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Abstract: This paper presents a study of positioning system that provides advanced information
services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough
positioning and BLE for fine positioning. It is designed for use in public transportation system stations
and terminals where the conditions are “hostile” or unfavourable due to signal noise produced by the
continuous movement of passengers and buses, data collection conducted in the constant presence
thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless
communication infrastructure has already been deployed and positioned in a way that may not be
optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a
service that may be used to assist people with special needs. We present experimental results based
on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis
distance was also used in one case. The algorithm employed to compare fingerprints was the weighted
k-nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94
to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon
density (1 beacon per 45.7 m2), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m
90% of the time. Taking into account the fact that this system is designed to work in real situations in
a scenario with high environmental fluctuations, and comparing the results with others obtained in
laboratory scenarios, our results are promising and demonstrate that the system would be able to
position users with these reasonable values of accuracy and precision.
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1. Introduction

In modern societies the mobility of citizens is considered to be both a necessity and a right.
Consequently, transport systems play a fundamental role in the economic and social development
of these societies. The widespread use of transport systems, especially road transport, has resulted in
problems related to pollution, safety and environmental degradation. All transport planning bodies agree
that public transport systems need to be developed in order to minimise these problems. The key aspects
for making public transport more attractive than private transport are accessibility and safety. In the
case of people with special needs, these aspects are even more important—if that is possible—since
particular attention is required when developing public transport network access that meets their
needs. According to the United Nations, 15% of the world’s population has some kind of disability [1].
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Therefore, the development of accessible public transportation infrastructure is not only a technological
challenge, but it is also an ethical obligation if more inclusive and fairer societies are to be developed.
For this reason, transport authorities have issued recommendations and regulations that address this
problem; for example, the European Union considers this to be an aspect that should be taken into
account when developing the Smart City paradigm [2]. According to Mitchell et al. [3], the situations
in which a person with special needs requires special attention when using public road transport are:
when gaining access to and using the services of stops and stations, boarding and alighting from the
vehicle, and making payment for the trip.

The challenge addressed by this article is positioning in public indoor spaces, where the
environmental conditions that affect the propagation of the signal used to determine the location are very
variable and may therefore affect accuracy and precision in relation to the actual location. This article
focuses specifically on indoor spaces on the public transportation network, in which these conditions
vary according to the time, day or time of year. Another facet of the challenge is to achieve suitable
accuracy and precision in the positioning by making use of the wireless communication infrastructures
that already exist in these places of the transport network. Since these elements had previously been
installed for purposes other than those of our study, they were not optimally configured for positioning.
The ultimate aim is to provide a service to assist people with special needs, such as people with visual
impairments or cognitive problems, who may feel disoriented in public spaces that are new to them.
The proposed system obtains the user’s position through the combined use of a wireless local area
network (WLAN) and Bluetooth Low Energy (BLE) at the station used for the study. In addition to
indoor positioning, BLE beacons are especially interesting for stations of public transportation systems
because they can be used for other advanced information services such as bus station guides, ticketing
or line information (Figure 1).
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Figure 1. Schematic view of advanced information services that could be offered: bus station guide,
ticketing, line information.

The main contributions of this system are: first, it provides a real implementation of a positioning
system in an environment that is not favourable to the use of these technologies; second, it does not
require any additional deployment of the available WLAN infrastructure, using the elements already
installed in the bus stations; and, third, it studies the behaviour of different positioning methods,
proposed by different authors, using these technologies to monitor their behaviour in environments
with changing conditions (variations in the number of people in the station according to the time of
day, variations in environmental conditions, such as humidity, and the location of the Wi-Fi access
points (AP) and Bluetooth beacons at points that are not optimal for positioning purposes).
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This article is divided into seven sections. In the following section we will describe the studies
relevant to the proposed system. In the third section we review the most important indoor positioning
techniques and describe the testbed where we performed the different tests. The proposed positioning
system is presented in the fourth section. In Section 5 the different tests that were carried out using
the Wi-Fi and BLE infrastructure are described and analysed, showing in each case the results that are
obtained. In Section 6, a comparison of our results with results from other studies is presented. Finally,
the conclusions and future lines of work are presented in the seventh section.

2. Related Works

In this section we analyse various studies of positioning in indoor spaces. This list of works has
been organised into five groups. The first consists of studies that use Wi-Fi technology for positioning.
The second group consists of studies that use Bluetooth technology for positioning. The third group
comprises studies on the combined use of these two technologies for positioning. Proposals for positioning
systems designed to assist people with special needs are covered in the next group. Lastly, in the fifth
group we review studies that address positioning in large public spaces.

In the context of indoor positioning systems that use Wi-Fi technology, it is worth noting the
pioneering work of Bahl et al. [4], who proposed the RADAR system. It is also worth mentioning the
work of Liu et al. [5], which offers a broad overview of existing wireless indoor positioning solutions and
attempts to classify different techniques and systems. Honkavirta et al. [6] outlined positioning methods
that use scene analysis, as did He et al. [7], although the latter focused on more recent developments.
Kaemarungsi et al. [8] conducted an interesting and exhaustive study of the statistical properties of
received signal strength (RSS) for position location by scene analysis. In the work of Dawes et al. [9],
deterministic and probabilistic indoor positioning methods were compared on the same testbed. In relation
to Wi-Fi fingerprinting, Torres-Sospedra et al. [10] observed that most studies use Euclidean distance and
raw data, and therefore carried out a study of the best distance function, the best way to represent the
data, and the effect of applying thresholding techniques. Other studies we may mention include that by
Feng et al. [11] which, among other contributions, refined the search of an RSS fingerprint database by
clustering using an affinity propagation algorithm. Kjærgaard et al. [12] studied the problem of location
fingerprinting with heterogeneous wireless clients. King et al. [13] presented a detailed analysis of the
deployment, calibration, and measurement factors that cause positioning errors.

The use of Bluetooth technology and, more specifically, Bluetooth Low Energy technology has
been proposed by several authors. Faragher et al., in two important papers [14,15], first investigated the
impact of BLE devices on indoor positioning schemes based on RSS fingerprints, and then conducted a
detailed scene analysis study using proximity and the k-nearest neighbours (KNN) algorithm with
the aggregation of the three BLE channels. Zhuang et al. [16] used an algorithm that combines a
polynomial regression model, fingerprinting with channel separation, outlier detection, and Kalman
filtering. Kajioka et al. [17] demonstrated the viability of positioning through the received signal
strength of BLE beacons.

Some authors have proposed the use of hybrid systems that combine Wi-Fi and Bluetooth
technology in order to overcome their limitations for positioning purposes. Baniukevic et al. [18]
developed an algorithm that prevents positioning errors caused by reference positions that are similar
by separating these positions into different smaller radio maps through the deployment of beacons at
particular locations. Metola-Moreno et al. [19] compared two different positioning algorithms using
Bluetooth and WLAN: the first is based on the construction of a fusion map using the Wi-Fi and
Bluetooth RSS values; in the second algorithm, the position is determined independently by each
technology and the results are subsequently combined.

