
Fractal Analysis of Deep Ocean Current Speed Time Series

LAURA CABRERA-BRITO

Departamento de Fisica, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain

GERMAN RODRIGUEZ, LUIS GARCÍA-WEIL, MERCEDES PACHECO, AND ESTHER PEREZ

Applied Marine Physics and Remote Sensing Group, Institute of Environmental Studies and Natural Resources, and Departamento

de Fisica, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain

JOANNA J. WANIEK

Leibniz Institute for Baltic Sea Research, Rostock, Germany

(Manuscript received 24 May 2016, in final form 26 January 2017)

ABSTRACT

Fractal properties of deep ocean current speed time series, measured at a single-point mooring on the

MadeiraAbyssal Plain at 1000- and 3000-m depth, are explored over the range between one week and 5 years,

by using the detrended fluctuation analysis and multifractal detrended fluctuation analysis methodologies.

The detrended fluctuation analysis reveals the existence of two subranges with different scaling behaviors.

Long-range temporal correlations following a power law are found in the time-scale range between ap-

proximately 50 days and 5 years, while a Brownian motion–type behavior is observed for shorter time scales.

The multifractal analysis approach underlines a multifractal structure whose intensity decreases with depth.

The analysis of the shuffled and surrogate versions of the original time series shows that multifractality is

mainly due to long-range correlations, although there is a weak nonlinear contribution at 1000-m depth, which

is confirmed by the detrended fluctuation analysis of volatility time series.

1. Introduction

A large portion of the total solar radiation incident on

Earth’s surface is absorbed and stored in the ocean, due

to its relatively high heat capacity, where it is redis-

tributed through ocean currents. In addition to seawater,

ocean water masses may contain many other dissolved or

suspended materials and living organisms. Therefore,

ocean currents transportmatter and energy fromone part

of the planet to another, representing a key factor in

controlling Earth’s climate and having important eco-

logical implications. To an approximate degree, oceanic

circulation can be separated into two modes with specific

dynamics and time scales. In the upper layer, with a

thickness ranging from approximately 500 to 1500m (van

Aken 2007; Pinet 2009), the more or less regular oceanic

winds constitute the dominant process driving ocean

currents, although density differences may also play a

significant role. Below this layer circulation is mainly

determined by density differences, resulting from re-

gional differences in the exchange of heat and freshwater

between atmosphere and ocean (Stewart 2009; Huang

2010). In reality, however, this is not a trivial distinction

because both circulation modes are coupled.

The flow of water in the oceans is a result of the in-

teraction among various nonlinear processes that take

place across a wide range of space and time scales. In

particular, temporal variability includes scales ranging

from a few seconds out tomillions of years (Huybers and

Curry 2006). The complexity of the resulting process

limits its proper understanding and hinders adequate

characterization and prediction of ocean current speeds.

Within this framework, a common and powerful ap-

proach used to gain insight into the dynamics governing

the process is the analysis of time series, obtained by

sampling the phenomenon under study, considered as a

realization of a random process.

In this context, in addition to its probabilistic

structure, a fundamental aspect to be considered for
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characterizing a random process, such as the ocean ve-

locity field, is the correlation degree between values

observed at different times, also known as persistence,

which can be weak, strong, or null. Furthermore, cor-

relation may exist between nearby values in the time

series (short-range correlation) but also between values

far away in the time sequence (long-range correlation).

Long-range dependence has been recognized, after

the pioneering contributions of Mandelbrot and co-

workers during the last part of the 1960s (seeMandelbrot

and Wallis 1969 and references therein), as a character-

istic feature of many phenomena, which provides insights

into the underlying mechanisms that rule the process

dynamics. Since then, the existence of long-range per-

sistence has been established in a wide range of disci-

plines, including geophysical processes (Kantelhardt

et al. 2003), network traffic modeling (Taqqu et al. 1997),

economics (Mantegna and Stanley 1995), and physiology

(Goldberger et al. 2002), among many others.

The analysis of possible long-range correlations, or

temporal persistence, in time series helps to understand

the natural variability of the process under study and its

dynamics. Specifically, the existence of long-range cor-

relations has important implications in terms of fore-

casting because scale invariance allows the relationship

of variability between different time scales to be quan-

tified (Bunde and Lennartz 2012). Furthermore, persis-

tence implies that remote parts of the time series remain

significantly correlated, and hence past events can

have a notable effect on the present and future devel-

opment of the process. So, long-range correlations play

an important role in model assessment (Livina et al.

