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Chapter 1

INTRODUCTION

The sense of vision is, in many species, the one that provides the largest amount of
information about the milieu of the individual, thus being that which most influences
on its behavior. This information can be used in many different ways according to
the conditions, needs and situation of the animal or system under consideration.
In order to obtain food, to escape out of the sight of a predator, to follow the
individuals of the species or any other vital function, the location and identification
of the objects of the environment, the determination of their sizes and the extraction
of their trajectories are essential aspects of a visual system, in either a biological
or man-made environment. Even more, sometimes it is also necessary to determine
the nature of the material the objects are made of.

In this work, we present a model for estimating these parameters by using a
set of filters and primitives which simulate the activity of the receptive fields in a
higher vertebrate retina. Even if the mechanisms which have been used to build
these structures and exploit the possibilities to use the information they provide for
many higher level processes are far from the real architecture of the natural systems,
they endow us with a strong inspiration in the search for new techniques. These
parameters were implicit in the classical description of the frog’s retinal ganglion
cells by Lettvin et al. [LMMP59)], and since the work of Barlow et al. [BHL64] on
speed sensitive cells in the rabbit, a substantial literature has grown up concerned
with both, the biological and the computational problems.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



2 Visual Perception Models based on Contour Orientation

1.1 General description

Due to the importance of vision in the interaction of animals with the environment,
a large proportion of human effort to build machines behaving as living beings has
been devoted to artificial vision. Trying to collaborate in this working field, we have
developed a framework for the processing of visual information in several channels
which are specialized in different aspects of information analysis, such as shape,
motion, texture or color, but which preserve certain cohesion elements and make
use of the same kind of basic tools.

The identification of an object is provided, in most cases, by a description of
its shape, which requires an accurate location of its borders. However, the output
of the mechanism used for the recognition should not be altered by changes in the
orientation, size or contrast between the object and the background. This work
presents a multichannel description of visual information processing in which, from
common initial stages where low-level features are extracted, different subsystems
analyze the information for more specific purposes, such as shape, motion, texture
or color discrimination.

We introduce a set of formal tools, based on Newton filters [Mor93], which allow
estimating edge orientation and whose output does not vary when the input signal
1s rotated or when a global illumination change occurs. Furthermore, the operations
are performed in a layered structure which simulates the activity of ganglion cells in
higher vertebrate retina. The outputs of these filters are used for several purposes,
since the selective detection of the borders is a basis for many other primitives of
higher semantic level.

Firstly, it allows us to extract a one-dimensional representation of the contour in
order to characterize shapes by using Fourier coefficients. From these coefficients,
an energy function is built to discriminate shapes. This work presents a robust
method for the characterization of objects which allows discriminating among quite
similar shapes, such as those of keys and fishes. The use of an orientation function
to represent a shape and its analysis from the Fourier coefficients make it possible
to extract relationships for the different ways in which a certain shape may be
presented, thus constituting a very useful mechanism for many different purposes in
areas like industry, medicine, meteorology, etc.

Secondly, the parameters used when comparing object contours allow studying
a sequence of frames and extracting motion information, which represents the in-

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 1: Introduction 3

troduction of temporal evolution in the scene. The information obtained to relate
shapes is also used for a temporal association of frames in which a given object
evolves. In the same way as the representation of shapes is based on the extraction
of edge orientation in every point on the contour, the process of motion analysis is
based on the representation of shapes.

Finally, in the same way as orientation is used to compare contours by means of a
frequency analysis of the functions which characterize them, textures can be studied
and classified. An orientation histogram embedded in a multiscale framework is
built for each texture to describe it and compare it with other patterns. In this
case, a musltiscale analysis of the textures provides much more information, since
it is in the evolution of the pattern along the set of scales where the differences
between the textures can be detected.

The filters used to estimate edge orientation constitute a simple but effective tool
for this goal and, at the same time, they are suitable for layered structures such as
those found in the natural systems. On the other hand, the Fourier analysis of the
orientation functions allows extracting some general features of the shape which is
represented. Moreover, we propose to use weighting functions for the coefficients of
the different frequencies in such a way that those coefficients whose information is
more relevant have a higher weight in the resulting scheme. We analyze the shapes
of such weighting functions in order to improve the discrimination and reduce the
failure probability.

The numerical experiences are very promising. In particular, we can even dis-
criminate between shapes which are very similar from a perceptual point of view.
All these applications of a common basic set of filters endow us with a global frame-
work for visual information processing, where the combination of simple modules
produces the abstraction of higher semantic representations of the outside world.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



4 Visual Perception Models based on Contour Orientation

1.2 State of the art

Many works have been published tackling the problems of shape characterization,
motion analysis, texture classification and color perception.

Some of them present the modeling of retinal processing, such as [Lei66], [Mor77],
[MRR78] and [MR79], and natural structures and procedures have served as models
for their simulation.

When dealing with edge extraction and characterization, some sets of filters
are commonly used, like those proposed by Sobel, Kirsch, Prewitt and Robinson
[SHB99]. Other works, such as Canny’s algorithm [SHB99] are concerned with the
precise extraction of edges, but they tackle the problem from a different point of
view. In this work, we start from Newton filters [Mor93], which have been previously

used as neuron-like structures for edge location and description [QAM99).

The work by Zahn and Roskies [ZR72] deals with shape representation using
Fourier analysis, but the approach is different in this case since we work with discrete
signals and equidistant points. Olson and Huttenlocher [OH97] front the problem
with certain variations of Haussdorff’s measure. Loncaric presents a survey tackling

different shape analysis techniques from various approaches [Lon98].

As said before, we have used Fourier descriptors as a base for shape characteri-
zation. They have also been used in different ways and for various purposes, from
aircraft to character recognition, by Wallace and Wintz [WW&0], Lin and Chellappa
[LC87], who also considered partially occluded shapes, and Shridhar and Badreldin
[SB84]. Fourier representation allows a wide range of studies of the properties of an
object or region, as shown in [KM89]. Other similar representations, such as elliptic
Fourier decomposition have also been used, as in [SD92).

Occlusion is differently grappled with in the works by Turney, Mudge and Volz
[TMV85], Mokhtarian [Mok97], Bahnu and Ming [BM87] or Kim, Yoon and Sohn
[KYS96]. Shashua and Ullman [SU91] describe iterative methods for grouping con-
tours. Eichmann et al. [ELJT90] use Gabor expansions for shape representation.

Motion analysis has been studied in different ways, like the recursive algorithms
which include stereo vision described by Yi and Oh [YO97]. The simulation of
natural systems in charge of motion analysis include the works by Alemsn et al.
[ALM97], Miura et al. [MKN95], Prokopowicz and Cooper [PC95], or Pennartz
and van de Grind [PG90]. Differential motion analysis is described by Jain et al.
[JKS95], Rong et al. [RCCS89], and a survey on optical flow can be found in the
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Chapter 1: Introduction 5

work by Barron et el. [BFBB92].

Textures have been studied from many different points of view, from energy
measures like Laws’ measures [Law79] to descriptions like those in the works by
Reed et al. [RWW90] or Gotlieb and Kreyszig [GK90].

Multiscale analysis has been previously used for image processing tasks in works
like those by Alvarez et al. [AGLM93], Alvarez and Mazorra [AM94] or Lindeberg
[Lin94]. In this case, it has been used for texture classification to complement the
Fourier analysis on orientation histograms.

A whole survey and comparison of the most relevant works in image processing,

including the topics tackled in this study, is available in the work by Sonka et al.
[SHB99.
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6 Visual Perception Models based on Contour Orientation

1.3 Main contribution

In this work we propose a wide range of applications of a new set of filters, the mod-
ified Newton filters, in different fields of image processing. Using Fourier analysis,
multiscale analysis, error minimization methods and many other mathematical tools,
and starting at a very accurate estimation of edge orientation, features such as the
shape of an object’s silhouette, the trajectory of a moving object or the pattern
of a texture can be examined very accurately and with very satisfactory numerical
results.

We have used the same framework and basic units for a series of applications
which we describe below:

Accurate estimation of edge orientation:

The modified Newton filters represent a new approach in the development of
neuron-like structures. In this case, the initial outputs are combined in such a way
that the post-processing of the information they provide generates much more accu-
rate and useful results than those extracted independently. The properties of these
filters regarding rotational invariance and non-null weights, the normalization pro-
cess to make the output invariant against illumination changes, and the interpolation
of the discrete outputs generate a more refined orientation extraction.

Shape representation and discrimination:

The estimation of the orientation results in the possibility of using this local
information to characterize and discriminate shapes which are visually very similar

and whose differences are very slight, even for a human observer.

We use the Fourier transform of orientation functions as basic tool in our analysis.
We have introduced energy functions to measure the similarity of the shapes, and
these functions have been weighted in order to enhance the characterization strength
of this technique by giving more relevance to those Fourier coefficients which are
more significant for the purpose of our work. Furthermore, we have tested different
types of functions to consider what shape the weighting function should present
to facilitate the discrimination as much as possible. We have applied these new
techniques to a database consisting of 1000 shapes of marine animals and we have
obtained a very satisfactory classification in a quite difficult situation.

We propose to use the information extracted for a segment of an orientation
function to relate different parts of a sequence in such a way that we can associate
the visible regions of an object when it is not completely accessible. This requires

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 1: Introduction 7

a common analysis of the different segments which have been extracted, since some
conditions must be set in order to guarantee that they do belong to the same shape.
Hence, the translation, rotation and scaling relationships must be the same for all
couples of associated segments.

Motion analysis:

The accuracy of edge orientation estimations makes it possible to enlarge the
range of applications to those in which the refinement of these values favors consid-
erably the parameter extraction, such as motion analysis. In this case, we propose
a method to identify an object’s evolution according to a similarity transformation
in which the shape of the object is preserved, i.e. including translation, rotation
and scaling. In this case, the contour and the orientation values we have extracted
for shape characterization make it possible to adapt a figure to the corresponding
contours in different time instants, and the relation between these contours allows

determining the temporal evolution of the object.
Multiscale texture representation and classification:

Going further in the study of an object’s properties, we have applied these filters
for texture classification. Due to the fact that textures may be presented in different
scales and this would affect the orientation histograms which are used for their
characterization, we propose to include a multiscale analysis in order to be able to

process textures regardless of the scale at which they have been acquired.

The combination of modified Newton filters and multiscale analysis represents
a new approach in this kind of processes which generates suitable classifications of
texture databases.

Finally, we also present the role of color in all these processes since the basis which
is established here can be widely enlarged by considering other factors, such as color,
three-dimensional images, etc. From a biological inspiration, we have built a system
which is able to process the visual information of a scene in different channels. The
parallelism of many of the tasks which have been implemented and the interaction
between different subsystems make it possible to design an effective structure for such
kind of computations. On the other hand, the basic units are the same for various
subsystems, such as shape representation, motion analysis and texture classification.
The applicability, adaptability and accuracy of these techniques, together with their
modularity, make them suitable for the development of vision-guided systems and

the simulation of natural systems.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



8 Visual Perception Models based on Contour Orientation

1.4 Structure of this work

Apart from the present chapter in which the general ideas are introduced, this work
is structured into eight other chapters as follows:

o In chapter 2, we describe the natural visual pathway and the different stages
in the information processing. This is the system whose imitation in searched
for and from which some inspiration is obtained. Hence the importance of
knowing how it works and how those functions we are interested in are carried
out in the natural system.

o Chapter 3 presents the different kinds of transformations which are performed
in the visual pathway, classifying and organizing them into a, hierarchy. Due
to the interdependencies of the different subsystem which take part in the
image processing, the transformations can be structured into a set of levels
and categories.

e In chapter 4, Newton filters are introduced and their mathematical properties
are described. Afterwards, we show how these filters can be adapted to build
a new type of filters, the modified Newton filters, which can be used for the
estimation of edge orientation. These are the basic units which provide the in-
formation for the further analysis which is described in the following chapters.
Shape representation, motion analysis and texture classification are based on
the outputs of these filters.

e In chapter 5, we describe how we can build a representation of the contour of an
object from the outputs of these new filters and how this representation can be
analyzed from its Fourier coefficients. It offers a description of the influence of
the starting point of a closed contour on those coefficients and an explanation
about the way we can deal with inversely obtained contour representations and
reflected shapes. It introduces the energy function which is used to measure
the similarity between two shapes and decide whether two objects belong to
the same shape category or not. Different weighting functions for the frequency
factors are tested and compared to improve the discrimination capability of
the energy function by regulating the contribution of each one of them to
the global result. This chapter also deals with the identification of partially
occluded objects. A database clustering example is shown with images of fishes
for which the most similar contours are located. This fish database has been

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 1: Introduction 9

kindly provided to us by Professor Farzin Mokhtarian at the Centre for Vision,
Speech, and Signal Processing of the University of Surrey [Mok01].

e In chapter 6 the information extracted from the contours is used to fit objects
and analyze their motion, obtaining translation, rotation and scaling param-
eters. This allows focussing the attention on an object and describing its
temporal evolution. The extraction of the contours in different frames allows
determining the transformation parameters which bring one of the shapes to
the other, once they have been identified as the same object according to their

contours.

e Chapter 7 shows the application of the same techniques to the analysis of
orientation histograms of textures. The Fourier analysis used in the previous
chapters is combined with a multiscale analysis in order to achieve a more ro-
bust technique for texture classification. Different situations, such as zooming,
darkening, lightening or inversion are considered in order to reach a quite gen-
eral classification method. As done with the shapes in chapter 5, a database
clustering is performed, but in this case, it is the textures of the regions that

constitutes the classifying factor.

e Chapter 8 deals with the processing of color in a multichromatic system. It
grapples with the problem of enhancing color contrast and combining multi-
chromatic information. At the same time, we explain the possibility of adapt-
ing the previous techniques for color images in which the information is tripled.

e Finally, in chapter 9, a brief discussion about the previous topics is presented,
including the most relevant conclusions extracted from this work and the future

trends.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003
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Chapter 2

NATURAL VISUAL SYSTEMS

The understanding of natural systems has been very useful for the development
of artificial systems, and also in completely artificial structures it is possible to
detect some biologically inspired similarities. Their simulation, either to study their
behavior or to extract new techniques, has made it possible to build new mechanisms
which improve the performance of man-made equipment, even if the efficiency of the
latter is not comparable to that of the natural structures. Since we are working with

image processing, the natural system which is relevant for us is the visual system.

We will study the general structure and anatomy of the human eye, the layers
that constitute the retina and their functionality, and the higher organs which take
part in the processing of visual information, considering first the global description of
a neuron. Finally, we will describe how orientation, motion and color are processed

in natural visual systems.

11
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12 Visual Perception Models based on Contour Orientation

2.1 The eye

Higher vertebrates perceive visual information through their eyes. Structurally, the
outer ball of the eye consists of three layers, which are choroid, sclerotic and retina.
It is in the retina where the sense of vision takes actually place, being the other
layers the organs in charge of supplying the necessary support and nutrients to the
retina. Before reaching the receptors in the retina, the light must cross the whole
eye, entering through the pupil’s aperture, being corrected by the crystalline and
traversing the different humors which fill the ocular globe. At the end of this way,
the photoreceptors, which are indeed the first elements of the retina which capture
the light, work as transducers, i.e. convert the light signal into an electrical impulse
which can be interpreted and processed by other kinds of neurons in the retina. A
general overview is shown in figure 2.1.

Figure 2.1: Light crosses the cornea, the pupil and the crystalline and reaches the
retina, where it is actually acquired.

Due to the fact that the photoreceptors constitute the outer layer of the retina,
the signals travel through the inner region in subsequent processing tasks. At the
end, the axons of the ganglion cells forming the optic nerve which brings the in-
formation to the central organs, must exit the eye. That is the reason why a part
of the back region of the eye, the optic disc, does not contain receptors and thus,
the light impinging the retina in that area cannot be perceived. Only binocularity
makes it possible to compensate this blind point.

The central area of the retina, called fovea, is the region where visual acuity
is higher, thus allowing to perceive the objects with a higher resolution as in the

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 2: Natural Visual Systems 13

peripheral areas. Furthermore, the distribution of the different types of receptors in
that region and in the periphery is also unequal and, consequently, the perception
capability is affected.

For the combination of both images, when dealing with stereo vision, the tem-
poral (lateral) area of one of them is combined with the nasal (central) area of
the other. The areas corresponding to the same side are called ipsilateral and the

opposite are called contralateral (see figure 2.2).

Figure 2.2: Binocular image combination. Ipsilateral regions are transmitted to the

same areas in the superior organs.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



14 Visual Perception Models based on Contour Orientation

2.2 Neurons

The organs of a living being are made up of cells. In animals, the cells in charge
of the transmission of information across the body are the neurons. A two-way
transmission can be discerned: from the outside world, the receptors capture the
information to be processed and interpreted; from the central neural system, orders
emerge to activate the muscles. As transmitters of information, they are specialized
in the reception of signals, their processing and their emission to other neurons
which are able to interpret them. In the case of motor neurons, the end of the path
is connected to muscles which carry out the order they transport.

