Identification by Minimum Error (HySime) 

and smooth, and these are explained in detail in the following sections. 

4. Finally the contour of the sample is determined by removing the rest of the 

image, in order to determine the number of samples of each type at our 

disposal. The contour functions are explained in detail in the following 

sections. 

 

Figure 2.7: Tumor sample hypercube 2 without filter, HySime filter and smooth filter. 
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In Table 2.2 is presented the number of samples from each hypercube: 

 Healthy Tumor Necrosis 

Number 

of 

hypercube 

No 

filter 

HySime 

filter 

Smooth 

filter 

No 

filter 

HySime 

filter 

Smooth 

filter 

No  

filter 

HySime 

filter 

Smooth 

filter 

1 972 990 1020 1956 1978 1925 565 572 531 

2 902 918 924 1723 1741 1619 563 572 531 

3 1043 1063 1042 1807 1824 1714 402 411 341 

4 811 807 741 1787 1785 1789 - - - 

5 - - - - - - 441 443 423 

6 802 803 742 - - - - - - 

7 - - - 1928 1921 1939 - - - 

8 - - - 1911 1906 1895 - - - 

9 - - - - - - 421 428 392 

10 - - - - - - 439 436 421 

11 - - - - - - 604 605 591 

Table 2.2: Samples in each hypercube. 

In this table we can see the samples extracted from each hypercube, which 

containing samples of some of the possible classes available in one of the possible 

inclinations. In this sense, a “-“ represents that a given hypercube has no samples of a 

particular class. 

The samples obtained from each hypercube are properly labeled and mixed 

regardless of its inclination, resulting in a dataset with 3 different classes: healthy, tumor 

and necrosis, whose spectral signatures are shown in Figure 2.8. 
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Figure 2.8: Spectral signatures: healthy (green), tumor (red) and necrosis (blue). 

2.2.3.2. In vivo samples 

In this case the hyperspectral images were taken during the surgery. Subsequently, 

some well-known areas of the image were selected, calibrated and properly labeled, 

forming an image dataset. In this set of samples we get 3 classes: healthy, tumor and vein. 

In fact dissertation two cameras have been used to obtain in vivo samples from 

surgeries: 

 Visible and near-infrared (VNIR): whose portion of the electromagnetic 

spectrum has wavelengths between approximately 380 and 1000 

nanometers. This camera has 826 bands. 

 Near-infrared (NIR): whose portion of the electromagnetic spectrum has 

wavelengths between approximately 900 and 1700 nanometers. This 

camera has 172 bands. 
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Table 2.3 describes the number of samples from each patient associated to each 

camera: 

 Healthy Tumor Vein 

Number 

of 

patient 

 

VNIR 

 

NIR 

 

VNIR 

 

NIR 

 

VNIR 

 

NIR 

4 256 20 408 14 - - 

5 252 30 156 27 30 4 

7 214 49 558 38 393 56 

8 581 - 1270 - 169 - 

10 63 12 216 15 - - 

Table 2.3: Samples from each patient. 

 A “-“ means no samples of a particular class to one of the cameras.  

2.3. Hyperspectral analysis techniques 

The hyperspectral analysis is based on the ability of hyperspectral sensors to 

acquire digital images in a large number of spectral channels very close to each other, 

obtaining for each pixel a characteristic spectral signature of each material that will be 

used in the analysis process [7]. These images can be represented as a data cube, with two 

dimensions to represent the spatial location of a pixel, and a third dimension representing 

the spectral singularity of each pixel at different wavelengths. This process facilitates the 

identification and quantification of the materials present in the scene [31][32]. Figure 2.9 

illustrates the process of hyperspectral analysis using a simple diagram. 
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Figure 2.9: Hyperspectral analysis procedure. 

It is known that the potential of these images is the large amount of information 

and that allows distinguishing classes and objectives in more detail. But this advantage 

also becomes a disadvantage when it does not have computing power enough to process 

and store these hundreds of bands. Then, we are faced with problems of high 

dimensionality of the data and data redundancy. The high dimensionality can be 

appreciated if we get an idea of the total size of an image like these, multiplying the pixel 

size in bits per the size of an image or single band per the total number of bands. The 

redundancy of information means the repetition of many spectral patterns and it can 

become quite significant, resulting in many cases inconvenient when statistical 

classification methods are wanted to use. For this reason, approximations or geometric 

and non-parametric techniques are most appropriate in many cases. 

Therefore, it is necessary to perform a set of activities and processing techniques 

both hardware and software capable of handling effectively the inherent complexity of the 

hyperspectral data (high dimensionality) [33]. Although the processing chain for 

hyperspectral data is not an easy procedure to define consistently, within the framework 
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of this dissertation a set of recommendations for the definition of an appropriate 

processing chain for hyperspectral data have been introduced [34]. 

The first part of this processing chain is a specific process to obtain the data 

hypercube and provide noise-free samples, giving the data ready for its processing and 

target identification. It is in turn divided into the following steps: 

 Data hypercube is formed from the image obtained by the camera. 

 Spatial reduction, in order to reduce de image size for processing it more 

easily. 

 Data calibration. 

 De-noising filtering. 

 Samples extraction from data hypercube using contour functions. 

 Samples normalization. 

Once the data of interest have been obtained and preprocessed to be used 

correctly, there is the need to extract relevant information from the collected data sets. 

Then, the second part of the data processing chain is further divided into the following 

additional steps: 

 Feature extraction in order to reduce the high dimensionality and study the 

nature of each tissue. 

 Classification. 

It is important to emphasize that any data processing chain in any scientific field 

has to be flexible and adapt not only to its application on different scenarios, but also the 

various types of resolutions that provide different spectral and spatial variations of the 

instruments. 

The next section explains what the main goal in this processing is: the 

hyperspectral data classification. The processing chains used before will be described in 

detail in the next chapter. 

2.4. Hyperspectral data classification 

The simplest way to address the problem of pixels classification in a hyperspectral 

image is to consider that the pixels of interest are composed of a single material, using 
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conventional pattern classification techniques [35] but more accurately, because of the 

high number of spectral bands available. 

In practice, the use of hyperspectral sensors allow a better determination of the 

internal composition of each pixel, which rarely will consist of a single material, since the 

phenomenon of the mixture is very common in the real world, regardless of the spatial 

scale considered [36]. 

There exists a set pattern classification techniques that perform the interpretation 

of a scene on the basis of assigning a label or individual classification for each of the pixels 

of the scene. These techniques offer interesting results in certain applications, particularly 

those highlighted below. 

 Thematic classification: Classification techniques have been used 

successfully in applications that aim to obtaining a thematic map in which 

each pixel in the hyperspectral image is properly labeled as belonging to a 

particular class [37]. There may be an additional class called “background” 

or “others” representing the pixels that are not classified in any of the 

previous classes. The ideal result is achieved when all classes are mutually 

exclusive of each other, including the class “background”. The key task in 

this type of application is usually determining the number of classes and its 

characterization in terms of training data or ground-truth information. 

 Targets detection: Classification techniques have also been used very 

extensively in targets detection applications in hyperspectral imaging [38]. 

In these applications, the main objective is the identification of a specific 

material or object (called target in the literature) between all pixels of the 

image. 

Conceptually, the two problems mentioned can be considered a binary 

classification problem: 

 In the thematic classification, there are several possible classes associated 

with different objects. The goal is to ultimately determine the presence or 

absence of each of the objects considered in each pixel, situation that can 

be expressed as a binary classification problem [39]. 
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 In the targets detection the pixels are classified into two classes called 

“target” and “background”, depending on whether they contain the target 

sought or not. 

The binary classification problem can be formulated mathematically as follows. Let 

R the N-dimensional space formed by all pixels in the hyperspectral image. Given a N-

dimensional array 𝒖 = (𝑢1, 𝑢2, … , 𝑢𝑁)𝑇 associated with a specific pixel. The binary 

classification consists of dividing the space R into two regions, 𝑅𝑜 and 𝑅𝑓, such that 𝒖 is 

classified as “target” if 𝒖 ∈ 𝑅𝑜  and “background” if 𝒖 ∈ 𝑅𝑓. This problem can be illustrated 

graphically using a scatterplot between two bit correlated bands of hyperspectral imaging, 

as shown in Figure 2.10. 

 

Figure 2.10: Graphic illustration of the classification problem in hyperspectral imaging. 

As shown in Figure 2.10, the ideal situation in a classification problem occurs when 

the separation between target and background is clearly defined in clearly distinguishable 

clusters. 
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The hyperspectral image classification algorithms can be divided into two broad 

categories [37]: supervised algorithms and unsupervised algorithms: 

 Unsupervised algorithms: These algorithms assume that there is no a priori 

knowledge about existing classes. The aim of these techniques is to identify 

automatically classes or groups of pixels using a similarity metric. 

 Supervised algorithms: It start with some knowledge about existing 

classes, from which it can be derived some classification criteria. This 

approach tends to be given by a preliminary step in which spectral 

signatures of the existing classes are selected. 

2.4.1. Unsupervised classification algorithms 

The pixels classification techniques in an unsupervised way for hyperspectral 

imaging are in full development phase [7]. Among the existing techniques highlights the K-

Means method [40], which supposes the existence of K classes (parameter to be 

determined a priori) and performs a grouping of the pixels of the image in such classes, 

using purely statistical methods of vector quantization based on the average spectra of 

these classes. 

Moreover, the ISODATA method [41] also requires initialization of a K parameter 

relating to the number of desired classes, prior to the execution of the algorithm. In 

addition, this method requires information on the minimum number of signatures 

belonging to one class. If the initial value of K is low, the dispersion between classes can be 

very high. Conversely, if the initial value of K is high, the distance between classes can be 

very small, causing the partitioning of the same class in several classes similar to each 

other. 

Overall, the recent literature shows that the results obtained by these two 

techniques have not been very satisfactory, except in very specific applications [42]. 

2.4.2. Supervised classification algorithms 

In supervised classification techniques highlights the matched filters and Spectral 

Angle Mapper (SAM) method, both based on first-order statistics [43]. Within this category 

may also be other classifiers as the nearest neighbor, minimum distance, parallelepiped or 

maximum likelihood techniques. However, this dissertation is focus on the Support Vector 
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Machine (SVM) technique which has demonstrated excellent performance when working 

with high-dimensional data such as hyperspectral data. 

Once presented the most common techniques of hyperspectral image 

classification, this section is concluded highlighting some techniques used to evaluate the 

performance of these algorithms. 

2.4.3. Evaluation metrics used in classification 

algorithms 

The large number of existing techniques as well as the continued proliferation of 

new methodologies makes clear the need for comparative schemes or metrics to 

qualitatively analyze the performance of new methodologies rose, contrasting its results 

with those provided by the existing ones. Most of the evaluation techniques of digital 

image analysis algorithms are based on the concept of ground-truth [44]. Ideally it is 

possible to define the concept of ground-truth as the optimal classification or 

interpretation result which should get an algorithm [45][46]. 

The ground-truth usually comes characterized by relevant information about the 

properties in the real world of a set of targets that are desired to identify or characterize. 

This information is usually obtained by measurements made directly in the study area 

covered by the image [47], although it is also possible to obtain ground-truth information 

by applying algorithmic techniques [6]. In any case, the first alternative is the more 

reliable, but it can be expensive due to the need to label all the samples obtained [48]. 

Assuming the existence of ground-truth information, there are several 

methodologies to compare that information with the results provided by an image analysis 

algorithm. This section provides a brief description of the different metrics that can be 

applied to assess the ability of a computer algorithm in terms of classification and 

identification of targets of interest in a digital image. In particular, it will highlight one of 

the most widely used approaches called the confusion matrix, that will serve for the 

subsequent comparative study of this dissertation and from which other metrics are 

derived as the percentage of success in the classification. 
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The confusion matrix [49] is a technique to assess the accuracy of classification 

algorithms of digital images. This technique assumes that the ground-truth information is 

expressed as a thematic map [50][51] characterized by the following properties: 

1. Each pixel is labeled as belonging to a particular class, so as to have N 

classes or reference regions {𝑅𝑖}𝑖=1
𝑁 . 

2. The reference regions are mutually exclusive of each other, ie, two 

different regions have no pixel in common: 𝑅𝑖 ∩ 𝑅𝑗 = ∅, ∀𝑖 ≠ 𝑗. 

Assuming that each pixel i of the image to evaluate I is assigned by the algorithm as 

belonging to a certain class 𝐶𝑖, so as to have N classes. 𝐶𝑖 sets are a partition of the image 

to be evaluated, that is, the union of all sets resulting in the image and two different sets 

have no element in common:  

⋃ 𝐶𝑖 = 𝐼 𝑎𝑛𝑑 𝐶𝑖 ∩ 𝐶𝑗 = ∅, ∀𝑖 ≠ 𝑗

𝑁

𝑖=1

                                           (2.1) 

Given the above considerations, Figure 2.11 shows an example of the process of 

constructing a confusion matrix. In the figure, the thematic map of ground-truth 

classification associated with the image to classify, the classification result provided by a 

given algorithm to that image, and the confusion matrix that quantifies the accuracy of the 

algorithm in the classification task are shown. As shown, the matrix entries are expressed 

in the form of 𝑎𝑗𝑘 where 𝑎𝑗𝑘 = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙{𝐶𝑗 ∩ 𝑅𝑘}, that is, the number of pixels of the 

resulting region when performing the intersection between a 𝐶𝑗 class obtained by the 

algorithm and a ground-truth class 𝑅𝑘 [49]. 
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Figure 2.11: Example of constructing of a confusion matrix. 

From the confusion matrix can be derived some generic accuracy measures [52] as: 

 Overall accuracy (OA): Percentage of pixels correctly classified in all 

classes: 

𝑂𝐴 =
∑ 𝑎𝑖𝑖

𝑁
𝑖

∑ 𝑎𝑖𝑗
𝑁
𝑖𝑗

× 100                                                             (2.2) 

 Average accuracy (AA): Means percentage of classification accuracy per 

class for all classes: 

𝐴𝐴 =
𝑎𝑖𝑖

∑ 𝑎𝐴𝑖
𝑁
𝑗

× 100                                                           (2.3) 

AA can also be calculated only for a particular class instead of as the mean 

of all the classes. In that case it is known as the Average accuracy per class. 

OA and AA are percentages should approach 100%, which would be the ideal 

classification. When the reference set is not well defined, the OA will not be 

representative regarding the true performance of the classifier. For example, if a class has 

very few pixels of reference, its influence on the computation of OA will be very low, while 

the AA will become more important, since it is an average done with the number of classes 

not with the total number of pixels. If the differences arising between these two measures 
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are high, then it may indicate that there has been a poor classification for a specific class, 

which can affect the overall results of classification. 

Moreover, there are two additional metrics really important in the medical field: 

sensitivity and specificity. 

Let us imagine a study evaluating a new test that screens healthy and tumor 

samples. Each sample taking the test either has or does not have the disease. The test 

outcome can be positive (predicting that the sample is a tumor sample) or negative 

(predicting that the sample is not a tumor sample and therefore it is healthy sample). The 

test results for each sample may or may not match the sample's actual status. In that 

setting: 

 True positive: Tumor sample correctly diagnosed as tumor. 

 False positive: Healthy sample incorrectly identified as tumor. 

 True negative: Healthy sample correctly identified as healthy. 

 False negative: Tumor sample incorrectly identified as healthy. 

In general, Positive = identified and negative = rejected. Therefore: 

 True positive = correctly identified. 

 False positive = incorrectly identified. 

 True negative = correctly rejected. 

 False negative = incorrectly rejected. 

The four outcomes can be formulated in a confusion matrix as follows: 

 Condition (ground-truth) 

Total population Condition positive Condition negative 

Test outcome 

positive 

True positive False positive 

(Type I error) 

Test outcome 

negative 

False negative 

(Type II error) 

True negative 

Table 2.4: Confusion matrix. 

Sensitivity and specificity are statistical measures of the performance of a binary 

classification test: 
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 Sensitivity (true positive rate): Relates to the test's ability to correctly 

detect patients who do have a condition. Consider the example of a 

medical test used to identify a disease. Sensitivity of the test is the 

proportion of samples known to have the disease, which test positive for it. 

Mathematically, this can be expressed as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

= 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖𝑠 𝑖𝑙𝑙         (2.4) 

A test with high sensitivity has a low type II error rate. 

 Specificity (true negative rate): Relates to the test's ability to correctly 

detect patients without a condition. Consider the example of a medical test 

for diagnosing a disease. Specificity of a test is the proportion of healthy 

samples known not to have the disease, which will test negative for it. 

Mathematically, this can also be written as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

=
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

= 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖𝑠 𝑤𝑒𝑙𝑙   (2.5) 

A test with a high specificity has a low type I error rate. 

For any test, there is usually a trade-off between the measures. 

A perfect predictor would be described as 100% sensitive (e.g., all sick are 

identified as sick) and 100% specific (e.g., all healthy are not identified as sick); however, 

theoretically any predictor will possess a minimum error bound known as the Bayes error 

rate. 

Finally, it is defined the Kappa coefficient (K), that is a statistical measure to assess 

the reliability of an agreement between a fixed number of evaluators to assign categorical 

classifications to a number of elements which are classified by these evaluators. This 

measure calculates the degree of agreement in the classification what would be expected 

by random effect, i.e., when evaluators are not absolutely sure and just venture an 

answer. 
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𝑘 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑏𝑦 𝑐ℎ𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑏𝑦 𝑐ℎ𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
  (2.6) 

 The kappa coefficient can be interpreted considering the following table: 

Kappa coefficient (K) Classification can be regarded as 

Below 0.4 Poor 

0.41-0.60 Moderate 

0.61-0.75 Good 

0.76-0.80 Excellent 

0.81 and above Almost perfect 

Table 2.5: Interpretation of Kappa coefficient. 

If evaluators are in full agreement, then 𝑘 = 1. If no agreement among evaluators 

(other than what would be expected by chance) then 𝑘 = 0 [53]. 

There are other metrics such as the commission errors and omission errors that are 

not considered in this study. 

2.5. Summary 

Hyperspectral imaging is a very powerful tool that can be used to provide a 

solution in many different fields. In this dissertation it is intended to apply hyperspectral 

imaging in the medical field, particularly in the brain cancer detection. 

For this purpose, a study of main existing techniques for hyperspectral imaging 

preprocessing is performed because it is necessary to properly process hyperspectral data 

with the ultimate goal of obtaining the best possible classification. In order to evaluate the 

classification process, a set of standard evaluation metrics will be used to subsequently to 

draw conclusions with regard to the efficiency approaches for brain cancer detection.  
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Chapter 3 

Image processing techniques 
Image processing is the processing of images using mathematical operations in any 

form of signal processing for which the input is an image, such as a photograph, video 

frame or hyperspectral imaging; the output of image processing may be either an image or 

a set of characteristics or parameters related to the image [54]. Namely, image processing 

is the set of techniques applied to images in order to improve quality or facilitate the 

search for information. 

The processing chain in this project can be divided into five different stages, as we 

can observe in Figure 3.1: 

 

Figure 3.1: Stages of hyperspectral data processing chain followed in this project. 

The classification system is composed by the preprocessing stage and the 

classification algorithms. 

Firstly, the initial set of samples is studied in order to delete the anomalous 

samples taken during the surgery. In this stage, the hyperspectral cubes are spatially 

reduced in size, in order to process the region of interest. 
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On the one hand, in the case of ex vivo samples, its contour is obtained with the 

purpose of extracting the samples from the rest of the image (table, test plates, shadows 

and glow in the samples), and to prepare the data for the classification process in response 

to the inclination of the samples (no inclination, 23.58 degrees and 19.10 degrees) and 

according to the kind of filter used. For this reason, in this stage we use two types of filter: 

HySime and Smooth, as well as a function to obtain the contour. 

On the other hand, in the case of in vivo samples, the images are formed by several 

elements, labeled directly on the image thereby forming the in vivo dataset. Then, these 

samples are processed as the ex vivo samples. 

Features are functions of the original measurement variables that are useful for 

classification and/or pattern recognition [55]. 

The following step of the processing chain, feature extraction, is the process of 

defining a set of features, or image characteristics, which will most efficiently or 

meaningfully represent the information that is important for analysis and classification. In 

this stage there are several applicable methodologies, of which will be applied in this 

dissertation, mainly dimensionality reduction and unmixing techniques. 

The next stage of the chain relies on the feature selection, also important in 

reducing the high dimensionality of the data. The fact of choosing a set of features whose 

dimensionality is the most appropriate and reasonable is a hot topic in the scientific 

literature, so efficient and fast algorithms that perform the process of combining bands or 

characteristics for a given problem are needed. This is a complex process that cannot be 

defined with a unique approach. There are several techniques of statistical indices for 

feature selection that will be seen in detail in the corresponding section. 

Finally, once the data have been reduced and/or processed, and with some 

analyzes already performed, they will be classified. 

As noted in the previous chapter, classification is generally a process in which the 

individual elements or items are differentiated into groups, based on quantitative 

information of one or more inherent characteristics of the elements, usually by items 

previously labeled using sets or training patterns. Finally, and as an option, the resulting 
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data from the classification may be post-processed (for example using spatial techniques) 

to improve the coherence of them. 

3.1. Pre-processing techniques for 

hyperspectral images 

 

Figure 3.2: Stages of hyperspectral data processing chain. 

This section describes the preprocessing methods discussed previously. These 

methods are used in the present dissertation as building blocks of processing chains 

considered. 

3.1.1. De-noising filtering 

 

Figure 3.3: Stages of hyperspectral data processing chain. 

Noise reduction is the process of removing noise from a signal. 

All recording devices, both analog and digital, have traits which make them 

susceptible to noise. Noise can be random or white noise with no coherence, or coherent 

noise introduced by the device's mechanism or processing algorithms. 

The following sections describe the filtering algorithms used in this dissertation: 

HySime filter and Smooth filter. 

3.1.1.1. HySime filter 

 Hyperspectral subspace identification by minimum error (HySime) is an eigen-

decomposition based technique and does not depend on any tunable parameters. HySime 

initializes by determining the signal and noise correlation matrices and then representing 

the subspace by minimizing the mean square error between the signal projection and the 

noise projection, estimating the number of spectrally distinct signal sources in 

hyperspectral dataset. The result is an estimate of the number of spectrally distinct signal 
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sources or the inherent dimensionality of the dataset [56][57][58]. This method was 

proposed in [59] and it is eigen-decomposition based i.e. it decomposes or reduces the 

original signal into subsets of eigen-vectors. The subspace obtained by HySime optimally 

represents the original signal with minimum error. HySime uses multiple regressions for 

the estimation of the noise and signal covariance matrices and is adaptive, i.e. it does not 

require any tuning parameters. Also it makes no assumptions about the noise being 

independent and identically distributed (i.i.d.) and the subspace dimensions. 

 The difficulty in getting reliable noise estimation from these eigenvalues is that 

these eigenvalues are still representing the mixtures of the signal sources and the noise 

present in the data. When the signal sources are too weak their contribution towards the 

computation of eigenvalues is very less, which can be observed if there is no sudden drop 

in eigenvalues distribution [60]. HySime instead finds the subset of eigenvectors and the 

corresponding eigenvalues by minimizing the mean square error between the original 

signal and the noisy projection of it. 

 HySime [59] starts with the noise estimation step in which the noise correlation 

matrix of the data is computed. Then it calculates the signal correlation matrix and 

computes the eigenvectors by performing the eigen-decomposition of the signal 

correlation matrix. The signal subspace is then derived by minimizing the sum of projection 

error power and noise power, which are decreasing and increasing functions of the 

subspace dimensions respectively. 

 Let us assume that the observed spectral vectors, 𝑌 ∈ 𝑹𝐿, for the given 

hyperspectral scene are given by: 

𝑦 = 𝑥 + 𝑛                                                                    (3.1)                                      

 where x and n  are L-dimensional vectors for signal and noise, and L is the number 

of bands. 

 The assumption here is that the signal vectors reside in an unknown p–dimensional 

subspace such that, 

𝑥 = 𝑀𝑠                                                                     (3.2) 

 Where: 𝑝 < 𝐿, 
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  𝑀 is a 𝐿 × 𝑝 matrix, whose columns represent the image endmembers 

 And:  𝑠 is the abundance fraction of the endmembers. 

3.1.1.1.1 Noise Estimation 

 Estimation of noise from a dataset is a challenging task in image processing. 

HySime uses a multiple regression based approach for noise estimation from hyperspectral 

images, which performs better than others methods because of the high correlation 

exhibited between adjacent spectral bands. 

 Let Y be an L×N matrix, where N is the number of observed spectral vectors and L is 

the number of bands. Then define a matrix, 𝑍 = 𝑌𝑇 , which is an N×L matrix, a N×1 vector, 

𝑧𝑖 = [𝑍]:,𝑖, where [𝑍]:,𝑖 is the ith column of Z, i.e. 𝑧𝑖 contains the data read by the 

hyperspectral sensor at the ith band for all image pixels, and the N×(L-1) matrix 𝑍𝜕𝑖 =

[𝑧1, … , 𝑧𝑖−1, 𝑧𝑖+1]. 

 Now if 𝑧𝑖 is given by the linear regression equation, 

𝑧𝑖 = 𝑍𝜕𝑖𝛽𝑖 + 𝜉𝑖                                                                (3.3) 

 where, 𝑍𝜕𝑖  - data matrix of dimensions N×(L - 1) 

  𝛽𝑖  - regression vector of size (L – 1)×1 

  𝜉𝑖  - noise vector of size N×1 

 The least square estimate for the regression vector 𝛽𝑖  is given by the equation, 

�̂�𝑖=(𝑍𝜕𝑖
𝑇 𝑍𝜕𝑖)

−1𝑍𝜕𝑖
𝑇 𝑧𝑖                                                            (3.4)  

 The noise estimates, 𝜉𝑖, are given by the equation, 

𝜉𝑖 = 𝑧𝑖 − 𝑍𝜕𝑖�̂�𝑖                                                                 (3.5) 

 and the estimated noise correlation matrix, �̂�𝑛, is given by, 

�̂�𝑛 = [𝜉1, … … , 𝜉𝑁]
𝑇

[𝜉1, … … , 𝜉𝑁] 𝑁⁄                                            (3.6) 
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3.1.1.1.2 Signal Subspace Identification 

 Signal subspace estimation starts by computing the noise and signal correlation 

matrices. A subset of the eigenvectors of the signal correlation matrix is used to represent 

the subspace. This signal subspace is determined by minimizing the mean square error 

between the original signal, x, and the noisy projection of it i.e. the observed spectral 

vector. The signal correlation matrix is given by, �̂�𝑥 

�̂�𝑥 = [�̂�1, … … , �̂�𝑁][�̂�1, … … , �̂�𝑁]𝑇 𝑁⁄                                           (3.7) 

 where, �̂� - signal estimates obtained after subtracting the noise estimates from the 

original data. 

 The eigenvectors can be obtained by performing the eigen-decomposition of the 

signal correlation matrix as given by, 

�̂�𝑥 = 𝐸 ∑ 𝐸𝑇                                                             (3.8) 

 Where:  𝐸 = [𝑒1, … … , 𝑒𝐿] is the eigenvector matrix of �̂�𝑥,  

 And    ∑ - eigenvalues matrix of the signal correlation matrix, with the diagonal 

values ordered in decreasing magnitude. 

 Now let the space RL be decomposed into two orthogonal subspaces, the k-

dimensional subspace, 〈𝐸𝑘〉, be represented by 𝐸𝑘 ≡ [𝑒𝑖1
, … … , 𝑒𝑖𝑘

] and 〈𝐸𝑘〉⊥ be the 

orthogonal component of subspace 〈𝐸𝑘〉, spanned by 𝐸𝑘
𝑇 ≡ [𝑒𝑖𝑘+1

, … … , 𝑒𝑖𝐿
]. 

 Let 𝑈𝑘 = 𝐸𝑘𝐸𝑘
𝑇  represent the projection matrix onto the subspace 〈𝐸𝑘〉, then the 

projection of the observed spectral vectors, y, or the noisy projection of x, onto the 

subspace 〈𝐸𝑘〉 is given by, 

�̂�𝑘 ≡ 𝑈𝑘𝑦                                                              (3.9) 

 The first order moment of �̂�𝑘 given x is, 

𝔼[�̂�𝑘|𝑥] = 𝑈𝑘𝔼[𝑦|𝑥] = 𝑈𝑘𝔼[𝑥 + 𝑛|𝑥] = 𝑈𝑘𝑥 = 𝑥𝑘                   (3.10) 

 where, 𝑥𝑘 is the projection of the signal vectors onto the subspace 〈𝐸𝑘〉. 

 And the second order moment of �̂�𝑘  given x is, 
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𝔼[(�̂�𝑘 − 𝑥𝑘)(�̂�𝑘 − 𝑥𝑘)𝑇|𝑥] = 𝔼[(𝑈𝑘𝑦 − 𝑈𝑘𝑥)(𝑈𝑘𝑦 − 𝑈𝑘𝑥)𝑇|𝑥] = 𝔼[(𝑈𝑘𝑛𝑛𝑇𝑈𝑘
𝑇)|𝑥]

= 𝑈𝑘�̂�𝑛𝑈𝑘
𝑇                                                                                                          (3.11) 

 The mean square estimation between 𝑥 and �̂�𝑘 is given by, 

𝑚𝑠𝑒(𝑘|𝑥) = 𝔼[(𝑥 − �̂�𝑘)𝑇(𝑥 − �̂�𝑘)|𝑥] = 𝔼[(𝑥 − 𝑥𝑘 − 𝑈𝑘𝑛)𝑇(𝑥 − 𝑥𝑘 − 𝑈𝑘𝑛)|𝑥]

= (𝑥 − 𝑥𝑘)𝑇(𝑥 − 𝑥𝑘) + (𝑈𝑘�̂�𝑛𝑈𝑘
𝑇)

𝑇
                                                          (3.12) 

 Since, 𝑈𝑘𝑥 = 𝑥𝑘, implies that 𝑥 − 𝑥𝑘 = 𝑈𝑘
⊥, which is the orthogonal component of 

the signal projection vector onto the subspace 〈𝐸𝑘〉. Thus by using the projection matrix 

properties i.e. 𝑈 = 𝑈𝑇 , 𝑈2 = 𝑈 and 𝑈𝑇 = 𝐼 − 𝑈, we have 

𝑚𝑠𝑒(𝑘) = 𝔼 [(𝑈𝑘
⊥𝑥)

𝑇
(𝑈𝑘

⊥𝑥)] + (𝑈𝑘�̂�𝑛𝑈𝑘
𝑇)

𝑇
= (𝑈𝑘

⊥𝑅𝑥)
𝑇

+ (𝑈𝑘�̂�𝑛)
𝑇

= (𝑈𝑘
⊥�̂�𝑦)

𝑇
+ 2(𝑈𝑘�̂�𝑛)

𝑇
+ 𝑐                                                                       (3.13) 

where c is an irrelevant constant. The signal subspace 〈𝐸𝑘〉 is inferred by the minimization 

of the mean square error given by the next equation with respect to all the permutations 

𝜋 = {𝑖1, … … , 𝑖𝐿} and is given by the expression, 

(�̂�, �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛 {(𝑈𝑘
⊥�̂�𝑦)

𝑇
+ 2(𝑈𝑘�̂�𝑛)

𝑇
}                                  (3.14) 

where �̂� is the estimate of the subspace and the subspace is spanned by 𝐸𝑘 ≡

[𝑒𝑖1
, … … , 𝑒𝑖𝑘

]. Now the term (𝑈𝑘
⊥�̂�𝑦)

𝑇
 in the equation corresponds to the projection 

error power which is a decreasing function of subspace dimension and the term 2(𝑈𝑘�̂�𝑛)
𝑇

 

corresponds to the noise power and is increasing function of subspace dimension. As 

mentioned above 𝑈𝑘 = 𝐸𝑘𝐸𝑘
𝑇 is a projection matrix and from matrices properties we know 

that (𝐴𝐵)𝑇 = (𝐵𝐴)𝑇, then the minimization equation can be written as 

(�̂�, �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑐 + ∑(−𝑝𝑖𝑗 + 2𝜎𝑖𝑗
2 )

𝑘

𝑗=1

}                                  (3.15) 

 where c is a constant and 

𝑝𝑖𝑗 = 𝑒𝑖𝑗
𝑇 �̂�𝑦𝑒𝑖𝑗                                                            (3.16) 

𝜎𝑖𝑗
2 = 𝑒𝑖𝑗

𝑇 �̂�𝑛𝑒𝑖𝑗                                                           (3.17) 
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 The term on the right hand side (−𝑝𝑖𝑗 + 2𝜎𝑖𝑗
2 ) is represented by 𝛿𝑖𝑗  and by including 

all the negative terms of �̂�𝑖, for 𝑖 = 1, … … , 𝐿, in the sum, the minimization of mean square 

error between projection power error and noise power is obtained. The estimate of the 

subspace dimension is given by the number of negative terms in �̂�𝑖. 