A particularly notable application of indoor positioning systems is the provision of assistance
for people with special needs. Au et al. [20] proposed an indoor tracking and navigation system
based on RSS measurements in a wireless local area network (WLAN). The location determination
problem was solved by first applying a proximity constraint to limit the distance between a coarse



Sensors 2017, 17, 1299 4 of 29

estimate of the current position and a previous estimate. Then, a compressive sensing-based positioning
scheme was applied to obtain a refined position estimate. Moder et al. [21] focused on the abilities
of an indoor positioning system purely based on sensors that are already present in smartphones.
Algorithms were designed to process the accelerometer, gyroscope, magnetometer and barometer
data, and Wi-Fi fingerprinting; the results were then passed through a mathematical filter to obtain a
final position and heading information. In the case of Bluetooth-based systems, Ge [22] implemented
two indoor positioning systems and a specific interface. The first system uses beacon selection and
pseudo-intersection for pre-processing, and triangulation and fingerprinting as the main algorithms.
It achieves a positioning accuracy of 1.83 m. The second system uses a proximity algorithm, and a
specific user interface was tailor-made for blind and visually impaired users of these two systems.
Guerrero et al. [23] presented an indoor navigation system that identifies the position of a visually
impaired person and calculates the velocity and direction of their movements. Castillo-Cara et al. [24]
presented a prototype of an indoor mobility assistant for visually impaired users. The system uses the
RSS provided by BLE beacons strategically placed to identify different areas of a building, using also
the pedometer and gyroscope of a smartphone.

The final area of related studies concerns positioning system proposals for indoor public spaces
on public transport networks. In such indoor environments—bus, metro or train stations, shopping
centres, etc.—there may be a lot of noise produced by the presence of many people or by humidity.
We may mention the study conducted by Ladd et al. [25], in which the system design begins with
the observation that the determination of position from complex, noisy and non-Gaussian signals is a
well-studied problem in the field of robotics; a robust position estimation to within a metre is achieved
in an experimental context. Lin et al. [26] introduced an enhanced indoor location algorithm based on
the Redpin algorithm, which matches the received Wi-Fi signal with the signals in the training data
and uses the position of the closest training data as the user’s current location. Dickinson et al. [27]
introduced a framework for the positioning of users in a large wholesale shopping store, presenting
results obtained using different methods of positioning and using RSS measurements. Insoft GmbH [28]
has created an app for Swiss Federal Railways (SBB), which helps passengers to find their way through
Zurich’s multilevel main station, which occupies a space of approximately 175,000 m2. The app uses
more than 1000 Bluetooth beacons and sensor fusion to locate the position of the smartphone.

3. Preliminaries

3.1. Positioning Techniques

Indoor positioning in public spaces on the transport network is a challenge for several reasons:
during propagation, the radio signal is subject to reflection, diffraction and scattering due to the
architectural elements that exist in that space. To these effects we also have to add signal attenuation
due to the presence of people, which may be a mass presence of people in public spaces such as public
transport stations, airports, shopping centres, etc. The signal is also affected by other factors, including
ambient humidity conditions [7,8].

One of the most-used indoor positioning techniques are wireless local area networks (WLANs)
is scene analysis or fingerprinting, a process by which radio signals are measured and associated
with positions. A position is then characterised by the signal pattern detected from each Wi-Fi AP [7].
For systems deployed in large spaces, in order to estimate the position of a mobile device user, it is
necessary to previously construct (offline phase) a location fingerprint database or correlation database
(CDB) for a set of reference points of known positions [4,29]. This database is also known as a radio
map, in which each reference element or fingerprint consists of the coordinates of the reference point,
the received signal strength (RSS) of each AP, the orientation in which these RSS readings have been
taken, etc. Each element of the CBD is a mapping between the position and the distribution of the RSS
values [8]. Subsequently (online phase), users in an unknown position initially obtain the RSS values
for the different APs (target fingerprint) with their mobile device and, by means of some method,
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they compare these RSS values with those stored in the database, to ultimately obtain the coordinates
of their location. The position of the user may be determined primarily through deterministic [4] or
probabilistic [30] algorithms.

For deterministic algorithms, similarity metrics are used to compare the fingerprints stored in the
offline phase with the measurements taken in the online phase: the user is located at the coordinates for
which the reference fingerprint is at the minimum distance in the signal space of the target fingerprint.
Many distance metrics can be used (e.g., Euclidean, Mahalanobis, Manhattan, etc.) but the user’s
position is obtained, irrespective of the metric used, through the coordinates associated with a reference
fingerprint stored in the database [29]. The comparison of fingerprints using deterministic methods
may be performed using KNN or some other pattern-matching algorithm, such as those used in
artificial neural networks or support vector machines.

Probabilistic algorithms are based on statistical inference. For this type of algorithm, a set of
training data is used that searches for the position of the user with the maximum likelihood [30]. In this
paper we will focus on deterministic methods. The main advantages and disadvantages of indoor
scenario analysis are [7]:

1. Ease of implementation, using an existing infrastructure without the need to introduce new
hardware, making it a low-cost option for which RSS data are easily obtained, computational
complexity is low, and reasonable accuracy and precision are achieved.

2. Much time must be devoted to constructing the radio map or database, changes in hardware or in
the distribution of furniture can make the stored fingerprints obsolete, thus affecting the accuracy
and precision of positioning, the performance of these methods depends to a large extent on
the practical implementation parameters and on the nature of the environments in which they
are implemented, RSS values can be affected by the different types of devices used to create the
database and by mobile users.

3.2. Deployment Environment

The scenario in which the positioning system will be tested is a local bus station. The schematic
diagram of the station in Figure 2 shows the most important elements: the two boarding areas (areas
of interest East (E) and West (W)), which are shaded in grey, the distribution of the Wi-Fi APs and the
BLE beacons (in area of interest E), bus paths (red lines) and stops (numbered), columns (black circles)
and, finally, pedestrian crossings.
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3.76 m, where the Wi-Fi access points are located. On one side of the corridor in the area of interest, 
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The bus station is built of reinforced concrete, with concrete columns approximately every 6 m
on a north-south axis, and every 8 m on an east-west axis. There is a suspended ceiling at a height of
3.76 m, where the Wi-Fi access points are located. On one side of the corridor in the area of interest,
and adjoining the seating area of benches where users may wait for the different bus lines to depart
(on the left side of the photo in Figure 3), there is a glass window (except in the central section) with a
thickness of 1 cm and a height of approximately 2.5 m (Figure 3). It should be noted that the station is
located very close to the sea, so ambient humidity is a factor to consider
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Figure 3. View of the area to be used as a testbed.

Users access the station by two entrances (main and secondary) and then move to areas of interest,
either directly (no stairs or ramps) or using disabled access ramps or stairs. Note that when entering
the station the system must locate users in one of the two zones of interest and then provide them with
a service (information about a bus line, etc.).

From the above scenario, and taking into account the fact that the station’s three Wi-Fi access
points have already been deployed and that, although others from the outside are detected, their signal
is very weak and unreliable, it is necessary to deploy BLE beacons to meet two objectives:

1. The signals reach all areas with sufficient intensity, particularly areas of interest.
2. Positioning in those areas is correct, there are no positioning errors that will lead users to danger

zones, and the user is provided with the desired advanced services.

The chosen model meets objectives (1) and (2), but gives special consideration to the safety and
convenience of users. Due to the particular distribution of architectural elements in the bus station
(columns, etc.) and to prevent positioning errors on mobile devices, a strategy was implemented to
deploy BLE beacons near the bus stops with the aim of also providing users with advanced services.