For the purpose of this work, sensory neurons are the relevant ones. In this case,
the transducers of information are located at the beginning of the path, since the
outer signals must be translated into an understandable set of impulses. Typical
sensory neurons are characterized by a set of tree-shaped ramifications which are in
charge of receiving the impulses which other neurons transmit. This input gates are
called dendrites. They carry the impulses to the cell body and after the process-
ing, an output branch, normally longer than the dendrites, is responsible for their
conduction to other neurons. This is the axon (see figure 2.3).

Figure 2.3: Standard neuron structure: dendrites, cell body and axon.

In order to carry the information in the form of these impulses, a sodium/potassium
bomb is in charge of creating certain electric potentials which are transmitted along
the neuron’s membrane. In fact, the potential of the membrane when the neuron is

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 2: Natural Visual Systems 15

not excited by an impulse is modified by means of the alteration of the interchange
of sodium and potassium ions.

By means of certain neurotransmitters, the neurons propagate their impulses to
their neighbors in a phenomenon called synapse. A set of terminal bombs and cal-
cium channels make it possible to transmit the information codified in the electrical

impulses to the following step.

The cells that constitute the retina are indeed neurons. However, this general
description must be adapted since their specialization makes them different in struc-
ture and function. Evenh when comparing the different layers of the retina and the
higher organs which take part in visual acquisition and processing, many kinds of
neurons appear with different shapes, connections and behaviors. The following sec-
tion describes the structure and functions of the different neural organs which take
part in the acquisition and processing of visual information.
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16 Visual Perception Models based on Contour Orientation

2.3 The visual pathway

The ideas in this chapter are mainly extracted from [Kan81]. The absorption of light
and its subsequent translation into electrical signals is carried out by the photore-
ceptors. The human retina contains two types of photoreceptors, rods and cones.
Cones detect form and color, and are responsible for day vision, while rods mediate
night vision. They function in the dim light that is present at dusk or in the dark.
Under these conditions most stimuli are too weak to excite the cone system. Except
in the fovea, the central region of the retina where the acuity is higher, there are
10 times more rods than cones in the retina. Nevertheless, cones are much more
important to vision because their loss produces legal blindness, whereas total loss
of rods produces only night blindness.

The synaptic events subsequently involved in the transfer of information from the
receptor cells to other neurons in the retina have been well documented. Although
there are many subclasses of neurons, the vertebrate retina consists of only five major
classes: receptor cells, bipolar cells, horizontal cells, amacrine cells and ganglion
cells. Figure 2.4 shows an scheme of the retina.

Both types of receptor cells, rods and cones, make direct synaptic contact with
a class of interneurons called the bipolar cells, which connect the receptor cells with
the ganglion cells. The ganglion cells are the projection neurons of the retina, i.e.
they relay visual information to the central nervous system by projecting to the
lateral geniculate nucleus and the superior colliculus as well as to brain stem nuclei.
Modulating the flow of information from receptor to bipolar to ganglion cells are
two classes of neurons: the horizontal cells and the amacrine cells. The horizontal
cells mediate lateral interactions between receptor and bipolar cells. The amacrine
cells mediate lateral interactions between bipolar cells and ganglion cells.

The cell bodies of these five classes of neurons are found in three layers: the outer
nuclear layer (receptor), the inner nuclear layer (bipolar, horizontal and amacrine)
and the ganglion cells layer (ganglion). The processes of these five major classes
interact in two distinct synaptic layers: the outer plexiform layer contains the pro-
cesses of receptor, bipolar and horizontal cells; the inner plexiform layer contains
the processes of bipolar, amacrine and ganglion cells.

Thus, each ganglion cell reacts to stimuli in a certain area of the retina, its
receptive field. The receptive field of an on-center ganglion cell has an excitatory
central area and an inhibitory surrounding area. On the contrary, the receptive
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Figure 2.4: Retinal cells: cones (C), rods (R), horizontal cells (H), bipolar cells (MB,
RB, FB), amacrine cells (A) and ganglion cells (DG, MG) [Sla90].

field of an off-center ganglion cell has an inhibitory central area and an excitatory
surrounding area.

In addition to differences in the location of the dendritic processes of on- and off-
center ganglion cells, each retinal region has several morphological and functionally
distinct subsets of ganglion cells that subserve the same photoreceptors in parallel.
The X cells have medium-size cell bodies and small dendritic fields and participate
in high-acuity vision. The Y cells have the largest cell bodies, a large dendritic
arborization and rapidly conducting axons. The Y cells respond only to large targets
and are important in the initial analysis of crude form. The W cells have small cell
bodies and large dendritic arborizations. These cells project to the superior colliculus
and are involved in head and eye movement.

The flow of information from receptor to ganglion cells can be best followed by
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18 Visual Perception Models based on Contour Orientation

considering two major pathways available in the retina. The first is the simplest
and is a direct route from receptor to bipolar to ganglion cell. This pathway carries
information from nearby receptors to ganglion cells. In the second pathway, the sur-
rounding horizontal cells integrate and transfer information from distant receptor
cells to the bipolar-ganglion cells pathway. The retina is simpler than the brain be-
cause it uses only five basic neuronal types. Nonetheless, it can generate complicated
properties that reflect considerable transformation of visual information.

The degree of specificity in the central connections of the visual system is re-
markable. Separate regions in the retina project upon the lateral geniculate nucleus
in such a way that a complete representation of the contralateral visual hemifield
is established in the thalamus. Furthermore, distinct cell types occupying the same
retinal locus project their axons to different targets in the brain stem, some cells
project to the thalamus, some to the midbrain, others to both. The lateral genicu-
late nucleus is mapped onto the primary visual cortex in a point-to-point manner,
since each geniculate axon terminates in and contacts only a small part of layer IV.

Cells in layer IV and in the other layers of area 17 have their own highly stereotyped
patterns of connections.

The axons of the ganglion cells carry the information to the Lateral Geniculate
Nucleus, the Superior Colliculus and the Pretectal Region, but the largest quantity
is projected to the first one. In the Lateral Geniculate Nucleus there is an ordered
representation of the visual field. However, as in the visual cortex, not all parts of
the retina are equally represented. A large part of the Lateral Geniculate Nucleus
is devoted to the central region. Their receptive fields are similar to those of the
ganglion cells, but the antagonism center-periphery is even stronger.
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2.4 Visual processing in natural systems

Due to the inspiration that natural systems have provided in the development of
artificial mechanism in visual processing, in this section we study how the processing
of information takes place in the natural visual pathway previously described.

2.4.1 Sensitivity to edge orientation in natural systems

The first task we will deal with is the detection of the contrast between neighboring
areas in order to extract the borders. Recordings of the activity of single ganglion
cells show they are never silent, even in the dark, but light modulates their sponta-
neous activity. Each cell responds to light, and the most effective stimulus for each
cell is a spot of light directed to a specific area of the retina. This area is called
the receptive field of the cell. The receptive field of a single cell in any part of the
visual system is that area in the retina where stimulation with light causes either
excitation or inhibition of the cell’s firing pattern [Kan81]. Figure 2.5 shows the

structure of center-surround receptive fileds.

Cells of the retina and lateral geniculate fall into two classes: on-center and off-
center. Neurons of the primary visual cortex also fall into two major classes: simple
and complex. Each of these classes, moreover, has several subclasses. All simple
cells are characterized by three features: specific retinal position, discrete excitatory
and inhibitory zones and specific axis of orientation [HW62].

The receptive field of a simple cell in the primary visual cortex has clearly de-
lineated excitatory and inhibitory zones with a specific axis of orientation. The re-
ceptive field has a narrow central excitatory area flanked by symmetrical inhibitory
areas. The best stimulus for this cell is a bar in the center of its receptive field with
the appropriate orientation.

The receptive field of a complex cell in the primary visual cortex has no clearly
defined excitatory and inhibitory zones. The cell responds best to an edge with a
certain orientation. Orientation is important but position within the field is not
critical. It is the combination of the outputs of a group of cells in a certain level

that makes it possible to extract more relevant information in a subsequent level.
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20 Visual Perception Models based on Contour Orientation

Figure 2.5: Center-surround receptive fields.

2.4.2 Motion sensitivity in natural systems

The researches carried out by Barlow, Hill and Levick [BHL64] showed the way
ganglion cells of the rabbit work, and according to their results, they could be
classified into 4 main groups. Some of them (48%) had concentric ON or OFF
center receptive fields, with inhibitory surrounding. Excluding some cells that were
difficult to classify, the rest of the ganglion cells which were studied (41%) showed a
response that was much higher when the stimulus moved in a certain direction, called
preferred direction, than when it moved in any other direction. Besides, 75% of them
reacted to ON as well as OFF stimuli, whereas 25% reacted only to ON stimuli. This
preferred direction varies among the cells, thus providing a whole range of directions
to be detected. The size of their receptive fields also varies proportionally to the
speed of motion, with small receptive fields for cells which detect slow movements
and large receptive fields for cells which detect fast movements. Figure 2.6 shows
the structure of motion detection cells.

The response of an isolated cell is maximum for the preferred direction, minimum
for the null direction, i.e. the direction opposite to the preferred one, and medium
for the intermediate directions. The speed to which the cells react are also selected,
with a range within which there is a significant response, and out of which the
response is not considered as important. If the movement is fast, the response is
brief and there is no response to the null direction. But if the movement is slow,
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there is also a response to the null direction. It is also important to say that the cells
react faster to the preferred direction and the response is longer. These direction
selective cells are strongly inhibited by the surrounding region in such a way that

they are very effective to detect the motion of small stimuli.

Figure 2.6: Motion detection receptive fields with direction selectivity.

2.4.3 Color perception in natural systems

The color of an object is determined by the wavelength of the light that this ob-
ject reflects from the exterior light that falls on it, and that reflected light causes
certain reactions on our retina to produce the sensation of color. From all possible
wavelengths, each species is sensible to a range of them. Our eyes are only sensitive
to an interval from 400 to 700 nm. However, that does not mean that we identify
them in a linear scale, since it is a three-dimensional scheme (see figure 2.7).

In our retina, we find two types of photoreceptors, a first group specialized in
low illumination vision (scotopic vision), the rods, and others mostly specialized in
high illumination vision (photopic vision), the cones. Among these latter, there are
cells specialized in ranges of wavelength around a certain preferred one which might
be grouped into three categories: red, blue and green. As the ranges are overlapped,
it is the combination of reactions that determines the real wavelength of the light
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22 Visual Perception Models based on Contour Orientation

that will be codified by three parameters. In this way, colors such as yellow, cyan,

magenta or even different types of what we call red, green or blue, are combinations
of these three categories.

sensitivity

A

\ 4

wavelength

Figure 2.7: Color sensitivity.

We could firstly think that a single type of cones would be enough to identify
a range of wavelengths if this type had a broad enough selectivity range. However,
the response of the cones is determined not only by the wavelength, but also by the
intensity of the light. Besides, the curve of reaction has the same value for different
lengths, being almost symmetrical. Consequently, completely different lights would
cause the same reaction. If we had two types of cones, the problem would be only
partly solved, as some combinations of light could not be distinguished. But since
we have three types of cones that cover the range overlapping with the others, it is
possible to identify the light by the combination of the three values.

Some species, like pigeons, have four types of cones. Three of them are similar to
those in the human retina, but the fourth is devoted to infrared wavelengths, which
provides them with a more accurate information for orientation. On the other hand,
some species are not sensitive to all the wavelengths we can perceive. For example,
the frog’s interests determine the perception of colors in such a way that blue is
perceived as especially distinct, but not other colors.
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Chapter 3

TRANSFORMATIONS IN THE
VISUAL PATHWAY

We have already seen how information flows across the different stages of the visual
pathway. Even if we have considered it as a whole, we can classify the different
items as belonging to a certain category according to the purpose they serve for.
So, there are four channels in the retina which transmit information to the Lateral
Geniculate Nucleus. Two of them are based on cells with ON center receptive fields
and the other two are based on OFF center receptive fields.

For each couple, there are two groups, a first one which transmits rough infor-
mation with a low resolution and which provides an initial analysis of the scene,
Channel Y, and others which process information in a more accurate and refined
way, Cannel X. According to the specific function, two channels can be distinguished,
one for shape and color, and another for motion and attention.

This chapter introduces a hierarchy in the set of transformations which appear in
a visual system. It also considers the consequences of distributed and concentrated
processing units, as well as the way perception and knowledge interact. Finally, a
brief description of different kinds of learning is presented.

23
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3.1 Visual processing levels

The visual pathway can be decomposed into a series of linked transformations along
different channels. Within each channel, the transformations can be structured
according to the abstraction of the information they handle and the implementation
mechanism they use, as shown in table 3.1.

Motor level

Interpretative level

Analogical level

Logical level

Termporal level

Spatial level
Physical level

Table 3.1: A schematic proposal for processing levels in the visual pathway.

In the physical level, light information is converted into an electrical signal to
be processed. It is in the periphery of the visual system where the light signals are
converted into neural signals, using a logarithmic and band-pass filtering [Lim90]
(see figure 3.1). In natural systems, photoreceptors are the transducers which carry
out this function. In artificial systems, the acquisition device performs it. Sometimes
it is necessary to include in this step some additional techniques to adapt the device
to the outside conditions, enhance contrast, equalize, etc.

light = log(i) = H(;,Q,) = neural signal

The earliest transformations on those signals do not involve temporal informa-
tion, but only spatial relationships, such as local edge detection. These transfor-
mations act in a given instant, either on a single image or on a couple of them
when binocularity is considered. Thus, according to the number of images to be
considered, we can distinguish between simple spatial transformations and complex
spatial transformations. In any case, only those values acquired in the same time
interval, either in a close neighborhood or a wide area, affect a certain point, but no

previous input or output signal is considered in the transformations.
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The comparison of several frames in the input channel makes it possible to extract
some temporal evolution of the impinging signal, such as motion detection. The
primitives extracted in this level are crucial for studying the behavior of the elements
in the environment. In this case, only a certain time interval is considered and the
closer the time instant, the more significant its influence is. In some cases, what
is relevant is the change in time, while in other cases, a temporal integration is
performed to smooth the evolution.

Higher processing levels include those tasks which are mostly related to intel-
ligence and in which a certain learning and previous experience may be required.
Firstly, the logical level makes use of a set of rules which produce new conclusions
when their conditions are fulfilled. These rules may consist of different kinds of
logical elements such as fuzzy logic, or simple deterministic conduct guides.

Afterwards, the analogue level compares the scenario with those previously stud-
ied in order to extract consequences from past experiences. Similarity plays an im-
portant role in case-based reasoning, as discussed in [HRO1}, where it is tackled from
many different points of view. Sometimes, the interaction between these two levels
helps the creation of new rules from a series of cases, or the extraction of metacases
from rules in the base of cases. Thus, the ordering and limit between logical and

analogue levels are sometimes fuzzy.

The interpretative level relates the different kinds of information extracted by
the different senses to give a meaning to what the individual, natural or artificial, is
perceiving. Initially, the interpretation is carried out by each sense independently,

and then an intersensory analysis is executed.

107
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Figure 3.1: Light intensity filtering.
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Figure 3.2: Visual processing system scheme.
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Figure 3.3: Two-dimensional representation of transformation space.

Finally, the motor level makes decisions to give orders to the motor neurons and
react to the events of the environment, i.e. it provides the output of the system as

a whole.

Thus, a two-dimensional space can be used for representing the transformations
in the visual processing system, as shown in figure 3.3. The horizontal axis rep-
resents the semantic meaning given to the information provided by each channel,
and the vertical axis represents the increasing degree of abstraction achieved by
each transformation. Figure 3.2 shows a general scheme of the interaction between

different subsystems.
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3.2 Relative complexity of the primitives

Two extreme positions are compared below to consider the consequences of the
different degrees of complexity that the functions implemented in a certain level may
have. We must decide between building meganeurons which are able to extract high
abstraction features, or combining multiple microneurons in a defined structure.
The processing of information through multiple low-abstraction channels results

in the following advantages when compared to the use of sparse high-abstraction
channels:

o Higher modularity, due to the combination possibilities of the initial opera-
tions.

Reuse of the information which can be important for different tasks.

Robustness of the whole system since it is easier to build redundant elements
to assure the functionality of the most important factors.

Gradual complexity of transformations, which increases the abstraction in dif-
ferent levels.

Validation capabilities in intermediate steps.

On the other hand, performing complex operations separately from the beginning
results in the following advantages:

e Lower number of communication pathways due to the more reduced interac-
tion.

e Lower coordination requirements.
e Possibility of assigning priorities to some channels due to their independence.
e Faster abstraction of information.

e Disabling and enabling capabilities for certain channels when alert situations
require sacrificing some information in favor of some other.
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This comparison in the perceptual systems is analogue to the discussion CISC
(complex instruction set computer) - RISC (reduced instruction set computer) in
the field of computer architecture. The advantages of these two schemes are the
following [Zar96]:

RISC:
e Higher speed.

e Lower cost.

CISC:

e Direct support to high level languages.
e Migration of software functions to hardware.

e Compatibility upwards, which makes the number of instructions increase.