 The subspace dimension, �̂�, for this subset is obtained by minimizing the mean 

square error between the signal projection power and the noise projection. The output of 

the signal subspace estimation step is a set of matrices containing the eigenvalues and the 

eigenvectors spanning the signal subspace. 

3.1.1.1.3 HySime Components 

 The output of the HySime gives us the signal subspace estimates and the 

corresponding eigenvectors spanning the subspace i.e. 𝐸𝑘 ≡ [𝑒𝑖1
, … … , 𝑒𝑖𝑘

], sorted in 

descending order of their relevance. The HySime components, with the first component 

representing the maximum variance, corresponding to these eigenvectors can be 

computed by multiplying the eigenvector matrix, 𝐸, (can also referred to as transformation 

matrix or projection matrix) with the original image i.e. by projecting the original image by 

𝐸. The components which are obtained will be ordered according to the decreasing 

variability. Each column of the eigenvector matrix produces a component image. The 

transformation can be achieved by the following expression [61], 

𝑛𝑒𝑤𝐵𝑉𝑖,𝑗,𝑝(𝑌𝐻𝑦𝑆𝑖𝑚𝑒) = ∑(𝐸𝑘,𝑝𝐵𝑉𝑖,𝑗,𝑘)

𝑛

𝑖=1

                                       (3.18) 

where, 𝐸𝑘,𝑝 - Eigenvector matrix 

 𝐵𝑉𝑖,𝑗,𝑘 - Brightness value of pixel at ith row, jth column of the band k of original 

image 

 𝑛𝑒𝑤𝐵𝑉𝑖,𝑗,𝑝 - Brightness value of pixel at ith row, jth column of the pth HySime 

component 

 𝑌𝐻𝑦𝑆𝑖𝑚𝑒  - HySime component image 
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3.1.1.1.4 Inverse HySime for Hyperspectral image restoration 

 Once the HySime components have been obtained and the noise segregated the 

Hyperion data can be restored to its original spectral space without noise. The noise free 

original spectral space consisting of the noise less signals only can be achieved by 

performing an inverse HySime transform. As the original image data Y was transformed 

into HySime components, 𝑌𝐻𝑦𝑆𝑖𝑚𝑒  in the HySime space, the inverse transformation can be 

achieved by inverting the projection matrix 𝐸 and multiplying it with𝑌𝐻𝑦𝑆𝑖𝑚𝑒 . The 

expression for restoration of signals to original spectral space is as follows, 

𝑍 = (𝐸𝑇)−1𝑌𝐻𝑦𝑆𝑖𝑚𝑒                                                            (3.19) 

where, 𝑌𝐻𝑦𝑆𝑖𝑚𝑒 = (𝑦1
𝐻𝑦𝑆𝑖𝑚𝑒

, … … , 𝑦𝑝
𝐻𝑦𝑆𝑖𝑚𝑒

, 0, … … ,0) - is the HySime component image  

 p - the number of 1st components selected for restoring to the original spectral 

space and  𝑍 - the restored image 

3.1.1.2. Smooth filter 

 In many experiments in physical science, the true signal amplitudes (y-axis values) 

change rather smoothly as a function of the x-axis values, whereas many kinds of noise are 

seen as rapid, random changes in amplitude from point to point within the signal. In the 

latter situation it may be useful in some cases to attempt to reduce the noise by a process 

called smoothing. In smoothing, the data points of a signal are modified so that individual 

points that are higher than the immediately adjacent points (presumably because of noise) 

are reduced, and points that are lower than the adjacent points are increased, thus is 

achieved that the signal is more homogeneous. This naturally leads to a smoother signal. 

As long as the true underlying signal is actually smooth, then the true signal will not be 

much distorted by smoothing, but the noise will be reduced [62]. 

 When processing a signal by the Smooth filter, the goal is to create an approximate 

function that attempts to capture important signal patterns, leaving out the noise. The 

Smooth filter smooths the signal by using a moving average filter. 

 In the moving average filters each output value is obtained as the average of a 

subset of the original data. Its purpose is to highlight the significant pattern i.e. it reduce 

the noise smoothing the fluctuations in short periods, thus highlighting trends or long 

periods cycles [62]. 
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 Moving average filters [63] are the most common filters used in signal processing, 

mostly because it is the easiest to understand and use digital filter. Despite its simplicity, it 

is optimal for the task of reducing random noise. This makes them the best filters to 

signals in the time domain. Instead, moving average filters are the worst for signals 

encoded in the frequency domain, as they have little ability to separate frequency bands 

from each other [64]. 

3.1.1.2.1 Smoothing algorithms 

 Most smoothing algorithms are based on the "shift and multiply" technique, in 

which a group of adjacent points in the original data are multiplied point-by-point by a set 

of numbers (coefficients) that defines the smooth shape, the products are added up to 

become one point of smoothed data, then the set of coefficients is shifted one point down 

the original data and the process is repeated. The simplest smoothing algorithm is the 

rectangular or unweighted sliding-average smooth; it simply replaces each point in the 

signal with the average of m adjacent points, where m is a positive integer called the 

smooth width. For example, for a 3-point smooth (m = 3): 

𝑆𝑗 =
𝑌𝑗−1 + 𝑌𝑗+𝑌𝑗+1

3
                                                          (3.20) 

for j = 2 to n-1, where Sj the jth point in the smoothed signal, Yj the jth point in the original 

signal, and n is the total number of points in the signal. Similar smooth operations can be 

constructed for any desired smooth width, m. Usually m is an odd number. If the noise in 

the data is "white noise" (that is, evenly distributed over all frequencies) and its standard 

deviation is s, then the standard deviation of the noise remaining in the signal after the 

first pass of an unweighted sliding-average smooth will be approximately s over the square 

root of m (s/sqrt(m)), where m is the smooth width. 

 The triangular smooth is like the rectangular smooth, above, except that it 

implements a weighted smoothing function. For a 5-point smooth (m = 5): 

𝑆𝑗 =
𝑌𝑗−2 + 2𝑌𝑗−1 + 3𝑌𝑗+2𝑌𝑗+1+𝑌𝑗+2

9
                                   (3.21) 

 

for j = 3 to n-2, and similarly for other smooth widths. 
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 It is often useful to apply a smoothing operation more than once, that is, to 

smooth an already smoothed signal, in order to build longer and more complicated 

smooths. For example, the 5-point triangular smooth above is equivalent to two passes of 

a 3-point rectangular smooth. Three passes of a 3-point rectangular smooth result in a 7-

point "pseudo-Gaussian" or haystack smooth, for which the coefficients are in the ratio 1 3 

6 7 6 3 1.  The general rule is that n passes of a w-width smooth results in a combined 

smooth width of n*w-n+1. For example, 3 passes of a 17-point smooth results in a 49-

point smooth. These multipass smooths are more effective at reducing high-frequency 

noise in the signal than a rectangular smooth. 

 In all these smooths, the width of the smooth m is chosen to be an odd integer, so 

that the smooth coefficients are symmetrically balanced around the central point, which is 

important because it preserves the x-axis position of peaks and other features in the 

signal. (This is especially critical for analytical and spectroscopic applications because the 

peak positions are often important measurement objectives). 

 The Savitzky-Golay smooth is based on the least-squares fitting of polynomials to 

segments of the data. Compared to the sliding-average smooths, the Savitzky-Golay 

smooth is less effective at reducing noise, but more effective at retaining the shape of the 

original signal.  It is capable of differentiation as well as smoothing. The algorithm is more 

complex and the computational times are greater than the smooth types discussed above, 

but with modern computers the difference is not significant [62][65]. 

3.1.1.2.2 Noise reduction 

 Smoothing usually reduces the noise in a signal. If the noise is “white” (that is, 

evenly distributed over all frequencies) and its standard deviation is s, then the standard 

deviation of the noise remaining in the signal after one pass of a triangular smooth will be 

approximately s*0.8/sqrt(m), where m is the smooth width.  Smoothing operations can be 

applied more than once: that is, a previously-smoothed signal can be smoothed again. In 

some cases this can be useful if there is a great deal of high-frequency noise in the signal. 

However, the noise reduction for white noise is less in each successive smooth. For 

example, three passes of a rectangular smooth reduces white noise by a factor of 

approximately s*0.7/sqrt(m), only a slight improvement over two passes. 
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 The frequency distribution of noise, designated by noise color, substantially affects 

the ability of smoothing to reduce noise. Because smoothing is a low-pass filter process, it 

affects low frequency (pink) noise less, and high-frequency (blue) noise more, than white 

noise. 

 It should be clear that smoothing can never completely eliminate noise, because 

most noise is spread out over a wide range of frequencies, and smoothing simply reduces 

the noise in part of its frequency range. Only for some very specific types of noise (e.g. 

discrete frequency noise or single-point spikes) is there hope of anything close to complete 

noise elimination. 

3.1.1.2.3 End effects and the lost points problem 

 Note in the equations above that the 3-point rectangular smooth is defined only 

for j = 2 to n-1. There is not enough data in the signal to define a complete 3-point smooth 

for the first point in the signal (j = 1) or for the last point (j = n), because there are no data 

points before the first point or after the last point (similarly, a 5-point smooth is defined 

only for j = 3 to n-2, and therefore a smooth cannot be calculated for the first two points 

or for the last two points). In general, for an m-width smooth, there will be (m-1)/2 points 

at the beginning of the signal and (m-1)/2 points at the end of the signal for which a 

complete m-width smooth cannot be calculated. There are two approaches for this 

problem. One is to accept the loss of points and trim off those points or replace them with 

zeros in the smooth signal. The other approach is to use progressively smaller smooths at 

the ends of the signal, for example to use 2, 3, 5, 7... points smooths for signal points 1, 2, 

3, and 4..., and for points n, n-1, n-2, n-3..., respectively. The later approach may be 

preferable if the edges of the signal contain critical information, but it increases execution 

time [65]. 

3.1.2. Contour detection 

 

Figure 3.4: Stages of hyperspectral data processing chain.  

 This process is based on contour detection of tumor, healthy and necrosis samples. 

In fact, the contour of the samples is delimited by a function in order to highlight the 
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samples ignoring the rest of the elements in the image (table, test plates and glow in the 

samples). This is possible due to the difference in density between different tissues and 

other elements in the image. 

 This function take a representative band which the image can be seen clearly, then 

it takes each pixel in the image and assigns a value of 1 or 0 depending on whether there is 

sample or not. To differentiate the samples from the rest of the image a contour function 

belonging to a MATLAB toolbox is used. This way, we obtain a binary image which has 1 in 

the samples and 0 in the rest of the image. This function has a condition with a decision 

threshold to decide if the pixel contains a sample or not. This threshold was chosen by trial 

and error as shown in the following images. 

 

Figure 3.5: Tumor sample 3 without inclination according to the threshold. 

 In figure 3.5, the threshold is too low and we can see how some samples are lost. 

According as the threshold increases in order to compensate for sample loss, we can see 

that there are areas without samples which are marked as such. 

 In the end, after several tests, the threshold was established in 40 because this 

value generally provides good average results. 
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  (a)                                                                   (b) 

Figure 3.6: Tumor 3 without inclination: (a) band 350 and (b) contour with threshold=40. 

 However, this function is only valid for samples without inclination. Because in the 

samples with inclination, the samples generate a shadow which is confused with the 

sample and it produces a false samples extraction how is shown in figure 3.7. 

        

  (a)                                                                   (b)  

Figure 3.7: Tumor 7 19.10 degrees of inclination: (a) band 350 and (b) contour with threshold=40. 

 To solve this problem, it is necessary to show the image in other format which 

allow to differentiate clearly the sample from the shadow. For this purpose, firstly the 

image is changed to RGB format and then it is changed to HSV format. Due to these 

changes in the input data, it is necessary to modify the condition and the decision 

threshold in the contour function. This condition and its threshold were chosen by trial 

and error as shown in the images of Figure 3.8. 
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Figure 3.8: Tumor sample 7, 19.10 degrees of inclination according to the threshold. 

In the first set of images, the threshold chosen is composed by a low value as we 

can see in the figure 3.8. Several studies were performed in order to find the correct value 

in which the experimental samples (tumor, necrosis and healthy) could be extracted. In 

this set of experiments, the threshold was established to 0.67. 

 

  (a)                                                                   (b)  

Figure 3.9: Tumor 7 19.10 degrees of inclination: (a) band 350 HSV and (b) contour with threshold=0.67.  

Our study, conducted using three kind of inclination collected by different filters, 

provides several set of samples. In this regard, the nomenclatures used in this dissertation 



45 
 

are: inclination 1, inclination 2 and inclination 3 to designate the inclinations of 0, 23.58, 

19.10 degrees respectively, class 1, class 2 and class 3 to refer healthy, tumor and necrosis 

samples  respectively, and filter 1 and filter 2 to denote HySime and smooth filter 

respectively. 

The results of preprocessing stage are shown in the table 3.2, where we can 

observe the number of samples for each case: 

Inclination Filter Samples 

Class 1 Class 2 Class 3 Total  

 

Inclination 1 

No-Filter 2917 5486 1530 9933 

Filter 1 2971 5543 1555 10069 

Filter 2 2986 5258 1403 9647 

 

Inclination 2 

No-Filter 811 1787 441 3039 

Filter 1 807 1785 443 3035 

Filter 2 741 1789 423 2953 

 

Inclination 3 

No-Filter 802 3839 1464 6105 

Filter 1 803 3827 1469 6099 

Filter 2 742 3834 1404 5980 

Table 3.1: Samples obtained. 

Table 3.2 shows the number of samples corresponding to 3 %, 5% and 10% of the 

global set of samples.  They are obtained by randomly selecting of the global pixels. 
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Inclination Filter Training 

3% 5% 10% 

 

Inclination 1 

No-Filter 300 498 996 

Filter 1 303 504 1008 

Filter 2 291 483 966 

 

Inclination 2 

No-Filter 93 153 306 

Filter 1 93 153 306 

Filter 2 90 150 297 

 

Inclination 3 

No-Filter 144 240 480 

Filter 1 183 306 612 

Filter 2 180 300 600 

Table 3.2: Trainings generated. 

In this set we have 3 possible classes: the number of samples per class for each 

training set is equal to the total number of samples in such training divided by 3. 

Moreover, each test is formed by removing the training samples from the total samples, so 

each test is composed by the number of samples resulting from subtracting the total 

number of samples for each case minus the number of samples of a particular training. 

This process is shown in figure 3.10. 
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Figure 3.10: Representation of the generation of samples set, training samples and test samples. 

In order to study all of the cases, the data with different angles are mixed together. 

In this case we remove the dependence over the angles. 

Filter Samples 

No-Filter 19077 

Filter 1 19203 

Filter 2 18580 

Table 3.3: Total samples. 

Currently, the resulting trainings for these datasets are obtained. 

  

 Test 

samples 

Samples set 

 

Class 1 

 Training 

samples 

Class 2 Class 3 

Randomly 

selected 
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Filter Training 

3% 5% 10% 

No-Filter 573 954 1908 

Filter 1 579 963 1923 

Filter 2 558 930 1860 

Table 3.4: Training sets. 

Therefore, as a result of this block we obtain several set of samples and their 

corresponding training. 

3.1.3. Feature extraction techniques 

Figure 3.11: Stages of hyperspectral data processing chain. 

Feature extraction transforms the data in a high-dimensional space to a space of 

fewer dimensions. It starts from an initial set of measured data and builds derived values 

(features) intended to be informative, non-redundant, facilitating the subsequent learning 

and generalization steps, in some cases leading to better human interpretations. The data 

transformation may be linear or nonlinear [66][67]. 

This process happens when the input data to an algorithm are too large to be 

processed and it is suspected to be redundant (e.g. the repetitiveness of images presented 

as pixels), then it can be transformed into a reduced set of features. The extracted 

features are expected to contain the relevant information from the input data, so that the 

desired task can be performed by using this reduced representation instead of the 

complete initial data. 

Feature extraction involves reducing the amount of resources required to describe 

a large set of data. When performing analysis of complex data one of the major problems 

stems from the number of variables involved. Analysis with a large number of variables 

generally requires a large amount of memory and computation power or a classification 

algorithm which overfits the training sample and generalizes poorly to new samples. 

Feature extraction is a general term for methods of constructing combinations of the 
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variables to get around these problems while still describing the data with sufficient 

accuracy. 

The spectral transformations data acting on the vectors to get new sets or 

components bands in the image are processing techniques for feature extraction. These 

new components represent an alternative description of the data, in which a pixel vector is 

related to its previous brightness value of the original image by a linear transformation of 

the spectral bands. These techniques seek to preserve the essential information of the 

original image by reducing the number of transformed dimensions and are used before the 

classification process in order to increase accuracy.  

Regarding the hyperspectral image processing, reducing the information is very 

important. The best results are achieved when an expert constructs a set of application-

dependent features. Nevertheless, if no such expert knowledge is available, general 

dimensionality reduction techniques may help. Thus in literature have been investigated 

various methods to solve the problem of the original repetitive information and perform 

more efficient characterization. In this report are included: Principal Component Analysis 

(PCA), Independent Component Analysis (ICA), Minimum Noise Fraction (MNF), Locality 

Preserving Projections (LPP) and Neighborhood Preserving Embedding (NPE) as a linear 

methods and Kernel Principal Component Analysis (KPCA) as a nonlinear method; which 

are known as 'reduction methods'. 

Other applicable methodologies for feature extraction are endmembers extraction 

and unmixing algorithm, which there are investigations for hyperspectral image analysis. 

The hyperspectral unmixing is a source separation problem (scene materials) which is 

statistically dependent and must be combined in a nonlinear function. There are different 

strategies (spectral versus hybrid techniques) being compared looking for an efficient 

solution taking into account the high dimensionality of the data. 

There are also other methods for feature extraction such as spatial contexts, which 

takes into account the neighborhood or space environment of the pixel considered, 

because they contain much more information than the pixel itself. 

The fact of using pre-processing techniques of hyperspectral imaging aimed at 

reducing the dimensionality of the input data is given, among other reasons, by the known 

as Hughes phenomenon [68], described below. In a typical classification problem, the goal 
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is to assign a class label to the input data. The minimum expected error that can be 

achieved by performing classification is known as the Bayes error [69]. The Bayes error is a 

function which decreases with the data dimensionality. A new feature adds information 

about the instance and then, one would expect that the classification would be as good as 

when this information had not been entered. However, in practice this is not thus, when 

adding a new feature to the data the Bayes error is decreased, but also the deviations of 

classification error increases. This increase is due to the fact that more parameters need 

be calculated based on the same number of examples. If the increase of the deviations in 

the classification error is greater than the decrease Bayes error, then the use of the 

additional characteristic degrades the decision rule. And this phenomenon is what is 

known as the Hughes effect [68]. Furthermore, when the data dimensionality and the 

complexity of the decision rule increase, the Hughes effect may become more serious [7]. 

In summary, the supervised classifier performance decreases with the data 

dimensionality unless the number of samples is infinite [68]. This dimensional reduction 

that arises is a step used to reduce the computational load of successive steps by removing 

noise and redundant information in the image. In spectral data, much of the information is 

repeated from image to image. This redundancy complicates analysis and classification 

unnecessarily. These methods perform a decrease in the number of bands. The goal is to 

obtain a minimum representation of the image that contains the necessary information to 

perform the analysis on a small subset of the original image [70]. Moreover, dimensional 

reduction techniques usually bring as a result an improvement in the SNR of data through 

the removing noise [71], which makes it attractive to use previous to classification step. 

The disadvantage of this alternative is the difficulty in interpreting the spectral data after 

the reduction step. 
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3.1.3.1. Dimensionality reduction techniques 

In machine learning, dimensionality reduction is the process of reducing the 

number of random variables under consideration, [72] and can be divided into feature 

extraction and feature selection [73]. 

It is important to distinguish the dimension reduction techniques from 

compression techniques for hyperspectral imaging [74]. Contrary to the compression 

methods objective, the dimensional simplification process usually does not allow 

reconstructing the original image. By contrast, dimensional reduction aim is to obtain a 

minimum representation of the image that contains the necessary information to perform 

the analysis on a reduced subset of original image. Thus, dimensional reduction algorithms 

are usually designed so that minimizes errors when working with this subset, unconcerned 

about the possibility of recovering the original image [75]. 

3.1.3.1.1. Principal Component Analysis (PCA) 

The Principal Component Analysis (PCA) method takes advantage of the high 

correlation between consecutive bands of a hyperspectral image [76]. The PCA 

transformation allows to obtain a reduced set of bands (called eigenvectors) poorly 

correlated to each other (orthogonal, in the ideal case) containing most of the information 

present in the original image. Thus the first eigenvector contains the highest percentage of 

the variance of the original image; the second contains higher percentage of variance than 

the third, and so on. 

The last bands of decomposition usually come characterized by a low content in 

terms of relevant information and these are mostly composed of noise present in the 

original image. In this way, the PCA transformation allows to separate noise of useful 

information [77]. Importantly, the set of bands resulting of PCA transformation is obtained 

from linear combinations of the original image bands. The procedure used is based on the 

identification of a new system of orthogonal axes on which data are projected. These axes 

have their origin in the data average vector, and these are rotated successively in order to 

maximize the variance. The axes are identified from the decomposition of the covariance 

matrix of the image, 𝛤, according to the expression shown below: 

𝛤 =
1

𝑃
∑(𝒖𝑖 − 𝝁)(𝒖𝑖 − 𝝁)𝑇 ,                                             (3.22)

𝑃

𝑖=1
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where 𝒖𝑖  reference image pixels, 𝝁 is the mean vector of all the pixels, and 𝑃 is the 

number of the image pixels. The result of projecting the pixels of the hyperspectral image 

over the new axes obtained is a new hyperspectral image that is formed by 𝑏𝑖 , 𝑖 = 1 … 𝑁 

bands (where 𝑁 is the number of bands of the original image). These bands, also called 

principal components, can be obtained as projections of an eigenvectors set which 

indicate weighting applied to each of the original bands. The number of principal 

components is less than or equal to the number of original variables. In addition, a set of 

λ𝑖 , 𝑖 = 1 … 𝑁 eigenvalues (scalars) associated is obtained, whose magnitude indicates the 

amount of information contained in corresponding eigenvector data [78]. Thereby, the 

covariance matrix can be expressed as follows: 

𝛤 = 𝑉𝛴𝑉𝑇,                                                            (3.23) 

where 𝑉 is the unitary matrix of eigenvectors and 𝛴 is the diagonal matrix of eigenvalues 

of 𝛤. The PCA transformation is illustrated graphically in Figure 3.12. As shown in the 

figure, this transformation enables a new coordinate system on which data are projected. 

 

Figure 3.12: Graphic illustration of the PCA transformation. 

An example of the application of the PCA transformation to real hyperspectral 

image is shown in Figure 3.13 [5]. The figure shows the first 20 bands obtained from the 

PCA transform. Visually, it can be seen that the presence of noise is much lower in the first 

bands, increasing considerably in the last bands. 
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Figure 3.13: Application example of the PCA transform on a hyperspectral image. 

Principal component analysis can be employed in a nonlinear way by means of the 

kernel function. The resulting technique is capable of constructing nonlinear mappings 

that maximize the variance in the data. The resulting technique is entitled kernel PCA, 

which will be explained in detail in the corresponding section.  

3.1.3.1.2. Minimum Noise Fraction (MNF) 

 The Minimum Noise Fraction (MNF) transformation is a dimensional reduction 

method for hyperspectral image consisting in performing the steps described below [79]. 

1. First, PCA transformation is applied on the original image, through which the signal 

is separated from the noise, which is isolated in the last bands. 

2. Then, the signal covariance matrix, 𝛤𝑆, and the noise covariance matrix, 𝛤𝑅, are 

estimated using the following expression. 

𝒗𝑇𝛤𝑆𝒗

𝒗𝑇𝛤𝑅𝒗
                                                                   (3.24) 
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3. Next, a set of components containing weighted information about the variance in 

the original data set is obtained. For this is used a MNF index that estimates the 

ratio between signal and noise present in the components provided by the PCA 

transform. The component having the minimum noise fraction is that whose 

associated eigenvector, 𝒗, maximizes the expression (3.24). 

The main difference between the PCA transformation and MNF transformation is 

the fact that in the second case a more detailed description of the relationship between 

the amount of signal and the amount of noise present in the image is performed [80]. 

Thus, the first band resulting from the MNF transformation is the one with highest SNR 

ratio. The second band has a better SNR than the third, and so on. 

 

Figure 3.14: Application example of the MNF transform on a hyperspectral image. 

 As a consequence of the more accurate estimation of the noise conditions present 

in the image, in certain applications the MNF decomposition may provide more robust 

results than the PCA transform [81], because it is less sensitive to outliers and noisy pixels. 

The MNF transform performs a translation of the data, so that the coordinate origin is the 
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centroid of the resulting point cloud. Sometimes, this feature allows obtaining a better 

description of the data. By comparison, Figure 3.14 [5] shows the first 20 bands obtained 

from the application of the MNF transform on the real hyperspectral image previously 

used. 

3.1.3.1.3. Independent Component Analysis (ICA) 

In signal processing, Independent Component Analysis (ICA) is a statistical and 

computational method for separating a multivariate signal into additive subcomponents, 

revealing hidden factors that underlie sets of random variables, measurements, or signals. 

This is done by assuming that the subcomponents are non-Gaussian signals and that they 

are statistically independent from each other. 

Independent Component Analysis attempts to decompose a multivariate signal 

into independent non-Gaussian signals. As an example, sound is usually a signal that is 

composed of the numerical addition, at each time t, of signals from several sources. The 

question then is whether it is possible to separate these contributing sources from the 

observed total signal. When the statistical independence assumption is correct, blind ICA 

separation of a mixed signal gives very good results. It is also used for signals that are not 

supposed to be generated by a mixing for analysis purposes. An important note to 

consider is that if N sources are present, at least N observations are needed to recover the 

original signals. This constitutes the square case (J = D, where D is the input dimension of 

the data and J is the dimension of the model). Other cases of underdetermined (J > D) and 

overdetermined (J < D) have been investigated. 

The fact that the ICA separation of mixed signals provides very good results are 

based on two assumptions and three effects of mixing source signals. The two 

assumptions are: 

1. The source signals are independent of each other. 

2. The values in each source signal have non-Gaussian distributions. 

The three effects of mixing source signals are: 

1. Independence: As per assumption 1, the source signals are independent; however, 

their signal mixtures are not. This is because the signal mixtures share the same 

source signals. 
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2. Normality: According to the Central Limit Theorem, the distribution of a sum of 

independent random variables with finite variance tends towards a Gaussian 

distribution. Loosely speaking, a sum of two independent random variables usually 

has a distribution that is closer to Gaussian than any of the two original variables. 

Here we consider the value of each signal as the random variable. 

3. Complexity: The temporal complexity of any signal mixture is greater than that of 

its simplest constituent source signal. 

Those principles contribute to the basic establishment of ICA. If the signals we 

happen to extract from a set of mixtures are independent like sources signals, or have 

non-Gaussian histograms like source signals, or have low complexity like source signals, 

then they must be source signals. [82][83] 

ICA defines a generative model for the observed multivariate data, which is 

typically given as a large database of samples. In the model, the data variables are 

assumed to be linear mixtures of some unknown latent variables, and the mixing system is 

also unknown. The latent variables are assumed to be non-Gaussian and mutually 

independent and they are called the independent components of the observed data. 

These independent components, also called sources or factors, can be found by ICA. 

ICA finds the independent components (also called factors, latent variables or 

sources) by maximizing the statistical independence of the estimated components. We 

may choose one of many ways to define independence, and this choice governs the form 

of the ICA algorithm. The two broadest definitions of independence for ICA are: 

1. Minimization of mutual information (uses measures like Kullback-Leibler 

Divergence and maximum entropy). 

2. Maximization of non-Gaussianity (motivated by the central limit theorem, uses 

kurtosis and negentropy). 

Typical algorithms for ICA use centering (subtract the mean to create a zero mean 

signal), whitening (usually with the eigenvalue decomposition), and dimensionality 

reduction as preprocessing steps in order to simplify and reduce the complexity of the 

problem for the actual iterative algorithm. Whitening and dimension reduction can be 

achieved with Principal Component Analysis (PCA). Whitening ensures that all dimensions 

are treated equally a priori before the algorithm is run. Well-known algorithms for ICA 
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include infomax, FastICA, and JADE, but there are many others. In this case, ICA JADE was 

used for this project. 

Linear independent component analysis can be divided into noiseless and noisy 

cases, where noiseless ICA is a special case of noisy ICA. The data are represented by the 

random vector: 

𝑥 = (𝑥1, … , 𝑥𝑚)𝑇                                                       (3.25) 

and the components as the random vector: 

𝑠 = (𝑠1, … , 𝑠𝑛)𝑇                                                         (3.26) 

The task is to transform the observed data 𝑥, using a linear static transformation 

𝑊 as: 

𝑠 = 𝑊𝑥                                                                 (3.27) 

into maximally independent components 𝑠 measured by some function: 

𝐹(𝑠1, … , 𝑠𝑛)                                                              (3.28) 

of independence. 

 In the linear noiseless ICA, the components 𝑥𝑖  of the observed random vector: 

𝑥 = (𝑥1, … , 𝑥𝑚)𝑇                                                       (3.29) 

are generated as a sum of the independent components 𝑠𝑘, 𝑘 = 1, … , 𝑛: 

𝑥𝑖 = 𝑎𝑖,1𝑠1 + ⋯ + 𝑎𝑖,𝑘𝑠𝑘 + ⋯ + 𝑎𝑖,𝑛𝑠𝑛                                    (3.30) 

weighted by the mixing weights 𝑎𝑖,𝑘. 

The same generative model can be written in vectorial form as: 

𝑥 = ∑ 𝑠𝑘𝑎𝑘

𝑛

𝑘=1

                                                          (3.31) 

where the observed random vector 𝑥 is represented by the basis vectors: 

𝑎𝑘 = (𝑎1,𝑘 , … , 𝑎𝑚,𝑘)𝑇                                                     (3.32) 
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The basis vectors 𝑎𝑘 form the columns of the mixing matrix: 

𝐴 = (𝑎1, … , 𝑎𝑛)                                                          (3.33) 

and the generative formula can be written as: 

𝑥 = 𝐴𝑠                                                                   (3.34) 

where 

𝑠 = (𝑠1, … , 𝑠𝑛)𝑇                                                        (3.35) 

Given the model and realizations (samples) 𝑥1, … , 𝑥𝑁 of the random vector 𝑥, the 

task is to estimate both the mixing matrix 𝐴 and the sources 𝑠. This is done by adaptively 

calculating the 𝑤 vectors and setting up a cost function which either maximizes the 

nongaussianity of the calculated: 

𝑠𝑘 = (𝑤𝑇 ∗ 𝑥)                                                          (3.36) 

or minimizes the mutual information. In some cases, a priori knowledge of the probability 

distributions of the sources can be used in the cost function. 