Because the Wi-Fi APs and BLE beacons share the same frequency range (2.4 GHz) there may
be interference problems [15], although: (1) interference problems usually occur when the number
of access points is very large, something that did not happen in our case; (2) possible interference
problems could be overcome by avoiding certain channels and taking into account the fact that
Bluetooth automatically uses FHSS (frequency hopping spread spectrum).

Within the bus station described above, a central section of one of the areas of interest was chosen
as the testbed. This is possibly the zone of the station with the greatest difficulty for positioning due to
the continuous transit of users and of buses in the surrounding areas. Within the area of interest, we
selected a 40 m × 8 m rectangular section. Figure 4 shows the section (marked with a red rectangle) and
the chosen origin of coordinates, O, as the reference for the coordinates of the points in the database.
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To create the database of Wi-Fi reference points, and considering that the accuracy that we will
require from this positioning system is low, we chose a grid of 20 cells, each measuring 4 m × 4 m
(Figure 5a), with the reference points aligned on two parallel lines (which we have labelled as lines 1
and 2), and each reference point in the centre of each cell [13]. Line 1 is closer to the passenger access
to the buses, while line 2 is further away, near the window and a seating area. The testbed therefore
has an area of 320 m2, and consequently a density of 16 fingerprints per m2 [9]. The brand of the Wi-Fi
access points that were already deployed in the station is Ubiquiti Networks, model UniFi 802.11ac
Long Range Access Point, with a maximum TX power of +20dBm. And their coordinates with respect
to O are AP1 = (2.2, −19.1), AP2 = (2.2, −20.4), AP3 = (2.2, 53.9), which means that they are aligned
along reference points line 1 (see Figure 5a) and practically in line of sight (LOS) conditions. We noted
that AP1 used channel 13, and AP3 used channel 11 so, even though there is a distance of about 73 m
between them, this could potentially be a source of interference between the two APs and may add
more noise to the system. AP2 used channel 1, so it would not be a source of interference.

To construct the BLE database, a structure similar to that described above was chosen, but taking
into account the fact that the accuracy required for the BLE positioning system is greater: we therefore
chose initially a grid of 22 cells, each measuring 2 m × 2 m with a density of 14.5 fingerprints per m2

(Figure 5b). The number of reference points was increased later to 42 cells. The seven deployed beacons
are model iBKS105 units (Accent Systems, Barcelona, Spain), with a maximum output of +4 dBm.
It should be noted that on both grids (Wi-Fi and BLE) there are common reference points.

It is important to note that the signal from the three Wi-Fi access points installed by the local
transport authorities is detected with sufficient power within the station, but due to the concrete
structure of the station, the RSS of other Wi-Fi access points on the outside are too weak and practically
non-existent for the majority of data readings. For this reason inclusion of these access points in the
database unfortunately had to be ruled out.
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4. Proposed Positioning System

In this section a new multilayer two-channel system to help indoor positioning is described.
First we describe a generic location mechanism with a lower level of accuracy that roughly provides
information on the existing environment and location (Wi-Fi channel). This will be a first mental map
of what may be found in the environment in which the user wants to move. Then we describe a more
accurate positioning system that provides more detailed environment information and allows us to
locate and reach the exact site (BLE channel). This second channel, in addition to assisting the user in
determining their location, also gives access to advanced information services (schedule information,
etc.) using the first channel. We therefore propose a multilayer two-channel system that provides an
initial level of abstraction that is subsequently refined to allow the user to reach their desired target.
The system abstraction levels have been created to resemble the spatial perception of human beings as
closely as possible.

4.1. Precision Levels: Definition of Zones

This first level of abstraction was created to provide knowledge or first awareness of the
environment and surroundings. The aim is to provide users with some awareness of their location in
the surrounding space, the environment and the objects in it.

Having good spatial perception allows users to determine their location, move in this space, get
their bearings, head in multiple directions, analyse situations and represent them. The zones are a key
concept in this proposal. When people are confronted with a new environment, it is very useful for
them to have a generic view of what is around, and then to specify the information required to reach
the target point. For example, when approaching a station, in many cases it makes no sense to give
a person instructions without first providing information on the surrounding environment. Therefore,
in this proposal, two levels of accuracy are defined, depending on how close or how far users are from
their goal. In particular, different parts of the protocol run depending on the zone where the user is in
relation to their final goal.
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As shown in Figure 6, three zones are defined in a real scenario (schematic view of a local bus
station), depending on the user’s location relative to their ultimate goal:

• First abstraction level: in this zone, users do not have direct contact with their target so they
will be provided with a generic visualisation of the environment, emphasising the location of
their target.

• Second abstraction level: users are not yet in the destination zone but receive information from
both their target and the environment.

• Third abstraction level: users are in their target location where the target signal may be detected directly.
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The size of the radius within which the different technologies come into play will depend on
the environment where the users are using the system, taking into account factors such as coverage,
complexity of the environment in which they move, distance to the target, etc. In Section 5 a use case is
proposed in which the proposed system is deployed in a bus station.

4.2. Positioning System

When a user arrives, in this case, at a bus station, the system has to define their ultimate goal.
At the first level of abstraction, Wi-Fi technology will come into play, which, depending on the user’s
location and with respect to the Wi-Fi Access Points, will prompt the user as to the rough distribution
of their environment. For example, “stairs to the right”, “cafeteria 50 m left”, “platforms 30 m ahead”,
etc. Thus, users can make a mental map of where they are and where everything in their environment
is, and the system will provide a first level of information that may be useful for a user who has never
been to the station before. Otherwise, if the user has been to the station before, he or she will know
where they are by comparison to previous occasions. At this time, and assuming that the user is using
an application on their mobile phone, this will indicate where he or she must go, immediately receiving
the first instructions.

Obviously this first positioning system, as discussed above, works relatively well when little
precision is required, since it is affected, on the one hand, by the wide range of sensors that current
devices handle, because the received signal strength depends on them; and, on the other hand, by the
number of people who are in the place, since up to 60% of the human adult body is water, and water
absorbs radiation, so the signal will be affected [31]. Therefore, and as already mentioned, this single
system does not solve the problem. Once users receive a first approximation, they will start walking,
following the initial instructions. As they move, they will not only receive Wi-Fi signals but also BLE
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signals, so their route will be refined. Once the second level of abstraction is reached, the BLE devices,
along with the Wi-Fi APs, will provide more information, reducing the limitations of each separate
technology and complementing each other.

However, there will come a point where all the signals overlap and it will be almost impossible to
determine where the exact spot is (in this case, the bus platform that the user needs to locate). In this
case it will be necessary to reduce the intensity of the BLE signal so that the user can only receive it
when they are exactly where they expect to be. This can be achieved by configuring the transmission
power of the beacons.

5. Performance Evaluation

For all the tests (both Wi-Fi and BLE) and owing to its simplicity and acceptable results,
the distance metric used was the Euclidean distance—Equation (1)—except in one case in which
Mahalanobis distance was used—Equation (2). The algorithm employed to compare the fingerprints
was k-nearest neighbours, with a weighting inversely proportional to the distance (weighted k-nearest
neighbours, WKNN)—Equation (3):

dE =

√√√√ N

∑
i=1

(ti − ri)
T ·(ti − ri) (1)

dM =

√√√√ N

∑
i=1

(ti − ri)
T ·Σ−1·(ti − ri) (2)

(x, y) =
∑k

i=1(xi, yi)·wi

∑k
i=1 wi

, wi =
1
di

(3)

where ti, ri are the target and reference RSSs respectively for access point i, Σ is the covariance matrix,
(x, y), (xi, yi) are the estimated coordinates of the target point and the coordinates of the k reference
points and wi are the weights for each distance di. For this study, the positioning accuracy is expressed
by the mean error and its precision by the cumulative probability function (CDF), which is expressed
in practice in percentile format [5].