Complementary to this discussion about the complexity of the primitives, the
work by Leibovic [Lei88] presents the relevance of convergence and divergence in
information processing, since the way the functions are implemented results in a
certain scheme for the converging and diverging nodes where the information is
processed.
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3.3 Perception and knowledge

Our universe is a whole, but at the same time, it is an aggregation of many entities
that interact with each other and that can be studied as wholes themselves. Natural
systems can be perceived as hierarchies that can be decomposed in subelements
that perform a certain function into the system with autonomy to carry it out, but
that can also be seen as a whole, and are thus decomposable into subparts which
aggregate to build a higher level. Individuals consist of organs, which are made up
of tissues, which are formed by cells, etc. In the same way, countries are composed
of regions, with neighborhoods of families with individuals, etc. In this hierarchy,
it is necessary to follow an abstraction process that allows considering groups of
elements that interact as a whole, when we go from bottom to top, as well as an
analysis process to decompose elements into smaller elements, when we go from
top to bottom. This synthesis-analysis process makes it easier to understand and
represent the world and, at the same time, provides an effective way of distributing
the tasks when a certain function is to be carried out. Each element in this structure
is a whole and a part, that is to say, what Koestler calls a holon (from Greek holos:
whole) [Koe78].

Also in industrial and technological fields, there are some structures that are
commonly used and that follow the holon idea. Examples of that are cellular man-
ufacturing, object oriented software engineering or holonic robotic systems. In cel-
lular manufacturing, elements are associated according to their outputs, not to the
similarity of the functions they carry out. They are autonomous and flexible in
performing these functions and adapting to new ones as far as they fulfill the task
they are in charge of. In object oriented software engineering, data and procedures
are encapsulated, and polymorphism allows adaptability to different situations and
generalization in the building of functions. Elements are structured in classes and
subclasses, being inheritance present in the way from upper levels to lower ones.
In holonic robotic systems, information is processed locally and shared once it has
been transformed. Not only the functions are decentralized but also the information

processing and there is a recursion in the assignment of functions.

3.3.1 Abstraction in the visual pathway

Our knowledge does not work in terms of pixels, photons, electrical impulses, etc.,
but we need to extract, from the environment, those features that are useful for us.
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The utility of this information is given by our needs, whatever the kind: food, danger,
association, etc. That implies a process of abstraction from lower level information
to understandable representations of the world outside. Our visual perception is
based on the identification of the elements and their description as objects with
properties and procedures, as in an object oriented programming language. That,
sometimes, implies a loss of information, in the sense that the transformation cannot
be performed in the opposite direction in a complete way, that is to say, recovering
all the information that was present at the input. But this organization of the
information into a more structured description means that single inputs do not
represent anything by themselves, but into the whole, and it is not necessary to be
aware of every single signal that our senses perceive, but of the meaning of the whole

input flow.

As we abstract, single signals are somehow scanned and transformed into more
significant signals, the scanners, while in the process of decomposition, highly se-
mantic signals, the triggers, make other signals appear as if they were condensed into
it [Koe78]. The visual processing that takes place from our retina to our brain builds
a hierarchy from the single inputs we receive. It is a bottom to top process. At the
beginning, we have only photoreceptor outputs, as pixels in a picture. The mixture
of the outputs they generate builds colors. The combination of different color units
makes lines, borders, uniform surfaces, and so on. These elements constitute objects
and these objects are parts of a scene.

As well as we can examine the composition of the scene, we could examine how
these elements are extracted, and build a holarchical structure for the units that
must analyze the picture or the sequence of pictures. Each feature to be analyzed
corresponds to a holon in a certain level and not only the aggregation of these units
but also the combination and contrast of them make it possible to extract higher
level patterns.

When trying to analyze an image, we intend to give names to the things we
see. Is the language guided by the knowledge or is the knowledge constrained by
the language? We build our language as a means of expression and, particularly, of
description. However, in order to be practical, we associate elements in classes and
try to abstract groups of elements, even if these groups are established according to
our need to be specific, but, at the same time, general. There are two processes, one
of segmentation, and another one of relation and integration.

The identification of the elements that are present in a scene can be carried out
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in two ways:

e A case-based identification

e A rule-guided identification
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Figure 3.4: Case cycle for a case-based reasoning system.

The first one consists in searching for the closest element to the one we analyze
among those which have been recognized before. This is what happens when we try
to extract the color of an object. Possibly, we have never perceived this wavelength
before, but we describe it with the name that we use for the closest wavelength we
know. It is then necessary to define a certain measure of distance that indicates us
how close two objects are. And even a certain threshold that determine when two
values are far enough to be considered as different and thus belonging to different
classes. Cases in a case-based reasoning follow the cycle shown in figure 3.4.

The second one is based on following a procedure that determines a certain
feature of the object, such as, for example, the number of angles of a square or
a triangle. Here, what we need is a series of instructions that guides us in the
identification, generating an output that classifies the object. It is also necessary to
define when an output is not classifiable into one of the groups already learned and
may represent a new record in our scheme. These topics are more deeply discussed
in [Rod96].

When a new entity cannot be classified because it is far from other entities or it
does not fulfil certain criteria, our holarchy becomes wider. Sometimes it creates a
new branch, and sometimes it unifies several ones into a higher level group.
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According to the situation we must deal with, we use a different level in our hier-
archy: sometimes we work with high level concepts, with a high level of abstraction,
and sometimes we must go down to the underlying levels which may explain the
basis of the upper concepts.

At the same time that we abstract structures from the outside world, there is
a transformation in the entropy of the information processed. As we go up in our
representation system, that is to say, as we abstract, detailed information is no
longer used, but those elements that have been identified and classified. Thus, there
is an increase in the semantic value of this information as well as a decrease in the
completeness of the information, in the sense that it is not possible to go back in
the transformation.

3.3.2 Hierarchical systems: holarchies

Our representation of the world is a holarchy, i.e. a hierarchy of holons, where each
holon is an object with properties and procedures. Properties are obtained from
case-based identification, while procedures determine the possible transformations
that can be carried out on these objects. Thus, holarchies are good mechanisms for
our knowledge to work, since abstraction, up to a certain point, makes it easier to
understand our environment.

If we wish to represent a holarchy, it is necessary to build a tool to define holons.
We must design them in terms of properties, procedures and information flows, or
interaction that may be produced between holons:

Firstly, it is necessary to distribute the tasks that are going to be performed
within each holon. This distribution must not be made according to the way parts
work or to the similarities of the functions they performed, but to the output they
produce. Holons integrate themselves to achieve a common objective. How this
objective is fulfilled is a question of the following level. ‘

Secondly, we must establish the control functions, such that there is a supervision
of what is being done, from a higher level. Even if holons are autonomous to
determine how a task is performed, there must be some checking points on the
outputs they generate.

Finally, it is also necessary to determine the flows that allow holons to interact.
Taking into account that holons integrate to build new larger holons, a connection
among them must exist. Besides these interholon connections, there must also be
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intraholon connections, and a global hierarchical communication.

These three steps are repeated in an iterative loop until a satisfactory scheme is
reached. Holons are aggregated to achieve a common objective and the cooperation
of different subunits is what provides successful results. The whole is not only the
addition of its parts: four equal segments do not make a square unless they are
disposed in a certain way. FKach subholon, being a holon, has flexibility to adapt to
new tasks when it is required by the global system.

In this sense, the behavior of a holon is defined by a canon and a strategy. The
canon determines the fixed properties of the holon, that is to say, the framework
into which the holon must work. On the other hand, the strategy defines how the
holon will react to the different situations that may be presented to it. The canon
sets the general rules while the strategy determines the behavior in real time.
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3.4 Learning

There are three faces in a holarchical structure: a local environment, an intraholon
relationship and a global structure. As well as the flows of information can be
produced within a holon, between neighbor holons or into the whole structure, the
process of learning can also happen at three levels:

e Dirst order learning is the one that happens within a holon. By means of
completing the operation functions with memory functions it is possible to
adapt the way holons reach their objectives and improve the way the tasks are
executed.

e Second order learning is the one which appears from the cooperation of holons.
This allows creating new and more complex functions from the combination
of simpler ones.

e Third order learning is based on a change in the structure and is performed
by certain non-operational holons whose function is the supervision of the
operational ones. That is to say, they perform a change in the way the other
holons work, thus adapting the structure to new situations.

The lower levels in transformation hierarchy have a very reduced range of possi-
bilities for learning since their relation to physical implementation makes them more
rigid. It is in the higher levels where experience allows increasing, improving and
speeding the functionality of the system.
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3.5 The role of time in the visual processing

We could consider time as one more coordinate in our visual processing system.
Thus, we could work with two or three spatial dimensions and one temporal dimen-
sion. However, it has some peculiarities which are worth considering. With spatial
dimensions, we can go forward or backward and we can compare regions in any
direction. In time, only one direction is possible. At most, we can store in our finite
memory what has happened during the last period, and only inside this buffer can
we access randomly. Inside any world with which we can communicate, the direction
of time is uniform [Wie60].

If time is not one-directional and has not a scale equivalent to ours, we cannot
establish cause-effect relations, since these components would be inverted, even if we
could justify the causes by means of the effects, and prediction would be transformed
into a diagnosis. Time, according to Newton, is reversible. We can make a system
evolve according to its laws forward as well as backward. However, for Bergson,
time is one-directional and there is no turning back in its evolution. The same laws
cannot be applied when we progress forward and backward.

Taking into account that not all transformations are bijective, the inputs will
not always be available in the information provided by the outputs. At least, they
should be injective. However, it is possible to contract time in such a way that
different instants can be considered as simultaneous, in a certain kind of temporal
integration.
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Chapter 4

NEURON-LIKE DISCRETE
FILTERS: NEWTON FILTERS
REVISITED

In this chapter, we describe the initial elements we will use for the estimation of
orientation. This is the basis for the object recognition, motion analysis and texture
classification techniques which will be explained in the following chapters. They are
inspired in Newton filters but introduce some modifications which make them more
suitable for the purposes which have been described.

Many sets of filters have been proposed to locate the edges of an object, like
those presented by Prewitt, Sobel, Robinson or Kirsch [SHB99], or those used by
Moreno [Mor93|, which have been the starting point for the modified Newton filters.
However, some further information is often required and the detection itself does
not allow a higher level analysis of the scene. Thus, the characterization of edges
according to their orientation provides much more information about the shapes

which are studied.

This work presents a new set of tools, the modified Newton filters, and their ap-
plications to edge orientation estimation, shape representation and motion analysis.
From Newton filters, which have been previously used as neuron-like structures for
retinal processing by Quesada et al. [QAM99], a new set with some advantageous
features is built. We show how these filters are obtained and how they are used for
estimating edge orientation.

37
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38 Visual Perception Models based on Contour Orientation

4.1 Newton filters

Newton filters are tools based on the repeated use of simple binary operations to
build more complex ones, which can compute a wider range of inputs. If we use
addition and subtraction of two real or integer numbers as basic operations, we can
combine them in different layers in such a way that the resulting functions are linear
combinations of the inputs. Each layer operates on the ordered set of results of the
previous layer and the operation which is carried out within a layer is the same for
each unit inside it, regardless of the position where it is performed. Nevertheless,
the operations of different layers may vary. We explain below the most relevant
mathematical properties of this kind of filters, since they are important for the next
chapters. Firstly, we can relate Newton filters to difference equations, as ahown in
figure 4.1.

Y(z)=Y(x-1)+F(z—1)

B
PN -

Y(x-1)

Figure 4.1: Difference equation.

One of the features of Newton filters is the fact that a change in the order of
the operations, i.e. of the layers, does not affect the final result, in such a way that
a filter is completely identified by the number of additive and subtractive layers it
contains, regardless of the order in which they are arranged. Thus, NF(A,,, D,) is
the filter which computes m + n + 1 inputs, with m additive and n difference layers,
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Chapter 4: Neuron-Like Discrete Filters 39

as shown in the example in figures 4.2 and 4.3. It is also important to emphasize
that, if a filter contains at least one subtractive layer, the sum of all weights is 0
and, therefore, when it operates on a constant input signal, the output will be 0.

b+a a-b

Figure 4.2: Basic operations of Newton filters.

Xg X1 Xy X3
A
D
A
NF(A,,Dy)= (1,1,-1,-1)

Figure 4.3: Example of a Newton filter with two additive layers and one subtractive
layer.

Moreover, the number of subtractive layers determines the number of zero-
crossings in the resulting weight vector. Since we can build L different filters for
L inputs, and they constitute a linearly independent set of vectors, we can code a
discrete signal of L elements by applying these L filters to the signal. If we build
the corresponding LxL Newton matrix by setting the weights of each filter within a
different row, we obtain the following kind of transformations:
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Qo0 ap1 .- Qp,L-1 Zo fo
ai,0 ain -e G111 Z1 f
Ax g funend = F
ar—10 @r-11 --- Gp—1L-1 Tr-1 fL—l

Where (a0, 0k 1, -, Gk —1) are the weights of the k™ filter, (zp, z1, ..., x1_1) are
the inputs and (fo, f1, ..., fr—1) are the results of the L filters applied to these values.
On the assumption that the output is constant after having computed N layers, i.e.
the input signal corresponds to a polynomial of the N** degree, these filters could
be used as a prediction tool, using an autoregressive scheme as those described by
[Ale86] (see figure 4.5):

z(n) = Z apz(n — k) +v(n)

In addition, the square of one of these Newton matrices is a diagonal matrix,
and all values into the diagonal are 2°~1, where L is the length of the filters. Thus,
its inverse is the matrix itself, but multiplied by 2'~%, and that makes the process
to recover the original signal very similar to that followed to apply Newton filters:

AA=21T —= Al =2114
AX=F = A'AX=A"'F

X =21t AF

For example, for five-element inputs, filters must consist of 4 layers and we could
build 5 filters with 4, 3, 2, 1 and 0 additive layers, whose weights are shown below:

NF(A4,Dg) = (1, 4, 6, 4, 1)
NF(As,Dy) =(1, 2, 0,—-2,-1)
NF(As, D) = (1, 0,—2, 0, 1)

NF(A,,D;3) =(1,-2, 0, 2,—1)
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Chapter 4: Neuron-Like Discrete Filters 41
NF(Ay,Dy) = (1,-4, 6,—4, 1)

As a result, the following transformation matrix is obtained:

1 4 6 4 1

1 2 0 -2 -1

Ag = 1 —2 0 1

1 -2 0 2 -1

1 —4 6 —4 1

And its inverse is:

1 1 3 1 1
16 4 g 1 16
1 1 g _1 _1
) - 116 8 X 8 116
A" =24 = 6 0 —3 0 55
1 .1 g 1 _1
16 8 8 16
1 1 3 _1 1
16 1 8 z 16

We can combine one-dimensional filters to build a new set of structures which
operate on two-dimensional data. In a work by Quesada et al. [QAMO99], two-
dimensional filters are created considering additions and subtractions of 4 elements
as basic operations, with the constraint that the global weight must be 0 if there
are subtractions. The seven filters which are obtained, shown in table 4.1, do not
constitute a complete set, as it is not possible to recover the original information
from the results.

This mechanism to build two-dimensional filters reduces the possible combina-
tions and generates incomplete sets of transformations. The multiplication of hor-
izontal and vertical filters, which is equivalent to applying a two-dimensional filter
repeatedly, does generate a complete set. For instance, with a 3x3 pattern, we first
calculate all three-component one-dimensional filters. We can include two, one or no
additive layer, and the others will be subtractive. That yields the following filters:

NF(A3, Do) = (1, 2, 1)

NF(AbDl) = (1> 0’_1)

NF(AO;D2) = (1)_2) 1)
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Next, we combine these 3 filters in the horizontal and vertical directions and the
set resulting is shown in table 4.2. According to the function they perform, the first
one is a low-pass filter, and it is the only filter in which the sum of all weights is not
0, as it contains no subtractive layer in either direction. However, all others have
compensated weights as they have subtractive layers, and the function associated to
each one of them is an approximation of a derivative of the original signal. The order
of the derivative is given by the number of subtractive layers it contains, and the
orientation is determined by the combination of horizontal and vertical differences
which are carried out. Therefore, we can relate filters E; to approximations of the
following derivatives of the original input data:

B = -
E2 = g—Z
E3 - —%
by, = %”;—‘
By = &121
[ok>
Be = 6221;2
By = aiggy
ES - 6:?24ng

Furthermore, this set of filters constitutes a complete transformation from the
point of view of inversion, i.e. information is preserved, and the original values could
be recovered from the outputs they provide. If we represent the weights of these
filters as a matrix in which each row corresponds to a filter and each column is
associated to a position in the filter, i.e. a position in the neighborhood of the point
on which they are applied, we obtain the following matrix.

12 1 2 4 2 1 2 1
1 0 -1 2 0 -2 1 0 -1
1 2 1 0 0 0 -1 -2 -1
1 0-1 0 O 0 -1 0 1
A=|1 2 1 -2 -4 -2 1 2 1
1 -2 1 2 -4 2 1 -2 1
1 0 -1 -2 O 1 0 -1
1 -2 1 0 O -1 2 -1
1 -2 1 -2 4 -2 1 -2 1
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The linear independence of Newton Filters makes it possible to use them as a
codification of a signal. Figure 4.4 shows an example of an image which has been
coded by applying Newton filters by columns, thus replacing every 32 values in a

column by the resulting values of applying the 32 linearly independent Newton filters
of length 32 on them.