The original sources 𝑠 can be recovered by multiplying the observed signals 𝑥 with 

the inverse of the mixing matrix: 

𝑊 = 𝐴−1                                                              (3.37) 

also known as the unmixing matrix. Here it is assumed that the mixing matrix is square 

(𝑛 = 𝑚). If the number of basis vectors is greater than the dimensionality of the observed 

vectors, 𝑛 > 𝑚, the task is overcomplete but is still solvable with the pseudo inverse. 

 In the case of linear noisy ICA with the added assumption of zero-mean and 

uncorrelated Gaussian noise: 

𝑛~𝑁(0, 𝑑𝑖𝑎𝑔(𝛴))                                                   (3.38) 

the ICA model takes the form: 

𝑥 = 𝐴𝑠 + 𝑛                                                          (3.39) 

The ICA transformation is illustrated graphically in Figure 3.15 [84]. 
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Figure 3.15: Graphic illustration of the ICA transformation. 

An example of the application of the ICA transformation to real hyperspectral 

image is shown in Figure 3.16. 
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Figure 3.16: Application example of the ICA transform on a hyperspectral image. 

ICA is somehow related to Principal Component Analysis (PCA). What distinguishes 

ICA from other methods is that it looks for components that are both statistically 

independent, and non-Gaussian. ICA is a much more powerful technique, however, 

capable of finding the underlying factors or sources when these classic methods fail 

completely [85]. 

3.1.3.1.4. Locality Preserving Projections (LPP) 

Locality Preserving Projections (LPP) are linear projective maps that arise by solving 

a variational problem that optimally preserves the neighborhood structure of the data set. 

LPP should be seen as an alternative to classical linear technique based on Principal 

Component Analysis (PCA). When the high dimensional data lies on a low dimensional 

manifold embedded in the ambient space, the Locality Preserving Projections are obtained 

by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami 

operator on the manifold. As a result, LPP shares many of the data representation 
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properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear 

Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space 

rather than just on the training data points [86]. 

Suppose we have a collection of data points of n-dimensional real vectors drawn 

from an unknown probability distribution. In increasingly many cases of interest in 

machine learning and data mining, one is confronted with the situation where n is very 

large. However, there might be reason to suspect that the “intrinsic dimensionality” of the 

data is much lower. This leads one to consider methods of dimensionality reduction that 

allow one to represent the data in a lower dimensional space. 

LPP is a linear dimensionality reduction algorithm which builds a graph 

incorporating neighborhood information of the data set. Using the notion of the Laplacian 

of the graph, it computes a transformation matrix which maps the data points to a 

subspace. This linear transformation optimally preserves local neighborhood information 

in a certain sense. The representation map generated by the algorithm may be viewed as a 

linear discrete approximation to a continuous map that naturally arises from the geometry 

of the manifold [87]. 

The generic problem of linear dimensionality reduction is the following. Given a set 

𝒙1, 𝒙2, … , 𝒙𝑚 𝑖𝑛 𝑹𝑛, find a transformation matrix A that maps these m points to a set of 

points 𝒚1, 𝒚2, … , 𝒚𝑚 𝑖𝑛 𝑹𝑙 (𝑙 ≪ 𝑛), such that 𝒚𝑖 “represents” 𝒙𝑖, where 𝒚𝑖 = 𝐴𝑇𝒙𝑖. This 

method is of particular applicability in the special case where 𝒙1, 𝒙2, … , 𝒙𝑚  ∈ 𝑀 and 𝑀 is 

a nonlinear manifold embedded in 𝑹𝑛. 

LPP is a linear approximation of the nonlinear Laplacian Eigenmap. The algorithmic 

procedure is formally stated below: 

1. Constructing the adjacency graph: Let G denote a graph with m nodes. An edge is 

put between nodes i and j if 𝒙𝑖  and 𝒙𝑗  are “close”. There are two variations: 

a. 𝜖-neighborhoods. [Parameter 𝜖 ∈ 𝑹]. Nodes i and j are connected by an 

edge if ‖𝒙𝑖 − 𝒙𝑗‖
2

< 𝜖 where the norm is the usual Euclidean norm in 𝑹𝑛. 

b. 𝑘 nearest neighbors. [Parameter 𝑘 ∈ 𝑵]. Nodes i and j are connected by an 

edge if i is among k nearest neighbors of j or j is among k nearest neighbors 

of i. 
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2. Choosing the weights: Here, as well, we have two variations for weighting the 

edges. W is a sparse symmetric 𝑚 × 𝑚 matrix with 𝑊𝑖𝑗  having the weight of the 

edge joining vertices i and j, and 0 if there is no such edge. 

a. Heat kernel. [Parameter 𝑡 ∈ 𝑹]. If nodes i and j are connected, put 

𝑊𝑖𝑗 = 𝑒−
‖𝒙𝑖−𝒙𝑗‖

2

𝑡                                                  (3.40) 

The justification for this choice of weights can be traced back to [87]. 

b. Simple-minded. [No parameter]. 𝑊𝑖𝑗 = 1 if and only if vertices i and j are 

connected by an edge. 

3. Eigenmaps: Compute the eigenvectors and eigenvalues for the generalized 

eigenvector problem: 

𝑋𝐿𝑋𝑇𝒂 = λ𝑋𝐷𝑋𝑇𝒂                                              (3.41) 

where D is a diagonal matrix whose entries are column (or row, since W is 

symmetric) sums of W, 𝐷𝑖𝑖 = 𝛴𝑗𝑊𝑗𝑖 . 𝐿 = 𝐷 − 𝑊 is the Laplacian matrix. The 𝑖𝑡ℎ 

column of matrix X is 𝒙𝑖. 

Let the column vectors 𝒂0, … , 𝒂𝑙−1 be the solution of equation (3.41), ordered 

according to their eigenvalues, λ0 < ⋯ < λ𝑙−1. Thus, the embedding is as follows: 

𝒙𝑖 → 𝒚𝑖 = 𝐴𝑇𝒙𝑖, 𝐴 = (𝒂0, 𝒂1, … , 𝒂𝑙−1)                            (3.42) 

where 𝒚𝑖 is a 𝑙-dimensional vector, and A is a 𝑛 × 𝑙 matrix. 

An experiment was conducted with the Multiple Features Database [88]. This 

dataset consists of features of handwritten numbers (‘0’-‘9’) extracted from a collection of 

Dutch utility maps. 200 patterns per class (for a total of 2,000 patterns) have been 

digitized in binary images. These data points are mapped to a 2-dimensional space using 

different dimensionality reduction algorithms, PCA, LPP, and Laplacian Eigenmaps. The 

experimental results are shown in Figure 3.17 [86]. 
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Figure 3.17: The handwritten digits (‘0’-‘9’) are mapped into a 2-dimensional space. Each color 

corresponds to a digit. 

LPPs are obtained by finding the optimal linear approximations to the 

eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares 

many of the data representation properties of nonlinear techniques such as Laplacian 

Eigenmap. However, LPP is computationally much more tractable. Moreover, LPP is 

derived by preserving local information; hence it is less sensitive to outliers than PCA and it 

can has more discriminating power than PCA. 

3.1.3.1.5. Neighborhood Preserving Embedding (NPE) 

Neighborhood Preserving Embedding (NPE) is a subspace learning algorithm 

different from Principal Component Analysis (PCA) which aims at preserving the global 

Euclidean structure, NPE aims at preserving the local neighborhood structure on the data 

manifold. Therefore, NPE is less sensitive to outliers than PCA. Also, NPE is defined 

everywhere, rather than only on the training data points. Furthermore, NPE may be 



64 
 

conducted in the original space or in the reproducing kernel Hilbert space into which data 

points are mapped [89].  

NPE is a linear dimensionality reduction algorithm. This makes it fast and suitable 

for practical applications. Moreover, NPE can be performed in either supervised or 

unsupervised mode. Otherwise, NPE shares some similar properties with the Locality 

Preserving Projection (LPP) algorithm [86]. However, their objective functions are totally 

different. 

Given a set of data points in the ambient space, we first build a weight matrix 

which describes the relationship between the data points. Specifically, for each data point, 

it is represented as a linear combination of the neighboring data points and the 

combination coefficients are specified in the weight matrix. We then find an optimal 

embedding such that the neighborhood structure can be preserved in the dimensionality 

reduced space. 

The generic problem of linear dimensionality reduction is the following. Given a set 

𝒙1, 𝒙2, … , 𝒙𝑚 𝑖𝑛 𝑹𝑛, find a transformation matrix A that maps these m points to a set of 

points 𝒚1, 𝒚2, … , 𝒚𝑚 𝑖𝑛 𝑹𝑑 (𝑑 ≪ 𝑛), such that 𝒚𝑖 “represents” 𝒙𝑖, where 𝒚𝑖 = 𝐴𝑇𝒙𝑖. This 

method is of particular applicability in the special case where 𝒙1, 𝒙2, … , 𝒙𝑚  ∈ 𝑀 and 𝑀 is 

a nonlinear manifold embedded in 𝑹𝑛. 

NPE is a linear approximation to the Locally Linear Embedding (LLE) [90] algorithm. 

The algorithmic procedure is formally stated below: 

1. Constructing the adjacency graph: Let G denote a graph with m nodes. The i-th 

node corresponds to the data point 𝒙𝑖. There are two ways to construct the 

adjacency graph: 

a. K nearest neighbors (KNN): Put a directed edge from node i to j if 𝒙𝑖  is 

among the K nearest neighbors of 𝒙𝑖. 

b. 𝜖 neighborhoods: Put an edge between nodes i and j if ‖𝒙𝑗 − 𝒙𝑖‖ ≤ 𝜖. 

The graph constructed by the first method is a directed graph, while the one 

constructed by the second method is an undirected graph. In many real world 

applications, it is difficult to choose a good 𝜖. 
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2. Computing the weights: In this step, the weights on the edges are computed. Let 

W denote the weight matrix with 𝑊𝑖𝑗  having the weight of the edge from node i to 

node j, and 0 if there is no such edge. The weights on the edges can be computed 

by minimizing the following objective function, 

𝑚𝑖𝑛 ∑ ‖𝒙𝑖 − ∑ 𝑊𝑖𝑗𝒙𝑗

𝑗

‖

2

𝑖

                                         (3.43) 

with constraints, 

∑ 𝑊𝑖𝑗

𝑗

= 1, 𝑗 = 1, 2, … , 𝑚                                           (3.44) 

Please see [90] for the details about how to solve the above minimization problem. 

3. Computing the Projections: In this step, we compute the linear projections. Solve 

the following generalized eigenvector problem: 

𝑋𝑀𝑋𝑇𝒂 = λ𝑋𝑋𝑇𝒂                                               (3.45) 

where 

𝑋 = (𝒙1, … , 𝒙𝑚)                                                 (3.46) 

𝑀 = (𝐼 − 𝑊)𝑇(𝐼 − 𝑊)                                          (3.47) 

𝐼 = 𝑑𝑖𝑎𝑔(1, … , 1)                                              (3.48) 

It is easy to check that M is symmetric and semi-positive definite. 

Let the column vectors 𝒂0, … , 𝒂𝑑−1 be the solutions of equation (3.45), ordered 

according to their eigenvalues, λ0 < ⋯ < λ𝑑−1. Thus, the embedding is as follows: 

𝒙𝑖 → 𝒚𝑖 = 𝐴𝑇𝒙𝑖                                                  (3.49) 

𝐴 = (𝒂0, 𝒂1, … , 𝒂𝑑−1)                                            (3.50) 

where 𝒚𝑖 is a 𝑑-dimensional vector, and A is a 𝑛 × 𝑑 matrix. 

The NPE transformation is illustrated graphically in figure 3.18 [91]: 
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Figure 3.18: Application example of the NPE transform. 

3.1.3.1.6. Kernel Principal Component Analysis (KPCA) 

In the field of multivariate statistics, Kernel Principal Component Analysis (KPCA) 

[92] is an extension of Principal Component Analysis (PCA) using techniques of kernel 

methods. Using a kernel, the originally linear operations of PCA are done in a reproducing 

kernel Hilbert space with a non-linear mapping. 

Recall that conventional PCA operates on zero-centered data; that is: 

1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

= 0                                                            (3.51) 

 It operates by diagonalizing the covariance matrix: 

𝐶 =
1

𝑁
∑ 𝑥𝑖𝑥𝑖

𝑇

𝑁

𝑖=1

                                                          (3.52) 

in other words, it gives an eigendecomposition of the covariance matrix: 

λ𝑣 = 𝐶𝑣                                                                 (3.53) 

which can be rewritten as: 

λ𝑥𝑖
𝑇𝑣 = 𝑥𝑖

𝑇𝐶𝑣, ∀𝑖 ∈ [1, 𝑁]                                              (3.54) 
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To understand the utility of kernel PCA, particularly for clustering, observe that, 

while N points cannot in general be linearly separated in 𝑑 < 𝑁 dimensions, they can 

almost always be linearly separated in 𝑑 ≥ 𝑁  dimensions [93]. That is, given 𝑁 points, 𝑥𝑖, 

if we map them to an N-dimensional space with: 

Ф(𝑥𝑖) where Ф: ℝ𝑑 → ℝ𝑁                                           (3.55) 

it is easy to construct a hyperplane that divides the points into arbitrary clusters. Of 

course, this Ф creates linearly independent vectors, so there is no covariance on which to 

perform eigendecomposition explicitly as we would in linear PCA. 

Instead, in kernel PCA, a non-trivial, arbitrary Ф function is 'chosen' that is never 

calculated explicitly, allowing the possibility to use very-high-dimensional Ф's if we never 

have to actually evaluate the data in that space. Since we generally try to avoid working in 

the Ф-space, which we will call the 'feature space', we can create the N-by-N kernel: 

𝐾 = 𝑘(𝑥, 𝑦) = (Ф(𝑥), Ф(𝑦)) = Ф(𝑥)𝑇Ф(𝑦)                         (3.56) 

which represents the inner product space of the otherwise intractable feature space. The 

dual form that arises in the creation of a kernel allows us to mathematically formulate a 

version of PCA in which we never actually solve the eigenvectors and eigenvalues of the 

covariance matrix in the Ф(𝑥)-space. The N-elements in each column of 𝐾 represent the 

dot product of one point of the transformed data with respect to all the transformed 

points (N points). 

Because we are never working directly in the feature space, the kernel-formulation 

of PCA is restricted in that it computes not the principal components themselves, but the 

projections of our data onto those components. To evaluate the projection from a point in 

the feature space Ф(𝑥) onto the 𝑘𝑡ℎ principal component 𝑉 (where superscript k means 

the component k, not powers of k): 

𝑉𝑘𝑇
Ф(𝑥) = (∑ 𝑎𝑖

𝑘

𝑁

𝑖=1

Ф(𝑥𝑖))

𝑇

Ф(𝑥)                                    (3.57) 

We note that Ф(𝑥𝑖)
𝑇Ф(𝑥) denotes dot product, which is simply the elements of 

the kernel 𝐾. It seems all that's left is to calculate and normalize the 𝑎𝑖
𝑘, which can be 

done by solving the eigenvector equation: 
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𝑁λ𝑎 = 𝐾𝑎                                                             (3.58) 

where 𝑁 is the number of data points in the set, and λ and 𝑎 are the eigenvalues and 

eigenvectors of 𝐾. Then to normalize the eigenvectors 𝑎𝑘's, we require that: 

1 = (𝑎𝑘)𝑇𝑎𝑘                                                           (3.59) 

Care must be taken regarding the fact that, whether or not 𝑥 has zero-mean in its 

original space, it is not guaranteed to be centered in the feature space (which we never 

compute explicitly). Since centered data is required to perform an effective principal 

component analysis, we 'centralize' 𝐾 to become 𝐾′: 

𝐾′ = 𝐾 − 1𝑁𝐾 − 𝐾1𝑁 + 1𝑁𝐾1𝑁                                       (3.60) 

where 1𝑁 denotes a N-by-N matrix for which each element takes value 1/𝑁. We use 𝐾′ to 

perform the kernel PCA algorithm described above. 

One caveat of kernel PCA should be illustrated here. In linear PCA, we can use the 

eigenvalues to rank the eigenvectors based on how much of the variation of the data is 

captured by each principal component. This is useful for data dimensionality reduction and 

it could also be applied to KPCA. However, in practice there are cases that all variations of 

the data are same. This is typically caused by a wrong choice of kernel scale [94][95]. 

In practice, a large data set leads to a large 𝐾, and storing 𝐾 may become a 

problem. One way to deal with this is to perform clustering on the dataset, and populate 

the kernel with the means of those clusters. Since even this method may yield a relatively 

large 𝐾, it is common to compute only the top 𝑃 eigenvalues and eigenvectors of 𝐾. 

The Kernel PCA is illustrated graphically in the following example, where some 

well-known kernels are shown. Consider three concentric clouds of points shown in the 

following figure 3.19; we wish to use kernel PCA to identify these groups. 
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Figure 3.19: Input points before kernel PCA. 

The color of the points is not part of the algorithm, but only there to show how the 

data groups together before and after the transformation. 

First, consider the kernel: 

𝑘(𝑥, 𝑦) = (𝑥𝑇𝑦 + 1)2                                                   (3.61) 

Applying this to kernel PCA yields the next figure 3.20: 
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Figure 3.20: Output after kernel PCA with 𝑘(𝑥, 𝑦) = (𝑥𝑇𝑦 + 1)2. The three groups are distinguishable 

using the first component only. 

Now consider a Gaussian kernel: 

𝑘(𝑥, 𝑦) = 𝑒
−‖𝑥−𝑦‖2

2𝜎2                                                    (3.62) 

That is, this kernel is a measure of closeness, equal to 1 when the points coincide 

and equal to 0 at infinity. 
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Figure 3.21: Output after kernel PCA, with a Gaussian kernel. 

Note in particular that the first principal component is enough to distinguish the 

three different groups, which would be impossible using only linear PCA, because linear 

PCA operates only in the given (in this case two-dimensional) space, in which these 

concentric point clouds are not linearly separable. 

3.1.3.2. Spectral unmixing Techniques 

In many studies, hyperspectral analysis techniques are divided into full-pixel and 

mixed-pixel classification techniques [96][97][98], where each pixel vector defines a 

spectral signature or fingerprint that uniquely characterizes the underlying materials at 

each site in a scene. Full-pixel classification techniques assume that each spectral signature 

comprises the response of one single underlying material. Often, this is not a realistic 

assumption, because the spatial resolution of the sensor is not fine enough to separate 

different pure signature classes at a macroscopic level. In consequence, these can jointly 

occupy a single pixel, and the resulting spectral signature will be a composite of the 
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individual pure spectral, often called endmembers in hyperspectral imaging terminology 

[99].  

In this chapter, we explore the use of spectral unmixing for feature extraction prior 

to supervised classification of hyperspectral data using SVM. Moreover, differently from 

most feature extraction techniques available in literature, the features obtained using 

linear spectral unmixing are potentially easier to interpret due to their physical meaning 

[100]. 

Hyperspectral data are often used to determine what materials are present in a 

scene. In our case, materials of interest could include some tissues as tumor, healthy, 

necrosis in addition to blood, veins and surgical elements, etc. In fact, each pixel of a 

hyperspectral image could be compared to a material database to determine the type of 

material making up the pixel. 

Spectral unmixing aims at the decomposition of the mixed pixel spectrum into its 

constituent spectra, also called endmembers [101]. Each pixel in the hyperspectral image 

can be considered as being composed of linear combination of ground spectra or 

endmembers with each endmember contributing to the pixel spectra. Thus the spectral 

signature at each pixel in a L-dimensional hyperspectral image, 𝑌 ∈ 𝑅𝐿, when p is the 

number of endmembers, can be expressed as, 

𝑦 = 𝑥 + 𝑛                                                             (3.63) 

where,  y  - L-dimensional pixel vector. 

x and n - L-dimensional signal and noise vectors respectively. 

Since the signal vectors lie in an unknown p-dimensional subspace, each signal 

vector is given as, 

𝑥 = 𝑀𝑠 = ∑ 𝑚𝑖𝑠𝑖

𝑝

𝑖=1

                                                   (3.64) 

where, 𝑀 is a L×p matrix, whose columns are L×1 endmembers. 

𝑠 is the abundance fraction of each endmember in a pixel. 
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In essence, spectral unmixing can be defined as the process of determination of 

the number of image endmembers and their pure signatures and the amount in which 

they appear in the given mixes pixel [58]. Namely, Spectral unmixing consists of estimating 

the fraction of the pixel area covered by each material present in the scene [4]. 

Pixel unmixing algorithms can be separate into two main areas: Endmember 

Determination and Abundance Estimation algorithms as shown in figure 3.22. 

 

Figure 3.22: Spectral unmixing Diagram Process. 

Before describing the algorithms considered, it should emphasize the context in 

which these algorithms will be applied. In this regard, figure 3.23 [103] describes the 

classic method for analyzing hyperspectral images using linear mixed model. As shown in 

figure 3.23 [103], the methodology starts from a hyperspectral image and performs the 

following steps: 

1. Dimensionality reduction: This step is optionally used by certain algorithms 

to reduce the computational load of successive steps by removing noise 

and redundant information in the image. 

2. Endmembers extraction: In this step the pure spectral signatures that 

combine to result in mixed pixel in the image are identified. 

3. Abundances estimation: The abundance of pure spectral signatures or 

endmembers is estimated at each pixel of the image. 
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Figure 3.23: classic method for analyzing hyperspectral images using linear mixed model. 

The spectral unmixing chain can be divided in three steps: number of endmember 

estimation, endmember extraction and abundances estimation. 

3.1.3.2.1. Number of endmember estimation 

First, the number of endmembers 𝑝 is estimated directly from the original n-

dimensional hyperspectral image. For this purpose, two standard techniques widely used 

in the literature such as the HySime method [59] and the VD concept [104] are 

recommended. These techniques are described in the next section 3.1.4 corresponding to 

feature selection. 

In our case, the estimation of number of endmembers is not necessary because 

this number is known to us a priori and associated with the number of classes.  
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3.1.3.2.2. Endmember extraction algorithms 

Once the number of endmembers 𝑝 has been estimated, an automatic algorithm 

to extract a set of endmembers from the original hyperspectral image is applied [105]. 

There are many algorithms to unmix hyperspectral data each with their own strengths and 

weaknesses. Many algorithms assume that pure pixels (pixels which contain only one 

material) are present in a scene.  

Endmember extraction algorithms can be divided into two groups: first those 

based only in image spectral information and secondly those that uses both spectral and 

spatial information. In this dissertation we have considered only the algorithms in the first 

group, where the used endmember extraction techniques have been: OSP [106], VCA [107] 

and N-FINDR [108] as representative automatic algorithms of the trend based on use only 

spectral information. Some examples of algorithms belonging to the second group are: 

Automatic Morphological Endmember Extraction (AMEE) [109], Spatial Spectral 

Endmember Extraction (SSEE) [110] y Spatial Pre-Processing (SPP) [111] as representative 

automatic algorithms of the trend based using both spatial and spectral information. 

The endmember extraction algorithms based on spectral information depends on 

the ability to discriminate the pixels based solely on its spectral features. The following 

sections describe, the OSP, N-FINDR and VCA algorithms as three of the most 

representative techniques within this category. Other classic techniques such as PPI 

algorithm have been discarded for this study because of its semi-supervised nature, 

making it difficult to obtain consistent results in several automated executions. 

3.1.3.2.2.1. Orthogonal Subspace Projection (OSP) 

The OSP algorithm was initially developed to find spectral signatures using the 

concept of orthogonal projections [112][113]. The algorithm uses an orthogonal projection 

operator that is given by the expression [114]: 

𝑃𝑈
⊥ = 𝐼 − 𝑈(𝑈𝑇𝑈)−1𝑈𝑇                                                 (3.65) 

where 𝑈 is a matrix of spectral signatures, 𝑈𝑇 is the transpose of this matrix, and 𝐼 is the 

identity matrix. The algorithm uses the operator shown in equation (3.65) repetitively until 

finding a set of p orthogonal pixels from an initial pixel. The iterative process carried out by 

this algorithm can be summarized as follows: 
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1. Calculate 𝑡0, the brightest pixel in the hyperspectral imaging, using the 

following expression: 𝑡0 = 𝑎𝑟𝑔{𝑚𝑎𝑥(𝑥,𝑦)𝐹(𝑥, 𝑦)𝑇 ∙ 𝐹(𝑥, 𝑦)}, where 𝐹(𝑥, 𝑦) 

is the pixel in the (𝑥, 𝑦) coordinates of the image. As can be seen, the 

brightest pixel is the one with the greatest value when performing the 

cross product between the vector associated with that pixel and its 

transposed 𝐹(𝑥, 𝑦)𝑇, or what is the same, the first norm of the pixel. 

2. Applying an orthogonal projection operator denoted as 𝑃𝑈
⊥, based on the 

expression (3.65), with 𝑈 = 𝑡0. This operator is applied to all pixels in the 

hyperspectral imaging. 

3. Then the algorithm finds a new endmember called 𝑡0 with the highest 

value in the complementary space 〈𝑡0〉⊥, orthogonal to 𝑡0, as follows: 

𝑡1 = 𝑎𝑟𝑔{𝑚𝑎𝑥(𝑥,𝑦)[𝑃𝑈
⊥ ∙ 𝐹(𝑥, 𝑦)]𝑇 ∙ [𝑃𝑈

⊥ ∙ 𝐹(𝑥, 𝑦)]}. In other words, the 

algorithm searches for the pixel with the highest orthogonality with respect 

to 𝑡0. 

4. The next step is to modify the 𝑈 matrix by adding the new endmember 

found, i.e., 𝑈 = [𝑡0𝑡1]. 

5. Next, the algorithm finds a new endmember called 𝑡2 with the highest 

value in the complementary space 〈𝑡0, 𝑡1〉⊥, orthogonal to 𝑡0 and 𝑡1, as 

follows: 𝑡2 = 𝑎𝑟𝑔{𝑚𝑎𝑥(𝑥,𝑦)[𝑃𝑈
⊥ ∙ 𝐹(𝑥, 𝑦)]𝑇 ∙ [𝑃𝑈

⊥ ∙ 𝐹(𝑥, 𝑦)]}. It should be 

noted that, unlike step 3) in which 𝑈 = 𝑡0, at this point the orthogonal 

projector is based on a matrix 𝑈 = [𝑡0𝑡1]. 

6. The process is repeated iteratively until the desired number of 

endmembers is found. 

This algorithm is effective in identifying a set of spectrally differentiated 

endmembers by the orthogonality condition imposed in the search process. As a negative 

feature, the algorithm can be sensitive to outliers and anomalous pixels [103][106]. 

3.1.3.2.2.2. Vertex Component Analysis (VCA) 

This algorithm also makes use of the concept of orthogonal projections. However, 

unlike the previously described algorithm OSP, VCA algorithm exploits the fact that the 

endmember are the vertices of a simplex and that the affine transformation of a simplex is 

also a simplex. As a result, VCA models the data using a positive cone whose projection in 

an appropriately chosen hyperplane is another simplex whose vertices are the final 
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endmembers. After projecting the data in the selected hyperplane, the VCA algorithm 

projects all the image pixels in a random direction and uses the pixel with the greatest 

projection as the initial endmember. The others endmembers are sequentially identified 

by projecting iteratively the data in a direction orthogonal to the subspace spanned by the 

endmembers currently selected. The new endmember is then selected as the 

corresponding pixel to the most extreme projection, and the procedure is repeated until p 

endmembers are selected [103][107]. 

3.1.3.2.2.3. N-FINDR 

N-FINDR algorithm [115][116] uses a technique based on identifying endmembers 

as the vertices of the simplex with largest volume that can form on the set of points. N-

FINDR does not work with the whole data hypercube but with a simplification of it with as 

many bands as endmembers are desired to find. For this type of dimensionality reduction 

are often used techniques as explained above, such as Principal Component Analysis (PCA) 

[117], Minimum Noise Fraction (MNF) [117] or Independent Component Analysis (ICA) 

[82]. The only parameter that has this algorithm is the number of endmembers to identify. 

The operation of the algorithm is described in the following steps: 

1. Make a reduction of the image to a number of bands equal to the number 

of endmembers to be extracted, using one of the dimensionality reduction 

algorithms discussed above. 

2. Select a random number of pixels that are labeled as endmembers. This 

initial selection will be refined iteratively. 

3. The third step is to select a pixel of the original image. This pixel will 

successively exchange with each endmembers initially selected. 

4. As the pixel will exchange with the initial endmembers, the volume of the 

hyperpolygon formed with the new point considered is calculated. 

5. If the volume obtained after the exchange is greater than it had before the 

exchange, the new point results in a replacement in the endmembers set 

and the new pixel becomes part of endmembers set. Otherwise, the 

exchange is reversed. 

6. Steps 3-5 are iteratively repeated to check all pixels of the image. Of such 

form that at the end of process we have a set of endmembers such that its 

volume is the largest possible. 
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It should be noted that in the second step of the algorithm, an initial set of 

endmembers is randomly established. If the initial estimate is suitable, the algorithm will 

reach the optimal solution. On the contrary, an erroneous initial estimate may result in 

failure to reach the optimal solution but we stay in a local maximum of the growth 

function of the hyperpolygon [116]. The algorithm assumes that an increase in the volume 

of the defined hyperpolygon by incorporating a new pixel in the endmembers set carries a 

higher quality thereof. However, figure 3.24 shows that the fact of using a polygon of 

greater volume does not ensure a better description of the set of points [103]. A more 

reliable parameter is the increase in the number of pixels that can be described using the 

new set of endmembers. 

 

Figure 3.24: N-FINDR algorithm operation. 

To conclude the description of this method, it is important that the endmembers 

identified by the algorithm N-FINDR correspond to pixels belonging to the original dataset. 

Using this algorithm, it is not possible to generate artificial endmembers because the 

replacements are always performed using existing points in the set of available samples. 

Thus, it may happen that the selected endmembers are not the most pure. Furthermore, 

the method is sensitive to outliers [103][108]. 
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3.1.3.2.3. Abundance estimation algorithms 

Finally, linear spectral unmixing (either unconstrained or constrained) can be used 

to estimate the abundance of each endmember in each pixel of the scene, providing a set 

of p abundance maps [100]. 

3.1.3.2.3.1. Linear Spectral Unmixing 

In hyperspectral images, spectral mixing is the result of mixing of two or more 

spectrally distinct substances. Spectral unmixing is the process by which we can identify 

the constituents of the mixed pixel and their proportions. Generally, two models of mixing 

are assumed: linear and nonlinear [58]. As opposed to nonlinear unmixing, which generally 

require detailed information about physical properties that may not be always available, 

linear spectral unmixing consists of identifying the pure spectral components or 

endmembers. When the pure spectral signatures are identified, the proportion of each 

material in each pixel can be estimated. Abundances provide additional information about 

the composition of each pixel; if this information is used in a correct way, it may 

complement the results provided by traditional “hard” classification techniques. 

Moreover, non-linear mixing results from multiple scattering often due to non-flat surface 

[100]. 