2007) and in understanding climate variability (Barbosa

et al. 2006). Additionally, time series with persistent

behavior exhibit positive and negative deviations from

the average value for long periods. Hence, long-term

persistence represents a natural mechanism that leads to

the clustering of extreme events; therefore, it has im-

portant implications for climate change and natural

hazards forecasting (Eichner et al. 2011; Sharma et al.

2012; Baranowski et al. 2015).

Processes exhibiting an exponential decay of its au-

tocorrelation function R(t) for large temporal intervals

t are known as short-range correlated processes, while

those with a power-law decay, R(t); 1/tg , are referred

to as long-range correlated, long-range dependent, or

long-memory processes. Accordingly, the power spec-

trum S( f ) of a stationary long-range correlated process

exhibits a power-law behavior of the type S( f ); 1/f b,

with b5 12g. This power-law scaling behavior, or scale

invariance, underscores the lack of a single character-

istic time scale dominating the dynamics of the

underlying process. In other words, the existence of

long-range correlation and scale invariance reveals simi-

lar statistical properties at different time scales, or

equivalently the process exhibits statistical self-similarity

or fractal structure, whereby the magnitude of short- and

long-term fluctuations is related to each other through a

single scale factor (Bassingthwaighte et al. 1994).

Fractal time series can be classified into two different

groups. On the one hand, the scaling properties of one

group are characterized by a single exponent, known as

monofractals; on the other hand, those with much more

complex patterns, known as multifractals, in which a

continuous spectrum of exponents is needed for an ad-

equate characterization of its scaling properties (Feder

1988; Barabasi and Stanley 1995; Kantelhardt et al.

2002). Most natural processes belong to the multifractal

class (Pavlov and Anishchenko 2007). Furthermore,

causes leading to multifractality can be a broad proba-

bility distribution for the values of the time series, or a

result of different long-term correlations of small and

large fluctuations (Kantelhardt et al. 2002).

Several methods have been used to explore the scaling

properties of natural phenomena in terms of monofractal

andmultifractal behavior. These can be grouped basically

into frequency domain methods, including approaches

based on spectral and wavelet analysis (Box et al. 1970;

Muzy et al. 1991; Abry et al. 1998); and time domain

methods, based on the random walk theory, such as re-

scaled range analysis (R/S; Hurst 1951) or the detrended

fluctuation analysis (DFA; Peng et al. 1994), and its

multifractal generalization [multifractal detrended fluc-

tuation analysis (MFDFA); Kantelhardt et al. 2002].

Even though the autocorrelation function is a natural

estimator of the persistence, their use for estimating the

scaling exponent can lead to misleading results when

dealing with long time lags (Malamud and Turcotte

1999). Similarly, the estimation of its Fourier transform,

the power spectrum, can be limited by statistical un-

certainties (Talkner andWeber 2000). Accordingly, it has

been observed that estimations of the scaling exponents

based on the power spectrum are usually less stable and

reliable than those provided by the DFA method

(Matsoukas et al. 2000). Another important advantage of

the DFA methodology is its capability to remove poly-

nomial trends of different order (Hu et al. 2001).

Generally, observations of natural systems exhibit

nonstationarities, such as periodicities and trends, which

can lead to a false detection of long-range correlations

that have to be removed from the stochastic components

to estimate its correct scaling behavior. Hence, it is im-

portant to use methods capable of removing the effects

of possible trends in the series, such as the DFA and

MFDFA, which are well-established methods for

determining the scaling of long-term correlation in
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presence of polynomial trends (Kantelhardt et al. 2002;

Bashan et al. 2008; Caraiani 2012).

As previously mentioned, the existence of a fractal

structure has been recognized by examining time series

coming from many different scientific fields. In partic-

ular, climatological and hydrological series exhibit per-

sistence over a wide range of time scales (e.g., Pelletier

and Turcottte 1997; Baranowski et al. 2015). However, a

broad bibliographic review on the topic shows that

oceanographic processes have received scant attention

in comparison with other branches of Earth sciences,

such as hydrology, seismology, and meteorology. Para-

doxically, in an early review on the ubiquity of this be-

havior in astrophysics and many other branches of

physics (Press 1978), ocean currents were identified as a

process with a power spectrum exhibiting a scaling be-

havior, hence suggesting the presence of long-term de-

pendence. Nevertheless, to the best of our knowledge,

the only contribution exploring the fractal properties of

ocean currents is due to Ashkenazy and Gildor (2009).