5.1. Wi-Fi Analysis

5.1.1. Preliminary Analysis

Before carrying out a Wi-Fi test, different analyses were carried out over several days to study
the properties of the RSS in the testbed and in changing conditions of presence and movement of
passengers and buses, the suitability of the data-measuring devices, etc.

On one day a 9-h test was conducted with two different laptops: an Asus N56J with a Ralink
integrated wireless network card (Ralink Technology Corp., Taiwan) and an Acer Aspire 5750G with
a Broadcom wireless network card (Broadcom Ltd., Irvine, CA, USA). Measurements were taken with
the laptops on tables fitted with wheels and located at a height similar to that of a mobile carried in
someone’s hand.

In the first test, samples were taken every 2 s for 1 min at different points and for each orientation
(i.e., compass direction) (120 samples); the two laptops were used to take readings at different points
on line 1 (closest to the passenger boarding area). The data were first recorded with one laptop and
immediately after with the other. Figure 7 shows the time-related RSS values for the 3 APs and for one
point, TP1; we labelled the points TP1 to TP4, with coordinates TP1 = (2.00, −32.45), TP2 = (2.00, −19.03),
TP3 = (2.00, −6.83), TP4 = (2.00, 12.69), and which correspond to physical points in the vicinity of
AP1 = (2.20, −19.1).
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Both Figures 7 and 8 represent change of orientation with vertical lines and the mean RSS values
recorded by each laptop with green horizontal lines. When we study these figures closely, we observe
the following:

(a) A change in the RSS when changing the orientation of the laptop, perhaps more pronounced in
the Acer laptop: an increase in the RSS value was detected for E and W (between the 30–60 s time
interval and the 90–120 s interval). This may be due to the combination of two causes: (1) that
the APs are arranged on a north-south axis and the person taking the measurements partially
screens the RSS from the APs (to a greater or lesser extent depending on the relative position
of the measuring point and the position of the AP); and (2) the position of the antenna inside
the laptop.

(b) The mean RSS values for the two laptops at TP1 are very close for AP1 (and more distant for
AP2 and AP3), bearing in mind that TP1 is the closest point to AP1. This may be due to the
large-scale-fading component that describes signal attenuation, since in some cases the signal
travels more or less distance depending on the AP, and is more or less absorbed by people and
materials on its path to the receiver. This component predicts the mean RSS value [8].

(c) The fluctuations in the RSS are greater for the Acer laptop than the Asus. This may be due to
the increased movement of people and buses during the period of measurement with this laptop
(although it was observed in almost all cases) or perhaps to the greater sensitivity of this laptop’s
Wi-Fi card.
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The observations in Figure 8a,c were also true for the other TP points. In relation to the phenomenon
described in Figure 8b, the same occurred with the other TP points and their corresponding nearest
access point. For example, in the case of point TP4, as it is located near AP2, the mean RSS values are
very close, as may see in Figure 8.

These findings led us to use only the Asus laptop in subsequent positioning tests but with the
possibility of conducting a more in-depth study for offline device calibration [9] in the future.

The influence of people and buses and the influence of the position of the reference points were
also analysed, i.e., their proximity to or distance from the passenger boarding area (near line 1 or line 2).
For example, and for reasons of space, we shall only mention the AP1 RSS readings taken by the Asus
laptop at two points: samples taken at reference points 1-1 (closer to the boarding area and at a distance
of 19.03 m from AP1) and 2-1 (further from the boarding area and at a distance of 19.95 m from AP1),
taking into account the fact that both points are separated by 6 m. As may be seen in Figure 9, the
histogram for point 1-1 shows a wider RSS value range in comparison to the lower range shown in
the histogram for point 2-1. The greater accumulation of people (queues) and their movements in the
boarding area in relation to the seating/window area (and whether the data were measured in rush
hour or not), would explain the behaviour of the RSS in these histograms.Sensors 2017, 17, 1299 12 of 28 
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Figure 8. RSS vs. time for point TP4 and the three APs: (a) AP2; (b) AP1 and (c) AP3.

The geometric arrangement of the 3 access points, mentioned in Section 3.2, led us to study its
possible influence on the Wi-Fi positioning results: within the testbed and under LOS conditions we
calculated the three straight lines parallel to the X axis of points at an equal distance between 2 pairs
of access points. This was to enable us to determine the areas within the testbed with the highest
RSS values.
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Figure 10 shows the result of this calculation. Due to the relative configuration between the testbed
and the AP distribution, it is interesting to note that AP2 has the greatest influence on most cells of the
grid, i.e., theoretically and under LOS conditions, the order of the mean RSS values in the grids should
be as follows:

• Cells 1 to 4: RSS2 > RSS1 > RSS3
• Cells 5 to 9: RSS2 > RSS3 > RSS1
• Cell 10: RSS3 > RSS2 > RSS1
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This would imply that, theoretically at least, 3 zones would be created in the testbed in which the
RSS order would be as indicated above. Table 1 shows data relating to one of the tests carried out in
which this order is practically achieved, except for cells 1-1 and 2-3. These findings would serve for a
future study in which the reference points could be grouped by some pattern-recognition procedure,
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e.g., propagation affinity, thus filtering and speeding up a search in a densely populated database of
reference points [11].

Table 1. Zones of the testbed with the same RSS order.

Line 1 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10
RSS order 123 213 213 213 231 231 231 231 231 321

Line 2 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10
RSS order 213 213 231 213 231 231 231 231 231 321

5.1.2. Empirical Approach to the Wi-Fi Tests

The study conducted by [13] provided a set of recommendations for a range of significant
parameters to consider when gathering data:

(1) The number of APs is a primary factor in position errors.
(2) For the offline phase, 20 samples at each reference point is sufficient.
(3) For the online phase there is no ideal value for the number of samples to be used: a balance needs

to be struck between improving the position error and the time needed to calculate the position.
The study recommends using three samples although it points out that using 15 samples gives a
reasonable cost-performance ratio.

(4) The ideal spacing between cells is 0.5 m but, on the other hand, it would take a lot of time to
collect the data: the authors recommend using a spacing of between 1 and 2.5 m. With favourable
values for these parameters, a minimum mean error value of 2.0 m is observed.

With these recommendations in mind, and considering our goal of “rough” Wi-Fi positioning, in
the offline phase, with an ASUS N56J laptop with an integrated Ralink wireless network card, and
Wi-Fi scanner software (Vistumbler), 30 one-second samples were taken at each reference point every
2 s (15 samples) for each access point and each orientation (N, E, S, W). By means of a laser pointer with
an optical viewfinder with a range of up to 200 m and a precision of 1.0 mm, and for each reference
point, the coordinates (x, y) were taken with respect to the coordinate source, O, of the grid. Therefore,
each entry in the database has the generic structure (xri, yri, Ri) in which (xri, yri) are the coordinates
of each reference point i, and Ri has the following structure:

Ri =

[
idj ork rssjk
...