The simplest and the most commonly assumed model for a mixed spectrum is a 

linear model [96]. A single pixel can be portrayed as a checkerboard mixture, assuming 

that there is no multiple scattering between components, then the spectral response of 

the pixel is a linear combination of the fractional abundances (area covered by each 

endmember in the pixel) of the individual substances [101], hence the term Linear Mixture 

Model (LMM). If there are 𝑝 endmembers, then the linear mixture model can be expressed 

as 

𝑥 = ∑ 𝑚𝑖𝑠𝑖𝑗 + 𝑤𝑗 = 𝑀𝑠 + 𝑤

𝑝

𝑖=1

                                           (3.66) 

𝑗 = 1,2, … … , 𝑁 

where,  𝑥 is the 𝐿 × 1 received pixel spectra. 

𝑀 is a 𝐿 × 𝑝 matrix, whose columns are L×1 endmembers. 
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𝑠 is the abundance fraction of each endmember in a pixel. 

𝑤 is the 𝐿 × 1 additive noise. 

𝑁 is the number of pixels in the image. 

In linear mixing models each pixel is modeled as a linear sum of all the radiated 

energy curves of materials making up the pixel. Therefore, each material contributes to 

the sensor's observation in a linear fashion. 

Additionally, a conservation of energy constraint is often observed thereby forcing 

the weights of the linear mixture to sum to one in addition to being positive. Namely, to be 

physically meaningful, the linear mixture model can be subjected to following two 

constraints; the first is the Abundance Non-negativity Constraint (ANC) [118],  

𝑠𝑖𝑗 ≥ 0                                                               (3.67) 

and the second is the full additivity Abundance Sum-to-one Constraint (ASC) [118], 

∑ 𝑠𝑖𝑗 = 1

𝑝

𝑖=1

                                                           (3.68) 

3.1.3.2.4 Abundance Maps 

Abundance estimation is the problem of estimating the set of corresponding 

fractions that indicate the proportion of each endmember present in the pixel of a 

hyperspectral image [119][120]. 

Once the fundamental materials of a scene are determined, it is often useful to 

construct an abundance map of each material which displays the fractional amount of 

material present at each pixel. 

3.1.4. Feature selection 

Figure 3.25: Stages of hyperpectral data processing chain. 

The fact of choosing a set of features whose dimensionality is the most appropriate 

and reasonable is also important in reducing the high dimensionality of the data. In this 
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regard, feature selection approaches try to find a subset of the original variables 

(features). Namely, given a set of training patterns, feature selection aims to choose from 

the set of initial spectral bands of a hyperspectral image, those that allow obtaining more 

information in order to make a more efficient classification. Because in some cases, data 

analysis such as classification can be done in the reduced space more accurately than in 

the original space [5]. 

In machine learning, feature selection is the process of selecting a subset of 

relevant features for use in model construction and these techniques are used for three 

reasons: 

 Simplification of models to make them easier to interpret by users. [121] 

 Shorter training times. 

 Enhanced generalization by reducing overfitting [122] (formally, reduction 

of variance [121]). 

The central premise when using a feature selection technique is that the data 

contains many features that are either redundant or irrelevant, and can thus be removed 

without incurring much loss of information [122]. Redundant or irrelevant features are 

two distinct notions, since one relevant feature may be redundant in the presence of 

another relevant feature with which it is strongly correlated [123]. 

Feature extraction creates new features from functions of the original features, 

whereas feature selection returns a subset of the features. Feature selection techniques 

are often used in domains where there are many features and comparatively few samples 

(or data points). 

A feature selection algorithm can be seen as the combination of a search technique 

for proposing new feature subsets, along with an evaluation measure which scores the 

different feature subsets. The simplest algorithm is to test each possible subset of features 

finding the one which minimizes the error rate. This is an exhaustive search of the space 

and is often expensive from a computational point of view. 

This way, the features selection step allows an efficient and selective process for 

choosing the best subset based on the large data, namely this block provides the best 

combination of bands and/or features for a given problem. 
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However, to find the best combination of bands and/or features for a given 

problem fast algorithms are needed. The combination of these features is complex and an 

optimal solution through a single data transformation cannot be guaranteed. 

To address the problem of choosing this subset d of characteristics from an initial 

set of measures D, with d < D, two techniques are used in this project: HySime and Virtual 

Dimensionality. 

3.1.4.1. Hyperspectral Subspace Identification by 

Minimum Error 

Hyperspectral Subspace Identification by Minimum Error (HySime) is a denoising 

method which detects the regions of the spectrum that are more affected by noise. Most 

noise reduction methods use the spatial distribution of the image pixels. However, HySime 

does not use this kind of information. This strategy allows solving those cases where only 

information about a few (not necessarily spatially related) numbers of pixels in the image 

is available [124]. 

In [125], it was proposed that an unsupervised approach that can be utilized to 

select the most distinctive and informative bands. It employs a way for selecting the initial 

feature based on the orthogonal distance from the Prototype space (PS) diagonal and 

determines the optimal feature size by employing the HySime algorithm in the PS [58]. In 

order to define the band correlations a criterion based on the tangent angles between the 

band vectors in prototype space is used to select the initial feature from the hyperspectral 

image [59].  

HySime concentrates on reduction or signal subspace identification (SSI). It is a 

minimum mean square error based approach to infer the subspace by minimizing the 

power of the signal projection error and the power of the noise projection. This algorithm 

is eigen-decomposition based and adaptive (i.e., it does not depend on any tuning 

parameters) method which means that it decomposes or reduces the original matrix into 

subsets of eigen vectors. The subspace obtained by HySime algorithm optimally represents 

the original input matrix with minimum error [58][126]. 

HySime starts by estimating the signal and the noise correlation matrices using 

multiple regressions and then it selects the subset of eigenvectors that best represents the 
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signal subspace in the minimum mean square error sense. A subset of eigenvectors of the 

signal correlation matrix is then used to represent the signal subspace of reduced dataset. 

The signal subspace is inferred by minimizing the sum of the projection error power with 

the noise power, which are, respectively, decreasing and increasing functions of the 

subspace dimension. Therefore, if the subspace dimension is overestimated the noise 

power term is dominant, whereas if the subspace dimension is underestimated the 

projection error power term is the dominant. The overall scheme is adaptive in the sense 

that it does not depend on any tuning parameters [59]. 

HySime algorithm comprises of two parts, namely Noise estimation and sub-space 

identification. A multiple regression based approach for noise estimation and input 

covariance matrices from high dimensional data is used. In Sub-space identification the 

noise and input correlation matrices are computed. For more information, HySime 

algorithm has been explained in its corresponding section 3.1.1.1. 

Some experimental study about the denoising effect on the selection capability of 

different band selection techniques for regression tasks applied to real hyperspectral 

datasets have shown good results offered by HySime. However if the number of bands is 

relatively small, the noise reduction using the HySime method does not significantly 

improve the regression error [124]. 

3.1.4.2. Virtual Dimensionality (VD) 

When very high-dimensional data are well structured, data tend to be distributed 

in a low-dimensional space. Virtual Dimensionality (VD) is defined as the minimum number 

of spectrally distinct signal sources that characterize the hyperspectral data from the 

perspective view of target detection and classification rather than the image endmembers 

defined in [127], which are idealized pure signatures. It is different from the commonly 

used intrinsic dimensionality (ID) in the sense that the signal sources are determined by 

the proposed VD based only on their distinct spectral properties. These signal sources may 

include known and unknown image endmembers, natural signatures, anomalies, and 

unknown interfering sources, which cannot be identified by prior knowledge [128]. With 

this definition, a Neyman–Pearson detection theory-based thresholding method is 

developed to determine the VD of hyperspectral imagery, where eigenvalues are used to 

measure signal energies in a detection model. This eigenthresholding based method is 

Harsanyi–Farrand–Chang (HFC) [104].  
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Harsanyi, Farrand, and Chang [129] developed a Neyman-Pearson [130] detection 

theory-based thresholding method (HFC) to determine the number of spectral 

endmembers in hyperspectral data, referred to in [104] as virtual dimensionality (VD). The 

HFC method is based on a detector built on the eigenvalues of the sample correlation and 

covariance matrices [59]. Let the eigenvalues generated by the sample correlation matrix 

and the sample covariance matrix be denoted by correlation eigenvaules and covariance 

eigenvalues, respectively. Since the component dimensionality is equal to the total 

number of eigenvalues, each eigenvalue specifies a component dimension and provides an 

indication of the significance of that particular component in terms of energy or variance. 

If there is no signal source contained in a particular component, the corresponding 

correlation eigenvalue and covariance eigenvalue in this component should reflect only 

the noise energy, in which case, correlation eigenvalue and covariance eigenvalue are 

equal. This fact provides a base from which to formulate the difference between the 

correlation eigenvalue and its corresponding covariance eigenvalue as a binary composite 

hypothesis testing problem. The null hypothesis represents the case of the zero difference, 

while the alternative hypothesis indicates the case that the difference is greater than zero. 

When the Neyman–Pearson test is applied to each pair of correlation eigenvalue and its 

corresponding covariance eigenvalue, the number of times the test fails indicates how 

many signal sources are present in the image. In other words, a failure of the Neyman–

Pearson test in a component indicates a truth of the alternative hypothesis, which implies 

that there is a signal source in this particular component. Using this approach, it is possible 

to estimate the VD with the receiver operating characteristic (ROC) analysis for evaluating 

the effectiveness of the decision [104]. 

HFC method model the correlation eigenvalue and the corresponding covariance 

eigenvalue as random parameters in [131], the sample size must be sufficiently large to 

ensure that the covariance between these two types of eigenvalues is asymptotically zero. 

However, this may not be valid for a small sample size. 

3.2. Classification algorithms 

These sections are based in the classification process, particularly in support vector 

machine classifier. 
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Figure 3.26: Stages of hyperspectral data processing chain.  

 For our set of experiments, we use the library LIBSVM [Online: 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/]. 

The purpose of a supervised classifier is to use a set of observations called training 

set to find a decision function. This function classifies every new object in a pre-defined 

class. This is achieved by a learning process while the training objects are classified. With 

recent technological advances and the large amount of hyperspectral data, there are the 

necessary means for efficient classification to discriminate classes according to the 

spectral resolution for each pixel of an image obtained. However, the large number of 

bands is the feature that produces greatest complexity in analysis techniques [5]. 

In this regard, conventional methods of classification as the machine learning (ML) 

algorithm can be applied to hyperspectral data, but require complex processing due to the 

high dimensionality. The difficulty which gets many methods based on conventional 

statistical approaches is that these employ a specified covariance matrix of each class 

[132]. Another disadvantage of this type of functions which works with covariance 

matrices is that the classifications made with little or limited number of training sets when 

working with high dimensionality data is that result in poor generalization processes 

(classification) [68]. 

3.2.1. Support Vector Machine Classifier (SVM) 

At the beginning of XXI century it was tested the great effectiveness of methods 

based on statistical learning theory to work with both problems: high dimensional and 

sparse training set. The training of the classifiers, both statistical and neural networks 

make use of the principle of Empirical Risk Minimization (ERM), which consists of allowing 

the minimization of the error rate for a given training set. The problem arises when it is 

necessary to extend or to generalize that classification to the rest of objects, then a good 

performance is not achieved, i.e., the resulting error rate is higher than for the training set. 

The Support Vector Machine (SVM) is a pattern recognition supervised method 

recently introduced in the framework of statistical learning theory of Vapnik Vladimir and 
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his work team at AT&T Labs [133]. It combines following ideas: the optimal hyperplanes 

search technique as a solution, the idea of convolution scalar product, the extension of the 

linear functions to nonlinear and the notion of soft margin to allow for errors in the 

training patterns. An important advantage is that it works on the principle of Structural 

Risk Minimization (SRM), it is better than ERM which use others many techniques. SVM 

then enables better generalization rather than a better classification of the training set (at 

the level of errors). 

There are two other reasons that have increased the interest in this newfangled 

classifier. SVM can be reduced to a problem of convex quadratic programming (QP), which 

is easier to solve compared to traditional methods and that seem to have a better 

performance (more robust) with high amounts of data. SVM has been used hitherto in 

many fields, such as: Text categorization, recognition of hand-written texts, image 

classification, bioinformatics, remote sensing, and now also in medical hyperspectral 

imaging, where it seems to have a higher performance than other classical techniques 

used [134].  

3.2.1.1 Theoretical foundations of SVM classifier 

 This classifier belongs to the family of linear classifiers that induce linear separators 

or hyperplanes in spaces of high dimensionality characteristics, though may be easily 

adapted to act as non-linear classifiers by applying a function or not linear kernel in the 

input data. Its main objective is to get one surface (or hyperplane) capable of separating 

the different classes that can be grouped in a data distribution of a N-dimensional space, 

using an optimization process based on obtaining vectors which defining the class 

boundaries. These vectors are usually referred support vectors [135]. If we see the input 

data as two sets of vectors in a N-dimensional space, the SVM algorithm objective is simply 

to build a separating hyperplane in that space, which maximizes the margin of distance to 

the two data sets [136]. 
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Figure 3.27: Functional diagram of the SVM classifier. 

 In figure 3.27 [5] we can see how to calculate this separating hyperplane, 

constructing two parallel hyperplanes, one on each side of the first. The two parallel 

hyperplanes are pushed or widened to as close as possible to the datasets. Intuitively, a 

good separation is achieved when the separating hyperplane is farthest from both classes. 

The greater the separation distance, the lower will generally be the classifier error [135]. In 

mathematical terms, given a training set of the equation: 

𝐷 = {(𝑥𝑖 , 𝑐𝑖)|𝑥𝑖 ∈ 𝑅𝑝, 𝑐𝑖 ∈ {−1,1}}
𝑖=𝑛

𝑛
                                     (3.69) 

Where 𝑐𝑖 is 1 or -1, indicating the class to which 𝑥𝑖  belongs. Each 𝑥𝑖  is a real vector 

p-dimensional, we want to obtain a maximum distance hyperplane to the training sets 

which divide those belonging to 𝑐𝑖 = 1 of those with the value 𝑐𝑖 = −1. Any hyperplane 

can be written as a set of points 𝑥 that satisfies the equation: 

𝑤 ∙ 𝑥 − 𝑏 = 0                                                          (3.70) 

The 𝑤 vector is a normal vector perpendicular to the hyperplane. The 
𝑏

‖𝑤‖
 

parameter determines the displacement of the hyperplane over the origin. We want to 

choose the 𝑤 and the 𝑏 which maximize the distance between the two parallel 

hyperplanes, which are as far apart as possible depending on the data. These hyperplanes 

can be described with the formulas described below: 

𝑤 ∙ 𝑥 − 𝑏 = 1                                                          (3.71) 
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and,  

𝑤 ∙ 𝑥 − 𝑏 = −1                                                        (3.72) 

Note that if the training set is linearly separable, we can choose two hyperplanes 

on the edge of the sets such that there are no points between them and then try to 

maximize their distance. Using geometry, we find that the distance between them is 
2

‖𝑤‖
, 

so it is intended to minimize ‖𝑤‖. As we have to prevent the points are located in the 

boundary area, we add the constraint of equation 

𝑤 ∙ 𝑥𝑖 − 𝑏 ≥ 1                                                            (3.73) 

for 𝑥𝑖  belonging to the first class and the restriction of equation 

𝑤 ∙ 𝑥𝑖 − 𝑏 ≤ −1                                                          (3.74) 

for 𝑥𝑖  in the second class. 

 This can be written as: 

𝑐𝑖(𝑤 ∙ 𝑥𝑖 − 𝑏) ≥ 1, ∀ 1 ≤ 𝑖 ≤ 𝑛                                           (3.75) 

We can compact the expression to reach the optimization problem: Choose 𝑤, 𝑏 to 

minimize ‖𝑤‖: 

Subject to 𝑐𝑖(𝑤 ∙ 𝑥𝑖 − 𝑏) ≥ 1, ∀ 1 ≤ 𝑖 ≤ 𝑛                                    (3.76) 

The optimization problem presented above is difficult because only depends on a 

value |𝑤|. The reason is that it is a non-convex optimization problem, which is known to be 

much more difficult to solve than the convex optimization problem. Fortunately, is 

possible to replace ‖𝑤‖ by 
1

2
‖𝑤‖2 without changing the solution. This is an optimization 

problem of quadratic programming. More clearly, the optimization problem can be 

reformulated as follows: 

Minimize 
1

2
‖𝑤‖2, subject to 𝑐𝑖(𝑤 ∙ 𝑥𝑖 − 𝑏) ≥ 1, ∀ 1 ≤ 𝑖 ≤ 𝑛               (3.77) 

The 1/2 factor is used as a mathematical convenience. Now, the problem 

presented to us can be resolved through programs and standard quadratic programming 

techniques. Writing the classification rule dual in its extended form, this reveals that the 

maximum distance to the hyperplane, and therefore the task of classification, it is only a 
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function of support vectors, ie, data that are on the borderline. The second form of SVM 

can be derived as the following expression: 

𝑚𝑎𝑥 ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗

𝑖,𝑗

𝑐𝑖𝑐𝑗𝑥𝑖
𝑇𝑥𝑗                                          (3.78) 

Subject to 𝛼𝑖 ≥ 0, and ∑ 𝛼𝑖𝑐𝑖 = 0𝑛
𝑖=1                                     (3.79) 

Where α terms are another representation of the weight vector in terms of the 

training set: 

𝑤 = ∑ 𝛼𝑖𝑐𝑖

𝑖

𝑥𝑖                                                          (3.80) 

The original algorithm specifies a linear classifier, however, it may be modified to 

solve nonlinear classification problems, replacing the scalar product by a nonlinear kernel 

function. This allows the algorithm to determine the maximum distance to the hyperplane 

in a transformed features space. The transformation could be a nonlinear transformation 

and the transformed space could be a high dimensional space; this way, even though the 

classifier is a hyperplane in the space of high-dimensional features, it may not be linear in 

the original input space [137]. If the kernel used is Gaussian radial basis function type, the 

characteristics space is a Hilbert space of infinite dimension. The maximum distance is 

regulated, so the infinite dimension will not spoil the results [138]. Some of the commonly 

used kernels in SVM classifiers are listed below: 

 Polynomial (homogeneous): 𝑘(𝑥, 𝑥′) = (𝑥 ∙ 𝑥′)𝑑 

 Polynomial (heterogeneous): 𝑘(𝑥, 𝑥′) = (𝑥 ∙ 𝑥′ + 1)𝑑 

 Radial Basis Function:  𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥′‖2), 𝑓𝑜𝑟 𝛾 > 0  

 Gaussian Radial Basis Function: 𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝 (
‖𝑥−𝑥′‖

2

2𝜎2
) 

 Sigmoide: 𝑘(𝑥, 𝑥′) = 𝑡𝑎𝑛(𝑘𝑥 ∙ 𝑥′ + 𝑐), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 > 0 𝑎𝑛𝑑 𝑐 < 0 

In literature, we can find examples of kernels based on spectral metrics commonly 

used in hyperspectral analysis [139]. As stated at the beginning, processing used by the 

SVM does not require a large number of training patterns, as long as the chosen patterns 

are truly representative [140]. 
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3.2.1.2 Kernel functions available 

 Our classifier has the following kernel functions that allow us to project 

information to a higher dimensional space which increases the computational capacity of 

the classifier: 

 Linear: 

𝑢′ ∗ 𝑣                                                               (3.81) 

 

Figure 3.28: The decision boundary of a Linear SVM. 

 Polynomial: 

(𝛾 ∗ 𝑢′ ∗ 𝑣 + 𝑐𝑜𝑒𝑓0)𝑛                                                (3.82) 

 

Figure 3.29: The decision boundary with a Polynomial kernel. 
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 Radial basis function: 

𝑒(−𝛾∗|𝑢−𝑣|2)                                                         (3.83) 

 

Figure 3.30: The decision boundary with a Radial Basis Function (RBF) kernel. 

 Sigmoid: 

tanh(𝛾 ∗ 𝑢′ ∗ 𝑣 + 𝑐𝑜𝑒𝑓0)                                              (3.84) 

 

Figure 3.31: The decision boundary with a Sigmoid kernel. 

 

 Precomputed kernel: Allows us to introduce our own kernel using a matrix. 

 By default, the classifier works with the radial basis function kernel. 
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3.3. Summary 

To take advantage of the large amount of information offered by hyperspectral 

imaging is necessary to design a robust preprocessing chain. This is because the high 

dimensionality that provides hyperspectral data leads to the presence of noise and 

redundant information which complicate its direct processing. 

To address this issue, preprocessing chains usually consist of two main parts: feature 

extraction and feature selection, in which it is possible to apply many different techniques. 

 Firstly, feature extraction is responsible for extracting the main features of the 

hyperspectral data using transformations theory. Then feature selection is responsible of 

choosing the most important characteristics of this new set of transformed data. The 

result is an alternative representation of the original data set but with lower 

dimensionality and therefore much easier to process. 

 The ultimate goal of this process is to classify the data in the most efficient way 

possible. For this purpose a Support Vector Machine (SVM) will be used. SVM is a very 

robust classifier that provides very good results working with this type of data. 
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Chapter 4 

Proposed process for cancer 

detection using hyperspectral 

images 
In recent years the hyperspectral sensors technology has rapidly advanced 

providing data with very high spectral fidelity compared to multispectral systems. While 

these sensors facilitate the identification and classification, the high dimensionality and 

volume of data increases the bandwidth and computational complexity of the analysis. In 

addition, we have a large amount of redundancy in the hyperspectral data due to the high 

correlation between adjacent bands. In order to make an optimum classification and 

minimize the computational time, it is necessary to find a method to reduce the 

dimensionality of data while keeping the necessary spectral characteristics to classify data. 

The most general processing chain can be described with a small group of 

elaborate block chains. In fact, after obtaining a sample set (forming the hypercube, 

filtering the data, extracting samples from its contour, labeling samples, etc.) the relevant 

information can be extracted from the hyperspectral data. Starting from the sample set, 

three main steps can be described in the processing chain: transformation and feature 

extraction, feature selection and classification. 
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In this dissertation, feature extraction is implemented in two different ways to 

reduce the dimensions of the data: dimensionality reduction and unmixing techniques. 

The feature selection process enables efficient and selective process for choosing the best 

subset, based on the high-dimensional data. The combination of these features is complex, 

so fast and efficient algorithms are needed for brain cancer detection. Finally, the 

classification step produces a high level result ready for user interpretation. In this regard, 

each process contains a classification stage which is performed by the supervised pattern 

recognition algorithm called Support Vector Machine (SVM). 

In the beginning we only had ex vivo data available and in consequence the whole 

processing chain was used with this dataset while we waited to get the in vivo data. In this 

regard, we tested extensively all the processing chains with ex vivo data in order to select 

the processing chains that provided best results. Thus, when we had in vivo data available 

we could test the best combinations of processing with these new data. 

In this chapter, we present all the possible combinations of block chains selected 

for experimentation. The reason for the choice of the processing block chains that we will 

present below is based on previous studies in other research frameworks (some outside 

the medical field) with hyperspectral imaging, in which the techniques presented in this 

dissertation obtained good results. These chains showed good performance in terms of 

accuracy percentage in classification with respect to others. However, there is a world of 

possibilities where is possible to replace, add, or remove a block chain, or research on new 

techniques in order to obtain good results in characterizing the image. Based on previous 

experiments with different types of images or datasets and using different percentages of 

training sets, we have considered the chains that are described below.  



95 
 

4.1. Process #1:  Support vector machine 

classifier used in brain cancer detection 

In this process the original data set is classified using SVM classifiers. In order to 

obtain the best possible results, the parameters of SVM classifier are studied. For this, all 

kernels available for this classifier are used to check the experimental results. The optimal 

parameters were selected using 10-fold cross-validation (selected after testing different 

configurations).  

Furthermore, it is shown the process of obtaining the set of samples from the files 

generated by the camera. Along this processing, the hyperspectral data cubes are formed 

from the files produced by the camera. These cubes have areas with samples of interest 

(healthy, tumor and necrosis tissues) and other areas (table, test plates and glow in the 

samples) which must be removed from the image. The hypercubes are spatially reduced in 

order to process it more easily and quickly, and for extracting samples removing the other 

elements in the image a contour functions are used. In addition, the original data are noisy 

due to the circumstances in which they were taken. For this reason, in this chain is 

intended to apply the types of filtering discussed above, in order to further improve the 

results of the classification. Finally all samples obtained from each hypercube are united in 

a single set of samples whose samples are properly labeled. 

Once obtained the sample set, it proceeds to the classification of the pixels using 

the SVM classification algorithm from the set of samples obtained and the training set. 

This stage produces a classified image with each pixel assigned to a particular class. This 

last step is common in almost all chains, so in the following sections where other 

processing chains are explained, it is possible to obviate the description of this block. 

In conclusion, taking as a decision criterion the best results obtained, this chain is 

intended to get two objectives: to establish the best possible configuration of SVM 

algorithm that will be used throughout this dissertation as well as to establish, depending 

on the type of filter used, the set of samples that will be used in other processing chains, 

while showing the process of obtaining the samples to classify. For this reason, the rest of 

processing chains begin directly from the set of samples obtained. 

The diagram used in this processing chain is shown in figure 4.1: 
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Figure 4.1: General flowchart of the processing chain #1. 
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4.2. Process #2: Dimensionality reduction 

techniques used in brain cancer detection 

The chain chosen in this process is based on dimensionality reduction from the 

original input data as a preliminary step to classification. We have to keep in mind that 

that this block is a process of transformation and/or reducing the dimensionality of the 

original image. The input data are pre-processed where it seeks to obtain the information 

with less correlation and redundancy of the image and grouping it by linear combinations 

in a subset of bands. The dimensionality reduction stage is formed by two sub stages: 

feature extraction and feature selection, in which several combinations of different 

techniques will be tested. 

The process can be summarized in figure 4.2:  
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Figure 4.2: General flowchart of the processing chain #2. 

4.3. Process #3:  Spectral unmixing concepts 

used in brain cancer detection 

In this process spectral unmixing techniques are applied. It is composed by 3 steps: 

estimation of the number of endmembers, extraction of endmembers and abundances 

estimation. In this dissertation the number of endmember is always known a priori 

(number of classes). Regarding to the extraction of endmembers, several techniques will 

be applied and even it will be manually extracted in several different ways. Finally for 

abundances estimation linear spectral unmixing is used. In addition to the combination 

between the different sub stages, we used two dataset as input data: the original samples 
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set and the reduced samples set. The reduced samples set chosen was the one that best 

results offered in the process chain #2. 

The unmixing results is an alternative representation of the data in which each 

pixel is shown as a set of abundances (one per each spectral endmember) representing the 

proportion of each class present in each pixel. These dataset can be interpreted by the 

same data based on the abundances obtained, so this block will not have a classification 

stage. 

The diagram used in this processing chain is shown in figure 4.3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: General flowchart of the processing chain #3. 
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4.4. Process #4:  Mixed techniques Unmixing-

SVM used in brain cancer detection 

This process is very similar to the previous one. The procedure and combination 

tested are the same as in the previous chain, but in this case, the resulting abundances 

from applying unmixing concepts are introduced as input data to the SVM classifier, as it is 

able to correctly interpret these data. Then, the main objective for this processing chain is 

to combine the power and advantages of both techniques: unmixing and classification. 

The diagram used in this processing chain is shown in figure 4.4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: General flowchart of the processing chain #4. 
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4.5. Process #5:  Different methods for 

extracting training set using SVM in brain 

cancer detection 

This process is focused on determining the best way to extract the set of training 

samples for classification. In this regard, three methods were tested in order to improve 

the results obtained: 

 Random training: The training set is randomly selected. 

 Guided training: The training set is chosen following several selection criteria. 

 Mixed random-guided training: Meant to be a commitment to the training 

selection criteria between the two previous selection processes. 

As input data we use the best possible combination of the different techniques 

used so far, i.e., data sets generated by processing chains that best results offered. SVM 

classifier is used at the end of the processing chain in order to measure the accuracy of 

training extraction techniques proposals. 

Moreover, it is intended to use this processing chain to evaluate how training size 

affects the classification results. For this, the size of the training set will be progressively 

increased. 

The diagram used in this processing chain is shown below in figure 4.5: 
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Figure 4.5: General flowchart of the processing chain #5. 

4.6. Process #6:  Patient simulation using SVM 

in brain cancer detection 

This process is based on dividing into two subsets of samples the ex vivo dataset as 

a final step before starting to work with in vivo samples, in order to simulate a real 

surgery. This is because in surgeries it is proposed to work on a database generated from 

generic spectral signatures obtained from different patients, so that a patient is classified 

using as training other patients from the database. Therefore by dividing the ex vivo 

dataset in two subsets is intended to simulate this situation, a subset of samples is 

classified obtaining the training set from the other subset of samples. 

The SVM classifier works extracting the training set from the data set that is to be 

classified. The SVM algorithm must be modified to work classifying a dataset and 

extracting the training of a different dataset. This modification is carried out in this chain 

to perform these tests and it will also be required to work with in vivo samples in which a 

patient is classified and the training is obtained from other patients. 

The subsets are totally independent, i.e., once separated, these are not joined at 

any time and these are divided into different sizes to perform several tests. Once again, in 

this processing chain the data sets from previous processing chains which obtained the 

best results are used. 

The diagram used in this processing chain is shown below in figure 4.6: 
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Figure 4.6: General flowchart of the processing chain #6. 

4.7. Process #7:  Consolidation of processing 

chains tested using in vivo data in brain 

cancer detection 

In this latest proposed process is intended to test the best combinations of 

techniques used in previous processing chains for ex vivo data now using in vivo data, 

checking how the change of data will affect the results.  

For working on this chain we have 5 different patients listed as 4, 5, 7, 8 and 10 

referring to the number of surgical intervention. First, each patient is individually classified 

using the best combinations of techniques obtained in the previous processing chains. 
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After that, we perform various combinations of patients, so we have patients to classify 

and patients to extract the trainings. In this regard several different tests will be 

performed in order to obtain the best procedure when establishing the training set facing 

real situations and always using the best processing chains obtained so far. 

In the case in which we use 2 groups of patients, one for classifying and one for 

training, these two datasets are independent and never are joined. For this reason, it is not 

possible to apply dimensionality reduction, because the transformation depends on the 

data set which is applied, then to apply the same technique of dimensionality reduction to 

two independent datasets generates that the data are transformed to different domains 

and these cannot be compared among them. For applying dimensional reduction 

techniques to two independent data sets would be necessary to transform one of the data 

sets and use the eigenvectors and eigenvalues obtained for transforming the second data 

set, so that both sets of data are transformed to the same domain. 

The diagram used in this processing chain is shown in figure 4.7: 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: General flowchart of the processing chain #7. 
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4.8. Summary 

In this section the different process developed in this dissertation are presented. 

All the processing chains are exhaustively tested using ex vivo samples. 

In summary, based on the results we should make the following decisions: 

1. To decide whether to filter the data using the proposed filters or not to 

filter the data. 

2. To decide whether to process the data using the dimensionality reduction 

techniques, unmixing techniques or a combination of both, or not to 

process the data. 

3. To decide how to be extracted the training sets: randomly, guided or a 

combination of both. 

Once the best options are set, the resulting chains are tested with in vivo samples. 
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Chapter 5 

Experimental results 

In this chapter we conducted an experimental evaluation of the different process 

of hyperspectral data described in the previous sections. Processing chains are evaluated 

according to different criteria, such as accuracy in the classification results obtained or its 

computational time. 

The main difficulty associated with thematic classification techniques is that usually 

there are several possible classes associated with different targets. The goal is ultimately 

to determine the presence or absence of each of the targets considered in each pixel, 

situation that can be expressed as a binary classification problem which can subsequently 

be extended to any number of classes. Several techniques are developed in order to 

evaluate the classification process in hyperspectral images. The general process is 

illustrated by a simple diagram in figure 5.1. As shown in this figure, the training process 

consists in using a subset of this information to train the supervised classifier (training 

patterns) and evaluate performance of the classifier with the rest of patterns labeled (test 

patterns), as it is shown in figure 5.1. 
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Figure 5.1: General process of  a supervised system. 

