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Abstract: Ambient Assisted Living (AAL) has become an attractive research topic due to growing
interest in remote monitoring of older people. Development in sensor technologies and advances
in wireless communications allows to remotely offer smart assistance and monitor those people at
their own home, increasing their quality of life. In this context, Wireless Acoustic Sensor Networks
(WASN) provide a suitable way for implementing AAL systems which can be used to infer hazardous
situations via environmental sounds identification. Nevertheless, satisfying sensor solutions have not
been found with the considerations of both low cost and high performance. In this paper, we report
the design and implementation of a wireless acoustic sensor to be located at the edge of a WASN for
recording and processing environmental sounds which can be applied to AAL systems for personal
healthcare because it has the following significant advantages: low cost, small size, audio sampling
and computation capabilities for audio processing. The proposed wireless acoustic sensor is able to
record audio samples at least to 10 kHz sampling frequency and 12-bit resolution. Also, it is capable
of doing audio signal processing without compromising the sample rate and the energy consumption
by using a new microcontroller released at the last quarter of 2016. The proposed low cost wireless
acoustic sensor has been verified using four randomness tests for doing statistical analysis and a
classification system of the recorded sounds based on audio fingerprints.

Keywords: wireless acoustic sensor; ambient assisted living; internet of things; edge computing;
low cost; ESP32

1. Introduction

As one of the fastest growing technologies in the emerging Internet of Things (IoT) environment,
low power wireless sensor networks are expected to realize IoT applications and to provide connectivity
for remote smart objects. The basic concept of IoT is that various smart objects can be automatically
linked into a network for interacting with humans through perception and networking technologies [1].
Smart objects in the IoT have the ability to send information through the Internet to provide the
interaction among multiple things and people. IoT is opening tremendous opportunities for novel
applications that promise to improve the quality of people life.

The development of IoT technologies can be applied to a huge variety of applications, such as
intelligent power grid [2], healthcare [3], environmental monitoring [4], localization [5], etc. In an
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AAL context where assisted living technologies are based on ambient intelligence, smart objects need
to use wireless communications because of the requirements of supporting mobile applications and
remote monitoring of people. AAL can be used for detecting and preventing distress situations,
improving wellness and health conditions of older adults. AAL technologies can also provide more
safety for the elderly, using mobile emergency response systems, detecting domestic accidents,
monitoring activities of daily living, issuing reminders, as well as helping with mobility and
automation, and, overall, improving their quality of life [6,7]. In fact, according [8], AAL should
be understood as a system for extending the time people can live in their preferred environment by
increasing their autonomy, self-confidence and mobility; supporting the preservation of health and
functional capabilities of the elderly, promoting a better and healthier lifestyle for individuals at risk;
enhancing security, preventing social isolation and supporting the preservation of the multifunctional
network around the individual; supporting carers, families and care organizations; and increasing the
efficiency and productivity of used resources in the ageing societies.

A survey of sensors in assisted living of older people is presented in [9], such as passive infrared
(PIR) and vibration sensors, accelerometers, cameras, depth sensors, and microphones. These systems
should satisfy some requirements as: low-cost, high accuracy, user acceptance and privacy. These can
be connected to form a network for an intelligent home designed for elderly people. The data and
decision results that the sensors produce can be processed and fused over a cloud or a fog. Authors
expect that the IoT will lead to remote health monitoring and emergency notification AAL systems that
will operate autonomously, without requiring user intervention. In this context, audio recognition is
also a promising way to ensure more safety by contributing to detection of distress situations because
of the interaction of each person with her environment may be identified. In fact, in [10] detection of
distress situations and monitoring of activity and health are described as two challenges to address in
AAL environments. On the one hand, the identification the sounds of everyday life can be particularly
useful for detecting distress situations in which the person might be. For instance, the detection of
a fall can be used to call an emergency number. On the other hand, audio processing can be quite
useful for the monitoring of the person’s activity and the assessment of some decline. For instance,
an application might consist of recognising health related symptoms such as coughing, scraping throats
and sniffles. Hence, the development of WASN with low power consumption and low cost are suitable
for implementing AAL systems. In this research, we are focused in the development of a low cost
wireless acoustic sensor with audio processing capabilities and network connectivity to be located at
the edge of a WASN.