...
...

]
(4)

where the index i = 1 − 1, . . . , 2 − 10 indicates the data collection line and the reference point, idj
refers to the Wi-Fi access point with j = 1, 2, 3, ork refers to the orientation with k = N, E, S, W,
and finally, rssjk indicates the received signal strength from access point j and with orientation k.
Therefore, the database of reference points consists of approximately 3600 entries (20 points × 15
samples × 4 orientations × 3 access points). Once the raw reference fingerprints had been recorded,
several correlation databases were constructed.

In the online phase, the same laptop used in the offline phase was used to record between 10
and 26 target points (depending on the test) randomly in the grid (some are shown in Figure 11 as
green points), 30 one-second samples every 2 s (15 samples) and for each orientation (N, E, S, W), their
coordinates also being recorded with the laser pointer. The structure for each of the target fingerprints is:
(xo, yo, T) where (xo, yo) are the coordinates of each random point and T has the following structure:

T =

[
idj ork rssjk
...

...
...

]
(5)
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Test 1. Mean Values by Orientation

From the original database, another database was built, which we shall call Wi-Fi_0, in which
starting from the Ri values the mean RSS values for each orientation were obtained, having been
reduced to 240 entries (20 points × 4 orientations × 3 APs). With 10 target points, three samples were
randomly selected from each AP and orientation at consecutive time points (6 s) and their mean value
calculated. From there, the distance (in signal space) between each reference fingerprint for the four
orientations and each target fingerprint (by orientation) was calculated, i.e., each north-facing target
fingerprint was compared with all the reference fingerprints for the four orientations, etc.

The purpose of this first test was to simulate the positioning of a user with a mobile device who is
specifically facing in one of the four possible directions in real time. These data could be ascertained
through the device compass. The accuracy results are shown in Table 2 (for the first 4 k-values) and the
precision results in Table 3.

Table 2. Accuracy of Test 1: mean errors for different k and orientation values.

Orient. k = 1 k = 2 k = 3 k = 4

N 5.83 6.68 6.97 7.39
S 7.08 6.95 7.47 6.81
E 8.10 7.05 7.46 7.63
W 5.25 5.34 4.54 4.44

Table 3. Precision of Test 1.

k = 1 k = 2
Perc N E S W N E S W

25% 3.21 3.15 5.53 1.73 3.68 2.54 4.75 2.97
50% 5.05 5.53 7.37 4.72 5.05 4.75 6.18 4.75
90% 9.24 11.38 13.44 8.12 9.24 11.47 11.47 8.39

k = 3 k = 4
Perc N E S W N E S W

25% 3.75 3.71 4.36 3.57 4.66 3.71 4.53 3.13
50% 4.99 4.53 5.52 3.67 5.80 4.53 8.48 3.88
90% 14.12 9.43 10.08 6.73 13.88 8.52 9.43 5.21

It may be seen from the above data that accuracy and precision are clearly superior when facing
West, with an average accuracy for k = 4 neighbours greater than 4 m and a precision of less than
5.21 m 90% of the time. The worst-performing orientations were north and south. One possible
explanation for this is that on the north-south axis, the person who records the data used to build the
reference database screens the signal from the three APs to a certain extent, as shown in Figure 7 in the
preliminary analysis.
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Test 2 and 3: Mean Values by Orientation

In the offline phase and to eliminate the orientation effect we followed an approach similar to [4]:
from the original database we obtained the mean RSS values for each orientation and subsequently
selected the maximum value from the four orientations, reducing it to 60 entries (20 points × 3 AP).
We shall call this database Wi-Fi_1. In the online phase for 26 target points the following tests were
carried out:

(a) Test 2. The same procedure was followed as with the reference points: the mean values of all
the RSS samples were obtained for each orientation and AP, and subsequently the maximum
value from the 4 orientations was selected. This approach is not real since a mobile device user
would never stop to take 15 samples in 30 s facing the four cardinal directions. Nevertheless, it
will serve a purpose as a method of comparison for the following approach, which we consider
closer to reality.

(b) Test 3. Nine samples were randomly taken: three consecutive samples for each AP in the same
time interval and in a specific orientation, this orientation varying between the different target
points. The maximum value was then calculated. From there, the distance (in signal space)
between each reference fingerprint and each target fingerprint was calculated.

The accuracy results for both tests are shown in Table 4 (for the first 4 k-values) and the precision
results using the CDF in Figure 12.

Table 4. Comparison of the accuracy of Test 2 and Test 3 for the Wi-Fi_1 database: mean errors for
different k-values.

k = 1 k = 2 k = 3 k = 4

Mean error Test 2 5.00 4.13 4.15 4.49
Mean error Test 3 6.14 4.82 5.52 5.41
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In general we observed that the approach in Test 2 produced a greater accuracy than that of Test 3;
the precision of Test 2 is less than 4 m 65% of the time, and the precision of both tests is less than 8 m
approximately 92% of the time. Therefore, accuracy and precision values are obtained from the order
of the desired cell or the cell immediately adjacent.

We must keep in mind that: (1) we are working with raw data; (2) we are working in an
environment with considerable noise produced by the continuous movement of passengers and
buses; (3) we have chosen a grid with cells spaced every 4 m and few reference points, precisely
because we want to adjust Wi-Fi positioning with BLE positioning.

The focus of Test 3 is closer to reality and it was observed that a user would be located in a cell
immediately next to the real cell in 50% of cases.

Test 4. Spearman’s Rank Correlation Coefficient

In this test, the Wi-Fi_1 database is taken and the RSS values are ranked in order to then
apply Spearman’s rank correlation coefficient [29,32]. This index ρ, is used primarily to calculate
the correlation between the reference fingerprints and the target fingerprints:

ρ =


1 − 6·∑N

i=1(ti−ri)
2

N·(N2−1)

∑N
i=1(Vt(i,2)−ρt)·(Vr(i,2)−ρr)

∑N
i=1[Vt(i,2)−ρt ]

2·∑N
i=1[Vr(i,2)−ρr ]

2

where ρt,r =
1
N ·∑N

i=1 Vt,r(i, 2).
Equations (6a) or (6b) are used if data do not, or do, have tied ranks. Vt, Vr are two Nx2 matrices

that are built to account for the fact that target and reference fingerprints might not have the same
number of APs, nor the same APs.

In this case, the four mean orientations of the 3 APs (for each reference fingerprint, R, and target
fingerprint, T) are taken as if they were distinct APs, i.e., as if there were 12 APs, and the correlation
coefficient is calculated between both fingerprints, ρ, with −1 ≤ ρ ≤ 1. A value of ρ = −1 indicates
that there is no correlation between the fingerprints and a value of 1 indicates maximum correlation.
Using this index, it is possible to calculate the distance between fingerprints in the form d = 1 − ρ, the
values of which will be in the range 0–2.

In this test, 26 target points were again taken; the accuracy results are displayed in Table 5,
compared with the results of Tests 2 and Test 3. Figure 13 shows the precision results in relation to the
results of Test 2 and Test 3.

We may observe that for k = 2 with Test 4, a mean error of 3.94 m and a precision of 3.19 m 50% of
the time and near to 8.0 m 90% of the time are obtained.