Although in this project are used guided trainings, the distinction between training 

patterns and test patterns is generally performed randomly, trying to minimize the 

maximum number of training patterns necessary to achieve a satisfactory result of 

classification with the rest of samples, mainly because it is often difficult to obtain training 

patterns in this kind of applications. Due to the high dimensionality of the original data is 

attempted to compensate the need for a large number of samples using (optionally) data 

dimensionality reduction techniques. Moreover, due to the presence of mixed pixels in the 

hyperspectral imaging is attempted to solve the problem by applying (optionally) unmixing 

techniques. Therefore, throughout this chapter is intended to validate the combination of 

a set of techniques of dimensionality reduction and unmixing with a supervised classifier 

SVM. 

As for the sets of hyperspectral imaging selected to perform the experiments, 

these have been fully described in the corresponding section 2.2.3. However, it is worth 

noting that in this dissertation we have used two sets of samples: ex vivo and in vivo. Ex 

vivo samples are extracted from a real surgery after being removed from the patient, 

these are used to test all possible processing chains. When the best possible processing 

chains are established, in vivo samples obtained directly during the surgeries are used to 

check the performance in real situations of selected processing chains. 
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5.1. Results of processing chains 

In this section we describe the results obtained by applying the different process 

presented in the previous chapter on the different hyperspectral imaging considered (ex 

vivo and in vivo), using ground-truth (this term refers to the accuracy of the training set's 

classification for supervised learning techniques) information to statistically validate the 

classification results obtained by applying the analysis methodology and evaluation 

metrics described above. Once the results obtained are presented separately for each 

processing chain, we proceed to discuss the results globally previously to the end of this 

chapter. 

It should be recalled that in all processing chains, except in which spectral unmixing 

techniques are applied, a supervised classifier SVM is used, so that the information that 

varies from one processing chain to another is mainly based on the preprocessing stage 

used. 

The classification is done by assigning a specific class label to each pixel once the 

learning phase of SVM classifier is completed, in which involves a number of training 

patterns selected from labeled pixels in the image from ground-truth information. 

Followed we present a detailed quantitative and comparative study analyzing the 

results obtained by different processing chains of hyperspectral imaging used. 

5.1.1. Results of support vector machine classifier 

used in brain cancer detection 

In this experiment, we use the ex vivo samples data sets to analyze the possible 

kernels available in the SVM and the need to filter the datasets to remove noise from the 

samples prior to classification. For this processing chain we generate ten training sets by 

randomly selecting 3%, 5% and 10% of the ground-truth pixels. 

Then, the three considered types of input samples (original, HySime filter and 

smooth filter) are built for the selected training samples and used to train an SVM classifier 

in which two types of kernels: linear and radial basis function (RBF) are used. The SVM was 

trained with each of these training subsets and then evaluated with the remaining test set. 

Each experiment was repeated ten times, and the mean and standard deviation of the 
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different evaluation metrics values were reported. Kernel parameters were automatically 

optimized and selected by the internal function of SVM. The rest of kernels offered by 

SVM were tested also, but linear and RBF kernels were selected for being the most 

representative. 

The followings tables summarizes the evaluation metrics obtained after applying 

the considered SVM classification system (with linear and radial basis function (RBF) 

kernels) to the set of samples obtained after applying the filters considered in the process 

#1 (see 4.1) to the ex vivo samples. 

To refer to the filters used and the classes present, the nomenclature used is the 

same as that set forth previously in the section 3.1.2. 

AA No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

 

Linear 

88.08% 

(0.0101) 

88.76% 

(0.0079) 

89.35% 

(0.0065) 

94.90% 

(0.0047) 

95.61% 

(0.0034) 

96.65% 

(0.0011) 

96.57% 

(0.0037) 

97.14% 

(0.0030) 

98.27% 

(0.0018) 

 

RBF 

77.27% 

(0.0259) 

83.84% 

(0.0196) 

90.78% 

(0.0119) 

79.31% 

(0.0370) 

87.65% 

(0.0177) 

92.56% 

(0.0187) 

82.28% 

(0.0268) 

89.73% 

(0.0199) 

95.71% 

(0.0127) 

OA No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

 

Linear 

85.76% 

(0.0119) 

86.59% 

(0.0082) 

87.56% 

(0.0089) 

93.53% 

(0.0066) 

94.65% 

(0.0050) 

95.91% 

(0.0014) 

95.41% 

(0.0048) 

96.23% 

(0.0039) 

97.55% 

(0.0028) 

 

RBF 

74.21% 

(0.0272) 

80.90% 

(0.0212) 

88.93% 

(0.0143) 

77.10% 

(0.0405) 

85.15% 

(0.0216) 

91.08% 

(0.0199) 

79.16% 

(0.0263) 

87.75% 

(0.0220) 

94.50% 

(0.0152) 

Table 5.1: Classification accuracies (percentage) and standard deviation obtained after applying the 

considered SVM classification system (with linear and RBF kernels) to three different types of input 

datasets (original, HySime filter and smooth filter) extracted from the ex vivo samples (ten randomly 

chosen training sets). 
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Sensitivity No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 92.02% 

(0.0110) 

92.99% 

(0.0168) 

94.72% 

(0.0086) 

96.92% 

(0.0119) 

97.30% 

(0.0077) 

98.19% 

(0.0045) 

98.75% 

(0.0044) 

98.82% 

(0.0057) 

99.73% 

(0.0015) 

RBF 75.95% 

(0.0585) 

83.17% 

(0.0226) 

90.80% 

(0.0238) 

78.83% 

(0.0651) 

87.21% 

(0.0351) 

92.30% 

(0.0284) 

81.25% 

(0.0404) 

90.25% 

(0.0335) 

96.53% 

(0.0116) 

Specificity No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 98.91% 

(0.0025) 

99.07% 

(0.0021) 

99.18% 

(0.0013) 

99.64% 

(0.0011) 

99.79% 

(0) 

99.85% 

(0) 

99.87% 

(0.0012) 

99.98% 

(0) 

99.98% 

(0) 

RBF 93.78% 

(0.0107) 

96.40% 

(0.0113) 

98.50% 

(0.0029) 

94.43% 

(0.0183) 

97.80% 

(0.0052) 

98.85% 

(0.0045) 

95.96% 

(0.0133) 

98.37% 

(0.0050) 

99.57% 

(0.0022) 

Table 5.2: Sensitivity and specificity for class 1 (percentage) and standard deviation obtained after 

applying the considered SVM classification system (with linear and RBF kernels) to three different types 

of input datasets (original, HySime filter and smooth filter) extracted from the ex vivo samples (ten 

randomly chosen training sets). 

Sensitivity No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 94.22% 

(0.0078) 

94.67% 

(0.0074) 

95.10% 

(0.0035) 

97.97% 

(0.0021) 

98.18% 

(0.0046) 

98.69% 

(0.0011) 

98.86% 

(0.0028) 

99.08% 

(0.0029) 

99.57% 

(0.0013) 

RBF 88.10% 

(0.0124) 

92.51% 

(0.0123) 

96.11% 

(0.0059) 

88.95% 

(0.0219) 

94.58% 

(0.0098) 

97.00% 

(0.0100) 

91.58% 

(0.0185) 

95.56% 

(0.0093) 

98.60% 

(0.0052) 

Specificity No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 77.35% 

(0.0169) 

78.19% 

(0.0134) 

78.95% 

(0.0145) 

88.32% 

(0.0125) 

90.27% 

(0.0139) 

92.08% 

(0.0034) 

91.03% 

(0.0094) 

92.45% 

(0.0094) 

94.59% 

(0.0070) 

RBF 64.66% 

(0.0287) 

71.40% 

(0.0250) 

81.04% 

(0.0214) 

68.37% 

(0.0459) 

76.59% 

(0.0283) 

84.39% 

(0.0292) 

69.45% 

(0.0288) 

79.86% 

(0.0305) 

89.27% 

(0.0255) 

Table 5.3: Sensitivity and specificity for class 2 (percentage) and standard deviation obtained after 

applying the considered SVM classification system (with linear and RBF kernels) to three different types 

of input datasets (original, HySime filter and smooth filter) extracted from the ex vivo samples (ten 

randomly chosen training sets). 
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Sensitivity No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 61.86% 

(0.0257) 

62.60% 

(0.0259) 

62.23% 

(0.0223) 

78.37% 

(0.0216) 

81.74% 

(0.0259) 

84.38% 

(0.0093) 

81.77% 

(0.0188) 

84.47% 

(0.0191) 

87.85% 

(0.0155) 

RBF 49.81% 

(0.0291) 

56.86% 

(0.0304) 

68.79% 

(0.0246) 

53.69% 

(0.0407) 

63.29% 

(0.0287) 

73.78% 

(0.0372) 

54.42% 

(0.0380) 

66.63% 

(0.0371) 

79.61% 

(0.0445) 

Specificity No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 96.64% 

(0.0048) 

96.86% 

(0.0054) 

97.05% 

(0.0026) 

98.82% 

(0.0017) 

98.85% 

(0.0033) 

99.16% 

(0) 

99.31% 

(0.0015) 

99.37% 

(0.0020) 

99.71% 

(0) 

RBF 94.07% 

(0.0113) 

96.29% 

(0.0059) 

98.03% 

(0.0036) 

94.45% 

(0.0102) 

97.17% 

(0.0048) 

98.41% 

(0.0054) 

95.84% 

(0.0082) 

97.67% 

(0.0067) 

99.20% 

(0.0030) 

Table 5.4: Sensitivity and specificity for class 3 (percentage) and standard deviation obtained after 

applying the considered SVM classification system (with linear and RBF kernels) to three different types 

of input datasets (original, HySime filter and smooth filter) extracted from the ex vivo samples (ten 

randomly chosen training sets). 

Kappa No filter Filter 1 Filter 2 

Kernel TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% TR. 3% TR. 5% TR. 10% 

Linear 0.7623 

(0.0185) 

0.7742 

(0.0127) 

0.7858 

(0.0141) 

0.8893 

(0.0109) 

0.9073 

(0.0081) 

0.9273 

(0.0024) 

0.9204 

(0.0080) 

0.9339 

(0.0066) 

0.9558 

(0.0049) 

 

RBF 

0.5829 

(0.0399) 

0.6849 

(0.0321) 

0.8086 

(0.0231) 

0.6250 

(0.0618) 

0.7521 

(0.0336) 

0.8448 

(0.0335) 

0.6587 

(0.0410) 

0.7920 

(0.0355) 

0.9024 

(0.0260) 

Table 5.5: Kappa coefficient and standard deviation obtained after applying the considered SVM 

classification system (with linear and RBF kernels) to three different types of input datasets (original, 

HySime filter and smooth filter) extracted from the ex vivo samples (ten randomly chosen training sets). 

As shown by the tables, the classification results are correlated with the training 

set size (the larger the training set, the better the classification results and the computing 

times). The good generalization ability exhibited by SVM is demonstrated by the 

classification results reported for the original spectral information, even with very limited 

training sets. These results can be improved in this chain by two different ways: kernels 

used and filtering samples. On the one hand, regarding the kernels used we show a 

comparison between linear kernel and RBF kernel, from which we can see that the linear 

kernel performs better than RBF for this particular application. In addition to the better 
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results offered by linear kernel, this is much faster than RBF kernel in terms of computing 

time. On the other hand, about whether or not filter the samples we can discern the need 

for a filtering stage. This is because the samples are very noisy due to the conditions in 

which these were obtained. More specifically, it has been found that the smooth filter 

offers better results than the HySime filter for this type of data. 

As a conclusion of this processing chain, we have that the best kernel which we can 

use is the linear kernel because it offers the best results. Moreover, we see that the data 

are necessary to be filtered in order to further improve the results obtained. Regarding the 

training set, we have chosen the training formed by 10% of total samples because this 

provides optimal performance in a compromise between results obtained, computing time 

and size. For this reason, in the rest of processing chains we have used linear kernel in 

SVM classifier, smooth filter to filtering samples and the training formed by 10% of the 

ground-truth pixels because this combination offers the best results for this chain. In 

future processing chains this combination of parameters may be not mentioned as its use 

is obviated. 

5.1.2. Results of dimensionality reduction 

techniques used in brain cancer detection 

In this experiment we apply the process #2 for dimensionality reduction prior to 

classification. Due to the results obtained by the process #1, in this process chain the 

smooth filter, linear kernel and training formed by 10% of total of samples are used. 

First step in dimensionality reduction stage is the feature selection. In this regard 

we have used two techniques to estimate the optimal number of bands or features 

depending on the dataset used, in this case ex vivo samples filtered by smooth. These 

techniques are: Virtual dimensionality and HySime, which are described in its relevant 

sections. The results obtained regarding the optimal number of features are shown in the 

table 5.6: 

Technique Virtual Dimensionality V.D. mean HySime 

Features 21 18 18 17 17 18.20 87 

Table 5.6: Optimal number of features to ex vivo samples filtered by smooth. 
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As we can see from the table 5.6, five similar results were obtained with virtual 

dimensionality, whose average values are also shown in this table. Conversely, the HySime 

technique provides as results a very remote value with respect to the other five obtained 

by virtual dimensionality. For this reason, HySime value has been discarded and we have 

selected 18 and 21 as optimum values for the number of features for being respectively 

the average value and the largest value obtained by virtual dimensionality. 

In table 5.7 to table 5.12 the results of applying the feature extraction step of 

dimensionality reduction stage are shown. In the tables, the name of the techniques used 

is accompanied by the number of features selected, namely 18 or 21. In addition we can 

see a first column of results called original which refers to the results obtained in the best 

case of the process chain #1, i.e., without additional preprocessing stages. This 

nomenclature will be used in future sections. Moreover, the computing time is also show 

in order to compare and find the quickest way to perform the classification. 

Due to its size, the results obtained have been divided into three different tables in 

which the main values are highlighted. In the first table we show the three techniques 

based on principal components analysis: PCA, MNF and ICA. 

Dimensionality 

reduction 

Original PCA 18 PCA 21 MNF 18 

(ENVI) 

MNF 21 

(ENVI) 

ICA 18 ICA 21 

AA 98.27% 

(0.0018) 

94.16% 

(0.0059) 

94.48% 

(0.0057) 

96.61% 

(0.0017) 

96.87% 

(0.0016) 

94.36% 

(0.0060) 

94.78% 

(0.0054) 

OA 97.55% 

(0.0028) 

92.52% 

(0.0086) 

92.84% 

(0.0108) 

95.84% 

(0.0027) 

96.06% 

(0.0024) 

92.93% 

(0.0093) 

93.34% 

(0.0080) 

Kappa 0.9558 

(0.0049) 

0.8687 

(0.0143) 

0.8744 

(0.0176) 

0.9255 

(0.0046) 

0.9295 

(0.0040) 

0.8755 

(0.0154) 

0.8826 

(0.0134) 

Time (sec) 203.6258 75.3976 76.6932 - - 8.2881 9.5911 

Table 5.7: Results of applying PCA, MNF and ICA techniques for dimensionality reduction prior to 

classification. 
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Sensitivity Original PCA 18 PCA 21 MNF 18 

(ENVI) 

MNF 21 

(ENVI) 

ICA 18 ICA 21 

Class 1 99.73% 

(0.0015) 

98.83 % 

(0.0043) 

99.14% 

(0.0053) 

98.95% 

(0.0040) 

99.14% 

(0.0054) 

99.05% 

(0.0032) 

99.38% 

(0.0016) 

Class 2 99.57% 

(0.0013) 

97.98% 

(0.0033) 

98.15% 

(0.0034) 

98.76% 

(0.0021) 

98.94% 

(0.0023) 

97.97% 

(0.0022) 

98.19% 

(0.0022) 

Class 3 87.85% 

(0.0155) 

70.64% 

(0.0282) 

71.44% 

(0.0385) 

82.45% 

(0.0152) 

82.87% 

(0.0154) 

71.91% 

(0.0313) 

72.79% 

(0.0266) 

Specificity Original PCA 18 PCA 21 MNF 18 

(ENVI) 

MNF 21 

(ENVI) 

ICA 18 ICA 21 

Class 1 99.98% 

(0) 

99.87% 

(0) 

99.91% 

(0) 

99.93% 

(0) 

99.95% 

(0) 

99.92% 

(0) 

99.93% 

(0) 

Class 2 94.59% 

(0.0070) 

85.58% 

(0.0164) 

86.09% 

(0.0220) 

91.73% 

(0.0079) 

92.02% 

(0.0077) 

86.39% 

(0.0178) 

86.99% 

(0.0150) 

Class 3 99.71% 

(0) 

98.66% 

(0.0022) 

98.75% 

(0.0022) 

99.16% 

(0.0016) 

99.27% 

(0.0016) 

98.62% 

(0.0016) 

98.77% 

(0.0015) 

Table 5.8: Results of applying PCA, MNF and ICA techniques for dimensionality reduction prior to 

classification. 

In the second table we show the two techniques based on nearest neighbor: LPP 

and NPE. 

Dimensionality 

reduction 

Original LPP 18 LPP 21 NPE 18 NPE 21 

AA 98.27% 

(0.0018) 

67.26% 

(0.0206) 

71.06% 

(0.0216) 

80.14% 

(0.0265) 

85.12% 

(0.0210) 

OA 97.55% 

(0.0028) 

75.83% 

(0.0201) 

79.24% 

(0.0211) 

76.75% 

(0.0208) 

87.11% 

(0.0159) 

Kappa 0.9558 

(0.0049) 

0.5257 

(0.0374) 

0.5928 

(0.0410) 

0.6080 

(0.0354) 

0.7648 

(0.0300) 

Time (sec) 203.6258 60.3011 62.6412 245.2735 241.4797 

Table 5.9: Results of applying LPP and NPE techniques for dimensionality reduction prior to classification. 
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Sensitivity Original LPP 18 LPP 21 NPE 18 NPE 21 

Class 1 99.73% 

(0.0015) 

94.91% 

(0.0451) 

95.87% 

(0.0208) 

99.59% 

(0.0032) 

99.81% 

(0.0024) 

Class 2 99.57% 

(0.0013) 

76.47% 

(0.0171) 

78.98% 

(0.0171) 

87.31% 

(0.0283) 

90.30% 

(0.0203) 

Class 3 87.85% 

(0.0155) 

59.31% 

(0.0525) 

65.84% 

(0.0396) 

47.13% 

(0.0248) 

66.88% 

(0.0313) 

Specificity Original LPP 18 LPP 21 NPE 18 NPE 21 

Class 1 99.98% 

(0) 

85.38% 

(0.0198) 

87.33% 

(0.0211) 

90.61% 

(0.0248) 

92.97% 

(0.0184) 

Class 2 94.59% 

(0.0070) 

75.56% 

(0.0504) 

81.02% 

(0.0398) 

66.29% 

(0.0240) 

84.77% 

(0.0227) 

Class 3 99.71% 

(0) 

91.62% 

(0.0082) 

92.48% 

(0.0078) 

98.46% 

(0.0049) 

97.42% 

(0.0060) 

Table 5.10: Results of applying LPP and NPE techniques for dimensionality reduction prior to 

classification. 

The techniques shown in the previous tables are linear techniques. In this third 

table 5.11 the results for non-linear technique KPCA using linear and polynomial kernels 

are shown. 

Dimensionality 

reduction 

 

Original 

KPCA 

(linear) 18 

KPCA 

(linear) 21 

KPCA 

(polynomial) 

18 

KPCA 

(polynomial) 

21 

AA 98.27% 

(0.0018) 

94.15% 

(0.0057) 

94.52% 

(0.0058) 

74.06% 

(0.0673) 

76.72% 

(0.0577) 

OA 97.55% 

(0.0028) 

92.51% 

(0.0082) 

92.88% 

(0.0107) 

75.28% 

(0.0991) 

72.25% 

(0.1273) 

Kappa 0.9558 

(0.0049) 

0.8686 

(0.0137) 

0.8750 

(0.0175) 

0.5806 

(0.1385) 

0.5714 

(0.1521) 

Time (sec) 203.6258 1.7454e+004 1.7450e+004 1.9825e+004 2.3759e+004 

Table 5.11: Results of applying KPCA technique for dimensionality reduction prior to classification. 
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Sensitivity 

 

Original 

KPCA 

(linear) 

18 

KPCA 

(linear) 

21 

KPCA 

(polynomial) 

18 

KPCA 

(polynomial) 

21 

Class 1 99.73% 

(0.0015) 

98.83% 

(0.0043) 

99.14% 

(0.0053) 

89.53% (0.1) 98.65% 

(0.0058) 

Class 2 99.57% 

(0.0013) 

97.97% 

(0.0032) 

98.17% 

(0.0032) 

83.51% 

(0.0506) 

88.64% 

(0.0436) 

Class 3 87.85% 

(0.0155) 

70.61% 

(0.0270) 

71.52% 

(0.0381) 

42.53% 

(0.1349) 

37.45% 

(0.1555) 

 

Specificity 

 

Original 

KPCA 

(linear) 

18 

KPCA 

(linear) 

21 

KPCA 

(polynomial) 

18 

KPCA 

(polynomial) 

21 

Class 1 99.98% 

(0) 

99.87% 

(0) 

99.91% 

(0) 

96.60% 

(0.0393) 

99.66% 

(0.0017) 

Class 2 94.59% 

(0.0070) 

85.56% 

(0.0157) 

86.13% 

(0.0216) 

66.89% 

(0.1174) 

63.44% 

(0.1473) 

Class 3 99.71% 

(0) 

98.65% 

(0.0021) 

98.77% 

(0.0021) 

90.69% 

(0.0251) 

92.82% 

(0.0316) 

Table 5.12: Results of applying KPCA technique for dimensionality reduction prior to classification. 

To summarize, the results obtained are reported in the bar graphs of figure 5.2 to 

figure 5.9: 
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Figure 5.2: Average Accuracy for the different dimensionality reduction techniques applied. 

 

Figure 5.3: Overall Accuracy for the different dimensionality reduction techniques applied. 
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Figure 5.4: Computing time for the different dimensionality reduction techniques applied. 

 

Figure 5.5: AA, OA and Kappa for the different dimensionality reduction techniques applied. 
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Figure 5.6: Sensitivity of class 1 for the different dimensionality reduction techniques applied. 

 

Figure 5.7: Specificity of class 1 for the different dimensionality reduction techniques applied. 
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Figure 5.8: Sensitivity for the different dimensionality reduction techniques applied. 

 

Figure 5.9: Sensitivity for the different dimensionality reduction techniques applied. 

As shown in the above tables and graphs, the best results applying dimensionality 

reduction is obtained by MNF. Nevertheless, MNF technique was applied using the ENVI 

software. This is proprietary software and it cannot be included in this dissertation 

because the ULPGC has not purchase a license. 

Therefore, the ICA technique is the best option in terms of dimensionality 

reduction because this offers very competitive results and reduces the computational cost. 
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However, the original information provides the better accuracy results in comparison to 

the rest of the chain but the computational cost increases significantly. 

An alternative way of applying dimensionality reduction is a special version from 

smooth, which is called smooth reduction filter in this dissertation. This version was 

developed by a coworker in the department and allows us to reduce the number of bands 

of the original dataset similar to dimensionality reduction. In this regards, we apply the 

following process chain recommended by smooth reduction filter developer: 

1. Denoising the samples using HySime filter. 

2. Apply smooth reduction filter to reduce to 115 bands. 

3. Implement a dimensionality reduction stage. 

4. Classify the dataset. 

Once the dataset is obtained after applying the smooth reduction filter, the feature 

selection step is applied, obtaining the results shown in the table 5.13: 

Technique Virtual Dimensionality V.D. mean HySime 

Features 22 21 20 20 18 20.20 26 

Table 5.13: Optimal number of features to samples filtered by smooth reduction. 

 In this case, the values obtained from different techniques are similar, so we have 

chosen the average value obtained by virtual dimensionality technique and the value 

obtained by HySime, namely 20 and 26. 

 In the table 5.14 the results obtained of applying smooth reduction filter prior to 

dimensionality reduction stage are shown. By way of comparison, in the firs column of 

results in this table, the results obtained of classifying directly the dataset without 

dimensionality reduction stage are shown. 
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Smooth reduction 

filter 

Smooth reduction 115 PCA 20 PCA 26 ICA 20 ICA 26 

AA 95.39% (0.0033) 92.46% 

(0.0039) 

93.50% 

(0.0036) 

92.54% 

(0.0045) 

93.55% 

(0.0043) 

OA 94.33% (0.0044) 90.74% 

(0.0046) 

92.18% 

(0.0049) 

90.92% 

(0.0043) 

92.34% 

(0.0050) 

Kappa 0.8999 (0.0075) 0.8393 

(0.0074) 

0.8633 

(0.0080) 

0.8422 

(0.0072) 

0.8658 

(0.0083) 

Time (sec) 57.7579 51.7009 51.3960 89.4440 63.0582 

Table 5.14: Results of applying smooth reduction filter prior dimensionality reduction and classification. 

To summarize, the results obtained are reported in the following bar graphs, from 

figure 5.10 to figure 5.12: 

 

Figure 5.10: Average Accuracy for the application of smooth reduction filter prior dimensionality 

reduction stage. 
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Figure 5.11: Overall Accuracy for the application of smooth reduction filter prior dimensionality reduction 

stage. 

 

Figure 5.12: Results obtained for the application of smooth reduction filter prior dimensionality reduction 

stage. 
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 Combination 1: First apply HySime filter and then apply smooth reduction 

filter to reduce to 115 bands (as in the previous case). 

 Combination 2: Directly apply the smooth reduction filter to reduce to 115 

bands. 

 Combination 3: First apply original smooth filter and then apply smooth 

reduction filter to reduce to 115 bands. 

The results obtained for these tests are shown in the followings tables and bar 

graphs: 

Filtering order Combination 1 Combination 2 Combination 3 

AA 95.39% (0.0033) 90.73% (0.0035) 96.96% (0.0020) 

OA 94.33% (0.0044) 89.02% (0.0064) 96.08% (0.0022) 

Kappa 0.8999 (0.0075) 0.8097 (0.0097) 0.9298 (0.0039) 

Time (sec) 57.7579 105.1719 44.7789 

Table 5.15: Results of applying the different filter combinations prior classification. 

 

Figure 5.13: Average Accuracy for the different filter combinations prior classification. 
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Figure 5.14: Overall Accuracy for the different filter combinations prior classification. 

 

Figure 5.15: Results of applying the different filter combinations prior classification. 
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 Process 2: The dataset obtained from process #1 is dimensionally reduced 

using ICA with 21 features. 

 Process 3: The dataset is filtered using original smooth, then smooth 

reduction filter is used to reduce to 21 bands. 

The results obtained for this process are shown in the following tables and bar 

graphs: 

Comparative Process 1 Process 2 Process 3 

AA 94.16% 

(0.0065) 

94.78% 

(0.0054) 

85.93% (0.0022) 

OA 92.49% 

(0.0087) 

93.34% 

(0.0080) 

81.87% (0.0037) 

Kappa 0.8683 (0.0145) 0.8826 (0.0134) 0.6988 (0.0049) 

Time (sec) 10.3263 9.5911 20.7463 

Table 5.16: Results of applying different ways to reduce the number of bands. 

 

Figure 5.16: Average Accuracy for different ways to reduce the number of bands. 
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Figure 5.17: Overall Accuracy for different ways to reduce the number of bands. 

 

Figure 5.18: Comparative for different ways to reduce the number of bands. 
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although in these last bands the useful information is lower. In this regard, a final test is 

done to determine how it affects the elimination of the bands to the accuracy of the 

results. For this purpose, a PCA transformation has been applied to the dataset obtained 

from process #1, removing bands progressively. The results obtained are shown in the 

chart of figure 5.19 to figure 5.23: 

 

Figure 5.19: Changes in average accuracy results for different number of bands. 
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Figure 5.20: Changes in overall accuracy results for different number of bands. 

 

Figure 5.21: Changes in sensitivity results for different number of bands. 
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Figure 5.22: Changes in specificity results for different number of bands. 

 

Figure 5.23: Changes in kappa coefficient results for different number of bands. 



131 
 

In the studies conducted, we can determine that even though all bands have some 

useful information, it is possible to remove large number of bands without suffering great 

losses in terms of the classification results obtained. This data reduction by removing 

bands is very important when dealing with computing time and computational load; 

because this system should work in real time and thanks to the dimensional reduction we 

are very close doing it. For all these reasons, we determine ICA as the best way to reduce 

this dataset, because ICA gives the best results both in accuracy and in computing time. In 

future sections, if it is necessary to apply a dimensionality reduction stage, ICA with 21 

bands has been selected for this task. 

5.1.3. Results of Spectral unmixing concepts used in 

brain cancer detection 

 In this process, unmixing techniques are applied independently. It means that this 

process chain has not classification stage. In this case, to measure the accuracy of success 

in this chain, the results are obtained from to label each pixel with its greatest abundance.  

 Several unmixing chains were tested in which we used the different techniques 

described in its theoretical section 3.1.3.2. The results are shown as “number of 

successes/number of pixels in that class” and its corresponding percentage of success. In 

some cases the endmembers could not be extracted by using a particular technique, so for 

these cases the results have not been shown. The unmixing chains proposed are the 

following: 
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1. Spectral unmixing chain 1: The endmembers are extracted from the 

dataset and then the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA NFINDR VCA 

Class 1 1260/4469 

28.1942% 

647/4469 

14.4775% 

818/4469 

18.3039% 

618/4469 

13.8286% 

Class 2 5667/10881 

52.0816% 

794/10881 

7.2971% 

4531/10881 

41.6414% 

1884/10881 

17.3146% 

Class 3 1045/3230 

32.3529% 

2732/3230 

84.5820% 

1019/3230 

31.5480% 

2434/3230 

75.3560% 

Total success 7972/18580 

42.9064% 

4173/18580 

22.4596% 

6368/18580 

34.2734% 

4936/18580 

26.5662% 

Table 5.17: Endmembers extracted from data set using unmixing techniques. 

2. Spectral unmixing chain 2: The endmembers are extracted from the 

normalized dataset and then the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA NFINDR VCA 

Class 1 1650/4469 

36.9210% 

642/4469 

14.3656% 

818/4469 

18.3039% 

618/4469 

13.8286% 

Class 2 3531/10881 

32.4511% 

706/10881 

6.4884% 

4531/10881 

41.6414% 

1884/10881 

17.3146% 

Class 3 1213/3230 

37.5542% 

2782/3230 

86.1300% 

1019/3230 

31.5480% 

2434/3230 

75.3560% 

Total success 6394/18580 

34.4133% 

4130/18580 

22.2282% 

6368/18580 

34.2734% 

4936/18580 

26.5662% 

Table 5.18: Endmembers extracted from normalized data set using unmixing techniques. 
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3. Spectral unmixing chain 3: Dimensionality reduction is applied to dataset 

using ICA to reduce 21 bands, then the endmembers are extracted from 

the reduced dataset and the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR OSP NFINDR OSP 

Class 1 1117/4469 

24.9944% 

137/4469 

3.0656% 

1159/4469 

25.9342% 

133/4469 

2.9761% 

Class 2 3889/10881 

35.7412% 

22/10881 

0.2022% 

4083/10881 

37.5241% 

22/10881 

0.2022% 

Class 3 2700/3230 

83.5913% 

3224/3230 

99.8142% 

2722/3230 

84.2724% 

3224/3230 

99.8142% 

Total success 7706/18580 

41.4747% 

3383/18580 

18.2078% 

7964/18580 

42.8633% 

3379/18580 

18.1862% 

Table 5.19: Endmembers extracted from dimensionality reduction data set using unmixing techniques. 