The WASN have been developed under the paradigms of both the Smart City and the IoT.
In recent years, there has been a rapid evolution of WASN, and many works have been developed.
To date, several authors have designed and deployed WASN for different purposes such as noise
monitoring [11] or sound identification as road traffic, horns, and people [12]. For instance, in [13]
the production and analysis of a real-life environmental audio database in two urban and suburban
scenarios corresponding to the pilot areas of the DYNAMAP project was presented. The WASN of the
DYNAMAP project is based on low cost acoustic sensor but it is connected to digital recorder for data
saving. Hence, unlike our research, audio samples cannot be sent to a central server using wireless
communications, and neither audio processing can not be carried out at node. Audio recordings have
been categorized as road traffic noise, background city noise, and anomalous noise events. However,
it was carried out offline with Audicity and Matlab software [14].

In [15], a distributed noise measurement system based on IoT technology was developed.
The sensor node is based on a Raspberry Pi with an electret omnidirectional microphone and a
sound card in order to record the audio. The data from WASN was interpolated for obtaining a spatial
noise level in a small-sized city. However, the system was designed to measure, represent and predict
urban noise levels, and not for audio processing and classification.

In [16], the design of low cost wireless sensor node for environmental noise measurement
is described. The sensor node platform is built on ATmega128L with 4 kB RAM, and its internal
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10-bit ADC can operate a peak sampling rate of 33 kHz. However, according the microcontroller
specifications, the maximum sampling rate for 10-bit resolution is 9.8 kHz and not 33 kHz. In addition,
only the effective sound pressure is sent, and an audio processing is not carried out.

Nevertheless, the WASN paradigm presents several challenges, ranging from those derived from
the design and development of the wireless sensor network, such as energy harvesting and low cost
hardware development and maintenance, to some specific challenges derived from the automation of
the data collection and subsequent signal processing, such as to detect anomalous noise events [13].
In addition, the sensor of a WASN designed for AAL systems should process the enviromental sounds
to rapidly infer hazardous situations instead to send the full audio record to a server for a centralized
processing. Thus, processing data at the node can ensure shorter response time and better reliability.
In this context, the use of devices with an increasing storage and computation capacity coins a new term:
Edge or Fog Computing. This model extends Cloud computing and services to the edge of the network
reducing network latency and offloading computation [17], as well as to avoid bottlenecks at remote
server due to the throughput and volume of data to be collected and processed. Edge Computing has
the potential to address the concerns of response time requirement, battery life constraint, bandwidth
cost saving, as well as data safety and privacy [18]. This concept covers computational to be performed
at the edge of the network and to exchange data from or to cloud IoT services. In [19], the design and
deployment of a WASN at home, inspired by the Mobile Edge Computing paradigm [20] able to gather
the data of all acoustic sensing nodes deployed to infer the audio events of interest in an AAL context
is described. It follows a distributed implementation, where all digital signal processing is carried out
in a concentrator offloading the sensor nodes and avoiding the use of the server to remotely process
the data. This concentrator is based on a GPU embedded platform.

As has been discussed, many research using low cost sensors in a WASN have been developed.
Nevertheless, those works have been designed to measure only noise levels and not for sound
identification. On the other hand, research where audio processing is carried out are based on medium
cost platforms, such as Raspberry or GPU, or using cloud services. Hence, the aim of this research
is to solve these deficiencies designing a low cost acoustic sensor to do audio processing at the edge
of network.

There is no doubt that significant progress has been made in the field of wireless acoustic
sensor networks. However, an improvement to the actual sensors is needed because the main
drawback of these recent WASN is that their power consumption and cost do not fit some of the
critical requirements of AAL applications: power consumption, mobility, size and cost. In addition,
humans are most sensitive to frequencies between 2 kHz and 5 kHz, and the speech and environmental
sounds are often less than 5 kHz bandwidth. Therefore, the sensor has to be characterized by a spectrum
with these frequencies. In this paper, a novel wireless acoustic sensor is proposed. The main novelty
of this work comes from the fact that the proposed wireless acoustic sensor is able to record audio
samples at least at 10 kHz sampling frequency (5 kHz bandwidth) and 12-bit resolution, and audio
signal processing can be carried out at node without compromising the sample rate and the energy
consumption. Furthermore, this sensor can be applied in AAL systems for personal healthcare because
it has the following significant advantages: low cost, small size, wireless network connectivity, audio
sampling and computation capabilities for audio processing. Thus, the identification of sounds for an
AAL context, such as fall detection or health related symptoms, could be carried out at the edge of a
WASN reducing network latency and improving response time and battery life of proposed sensor,
enhancing quality of life and safety of older people.