Table 5. Comparison of the accuracy of Test 2, Test 3 and Test 4 for the Wi-Fi_1 database: mean errors
for different k-values.

k = 1 k = 2 k = 3 k = 4

Mean error Test 2 5.00 4.13 4.15 4.49
Mean error Test 3 6.14 4.82 5.52 5.41
Mean error Test 4 4.61 3.94 4.25 3.97
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5.2. BLE Analysis

5.2.1. Preliminary Analysis

As may be seen in Figures 1 and 4, the distribution of the seven chosen beacons was as follows:
four beacons (B1, B3, B5, B7) in the boarding area and at alternate stops and three beacons (B2, B4,
B6) in the area separate from the boarding area (8 m away). The reason for choosing this distribution,
which is not ideal (the ideal would be a beacon at each stop), was to achieve better BLE positioning in
areas away from the boarding points. As was the case with Wi-Fi, certain RSS properties were also
studied in the testbed and under the same conditions.

Initially we studied the variation of the mean RSS values depending on the distance when moving
along reference point lines 1 and 2 and for different beacons. Figure 14 displays graphs for four beacons:
beacons 1 and 5 along line 1 and beacons 2 and 4 along line 2. These beacons were chosen by way of
example since the behaviour is similar for all the other beacons.

The expected behaviour of this variation was observed: a decrease in mean RSS values as the
distance from the beacon increases or vice versa, in addition to fluctuations due to the different
behaviours of the three BLE channels. For example, in the first of the graphs, as the user moves along
reference point line 1 along a north-south axis (which progressively increases the distance from beacon 1)
the mean RSS value decreases. In the case of the second graph, for beacon 5, the mean RSS value
increases, attaining a maximum value (when at the same Y-coordinate), then decreases, as the user
moves away from the beacon towards the southern zone of the testbed.

Based on these observations we may construct an RSS attenuation model for BLE as defined by
the following Equation [29]:

P(d) = P(d0)− 10n·log10

(
d
d0

)
(7)

where P(d) is the RSS value at a distance of d metres from the beacon, d0 is a reference distance, and n
is the slope. If we take d0 = 1, the equation is expressed in the following form:
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P(d) = A − 10n·log10(d) (8)

where A is the RSS value at the reference distance.Sensors 2017, 17, 1299 18 of 28 
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Figure 14. Graphs for the mean RSS values vs. distance to the Y axis at reference points along lines 1
and 2, for 4 of the 7 beacons. (a) Beacons 1; (b) Beacons 5; (c) Beacons 2 and (d) Beacons 4.

The specific process would be as follows: in the offline phase and at each reference point, the
mean RSS values for each beacon are taken and the distance from the point to the corresponding
beacon is calculated. Subsequently a linear regression is used to estimate the parameters A and n.
Figure 15 displays the regression line for beacon 1.

One drawback of this method is that a regression line with a single slope may not correctly reflect
the propagation characteristics near or far from a beacon, as these characteristics may be very different
in the two zones; this would lead to sizeable errors when estimating distance, especially at remote
target points. This behaviour may be observed in Figure 15 for distance logarithm values between
approximately 1.4 and 1.6. To fit the model better, two regression lines could be used; for example, in
relation to Figure 15, one for points to the left of the break-point (which in this case would be close to
1.4) and another for the rest, where this point would be determined empirically [29,33].

An initial study was also carried out to analyse the structure of the histograms for different
beacons recorded by an observer located statically at several reference points. Measurements were
taken for 1 min and at a distance of 1.4 m from several beacons, in the absence and presence of moving
passengers. In the absence of moving passengers, the histograms presented characteristics as displayed
in Figure 16a: one dominant RSS value was recorded (in this case, 59 dBm). However, in the presence
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of moving passengers, the histograms presented characteristics as displayed in Figure 16b: there is no
longer a dominant value.
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At the same distance from a beacon, the observed RSS value is not the same for the three BLE
channels (37, 38 and 39). In our case, even working in aggregate mode, this effect is reflected in the
multimodal distribution shown in the histogram of Figure 16b; this is simply the consequence of the
fact that BLE technology transmits advertisements on these channels to mitigate interference with
other devices [15].

5.2.2. Empirical Approach to the BLE Tests

The empirical approach followed was similar to that followed with Wi-Fi [34]. In this case,
however, a grid of 22 cells, each measuring 2 m × 2 m with a density of 14.5 fingerprints per m2,
was chosen initially (later increased to 42 cells), and seven BLE beacons were deployed (see Figure 5).
For these tests, the configuration of each beacon was not very cost-effective in terms of battery
consumption: at a frequency of 50 Hz and with an output power of 0 dBm.

We should note that the beacons are located on alternate columns, which means a beacon at
alternate bus stops. The density of beacons is not ideally suited to the purposes of our study (to position
a user at the desired stop and offer advanced services) but it may give us an idea of a higher level of
positioning error for this technology and in this environment.

In the offline phase, with a Samsung Galaxy S5 mobile device running Android 6.0.1 (Samsung
Electronics, Seoul, Korea) and the Beacon Scanner application, 1 sample per second was taken at each
reference point for 30 s and for each beacon. The scanning was performed in aggregate mode, i.e., without
individually distinguishing BLE channels 37, 38 and 39. Therefore, the initial and final database of
reference points consisted of approximately 4620 entries (22 points × 30 samples × 7 beacons) and 8820
entries (42 points × 30 samples × 7 beacons). Once the raw reference fingerprints had been recorded,
several correlation databases were constructed.
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Test 1, Test 2 and Test 3. Mean and Median Values

From the original database three databases were created, which we shall call BLE_1, BLE_2 and
BLE_3, in which the mean RSS values (BLE_1 and BLE_3) and the median RSS values (BLE_2) were
obtained for each beacon, said databases having been reduced to 154 (22 points × 7 beacons) and 294
entries each (42 points × 7 beacons) depending on the number of reference points (22 or 42). In the
online phase, 10 target points were used, the same points that had been used for Wi-Fi positioning
(see Figure 17). With the same mobile device used in the offline phase, a procedure was carried out for
the databases similar to the reference fingerprints procedure.
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From there, the distance (in signal space) between each reference fingerprint and each target
fingerprint was calculated using two distance metrics: (a) Euclidean (BLE_1 and BLE_2), and (b)
Mahalanobis (BL_3) [10], where the fingerprint comparison implemented in the three cases was the
WKNN algorithm. The accuracy results of the three tests are shown in Table 6 (for the first 4 k-values)
and the precision results in Table 7, Table 8 and Figure 18.

Table 6. Accuracy of Tests 1, 2 and 3: mean errors for different k-values.

22 Reference Points 42 Reference Points

k Mean Error
(Test 1:BLE_1)

Mean Error
(Test 2:BLE_2)

Mean Error
(Test 3:BLE_3)

Mean Error
(Test 1:BLE_1)

Mean Error
(Test 2:BLE_2)

Mean Error
(Test 3:BLE_3)

1 2.96 3.03 2.70 2.10 2.11 1.86
2 2.64 2.69 2.50 2.02 2.12 1.47
3 2.67 2.72 2.65 2.02 2.15 2.05
4 2.44 2.58 2.96 2.36 2.34 2.09

Table 7. Precision of Tests 1, 2 and 3. 22 reference points.