These authors examined the existence of temporal long-

range correlations in sea surface currents’ time series

measured in the northern Gulf of Eilat by using a high-

frequency radar system, during one year with a 30-min

time resolution. The use of a power spectrum and DFA

methods allowed them to conclude that measured time

series of sea surface currents exhibit a significantmonofractal

structure for time scales ranging between several hours

and less than a month.

The aim of this study is to gain deeper insight into the

time behavior of ocean currents, by exploring whether

long experimental records of ocean current speed

measured at intermediate and large depths exhibit a

fractal structure, using for this purpose the DFA and

MFDFA methods. Furthermore, the relative contribu-

tion of causes leading to multifractality is examined by

applying these methodologies to modified versions of

the original time series.

The rest of the paper is organized as follows: Themain

characteristics of experimental data used in the study, as

well as the fundamentals of the detrended fluctuation

analysis and multifractal detrended fluctuation analysis

methods, are outlined in section 2. The results derived

from the application of these methodologies to the

measured speed ocean current datasets, as well as to the

corresponding transformed time series, are discussed in

section 3, and conclusions follow in section 4.

2. Data and methodology

a. Data

The analysis is based on time series of ocean current

speed obtained at a single-pointmooring on theMadeira

Abyssal Plain, known as KIEL276 station. It is located

west of Madeira in the northern Canary Basin at nom-

inal location 338N, 228W. The measurements from 1980

to 2000 have been performed by the Institut für
Meereskunde, Kiel, Germany—now the GEOMAR

Helmholtz-Zentrum für Ozeanforschung Kiel—and

since 2000 by the Leibniz Institute for Baltic Sea Re-

search in Warnemünde, Germany. All data used in the

study are accessible via the OceanSITES database.

Analyzed time series have been registered by current

meters placed at approximately 1000- and 3000-m depth,

although mooring replacement for equipment mainte-

nance commonly results in slight changes in depth.

Time series consist of daily averages of low-pass-

filtered current speed measurements and cover a pe-

riod of nearly 30 years, spanning from April 1980 to

December 2009. Gaps of weeks—and in some cases

months—are due to mooring or battery problems, in-

strument failures, etc.; thus, these discontinuities arise

from the intrinsic nature of experimental recordings at

sea. The percentage of missing data is around 15% and

gaps are quite randomly distributed (see Fig. 1). A de-

tailed description of the individual deployments is given

in Müller and Waniek (2013), and further details to-

gether with a comprehensive analysis are given in

Fründt et al. (2013). To deal with this kind of time

series, a common preprocessing method is to cut out the

FIG. 1. Daily current speed time series recorded at (a) 1000- and

(b) 3000-m depth.
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unreliable fragments and stitch together the remaining

parts. This procedure is performed before executing any

statistical analysis and, as it has already been proven, it

does not have a significant impact on the scaling be-

havior of correlated signals—even when up to 50% of

the points are removed (Chen et al. 2002).

b. Methodology

As previously stated, a compulsory step prior to any

procedure for examining the presence of long-range

correlations in a time series consists of removing trends

and periodic patterns of variability associated with ex-

ternal effects. In particular, because natural time series

generally exhibit a seasonal cycle, a deseasonalization

procedure is performed by adjusting the data with the

seasonal mean and standard deviation as x5 (xi 2 xd)/sd,

where xi is the measured value of the current speed

at day number i, during the recording period, with xd
and sd being the corresponding average and standard

deviation for that particular day over the years, re-

spectively (e.g., Livina et al. 2011).

1) DETRENDED FLUCTUATION ANALYSIS

The DFA (Peng et al. 1994) transforms the autocor-

relation function decay into an increasing variability

measure. Then, a power law may be obtained that de-

scribes the magnitude of fluctuations as a function of the

temporal scale and from which it is possible to infer a

scaling behavior, if any.