The remainder of this paper is organized as follows. Section 2 describes the low cost proposed
wireless acoustic sensor. Section 3 describes the used methods to validate and evaluate the
proposed sensor. Section 4 shows the results of some experiments carried out to validate the designed
sensor in this study. Finally, in Section 5 draws some conclusions and discusses some possible directions
for future research.
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2. Wireless Acoustic Sensor

In this section the proposed low cost wireless acoustic sensor is described which is formed by an
audio sensor and a microcontroller based board. The main goal in designing the sensor was to obtain a
product of small size, low cost, low consumption and versatile which allows to be used in permanent
and remote monitoring in AAL systems.

2.1. Audio Sensor

The audio sensor is an electret microphone amplifier with adjustable gain [21]. It is based on an
electret omnidirectional microphone, CMA-4544PF-W, and an op-amp specifically optimized for use
as microphone preamplifiers, a Maxim MAX4466, Figure 1. They provide the ideal combination
of an optimized gain bandwidth product with low voltage operation in ultra-small packages.
Furthermore, it has an almost flat response in the frequency range between 50 Hz and 10 kHz,
Figure 2. Therefore, the characterization of sensor is fulfilled whose operating frequency lies within
the range 100 Hz–5 kHz.

Figure 1. Schematic of audio sensor.

Figure 2. Frequency response curve of microphone.

2.2. Microcontroller Based Board

Three low cost microcontroller platforms were evaluated, joinly with the above audio
sensor, to determine the best option for the proposed system: Libelium Waspmote platform [22],
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Espressif ESP8266 board [23], and Espressif ESP32 board [24]. Figure 3 shows the evaluated
microcontroller boards.

Figure 3. Microcontroller boards: (a) Waspmote; (b) ESP8266; (c) ESP32.

Waspmote board is a modular device that allows us to install different sensors and different
radio transceivers. Waspmote hardware architecture has been specially designed to be extremely
low consumption. The Waspmote has an Atmega1281 microcontroller running at 14 MHz with
programmable sleep modes. These sleep modes make Waspmote the lowest consumption sensor
platform in the market (0.7 uA in hibernate mode and 55 uA in sleep mode). The whole set, formed by
Waspmote and audio sensor, has a small size (85 × 75 × 35 mm, included battery). The ATmega1281
has 8 ADC channels with 10-bit resolution. Due to the microcontroller characteristics, the tested
maximum ADC sampling frequency was 9.8 kHz. In addition, it has only 8 kB SRAM, and therefore,
the audio recording is about a few tenths of a second maximum duration. Waspmote has an SD card
and could be used to save the sampled data. Nevertheless, the sample rate of ADC converter must be
fit to 8-bit resolution to carry out these extra operations needed.

ESP8266 board delivers a highly integrated Wi-Fi SoC solution for efficient power, with its
complete and self-contained Wi-Fi networking capabilities. It integrates an enhanced version of
Tensilica’s L106 Diamond series 32-bit processor and on-chip SRAM with an ADC with 10-bit resolution,
and can be interfaced with external sensors through the GPIOs, in low development cost at prototyped.
One of the most common boards with the ESP8266 is NodeMCU, with ESP-12E module, Figure 3b.
The whole set, formed by ESP8266 and audio sensor, has a very small size (50 × 30 × 20 mm) which is
very useful to place at different positions in a discrete way. It can support up to 80 MHz frequency
clock. It has a built-in SPI flash memory with 4MB capacity and the SRAM capacity available to users
is about 36 kB. The tested maximum ADC sampling frequency was 10.6 kHz.

Espressif Systems announced the launch of ESP32 cloud on chip on September 6th, 2016. It is a
Dual Core Wi-Fi + BT Combo MCU. Some of features of the ESP32 are the following: the CPU is an
Xtensa Dual-Core 32-bit LX6 microprocessor, operating up to 240 MHz, 520 kB SRAM, 12-bit SAR ADC
up to 18 channels and built-in Wi-Fi card, supporting IEEE 802.11 b/g/n standards, and Bluetooth
v4.2 BR/EDR and BLE. Also, the ESP32 chip features 40 physical GPIO pads which can be used as
a general purpose I/O, to connect new sensors, or can be connected to an internal peripheral signal.
The most common development board is the ESP32S, with a ESP-WROOM-32 module and an SRAM
capacity available to users about 300 kB. As previous board, the whole set, formed by ESP32 and audio
sensor, has a very small size (55 × 30 × 20 mm), and is very useful to place at different positions in
a discrete way. The tested maximum ADC sampling frequency was 100 kHz. It is enough for the
system purposes. Furthermore, ADC is non-blocking, so the conversion process with other instructions
execution can be overlapped.