Test 1:BLE_1 Test 2:BLE_2 Test 3:BLE_3
Perc k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

25% 1.15 1.48 2.37 2.16 1.15 2.44 2.29 2.23 1.17 1.73 2.33 2.29
50% 1.55 2.72 2.88 2.49 2.14 2.70 2.64 2.55 2.14 2.61 2.57 2.84
90% 5.12 4.00 3.10 3.31 5.12 3.45 3.58 3.66 4.60 3.49 3.33 3.83
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Table 8. Precision of Tests 1, 2 and 3. 42 reference points.

Test 1:BLE_1 Test 2:BLE_2 Test 3:BLE_3
Perc k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

25% 1.09 1.11 1.26 1.80 1.09 1.48 1.19 1.82 1.09 0.56 1.64 1.70
50% 1.65 1.65 2.21 2.20 1.65 1.68 2.09 1.95 1.65 1.55 2.13 1.96
90% 3.37 3.19 2.51 3.29 3.37 3.45 3.24 3.12 2.79 1.81 2.43 2.67
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We can see that using 42 reference points, better values of accuracy and precision are obtained. 
In this case, the accuracy of Tests 1 and 2 is very similar, although it is slightly higher for Test 1, 
where mean RSS values were used. The Test with the best results is Test 3 (mean RSS values and 
Mahalanobis distance), which obtained a mean error of 1.47 m for k = 2 neighbours. With regard to 
precision, for k = 2 the best behaviour is that of Test 3, which obtained an error of 1.81 m 90% of the 
time. The above data show that, using the Mahalanobis distance, the mean RSS value, and for k = 2 
neighbours, we obtained an average accuracy of 1.47 m and a precision of approximately 1.81 m 
90% of the time. 

5.2.3. RSS Attenuation Model for BLE 

The method for obtaining the regression line seen in Section 5.2.1 can be used to calculate the 
distances of the target points from each beacon, which would mean knowing the distance from each 
target point to each bus stop. The process would be as follows: ascertain the mean RSS value of a 
target point, T, and isolate ݀ from the equation of the regression line (obtained for reference 
points), to then obtain an estimate of the distance from point T to a specific beacon. For example, for 
42 reference points and beacon 1, the regression line obtained was: ܲ(݀) = −57.0 − 19.8 ∙ logଵ(݀) (9) 

Isolating ݀ from these equations and knowing the mean RSS values at the target points, we 
obtain the estimated distance to the corresponding beacon (B1 of Figure 5b in this case). The actual 
distance is obtained by calculating Euclidean distance between the target point and beacon 1. 

If two regression lines are used, the following equations are obtained: ܲ(݀)  =  ൜−57.4 − 19.4 ∙ logଵ(݀), logଵ(݀) ≤ 1.31−53.7 − 22.0 ∙ ݈ ଵ݃(݀), logଵ(݀)  1.31 (10)

The graph in Figure 19 shows the regression line for beacon 1 using line Equation (10). 
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Figure 18. Precision (CDF) for Test 1, 2 and 3 with: (a) 22 and (b) 42 reference points.

We can see that using 42 reference points, better values of accuracy and precision are obtained. In
this case, the accuracy of Tests 1 and 2 is very similar, although it is slightly higher for Test 1, where
mean RSS values were used. The Test with the best results is Test 3 (mean RSS values and Mahalanobis
distance), which obtained a mean error of 1.47 m for k = 2 neighbours. With regard to precision, for
k = 2 the best behaviour is that of Test 3, which obtained an error of 1.81 m 90% of the time. The above
data show that, using the Mahalanobis distance, the mean RSS value, and for k = 2 neighbours, we
obtained an average accuracy of 1.47 m and a precision of approximately 1.81 m 90% of the time.

5.2.3. RSS Attenuation Model for BLE

The method for obtaining the regression line seen in Section 5.2.1 can be used to calculate the
distances of the target points from each beacon, which would mean knowing the distance from each
target point to each bus stop. The process would be as follows: ascertain the mean RSS value of a target
point, T, and isolate d from the equation of the regression line (obtained for reference points), to then
obtain an estimate of the distance from point T to a specific beacon. For example, for 42 reference
points and beacon 1, the regression line obtained was:

P(d) = −57.0 − 19.8· log10(d) (9)

Isolating d from these equations and knowing the mean RSS values at the target points, we obtain
the estimated distance to the corresponding beacon (B1 of Figure 5b in this case). The actual distance is
obtained by calculating Euclidean distance between the target point and beacon 1.
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If two regression lines are used, the following equations are obtained:

P(d) =

{
−57.4 − 19.4· log10(d), log10(d) ≤ 1.31
−53.7 − 22.0·log10(d), log10(d) > 1.31

(10)

The graph in Figure 19 shows the regression line for beacon 1 using line Equation (10).Sensors 2017, 17, 1299 23 of 28 
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Table 9 shows the estimation of the distance of 10 target points from beacon 1 using regression
line (3) and regression lines (4), compared with the actual distance.

If one regression line is used, the mean error in the distance estimate for beacon 1 is 1.91 m and
if two lines are used, the mean error falls to 1.85 m; the error in both cases is less than 2.0 m 70% of
the time.

Table 9. Estimation of distances of 10 target points from beacon 1 by means of the signal attenuation
model with 1 and 2 regression lines.

Beacon 1

RL 1 SLOPE T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Mean RSS (dBm) −77.5 −70.1 −75.0 −78.4 −81.0 −81.3 −85.6 −85.6 −86.5 −88.7
Actual distance (m) 7.28 4.11 8.76 11.93 17.04 18.82 23.35 27.07 32.61 35.48

Estimated distance (m) 10.83 4.60 8.12 12.04 16.39 17.00 28.05 28.04 31.11 40.11
Error (m) 3.55 0.49 0.63 0.12 0.65 1.82 4.70 0.97 1.49 4.63

RRL 2 SLOPES T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Mean RSS (dBm) −77.5 −70.1 −75.0 −78.4 −81.0 −81.3 −85.6 −85.6 −86.5 −88.7
Actual distance (m) 6.92 4.11 8.76 11.93 17.04 18.82 23.35 27.07 32.61 35.48

Estimated distance (m) 10.85 4.53 8.09 12.10 16.58 17.20 28.28 28.27 31.04 39.02
Error (m) 3.93 0.41 0.67 0.17 0.47 1.62 4.93 1.20 1.56 3.54
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6. Discussion

It is not a simple task to compare our proposed system with other studies. The main reason
for this is that each system has a range of parameters (number of access points/beacons, location of
said access points, ambient conditions and working environment, etc.) which are very different in
each study. If we add to this the fact that not all authors express accuracy and precision in the same
way, it becomes evident that it is very difficult to establish a complete comparison between systems.
Despite this fact, a comparison between the results of our study and the results obtained by other
systems is presented below.

In Table 10, accuracy and precision for some wireless-based indoor positioning systems are shown.
For WLAN-based systems, accuracy values are in the range of 1.5–5.0 m, and precision values in the
range of 2.0–5.9 m 90% of the time. With respect to Bluetooth-based systems, accuracy values are in
the range of 0.48–3.6 m and precision values in the range of 2.0–4.8 m 95% of the time.

Table 10. Some wireless-based indoor positioning systems, studies and solutions [5,35,36].