Figure 4.5: Autoregressive prediction using Newton filters.

Experiments on the activity of ganglion cells of higher vertebrate retina show
that these cells perform computations on their receptive flelds, i.e. on the local
neighborhood where the presence of light stimuli affects their activity, which are
similar to those described by these filters. Therefore, the global operation on the
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44 Visual Perception Models based on Contour Orientation

images falling upon the retina can be considered as a convolution with this kind of
operators.

The basic operations to be performed within each layer of a Newton filter can
be generalized by the use of linear combinations of every couple of values affected.
This leads us to the so called generalized Newton filters, whose layers compute the
operations shown in equation (4.1). Let % be the i value of the n'* layer, and
let a,, and b, be the coefficients used in the n'* layer, the values of each layer are

calculated as follows:

T = anat |+ b2t = an (24 + enzih) (4.1)

When all a; are 1, the filter is said to be normalized. The global output y of one
of these filters is given by the expression:

y=mx9+z1(e; +e2+ ... +ep) +xa(erea +eres+ ... + ep—1€r) + ...

e - ZIZL_1(616263...6L)
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1 2 1
2 4 2
1 2
N0:<+ +)
+ o+
1 0 —1 -1 0
2 0 -2 -2 0
1 0 ~1 -1 0 1
N11<+ —> N2:<—‘ +
4 = ~ +
1 2 1 -1 -2 -1
0o 0 O 0 0 O
-1 -2 -1 1 2 1
N3Z(+ + N41(— B
- - + o+
1 0 -1 -1 0 1
0 0 O 0 0 O
-1 0 1 1 0 -1
N5:<+ - N6:<_ +

Table 4.1:

Original two-dimensional Newton filters.
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1 0 -1

2 0 -2

1 0 —1
Eli

(1,2,1)4(1,0,-1)

1 2 1

0 0 O

-1 -2 -1
EQI

(1:O>_1)t(1>271)

1 0 -1
0 O
-1 0
E3:

(1,0,-1)*(1,0,-1)

1 2 1

-2 -4 -2

1 2 1
E4 :

(1,-2,1)%(1,2,1)

2 1
2 4 2

2 1

EQZ

(1,2,1)*(1,2,1)

1 -2
2 -4 2
1 -2

E5 .

(1,2,1)%(1,-2,1)

1 0 ~1

-2 0 2

1 0 -1
EG:

(1,-2,1)¢(1,0,-1)

1 -2 1

o 0 O

-1 2 -1
E72

(1,0,-1)%(1,-2,1)

I -2 1

-2 4 =2

I =2 1
Eg :

(1,-2,1)%(1,-2,1)

Table 4.2: Expanded two-dimensional Newton filters.
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Chapter 4: Neuron-Like Discrete Filters 47

4.2 Divisional inhibition and illumination changes

A phenomenon which has been observed in the functioning of motor and sensory
neurons, and which has a great importance when studying the combined operation
of a group of them, is the presynaptic inhibition. It consists in a decrease in the
output of a neuron when one of its neighbors undergoes a great excitation. The
fact that the inhibition is produced before the synapse causes the output not to be
transmitted to the following layer with its original value, but after being inhibited.
The ideal expression is shown in equation (4.2), where N is the activity of the
inhibiting neighbor and z¢ and z; determine the range of values for which inhibition

is considered as linear.

I'=¢ aN+b if zg< N <ux (4.2)
00 if N>z

10T

ol

6

4

2

Y 0.2 0.4 x 0.6 0.8 1

Figure 4.6: Ideal divisional inhibition.

Different types of models have arisen. Among them is the model proposed by
Lettvin [Let62], who called it linear divisional inhibition, and in which inhibition
consists in a change in the electrical conductivity according to equation (4.3).

E

A=—"o
1+ £

(4.3)

The resulting activity A is obtained from the reaction E of the neuron considered
and the inhibition I it receives, being Iy a constant which regulates the inhibitory
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48 Visual Perception Models based on Contour Orientation

Figure 4.7: Linear divisional inhibition.

action. Other models of divisional inhibition have been proposed since then, such
as the exponential model [MQAOQ0], which resembles more the ideal function and
does not cause so many problems with extreme values as it eliminates the linearity
of Lettvin’s model. As can be observed in equation (4.4), two constants, a and b,
are used to regulate the effects of inhibition.

A=—" (4.4)

Figure 4.8: Exponential divisional inhibition.

As mentioned above, if Newton filters have at least one subtractive layer, the sum
of all weights is zero. This feature is very important when filters are used as edge
detectors, as the output will be zero in homogeneous zones, whereas excitations
will be produced in those areas with variations. If a global illumination change
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happens, it will equally affect all outputs and the quotient will remain stable. With
linear divisional inhibition and exponential inhibition, this invariance is preserved
with constant increases or decreases in the illumination conditions, but not when

scaling the values. This is also obtained with a pure divisional inhibition as shown
in equation (4.5).

E
A== (4.5)

107

8

[

¢

A

0 0.2 04 x 0.6 0.8 1

Figure 4.9: Pure linear divisional inhibition.

If a uniform increase occurred in all values of the input signal as shown in equa-
tion (4.6), when the filters which are used have null global weights, the increases
would be cancelled. Therefore, the proportion of the different reactions remains
stable. If we represent the weight of the n* filter in position (i, k) as w}, where
(0,0) is the central position, the following applies:

Zi,k wiy, =0 4,ke{-1,0,1}

Fo(z,y) = > uwlI(z+i,y+k)

ik
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a) g wid(T+iy+k)+b),, wl

T/ =
o (T3 ) S TN CE TR S
_ aFu(z,y)
a aFm(.CL‘, y)
Trlz,m(a:ay) = Tn,m(xa y) (47)

Where T, ., represents the relation between the n™* and the m' filters and T,
represents the same proportion as T}, ,,, but applied to the input signal after having
changed the global conditions. As can be observed in equation (4.7), the output is
the same as it was before the change.

107

Figure 4.10: Comparison of multiple divisional inhibition approximations.
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4.3 Modified Newton filters and edge orientation

estimation

In the descriptions of neurophysiologists about the functioning of those cells in charge
of extracting information from the visual environment, we find that their reaction
is, in many cases, selective to the direction and orientation of the objects. In fact,
there are cells which react to the presence of bars located with a certain slope,
while the output decreases when the orientation is different, as explained by Hubel
[Hub88] and Kandel [Kan81]. On the other hand, Barlow et al. [BHL64] describe
cells whose outputs are modulated by motion direction. Hence the importance of,
not only locating edges, but also determining their orientation in an accurate way.

The receptive field of a complex cell of the primary visual cortex consists of
parallel excitatory and inhibitory regions. The studies on the behavior of these cells
show that the position of the stimulus into the receptive field is not so important as
its orientation [Kan81]. This could be explained by the association of many shifted
simple cortical cells with the same axis orientation [HW62].

If we wished to label the edges according to the outputs provided by the original
Newton filters, we could consider whether one of these filters generates a much higher
output than the others when applied onto the same area. If this is the case, the
edge has an orientation which is very similar to the one corresponding to such filter.
A measure of how similar the edge is to one of the orientations described by these
filters is given by the following quotient, where f; represents the output of filter N;:

max { f;}

> i Il

When this value is high enough, we are supposed to be on an edge, as one of the
filters has a much higher output than the others and its index would help us decide
the orientation. Nonetheless, we find filters with different numbers of non-null values
and weight magnitudes. As a result, it is difficult to compare their outputs properly,
causing the clearness of the outcome to depend on the orientation of the edges. In
this paper, we propose a new set of filters which preserve the convenient properties
of original Newton filters, but which also avoid some of the undesirable phenomena.
Firstly, as we are going to work with 3x3 filters, we calculate the three-component
one-dimensional filter that only contains additive layers N F'(As, Dy):

NF(Az,Dg) =(1,2,1)
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52 Visual Perception Models based on Contour Orientation

We try to build filters that react to changes in the 8 main orientations. Conse-
quently, it is necessary to use different signs on both sides of the border. It would be
desirable that the weights in the central region of the filter were not 0, as happens in
the original filters, since it causes the duplication of the contours, even if there is a
perfect edge. To keep the global weight equal to 0, we multiply the negative region
by 2, thus obtaining the filters shown in ﬁguré 4.11 and table 4.3. In particular,
filter M}, reacts to changes in the orientation k.

x(-2)

NF{(A2,D0)
1121

v
ook
[\

Figure 4.11: Building process of modified Newton filters.

We notice that the output of these filters is independent of the particular grey-
value magnitude of the image border, i.e. M is invariant under a grey-level trans-
lation of the form I — I + C, where I is the grey-value of the image and C is
any constant. This property is very important because it is well known in percep-
tion theory that the relevant information is provided by the relations (differences)
between neighbors, rather than the magnitude of the image grey-value. From this
point of view, these filters provide a complete representation of the image border up
to a grey-level transformation performed by means of a translation in the following
sense: We consider a 3x3 neighborhood of an edge pixel and let X be the vector
of the grey-value of the 8 neighbor pixels arranged cyclically, let V' be the vector

(v,v,v,v,v,v,v,v)" where v is the grey-value of the central edge pixel, and let A be
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Table 4.3: Modified Newton filters and corresponding orientation.

1 1 -2 -2 1 1

2 2 —4 -4 2 2

1 1 -2 —2 1

MO 10 M4 T

1 -2 -4 1 1 2

1 2 -2 -2 2

2 1 1 -4 -2 1

M :7/4 Ms : 57 /4
-2 -4 -2 1 2 1

1 2 1 1 2 1

1 2 1 -2 -4 -2

My x/2 Mg : 370/2
-4 -2 1 2 1 1
-2 2 1 2 =2

1 1 2 1 -2 —4

M; : 3n/4 My : T /4

the 8x8 matrix given by:

[ —4 -2 1
-2 —4 -2
1 -2 -4
1 1 -2
2 1 1
1 2 1
1 1 2
-2 1 1

2 1 1
1 2 1
1 1 2
-2 1 1
-4 -2 1
-2 —4 =2
1 -2 -4
1 1 =2

e

-2
—4

53

which represents the modified Newton filters coefficients excluding the coefficient

associated to the central value (which always equals 2). Then, we can write the
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relation:
AX +2V=F

where F' = (fy, ..., f7)* is the modified Newton filters’ output vector. The inverse
of matrix A is given by (4.8) and the low condition number of these matrices, (see

equation (4.9)), means that A provides a nice transformation from a numerical point

of view.

1 1 1 _5 S5 _5 1 _1

48 24 186 24 48 24 16 24

1 1 _ 1 1 _3 5 _5 L

24 48 24 16 24 48 24 16

4 1 11 1 _ 5 5 _5

16 24 48 24 16 24 48 24

5 4 1 _ 1 1 1 _ 5 5

-1 _ 24 16 24 48 24 16 24 48
AT = 5 _5 1l 1 _ 1 1 1l _ 5 <4&

48 24 16 24 48 24 16 24

35 5 _35 1 1 _ 1 1 1

24 48 24 16 24 48 24 16

1 _ 5 5 _35 1 1 11 _ 1

16 24 48 24 16 24 48 24

1 1 _5 5 _5 1 _1 _u

24 16 24 48 24 16 24 48

-1 —1

x(A)=x(47") =[|4] |[A7 = 5.8284 (4.9)

Therefore, we can recover the vector X as in equation (4.10), which means that we
can recover the border grey-values of the image from the modified Newton filters
output £, and the grey value v of the central pixel.

X =AYF-2V) (4.10)

While in the original Newton filters we observed some differences according to
the orientation of the edge we wanted to detect, in this set, the weights are arranged
cyclically. This implies that rotating the image a multiple of 7/4 does not alter the
magnitude of the output, but only the indices. Figure 4.12 shows the positive out-
puts of these filters for a circle. A more complete information about the orientation
of the edges is given by considering the whole pattern provided by the eight filters.
For instance, for 0 and 7/2 oriented edges, we obtain the following outputs:

fmb ped e

1
1
1

o O O

Input for a 0 oriented edge.
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o h o s fo fs fo fr
8 5 0 -4 -4 -4 0 5

Output for a 0 oriented edge.

0
1
1

=)
_ = O

Input for a 7/2 oriented edge.

fo fi o fs fa s fo fr
0O 5 &8 5 0 —4 —4 -4

Output for a 7/2 oriented edge.

55

Figure 4.12: Positive outputs of the modified Newton filters for the circle above (the

higher the output value, the darker it has been represented).

If the change from one side of the border to the other is higher than one, even

if the values may be altered by the correction carried out according to the area
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56 Visual Perception Models based on Contour Orientation

covered by the object, the estimation for the orientation remains equal. When the
real orientation does not correspond to one of the 8 main directions, as in figure 4.13,
we can estimate it by interpolating the higher value in the output vector ' with its
two neighbors, which provides a much more accurate estimation of the orientation.
The interpolating polynomial of the second degree which results is:

y = 8(fir1 — fim1) — 16(fi — fi1) (x _ _7[(2- _ 1)>2

‘ 72 4
" 8(fi — fi-1) _7r2(fi+l — fi-1) ( - %(z - 1)) + fim1

Where ¢ is the index of the filter with the highest output f; and positions ¢ — 1
and ¢+ 1 are calculated modulo 8. With this polynomial, the maximum value Z,,q;
is given by:

T _ 4(fz' — fi—l) - (fz'+1 - fz’—l) ™
PE22(fi - fis) = (firr = fim)) 4

Figure 4.13: Output for a principal orientation (left) and output for a non-principal
orientation (right).

For instance, in a non-binary input in which a 1.249 radians orientation is re-
flected in the values of the pixels according to the proportion of their area covered
by the object, as shown in figure 4.14, the output of the filters yields the following
result for the estimated orientation. Initially, the maximum value is reached for
1 =2, ie 7/2, and the neighbors to be considered are i~ 1 =1and i+ 1= 3:

0 0 0
5/6 1/2 1/6
1 1 1

Numerical values of edge in figure 4.14.
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Figure 4.14: Slope 3 edge.

fo i fo fs fo fs fo fr
2 112 6 7/2 —2 —11/2 —6 —7/2

Output of the modified Newton filters for input in figure 4.14.

When interpolation is applied, the following result is obtained:

4.6-3-11/2-7/2 «
Tmax = 6 -2.11/2—2.7/24

s 5T
+Ie-1)=2

By correlating the pattern obtained for a perfect edge with the real one, we can
determine how similar the border is to the perfect edges in the 8 main orientations.
As the change between both sides of the border may be larger than 1, it is necessary
to normalize the output. Let p; be the i* component of the ideal pattern for a 0
oriented edge, i.e. P = (8,5,0,—4,—4,—4,0,5), and let F; be the output of the i**
filter, we can calculate the correlation for the 8 main orientations:

. 7 p(i+zzmod8fi
€z = D imo ~ TR z € Zs

Nevertheless, as the real orientation may not be one of them, we can interpolate
the previous results to test how perfect the edge is for the orientation given by Zyax,
as follows:

2 s
4(62' — ci—l) - (Ci-‘rl - Ci—l) (4xmax

Clome) = =80 2= ('

+ 2 T

- (i— 1)) + Cio1
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Similar filters have been proposed by Prewitt, Sobel, Robinson or Kirsch, as
described by Sonka et al. [SHB99|, but they were not aimed at the simulation of
natural systems and cause the duplication of perfect edges (Prewitt and Sobel), are
independent of the central value (Kirsch) or may produce the maximum output for
imperfect edges (Robinson). Furthermore, in Prewitt and Sobel operators, as well
as in the original Newton Filters, oppositely oriented filters have the same output
magnitude for any input (only the sign is altered), which means that only a half
of them provide some useful information and, therefore, they do not constitute a
complete transformation.

The main advantage of this new kind of filters is not the location of edges, but
their classification according to their orientation and the invariance under rotations
and global illumination changes. These structures may have as a goal, apart from
the location of borders itself, the use of this information for other higher semantic
level purposes. For instance, when identifying an object, we can use them to build
an orientation function of the contour, or when extracting selective motion direction,

we can use these filters as basic tools to improve the discrimination.
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4.4 A global theoretical framework for informa-

tion processing in vertebrate retina

In the following chapters of this work, we will present a global scheme which intends
to provide a coherent framework for information process in vertebrate retina. There
are always gaps in the processing levels from what nature performs and how artificial
systems imitate it. However, we try to build a whole scheme, based on simple
structures for a multichannel system.

The initial stages are the same for all the channels, since all of them are based on
the accurate estimation of edge orientation. Afterwards, the use of this information
is different for every channel. In the case of motion analysis, due to the fact that
motion is studied from the temporal evolution of the contours, there is a dependence
on the shape characterization module.

Even if a separate channel for color can be added, as we will describe in chapter
8, it may also be considered as a part of shape or texture channels, since sometimes
they use color information. More detailed information on natural visual systems
and examples of their simulation with artificial models are shown in [MQAO1].