Although all analyzed boards can fulfill for implementing a wireless acoustic sensor, ESP32
board was chosen because it has the biggest: ADC bit resolution, SRAM capacity, and microprocessor
frequency. Furthermore, because of it has a dual core and the microcontroller’s connectivity features
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and functionalities, audio samples are gathered while other operations can be simultaneously done,
such as sending data to a server using IP protocol or data processing, thus promoting the edge
computing idea. Figure 4 shows the wireless acoustic sensor based on ESP32 board. On the other hand,
the cost of proposed sensor is about 10 Euros, being it very competitive for an AAL environment.

Figure 4. Wireless acoustic sensor based on ESP32 board.

Lastly, the principle of operation of the software implementation for the proposed wireless
acoustic sensor is shown in Figure 5. First, a timer interruption is enabled for gathering the audio
samples from ADC using AnalogRead function. Timer is set to 100 µs to obtain a sampling frequency
at 10 kHz. Next, the data obtained from ADC are stored in an endless buffer. Finally, the raw data can
be sent to a server for recording the sampled data in a wav format file or a suitable audio fingerprint to
identify different sound events that can be used for detecting hazardous situations.

Figure 5. Graphical flow diagram implemented in the wireless acoustic sensor.

3. System Validation Methods

In order to validate the proposed wireless acoustic sensor a statistical analysis and an audio
classification of recorded samples are carrying out. Thus, randomness tests and an audio fingerprint
matching were the methods employed for system validation and are described in this section.

3.1. Randomness Tests

Randomness tests can be used to determine whether a dataset has a recognizable pattern, and
therefore whether the process that generated it is significantly random. That is, it can be used to test
the hypothesis that the elements of a sequence are mutually independent or not. Four randomness
tests were used to demonstrate that recorded audio files by the proposed system have a recognizable
pattern, and hence, the sampled audio information is not random. The following randomness tests
were used: Bartels Test [25], Cox Stuart Test [26], Mann-Kendall Test [27] and Wald-Wolfowitz Test [28].

3.1.1. Bartels Test

This randomness test is the rank version of von Neumann’s Ratio Test for Randomness [29].
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3.1.2. Cox Stuart Test

In this test data are grouped in pairs with the ith observation of the first half paired with the ith
observation of the second half of the time-ordered data. If the length of vector X is odd the middle
observation is eliminated. The Cox Stuart test is then simply a sign test applied to these paired data.

3.1.3. Mann-Kendall Test

This randomness test is a non-parametric statistical test that analyzes difference in signs between
earlier and later data points. The idea is that if a trend is present, the sign values will tend to
increase constantly, or decrease constantly. Every value is compared to every value preceding it in the
time series.

3.1.4. Wald-Wolfowitz Test

This randomness test is a non-parametric statistical test that transforms into a dichotomous vector
according as each values is above or below a given threshold. Values equal to the level are removed
from the sample. The default threshold value used in applications is the sample median.

3.2. Audio Fingerprint Matching

An audio fingerprint is a compact content-based signature that summarizes an audio recording.
This technology has attracted attention since they allow the identification of audio independently of its
format and without the need of meta-data or watermark embedding [30]. The main objective of an
audio fingerprint mechanism is to efficiently compare the equality (or not) of two audio files, not by
comparing the files themselves, but by comparing substantially smaller sets of information, referred to
as audio fingerprints. Furthermore, audio fingerpint length is a lot less than the raw audio data. In order
to validate the proposed wireless acoustic sensor, an open source application, termed Chromaprint [31],
is used to generate the fingerprints of original and recorded audios. Then, to find an audio matching
between original and recorded audios, the Hamming distance is evaluated using both fingerprints.

3.2.1. Chromaprint Process

Chromaprint converts the audio input to mono and downsampled to 11,025 Hz. The audio signal
is converted to the frequency domain by performing a short-time Fourier Transform (STFT) with a
frame size of 4096 samples (371 ms) and a 2/3 overlap (2731 samples). The resulting spectrum is
converted to 12 bins representing the chroma of the signal. This information is called “chroma features”.
Each bin in the chromagram represents the energy that is present in a musical note. The 12 bins
represent the 12 notes of the chromatic scale. In order to transform the bins in a more compact form to
carry out the fingerprint matching, a 12-by-16 sliding window is moved over the chromagram one
sample at a time. On each of them is applied a pre-defined set of 16 filters that capture intensity
differences across musical notes and time. Each of the filters quantizes the energy value to a
2-bit number. The 2-bit value is encoded using Gray coding. The 2-bit hash values from each of
the 16 filters are converted to a single 32-bit integer representing the subfingerprint of the 12-by-16
window. The window is advanced one sample to calculate the next subfingerprint. The full fingerprint
is composed by the all subfinngerprints.