As implied by its name, this method is based on the idea

of detrending local variabilities—that is, external trends—

that can be separated from the stochastic components of

the time series. It is commonly denoted as DFA-p, in-

dicating that polynomial trends of order p can be system-

atically fitted and eliminated to characterize quantitatively

long-range correlations in nonstationary time series. In this

study, several tests have been made by applying different

orders of polynomial fits. Finally, it has been considered

that it is sufficient to assume that the underlying process is

mainly affected by linear trends, since the obtained scaling

exponents did not show significant differences when re-

moving polynomials of order up to three.

DFA methodology details can be found in Peng et al.

(1994). In brief, this procedure can be described as fol-

lows: First, the original time series x is integrated to

obtain the randomwalk profile enhancing self-similarity

properties. It can be shown that original and integrated

time series have both identical correlation structures

(Lamperti 1962; Beran 1994; Willinger et al. 1997). The

integrated time series is given by

y(k)5 �
k

i51

[x(i)2 x)] k5 1, . . . ,N
b
, (1)

where x is the mean of the deseasonalized time series x

and N is its length.

Next, the profile is divided into Nb 5N/n non-

overlapping segments, each containing n data points. To

ensure a reliable estimation of the fluctuation function

F(n), n should not be larger than N/4 (Rybski et al.

2008). Each segment is locally detrended using a poly-

nomial function yp. The fluctuation function, which can

be regarded as the variance of the detrended time series,

is evaluated in each segment as

F
r
(n)5

"
1

n
�
rn

k5(r21)n11

jy(k)2 y
p
(k)j2

#1/2

r5 1, . . . ,N
b
.

(2)

Finally, by averaging Fr(n) over the Nb intervals, the

mean value of the fluctuation function is obtained. This

procedure is repeated over different time scales, that is,

n, to provide a relationship between F(n) and n,

F(n);nH , (3)

whereH represents the Hurst exponent and quantifies the

strength of the correlations. A linear relationship of

logF(n) versus log(n) indicates self-similarity, and the

slope of the regression line is effectively the scaling or

Hurst exponent. Different types of behavior can be dis-

tinguished depending on its value. A slope of H5 0:5

corresponds to a process with no long-term correlations—

that is, white noise or short-term memory—whereas

H5 1:5 is related to an integrated random walk—that

is, Brownian noise—which exhibits self-similarity but

no long-range correlations. For 1/2,H, 1 there is

persistence—that is, if in the immediate past the signal has

a positive increment, then on average an increase of the

signal in the immediate future is expected. On the con-

trary, 0,H, 1/2 implies antipersistence, meaning that an

increasing value in the immediate past implies a decreasing

in the immediate future. In the particular case of H5 1,

temporal fluctuations are of flicker-noise type (i.e., 1/f

noise), typical of self-organized criticality systems (Bak

et al. 1987). However, this result could be also pointing to a

process that is in essence multifractal and therefore more

than one scaling exponent is required to fully characterize

its dynamics (Beran 1994; Hausdorff and Peng 1996).

2) MULTIFRACTAL DETRENDED FLUCTUATION

ANALYSIS

As previously mentioned, multifractals are character-

ized by high variability on a wide range of temporal scales

and the description of their scaling properties requires

many scaling exponents. TheMFDFA is a generalization

of the DFA, based on the standard partition function
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multifractal formalism for normalized and stationary

measurements (Kantelhardt et al. 2002), which is useful

for detecting the existence of distinct scaling behaviors at

different time scales. By means of the MFDFA, the

scaling of the qth-order moments of the fluctuation

function are determined, instead of obtaining only the

second-order statistical moment as in the case of the

DFA. The procedure is similar to the previous one, with

the difference that in this case Eq. (2) is rewritten as

F
r,q
(n)5

"
1

n
�
rn

k5(r21)n11

jy(k)2 y
p
(k)jq/2

#1/2

r5 1, . . . ,N
b
.

(4)

Then, the fluctuation function of order q is obtained by

averaging Fr,q(n) over all the Nb segments,

F
q
(n)5

1

N
b

�
Nb

r51

F
r,q
(n). (5)

The scaling exponent of each fluctuation function is

calculated from log–log plots of Fq(n) versus n for each

value of q. Term Fq(n) will generally increase for large

values of n according to the following power law:

F
q
(n); nHq . (6)

The exponent Hq, called the generalized Hurst expo-

nent, describes the scaling behavior of the qth-order

fluctuation function. For positive values of q, Hq char-

acterizes segments with large fluctuations (small values

of Hq), while negative values describe segments with

small fluctuations (large values ofHq). Generally, q can

take any real value. For q5 2, the standard DFA pro-

cedure is retrieved and Hq 5H.