Modified Newton Filters

N

Shape Characterization Texture Classification

A

Motion Analysis

Figure 4.15: Applications of modified Newton filters.
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Chapter 5

SHAPE REPRESENTATION

This chapter deals with the problem of identifying an object by means of its con-
tour. The outline is extracted by means of the filters previously described, and
an orientation function is built to characterize the shape. We use an energy func-
tion to measure the similarity between two objects according to the shapes of their
orientation functions.

The outputs which modified Newton filters provide in every point along the con-
tour of an object allow building a one-dimensional representation of its shape, in
such a way that we can compare patterns and classify objects according to their out-
lines. To do this, a Fourier analysis is carried out on the one-dimensional functions
which have been generated. In order to generalize our classifying method as much
as possible, we have considered the consequences of certain transformations on the
objects, as well as the different conditions in which a certain shape can be found.
By studying how Fourier coefficients are altered by these transformations, we have
determined how the contours could be compared and fitted.

Next, the problem of occlusion is considered in order to characterize partially
occluded objects and extract the segments which fit a certain shape. Finally, we
present experimental results in which this technique is used to extract groups of
similar shapes from a large database containing 1000 images of marine animals.

61
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5.1 Contour-based shape representation

We have described a technique to extract local information about the orientation
of the contour of an object. Afterwards, we must combine these results to obtain a
global description of a given shape. Below, we describe the representation we will
use for the closed contour of an object. "

Once we have located the edges and the orientation in every point of the contour,
we can build a one-dimensional sequence which describes how the latter changes as
we move along the border. If the edges are not clear enough, double borders may
appear and must be eliminated before continuing.

We must first select a point of the outline and, according to its orientation,
find the neighbor that best corresponds to the edge it indicates. In case none of
the neighbors continues the edge in a congruent direction, we must change the
orientation as that means we are on a high curvature area. If we continue searching
for non-visited neighbors until we close the figure, at the end of the process we must
have covered the border of the object and found a representation of its orientation
function.

(2) (b) (©)

Figure 5.1: (a) Input image. {b) Contour and starting point for orientation function.
(c) Orientation function (counterclockwise).

Figure 5.1 shows the outline of an object and how the orientation of the points
on the border changes. We could use curvature functions to represent shapes, but
straight lines would be represented as 0 while strong changes in the orientation are
shown as high positive or negative values, which makes these functions much more
sensitive to noise than the functions we use. Different types of one-dimensional

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 5: Shape Representation 63

shape representations are described by Loncaric [Lon98].

We have seen above how we could extract an orientation function from the out-
puts of the modified Newton filters applied to an image. Thus, the problem of
identifying shapes, i.e. two-dimensional functions, has been reduced to the associa-
tion of two one-dimensional functions, one considered as the reference pattern, and
the other one obtained from the situation which has been presented. In order to
provide these functions with a certain continuity, we forced some conditions, such
as selecting values of the orientation which do not differ in more than 7 radians
from its neighbors, except for the first and the last points of a closed curve, which
are actually neighbors. No condition has been set on the starting point, since hav-
ing the whole object in the image generates a closed curve. However, the way the
orientation function is obtained makes the starting point very significant. In fact,
depending on the point of the contour we select to start, a different result may be
generated. These results will differ in a certain shift and a constant, 27, which is
added to those values which appear on the opposite side of the signal when it is
cyclically shifted. If we wish to identify a pattern without taking into account the
first point we select, we must previously shift the resulting function to be able to
compare it with the reference pattern and study how such constant affects the final
result. In order to extract the shift that should be used, we could locate the point
where correlation is maximum. Nevertheless, this requires a high computational
cost and correlation may produce false identifications since it may be quite high for
orientation functions corresponding to largely different shapes. As shown in figures
5.2 and 5.3, and in equation 5.1, the correlation for the orientation functions of a
circle and a square is higher than 0.98, which leaves a very narrow range to set a
threshold between similar and different shapes.

L_lflf.Z
=0 _
Cfi, fo) = TR 0.98412 (5.1)

That is why we use Fourier coefficients to reduce the number of computations to
perform and, at the same time, estimate the most convenient shift to apply. These
coefficients will provide not only the best shift to compare the signals, but also a
discrimination function to determine how similar they are. In the pioneering work by
Zahn and Roskies [ZR72], the optimum criteria as well as the consequences of certain
transformations on Fourier coefficients are studied in the case of polygonal shapes
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Figure 5.2: Orientation function for a circle.

Figure 5.3: Orientation function for a square.

using continuous Fourier series. In this work, we generalize the results presented by
Zahn and Roskies [ZR72] to the case of uniformly distributed sample sets of points
of the boundary and we use the Fourier Transform for the characterization. More
recently, Rui et al. [RSH96] describe a set of modified Fourier descriptors for shape
representation. The authors use a uniformly sampled set of points of the boundary
and a similarity distance based on a combination of the magnitude and phase of
the Fourier coefficients. The way we extract the boundary points as well as the

discrimination function that we propose differ from those presented by Zahn and
Roskies [ZR72] and Rui et al. [RSH96).

Let f,, be a one-dimensional discrete signal corresponding to the orientation func-
tion of an object and consisting of L values, its discrete Fourier transform coefficients
can be obtained as:
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=150 foem 8t Yk =0,1,2,..,L -1

We are interested in identifying shapes regardless of their sizes. To be able to
compare two shapes without taking into account their sizes, the sequences obtained
for orientation functions are normalized in their length, in such a way that all of
them are equally long, and thus avoiding the generation of quite different results for
similar shapes of variable size. Therefore, the variations in the orientation functions
are represented with respect to the total length of the contour, and not according to
the real physical size of the object. This requires an interpolation of the values in the
orientation function, since the original positions must be transformed to a different
length which may not be one of its divisors or multiples, and this will transform the
initially integer indices into real coordinates. Moreover, the length we use is always
a power of 2, in order to use fast Fourier transform and reduce the computational
cost.

When the object is rotated a certain angle 6, all points on the contour will
undergo an increase in the values of their respective orientations. However, this
increase will be the same for all of them, provided it is a solid whose shape is not
altered by the rotation. This phenomenon only affects order 0 coefficient of the
orientation function and not any other. Let g, be the orientation signature of the
object described by f,, after a rotation of a certain angle 8, its coefficients are:

L L—
=13 =7 Z(fn+9—9+ an—fo+6’

n=0 n=0

-~

o~ L—1 —ZM L— 27rkn 27rlcn
G =1 2meogne ™ T =12 o (fa+ e T =10 fe =Fe  Vk#0

Once we have seen that the parameters we are using are invariant to changes
in the size of the object as well as to rotations, provided we do not use order 0
coefficients, the following section shows how the right shift can be extracted from
the relationships between Fourier coeflicients of signals which are obtained from a
different starting point.
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5.2 Influence of the starting point of the orienta-

tion sequence

To extract the sequence corresponding to a closed curve, any point on the contour
can be used as start. However, we must take into account the consequences described
in the previous chapter. Firstly, a shift is observed in the values which constitute the
signal. Secondly, the exigency of continuity causes an increase in the values which
appear on the opposite side of the sequence. These two effects are shown in figures
5.9 and 5.10. We will show some results concerning the influence of the starting
point of the orientation sequence for continuous and discrete signals.

Figure 5.4: Square.

Gr

Figure 5.5: Contour for the square in figure 5.4 and starting point 1.

5.2.1 Continuous signals

If g(.) and f(.) are continuous signals and g(.) is a shifted and corrected version of
f(.), according to the transformation described above, the relationship between their
respective Fourier transforms can be used to extract the shift produced by starting
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Figure 5.6: Orientation function for the square starting at the point in figure 5.5.

Figure 5.7: Contour for the square in figure 5.4 and starting point 2.

the contour at a different point. Once the shift has been extracted, the functions can
be directly compared. Next, we will study the influence of such a transformation on
the one-dimensional signal which constitutes the orientation function. Firstly, we

use function h,, described in equation (5.2), to add the constant 27 to a part of the
signal.

ha(x):{l if O<z<a (5.2)

0 if a<z<lL

Afterwards, we consider the relationship between the Fourier transforms of g(.)

and f(.), which will lead us to an expression for extracting the shift, as shown below,
where w = 27/ L:

9(z) = fulz) = f(z + a) + 27he(z + a)

g(z — a) = f(z) + 2mhy(x)
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Figure 5.8: Orientation function for the square starting at the point in figure 5.7.

Figure 5.9: Differences between functions in figures 5.6 and 5.8.

g(z—a) = f(z) +2r[5(z) - 8(z — a)]

e~ %uG(w) = iwf(w) + 27 [1—e ]

e 21 + jwg(w)] = 27 + iwflw)

o~

27 + iw f(w)
27 + twg(w)

—iwa __
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':_,-'._ﬂ_-‘:T S ':N'."'_':':\'\," +27
t

Figure 5.10: Effects of starting the sequence at a different point of the contour.

5.2.2 Discrete signals

The expressions in the previous section would allow us to identify the shift which
relates two contours extracted from the same shape if they where continuous signals.
Nevertheless, the relationships that have been extracted for continuous signals must
be transformed if we are working with discrete signals. Let g,, be the signal resulting
of shifting f, a positions and increasing the values which appear on the opposite
side in 27, i.e. they correspond to the same shape starting at a different point of
the contour, their coefficients are related as in equation (5.3).

_fa_ fn+a if n=0,.,.L—a-1
9n n 27T+fn—(L—-a) if n=L—a,..,L—1
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This signal will generate the following coefficients:
- 1 Lt 2rk
G- fim Y s

1 L—a-1 ok -1 o
= z ( Z fn-f—ae_—zz_ll’c— + Z (27T =+ fn—(L—a)) e_zz—Lk—)
n=0

n=L—a
1 L—1 ok a-1 ok L L-1
__;27k(m=—a 2 m—a+ _ 2 2wkn
=7 EfmeZ I+ fme " L +27r§ e "L
m=a m=0 n=L—a
2rk(L— .
w7 (e A =2 e——127rlc
227rka."\
=€ fr+

:2mwka
;2rka
pra ~ 27r<e L —1)

L (1 — e‘i¥>

From the previous equation, the following relationship between the coefficients
of both signals can be extracted:

VEk#O

2m+L3, —iZgk
z-27'rka . m+Lgk 1-e

= ~ ,m) VeE=-% . -1,1,..,
27+ LF (1—8"7:—)

vt~

(5.4)

Taking into account that order 0 coefficient is related to the mean value of the
signal and is altered by a rotation of the figure, it is not suitable for our purposes.
On the other hand, the larger the order of the coefficient, the more sensitive it is
to noise. If we only consider the relationship between order k coefficients of both
signals (k # 0), we can estimate the shift as in equations (5.5) or (5.6).

21 + LG (1 - e‘i%Tk>

Z-27ra.k
e L =

(5.5)

27

on +LF, (1 — e_iTk)
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iL 27+ L/g\k (1 - 6—1'#)
a=- In — —
2k 21+ Lfk (1 - 6_1T>

(5.6)

When both series correspond to the same shape, the value obtained for the
shift ¢ must be real. However, if the objects are similar but not identical, the real
component of this value will offer an estimation for the shift which should be used
to compare both sequences and determine whether they represent the same shape.
Since, in most cases, the fit of the reference sequence with the extracted one will
not be perfect, the value obtained for a will provide us with a first approximation.
The following sections describe how a more accurate value can be obtained.
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5.3 Sequenée direction and symmetrical shapes

association

We have considered the problem of starting the orientation function of a closed curve
at a different point, but next, we must see what happens if we choose the opposite
direction to continue. If we go through the contour starting at the same point as
in the reference pattern, but in the opposite direction, the sequence g,, that we will

obtain is related to the original one f, as described in equation (5.7).

gn_{ forn+2r if n=1,.,L—-1 (5.7)

As a consequence, Fourier transform coeflicients are modified in the following

way:
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As the signals whose coefficients are being calculated are real, the previous ex-
pression can be written as:
; fo+ELEL i k=0 58)

k = /\’( - A .
=% if k#O

This phenomenon can be detected because the difference between the first and
the last points of the sequence will be positive for one of the signals and negative
for the other. For closed curves, it is —27 if we progress clockwise and 27 if we do

it counterclockwise.
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Figure 5.11: Contours of both sides of the same key.

If we are working with plane objects, e.g. we are trying to identify keys, they
can be presented in two different forms, corresponding to both sides of the object,
as shown in figure 5.11. However, one of them is a reflected version of the other
and their orientation functions can be coupled if we consider the changes they will
undergo. If g, represents a shape that is a reflected version of that represented by
fn, starting at the same point, they can be related as shown in equation (5.9), where
C' is a value which depends on the starting point of the contour and the symmetry
axis that has been used for reflection, but which remains constant for all points
inside the sequence.

gnz{o_fo i n=0 (5.9)

C—fon+2r if n=1,..,L—1

An example of reflected shape representations is shown in figure 5.12.
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(@ (b €9

(@ (e ®

Figure 5.12: (a) and (d) Input images corresponding to the same key. (b) and (e)
Contours. (c) and (f) Orientation functions.

This will modify Fourier transform coefficients as follows:

9k =

-1
C—fo+ C—fL—n+27r)e"i2"Lkn>

5—:(" ot SO~ fut ) >

L—
% 27T+Zo fotom) e )
=0
f+2”(§1)+0 if k=0
~fe—2 if k#0

Taking into account the properties of Fourier coefficients, we can write this re-
lationship as:

T'L].! _
- { f+ +C if k=0 (5.10)

N if k40
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Equations (5.8) and (5.10) will allow us to build energy functions for shape
characterization, as described in the next section.
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5.4 Shape characterization

Once we have studied how the functions we use for the description of a contour are
affected by certain transformations, we consider now the comparison between two
or more such functions.

5.4.1 Energy function

As said before, we can use any but order 0 coefficient, since it is related to the mean
value, and it should not affect the result. We also stated that the higher the order
of the coefficient, the more sensitive it is to noise. That may lead us to think that
we should use lower order coefficients. However, when a shape has r-fold rotational
symmetry and fits itself under a rotation of 27 /r, those coefficients whose order is
not multiple of r are null, thus avoiding to extract a right shift from them. For
example, coefficients 1, 2 and 3 are null for a perfect square, and only those which
are multiples of 4 provide some useful information for our purpose. In case we use
several coeflicients to estimate the shift, instead of extracting it from only one of
them, we can build an energy function as a sum of the errors for every coefficient.
This will provide an accurate value for the shift as well as a similarity measure to
compare shapes. From equation (5.4), which can be rewritten as equation (5.11),
we can determine how good the relationship is for a certain value of a¢ and a given
coefficient order k, as shown in equation (5.12):

ge=¢€"1 fr+ — (5.11)
L (1 — e"T>
omka | ~ 27 _~ 27
Eu(a) = % | fo + — | = | Ge+ — (5.12)
L (1 — e‘lT> L (1 - e‘lT>
_ eiQﬂ;aﬁc . gk

27

L (1 — e_iz_ri‘k>

If we add the terms corresponding to every coefficient with non-null index, multi-

where ﬂ = ]/C;c +

plying each one of them by its respective conjugate, we obtain the following function,
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where fr and g are obtained from Fourier coefficients as shown above:

L

B0 =3 (4~ 5) (P2 -5 (5.13)

L
2

2 —~ ~ *
T2 w2 ke, [ mka,
= (‘fk‘ + |ge|” — e frgy — (e L fkgk))
1

k=
@ (b)
S~ AN
.’: \': 4 K
‘...\\\_r""\’-'/f
(c)

Figure 5.13: (a) and (b) Contours and orientation functions of two images corre-
sponding to the same key. (c) Energy function E(a) for shift estimation.

And now, we should extract the value for ¢ which minimizes this function. Equa-
tion (5.14) shows the function whose zero-crossings are to be found for the mini-
mization.

ot

dE a 2'/T'[, P~k i 40ka ~*~ _j2nka
dc(z ) =0= 1 (Tk (fkgke E2 k9k€ T )) =0 (5.14)

k=

woft~

(k (Rt~ ) =

k=1
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ot

(k (Fegi" - fegie™) ) =0

k=1

(kﬁ;g;;zk) ~0

k0

| Mwlh
(S]]

a

2
where z = €'’ L

Figure 5.13 shows an example with two images of the same key and the en-
ergy function for the corresponding shape representations. If we have obtained an
approximation for a from one of the coefficients, we could use this value for an iter-
ative scheme, such as Newton-Raphson method, to extract a more accurate one, as
shown in equation (5.16). We use function M(a) in equation (5.15) as a simplified
expression of dE(a)/da, whose zero-crossings must be found.