3.2.2. Hamming Distance

In order to find a simple audio matching for verifying and validating the proposed system,
the Hamming distance is implemented because is performed at the bit-level and therefore, requires less
computational complexity. The Hamming distance between two (NFx32)-bit binary fingerprint vectors
f v1 and f v2 is computed as Equation (1):

Hd( f v1, f v2) =
NFx32

∑
i=1

F(bit f v1(i) 6= bit f v2(i)) (1)
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where NF denotes the number of subfingerprints of vectors, bit f v1(i) and bit f v2 are the ith element of
binary fingerprint vectors, and F() is an function defined by Equation (2):

F(x) =

{
1 if x is true
0 otherwise

(2)

3.2.3. Matching Algorithm

Algorithm 1 was used to evaluate the shortest Hamming distance between all original
environmental sounds and each recorded audio. The shortest distance identifies and matches the
recorded audio with the original sound.

Algorithm 1 Audio Fingerprint Matching
Require: Fingerprint of recorded audio, f v1

Require: Fingerprint of all original audios, f vsource

L1← length( f v1)

for source←1: all original fingerprints do

Lsource← length( f vsource)

for i← 1 : (Lsource− L1− 1) do

distanceVector← Hd( f v1, f vsource(i : L1 + i− 1))
end for
distanceAllAudioVector← min(distanceVector)

end for
return min(distanceAllAudioVector)

4. Results and Discussion

This section describes the acoustic anechoic chamber where different audio samples from
different environmental sounds were gathered and the dataset built to evaluate the validity of the
proposed sensor. Afterwards, the results of aforementioned system evaluation methods, randomness
tests and audio fingerprint matching, are presented and discussed. Also, the usefulness of the proposed
sensor board in terms of energy consumption and audio processing capabilities are carried out.

4.1. Acoustic Anechoic Chamber

The acoustic anechoic chamber where experiments were carried out is located on the second floor
of Institute for Technological Development and Innovation in Communications (IDeTIC) building
at Las Palmas de Gran Canaria University, Spain. The chamber area is nearly 200 cm wide and
430 cm long, and it has a simple design to absorb reflections of sound waves and is also isolated from
waves entering from its surroundings.

The soundproofing of the chamber is carried out using foam pyramidal panels which is a powerful
sound absorber that dramatically reduces echo, reverberation and standing waves. For the acoustic
insulation is used rock wool and polyurethane panels. Figure 6 shows acoustic anechoic chamber at
IDeTIC and the foam pyramidal panels used.
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Figure 6. Acoustic anechoic chamber at IDeTIC.

4.2. Dataset

A total of 48 audio records were gathered from fourteen different indoor and
outdoor environmental sounds for performing the statistical analysis and audio classification.
These environmental records have been downloaded from Freesound website [32]. Table 1 shows the
dataset characteristics. Each environmental sound was recorded using a 10 kHz sampling frequency
and 8-bit resolution during 10 s. In order to gather different samples, the start point of each recording
was randomly established.

Table 1. Audio recordings dataset.

Environmental Sound Duration (s) Number of Records

S1—Traffic jam in a city 49 3
S2—People on a street without traffic 34 3
S3—Very strong traffic 70 5
S4—City park with children 33 3
S5—Pedestrian zone of a city with traffic 32 3
S6—Inside of a noisy room by traffic 60 4
S7—Ambulance passing with the siren 29 4
S8—Drilling machine in a city 18 3
S9—Police car passing with the siren 28 3
S10—Ambulance siren. Doppler effect 24 3
S11—Dense traffic in a city 72 5
S12—Indoor door slam 23 3
S13—Indoor gun shots 98 3
S14—Slicing vegetables in a kitchen 40 3

4.2.1. Randomness Tests

All recorded audios were evaluated with the four above randomness tests. The null hypothesis of
randomness is tested against nonrandomness, and a p-value is calculated which is used in the context
of null hypothesis testing in order to quantify the idea of statistical significance of evidence, that is,
the probability of finding the observed results when the null hypothesis is true. In the tests, if the
p-value is less than 0.05, the null hypothesis is rejected because a significant difference exists.

Table 2 shows the p-values of four randomness tests. As can be seen, all p-values for Bartels,
Mann-Kendall and Wald-Wofowitz tests are less than 0.05. For Cox Stuart test, most results return
a p-value less than 0.05, and only eight tests are slightly greater than this value. It is not significant,
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and hence the null hypothesis can be rejected. Thus, it can be considered that the recorded audio files
by wireless acoustic sensor are not significantly random, and therefore, have a recognizable pattern.

Table 2. p-values of randomness tests.