System/Study/Solution Wireless Technologies Positioning Algorithm Accuracy Precision

RADAR WLAN RSS KNN 3–5 m 50% within around 2.5 m and
90% within around 5.9 m

Horus WLAN RSS Probabilistic 2 m 90% within 2.1 m

DIT WLAN RSS MLP, SVM 3 m 90% within 5.12 for SVM; 90%
within 5.40 for MLP

Ekahau WLAN RSSI Probabilistic 2–3 m 50% within 2 m

MultiLoc WLAN RSS SMP 2.7 m 50% within 5.4 m

Faragher [15] BLE Bayesian approach N/A
95% within 2.6 m (1 beacon
per 30 m2)–4.8 m (1 beacon
per 100 m2)

Zhu [33] BLE

RSSI propagation model;
Gaussian filter; Piecewise
fitting for offline training;
Weighted distance filter

N/A 80% within 1.5 m

Cinefra BLE
Path loss model with
particle filter to estimate
parameters

0.48–2.06 (office
env.); 0.66–3.6
(home env.)

50% within 1.5 m

Indoo.rs BLE Fingerprinting indoor
positioning approach N/A 95% within 5.0 m

Zhuang [16] BLE

channel-separate
polynomial regression
model, channel-separate
fingerprinting, outlier
detection and extended
Kalman filtering

N/A
90% within 2.56 m (1 beacon
per 9 m2)–3.88 m (1 beacon
per 18 m2)

Tables 11 and 12 show accuracy and precision for the different tests presented in this paper.
WLAN accuracy is in the range of 3.94–4.82 m, and precision in the range of 5.21–7.0 m 90% of the time.
With respect to BLE-based tests, accuracy is in the range of 1.47–2.15 m, and precision in the range of
1.81–3.58 m 90% of the time.

Comparing results, it can be observed that for WLAN, with only three APs, the accuracy values
obtained in this paper are in the same range as the values obtained by the systems shown in Table 10,
while precision results are slightly out of this range, especially the upper limit. With respect to BLE,
with a density of one beacon per 45.7 m2, the values of accuracy and precision obtained in this study
are in the same range. Taking into account the fact that the usual values of accuracy and precision
obtained in laboratory conditions are similar to our results, we consider that our results, even when
obtained in challenging conditions, are reasonable.
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Table 11. Summary of WLAN tests presented in this study.

Test Method Accuracy Precision

Test 1 Offline: mean RSS for orientation. Online: 3
consecutive samples. Euclidean distance + WKNN 4.44 m 90% within 5.21 m

Test 2 Offline + online: max. Value of mean RSS for
orientation. Euclidean distance + WKNN 4.13 m 90% around 6 m

Test 3
Offline: max. Value of mean RSS for orientation.

Online: 3 consecutive samples in a specific
orientation. Euclidean distance + WKNN

4.82 m 90% around 7 m

Test 4 Offline + online: ranked mean RSS for
orientation. Spearman’s rank + WKNN 3.94 m 90% around 7 m

Table 12. Summary of BLE tests presented in this study.

Test Method Accuracy Precision

Test 1 Offline + online: mean RSS.
Euclidean distance +WKNN 2.02 m 90% within 3.10 m

Test 2 Offline + online: median RSS.
Euclidean distance +WKNN 2.15 m 90% within 3.58 m

Test 3 Offline + online: mean RSS.
Mahalanobis distance +WKNN 1.47 m 90% within 1.81 m

7. Conclusions and Future Works

In this paper, we have presented a positioning system based on two subsystems: Wi-Fi and
Bluetooth Low Energy. The first (Wi-Fi) was intended to position users with not very high levels of
accuracy and precision, but not too far from reality; the second (BLE) was intended to position the
user with greater precision, as well as to provide advanced information services at the destination
point. For both types of positioning, preliminary analyses were carried out of the behaviour of the
received signal strength, the suitability of the measuring devices, etc. For Wi-Fi positioning, four tests
were carried out, and for Bluetooth, three tests along with a signal attenuation model. For all the
tests, the Euclidean distance metric was used, due to its simplicity of implementation and acceptable
results, except for one of the BLE tests in which the Mahalanobis distance was used; the fingerprint
comparison algorithm applied was WKNN.

In all the Wi-Fi tests, measurements were taken at reference points spaced every 4 m. The first
took into account the orientation of the user, the online phase of which described a scenario very
close to reality as it took only three samples of the signal from each access point. Two orientations
presented better results than the other two, probably due to the arrangement of the access points with
respect to the person measuring the data, who screens the signal coming from these access points.
For the most favourable orientation, and compared with four neighbours, an average accuracy of
4.44 m and a precision of less than 5.21 m 90% of the time were obtained. In the second and third tests,
the user orientation effect was eliminated, producing, respectively, an accuracy of 4.13 and 4.82 m
compared to two neighbours. The precision of the two tests was less than 4.0 m 50% and 60% of the
time, respectively. In the fourth and final test, the mean orientations were taken and Spearman’s rank
correlation coefficient was used to compare reference and target fingerprints, obtaining by comparison
with two neighbours an accuracy of 3.94 m and a precision of less than 4 m almost 70% of the time.

With regard to the three BLE tests, measurements were taken at reference points spaced every
1 and 2 m, obtaining better results in the first case. The data collection was carried out in aggregate
mode, i.e., without differentiating between channels 37, 38 and 39. The primary difference between the
first two tests was that in the first the mean RSS value was taken and in the second, the median. In both
tests very similar accuracy results were obtained by comparison with two neighbours, with position
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values very close to 2.0 m. Regarding precision, the first test behaved better with three neighbours,
obtaining a precision of less than 2.51 m 90% of the time. The third test, which used mean RSS values
and Mahalanobis distance, gave the best results: for k = 2 neighbours, a mean error of 1.47 m and a
precision of 1.81 m was obtained 90% of the time. In the case of the attenuation model, we compared
results by fitting the data to one or two regression lines. An example was presented in which if one
regression line is used, the mean error in the distance estimate from a specific beacon is 1.91 m and,
if two lines are used, the mean error falls to 1.85 m, with the error in both cases being less than 2.0 m
70% of the time.

Taking into account the fact that this system is designed to work in real situations in a scenario
with high environmental fluctuations, and comparing those results with others obtained in laboratory
scenarios, our results are promising and demonstrate that the system would be able to position users
with these reasonable values of accuracy and precision. That would place a user in the desired cell,
or in the immediately adjacent cell, in the worst case, on a high percentage of occasions, as was
originally required. In addition, we can conclude that for BLE positioning, excellent accuracy and
precision values are achieved, so this method would position a user with even greater precision than
Wi-Fi positioning.

We understand that, for the conditions in which this system was deployed, the error values
obtained for both positioning systems, but mainly for Wi-Fi, reflect upper bounds and could be
improved, making this system a strong candidate for deployment in other similar environments.
To this end, and as future lines of action, we may mention the following: for its low cost and ease of
maintenance, a greater deployment of BLE transmitters, use of grids with reference points with smaller
spacing, data collection campaigns with greater numbers of samples, reduction of their duration,
e.g., by involving (explicitly or implicitly) users or other methods, pre-processing of data and search
filtering in the reference point database, use of a greater number of heterogeneous devices (with
corresponding calibration) for the offline and online data collection phases, studies of probabilistic
positioning algorithms and comparison of the results obtained with other distance metrics that may be
suitable for this type of environment.
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