The generalized Hurst exponent is only one of several

parameters used to characterize themultifractal structure

of time series. There are other alternatives to describe

this kind of series, such as the singularity spectrumD(a).

Commonly, Hq is related to the classical multifractal

scaling exponent—also known as the Renyi index tq,

where tq 5 qHq 2 1—and can be used to compute the

singularity, or Hölder exponent a, via a Legendre trans-

form (Feder 1988), by means of the following expression:

a5 t0q 5H
q
1 qH0

q . (7)

Then, the singularity spectrum is obtained as

D(a)5 qa2 t
q
5 q(a2H

q
)1 1. (8)

The plot of D(a) versus a, called the multifractal spec-

trum, typically has a parabolic concave downward

shape, with the range of a values increasing with the

process complexity. Its width (Da5amax 2amin) repre-

sents deviations from the average fractal structure, given

by the Hurst exponent derived from the monofractal

analysis for large and small fluctuations. Then, it mea-

sures the degree of the series multifractality. If a spec-

trum has a nonsymmetric shape with one tail larger than

the other one, then the larger tail is ignored and the

width is estimated as the shorter tail doubled (Makoview

and Fuli�nski 2010). For q. 0 the spectrum will have a

long left tail when the time series has a multifractal be-

havior insensitive to local fluctuations with small mag-

nitudes; on the other hand, for q, 0, the spectrum will

have a long right tail when the time series has a multi-

fractal behavior insensitive to local fluctuations with

large magnitudes (Makoview et al. 2011).

Generally, the concept of generalized dimensionD(a)

corresponds to the scaling exponent for the qth moment

of the measure. Thus, D(a) attains its maximum value

(D(a)5 1) for q5 0—see Eq. (8). For a monofractal,

D(a) is a constant function of q, and no additional in-

formation is obtained by examining higher moments.

3) CONTRIBUTIONS TO MULTIFRACTALITY

It has been previously commented that it is possible to

distinguish between two different contributions to

multifractality: on the one hand, a linear contribution

due to the existence of different long-term correlations

of small and large fluctuations in the data; on the other

hand, a nonlinear contribution as a consequence of a

broad probability distribution (Kantelhardt et al. 2002;

Schreiber and Schmitz 2000). Both effects are often

present in real-world time series and can be individually

eliminated to quantify the relative importance of each

contribution on the scaling behavior. The methods

commonly used to test the existence and relative im-

portance of each type of multifractality are briefly

described below.

(i) Shuffling

The shuffling method is a useful technique to quantify

the strength of the linear contribution on the scaling

properties of a process. Shuffled data are generated by

random permutations of the original time series (Peters

1996). Random permutations guarantee the same am-

plitude distribution than the original series but destroy

any temporal correlations between observations.

Hence, shuffled versions of series with multifractality

due to only long-range correlations for small and large

fluctuations will exhibit a simple white noise behavior.

However, this procedure does not affect multifractal

contribution due to probability density broadness.

When both types of multifractality are present,
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multifractality of the original series will be stronger than

that of its shuffled versions.

(ii) Surrogate data

Generation of surrogate data has been suggested as a

procedure for testing the existence of nonlinearities in

time series (Theiler et al. 1992). The tests are based on

the generation of synthetic time series, denoted as sur-

rogate series, which preserve some statistical charac-

teristics of the original, or tested, time series, but

randomize the Fourier phases and hence remove non-

linearities. There are several algorithms for generating

surrogate time series. The procedure used in this study is

known as iterative amplitude-adjusted Fourier trans-

form (IAAFT) and enables synthesizing time series in

which nonlinearities present in the original time series

are removed while preserving its power spectrum and

probability distribution (Schreiber and Schmitz 1996).

(iii) Volatility time series

An additional technique to evaluate the nonlinearity

degree on the scaling properties of a process consists of

studying the correlations of the volatility time series

(Kalisky et al. 2005). Volatility is defined as the abso-

lute values of the increment of the original data

Dxi 5 jxi11 2 xij (Liu et al. 1999). It has already been

shown that long-range correlations in volatility time

series are related to multifractality and in particular

to the nonlinearity characteristics of a process

(Ashkenazy et al. 2003). Thus, volatility time series

derived from nonlinear and long correlated records

exhibit long correlations too, according to a mono-

fractal analysis. On the contrary, if the original data are

completely linear and present long-range correlations,

then their volatility time series will not show long-

range correlations.