Record Bartels Cox Stuart Mann-Kendall Wald-Wolfowitz

S1-R1 0 0.06 ≈0 0
S1-R2 0 0.01 ≈0 0
S1-R3 0 0.09 ≈0 0
S2-R1 0 ≈0 ≈0 0
S2-R2 0 ≈0 ≈0 0
S2-R3 0 ≈0 ≈0 0
S3-R1 0 ≈0 ≈0 0
S3-R2 0 0.02 ≈0 0
S3-R3 0 0.12 ≈0 0
S3-R4 0 0.13 ≈0 0
S3-R5 0 0.09 ≈0 0
S4-R1 0 ≈0 0 0
S4-R2 0 ≈0 0 0
S4-R3 0 ≈0 ≈0 0
S5-R1 0 ≈0 ≈0 0
S5-R2 0 ≈0 0 0
S5-R3 0 ≈0 0 0
S6-R1 0 ≈0 0 0
S6-R2 0 ≈0 0 0
S6-R3 0 ≈0 0 0
S6-R4 0 ≈0 0 0
S7-R1 0 0.07 0 0
S7-R2 0 0.08 ≈0 0
S7-R3 0 0.02 ≈0 0
S7-R4 0 ≈0 ≈0 0
S8-R1 0 ≈0 ≈0 0
S8-R2 0 0.01 ≈0 0
S8-R3 0 ≈0 ≈0 0
S9-R1 0 ≈0 0 0
S9-R2 0 ≈0 0 0
S9-R3 0 0.01 0 0
S10-R1 0 0.03 ≈0 0
S10-R2 0 0.03 ≈0 0
S10-R3 0 0.06 ≈0 0
S11-R1 0 ≈0 ≈0 0
S11-R2 0 0.01 ≈0 0
S11-R3 0 ≈0 ≈0 0
S11-R4 0 0.06 ≈0 0
S11-R5 0 ≈0 ≈0 0
S12-R1 0 0.01 ≈0 0
S12-R2 0 0.01 0 0
S12-R3 0 ≈0 0 0
S13-R1 0 ≈0 0 0
S13-R2 0 ≈0 0 0
S13-R3 0 0.01 0 0
S14-R1 0 0.05 0 0
S14-R2 0 ≈0 0 0
S14-R3 0 0.06 0 0

4.2.2. Audio Fingerprint Matching

To carry out the audio fingerprint matching, an audio fingerprint was computed both for each
recorded audio and original environmental sounds. All recorded audios are 10 s long, therefore,
each recorded audio fingerprint is 66 subfingerprints long. Thus, the vectors used in Equation (1)



Appl. Sci. 2017, 7, 877 11 of 15

are 2112 (66 × 32) bits length. Afterwards, Algorithm 1 was used to evaluate the shortest Hamming
distance between all original environmental sounds and each recorded audio. The shortest distance
identifies and matches the recorded audio with the original sound.

Table 3 shows the results returned by Algorithm 1 when it was evaluated for each recorded audio.
For each one the shortest Hamming Distance is bold marked. As can be seen, most of recorded audios
match with its correspondent original sound, yielding an 85.4% accuracy, and there is not dependency
with the kind of sound, indoor or outdoor. Furthermore, a 91.6% accuracy is reached when the three
shortest Hamming distances are used, that is, a recorded audio is correctly classified and found in a set
of three sounds with a 91.6% probability. On the other hand, all S10 recordings were classified as S3
original audio. It can be because doppler effect is perceived in both audios. In any case, the aim of this
experiment is not to implement a robust classification system, but to demonstrate the validity of the
proposed acoustic sensor. Taking in account the results, it can be asserted that the recorded audios
have a high grade of similarity with its original sound, and hence, the proposed acoustic sensor can be
validated.

Table 3. Audio fingerprints matching.