L
2
M(a) = (k- ( Fegne ™t — f;g;e—”"f“)) (5.15)
k=1
%
dM(a) 273 o T ~x ;2mka Th ~ _i2zka
10 L2505 1 (e + e )
Ma,
pny1 = Qp — _gj\_/[(—@%—))‘ (516)
da

L ~ ~
5 ~ i27"kan o~ _i27rlcan
P (k (fk:gke L = Je9ke = F

= an - : L Do~ c2rka. N o~ 2wka
=y, (0 (oo™ + Figie ) )
L .~ . 2mka.
LY 2, (k Im (fkg;;el L >>
= Uy —

2 Zk%:l <k2 Re (ﬁﬁ,’:e’gﬂ%&n))

Due to the fact that this method converges quickly towards a minimum when
we are close to it but may converge to a maximum if we are not close enough, we
use a Levenberg-Marquardt scheme as shown below:
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L ~ v, ;2mkap o~ _i2mkay
D i1 (k (fkgzez L — frgre™ L )>

i % 2 "’N* 2-27rkan "’*N _1'27"kaﬂ
A+ (k (fkgk;e L+ frgre™ T ))

Opt1 = Qp —

When it provides a better approximation, i.e. a point where the energy has been
reduced, we consider the resulting value as the new estimation, decreasing the value
of A and thus tending to Newton-Raphson method. Otherwise, we refuse the new

value, increasing the value of A to move oppositely to the first derivative.

Once we have found a measure of the similarity of two contours, a threshold
must be set to decide whether they come from the same shape or not and, in case
they do not, to determine how different they are. This value will depend on the
practical application we deal with, but in order to standardize the energy values, a
normalization process is carried out for a given set of shapes. For normalization,
we first calculate the average of the energy values obtained when comparing two
different images corresponding to the same key. Afterwards, we divide all the values
in the table by this factor. In table 5.1, the normalized minimum energy values are
shown for the comparisons of 9 different images corresponding to 3 keys (see figure
5.14). In this case, equation (5.13) has been used and k., corresponds to the m®
image of the n* key (n** key of the m** row). Normalized energy values around
or lower than 1 indicate a great similarity between the shapes which are compared,
while those values which are much higher than 1 indicate that the contours cor-
respond to clearly different shapes. When comparing the keys in the last row of
figure 5.14 with those in the first two rows, the relationship described for reflected
shapes is used. In order to decide whether we must use the direct or the reflected
relationship, we compare the results for both situations and determine whether the
keys are presented in the same or the reflected position, according to the option
which generates a lower value.

5.4.2 Weighting functions for frequency terms

Taking into account that the higher the order of the coefficient, the more sensitive
it is to noise, we can weight the energy factors in equation (5.13) in such a way
that the first coefficients are more significant than the last ones, as shown with the
weighting function w(.) in equation (5.17).
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Figure 5.14: Images of three different keys in different positions and showing both
sides.

rofe

p@=Yu(T)(|F +6r - ia- (Fim)) 6w
k=1

With this new expression, those alterations of the signal due to the presence of
noise, which affect more strongly higher order coefficients, are not so significant.
When we compare two images of the same shape, the differences are due to the
digitization process, the noise which has been introduced and the fact that we are
working with estimations of the different parameters. However, when the images
come from different shapes, the higher energy values are due to the dissimilarities
between their contours. In the first case, the weighted version of the energy function
will reduce the higher factors, thus decreasing the undesired effects. In the latter
case, even if higher order factors are reduced, lower order ones, which carry the

information on lower frequencies, are considerably maintained.

Different weighting functions have been tested to reduce higher frequency factors
while preserving the information contained in lower frequencies. In order to test how
suitable a certain weighting function is for a given set of shapes, we have divided
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Foin | k1a k12 ki3 ka1 ka2 ka.3 k3. k3o k3.3
ki1 | 0.0000 | 1.1273 | 0.8219 | 3.5856 | 4.1306 | 4.1161 | 6.8020 | 5.9809 | 5.6455
k1o 0.0000 | 0.5607 | 5.4166 | 5.7934 | 5.7902 | 7.5247 | 6.4634 | 6.3026
ki 0.0000 | 4.5853 | 5.2063 | 5.0216 | 7.4232 | 6.1860 | 6.0272
ko 0.0000 | 0.9050 | 1.1134 | 8.6651 | 8.5584 | 8.0708
Koo 0.0000 | 1.0617 | 8.9780 | 6.7763 | 6.6304
ko 0.0000 | 8.8944 | 8.9579 | 8.3986
k3.1 0.0000 | 1.3734 | 1.2102
k3. 0.0000 | 0.8266
k33 0.0000

Table 5.1: Normalized minimum energy values for keys in figure 5.14.

the results for our test set into two subsets. The first one, S, contains the results of
the comparisons of images of the same key. The second one, D, contains the results
of the comparisons of images of different keys. The parameter to test the quality of
the weighting function, @), is the ratio between the lowest energy obtained for two
images of different shapes, min(D), and the highest energy for two images of the
same shape, max(S). As far as min(D) is higher than max(S), a certain threshold
can be set between both values in order to discriminate, but the higher the quotient
Quw, the clearer the distinction. When the discrimination threshold is very close to
max(.S), the probability of characterizing two images of the same shape as different
will be high, but when it is very close to min(D), the probability of classifying two
different shapes as equivalent will be increased. Hence the importance of achieving
a high quotient.

_ min(D)
max(S)

Quw (5.18)

The weighting functions should be monotonic decreasing and non-negative in the
interval [0, 1]. We also force the function to satisfy the condition w(0) = 1. When we
use linear functions as those in figures 5.16 and 5.17, the results are improved with
respect to the non-weighted energy function, as shown in table 5.2. We have also
tested the results when the weighting function is quadratic, as in figures 5.18 and
5.19. Forcing the constraints w(0) = 1, w(1) = 0 and w([0, 1]) C [0, 1], the maximum
and minimum values for w(0.5) are 0.75 and 0.25, respectively. These limits yield
the functions in table A.7. As observed, the results of the second function are even
better than those obtained with linear functions.
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Figure 5.15: Constant function 1.
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Figure 5.16: Linear function 1 — z/2 .
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Figure 5.17: Linear function 1 — z.
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Figure 5.18: Quadratic function —z% + 1.
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Figure 5.19: Quadratic function z? — 2z + 1.
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w(z) | min(D) | max(S) | Qu

1 3.5856 | 1.3734 | 2.6107
1—% 1 3.7549 | 1.3957 | 2.6903
1—2z | 3.9771 | 1.4250 | 2.7909

Table 5.2: Discrimination ratio for constant and linear functions.

w(z)

min(D)

max(.S)

Qu

—z2+1

3.7838

1.3972

2.7081

T2 — 2z + 1| 4.2645 | 1.4663 | 2.9083

Table 5.3: Discrimination ratio for quadratic functions.

However, the best ratios are observed when exponential functions of the form e=%*
are used, taking into account that the factor s in the exponent affects considerably
the results. By varying the exponential factor s in the weighting function é‘“, we
obtain the ratios in table 5.4. Some examples of these functions are shown in figures
5.20, 5.21, 5.22 and 5.23. As observed, the ratios are improved as we increase the
factor up to a maximum which is found around s = 10 (see figure 5.22). From
this value on, the ratio decreases and it is lower than 1 from s = 50 on, which
prevents us from using them as weighting functions for discrimination. This means
that those exponential functions with a higher value of the parameter s reduce the
lower frequency factors too much, thus eliminating the most relevant information

about the shape.

0.8

0.6]

0.4

0.2

Figure 5.20: Exponential weighting function e=** for s = 1.

In figure 5.24 we can see the influence of the parameter s of the exponential
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Figure 5.21: Exponential weighting function ¢™** for s = 5.
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Figure 5.22: Exponential weighting function e=** for s = 10.
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Figure 5.23: Exponential weighting function e=** for s = 50.
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; :m}@ 10 | e10 | 48492 | 1.5318 | 3.1611
15 | e15% | 4.3416 | 1.4837 | 2.9662
25 | %% | 3.2275 | 1.5928 | 2.0263
50 | e750% | 1.7315 | 1.8574 | 0.9322
100 | e~199= | 0.8781 | 2.0743 | 0.4233
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s | w(z) | min(D) | max(S) | Qu

0 1 3.5856 | 1.3734 | 2.6107
1 e? 3.8642 | 1.4110 | 2.7386
5 e™>® | 4.5941 | 1.5125 | 3.0374

Table 5.4: Discrimination ratio for exponential functions.

0 10 20 30 40 50 60 70 8 90 100

Figure 5.24: Discrimination ratio for different values of s between 0 and 100. Only
those values over 1 allow setting a threshold to discriminate.

function on the discrimination ratio. Figure 5.25 shows a comparison for the ratios
achieved with the different categories which have been tested. As observed, with
exponential functions, the possibility of adjusting the parameter allows reaching

higher quotients, which results in a better quality of the discrimination.

Table 5.5 shows the final values of normalized minimum energy for the keys in
figure 5.14 when the factors are weighted as in equation (5.17), using w(z) = e~
as weighting function. As observed when comparing tables 5.1 and 5.5, normalized
energy values are not strongly altered when the images correspond to the same key,
even if they present different orientations or a different side of the key is shown.
However, energy values increase significantly for images of different keys when the

weighting function is used, which results in a clearer discrimination of the shapes.
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3.5
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0,0

Constant Linear Quadratic ~ Exponential

Figure 5.25: Results obtained for constant, linear, quadratic and exponential func-
tions (0 < s < 15), used to weight the energy terms. Dark and light grey signal the
worst and the best values for the discrimination ratio into each category, respectively.

This proves that not all terms in the energy function are equally significant for
the discrimination of a certain set of forms. A reduction in the higher frequencies will
also reduce the noise effects and facilitate the discrimination criteria. Nevertheless,

the more detailed the forms, the higher the frequencies we will need to consider.
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B | k1 k12 ki3 k21 koo ka:3 k3.1 k3.2 k3.3

k1.7 | 0.0000 | 1.1595 | 0.7754 | 4.8422 | 5.4602 | 4.8694 | 11.0473 | 9.0618 | &.5987
k1.0 0.0000 | 0.4007 | 8.2601 | 8.5063 | 7.0163 | 11.9956 | 9.2841 | 8.9991
ki3 0.0000 | 6.7835 | 6.8951 | 5.9262 | 11.8338 | 9.0418 | 8.7061
ko1 0.0000 { 0.8663 | 1.3553 | 14.1622 | 14.3641 | 13.0408
koo 0.0000 | 1.0698 | 14.5646 | 12.3600 | 11.6192
ko.3 0.0000 | 14.3818 | 15.8590 | 13.7275
k3. 0.0000 | 1.5318 | 1.1737
k3.0 0.0000 | 0.6675
k3.3 0.0000

Table 5.5: Normalized minimum energy values for keys in figure 5.14 and weighting

function w(z) =e

~10z
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5.5 Shape-based image clustering

Shape characterization can be used in many different ways. This section shows an
example of a database containing pictures of different kinds of marine animals and
how they can be classified, in such a way that, for a given picture of a fish, the
most similar ones are selected. This allows identifying and relating different species.

These pictures are shown in figures 5.27-5.36.

This fish database has been kindly provided to us by Professor Farzin Mokhtarian
at the Centre for Vision, Speech, and Signal Processing of the University of Surrey,
United Kingdom [Mok01]. Of course, this classification is performed according to
the shape of the silhouette and no other aspects, such as biological factors, are
considered to determine which fishes are the most similar to the selected one.

Assuming that no other information can be obtained from the images of the
fishes, the minimum energy value is calculated, as explained in the previous sections,
for the coupling of the selected fish and every fish in the database. If the fish
is contained in it, it should yield the minimum energy value and the other fishes
could be ordered according to their respective energies, which reflect their similarity.
This allows identifying an image of a fish as well as implementing categorizations of
families. If a certain set of models for every family is built, they could be used as
reference prototypes with the most significant elements of the family, even if it does
not correspond to a member of the family.

Due to the nature of these images, certain parts of some of them are one-pixel
wide. In order to prevent the process from being stalled because once these points
are visited no other can be used to continue extracting the contour, a four-neighbor
dilation algorithm is applied before starting, thus slightly widening the shapes, as
shown in figure 5.26.

The following pages show de images in the database and examples in figures
5.37-5.44 show comparisons using the technique described in the previous sections.
Among the 1000 images of marine animals contained in the database, one is selected,
and the 10 best comparisons are shown. Of course, as the selected image is contained
in the set, the best match corresponds to itself, and the energy factor is 0.

Taking into account that the shape of the contour is the only reference considered
to associate the fishes, even if rotations, translations, scaling or reflections of the
shapes do not alter the result, the comparison is affected by the curvature of the
body and the tail, the shape and proportional size of the fins or the moustaches and
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Figure 5.26: Four-neighbor dilation process.

small extremities that some of them present. Furthermore, the proportion of the
contour which each part of it constitutes is a crucial factor.

In figure 5.45, we can see what the result would be for image 716 if we used
the energy without the weighting function. When we compare it with the results in
figure 5.44, we observe the improvement produced when the weighting function is
considered.

When we compare the results for shape 779 with and without weighting function,
shown in figures 5.46 and 5.47, even if the most similar shapes (780 and 616) produce
the lowest values in both cases, the difference with quite different shapes is much
stronger when the weighting function is used.
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Figure 5.27: Database pictures (1).
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Figure 5.28: Database pictures (2).
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Figure 5.29: Database pictures (3).
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Figure 5.30: Database pictures (4).
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Figure 5.31: Database pictures (5).
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Figure 5.32: Database pictures (6).
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Figure 5.33: Database pictures (7).
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Figure 5.34: Database pictures (8).
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Figure 5.35: Database pictures (9).



100

Visual Perception Models based on Contour Orientation

AP G - (g~ ) — (< e

Eial 902 203 904 905 208 807 208 809 810

s 812 913 914 815 918 817 918 913 820

e GO @Pin it ame PYE* PE* YO GO GO~

21 922 923 924 925 926 927 928 929 930

WY e G N V= o o< P e~ o~

9 932 833 934 935 836 837 938 838 940

Y B B GO* B PBn YE© GG GG GO

841 942 943 844 845 348 947 943 848 850

PO N W adjf-e NG agt-e g Wi Wl i

951 852 953 954 855 56 957 958 958 980

= pl= AP o= QE* aplp= Qe G Jfis Y-

351 962 963 964 €65 958 967 968 863 879

algl-e 9o~ qEe die P N> GPo® ———— > Q-

871 972 973 974 978 978 977 978 979 380

- g -G @ v G v o

981 982 883 984 285 985 987 983 989 390

e o) OB+ @ - BB B+ dam- <t D

991 932 933 994 995 995 997 938 933 1000

Figure 5.36: Database pictures (10).

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 5: Shape Representation 101

._‘
*o o
>0
¢+ e

Figure 5.37: Example of the results of searching for similar shapes for shape 735.

order | shape number | weighted energy

1 735 0.00

2 733 717.21
3 738 837.46
4 728 916.66
5 740 1390.22
6 742 1401.43
7 736 1463.12
8 737 1573.66
9 730 1634.46
10 741 1660.60

Table 5.6: Lowest weighted energy values for shape 735.
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Figure 5.38: Example of the results of searching for similar shapes for shape 635.

order | shape number | weighted energy

1 635 0.00

2 969 3470.31
3 661 3674.35
4 977 3887.81
5 640 3966.25
6 645 4142.67
7 659 4195.95
8 638 4236.88
9 949 4599.64
10 836 4732.11

Table 5.7: Lowest weighted energy values for shape 635.
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Figure 5.39: Example of the results of searching for similar shapes for shape 554.

order | shape number | weighted energy
1 554 0.00
2 553 1279.90
3 552 1535.54
4 969 1997.10
5) 521 2424.76
6 557 2613.10
7 560 2617.37
8 487 2625.74
9 529 2795.74
10 558 2855.33

Table 5.8: Lowest weighted energy values for shape 554.
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Figure 5.40: Example of the results of searching for similar shapes for shape 634.

order | shape number | weighted energy

1 634 0.00

2 646 280.38
3 277 1103.48
4 275 1358.51
5 984 1449.88
6 938 1517.06
7 276 1710.50
8 696 1750.53
9 695 1797.67
10 988 1897.56

Table 5.9: Lowest weighted energy values for shape 634.
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Figure 5.41: Example of the results of searching for similar shapes for shape 378.

order | shape number | weighted energy

1 378 0.00

2 372 1818.41
3 373 2213.36
4 381 2438.41
5 863 2619.30
6 244 2839.06
7 851 3332.50
8 222 3394.02
9 371 3509.69
10 856 3602.97

Table 5.10: Lowest weighted energy values for shape 378.
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Figure 5.42: Example of the results of searching for similar shapes for shape 514.

order | shape number | weighted energy

1 514 0.00

2 485 1336.25
3 505 1427.80
4 532 1899.20
5 481 1978.40
6 500 2079.59
7 498 2174.04
8 761 2272.73
9 529 2358.54
10 511 2484.58

Table 5.11: Lowest weighted energy values for shape 514.
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Figure 5.43: Example of the results of searching for similar shapes for shape 11.

order | shape number | weighted energy

1 11 0.00

2 385 1508.93
3 570 1522.45
4 67 1549.49
5 79 1910.27
6 183 2094.56
7 186 2453.26
8 181 2516.63
9 103 4354.88
10 83 7700.93

Table 5.12: Lowest weighted energy values for shape 11.
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Figure 5.44: Example of the results of searching for similar shapes for shape 716.

order | shape number | weighted energy
1 716 0.00
2 718 1801.08
3 717 1884.89
4 4 2251.81
5 3 2327.86
6 196 2378.62
7 720 3420.78
8 5 5102.87
9 449 6222.79
10 352 6598.08

Table 5.13: Lowest weighted energy values for shape 716.
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Figure 5.45: Example of the results of searching for similar shapes for shape 716

when the weighting function is not considered.

order | shape number | energy
1 716 0.00
2 4 6615.42
3 718 7060.50
4 717 7287.06
5 196 7885.93
6 3 8166.41
7 720 11090.04
8 55 15679.68
9 704 15803.00
10 5 15851.10

Table 5.14: Lowest energy values for shape 716.
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Figure 5.46: Example of the results of searching for similar shapes for shape 779.

order | shape number | weighted energy
1 779 0.00
2 780 3086.65
3 616 5116.34
4 81 12331.39
5 613 15286.41
6 593 15423.97
7 67 16516.39
8 385 17114.49
9 50 18235.94
10 197 18282.40

Table 5.15: Lowest weighted energy values for shape 779.
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Figure 5.47: Example of the results of searching for similar shapes for shape 779

when the weighting function is not considered.

order | shape number | energy

1 779 0.00

2 780 12165.00
3 616 17853.65
4 81 24285.05
5 67 29042.19
6 613 29723.95
7 197 30290.62
8 593 30792.44
9 385 31127.42
10 80 33290.45

Table 5.16: Lowest energy values for shape 779.
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5.6 Characterization of partially occluded shapes

One of the most important problems when trying to identify an object is the fact
that it may not be entirely visible in the scene we are working on. When identifying
shapes, the object is not always completely available for its recognition, or several
overlapping objects may be present in the image. This makes the possibility of
occlusion arise in such a way that only some parts of the contour of each object are
suitable to describe it. Thus, only some segments of the contour are suitable to be
compared with those belonging to a certain database in order to label the object as
a member of a certain shape category. In this section, we try to identify objects in
the presence of occlusion from a one-dimensional representation of their contours in

the form of orientation functions.