3. Results and discussion

Time series of daily current speed at 1000- and 3000-m

depth are shown in Figs. 1a and 1b, respectively. As

expected (e.g., Talley et al. 2011), the strength and range

of variability of current speed are significantly smaller at

3000-m depth. Thus, a simple statistical data analysis

reveals a clear decrease with depth of the mean and

standard deviation of current speed—4.23 63.73 cm s21

(1000m) and 2.06 6 1.28 cm s21 (3000m)—as well as a

drastic reduction of the range of variability, from 0 to

nearly 34 cm s21 at 3000m and between 0 and 9 cm s21 at

1000m, approximately. These differences are mainly

due to strong episodic current events detected at 1000-m

depth, with speeds exceeding 15 and even 30 cm s21.

a. Monofractal analysis

The log–log plots of the DFA function versus time

scale in days, for the original and shuffled current speed

records at 1000- and 3000-m depth, are shown in Figs. 2a

and 2b, respectively. It is quite clear from these figures

that at both depths there exists a crossover point that

separates the time-scale range into two subbands with

different power-law behaviors. The scaling exponents

associated with each band have been estimated as the

slope of the straight line fitted to the data by means

of the least squares method at each side of the

crossover point.

It can be observed that for time scales larger than

approximately 5 years, both fits deviate from the scaling

behavior, exhibiting an increasing dispersion. In this

sense, it is important to take into account that the

number of segments used to obtain the average value of

F(n) decreases as n increases and, consequently, the

statistical stability of these estimations reduces. Ac-

cordingly, the discussion on the scaling behavior is

FIG. 2. Log–log plots of the fluctuation function vs the scale (days) of the original and shuffled time series at

(a) 1000- and (b) 3000-m depth. Solid lines represent least squares fitted lines.
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limited to time scales below 5 years, where the data

adequately conform to a straight line.

Crossovers are located at time points close to 50 days

at both depths. Thus, fluctuations of current speed at

time scales between approximately 50 days and 5 years

exhibit long-range correlations with scaling exponents

equal to 0.85 and 0.79 for 1000 and 3000m, respectively.

The corresponding scaling exponents for shorter time

scales are 1.54 and 1.39, implying a Brownian motion–

type behavior (Peng et al. 1994).

The appearance of crossovers in the curves derived

through DFA seems to be a common feature of geo-

physical time series. In particular, Monetti et al. (2003)

studied the persistence of the sea surface temperature

and found two different scaling behaviors for time scales

below and above 10 months. Moreover, Livina et al.

(2011) observed the existence of a crossover at a few

months’ scale when exploring long-term correlations in

river flux data, a variable closely related to current speed.

Nevertheless, careful consideration should be given to

the presence of crossovers, since they may not be re-

flecting different behaviors at different temporal scales,

but an effect of trends embedded in the time series (Hu

et al. 2001). Other nonstationarities can also cause

crossovers if they are not properly taken into account,

such as seasonal variations (Livina et al. 2011).Moreover,

it has to be stressed that crossovers must not be confused

with multifractality, since multifractality is characterized

by different scaling behaviors of different moments over

the full range of time scales (Bouchaud et al. 2000).

Another point to mention is the decrease of H as the

distance from the sea surface increases. This is probably

related to the change in the number of involved physical

processes operating at different time scales, which is

higher at 1000-m depth than at 3000-m depth. In this

regard, it is interesting to note that, although the

dynamics of surface ocean currents are substantially

different from that of deep ocean currents, Ashkenazy

and Gildor (2009), when analyzing long-range correla-

tions of ocean surface currents in a semienclosed sea,

obtain similar scaling exponents as the ones obtained in

the present study in the scale range above approximately

50 days. Nevertheless, the temporal scale range exam-

ined by these authors is between a few hours and less

than one month, which is well below the time scales

considered in this study.

Application of DFA to the corresponding shuffled

time series at 1000- and 3000-m depth results in a sole

scaling exponent close to 0.5 in both cases, as depicted in

Fig. 2. This reveals that by randomizing the original time

series, long-range dependence disappears, implying that

the scaling behavior of current speed fluctuations is

mainly dominated by temporal correlations.