Record S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S1-R1 773 1088 1075 1086 1132 1107 1249 1232 1096 1257 1111 1232 1060 1146
S1-R2 1025 1086 1047 1050 1111 1182 1323 1121 1146 1164 1053 1234 1040 1239
S1-R3 883 1012 1022 996 1151 1108 1227 1152 1111 1180 1101 1252 923 1114
S2-R1 1058 351 995 1017 1087 1100 1237 1118 1138 1208 997 1170 855 1156
S2-R2 1047 336 961 962 1083 1120 1231 1150 1161 1245 1022 1091 838 1127
S2-R3 1093 1088 1083 1070 1124 1224 1265 1162 1230 1288 1105 1204 1098 1194
S3-R1 1115 992 549 1002 1111 1037 1288 1212 1099 1298 1072 1150 890 1034
S3-R2 1144 995 486 1053 1121 1110 1253 1277 1127 1289 1102 1138 924 1116
S3-R3 1138 1037 459 1053 1223 1126 1225 1247 1178 1290 1097 1203 927 1144
S3-R4 1122 1036 427 1035 1117 1091 1303 1116 1179 1276 1081 1081 962 1060
S3-R5 1112 1066 485 1126 1180 1177 1247 1198 1168 1276 1061 1177 1023 1183
S4-R1 1032 939 1003 370 1133 1051 1250 1157 1160 1249 1064 1195 833 1159
S4-R2 1035 978 996 396 1107 1133 1187 1159 1135 1270 1061 1150 867 1142
S4-R3 1102 1051 1089 313 1122 1128 1280 1182 1218 1172 1116 1211 951 1164
S5-R1 1112 1112 1060 1134 377 1102 1215 1157 1178 1262 1088 1162 1081 1163
S5-R2 1095 1024 1033 1132 1053 1064 1246 1170 1119 1376 1058 1143 973 1121
S5-R3 1140 1080 1108 1182 403 1108 1236 1174 1204 1270 1135 1193 1102 1150
S6-R1 1209 1171 1153 1161 1131 591 1240 1198 1318 1306 1155 1188 1172 1010
S6-R2 1141 1019 1080 1141 1059 598 1248 1149 1191 1277 1099 1166 1022 1066
S6-R3 1043 1035 972 1051 1107 1040 1365 1106 1088 1152 1073 1153 1055 1059
S6-R4 1134 1051 1026 1164 1093 485 1289 1151 1172 1275 1152 1185 1007 1039
S7-R1 1167 1121 1089 1153 1150 1178 1026 1220 1196 1170 1145 1095 1059 1129
S7-R2 1208 1217 1091 1215 1247 1205 991 1226 1209 1234 1183 1179 1183 1169
S7-R3 1236 1192 1133 1256 1273 1225 340 1371 1283 1311 1166 1159 1335 1212
S7-R4 1201 1174 1136 1165 1216 1174 351 1246 1247 1240 1151 1196 1242 1227
S8-R1 981 1096 1155 1069 1096 1196 1265 949 1091 1079 977 1186 982 1218
S8-R2 1015 1111 1123 1047 1036 1161 1274 340 1095 1077 986 1181 986 1236
S8-R3 1007 1093 1136 1071 1081 1189 1289 847 1079 1027 975 1217 988 1238
S9-R1 1113 1138 1111 1133 1151 1036 1380 1056 1040 1103 1099 1167 1098 1018
S9-R2 1164 1195 1143 1245 1192 1061 1322 1156 402 1228 1128 1199 1106 1052
S9-R3 1140 1129 1142 1191 1199 1160 1314 1139 445 1195 1110 1231 1052 1193
S10-R1 1151 1118 1065 1160 1275 1201 1227 1355 1186 1380 1160 1197 1194 1097
S10-R2 1149 1061 1060 1124 1173 1105 1322 1250 1073 1305 1157 1219 1192 1128
S10-R3 1191 1140 1092 1095 1205 1200 1206 1218 1152 1299 1112 1237 1175 1148
S11-R1 1072 1031 1105 1071 1106 1147 1259 1121 1136 1334 483 1141 903 1125
S11-R2 1070 1084 1085 1059 1125 1112 1207 1090 1129 1287 538 1238 981 1162
S11-R3 997 1066 1121 1051 1080 1138 1280 1030 1111 1190 483 1175 922 1249
S11-R4 1144 1174 1161 1208 1132 1095 1187 1192 1179 1311 358 1167 1136 1156
S11-R5 1066 1022 1082 1038 1125 1086 1261 1163 1178 1340 488 1170 931 1068
S12-R1 1227 1222 1195 1219 1166 1140 1181 1263 1265 1297 1194 495 1288 1192
S12-R2 1094 1055 1051 1033 1125 1115 1252 1029 1102 1193 1080 1024 953 1183
S12-R3 1121 1095 1122 1094 1140 1156 1262 1122 1233 1228 1054 1009 1074 1149
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Table 3. Cont.