Several works can be found in the literature trying to solve this problem with dif-
ferent approaches: general methods [TMV85], a cluster-structure algorithm [BM87],
neural networks [KYS96], curvature scale space [Mok97], etc. In this work, the
modified Newton filters are used to estimate edge orientation and build a shape
representation. If we work with one-dimensional representations of two-dimensional
shapes, these contour-based representations must be fitted. When the objects are to
be recognized regardless of their size, we cannot determine a priori what proportion
of their contours is represented by the visible part of the object. In [AAMO1], as well
as in [ZR72], Fourier coefficients are used to associate the orientation functions of
two shapes. However, this kind of representations describe complete shapes and are
not suitable if we wish to relate some sections of each one of the signals. This forces
us to search for new approaches, different to those used when complete objects were
visible.

5.6.1 Segment extraction

Once we have obtained the orientation functions for two images where common parts
are visible, we must determine exactly where these parts are located in both images.
We must take into account that they may be continuous sections of the orientation
functions or not, thus containing separate segments. Even more, the distance be-
tween these segments may be, and usually will, different in both orientation signals,
since the uncommon parts between common ones will have different lengths in both
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signals.

Firstly, we must extract the matching parts in both images, taking into account
the Euclidean transformations which may have been produced, i.e. translations and
rotations. We assume that the scale is the same for both images. As many small
common parts may be found and those straight lines which may appear, e.g. with
pseudo-polygonal shapes, may be matched in several parts of the contour, we must
select the longest one to fix the rotation which relates both frames. This will be
determined by the constant difference between the coupled points in both orientation
functions.

After setting the values for the angle, we can proceed looking for other common
areas which must fulfill the constraint of the initial rotation angle, since we assume
that the object has only undergone a rigid transformation. Since more than one
object may be present in the image, the normalization in the length of orientation
functions does not assure a direct correspondence between both signals. Thus, it is

not useful to adjust the length of the signals to a common value.

Figure 5.48: Coincident part of two different contours.

A minimum limit must be set in the length of the parts to consider them as
significant for shape recognition. In fact, numerous pieces of the orientation function
of an occluded object will probably fit in the orientation function of a complete
object. Thus, the longest part will determine to which object a segment must
be associated. To select such segment, the difference between the values in the

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



114 Visual Perception Models based on Contour Orientation

orientation functions of both pieces must be less than a certain threshold 77 along
the whole sub-signal. Let f" = {f};7," and ¢g" = {gf}:75" be the r** coincident
segments of f, and g,, whose length is L,:

L’f‘—l T AT
di(r) = abs ((f{" —-g7)— M> <Ty Y0<i<lL,

For practical reasons and in order to avoid that noisy images or acquisition
processes affect the result invalidating a segment because of a single differing point,
a certain number of mismatching values are allowed. Once this limit is surpassed,
the segment is concluded and a different one is searched for.

The values in a segment in both images will be used to extract the energy function

of a coincident part to measure the similarity as follows:

2nka -2rka

Eia) =" (f = g %) (i - gie™"%*) (5.19)

And if we use the weighting function w(.), the energy function in equation (5.19)
is transformed into the following weighted energy function:

Lr
2

B0 = w5 ) (5 - ot ™) (5 - sie ")

5.6.2 Segment association

If we want to extract other parts which also correspond to the same object, but
which are not contiguous to the previous ones, two parameters must be considered.
Firstly, the difference in the orientation must be approximately the same for all
couples of segments, since we assume that the objects are rigid. As long as the
difference is lower than the threshold T3, the parts to be compared are considered
as coincident, as shown in figure 5.49. In order to compare the 7" and the s
couples of segments, once each segment has been identified as coincident with its
corresponding couple, we proceed as follows:
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Figure 5.49: Coincident part in the orientation functions.

L_H_’_p et

Figure 5.50: Segment identification.
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Firstly, we couple the segments of the orientation functions f, and g,, f™ and ¢"
respectively, which satisfy the restrictions in the previous section and whose length
L, must be the same:

T ry Lr— r r1Lr—
f :{fk k:ol — g :{gk}kzol

Secondly, we calculate the rotation which brings the second one onto the first
one. This can be estimated by the difference in the mean values of the orientation
functions corresponding to both segments, since the constant R(f", ¢") which must
be added to the second one to reach the first one is the angle of the rotation:

Lr=1 ¢ pr T
R(fr’g'r‘) — k=0 l(;flc — gk:)

Finally, we compare the rotations for different couples of segments. In case two
angles are similar enough, we can still suppose they belong to the same object.
Otherwise, they do not:

do(r,s) = abs (R(f",9") — R(f*,9°)) < T2

Secondly, the translation from the rotated points of one of the contours to those
in the other one must also be the same. Let (mf N7 T) be the coordinates of the

points of the r* segment in function f,, the difference between the translations
of the points in any two segments (r and s below) must be small enough, more
precisely, lower than a given threshold 75:

Firstly, we calculate the center of mass for every segment f”, m(f") as:

Ly—1 Mo fr
Zi:O (371 Ui )
L,

m(f") =

Secondly, we rotate the second segment of every couple with respect to the same
point, and calculate the translation which fits both segments. We rotate all the
segments of a given object with respect to the same point in order to be able to
compare the translations properly. Otherwise, the shape would not be preserved:

>ico (af,9)

m(g) = T
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Figure 5.51: Segment association.

The necessary rotation is given by R(f",¢"):

T(f".9") =m(f") — R(f",g")m(g")
And finally, we compare the translations for different couples:
dt(r> 3) = ”T(fr7gr) - T(fs> 98>H <T;

When both constraints are satisfied, the segments are supposed to belong to the
same contour, and thus, they can be considered as visible parts of the same object.
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Chapter 6

MOTION ANALYSIS

If we try to analyze the motion of an object, several images must be compared.
Global parameters can be extracted from the comparison of the object in different
time instants. In fact, the position of the center gives information about the trans-
lation, the area covered by the object determines the changes in the size, and the
shape of the object will help us decide the rotation angle. In order to process a
sequence of frames, we must first study how to compare two of them in isolation.

The study carried out on the contours of a sequence of images from modified New-
ton filters outputs allows extracting some general parameters of an object, such as its
position, orientation and size, in order to analyze its temporal evolution. The com-
bination of one-dimensional processing structures allows building two-dimensional
tools, and the combination of two-dimensional structures generates temporal de-
scriptions.

Two different schemes are shown in this chapter. In the first one, local infor-
mation is only added and compared to extract global information. In the second
one, the global description and characterization of the object are used to obtain

more accurate results from the mechanism used in the previous chapter for shape
characterization.
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6.1 Local information in motion analysis

The analysis of a moving object from local information is performed in two steps.
Firstly, a local process is carried out in order to detect the changes produced in the
neighborhood of the points on the contour. Secondly, those local data are combined
and compared in order to extract a global description of the temporal evolution of
the object. In this section, we present different approaches which use only local
information and the addition of these outputs.

6.1.1 Motion parameter extraction from local information

A previous work by Alemdn et al. [ALMO97] intended to obtain, from the image of an
object located on an artificial retina, an estimation of the center of gravity and size
of this object, and from the successive images that arrive to the retina during several
temporal samples, an approximation of the direction and speed of its movement in
order to be able to follow the object as it moves. The pixels were considered as
the quantizing units, as the photoreceptors in the natural system. In this work,
the receptive fields were randomly distributed, since the information was processed
locally. Each receptive field extracted its own output for direction and speed and
the combination of all the outputs gave an idea of what the real trajectory was.

Due to the randomness of the distribution of the receptive fields, whose weights
changed as described in figures 6.1 and 6.2, some statistical measures were used for
the estimation of size and center of luminance, similarly to the Montecarlo method
[Sob74]. For direction and speed, the addition of the outputs determined the global
decision.

In [ALM97], as in the current work, eight directions were initially considered,
with many receptive fields, i.e. filters, specialized in each of these directions. The
detection of edges and their location in the following frame generated an estima-
tion for the direction and speed, as shown in figure 6.3. A temporal integration
and a lateral inhibition simulation made the system more robust. The first one
avoided drastic changes in the trajectory and the second enhanced the output for

the preferred direction, diminishing the probability of erroneous results.

Since the values which were extracted depended on the sample of receptive fields
which had been selected, confidence intervals could be used to determine with a
certain accuracy the significance of the measures. For example, for a series of mea-
sures of the size z;, the mean Z, standard deviation o and confidence interval for
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Figure 6.1: Weights of the receptive fields before and after the detection of an edge,

significance « are given by equations (6.1), (6.2) and (6.3), respectively:

_ \/zfigl (@ ~7)
N-1

z — O’ta/z < K <§+0'ta/2

(6.1)
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Figure 6.2: Outputs at two instants for a moving edge.
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Figure 6.3: Block scheme for motion analysis from local information.
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6.1.2 Motion detection using local orientation estimations

The combination of the outputs of the filters specialized in different directions prior
to their global analysis allows a much more accurate determination of the orientation
of the contours and that enlarges the quantity of orientations to be discriminated.
The local comparison of the contours can be improved by considering the more ac-
curate information which can be extracted from the modified Newton filters. In this
way, not only eight possibilities are considered, but all those which can be identi-
fied with the interpolation process described in the previous chapter. This reduces
significantly the ambiguity generated by those borders which can be relocated in
many different points in the following image. For each point on the contour, those
points in its neighborhood which have the same orientation in the following image
are candidates to be its corresponding one, assuming that motion consists only in
a rigid translation of the object. When only one candidate is found, the solution is
simple, but when multiple choices are available, the ambiguity remains.

Figure 6.4 presents an object which moves in the North-East direction. For every
point on the contour in a frame, those points in the neighborhood which present
the same orientation are searched for. Using the modified Newton filters and the
contour of the object, figure 6.5 shows those points which detect motion in each one
of the eight main directions, i.e. those points which have a neighbor in that direction
with the same orientation, at a distance lower than 3 pixels for this example. As

observed, the most significant output is given by the North-East direction.

Figure 6.4: Moving object.

However, the study of information globally, even if it is originally processed in
a restricted neighborhood for each pixel, provides more accurate information and
the possibility of reducing the ambiguities caused by the aperture problem which
appears when the receptive fields are much too small for the size of the object.
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Figure 6.5: Selective motion detection from interpolation of modified Newton filters
ouputs.

Furthermore, the previously described mechanism works for translation, but it does
not tackle the problems of rotation or scaling. That is the reason why we have used
the extraction of the contour as in the previous chapter to study how two different
images of the same object can be compared in time.
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6.2 Motion analysis from global information

In this section, we start from the results obtained in chapter 5. If we consider a
sequence of images corresponding to the acquisition of a moving object as a set
of couples of images in which the same object can be identified, the process to
relate two contours can be repeatedly used to fit object contours and extract motion
parameters.

6.2.1 Object fitting

Once we have identified an object as one of the elements of our database, we may
need to bring it to a convenient position. This requires fitting the present object to
the reference shape. Firstly, a translation may be required. It can be extracted from
the centers of both coupled shapes by subtracting their coordinates. Equations (6.4)
and (6.5) determine how we can obtain the center (x,y.) from a function O(z,y)
which returns the part of pixel (x,y) which is covered by the object in image I.
Let (zl,y!) and (22,32) be the centers of both objects, equation (6.6) shows the
translation to be performed.

_ Z(z,y)e[ .fEO(fIJ,y)

ZTe 6.4
Z(az,y)e[ O(‘,L'i y) ( )
Oz,
Yo = Z(m,y)é]y ( y) (65)
Z(m,y)ef O(l’,y)
T = (2.~ 25, Y: — ¥o) (6.6)

Secondly, we must consider their sizes. As said before, orientation functions have
been normalized to make comparisons. However, we must work with actual sizes,
which can be extracted from the segmentation of the images in two regions, object
and background. The area covered by the object in the image is given by equation
(6.7). The square root of the quotient of both sizes determines the proportional

scale we must use, as shown in equation (6.8):
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A= Z O(z,y) (6.7)

(zy)el

szvg; (6.8)

Finally, the rotation to be performed with respect to the center can be identified
from the mean values of both orientation functions. The difference between the
mean values, f and g, of two orientation functions corresponding to the same shape
allows us to extract the angle # that should be used to rotate one of them and fit
the other one, as shown in equation (6.9).

0=F-7 (6.9)

Nevertheless, a more accurate value for the rotation angle # can be obtained by
minimizing the error function in equation (6.10), where (z},y}) and (22, y?) are the
coupled points of the contour of both signals whose coordinates are calculated with
respect to their respective centers:

E.(9) = [(:czl ~ (22 cosf +y2sin6))’ + (4 — (—z?sin 6 + y? cos 0))2} (6.10)

=0 = Z (—:rzlx? sind + z}y? cos§ — yla? cos @ — yly? sin ) =0

H
i=1

S (aly? - yla?)
ZL—I

i=1 (zjz? + f%lyf)

tanf =

1
>oicy (zix? + yiyd)

L-1 1,2 _ ,1,.2
6 — arctan (Zz 1 (@73 yﬂ%)) (6.11)

With these 3 transformations, given by the parameters in equations (6.6), (6.8)
and (6.11), we could adapt the position, orientation and distance of an object to
fulfill certain conditions, e.g. to be able to grab it. Figures 6.6 and 6.7 show two
examples of object fitting with translation, rotation and scaling.
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A given point (z,y) in the second object is transformed according to the param-

eters (7',.5,0) in three steps as follows:

(z, ) = (3, )+ T
(2,t)* = ((z,8)* = (22, 42)) S + (z2,42)

<z,t>3=( cosf sinf ) (2 — (&232) + (2 32)

—sinf cosé

~4

() () (©)

Figure 6.6: (a) and (b) Input images corresponding to the same key. (c) Adaptation
of the second image to the first one by means of translation, rotation and scaling.
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6.2.2 Motion parameter extraction using global information

The same mechanism which has been used to compare two frames of the same object
in different positions and determine the transformation that brings one of them to
the other can be used to analyze the temporal evolution of an object in a sequence
of consecutive frames. By extracting, for every couple of consecutive frames, the
translation of the center of the object, the rotation with respect to the center which
the object has undergone and the possible change in the size that may have been
produced, it is possible to build a trajectory for the object and represent the changes
with regard to the original situation.

In both, object fitting and motion analysis, a certain measure of the correctness of
the association must be used. To this effect, we have selected the mean distance from
the points in the second contour to those in the first contour, once the transformation
has been carried out with the parameters extracted from the frames. This measure
is related to the Hausdorff measure, but, instead of selecting the maximum distance,
we calculate the average. The mean distance from C; to Cs, where C; and C; are
point sets, is given by equation (6.12).

Zplecl minp,ec, [|P1 — P2l
(&1

As we are working with a sample of points extracted from the contours, we

d(Ch, C) = (6.12)

consider the distance from one set to the other, but not vice versa. The lower this
measure, the better the matching between a couple of figures. We do not use it
as a tool to extract object transformations, but as a test for our parameters. As
long as this measure remains low, we can trust in the correctness of the analysis.
Other related measures, such as the partial Hausdorff measure, are used for similar
purposes by Olson and Huttenlocher [OH97].