The predominance of long-range correlations in the

process and the reduction of their strength with depth

agrees with the existence of events during which current

speed reaches extreme values somewhat clustered in time,

as seen in Fig. 1, especially at 1000-m depth (Fig. 1a).

b. Multifractal analysis

As discussed in the previous section, most natural

records do not exhibit a simple monofractal scaling be-

havior. Therefore, amultifractal analysis is performed to

determine whether the current speed time series re-

quires more than one exponent for a full description of

its scaling behavior in the same range of time scales.

The dependence ofHq with q is shown in Fig. 3a. It can

be observed that Hq decreases monotonically with the

increase of q, revealing a different scaling behavior for

small and large fluctuations of current speeds, and sug-

gesting that the deep current speed time series exhibits

multifractal characteristics at both depths. For a

FIG. 3. GeneralizedHurst exponent as a function of q for (a) current speed time series at 1000- (solid line) and 3000-m

depth (dashed line), and (b) multifractal spectra for 1000- (solid line) and 3000-m depth (dashed line).
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monofractal time series,Hq is independent of q. Hence,

the rate of change ofHq can be used as ameasure for the

strength of the multifractal character of a process. Ac-

cordingly, the multifractality degree decreases with

depth. Furthermore, the decreasing pattern ofHq with q

is more nonlinear for currents at 1000 than at 3000m,

indicating a larger difference in the scaling of small

(q, 0) and large fluctuations (q. 0) in the upper point

of measure.

Another useful way of characterizing the multifractal

behavior of a process is by means ofD(a), derived from

Hq [Eq. (8)]. This quantifies in detail the long-range

correlation properties of a time series (Ashkenazy et al.

2003). In particular, the Da of multifractal spectra

constitutes a measure of the multifractality degree.

Theoretically, for a monofractal time series the multi-

fractal spectrum reduces to a single point. Thus, the

wider theDa, the stronger themultifractality will be, and

the more complex the process from which the time

series derive.

Multifractal spectra of current speed time series at 1000-

and 3000-m depth are shown in Fig. 3b. It is remarkable

that in both cases the spectrum exhibits a typical parabolic

concave downward shape, indicating a multifractal struc-

ture at both depths. The location of the maxima varies

with depth, peaking around a; 1:14 and a; 1:08 at 1000

and 3000m, respectively. These values are close to the

mean value of the scaling exponents obtained in theDFA,

suggesting that the maximum of the multifractal spectrum

gives insight into the dominant scaling behavior.

Concerning the width of D(a), it is observed how it

decreases as the depth increases. Thus, the complexity

degree is higher at 1000m, with Da; 0:66, than at

3000m, where Da; 0:4. This fact also manifests itself in

the generalized Hurst exponent variation range

(Fig. 3a), which is clearly larger for 1000m, varying from

around 1.35 to 0.78. It can also be noticed that at 1000-m

depth, the spectrum is slightly skewed to the right, which

indicates relatively strongly weighted high fractal ex-

ponents (Shimizu et al. 2002), and regarding its tails, the

current speed time series seems to have a multifractal

structure mainly dominated by long-range fluctuations.

The variation of multifractality with depth suggests a

different specific influence of the two factors contribut-

ing to the multifractal structure of the observed time

series. To corroborate this point, the DFA andMFDFA

methods have been applied to shuffled, surrogate, and

volatility time series associated with the original one. If

the order of observations in a multifractal time series is

randomly modified, then its memory component is re-

moved and some part of its multifractality should dis-

appear, resulting in a narrower multifractal spectrum.

On the other hand, most of the remaining multifractality

should disappear if nonlinearities present in the time

series are eliminated by randomizing the corresponding

Fourier phases. Thus, the relative reduction in width of

the multifractal spectrum generated by the shuffling and

phase-randomization procedures provides information

on the specific importance of the linear and nonlinear

contributions to the observed degree of multifractality.