Record S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S13-R1 1039 1031 991 1019 1110 1076 1400 972 1108 1031 985 1169 758 1060
S13-R2 1029 966 956 942 1140 1036 1323 1036 1015 1128 986 1165 618 1058
S13-R3 953 954 994 860 1099 1072 1246 1045 1055 1142 937 1217 372 1180
S14-R1 1082 1052 1077 1111 1113 1148 1293 1071 1102 1140 1120 1158 985 758
S14-R2 1078 979 1022 1085 1106 1095 1295 1093 1122 1172 1117 1159 1001 768
S14-R3 1244 1158 1129 1228 1170 931 1381 1233 1110 1360 1219 1092 1156 249

4.3. Energy Consumption and Audio Proccesing Capabilities

In order to evaluate the energy consumption of the proposed sensor, three experiments with
different processing capabilities were performed: (A) audio recording, (B) audio recording and
Fast Fourier Transform (FFT) calculation, and (C) audio recording and UDP datagram sending via
Wi-Fi connection. Audio recording was carried out in an infinite loop using a 10 kHz sampling
frequency and 12-bit resolution. The ArduinoFFT library [33] was used to implement the FFT,
and it was computed each 12.8 ms, that is, every FFT was run after 128 new samples were recorded.
UDP datagram sending was carried out each 25.6 ms, therefore, each UDP datagram is sent when
256 new samples are gathered. The prototype sensor was powered by 5 V, and the current consumption
was measurement for each experiment. Table 4 shows the results. As can be seen, the A and B
experiments have similar energy consumption because all operations are carried out in an infinite loop
and additional resources are not used, only the processor. However, in the C experiment, Wi-Fi module
is periodiocally transmitting a datagram, and therefore, the energy consumption is higher. In any
case, the maximun energy consumption is about 0.8 W, and the proposed sensor could be powered by
battery for a long time.

Table 4. Energy consumption.

Experiment Average Current (mA) Energy Consumption (W)

A—Audio recording 139 0.695
B—Audio recording and FFT 141 0.705
C—Audio recording and UDP sending 165 0.825

On the other hand, audio processing capabilities were evaluated implementing the FFT with
different number of samples and carrying out an audio recording using the same core. FFT was
chosen because is an expensive computational algorithm in audio processing. Each experiment was
performed 1000 times and the average execution time was computed. Table 5 shows the average
execution time for each experiment. As can be seen, the execution time increases with the number
of samples. In addition, using the same number of samples, the FFT execution time is slightly
higher when the simultaneous sampling is carried out, that is, the FFT was computed while other
samples were gathered. Nevertheless, about 20 ms is only spent to compute a 512 sample FFT. Hence,
audio processing capabilities could be performed without compromising the sample rate and the
energy consumption, and edge computing paradigm can be implemented in the proposed sensor.

Table 5. Fast Fourier Transform execution time.

Number of Samples Simultaneous Sampling Average Execution Time (ms)

128 No 3.32
128 Yes 4.45
256 No 7.04
256 Yes 9.43
512 No 14.92
512 Yes 19.97
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5. Conclusions and Future Work

As was discussed in this paper, in recent years, many authors have experienced a growing interest
in remote monitoring of older people, and several systems have been proposed in the literature.
These systems are commonly termed as AAL systems, but the acoustic sensors were not designed
with low cost and audio processing requisites. In this paper, we described the design of a low cost
wireless acoustic sensor for AAL systems based on ESP32 board. In order to choose the best platform,
three different low cost microcontroller boards were evaluated. It was given a detailed description
of the hardware and the principle of operation of software implementation. The proposed sensor
is capable of recording ambient sounds at least to 10 kHz sampling frequency and 12-bit resolution.
Furthermore, the sensor board has computation capabilities to carry out audio signal processing
and network communications without compromising the sample rate and the energy consumption.
Hence, the proposed sensor can improve AAL solutions carrying out the audio identification for
monitoring of activity and health, and the detection of distress situations at the edge of WASN.
Thus, a shorter response time and better reliability is ensured enhancing quality of life and safety
of older people. The acoustic sensor is very small in size, and therefore is very useful to be used in
a discrete way for personal healthcare in AAL systems, and the cost of hardware platform is very
competitive. The experiments on the proposed system showed that the system worked well. System
validation is demonstrated by experimental results, which were statistically obtained analysing several
tests of randomness and audio classification. Furthermore, evaluations of energy consumption and
audio processing capabilities were carried out demonstrating the usefulness and low power, and that
edge computing paradigm can be implemented at the proposed sensor.

In our ongoing work, we are planning to design a better sound classification system based on
audio fingerprint to be implemented at each acoustic sensor. Moreover, we are also planning to
deploy a WASN using the proposed acoustic sensor in this paper to evaluate the whole system and
network performance.

Author Contributions: Miguel A. Quintana-Suárez designed and implemented the prototype of wireless
acoustic sensor, and wrote part of manuscript. David Sánchez-Rodríguez, Itziar Alonso-González and
Jesús B. Alonso-Hernández conceived and designed the experiments, analized the data, and wrote the rest
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