4. Spectral unmixing chain 4: The endmembers are extracted from the 

training dataset and then the abundances are estimated. 

In this case, the endmembers could not be extracted by using any of the 

techniques proposed.  
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5. Spectral unmixing chain 5: Dimensionality reduction is applied to training 

dataset using ICA to reduce 21 bands, then the endmembers are extracted 

from the reduced training dataset and the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR NFINDR 

Class 1 1546/4469 

34.5939% 

1762/4469 

39.4272% 

Class 2 3956/10881 

36.3570% 

4203/10881 

38.6270% 

Class 3 2488/3230 

77.0279% 

2415/3230 

74.7678% 

Total success 7990/18580 

43.0032% 

8380/18580 

45.1023% 

Table 5.20: Endmembers extracted from training data set with dimensionality reduction using unmixing 

techniques. 

6. Spectral unmixing chain 6: One endmember is extracted from each class of 

the dataset and then the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

Class 1 992/4469 

22.1974% 

2023/4469 

45.2674% 

4469/4469 

100% 

1781/4469 

39.8523% 

1903/4469 

42.5822% 

4465/4469 

99.9105% 

Class 2 2904/10881 

26.6887% 

5862/10881 

53.8737% 

32/10881 

0.2941% 

643/10881 

5.9094% 

6692/10881 

61.5017% 

47/10881 

0.4319% 

Class 3 777/3230 

24.0557% 

1421/3230 

43.9938% 

4/3230 

0.1238% 

892/3230 

27.6161% 

1464/3230 

45.3251% 

8/3230 

0.2477% 

Total success 4673/18580 

25.1507% 

9306/18580 

50.0861% 

4505/18580 

24.2465% 

3316/18580 

17.8471% 

10059/18580 

54.1389% 

4520/18580 

24.3272% 

Table 5.21: Each endmember extracted from each class using unmixing techniques.  
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7. Spectral unmixing chain 7: Dimensionality reduction is applied to dataset 

using ICA to reduce 21 bands, then one endmember is extracted from each 

class of the dataset and the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

Class 1 1789/4469 

40.0313% 

3408/4469 

76.2587% 

148/4469 

3.3117% 

1720/4469 

38.4874% 

4014/4469 

89.8188% 

141/4469 

3.1551% 

Class 2 7945/10881 

73.0172% 

10254/10881 

94.2377% 

22/10881 

0.2022% 

9239/10881 

84.9095% 

9409/10881 

86.4718% 

22/10881 

0.2022% 

Class 3 1145/3230 

35.4489% 

1835/3230 

56.8111% 

3223/3230 

99.7833% 

951/3230 

29.4427% 

2914/3230 

90.2167% 

3224/3230 

99.8142% 

Total success 10879/18580 

58.5522% 

15497/18580 

83.4069% 

3393/18580 

18.2616% 

11910/18580 

64.1012% 

16337/18580 

87.9279% 

3387/18580 

18.2293% 

Table 5.22: Each endmember extracted from each class with dimensionality reduction using unmixing 

techniques. 

In general, the use of spectral unmixing in this kind of samples doesn’t offer 

competitive results. This is because the data set is very diverse and a whole class cannot 

be represented using only one endmember. In order to try to solve this problem and 

improve the results obtained it is intended to extract the endmembers from an average of 

several pixels because in this way, using multiple pixels to form the endmembers, the 

classes will be better represented. 

In this case, the results are accompanied with its corresponding abundance maps 

of each class, displaying the fractional amount of that class present at each pixel. This 

allows us to visually verify the correct behavior of processes tested. In these maps the 

pixels distribution is as follows: 

 Class 1: It is comprised between the pixels 0 and 223. 

 Class 2: It is comprised between the pixels 224 and 767. 

 Class 3: It is comprised between the pixels 768 and 929. 
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Taking into account that for the above unmixing chains the best results are 

obtained from dimensionality reduction dataset, the processing for these remaining chains 

is always the same: dimensionality reduction is applied to dataset using ICA to reduce 21 

bands, then the endmembers are extracted from the reduced dataset and the abundances 

are estimated. In these cases, they are differentiated by its endmembers extraction 

technique. The chain proposed is the following one: 

8. Spectral unmixing chain 8: 6 endmembers are extracted from each class, 

and then the means of these endmembers are calculated for each class 

resulting in 3 endmembers (one per class). The abundances are estimate 

using these 3 endmembers formed by the means of extracted 

endmembers. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

Class 1 4192/4469 

93.8017% 

1849/4469 

41.3739% 

2881/4469 

64.4663% 

3827/4469 

85.6344% 

1829/4469 

40.9264% 

3730/4469 

83.4639% 

Class 2 7861/10881 

72.2452% 

3948/10881 

36.2834% 

80/10881 

0.7352% 

7634/10881 

70.1590% 

3920/10881 

36.0261% 

108/10881 

0.9926% 

Class 3 1263/3230 

39.1022% 

2879/3230 

89.1331% 

3150/3230 

97.5232% 

1877/3230 

58.1115% 

2882/3230 

89.2260% 

3080/3230 

95.3560% 

Total success 13316/18580 

71.6685% 

8676/18580 

46.6954% 

6111/18580 

32.8902% 

13338/18580 

71.7869% 

8631/18580 

46.4532% 

6918/18580 

37.2336% 

Table 5.23: 6 endmembers extracted from each class and the mean of these endmembers are calculated 

for each class, resulting in 3 endmembers using unmixing techniques. 
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 Abundances map using NFINDR in spectral unmixing chain 8: 

 
Figure 5.24: Abundance map using NFINDR in spectral unmixing chain 8. 

 Abundances map using VCA in spectral unmixing chain 8: 

 

Figure 5.25: Abundance map using VCA in spectral unmixing chain 8.  
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 Abundances map using VCA in spectral unmixing chain 8: 

 

Figure 5.26: Abundance map using VCA in spectral unmixing chain 8. 

9. Spectral unmixing chain 9: 6 endmembers are extracted from each class 

and the abundances are estimate using the 18 endmembers obtained, then 

the estimated abundances for each class are added resulting in 3 

abundances. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

Class 1 4036/4469 

90.3110% 

4253/4469 

95.1667% 

4203/4469 

94.0479% 

1931/4469 

43.2088% 

3500/4469 

78.3173% 

1894/4469 

42.3808% 

Class 2 6871/10881 

63.1468% 

6881/10881 

63.2387% 

2893/10881 

26.5876% 

4999/10881 

45.9425% 

8437/10881 

77.5388% 

2884/10881 

26.5049% 

Class 3 1913/3230 

59.2260% 

3095/3230 

95.8204% 

2709/3230 

83.8700% 

1815/3230 

56.1920% 

2684/3230 

83.0960% 

2817/3230 

87.2136% 

Total success 12820/18580 

68.9989% 

14229/18580 

76.5823% 

9805/18580 

52.7718% 

8745/18580 

47.0667% 

14621/18580 

78.6921% 

7595/18580 

40.8773% 

Table 5.24: 6 endmembers extracted from each class and abundances are added per class resulting in 3 

abundances using unmixing techniques. 
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 Abundances map using NFINDR in spectral unmixing chain 9: 

 

Figure 5.27: Abundance map using NFINDR in spectral unmixing chain 9. 

 Abundances map using VCA in spectral unmixing chain 9: 

 

Figure 5.28: Abundance map using VCA in spectral unmixing chain 9.  
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 Abundances map using OSP in spectral unmixing chain 9: 

 

Figure 5.29: Abundance map using OSP in spectral unmixing chain 9. 

10. Spectral unmixing chain 10: Endmembers extraction is not implemented. 

Instead, each endmember is calculated as the average of all pixels in its 

class and then the abundances estimation is performed. 

Abundance 

estimate 

FLSU LSU 

Datatype Dimensionality 

reduction 

Original dataset Dimensionality 

reduction 

Original 

dataset 

Class 1 4293/4469 

96.0618% 

2237/4469 

50.0559% 

4027/4469 

90.1096% 

2037/4469 

45.5807% 

Class 2 9292/10881 

85.3966% 

4723/10881 

43.4059% 

9375/10881 

86.1594% 

6144/10881 

56.4654% 

Class 3 2956/3230 

91.5170% 

1836/3230 

56.8421% 

2918/3230 

90.3406% 

1618/3230 

50.0929% 

Total 

success 

16541/18580 

89.0258% 

8796/18580 

47.3412% 

16320/18580 

87.8364% 

9799/18580 

52.7395% 

Table 5.25: Each endmember is calculated as the average of all pixels in its class using unmixing 

techniques. 
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 Abundances map using dataset with dimensionality reduction in 

spectral unmixing chain 10: 

 

Figure 5.30: Abundance map using dataset with dimensionality reduction in spectral unmixing chain 10. 

 Abundances map using original dataset in spectral unmixing chain 10: 

 

Figure 5.31: Abundance map using original dataset in spectral unmixing chain 10. 
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In general, this new approach to extract the endmembers based on obtaining these 

as an average of several pixels improves the results obtained, especially in the last 

unmixing chain with dimensionality reduction. This is because endmember extraction 

techniques are generally sensitive to outliers and anomalies. The objective of this 

procedure is to ensure that the pixels are as representative as possible of each class.  

Although the results have improved with the latest tests, the results are still worse 

than in the case of applying only dimensional reduction or in the case of not reducing the 

size of the data in any way and work on the original data. In the next section we will try to 

improve the results using combined techniques of unmixing and classification. 

5.1.4. Results of Mixed techniques Unmixing-SVM 

used in brain cancer detection 

In this section we apply mixed techniques Unmixing-SVM in order to improve the 

results obtained in the last section in which only unmixing techniques were applied. For 

this purpose, the process chains proposed in this section are exactly the same as those 

used in the previous section, except that at the end a classification step is performed by 

the SVM classifier, which has as input data the estimated abundances. Processing chains 

are as follows: 
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1. Unmixing-SVM chain 1: The endmembers are extracted from the dataset 

and then the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA NFINDR VCA 

AA 44.49% 

(0.0055) 

54.86% 

(0.0022) 

52.42% 

(0.0022) 

53.39% 

(0.0023) 

OA 28.60% 

(0.0072) 

47.46% 

(0.0041) 

46.89% 

(0.0106) 

48.65% 

(0.0066) 

Kappa 0.0847 

(0.0065) 

0.2428 

(0.0025) 

0.2114 

(0.0044) 

0.2317 

(0.0038) 

Time (sec) 36.9339 25.3817 15.0297 9.4290 

Table 5.26: Endmembers extracted from data set using mixed unmixing-SVM techniques. 

2. Unmixing-SVM chain 2: The endmembers are extracted from the 

normalized dataset and then the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA NFINDR VCA 

AA 42.83% 

(0.0126) 

54.10% 

(0.0032) 

52.42% 

(0.0022) 

53.39% 

(0.0023) 

OA 24.89% 

(0.0067) 

46.71% 

(0.0027) 

46.89% 

(0.0106) 

48.65% 

(0.0066) 

Kappa 0.0581 

(0.0117) 

0.2365 

(0.0021) 

0.2114 

(0.0044) 

0.2317 

(0.0038) 

Time (sec) 33.8021 25.2906 15.1259 9.5866 

Table 5.27: Endmembers extracted from normalized data set using mixed unmixing-SVM techniques. 
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3. Unmixing-SVM chain 3: Dimensionality reduction is applied to dataset 

using ICA to reduce 21 bands, then the endmembers are extracted from 

the reduced dataset and the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR OSP NFINDR OSP 

AA 54.20% 

(0.0025) 

41.08% 

(0.0031) 

53.85% 

(0.0023) 

41.42% 

(0.0060) 

OA 49.98% 

(0.0051) 

54.47% 

(0.0152) 

49.57% 

(0.0042) 

53.79% 

(0.0197) 

Kappa 0.2282 

(0.0020) 

0.0990 

(0.0049) 

0.2211 

(0.0027) 

0.1057 

(0.0058) 

Time (sec) 23.4082 21.7729 14.6559 13.2206 

Table 5.28: Endmembers extracted from dimensionality reduction data set using mixed unmixing-SVM 

techniques. 

4. Unmixing-SVM chain 4: The endmembers are extracted from the training 

dataset and then the abundances are estimated. 

In this case, the endmembers could not be extracted by using any of the 

techniques proposed. 
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5. Unmixing-SVM chain 5: Dimensionality reduction is applied to training 

dataset using ICA to reduce 21 bands, then the endmembers are extracted 

from the reduced training dataset and the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR NFINDR 

AA 53.52% 

(0.0022) 

54.26% 

(0.0024) 

OA 50.45% 

(0.0033) 

49.98% 

(0.0029) 

Kappa 0.2332 

(0.0021) 

0.2307 

(0.0031) 

Time (sec) 19.5345 11.2028 

Table 5.29: Endmembers extracted from training data set with dimensionality reduction using mixed 

unmixing-SVM techniques. 
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6. Unmixing-SVM chain 6: One endmember is extracted from each class of 

the dataset and then the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

AA 45.25% 

(0.0037) 

47.75% 

(0.0010) 

40.97% 

(0.0231) 

50.54% 

(0.0028) 

55.56% 

(0.0019) 

62.71% 

(0.0034) 

OA 26.98% 

(0.0099) 

50.50% 

(0) 

29.64% 

(0.0823) 

46.73% 

(0.0085) 

50.78% 

(0.0044) 

58.84% 

(0.0056) 

Kappa 0.0821 

(0.0037) 

0.1923 

(0.0013) 

0.0756 

(0.0454) 

0.1981 

(0.0054) 

0.2624 

(0.0026) 

0.3611 

(0.0061) 

Time (sec) 25.7002 20.1356 19.6977 10.6876 8.7667 5.7681 

Table 5.30: Each endmember extracted from each class using mixed unmixing-SVM techniques. 

7. Unmixing-SVM chain 7: Dimensionality reduction is applied to dataset 

using ICA to reduce 21 bands, then one endmember is extracted from each 

class of the dataset and the abundances are estimated. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

AA 52.73% 

(0.0021) 

85.58% 

(0.0016) 

40.54% 

(0.0050) 

52.59% 

(0.0042) 

91.77% 

(0) 

40.63% 

(0.0072) 

OA 51.88% 

(0.0083) 

84.15% 

(0.0028) 

54.02% 

(0.0107) 

55.70% 

(0.0074) 

89.53% 

(0.0019) 

53.59% 

(0.0134) 

Kappa 0.2357 

(0.0051) 

0.7264 

(0.0039) 

0.1022 

(0.0067) 

0.2505 

(0.0052) 

0.8188 

(0.0028) 

0.1074 

(0.0085) 

Time (sec) 20.2335 16.8364 19.6551 11.8099 7.2237 11.1377 

Table 5.31: Each endmember extracted from each class with dimensionality reduction using mixed 

unmixing-SVM techniques. 

As it happened in the previous section, the last chains proposals share the 

following processing: dimensionality reduction is applied to dataset using ICA to reduce 21 
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bands, then the endmembers are extracted from the reduced dataset and the abundances 

are estimated. Because based on previous chains, this processing is working best. Then, 

the different cases are differentiated by its endmembers extraction way. 

8. Unmixing-SVM chain 8: 6 endmembers are extracted from each class, and 

then the means of these endmembers are calculated for each class 

resulting in 3 endmembers (one per class). The abundances are estimate 

using these 3 endmembers formed by the means of extracted 

endmembers. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

AA 74.96% 

(0.0017) 

63.93% 

(0.0021) 

65.84% 

(0.0020) 

76.02% 

(0.0016) 

63.10% 

(0.0023) 

68.81% 

(0.0016) 

OA 72.36% 

(0.0033) 

58.37% 

(0.0068) 

60.78% 

(0.0077) 

71.74% 

(0.0022) 

59.15% 

(0.0049) 

65.14% 

(0.0068) 

Kappa 0.5463 

(0.0038) 

0.3531 

(0.0034) 

0.3822 

(0.0059) 

0.5450 

(0.0020) 

0.3506 

(0.0027) 

0.4418 

(0.0065) 

Time (sec) 32.1258 18.7245 28.9436 23.0316 10.8325 13.1297 

Table 5.32: 6 endmembers extracted from each class and the mean of these endmembers are calculated 

for each class, resulting in 3 endmembers using mixed unmixing-SVM techniques. 
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9. Unmixing-SVM chain 9: 6 endmembers are extracted from each class and 

the abundances are estimate using the 18 endmembers obtained, then the 

estimated abundances for each class are added resulting in 3 abundances. 

Abundance 

estimate 

FLSU LSU 

Endmembers 

extraction 

NFINDR VCA OSP NFINDR VCA OSP 

AA 73.52% 

(0.0011) 

88.23% 

(0) 

72.71% 

(0.0017) 

53.28% 

(0.0036) 

84.23% 

(0.0015) 

64.59% 

(0.0021) 

OA 68.80% 

(0.0044) 

85.66% 

(0.0025) 

66.66% 

(0.0036) 

53.30% 

(0.0062) 

81.28% 

(0.0049) 

63.37% 

(0.0027) 

Kappa 0.5026 

(0.0042) 

0.7546 

(0.0036) 

0.4728 

(0.0026) 

0.2642 

(0.0064) 

0.6843 

(0.0065) 

0.4030 

(0.0031) 

Time (sec) 59.2323 40.2707 48.2130 25.0914 9.1311 13.5913 

Table 5.33: 6 endmembers extracted from each class and abundances are added per class resulting in 3 

abundances using mixed unmixing-SVM techniques. 

10. Unmixing-SVM chain 10: Endmembers extraction is not implemented. 

Instead, each endmember is calculated as the average of all pixels in its 

class and then the abundances estimation is performed. 

Abundance 

estimate 

FLSU LSU 

Datatype Dimensionality 

reduction 

Original 

 

Dimensionality 

reduction 

Original 

 

AA 91.64% (0) 50.09% 

(0.0019) 

91.79% (0) 54.78% 

(0.0016) 

OA 89.41% 

(0.0023) 

47.33% 

(0.0012) 

89.55% 

(0.0020) 

49.88% 

(0.0049) 

Kappa 0.8168 

(0.0034) 

0.1991 (0.0019) 0.8192 (0.0029) 0.2507 (0.0031) 

Time (sec) 13.8637 22.0215 7.1212 10.9168 

Table 5.34: Each endmember is calculated as the average of all pixels in its class using mixed unmixing-

SVM techniques. 
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As it can be seen, we have managed to improve the results obtained thanks to the 

inclusion of a classification step at the end of unmixing chains. However, the results 

remain lower than experimental results in process #1 and #2. In addition, no significant 

improvement was seen in the computing time compared to losses in accuracy. 

5.1.5. Results of using Different methods for 

extracting training set using SVM in brain cancer 

detection 

This section has two different objectives: 

1. To conduct a study on how the classification results change according to 

the training dataset size increases. 

2. To try to improve the classification results using guided and semi-guided 

training. 

To achieve our first objective, a series of classification systems are performed, 

where the percentage of training dataset size is progressively increased. These 

classifications are made using the best cases for process #1, #2 and #4, and these results 

are shown in several graphs. It is known that when the training sets increase, the 

computing time and accuracy classification also increases. However, if training dataset 

continues increasing, there is a tipping point where the accuracy stops, and even if the 

training dataset continue to increase even more there is a turning point where the 

accuracy begins to decrease. This study aims to observe this phenomenon and check if 

there is any optimal size for training dataset. For this purpose the following experiments 

have been made: 
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 Process #1: 

 

Figure 5.32: AA (%) and OA (%) using process #1 for training dataset of different size. 

 

Figure 5.33: Class 1 sensitivity (%) and specificity (%) using process #1 for training dataset of different 

size. 
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Figure 5.34: Class 2 sensitivity (%) and specificity (%) using process #1 for training dataset of different 

size. 

 Process #2: 

 

Figure 5.35: AA (%) and OA (%) using process #2 for training dataset of different size. 
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Figure 5.36 Class 1 sensitivity (%) and specificity (%) using process #2 for training dataset of 

different size. 

 

Figure 5.37: Class 2 sensitivity (%) and specificity (%) using process #2 for training dataset of different 

size. 
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 Process #4: 

 

Figure 5.38: AA (%) and OA (%) using process #4 for training dataset of different size. 

 

Figure 5.39: Class 1 sensitivity (%) and specificity (%) using process #4 for training dataset of different 

size. 
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Figure 5.40: Class 2 sensitivity (%) and specificity (%) using process #4 for training dataset of different 

size. 

In general, we obtain the expected behavior except in cases of figure 5.37 and 

figure 5.40 corresponding to sensitivity and specificity for class 2 in process #2 and #4. In 

these cases, we can see how the specificity for class 2 decreases continuously from the 

beginning reaching very low values. To find out what happens, we proceed to remove 

Class 3 in order to simplify the problem. Repeating these calculations with only 2 classes 

leads to the results shown in the following graphics: 
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 Process #1: 

 

Figure 5.41: AA (%) and OA (%) using process #1 with class 1 and class 2 for training dataset of different 

size. 

 

Figure 5.42: Sensitivity (%) and specificity (%) using process #1 with class 1 and class 2 for training 

dataset of different size. 
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 Process #2: 

 

Figure 5.43: AA (%) and OA (%) using process #2 with class 1 and class 2 for training dataset of different 

size. 

 

Figure 5.44: Sensitivity (%) and specificity (%) using process #2 with class 1 and class 2 for training 

dataset of different size. 
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 Process #4: 

 

Figure 5.45: AA (%) and OA (%) using process #4 with class 1 and class 2 for training dataset of different 

size. 

 

Figure 5.46: Sensitivity (%) and specificity (%) using process #4 with class 1 and class 2 for training 

dataset of different size. 
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As can be seen in figure 5.44, the problem is solved for the case of process #2. 

However in the case of process #4, as shown in figure 5.46, although the situation has 

improved retains the same behavior. 

This set of experiments reveals that the problem came from the disparity in the 

size of classes. This means that Class 2 has many more samples than Class 1 and Class 1 

has many more samples than Class 3. However, this fact was not taken into account when 

extracting training dataset, which were formed by the same number of samples in each 

class, regardless of the total number of samples of each class. This situation indicates the 

importance of the balance between the amounts of samples in each class in the training 

set. To verify this fact we repeated the experiments with two classes but this time using 

the same number of samples (and trainings) in each class. The results obtained are shown 

in the following charts: 

 Process #1: 

 

Figure 5.47: AA (%) and OA (%) using process #1 with class 1 and class 2 of same size for training dataset 

of different size. 
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Figure 5.48: Sensitivity (%) and specificity (%) using process #1 with class 1 and class 2 of same size for 

training dataset of different size. 

 Process #2: 

 

Figure 5.49: AA (%) and OA (%) using process #2 with class 1 and class 2 of same size for training dataset 

of different size. 
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Figure 5.50: Sensitivity (%) and specificity (%) using process #2 with class 1 and class 2 of same size for 

training dataset of different size. 

 Process #4: 

 

Figure 5.51: AA (%) and OA (%) using process #4 with class 1 and class 2 of same size for training dataset 

of different size. 
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Figure 5.52: Sensitivity (%) and specificity (%) using process #4 with class 1 and class 2 of same size for 

training dataset of different size. 

As can be seen in figure 5.52, the problem is solved for the case of process #4. So 

this problem is attributable to the disparity between classes mentioned above. Below the 

map of abundances for the latter case is shown, where we can appreciate graphically the 

correct separation between the two classes: 

 

Figure 5.53: Abundance map using process #4 with 2 classes. 
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Moreover, from the previous graphs we decided that the training formed by 10% 

of the total samples meets the requirements our experiments, since increasing its size 

does not significantly improve performance and the computing time would be increased. 

Otherwise, in order to test how it affects the number of samples of one class in 

relation to select the training, two random trainings are proposed: 

1. Training 1: It is formed by 10% of total samples randomly selected and 

divided equally between the number of classes, so that in this training set 

all classes have the same number of samples regardless of the total 

number of samples that class. 

2. Training 2: It is formed by 10% of samples randomly selected of each class, 

so that in this training set each class have varying numbers of samples 

depending on the total number of samples that class. 

Regarding the second objective of this section, it intends to apply guided trainings 

as an alternative method to random trainings discussed above, in order to improve the 

results obtained. These guided trainings are formed by selecting specific pixels to be 

included in the trainings instead of be formed randomly. The process to form the guided 

trainings consists of get “the best pixels” of each class. The selection criteria of these pixels 

is, in the case of process #1 and #2, to calculate the centroid of each class and to take the 

most similar pixels to the centroid as part of training set for that class, for this the spectral 

angles between different pixels are calculated. On the contrary, the most separate pixels 

from its centroid are considered “the worst pixels”. In the case of process #4, the training 

sets are formed by the pixels that have greater abundance of each class, considered as 

“the best pixels” of each class. Conversely, the pixels with lower abundance of a class are 

considered “the worst pixel” of that class, i.e. the pixels which provide a very small portion 

of this pure material. With the application of these methods it is intended to obtain the 

purest pixels which are expected to be the most representative of each class. To achieve 

this objective, the following methods are proposed to extract the training sets in a guided 

way: 

3. Training 3: It is formed by 10% of “best” total samples divided equally 

between the number of classes, so that in this training set all classes have 



163 
 

the same number of samples regardless of the total number of samples 

that class. 

4. Training 4: It is formed by 10% of “best” samples of each class, so that in 

this training set each class have varying numbers of samples depending on 

the total number of samples that class. 

5. Training 5: It is formed by 10% of “best” samples of each class, then the 

number of samples in each class are equalized by averaging the samples in 

classes with larger number of samples, so that in this training set all classes 

have the same number of samples. 

These random training sets will be used in future sections. 

The results obtained for the main processing chains that best results achieved in 

process #1, #2 and #4 are: 

 Process #1 Process #2 Process #4 

Training 

type 

Training 

1 

Training 

2 

Training 

1 

Training 

2 

Training 

1 

Training 

2 

Average 98.27% 

(0.0018) 

97.27% 

(0.0036) 

94.78% 

(0.0054) 

91.84% 

(0.0062) 

91.79% 

(0) 

88.94% 

(0.0038)  

Overall 97.55% 

(0.0028) 

98.12% 

(0.0017) 

93.34% 

(0.0080) 

94.32% 

(0.0023) 

89.55% 

(0.0020) 

91.89% 

(0.0012) 

Kappa 0.9558 

(0.0049) 

0.9668 

(0.0031) 

0.8826 

(0.0134) 

0.8989 

(0.0043) 

0.8192 

(0.0029) 

0.8555 

(0.0020) 

Table 5.35: Results of applying different ways to extract randomly trainings using the main processing 

chains. 

Process 

#1 

Training 

3 

Training 

4 

Training 

5 

AA 68.61% 66.11% 61.45% 

OA 68.99% 68.96% 61.40% 

Kappa 0.4851 0.4855 0.3824 

Table 5.36: Results obtained using guided training in process #1. 
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Process 

#2 

Training 

3 

Training 

4 

Training 

5 

AA 90.19% 89.28% 86.29% 

OA 88.63% 90.22% 84.06% 

Kappa 0.8019 0.8297 0.7365 

Table 5.37: Results obtained using guided training in process #2. 

Process 

#4 

Training 

3 

Training 

4 

Training 

5 

AA 86.66% 87.73% 88.27% 

OA 79.87% 84.30% 85.03% 

Kappa 0.6765 0.7428 0.7532 

Table 5.38: Results obtained using guided training in process #4. 

As shown in table 5.55, significant results as to opt for one of the two methods are 

not found. 

In the case of table 5.56, table 5.57 and table 5.58 only one classification is 

performed instead of 10, because it cannot be extracted several different training from 

guided mode since the best pixels are selected. Thus the standard deviation is not shown 

in these results. 

As it can be seen, the best results are obtained by the process #2. However, these 

results are worse than those obtained using random training, because these pixels do not 

represent well its class. In order to demonstrate this problem, we present two variants of 

guided training 2: 

6. Training 6: It is formed by 10% of less representative samples of each class. 

7. Training 7: It is formed by 5% of more representative samples of each class 

and 5% of less representative samples of each class. 

The results obtained for this test using process #1 are shown in table 5.59: 
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Process 

#1 

Training 

4 

Training 

6 

Training 

7 

AA 66.11% 88.16% 89.38% 

OA 68.96% 81.57% 93.09% 

Kappa 0.4855 0.7100 0.8755 

Table 5.39: Results obtained using variants of guided training 2 in process #1. 

 As it can be observed, the results obtained using training 6 are better than the 

results obtained using training 4, because the set of samples to classify has more samples 

which are identified by what we call “the worst pixels” that by what we call “the best 

pixels”. However, the best results are obtained by combining “good pixels” with “bad 

pixels”. This occurs because the training set should be as representative as possible of the 

set of samples to be classified, and the best way to get that is to have a variety of sample 

types.   

Finally, for the purpose of try to exploit the success of random trainings with the 

idea of choosing the most representative pixels in a data set, it is intended to combine 

random trainings with guided trainings. For this purpose, it is applied one of the random 

trainings explained above but taking 20% of the samples rather than 10% of the samples. 

Guided trainings are applied to random training sets created previously taking half of its 

samples, so that the final training sets are formed by 10% of the total samples taken of 

different ways. Once again it is tested using trainings 4, 6 and 7. The results are as follows: 

Process 

#1 

Training 1 (20%) Training 2 (20%) 

Training 

4 

Training 

6 

Training 

7 

Training 

4 

Training 

6 

Training 

7 

AA 95.82% 

(0.0056) 

94.25% 

(0.0056) 

97.72% 

(0.0021) 

94.45% 

(0.0063) 

94.65% 

(0.0027) 

96.73% 

(0.0052) 

OA 95.23% 

(0.0081) 

91.09% 

(0.0099) 

97.29% 

(0.0028) 

95.36% 

(0.0070) 

93.18% 

(0.0050) 

97.61% 

(0.0027) 

Kappa 0.9146 

(0.0139) 

0.8469 

(0.0158) 

0.9510 

(0.0048) 

0.9185 

(0.0119) 

0.8840 

(0.0079) 

0.9578 

(0.0049) 

Table 5.40: Results using Random-Guided trainings in process #1. 
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Process 

#2 

Training 1 (20%) Training 2 (20%) 

Training 

4 

Training 

6 

Training 

7 

Training 

4 

Training 

6 

Training 

7 

AA 93.21% 

(0.0026) 

93.35% 

(0.0048) 

92.15% 

(0.0028) 

92.84% 

(0.0088) 

89.34% 

(0.0094) 

90.68% 

(0.0035) 

OA 91.97% 

(0.0071) 

91.82% 

(0.0057) 

91.35% 

(0.0028) 

93.08% 

(0.0090) 

93.18% 

(0.0036) 

92.89% 

(0.0035) 

Kappa 0.8589 

(0.0114) 

0.8566 

(0.0094) 

0.8474 

(0.0046) 

0.8802 

(0.0151) 

0.8772 

(0.0070) 

0.8743 

(0.0059) 

Table 5.41: Results using Random-Guided trainings in process #2. 

Process 

#4 

Training 1 (20%) Training 2 (20%) 

Training 

4 

Training 

6 

Training 

7 

Training 

4 

Training 

6 

Training 

7 

AA 84.48% 

(0.0080) 

85.05% 

(0.0091) 

91.50% 

(0.0042) 

80.73% 

(0.0092) 

84.27% 

(0.0107) 

89.27% 

(0.0085) 

OA 85.41% 

(0.0092) 

79.43% 

(0.0115) 

89.36% 

(0.0043) 

86.45% 

(0.0045) 

83.67% 

(0.0081) 

91.70% 

(0.0043) 

Kappa 0.7376 

(0.0153) 

0.6665 

(0.0078) 

0.8159 

(0.0071) 

0.7489 

(0.0091) 

0.7254 

(0.0136) 

0.8531 

(0.0080) 

Table 5.42: Results using Random-Guided trainings in process #4. 