The variations of the generalizedHurst exponent with

q are shown in Fig. 4a for the current speed time series at

1000m and in Fig. 4b for 3000-m depth. Note that the

range of Hq values reduces drastically for the shuffled

time series, being almost independent of q and close to

0.5 at both depths. The slope ofHq around q5 0 reduces

for the surrogate time series and reaches even lower

values for shuffled versions. This fact is particularly true

for currents at 3000-m depth. These results indicate that

multifractality is mainly caused by different long-range

temporal correlations for small and large fluctuations,

while the effect of the fat-tailed distribution is almost

FIG. 4. Generalized Hurst exponent as a function of q for the original (dotted line), shuffled (crossed line), and

surrogated (dashed line) current speed time series at (a) 1000- and (b) 3000-m depth.
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negligible at the lower depth and weak at the more su-

perficial point of measurement. Furthermore, some

nonnegligible differences can be observed in the re-

lationship of Hq with q, particularly for q. 0, for the

original and surrogated time series at 1000-m depth,

which hints at the existence of nonlinear contributions

affecting the scaling behavior of large fluctuations.

Additional support for these findings can be obtained

by exploring changes in the structure and location of the

multifractal spectrum of the original and modified time

series. For this purpose, multifractal spectra associated

with original, shuffled, and surrogate time series are

shown for current speeds recorded at 1000- and 3000-m

depth in Figs. 5a and 5b, respectively. It can be observed

that the width of the shuffled time series spectra de-

creases significantly and that the location of their max-

ima shifts toward 0.5 (approaching the behavior of a

white noise), with regard to that of the original series.

However, these effects are almost negligible for the

surrogated time series multifractal spectra, mainly at

3000-m depth, indicating possible nonlinear contribu-

tions in the observations recorded at 1000-m depth.

To test and provide extra support to this fact, the

scaling properties of the volatility time series derived

from each current speed record are examined. A com-

parison of DFA results for volatility time series and their

corresponding surrogate versions shows a slight decrease

of the scaling exponent for the surrogate volatility series

(Hy 5 0:82 and Hy2s 5 0:76, respectively) at 1000-m

depth (Fig. 6a), while the exponent remains constant,

Hy 5Hy2s ’ 0:74, at 3000-m depth (Fig. 6a), endorsing

the idea of some weak nonlinear contribution to the

fractal characteristics of the speed time series measured

at 1000-m depth. In this context, it is interesting to note

that Ashkenazy and Gildor (2009) performed a similar

analysis for volatility sea surface current speed time se-

ries and identified a significant nonlinear contribution to

the fractal structure of the process.

On the basis of the findings above, it seems reasonable

to admit a decrease in the multifractality, and hence the

FIG. 5. Multifractal spectra for current speed at (a) 1000- and (b) 3000-m depth. Dotted, crossed, and dashed lines

correspond to spectra of the original, shuffled, and surrogated time series, respectively.

FIG. 6. DFA for volatility and surrogated volatility current speed time series at (a) 1000- and (b) 3000-m depth.
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complexity, of the ocean current speed time series, as well

as a decreasing relative importance of the nonlinear

contribution associated with the fat-tailness of the prob-

ability density function, as the depth increases. These

results can be, at least partially, explained by the re-

duction with depth in the number of physical processes

operating at different time scales and giving rise to the

observed ocean current speed time series.

4. Conclusions

Fractal properties of deep ocean current speed time

series recorded at two different depths, 1000 and 3000m,

are investigated by using the DFA andMFDFAmethods.

The monofractal analysis methodology reveals that ana-

lyzed ocean current speed time series exhibit power-law

behavior in the time-scale range between one week and

5 years. The presence of a crossover located around

50days, at bothdepths, divides this range into two subbands

with different scaling exponents. Time scales larger than

50 days exhibit long-range correlations, while shorter time

scales are characterized by a Brownian motion–type be-

havior, at both depths. In both subranges the scaling ex-

ponent decreases as the depth increases. Furthermore, the

application of the DFA method to shuffled time series at

both depths reveals the dominance of temporal correlations

on the scaling behavior of current speed fluctuations.

Multifractal analysis reveals that current speed time

series at both depths do not exhibit a simple fractal

structure but have a multifractal nature whose strength

decreases with depth. The analysis of shuffled and Fourier

phase randomized versions of the original time series

demonstrates that the multifractal structure is mainly due

to different long-range temporal correlations for small and

large fluctuations at both depths, but it also indicates the

existence of some weak nonlinear contribution, due to the

fat-tailness of the probability distribution, to the multi-

fractality at 1000-m depth, which practically disappears at

3000-m depth. This fact is reinforced by results from the

detrended fluctuation analysis of volatility time series.
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