According to expected, the results have improved significantly. Nevertheless, it still 

provides better results using training sets obtained of purely random way. 

In conclusion of this section, the best possible results are obtained when the set of 

samples to classify is duly represented by the training set. It is achieved when the training 

set is formed by samples as diverse as possible. 

5.1.6. Results of patient simulation using SVM in 

brain cancer detection 

 The classification systems work extracting a set of training samples and then 

classifying the rest of samples. However, in the final system proposed in this dissertation it 



167 
 

is intended to classify one patient using the training formed by the samples of other 

patients previously classified.  

 

                                           (a)                                                                                        (b) 

Figure 5.54: (a) Conventional  classification system and (b) Final classification system proposed. 

In this section is intended to simulate this situation with ex vivo samples, as a prior 

step before to start working in a real situation with in vivo samples. For this reason, it was 

necessary to change the inner workings of SVM, which is ready to work classifying the 

dataset from which the training set was obtained. In order to simulate the situation in 

question, the ex vivo samples dataset was divided into two subsets, one of them to obtain 

the training set and the other to perform the classification. Then, the total samples have 

been divided in order to simulate several patients and these divisions were made as 

follows: 

1. Patient simulation 1: 25% of total samples to obtain the training and the 

remaining 75% to classify. 

2. Patient simulation 2: 50% of total samples to obtain the training and the 

remaining 50% to classify. 

3. Patient simulation 3: 75% of total samples to obtain the training and the 

remaining 25% to classify. 
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The training sets are obtained applying random training 1 to subset for training, 

obtaining training sets with a size equivalent to 10% of samples to classify. The results for 

this experiment are shown below: 

Process #1 Patient simulation 

1 

Patient simulation 

2 

Patient simulation 

3 

AA 95.82% (0.0053) 97.31% (0.0034) 97.78% (0.0014) 

OA 94.65% (0.0077) 96.28% (0.0046) 97.15% (0.0029) 

Kappa 0.9084 (0.0127) 0.9359 (0.0077) 0.9506 (0.0048) 

Table 5.43: Results patient simulation using process #1. 

Process #2 Patient simulation 

1 

Patient simulation 

2 

Patient simulation 

3 

AA 92.96% (0.0054) 94.34% (0.0066) 94.58% (0.0056) 

OA 91.45% (0.0112) 93.45% (0.0061) 93.22% (0.0057) 

Kappa 0.8552 (0.0174) 0.8879 (0.0100) 0.8846 (0.0094) 

Table 5.44: Results patient simulation using process #2. 

Process #4 Patient simulation 

1 

Patient simulation 

2 

Patient simulation 

3 

AA 91.55% (0.0024) 91.62% (0.0016) 91.82% (0.0036) 

OA 89.89% (0.0059) 89.90% (0.0045) 89.74% (0.0062) 

Kappa 0.8296 (0.0086) 0.8298 (0.0066) 0.8279 (0.0095) 

Table 5.45: Results patient simulation using process #4. 

As we can see, the results are similar to the corresponding processing chains 

without applying patient simulation. Evidently, the results improve as the training subset 

increases and the subset of samples to classify decreases. These results are encouraging 

for testing the following processing chain based on the same procedure as for this chain 

but using the set of in vivo samples. 

5.1.7. Results of Consolidation of processing chains 

tested using in vivo data in brain cancer detection 

In this last section it is intended to test the best chains but using in vivo samples. 

We have 3 different classes: healthy, tumor and vein, and five different patients: patient 4, 
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5, 7, 8 and 10 associated with the number of operation that they belong. In addition we 

use two different cameras to take the samples: VNIR and NIR. Along this section we will 

work with only two classes.  

The process starts performing a classification system of each patient separately 

following by the conventional method of classification and finally without any mixing 

between patients. This means that each patient is trained and classified using his or her 

own samples. First we make a short test to check the results to classify tumor and vein 

using process #1. This is because its spectral signatures are very similar and there are fears 

that it may be difficult to differentiate between tumor and vein when classifying. The 

results are shown below: 

Patient 5 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.30% 

(0.0068) 

99.34% 

(0.0067) 

98.00% 

(0.0211) 

96.46% 

(0.0492) 

OA 99.16% 

(0.0042) 

99.40% 

(0.0040) 

96.30% 

(0.1949) 

96.30% 

(0.0302) 

Kappa 0.9615 (0.0188) 0.9782 

(0.0143) 

0.8151 (0.0390) 0.8419 (0.1208) 

Sensitivity 94.03% 

(0.0372) 

97.19% 

(0.0273) 

75.00% 

(0.2635) 

80.50% 

(0.1787) 

Specificity 99.93% 

(0.0022) 

99.86% 

(0.0030) 

100% (0) 99.60% 

(0.0126) 

Table 5.46: Results of vein vs tumor in patient 5 using process #1. 
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Patient 7 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.88% (0) 99.92% (0) 95.20% 

(0.0459) 

95.09% 

(0.0407) 

OA 99.87% (0) 99.92% (0) 95.48% 

(0.0404) 

94.88% 

(0.0502) 

Kappa 0.9973 (0) 0.9983 

(0.0012) 

0.9046 (0.0867) 0.8966 (0.0979) 

Sensitivity 99.74% (0) 99.86% 

(0.0015) 

96.37% 

(0.0479) 

97.40% 

(0.0158) 

Specificity 99.96% (0) 99.96% (0) 94.94% 

(0.0580) 

92.87% 

(0.1002) 

Table 5.47: Results of vein vs tumor in patient 7 using process #1. 

Patient 8 

Process #1 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 99.69% 

(0.0066) 

99.31% 

(0.0037) 

OA 99.51% 

(0.0121) 

99.78% (0) 

Kappa 0.9699 (0.0700) 0.9895 

(0.0034) 

Sensitivity 95.34% 

(0.1051) 

99.47% 

(0.0028) 

Specificity 99.99% (0) 99.83% 

(0.0010) 

Table 5.48: Results of vein vs tumor in patient 8 using process #1. 

The experimental results are very competitive differentiating between tumor and 

vein in the classification step. As it can be seen in table 5.46, 5.47 and 5.48, it has been 
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used only patients 5, 7 and 8, because these are the only patients from which we have 

been able to extract samples from the vein class. Furthermore, it should be noted for 

future research that there are no samples obtained with type NIR camera for patient 8. 

From now on, all the classifications of this section will be conducted with healthy and 

tumor classes. 

Below, patients are classified independently, using the main processing chains 

tested until now. 

Patient 4 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.94% (0) 99.96% (0) 96.94% 

(0.0268) 

96.20% 

(0.0267) 

OA 99.93% (0) 99.97% (0) 96.67% 

(0.0314) 

96.45% 

(0.0238) 

Kappa 0.9986 (0.0018) 0.9993 

(0.0015) 

0.9319 (0.0631) 0.9268 (0.0493) 

Sensitivity 99.87% 

(0.0022) 

100% (0) 98.95% 

(0.0222) 

96.42% 

(0.0415) 

Specificity 99.97% (0) 99.95% 

(0.0011) 

94.26% 

(0.0709) 

97.24% 

(0.0476) 

Table 5.49: Results of healthy vs tumor in patient 4 using process #1. 
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Patient 4 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.89% (0) 99.89% (0) 95.42% 

(0.0293) 

94.10% 

(0.0380) 

OA 99.87% (0) 99.88% (0) 95.67% 

(0.0316) 

94.52% 

(0.0342) 

Kappa 0.9971 (0.0015) 0.9975 

(0.0017) 

0.9101 (0.0642) 0.8865 (0.0711) 

Sensitivity 99.64% 

(0.0019) 

99.78% 

(0.0023) 

96.34% 

(0.0346) 

94.56% 

(0.0573) 

Specificity 100% (0) 99.95% 

(0.0011) 

95.74% 

(0.0739) 

96.08% 

(0.0688) 

Table 5.50: Results of healthy vs tumor in patient 4 using process #4. 

Patient 5 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.83% 

(0.0019) 

99.91% 

(0.0015) 

98.24% 

(0.0117) 

97.73% 

(0.0116) 

OA 99.81% 

(0.0022) 

99.89% 

(0.0019) 

98.24% 

(0.0111) 

97.65% 

(0.0124) 

Kappa 0.9959 (0.0048) 0.9977 

(0.0040) 

0.9646 (0.0224) 0.9529 (0.0247) 

Sensitivity 99.96% 

(0.0014) 

100% (0) 98.60% 

(0.0234) 

99.29% 

(0.0151) 

Specificity 99.56% 

(0.0062) 

99.72% 

(0.0049) 

98.00% 

(0.0211) 

96.09% 

(0.0314) 

Table 5.51: Results of healthy vs tumor in patient 5 using process #1. 
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Patient 5 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.66% 

(0.0031) 

99.73% 

(0.0012) 

97.45% 

(0.0096) 

98.29% 

(0.0061) 

OA 99.64% 

(0.0039) 

99.75% (0) 97.45% 

(0.0095) 

98.24% 

(0.0062) 

Kappa 0.9924 (0.0083) 0.9948 

(0.0018) 

0.9489 (0.0190) 0.9646 (0.0124) 

Sensitivity 99.83% 

(0.0022) 

99.78% 

(0.0023) 

97.82% 

(0.0188) 

99.29% 

(0.0151) 

Specificity 99.35% 

(0.0109) 

99.72% 

(0.0037) 

97.15% 

(0.0197) 

97.20% 

(0.0193) 

Table 5.52: Results of healthy vs tumor in patient 5 using process #4. 

Patient 7 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.27% 

(0.0025) 

99.24% 

(0.0031) 

96.14% 

(0.0394) 

94.87% 

(0.0426) 

OA 99.61% (0) 99.57% 

(0.0015) 

96.49% 

(0.0336) 

95.38% 

(0.0378) 

Kappa 0.9896 

(0.0026) 

0.9892 (0.0038) 0.9274 (0.0704) 0.9047 (0.0785) 

Sensitivity 99.89% 

(0.0024) 

99.95% 

(0.0016) 

95.72% 

(0.0541) 

93.64% 

(0.0555) 

Specificity 99.52% 

(0.0019) 

99.43% 

(0.0025) 

98.25% 

(0.0281) 

98.46% 

(0.0264) 

Table 5.53: Results of healthy vs tumor in patient 7 using process #1. 
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Patient 7 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 84.51% 

(0.0122) 

84.30% 

(0.0082) 

89.02% 

(0.0164) 

89.19% 

(0.0285) 

OA 92.10% 

(0.0061) 

91.21% 

(0.0045) 

90.26% 

(0.0140) 

90.26% 

(0.0243) 

Kappa 0.7671 (0.0198) 0.7578 (0.0136) 0.7968 (0.0301) 0.7979 

(0.0512) 

Sensitivity 99.26% 

(0.0026) 

99.40% 

(0.0031) 

86.91% 

(0.0190) 

87.02% 

(0.0404) 

Specificity 90.58% 

(0.0069) 

89.26% 

(0.0051) 

96.36% 

(0.0014) 

96.22% 

(0.0172) 

Table 5.54: Results of healthy vs tumor in patient 7 using process #4. 

Patient 8 

Process #1 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 99.85% 

(0.0012) 

99.92% (0) 

OA 99.82% 

(0.0017) 

99.91% (0) 

Kappa 0.9957 (0.0040) 0.9979 (0) 

Sensitivity 99.45% 

(0.0056) 

99.77% 

(0.0015) 

Specificity 99.97% (0) 99.97% (0) 

Table 5.55: Results of healthy vs tumor in patient 8 using process #1. 
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Patient 8 

Process #2 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 99.45% 

(0.0058) 

99.52% 

(0.0030) 

OA 99.38% 

(0.0079) 

99.60% 

(0.0020) 

Kappa 0.9853 (0.0187) 0.9907 

(0.0047) 

Sensitivity 98.35% 

(0.0257) 

99.43% 

(0.0038) 

Specificity 99.85% 

(0.0023) 

99.68% 

(0.0028) 

Table 5.56: Results of healthy vs tumor in patient 8 using process #2. 
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Patient 8 

Process #4 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 99.51% 

(0.0021) 

99.10% 

(0.0051) 

OA 99.65% 

(0.0012) 

99.39% 

(0.0031) 

Kappa 0.9916 

(0.0028) 

0.9859 (0.0073) 

Sensitivity 99.63% 

(0.0021) 

99.75% 

(0.0013) 

Specificity 99.66% 

(0.0019) 

99.24% 

(0.0046) 

Table 5.57: Results of healthy vs tumor in patient 8 using process #4. 

Patient 10 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.90% 

(0.0021) 

99.21% 

(0.0087) 

93.77% 

(0.0800) 

97.80% 

(0.0382) 

OA 99.84% 

(0.0034) 

99.64% 

(0.0040) 

93.48% 

(0.0899) 

97.92% 

(0.0354) 

Kappa 0.9950 

(0.0105) 

0.9897 (0.0114) 0.8719 (0.1694) 0.9576 (0.0722) 

Sensitivity 99.22% 

(0.0165) 

100% (0) 92.40% 

(0.1317) 

99.17% 

(0.0264) 

Specificity 100% (0) 99.54% 

(0.0051) 

97.24% 

(0.0476) 

97.33% 

(0.0562) 

Table 5.58: Results of healthy vs tumor in patient 10 using process #1. 
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Patient 10 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 99.98% (0) 99.82% 

(0.0037) 

99.62% 

(0.0122) 

97.80% 

(0.0382) 

OA 99.96% 

(0.0013) 

99.92% 

(0.0017) 

99.57% 

(0.0137) 

97.92% 

(0.0354) 

Kappa 0.9987 

(0.0040) 

0.9977 (0.0048) 0.9913 (0.0277) 0.9576 (0.0722) 

Sensitivity 99.80% 

(0.0063) 

100% (0) 99.09% 

(0.0287) 

99.17% 

(0.0264) 

Specificity 100% (0) 99.90% 

(0.0022) 

100% (0) 97.33% 

(0.0562) 

Table 5.59: Results of healthy vs tumor in patient 10 using process #4. 

As shown before, the results using in vivo samples and classifying each patient 

independently are very accurate. It should be noted that using in vivo samples it has not 

been possible to apply process #2, and therefore, the dimensionality reduction techniques. 

This is because the ICA algorithm that we have available us working only with data in 

which the number of samples exceeds the number of bands. As we have very few in vivo 

samples, this requirement is fulfilled only in the case of Patient 8, in which ICA has been 

applied reducing to 5 bands. Finally it is noteworthy that in this case, applying the 

unmixing techniques does not worsen the results as happened with ex vivo samples. 

Heretofore, all classifications have been made using the same patient to train and 

to classify, since ex vivo samples belong all to a single patient and in vivo samples have 

been classified with each patient independently. From this moment, all tests have been 

conducted training from some patients and classifying different ones. So we have two 

different sets formed by different patients, one set for training and other one for 

classifying. These tests are very important because if we want to classify each new patient 

using the trainings sets of previous patients, we should know if the spectral signatures of 

different classes that we can find in the classification processes are similar between 
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patients and others, since these spectral signatures could depend on patterns such as 

gender, race, age, etc. 

 Moreover, as it was explained in section 4.7, it is not possible to apply 

dimensionality reduction in two independent datasets and compare them, because the 

transformations are different and dependent on the dataset to which it applies. 

The first experiment of this type involves training with a patient and making the 

classification using remaining patients. This means that the training set was obtained from 

a particular patient and the remaining patients were randomly mixed in another set of 

data to be classified. This experiment aims to determine if any of the patients is especially 

good to generate training sets for other patients. The results are shown below: 

 Training is obtained from patient 4 and the rest of patients are classified. 

Patient 4 

Process #1 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 73.00% 

(0.0014) 

72.79% 

(0.0043) 

OA 74.99% (0) 74.85% 

(0.0029) 

Kappa 0.4505 

(0.0025) 

0.4468 (0.0076) 

Sensitivity 61.71% 

(0.0010) 

61.57% 

(0.0031) 

Specificity 82.58% 

(0.0013) 

82.40% 

(0.0037) 

Table 5.60: Results of healthy vs tumor training patient 4 and classifying the rest of patients using 

process #1. 
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Patient 4 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 62.24% 

(0.0014) 

62.10% 

(0.0014) 

76.47% 

(0.0906) 

78.98% 

(0.0710) 

OA 68.11% (0) 68.10% 

(0.0013) 

77.08% 

(0.0922) 

79.77% 

(0.0652) 

Kappa 0.2550 (0.0025) 0.2528 (0.0030) 0.5355 (0.1828) 0.5865 

(0.1390) 

Sensitivity 52.93% (0) 52.94% 

(0.0023) 

75.67% 

(0.0780) 

76.99% 

(0.0807) 

Specificity 74.06% 

(0.0011) 

73.94% (0) 85.47% 

(0.1421) 

88.91% 

(0.0764) 

Table 5.61: Results of healthy vs tumor training patient 4 and classifying the rest of patients using 

process #4. 

 Training is obtained from patient 5 and the rest of patients are classified. 

Patient 5 

Process #1 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 74.08% (0) 71.97% 

(0.0235) 

OA 76.75% (0) 75.44% 

(0.0146) 

Kappa 0.4709 (0) 0.4340 (0.0411) 

Sensitivity 61.81% (0) 60.20% 

(0.0181) 

Specificity 84.40% (0) 82.78% 

(0.0180) 

5.62: Results of healthy vs tumor training patient 5 and classifying the rest of patients using process #1.  
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Patient 5 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 73.97% (0) 73.93% 

(0.0028) 

80.78% 

(0.0048) 

80.80% 

(0.0055) 

OA 76.46% 

(0.0011) 

76.45% 

(0.0037) 

82.09% 

(0.0048) 

82.09% 

(0.0048) 

Kappa 0.4666 (0.0020) 0.4661 (0.0067) 0.6301 

(0.0097) 

0.6303 

(0.0103) 

Sensitivity 61.21% 

(0.0019) 

61.21% 

(0.0064) 

77.57% 

(0.0067) 

77.67% 

(0.0072) 

Specificity 84.45% (0) 84.41% 

(0.0010) 

91.33% 

(0.0211) 

90.94% 

(0.0119) 

Table 5.63: Results of healthy vs tumor training patient 5 and classifying the rest of patients using 

process #4. 
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 Training is obtained from patient 7 and the rest of patients are classified. 

Patient 7 

Process #1 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 65.23% 

(0.0287) 

64.70% 

(0.0217) 

OA 74.97% 

(0.0206) 

74.60% 

(0.0156) 

Kappa 0.3584 

(0.0629) 

0.3473 (0.0474) 

Sensitivity 99.63% 

(0.0049) 

99.97% (0) 

Specificity 71.95% 

(0.0165) 

71.62% 

(0.0126) 

Table 5.64: Results of healthy vs tumor training patient 7 and classifying the rest of patients using 

process #1. 

Patient 7 

Process #4 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 64.80% 

(0.0037) 

62.26% 

(0.0071) 

OA 74.68% 

(0.0027) 

72.85% 

(0.0051) 

Kappa 0.3500 

(0.0082) 

0.2937 (0.0158) 

Sensitivity 100% (0) 100% (0) 

Specificity 71.66% 

(0.0021) 

70.22% 

(0.0039) 

Table 5.65: Results of healthy vs tumor training patient 7 and classifying the rest of patients using 

process #4. 
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 Training is obtained from patient 8 and the rest of patients are classified. 

Patient 8 

Process #1 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 60.83% 

(0.0140) 

62.32% 

(0.0088) 

OA 51.35% 

(0.0142) 

53.00% 

(0.0107) 

Kappa 0.1718 (0.0224) 0.1964 

(0.0148) 

Sensitivity 43.02% 

(0.0081) 

43.93% 

(0.0057) 

Specificity 93.98% 

(0.0478) 

96.03% 

(0.0225) 

Table 5.66: Results of healthy vs tumor training patient 8 and classifying the rest of patients using 

process #1.  
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Patient 8 

Process #4 

VNIR 

Training type Random 

training 1 

Random 

training 2 

AA 63.49% 

(0.0060) 

64.70% 

(0.0060) 

OA 55.88% 

(0.0076) 

57.43% 

(0.0077) 

Kappa 0.2218 (0.0107) 0.2436 

(0.0108) 

Sensitivity 45.29% 

(0.0046) 

46.23% 

(0.0047) 

Specificity 88.87% 

(0.0030) 

89.48% 

(0.0028) 

Table 5.67: Results of healthy vs tumor training patient 8 and classifying the rest of patients using 

process #4. 

 Training is obtained from patient 10 and the rest of patients are classified. 

Patient 10 

Process #1 

VNIR NIR 

Training type All samples Random training 1 Random training 2 

AA 76.32% (0) 58.11% (0.0088) 58.79% (0.0058) 

OA 77.62% (0) 54.71% (0.0194) 56.63% (0.0234) 

Kappa 0.5178 (0) 0.1505 (0.0177) 0.1671 (0.0159) 

Sensitivity 67.02% (0) 81.26% (0.1115) 74.68% (0.1186) 

Specificity 84.07% (0) 49.63% (0.0143) 51.13% (0.0181) 

Table 5.68: Results of healthy vs tumor training patient 10 and classifying the rest of patients using 

process #1. 
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Patient 10 

Process #4 

VNIR NIR 

Training type All samples Random training 1 Random training 2 

AA 77.86% (0) 55.24% (0.0054) 55.14% (0.0049) 

OA 77.62% (0) 50.51% (0.0072) 50.39% (0.0065) 

Kappa 0.5319 (0) 0.0946 (0.0100) 0.0928 (0.0092) 

Sensitivity 65.12% (0) 87.46% (0.0686) 87.71% (0.0853) 

Specificity 86.89% (0) 47.21% (0.0033) 47.15% (0.0031) 

Table 5.69: Results of healthy vs tumor training patient 10 and classifying the rest of patients using 

process #4. 

As it can be seen, the results have significantly worsened after mixing some patient 

with others. However, except for some bad values, in general the results are acceptable 

and we can also find high values. It is noteworthy that the results obtained with the VNIR 

camera are somewhat better than those obtained with the NIR camera. In many case the 

results obtained with the NIR camera have been very poor, obtaining that all samples 

belong to a single class or all healthy or all tumor and for this reason they have not been 

shown. This situation is being repeated in the following results and that is the reason 

because in some cases the results obtained are not shown. Moreover, in the case that the 

training is obtained from patient 10 and the rest of patients are classified using the VNIR 

camera, since the training sets are obtained as the 10% of the sample sets to classify, in 

this case there were not enough samples for covering this number so all samples were 

taken to form the training set. Finally, as in the previous experiments, to apply the 

unmixing techniques did not worsen the results. 

As in none of the cases the results has been exceptionally good, we can conclude 

that we have no patient which is particularly good for generating training sets for other 

patients. 

In the following experiment, only one patient is classified and the training sets are 

obtained from a dataset formed by the remaining patients mixed randomly. This would be 

a possible situation of operating mode of the system in real surgeries. The results are 

shown below: 

 Patient 4 is classified and the training is obtained from the rest of patients. 
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Patient 4 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 85.00% (0.0647) 81.98% (0.0547) 

OA 81.60% (0.0797) 78.97% (0.0672) 

Kappa 0.6477 (0.1430) 0.5821 (0.1156) 

Sensitivity 69.01% (0.1024) 64.43% (0.0716) 

Specificity 99.87% (0.0040) 99.53% (0.0050) 

Table 5.70: Results of healthy vs tumor classifying patient 4 and training from the rest of patients using 

process #1. 

Patient 4 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 98.68% (0.0140) 99.50% (0.0038) 

OA 98.37% (0.0173) 99.44% (0.0033) 

Kappa 0.9662 (0.0354) 0.9883 (0.0069) 

Sensitivity 96.10% (0.0386) 98.85% (0.0080) 

Specificity 100% (0) 99.83% (0.0053) 

Table 5.71: Results of healthy vs tumor classifying patient 4 and training from the rest of patients using 

process #4. 

 Patient 5 is classified and the training is obtained from the rest of patients. 

Patient 5 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 99.10% (0.0167) 96.83% (0.0781) 

OA 99.31% (0.0128) 97.55% (0.0596) 

Kappa 0.9853 (0.0276) 0.9437 (0.1400) 

Sensitivity 98.94% (0.0193) 96.91% (0.0734) 

Specificity 100% (0) 99.81% (0.0031) 

Table 5.72: Results of healthy vs tumor classifying patient 5 and training from the rest of patients using 

process #1. 
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Patient 5 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 99.51% (0.0033) 99.37% (0.0027) 

OA 99.46% (0.0041) 99.46% (0.0025) 

Kappa 0.9886 (0.0087) 0.9886 (0.0054) 

Sensitivity 99.84% (0.0020) 99.37% (0.0042) 

Specificity 98.87% (0.0116) 99.62% (0.0079) 

Table 5.73: Results of healthy vs tumor classifying patient 5 and training from the rest of patients using 

process #4. 

 Patient 7 is classified and the training is obtained from the rest of patients. 

Patient 7 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 47.90% (0.0465) 36.66% (0.1066) 

OA 33.55% (0.0212) 27.82% (0.0547) 

Kappa -0.0274 (0.0578) -0.1810 (0.1484) 

Sensitivity 26.61% (0.0226) 20.10% (0.0640) 

Specificity 69.85% (0.1245) 53.39% (0.1399) 

Table 5.74: Results of healthy vs tumor classifying patient 7 and training from the rest of patients using 

process #1. 

Patient 7 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 32.70% (0.0417) 31.99% (0.0660) 

OA 24.26% (0.0267) 25.12% (0.0376) 

Kappa -0.2247 (0.0568) -0.2409 (0.0942) 

Sensitivity 18.63% (0.0239) 17.72% (0.0412) 

Specificity 42.85% (0.0520) 45.84% (0.0645) 

Table 5.75: Results of healthy vs tumor classifying patient 7 and training from the rest of patients using 

process #4. 



187 
 

 Patient 8 is classified and the training is obtained from the rest of patients. 

Patient 8 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 64.02% (0.0122) 60.57% (0.0366) 

OA 77.40% (0.0075) 75.25% (0.0230) 

Kappa 0.3480 (0.0272) 0.2669 (0.0886) 

Sensitivity 99.84% (0.0036) 100% (0) 

Specificity 75.24% (0.0063) 73.53% (0.0177) 

Table 5.76: Results of healthy vs tumor classifying patient 8 and training from the rest of patients using 

process #1. 

Patient 8 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 62.35% (0.0059) 57.07% (0.0258) 

OA 76.36% (0.0037) 73.05% (0.0162) 

Kappa 0.3103 (0.0136) 0.1832 (0.0633) 

Sensitivity 100% (0) 100% (0) 

Specificity 74.38% (0.0030) 71.81% (0.0123) 

Table 5.77: Results of healthy vs tumor classifying patient 8 and training from the rest of patients using 

process #4. 
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 Patient 10 is classified and the training is obtained from the rest of 

patients. 

Patient 10 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 80.42% (0.1705) 85.51% (0.1852) 

OA 69.68% (0.2641) 77.56% (0.2867) 

Kappa 0.5055 (0.3739) 0.6499 (0.4193) 

Sensitivity 55.33% (0.2944) 69.37% (0.3416) 

Specificity 100% (0) 100% (0) 

Table 5.78: Results of healthy vs tumor classifying patient 10 and training from the rest of patients using 

process #1. 

Patient 10 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 97.21% (0.0638) 82.14% (0.2525) 

OA 98.21% (0.0310) 91.94% (0.1140) 

Kappa 0.9454 (0.1000) 0.6912 (0.4367) 

Sensitivity 97.15% (0.0594) 100% (0) 

Specificity 98.79% (0.0338) 91.83% (0.1219) 

Table 5.79: Results of healthy vs tumor classifying patient 10 and training from the rest of patients using 

process #4. 

 The results obtained are quite diverse: for example the results for classifying 

patient 7 are very inaccurate, but the results for classifying patient 5 are highly accurate. 

Moreover, we can see that is difficult to obtain results from the NIR camera. Furthermore, 

in this experiment applying unmixing techniques not only did not worsen the results, but 

these are remarkably improved in some cases. 

 With the aim of trying to improve the results, the following experiments are 

proposed, in which a single patient is classified and the training set is obtained by mixing 

10% of the samples from each of the remaining patients, in order to make the training set 

as diverse as possible. The results are shown below: 
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 Patient 4 is classified and the training is obtained from the rest of de 

patients equally. 

Patient 4 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 78.53% (0.0631) 82.49% (0.0400) 

OA 73.63% (0.0775) 78.52% (0.0489) 

Kappa 0.5102 (0.1312) 0.5907 (0.0848) 

Sensitivity 60.22% (0.0780) 64.64% (0.0528) 

Specificity 99.96% (0.0014) 99.81% (0.0061) 

Table 5.80: Results of healthy vs tumor classifying patient 4 and training from the rest of patients equally 

using process #1. 

Patient 4 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 75.05% (0.1349) 84.63% (0.1085) 

OA 69.34% (0.1657) 81.11% (0.1333) 

Kappa 0.4528 (0.2635) 0.6468 (0.2269) 

Sensitivity 58.68% (0.1411) 70.04% (0.1412) 

Specificity 100% (0) 100% (0) 

Table 5.81: Results of healthy vs tumor classifying patient 4 and training from the rest of patients equally 

using process #4. 
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 Patient 5 is classified and the training is obtained from the rest of de 

patients equally. 

Patient 5 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 99.57% (0.0057) 99.63% (0.0045) 

OA 99.53% (0.0072) 99.71% (0.0034) 

Kappa 0.9902 (0.0150) 0.9938 (0.0073) 

Sensitivity 99.84% (0.0020) 99.57% (0.0057) 

Specificity 99.08% (0.0185) 99.94% (0.0020) 

Table 5.82: Results of healthy vs tumor classifying patient 5 and training from the rest of patients equally 

using process #1. 

Patient 5 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 99.73% (0.0019) 99.64% (0.0011) 

OA 99.73% (0.0018) 99.68% (0.0012) 

Kappa 0.9943 (0.0038) 0.9933 (0.0025) 

Sensitivity 99.84% (0.0028) 99.68% (0.0025) 

Specificity 99.56% (0.0052) 99.68% (0.0054) 

Table 5.83: Results of healthy vs tumor classifying patient 5 and training from the rest of patients equally 

using process #4. 
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 Patient 7 is classified and the training is obtained from the rest of de 

patients equally. 

Patient 7 

Process #1 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

Random 

training 2 

AA 56.82% 

(0.0191) 

47.71% 

(0.1189) 

72.91% 

(0.1626) 

69.09% 

(0.1046) 

OA 38.85% 

(0.0108) 

33.55% 

(0.0675) 

70.11% 

(0.1780) 

65.52% 

(0.1114) 

Kappa 0.0819 (0.0227) -0.0346 

(0.1547) 

0.4401 

(0.3275) 

0.3550 (0.1967) 

Sensitivity 30.84% 

(0.0086) 

26.17% 

(0.0632) 

92.00% 

(0.2024) 

92.31% 

(0.1538) 

Specificity 94.38% 

(0.0698) 

74.55% 

(0.2528) 

64.24% 

(0.2061) 

56.56% 

(0.0748) 

Table 5.84: Results of healthy vs tumor classifying patient 7 and training from the rest of patients equally 

using process #1. 
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Patient 7 

Process #4 

VNIR NIR 

Training type Random 

training 1 

Random 

training 2 

Random 

training 1 

AA 37.95% 

(0.0263) 

31.38% 

(0.0416) 

73.81% 

(0.0792) 

OA 28.08% 

(0.0176) 

23.70% 

(0.0280) 

70.50% 

(0.0892) 

Kappa -0.1553 

(0.0348) 

-0.2436 

(0.0560) 

0.4455 (0.1595) 

Sensitivity 21.48% 

(0.0143) 

17.80% 

(0.0233) 

100% (0) 

Specificity 50.93% 

(0.0394) 

42.04% 

(0.0561) 

60.52% 

(0.0831) 

Table 5.85: Results of healthy vs tumor classifying patient 7 and training from the rest of patients equally 

using process #4. 

 Patient 8 is classified and the training is obtained from the rest of de 

patients equally. 

Patient 8 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 61.12% (0.0285) 63.96% (0.0120) 

OA 75.59% (0.0179) 77.37% (0.0075) 

Kappa 0.2806 (0.0686) 0.3468 (0.0270) 

Sensitivity 100% (0) 100% (0) 

Specificity 73.78% (0.0139) 75.21% (0.0062) 

Table 5.86: Results of healthy vs tumor classifying patient 8 and training from the rest of patients equally 

using process #1. 
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Patient 8 

Process #4 

VNIR 

Training type Random training 1 Random training 2 

AA 60.43% (0.0183) 62.35% (0.0204) 

OA 75.16% (0.0115) 76.36% (0.0128) 

Kappa 0.2651 (0.0437) 0.3098 (0.0475) 

Sensitivity 100% (0) 100% (0) 

Specificity 73.43% (0.0089) 74.39% (0.0103) 

Table 5.87: Results of healthy vs tumor classifying patient 8 and training from the rest of patients equally 

using process #4. 

 Patient 10 is classified and the training is obtained from the rest of de 

patients equally. 

Patient 10 

Process #1 

VNIR 

Training type Random training 1 Random training 2 

AA 97.24% (0.0290) 96.53% (0.0614) 

OA 96.42% (0.0470) 94.98% (0.0967) 

Kappa 0.9097 (0.1127) 0.8900 (0.1832) 

Sensitivity 89.66% (0.1425) 87.88% (0.1812) 

Specificity 99.63% (0.0067) 99.82% (0.0032) 

Table 5.88: Results of healthy vs tumor classifying patient 10 and training from the rest of patients 

equally using process #1. 

As we can see, the overall results remain similar compared to the previous 

experiment. Only in some specific cases, such as in the patient 4, worse results have be 

seen. This may be because in this experiment the training sets are formed equally by 10% 

of the patient samples that are not classified, thus losing total randomness of training sets. 

That is to say, it may be that a given patient samples are very different from other patient 

samples which are training, and in this case we force that the training sets have a fixed 

number of those training samples that worsen the classification, when in the previous case 

the training sets could have fewer of these samples. Moreover, we can see how the 

patient 5 still gives very accurate results. Most troubling is that the patient 7 is still very 
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difficult to classify given an extremely poor results. In addition, we see how the camera 2 is 

still causing problems in the classifications. 

Then, we conducted an experiment in which all samples from all patients are used 

to training except the samples from the patient which is classified. Thus we have a large 

training set with full range of samples available. The results are shown below: 

 Patient 4 is classified and the training is formed by all samples from all 

patients. 

Patient 4 

Process #1 

VNIR 

AA 72.97% 

OA 66.87% 

Kappa 0.3964 

Sensitivity 53.80% 

Specificity 99.47% 

Table 5.89: Results of healthy vs tumor classifying patient 4 and training with all samples from all 

patients using process #1. 

Patient 4 

Process #4 

VNIR 

AA 99.75% 

OA 99.70% 

Kappa 0.9937 

Sensitivity 99.22% 

Specificity 100% 

Table 5.90: Results of healthy vs tumor classifying patient 4 and training with all samples from all 

patients using process #4. 
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 Patient 5 is classified and the training is formed by all samples from all 

patients. 

Patient 5 

Process #1 

VNIR NIR 

AA 99.21% 95.00% 

OA 99.02% 94.74% 

Kappa 0.9793 0.8950 

Sensitivity 100% 100% 

Specificity 97.50% 90.00% 

Table 5.91: Results of healthy vs tumor classifying patient 5 and training with all samples from all 

patients using process #1. 

Patient 5 

Process #4 

VNIR 

AA 99.60% 

OA 99.51% 

Kappa 0.9896 

Sensitivity 100% 

Specificity 98.73% 

Table 5.92: Results of healthy vs tumor classifying patient 5 and training with all samples from all 

patients using process #4. 

 Patient 7 is classified and the training is formed by all samples from all 

patients. 

Patient 7 

Process #1 

VNIR NIR 

AA 39.45% 64.29% 

OA 28.50% 59.77% 

Kappa -0.1342 0.2589 

Sensitivity 22.39% 100% 

Specificity 51.88% 52.05% 

Table 5.93: Results of healthy vs tumor classifying patient 7 and training with all samples from all 

patients using process #1. 
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Patient 7 

Process #4 

VNIR 

AA 36.39% 

OA 26.17% 

Kappa -0.1733 

Sensitivity 20.82% 

Specificity 46.30% 

Table 5.94: Results of healthy vs tumor classifying patient 7 and training with all samples from all 

patients using process #4. 

 Patient 8 is classified and the training is formed by all samples from all 

patients. 

Patient 8 

Process #1 

VNIR 

AA 65.83% 

OA 78.55% 

Kappa 0.3888 

Sensitivity 100% 

Specificity 76.18% 

Table 5.95: Results of healthy vs tumor classifying patient 8 and training with all samples from all 

patients using process #1. 

Patient 8 

Process #4 

VNIR 

AA 64.20% 

OA 77.53% 

Kappa 0.3524 

Sensitivity 100% 

Specificity 75.33% 

Table 5.96: Results of healthy vs tumor classifying patient 8 and training with all samples from all 

patients using process #4. 
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 Patient 10 is classified and the training is formed by all samples from all 

patients. 

Patient 10 

Process #1 

VNIR 

AA 85.65% 

OA 77.78% 

Kappa 0.5287 

Sensitivity 50.40% 

Specificity 100% 

Table 5.97: Results of healthy vs tumor classifying patient 10 and training with all samples from all 

patients using process #1. 

Patient 10 

Process #4 

VNIR 

AA 100% 

OA 100% 

Kappa 1 

Sensitivity 100% 

Specificity 100% 

Table 5.98: Results of healthy vs tumor classifying patient 10 and training with all samples from all 

patients using process #4. 

As there were many more samples to train than to classify, it could be expected to 

this information overload complicates the decisions of classifier getting worse the results. 

However, overall the results have improved, getting even an acceptable result for the 

patient classification 7 using NIR camera. 

Finally, in order to try to improve the results obtained by classifying the patient 7, a 

final experiment is performed, in which all the samples of all patients are normalized. This 

is done to check if the poor results obtained of classifying patient 7 are due to its samples 

are very different from those of other patient samples. For this experiment, the trainings 

are formed by 10% of samples of each class and these samples are obtained in the 

following ways: 
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1. Training 1: 10% randomly from the rest of patients that are not going to 

classify. 

2. Training 2: 10% of samples from each patient that is not going to classify. 

 In addition, in this experiment the NIR camera has been discarded due to the bad 

results obtained by it. The results are shown below: 

 Patient 4 classification: 

Patient 4 

Process #1 

Training 1 Training 2 

AA 69.94% (0.1964) 60.29% (0.1089) 

OA 63.10% (0.2416) 51.20% (0.1338) 

Kappa 0.3715 (0.3855) 0.1753 (0.1939) 

Sensitivity 57.04% (0.2215) 45.19% (0.0803) 

Specificity 99.83% (0.0045) 100% (0) 

Table 5.99: Results of healthy vs tumor classifying patient 4 with normalized data using process #1. 

 Patient 5 classification: 

Patient 5 

Process #1 

Training 1 Training 2 

AA 94.51% (0.1422) 97.02% (0.0853) 

OA 95.78% (0.1087) 97.70% (0.0651) 

Kappa 0.8949 (0.2796) 0.9461 (0.1541) 

Sensitivity 95.34% (0.1117) 97.24% (0.0790) 

Specificity 99.87% (0.0040) 99.81% (0.0060) 

Table 5.100: Results of healthy vs tumor classifying patient 5 with normalized data using process #1. 
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Patient 5 

Process #4 

Training 1 Training 2 

AA 74.68% (0.2095) 86.75% (0.2073) 

OA 80.64% (0.1602) 89.87% (0.1585) 

Kappa 0.5185 (0.4201) 0.7523 (0.3928) 

Sensitivity 78.47% (0.1590) 88.45% (0.1730) 

Specificity 100% (0) 100% (0) 

Table 5.101: Results of healthy vs tumor classifying patient 5 with normalized data using process #4. 

 Patient 7 classification: 

Patient 7 

Process #1 

Training 1 Training 2 

AA 42.34% (0.0932) 45.43% (0.1172) 

OA 38.10% (0.0696) 36.57% (0.0379) 

Kappa -0.1230 (0.1308) -0.0787 (0.1670) 

Sensitivity 21.47% (0.0606) 23.65% (0.0763) 

Specificity 68.04% (0.1764) 74.65% (0.2107) 

Table 5.102: Results of healthy vs tumor classifying patient 7 with normalized data using process #1. 

Patient 7 

Process #4 

Training 1 Training 2 

AA 58.33% (0.0034) 56.93% (0.0186) 

OA 39.77% (0.0050) 37.73% (0.0268) 

Kappa 0.0998 (0.0044) 0.0822 (0.0232) 

Sensitivity 31.52% (0.0018) 30.83% (0.0090) 

Specificity 100% (0) 100% (0) 

Table 5.103: Results of healthy vs tumor classifying patient 7 with normalized data using process #4. 
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 Patient 8 classification: 

Patient 8 

Process #1 

Training 1 Training 2 

AA 56.00% (0.0613) 58.98% (0.0481) 

OA 72.38% (0.0385) 74.25% (0.0302) 

Kappa 0.1519 (0.1516) 0.2275 (0.1199) 

Sensitivity 100% (0) 100% (0) 

Specificity 71.40% (0.0291) 72.78% (0.0227) 

Table 5.104: Results of healthy vs tumor classifying patient 8 with normalized data using process #1. 

 Patient 10 classification: 

Patient 10 

Process #1 

Training 1 Training 2 

AA 88.54% (0.1878) 96.13% (0.0596) 

OA 82.26% (0.2908) 94.58% (0.0930) 

Kappa 0.7262 (0.3996) 0.8801 (0.1955) 

Sensitivity 75.48% (0.3221) 87.61% (0.2079) 

Specificity 100% (0) 99.70% (0.0090) 

Table 5.105: Results of healthy vs tumor classifying patient 10 with normalized data using process #1. 

Patient 10 

Process #4 

Training 1 Training 2 

AA 84.89% (0.2296) 78.99% (0.2391) 

OA 76.60% (0.3556) 67.47% (0.3702) 

Kappa 0.6684 (0.4532) 0.5362 (0.4555) 

Sensitivity 71.33% (0.3407) 59.92% (0.3330) 

Specificity 100% (0) 100% (0) 

Table 5.106: Results of healthy vs tumor classifying patient 10 with normalized data using process #4. 

As shown in the tables 5.99-5.106, overall results have worsened without obtaining 

a significant improvement in patient 7 classification, so it seems that the poor results 

achieved with the patient 7 are not because its samples are very different from those of 
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other patients. As in vivo samples are labeled manually, it might have errors in the labeling 

of samples of patient 7. 

Previously, it was said that in many of the results obtained by NIR camera all 

samples were classified as healthy or all as tumor, being very poor results. To conclude this 

section it is necessary to explain that this was not always so, in fact this situation was quite 

exceptional. All results shown are the average of the results obtained by performing 10 

classifications using 10 different training sets randomly obtained by the procedures 

outlined in each section. What was actually happening is that almost all these 10 

classifications gave the result that all samples were from the same class but not all 

classifications gave that result. In fact, the most common situation was to find really good 

classifications within those 10. For example, it was easy to find a couple of classifications 

with amazingly good results, even 100% accuracy, and the other classifications with one of 

the worst possible results in which all samples were of the same class. This situation 

typically replicated in the results obtained by NIR camera and in some cases with VNIR 

camera.  

This fact is very important: if using 10 classifications with 10 random trainings, at 

least a couple of them have very good results, this means that in general for each patient 

there are certain sets of training that offer very high accurate results for that patient. This 

leads us back to the idea of guided trainings, the idea to be able to select a specific and 

personalized training for each patient, so that the training set chosen maximizes the 

results obtained for a particular patient. 

5.2. Global discussion of results 

After analyzing the results obtained for the ex vivo and in vivo samples, we proceed 

to discuss in general terms the results obtained with both types of samples with the idea 

of offering an overview about the operation of processing chains analyzed. From the 

results obtained, it may be performed the following general observations, which result in a 

set of specific recommendations when each of the processing chains are used. 

Regarding the process #1, the results obtained for ex vivo samples indicate that 

filtering the data for denoising the samples prior to the application of the SVM classifier is 

more effective than no filtering the data. In particular, the smooth filter is more effective 

than HySime filter. Moreover, the results for this processing chain using different kernels 
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featuring SVM indicate that using linear kernel noticeably improves the classification 

results obtained by this chain, increasing the success rate significantly. Therefore our 

specific recommendations when using this processing chain, for this type of application, is 

to apply the smooth filter to the sample set before classifying using SVM with linear 

kernel. 

Regarding the process #2, the results obtained for ex vivo samples indicate that 

dimension reduction stage used as pre-processing prior to the application of SVM classifier 

slightly worsens results obtained with respect to processing chain #1. However, with the 

implementation of this stage a little precision is lost but the computation time is greatly 

reduced, which can be a huge advantage. It is worth mentioning that the dimensionality 

reduction techniques that better work are those based on principal component analysis, being 

the techniques based on nearest neighbor the ones which offer the worst results. Specifically, 

the MNF technique provides the best results, but could not be used in this project due to the 

absence of its code under University license, so that the ICA technique was used in place, also 

providing very good results. In this regard, if the computing time is an issue, it is recommended 

to apply a dimensional reduction stage using MNF if possible and if not ICA. Otherwise, if the 

goal is to get the best possible results, it is recommended not to include a dimensionality 

reduction stage and directly applying the process #1. 

Regarding the process #3, the results obtained for ex vivo samples indicate that 

applying unmixing techniques instead of SVM classifier worsens results obtained with 

respect to processing chains #1 and 2#. Overall, the results are highly variable and 

dependent on each class, some classes are classified acceptably and other classes on the 

contrary give very poor results. This module labels each sample with the class that has the 

greatest abundance in that sample. Perhaps using another decision criterion, such as 

setting a threshold to abundances, better results could be obtained. The implementation 

of this module for such applications is not recommended, but if necessary, we recommend 

to extract the endmember following a general procedure and to use unconstrained linear 

spectral unmixing due to better accuracy and faster computation. 

Regarding the process #4, the results obtained for ex vivo samples indicate that 

unmixing stage used as pre-processing prior to the application of SVM classifier worsens 

results obtained with respect to processing chains #1 and 2#. However, the results 

obtained with this chain are very good, despite they do not improve the results of the first 
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two chains. Moreover, due to a significant reduction in computation time is not obtained 

and the results are slightly worse than those obtained by processing chain #2, we 

recommend using process #2 before this. However, if mixed techniques Unmixing-SVM are 

going to be used, it is recommended to apply a dimensionality reduction stage prior the 

unmixing stage because this improves the results. Furthermore, as in the previous 

processing chain #3, it is recommended to extract the endmember using a general process 

and to use unconstrained linear spectral unmixing. 

Regarding the process #5, the results obtained for ex vivo samples indicate that 

using guided training to train SVM classifier do not improve results in none of the cases 

with the strategies used for obtaining guided training sets. The training set should be as 

representative as possible of the data set to classify. The training set should be as generic 

as possible so that it includes all types of samples in each class and large diversity of 

samples. For this reason, random training sets offered always better results than guided 

training sets. 

Regarding the process #6, this processing chain is only a simulation of processing 

chain #7. The results obtained were very good for all processing chain tested and these 

served as an incentive to address the processing chain #7 using in vivo samples. 

Regarding the process #7, to be the first experiment simulating a real situation and 

using in vivo samples the results are quite good and promising for future experiments. 

Note that apparently there are patients who are easier to classify than other patients. This 

means that there are patients who for all the experiments were successfully and others 

that it was impossible to classify correctly. It should be noted the importance of mixed 

Unmixing-SVM techniques in this last processing chain, in which these techniques improve 

outcomes in many cases. For this reason it is recommended to use mixed Unmixing-SVM 

techniques for this application.  

5.3. Summary 

In this chapter, we have investigated several strategies to extract relevant features 

from hyperspectral imaging prior to classification. For classification scenarios, using SVM 

trained with wide variety of guided and random training sets, our experimental results 

reveal that for ex vivo samples the best results are obtained with process #1, being able to 

obtain high speed computing in exchange for slightly lower accuracy by using the process 
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#2. Moreover, in the case of in vivo samples, the use of mixed Unmixing-SVM techniques it 

is highly recommended. In any case, it is recommended to always work using random 

training sets. 
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Chapter 6 

Conclusions and future research 

lines 

6.1. Conclusions 

In this work we have developed a quantitative and comparative detailed analysis of 

different processing chains for the analysis and classification of hyperspectral images. 

Considered processing chains are based on the combination of different pre-processing 

modules (especially focusing on dimensionality reduction and unmixing techniques) which 

have been applied prior a highly consolidated classifier in hyperspectral analysis 

applications (SVM) that is trained using different approaches (random and guided 

trainings). In this regard, the different strategies considered cover a range of highly 

representative techniques of the state of the art in hyperspectral data analysis, all 

combined with advanced classifiers able to work very precisely with high-dimensional data 

sets and using diverse training sets. This study was performed using two different samples 

sets (ex vivo and in vivo) which has made possible a detailed study of different processing 

chains based on classifiers and pre-processing techniques mentioned above providing an 

important approximation to the final system developed by HELiCoiD. It should be noted 

that the study conducted includes topics of great interest, such as the impact of using 

dimensionality reduction techniques as well as mixed Unmixing-SVM techniques whose 

concepts have been seldom studied together, although they exhibit complementary 
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properties that can offer several advantages when they are applied to hyperspectral image 

analysis. In this regard, it should be noted that in the literature there are few comparative 

studies of this kind to date, therefore the variety of results achieved and interesting 

conclusions produced by the analysis of these results may represent a valuable 

contribution to the existing literature regarding classification of hyperspectral data. 

6.2. Future research lines 

As regards the future research lines derived from the present project, we can make 

the following considerations. Once already it is taken the leap to the use of in vivo samples 

simulating a situation of real surgery, future research lines are developed around to 

continue improving the final system with in vivo samples. As discussed in the results 

section 5.1.7, due to the fact that among the random training sets with bad results were 

found isolated cases with 100% accuracy it can delve into the idea of guided training, 

trying to perfecting the strategies proposed in this work in order to find the best training 

sets for each individual patient. Conduct a thorough study of the spectral signatures of the 

classes that we have in the classification problem could help in finding the best samples to 

form these training sets. Namely, we currently work with a large number of spectral 

bands, performing an in-depth study of the spectral signatures of the main classes we 

might find the spectral bands in which these classes differ more. This would allow us to 

greatly simplify the problem only working directly with these bands, reducing the 

computation time because of fewer bands and facilitating the classification since classes 

would be further apart. Thanks to this, we could create a database or library sufficiently 

robust formed by spectral signatures generic enough to use it to train the classifier to 

classify future patients with good results. It would also be interesting to train the classifier 

not only from the database or library, but also with the patient samples which is being 

classified, so that the training set is formed by samples of the database or library and 

samples of patient to be classified. Additionally it could include a step of post-processing 

using techniques that combine spectral and spatial information in order to further improve 

the results of the classification. Of course the whole system obtained to work with brain 

tumors could be extended to other tumor types and conditions. 
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El presupuesto del presente Proyecto de Fin de Carrera se ha valorado en función 

de la última lista de Honorarios Orientativos publicada por el Colegio Oficial de Ingenieros 

de Telecomunicación, denominada Costes Estimados de Trabajos Profesionales 

correspondiente al año 2008. Así, el presupuesto se ha estructurado en siete secciones: 

1. Recursos Humanos 

2. Recursos Hardware 

3. Recursos Software 

4. Material Fungible 

5. Aplicación de Impuestos 

6. Presupuesto total 

Hay que indicar que el motivo por el que este presupuesto toma como referencia 

una lista publicada en 2008 se debe a las modificaciones introducidas en el ordenamiento 

jurídico y a la actuación de los colegios profesionales en la ley 25/2009 del 22 de 

diciembre, por la cual se liberalizan los honorarios profesionales y ya no es posible seguir 

publicando este tipo de listas por parte del COIT. 

Recursos humanos 

El coste de los recursos humanos está asociado al tiempo empleado por un ingeniero en la 

realización de este proyecto. El coste se establece aplicando la fórmula propuesta por el 

COIT para trabajos por tiempo empleado: 

𝐻𝑜𝑛𝑜𝑟𝑎𝑟𝑖𝑜𝑠(€) = (74.88𝐻𝑛 + 96.72𝐻𝑒)𝐶𝑡 

Donde 𝐻𝑛 representa el número de horas normales dentro de la jornada laboral, 

mientras que 𝐻𝑒 se considera el número de horas especiales, siendo 260,00 euros el 

honorario mínimo a cobrar independientemente del número de horas trabajadas. El 

coeficiente 𝐶𝑡 es el factor de corrección que se debe aplicar al número de horas, variando 

en función del número de horas empleadas según la tabla 8.1: 

Horas trabajadas 𝐶𝑡 

0-36 1 

36 - 72 0,90 

72 - 108 0,80 
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108 - 144 0,70 

144 - 180 0,65 

180 - 360 0,60 

360 - 540 0,55 

540 - 720 0,50 

720 - 1080 0,45 

+ 1080 0,40 

Tabla 8.1: Factor de corrección en función de horas trabajadas. 

Teniendo en cuenta una jornada laboral de ocho horas diarias a razón de veinte 

días laborales cada mes durante 10 meses, el número total de horas empleadas es de 1600 

horas normales, siendo cero el número de horas especiales trabajadas. Según la tabla 8.1, 

el factor de corrección que corresponde al número de horas trabajadas es 𝐶𝑡 = 0,40. 

En la tabla 8.2 se muestra el resultado de la aplicación de la ecuación anterior, 

recogiendo los costes asociados a los recursos humanos libres de impuestos, que 

ascienden a cuarenta y siete mil novecientos veintitrés euros con dos  céntimos (47923,2€). 

Concepto Tiempo trabajado (horas) Factor de corrección Importe (€) 

Ingeniero 1600 0,40 47923,2 

Coste Total 47923,2 

Tabla 8.2: Coste total de recursos humanos. 

Recursos hardware 

El coste de los recursos hardware vendrá determinado por la instrumentación de 

medida y los equipos informáticos empleados en la realización del presente Proyecto Fin 

de Carrera. 

 Cámara Hiperespectral Headwall’s Hyperspec NIR. 

 Cámara Hiperespectral Headwall’s Hyperspec VNIR. 

 Ordenador portátil HP Pavilion dv6 Intel Core i7 (2,60 GHz), con 8 GB de RAM y 1 

TB de disco duro. 

Para el cálculo de los costes de los recursos materiales, hardware y software, se 

utilizara un sistema de amortización lineal o constante, en el que se supone que el 
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inmovilizado material se deprecia de forma constante a lo largo de su vida útil. La cuota de 

amortización anual se calcula usando la siguiente fórmula: 

𝐶𝑢𝑜𝑡𝑎 𝑎𝑛𝑢𝑎𝑙 =
𝑉𝑎𝑙𝑜𝑟 𝑑𝑒 𝑎𝑑𝑞𝑢𝑖𝑠𝑖𝑐𝑖ó𝑛 − 𝑉𝑎𝑙𝑜𝑟 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝐴ñ𝑜𝑠 𝑑𝑒 𝑣𝑖𝑑𝑎 ú𝑡𝑖𝑙
 

El valor residual es el valor teórico que tendrá el elemento analizado después de su 

vida útil. El periodo de amortización de estos recursos se ha considerado de 36 meses, y su 

tiempo de uso ha sido de 10 meses. Los costes asociados a los recursos hardware libres de 

impuestos se recogen en la tabla 8.3 y ascienden a tres mil cuarenta y siete euros con tres 

céntimos (3047,3€). 

Concepto Coste unitario (€) Valor residual (€) Coste mensual (€) Importe (€) 

Cámara hiperespectral NIR 9000 4250 129,73 1297,3 

Cámara hiperespectral VNIR 9500,00 4500,00 138,89 1388,9 

Ordenador 1300,00 0,00 36,11 361,1 

Coste Total 3047,3€ 

Tabla 8.3: Coste total de recursos hardware. 

Recursos software 

Para los recursos software se utilizan los mismos criterios que en el epígrafe 

anterior, tomando en este caso un periodo de amortización de 24 meses. Las herramientas 

software usadas han sido las siguientes: 

 Sistema Operativo Microsoft Windows 7 Enterprise Edition 64 bits. 

 MATLAB 2010. 

En la tabla 8.4 se recogen los costes asociados a los recursos software libres de 

impuestos. El coste total asociado a las herramientas software empleadas asciende a 

novecientos cincuenta y ocho euros con treinta y tres  céntimos (958,33€). 
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Concepto Coste unitario (€) Valor residual (€) Coste mensual (€) Importe (€) 

Windows 7 300,00 0,00 12,50 125,00 

MATLAB 2010a 2000,00 0,00 83,33 833,33 

Coste Total 958,33€ 

Tabla 8.4: Coste total de recursos software. 

Material fungible 

En este apartado se recopilan los costes relacionados con los materiales utilizados 

en la realización del proyecto, como son: material de papelería, servicio de impresión del 

IUMA, discos CD-R y los costes de impresión y encuadernación de la memoria. 

Los costes asociados al material fungible libres de impuestos son en este Proyecto 

Fin de Carrera de trescientos quince euros (315€). 

Concepto Importe (€) 

Servicio de impresión 235,36 

CD-R 2,50 

Memoria 77,14 

Coste total 315€ 

Tabla 8.5: Coste total de material fungible. 

Redacción del proyecto 

De acuerdo a los honorarios orientativos del COIT, el importe de la redacción 

del presente PFC se calcula mediante la siguiente ecuación: 

𝑅 = 0,07𝑃𝑡𝐶𝑟 + 0,03𝑃𝑐𝐶𝑟 

Donde 𝑃𝑡  es el presupuesto de ejecución material de telecomunicaciones, 𝑃𝑐 es 

el presupuesto de obra civil y 𝐶𝑟 es el coeficiente de ponderación por tramos en 

función del coste del presupuesto. Este Proyecto Fin de Carrera no tiene asociada 

ninguna obra civil, por lo que 𝑃𝑐 es nulo. El presupuesto de ejecución material se 

corresponde con la suma de los cuatro apartados anteriores: 

𝑃𝑡 = 47923,2 + 3047,3 + 958,33 + 315 = 52278,83€ 

Aplicando la ecuación anterior: 



227 
 

𝑅 = 0,07 ∙ 51644,76 = 3615,13€ 

Por lo tanto, los costes asociados a la redacción del proyecto libres de 

impuestos ascienden a tres mil seiscientos quince euros con trece céntimos (3615,13€). 

Aplicación de impuestos 

En los anteriores apartados se ha recogido cada uno de los costes que se han 

generado para el desarrollo de este Proyecto Fin de Carrera. La realización del mismo 

estará gravada con el Impuesto General Indirecto Canario (IGIC), en un siete por ciento 

(7 %). 

Concepto Importe (€) 

Recursos humanos 47923,2 

Recursos hardware 3047,3€ 

Recursos software 958,33€ 

Material fungible 315€ 

Redacción del PFC 3615,13€ 

Subtotal 55858,96 

IGIC (7%) 3910.123 

Total 59769,083 

Tabla 8.6: Coste total del Proyecto Fin de Carrera. 

Presupuesto total 

En la tabla 8.7 se recogen todos los costes asociados al Proyecto Fin de Carrera 

y el importe total del mismo después de impuestos.  

Así pues, D. Miguel Ángel Tejedor Hernández declara que el presupuesto para 

el Proyecto de Fin de Carrera Titulo asciende a un total de cincuenta y nueve mil 

setecientos sesenta y nueve con cero ochenta y tres céntimos (59769,083€). 
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Las Palmas de Gran Canaria, 1 de septiembre de 2015 

 

 

Fdo. Miguel Ángel Tejedor Hernández 
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En el pliego de condiciones descrito en este PFC se exponen las condiciones 

bajo las cuales se ha desarrollado el proyecto. A continuación se describe de forma 

muy breve el conjunto de los componentes hardware y software empleadas durante la 

realización del proyecto, así como de las muestras biológicas que se han utilizado. 

Recursos hardware 

 Cámara Headwall’s Hyperspec VNIR: Cámara de imágenes hiperespectrales 

destinada tanto a la industria como a la investigación. Es capaz de medir 

simultáneamente las componentes ópticas del espectro y la localización 

espacial de objetos sobre una superficie. En conjunto con una cámara 

monocromática y una lente adecuada, la Headwall’s Hyperspec forma un 

sistema hiperespectral en el rango VNIR (380nm-1000nm), con una resolución 

espectral de 2-3nm. 

 Cámara Headwall’s Hyperspec NIR: Cámara de imágenes hiperespectrales 

destinada tanto a la industria como a la investigación. Es capaz de medir 

simultáneamente las componentes ópticas del espectro y la localización 

espacial de objetos sobre una superficie. En conjunto con una cámara 

monocromática y una lente adecuada, la Headwall’s Hyperspec forma un 

sistema hiperespectral en el rango VNIR (900nm-1700nm), con una resolución 

espectral de 4-5nm. 

 Ordenador personal HP Pavilion dv6: Ordenador portátil en el que se ha instalado 

el MATLAB 2010a y se ha realizado todo el procesado de las imágenes. Además, se 

ha redactado la memoria de este Proyecto Final de Carrera. 

Las principales características de este PC son: 

- Procesador Intel Core i7-4510U a 2,60 GHz. 

- 8 GB de memoria RAM. 

- 1 TB de disco duro. 

 Disco duro extraíble Western Digital de 1 TB: Utilizado para guardar las imágenes 

procesadas. 

 Impresora HP LaserJet 2430 DTN: Utilizada para la impresión del material 

necesario para el desarrollo del proyecto y de la presente memoria. 
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Recursos software 

 MATALB 2010a: Herramienta de software matemático que ofrece un entorno de 

desarrollo integrado con un lenguaje de programación propio que permite. Facilita 

el análisis y la visualización de datos. 

Recursos biológicos 

Las muestras biológicas que se han empleado en este PFC se corresponden con 

biopsias cerebrales extraídas durante intervenciones quirúrgicas por el departamento de 

Neurocirugía del Hospital Universitario de Las Palmas de Gran Canaria Dr. Negrín. Estas 

biopsias han sido procesadas y diagnosticadas por el departamento de Anatomía 

Patológica de este mismo hospital. Por otra parte se han utilizado muestras biológicas 

obtenidas directamente durante intervenciones quirúrgicas mediante el uso de las 

cámaras hiperespectrales descritas en los recursos hardware y destinadas para tal fin. El 

empleo de estas muestras en proyectos de investigación está contemplado en los ethical 

issues del proyecto HELICoiD. 

Las Palmas de Gran Canaria, 1 de septiembre de 2015 

 

 

Fdo. Miguel Ángel Tejedor Hernández 

 