Figure 6.9 shows a real sequence of frames and the trajectory which has been
extracted. On the left, the initial position of a small toy is shown, as well as the
contours for the following frames. On the right, the trajectory is described indicating
the changes in the orientation of the object with a vector whose angle corresponds to
the rotation of the object and whose length reflects the size changes. Table 6.1 shows
the corresponding numerical values for the parameters which have been extracted
from this sequence, as well as the mean distance for the object fitting which has
been performed. Figure 6.10 and table 6.2 show a second example with a synthetic
movie. As observed, the numerical results, whose accuracy is tested with the mean
distance, are very satisfactory.
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~ =

Figure 6.7: Contour fitting of a couple of consecutive images from a motion sequence
with translation, rotation and scaling (the contour of the image on the right is
adjusted to image on the left).
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Figure 6.8: Sequence of images of a moving object.

131

anaria. Biblioteca Digital, 2003

ersidad de Las Palmas de Gran C:

© Unive
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Figure 6.9: Image sequence and temporal evolution. The trajectory of the object
is shown on the right and the vectors represented on it indicate the changes in the

orientation from the initial situation.

Table 6.1: Translation (13,7y), rotation angle 6, scaling proportion S and mean
distance d for frames in figure 6.9.

Frames T T, g S d
1-2 -12.6985 | -5.56378 | 0.1332 | 1.0130 | 0.4069
2-3 -15.8720 | -8.1660 | 0.2356 | 0.9602 | 0.5150
3-4 -12.2985 | -10.3341 | 0.2360 | 0.9793 | 0.5317
4-5 -6.7458 | -18.3505 | 0.1306 | 1.0091 | 0.5258
5-6 -4.9547 | -13.5380 | 0.2053 | 0.9880 | 0.4464
6-7 -7.7208 | -12.7441 | 0.2154 | 0.9939 | 0.4866
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Figure 6.10: Sequence of images of a moving object.
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Figure 6.11: Image sequence and temporal evolution. The trajectory of the object
is shown on the right and the vectors represented on it indicate the changes in the
orientation from the initial situation.

Frames T, T, 6 S d
1-2 11.3974 | 12.2906 | 0.3510 | 1.0445 | 0.3210
2-3 8.6578 | 8.3999 | 0.3733 | 1.1137 | 0.4188
3-4 | 14.7364 | 13.6461 | 0.3927 | 1.2036 | 0.5265
4-5 12.8263 | 12.9653 | 0.3726 | 1.1242 | 0.3844
5-6 0.6253 | 5.0067 | 0.1721 | 1.0613 | 0.8590
6-7 | -9.3438 | -9.7741 | 0.0251 | 1.4544 | 0.5781

Table 6.2: Translation (T3, T,), rotation angle 6, scaling proportion S and mean
distance d for frames in figure 6.10.

anaria. Biblioteca Digital, 2003

ersidad de Las Palmas de Gran C:

© Unive



Chapter 7

TEXTURE CLASSIFICATION

The complete description of an object is not only given by its shape. Thus, the
texture in the inner region may be helpful to a large extent when we try to char-
acterize materials, components, agglomerations, etc. Sonka et al. [SHB99] define a
texture as something consisting of mutually related elements. Nevertheless, due to
its wide variability, it is not simple to give a precise definition. A texture consists
of texture primitives or texture elements, sometimes called texels. An important
problem when dealing with textures is that texture description is scale dependent.

The purpose of this chapter is to present an approach to texture classification
based on the description given by the estimation of the orientation in every point
of an image. The same kind of Fourier analysis which has been carried out to
characterize shapes from their contours can be used to identify the texture which
fills a region of an image. Firstly, modified Newton filters are used to extract the
orientation of the gradient in every point of the image. Due to the fact that we are
not working with the silhouette of a shape, they are applied all over the textured
region, without the need of segmenting first object and background.

Since orientation histograms do not univocally characterize a texture, the same
representation could have been extracted from different patterns. The combination
of a multiscale analysis with the comparison of orientation histograms results in a
powerful technique for texture classification which reduces noticeably the ambiguity
of considering isolated histograms.
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7.1 Orientation histograms

With the modified Newton filters, we are able to estimate accurately the orientation
of the gradient at a certain pixel. Similarly, the values for the eight main orientations
can be used to estimate the magnitude of this gradient. The interpolation of the
outputs of the filters will provide us with a value for the direction of the gradient in
every point as well as an estimation of its magnitude. With these estimations, we
build a histogram of the orientations by adding the magnitudes of the gradients of
the points where the edges present the same orientation. This histogram describes
how the orientations are distributed in that region, allowing us to determine the
most significant ones, the proportion they represent and their relation in terms of
orientation distance and concentration. Figure 7.1 shows an example of a texture
and the corresponding orientation histogram which can be used to compare this
texture with others. The orientations are grouped into a discrete set of equidistant
values with a given cardinal L.

For the orientations, we use the quadratic interpolation polynomial described in
chapter 5 for each point (4, k) in the image as shown in equation (7.1), where 4 is
the index of the filter with the highest output f; and positions 7 — 1 and ¢ + 1 are
calculated modulo 8.

Y= 8(fis1 — fz’——l)ﬂ; 16(fi — fi1) (x — %(z - 1))2 (7.1)
L 8= fimy) ~W2<fz-+1 = fi-1) (2= 76— 1) + fi

With this polynomial, the maximum value o, , which estimates the orientation
in that point, is given by:

Afi—fi-)=(fixs—Ffic1) & | wrr
(2[2(fz-—fi—l)—(fm—fi_l)]4 + 5 1)) L

2

0; 5 = Tound

It has been rounded to adjust it to a discrete signal. For the magnitude, we use
this orientation and substitute it in the polynomial:

(VI)M _ 8(fir1 — fim1) — 16(fi — fi1) <Oj,k _ 7"(2- _ 1)>2

2 4
i 8(fi — fi-1) *:(fz'ﬂ — fi-1) (oj,k - %(z — l)) + fica
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Figure 7.1: Textured region and associated orientation map and orientation his-
togram.

Figure 7.2: Noisy texture with no predominant orientation and corresponding ori-
entation map and orientation histogram.

The values of the histogram h; are given by the following expression, where
(VI);, and o, are the magnitude and the orientation extracted for point (j, k):

hi= 3 (VD)
ik
Oj,k:’l'
For normalization purposes, the global weight of all positions in the histogram
is set to 1, thus dividing each resulting component of the histogram by the sum of
all of them:

/ hz

hi =13
2 hy

J=0

In order to compare two textures, an energy function is built, similar to that used

for contour characterization. Nonetheless, in this case, a change in the orientation
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will only cause a cyclical shift in the histogram and no constant is added to the
values. For this reason, the coefficients are modified as follows: let f, and g, be the
orientation histograms of length L corresponding to the same texture but shifted a
position, i.e. the texture has been rotated an angle 8 = 2wa/L, and let f; and g
be the k' Fourier coefficients of these histograms, then the following relationship
applies:

,L-21'rk:a

fe=ge™" 1

This makes the energy function simpler than in the case of the orientation func-
tions used for shape characterization in chapter 5, as expressed in the following

equation:

SIS

E(a) = (fk - le_i%%) (flc - gke_ihbka)* (7.2)

k=1

In addition, the fact that the number of discrete orientations used for the his-
tograms is constant makes the lengths of the signals equal. Consequently, a change
in the size of the region where the texture is analyzed will not cause the generation of
a different distribution, provided that the histograms are normalized in their global
length. As done with other energy functions used for characterization, a weight-
ing function w(.) can be used to emphasize the discrimination, thus obtaining the
following expression:

E(a)= ) w <%> (fk - gke_ﬁﬂ%> (fk - le_i%fa)* (7.3)
1

k=

As mentioned before, the orientation histograms extracted from the textures de-
scribe how the different orientations are quantitatively distributed across the region
which is studied, but they do not provide any information about the spatial neigh-
borhood of the pixels with a certain orientation. Thus, a completely noisy image,
in which all orientations are equally but disorderly present in the image would gen-
erate the same histogram as a circle, where the orientation is increased gradually.
This forces us to search for a certain technique which complements the information
provided by this kind of histograms in order to enhance the recognition capabilities.
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Figure 7.3: Texture and corresponding orientation map.

Figure 7.4: Texture and corresponding orientation map.

Figures 7.3 and 7.4 shows the orientation maps for two different textures. The

grey-value represents the edge orientation which has been extracted for every point.

A multiscale analysis of the image will provide us with a series of images which
represent the evolution of the texture at different scales. In this evolution, the
orientations will be differently affected by the others, depending on their spatial
proximity. This will allow us to distinguish among textures where orientations are
originally distributed in a similar way, but which are actually of different natures.
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Figure 7.5: Histograms for textures in figures 7.3 and 7.4.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 7: Texture Classification 141

7.2 Multiscale analysis

The interpretation of the information we perceive from the environment depends
on the scale we use to process it. For instance, if we look at the sky analyzing the
stars independently, we will not be able to realize the relative position of each one
of them with respect to the others, avoiding conceiving them as constellations, and
not simply as single asters. On the other hand, the interpretation of the information
at a very high scale would cause a loss of detailed information about each one of
these stars, blurring them into the group.

The information provided by each scale is useful and the study of the same
scene at different scales makes it possible to perceive a wider range of realities.
Furthermore, elements which are not distinguishable at a certain scale may be clearly
distinct at a different one and the rough and detailed information extracted from
an image may help us decide when comparing textures.

A multiscale analysis can be determined by a set of transformations {7}+>o,
where ¢ represents the scale. Let I be an image, i.e. I : Q — R, where 2 is
the domain where the image is defined. In what follows, we will consider 2 = R"
for simplicity in the exposition. I; = T;(I) is a new image which corresponds to
I at a scale t. For a given image I to which the multiscale analysis is applied,
we can extract a histogram {A{},_, ;_; which determines the distribution of the
orientations of I at the scale ¢. In this case, the normalization of the values within a
histogram is performed with respect to the initial addition, and not with respect to
the addition at that scale. In order to compare the histograms of two images, the
scale must be first adjusted.

7.2.1 Gaussian multiscale analysis

As said before, a multiscale analysis generates a series of images from an original one,
which describe the behavior of the input signal when a certain process is applied to it.
Firstly, we will use a Gaussian filter whose evolution at different scales will provide
us with a series of values for the proportion of the variation which is preserved
when the filter is applied. We use the evolution of the squares of the norms of the
gradients:
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[IvL?
9

[IvL?
Q

With a Gaussian filter, whose properties make it suitable for our purposes as
described in [Lin94], we can assure that this value will decrease as we increase the
scale. In one dimension, we use a Gaussian kernel is given by:

1 2

Kyi(z) = \/4_7rte—%

and

T(f)(a) = /8:E = 1)y

where the scale ¢ is related to the standard deviation ¢ according to the expres-
sion:

.
2
Afterwards, we quantize it as follows:
1 n?
Ky = e~ 4
(Ke), = =
ad 1 )2
T * K, Tn e 4t
(z % Ko, n;oo =

At this point, it is important to consider the relationship between the Gaussian
filtering and the heat equation. The heat equation is given by:

ou  Ju
ot  Ox2
where u(t,z) is the solution of the equation. Given a signal f, the result of

convolving f with the Gaussian filter K; is equivalent to the solution of the heat
equation using f as the initial data:
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Figure 7.6: Gaussian function for ¢ = 1.

u(t, s) = K¢ » f(z)

Considering this relationship, a discrete version of the heat equation can be used
to accelerate the approximation of the Gaussian filtering, which results in a recursive

scheme in three steps for each direction, as shown below, where I; is the original
image [AM94]:

T L .
I8 =10 ol VieZ
2 L -2
=0 ol VjeZ (7.4)
nt+2
[rHl = 2t Vi€ Z

This process will be performed by rows and by columns in order to obtain a
discrete expression for a two-dimensional Gaussian filtering. Making use of the
features of the Gaussian kernels, the result of applying a Gaussian filter with an
initial scale t can be used to obtain a Gaussian filtering of the initial image for a
different scale without needing to start again from the input. We will discretize the
scale considering o, = nog for a given oy. Taking into account the relation o2 = 2t,
the step size At to go from o, to 0,1 is given by:

((n+1)a0)*  (noy)*

At = 5 - :(n-l—%) (00)”
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If we use niter iterations of the recursive scheme 7.4 to compute I, .; from I,
the discretization scheme for the heat equation is given by:

s+l — (n+3) (00)°
t niter

Figure 7.8: Gaussian filtering and change in the orientation map.
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7.2.2 Scale estimation

We must take into account that, for a certain texture, the use of different resolu-
tions forces us to apply Gaussian functions with different standard deviations, thus
requiring an adaptation stage. Once we have extracted a function of the evolution
of the variation at different scales, we can use these factors to compare textures
whose histograms are initially very similar. Even if the quantitative distribution of
the orientations may be very similar, the spatial distribution will cause a different
evolution and interaction, so the factors will differ.

One of the properties of the Gaussian filtering is the relationship between the
resolution of two images and the effects of this kind of filters. In fact, the result of
applying a Gaussian filter with standard deviation o to an image with resolution
factor z is equivalent to applying a Gaussian filter with standard deviation ko to
the same image acquired with a resolution factor kz.

Lemma: Let Iy(z,y), I}(x,y) be such that there exists a constant k satisfying
that Ij(z,y) = lo(kz, ky) V(z,y) € Q, then

L(z,y) = Irzy(kz, ky)

Vii(z,y) = k7 Iz (ka, ky)

Proof: The result follows from the uniqueness of the solution of the heat equation
taking into account that the function I2;(kz, ky) is a solution of the heat equation
for the initial datum I}(z,y).

From this lemma, we deduce that the proportional variation of the squares of
the gradient is preserved when the standard deviation of the Gaussian function used
for the filter of the scaled image is corrected with the scale factor k, that is:

I'(t,z,y) = I(k%*, ka, ky)

2
[19L,y) Pdedy K2 [ | Ik, ky)Pdedy [V Ied@v)l" dody
Q Q

Q-

[z, y) dedy B [1Vh (ke by dedy [ |1, ()| dedy
Q

el
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Let 73 and r2 be the ratios obtained for two textures at the scale o, = noyg, the
best adjusting coefficient & to fit the series of 72 to that of 7% , both consisting of N
terms, is given by minimizing the error:

N-1
%ﬁ:oﬁ S (ri—kr)ri=0
=0
_ X (i)
TR "
=0 i

Once it has been obtained, the values in the second series must be interpolated
to compare them with those in the first series.

Figure 7.9: Variation of the squares of the gradient for textures in figures 7.7 and
7.8.

The mean error E(k), given by equation (7.5), calculated for the value of k
obtained for the best matching scale will determine whether both textures could be
related as belonging to the same pattern, but with scales o and ko. If E'(k) is lower
than a certain threshold 6, they are assumed to be similar enough and the histogram
of the second one can be compared with that of the first after applying Gaussian

filters with standard deviations ¢ and ko.
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Figure 7.10: Images of the same texture at different resolutions.

B

Figure 7.11: Texture scale adjustment and error for textures in image 7.10.
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7.3 Texture-based image clustering

This section shows an example of the comparison of a set of textures contained in a
database, which is shown in figures 7.12 and 7.13. Using the techniques described in
the previous sections, a certain texture is compared with all those in the database
and the most similar ones are selected. The similarity between two textures is given
by the energy obtained when comparing their orientation histograms. Tables 7.1
and 7.2 show a reference list for texture identification.

We have used a database, made publicly available for research purposes by
Columbia and Utrecht Universities, Columbia-Utrecht Reflectance and Texture Data-
base [Col01]. This test set consists of greyscale images and thus, a single histogram
is used to represent the orientations of the edges in light intensity. If we were work-
ing with color images, a three subchannel mechanism could be used when hue, and
not only intensity, is relevant for texture identification.

7.3.1 Clustering with energy values

The following pages show some examples of texture comparison using the technique
described in the previous sections. For the image database containing 60 textures
of different natures, but visually difficult to classify, one is selected, and the 5 best
comparisons are shown. Of course, as the selected image is one of the set, the best
match corresponds to itself, and the energy factor is 0.

As done with shape characterization, a weighting function has been used to
multiply the factors in the energy function. As in that case, an exponential function
makes the values in the lower frequencies more important than those in the higher
frequencies, thus giving more importance to the general shape of the histogram than
to the small details.

The last example of this series, in figure 7.20, corresponds to a texture which
does not belong to the database. It is a white-noise texture generated synthetically
and which has been included for this example.
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1 Felt

2 Polyester

3 Terrycloth

4 Rough Plastic
5 Leather

6 Sandpaper

7 Velvet

8 Pebbles

9 Frosted Glas
10 Plaster a

11 Plaster b

12 Rough Paper
13 Artificial Grass
14 Roof Shingle
15 Aluminium Foil
16 Cork

17 Rough Tile
18 Rug a

19 Rug b

20 Styrofoam

21 Sponge

22 Lambswool
23 Lettuce Leaf
24 Rabbit Fur
25 Quarry Tile
26 Loofah

27 Insulation

28 Crumpled Paper
29 | Zoomed version of texture 2
30 | Zoomed version of texture 11

Table 7.1: Texture reference list (1).
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31 | Zoomed version of texture 12
32 | Zoomed version of texture 14
33 Slate a

34 Slate b

35 Painted Spheres
36 Limestone
37 Brick a

38 Ribbed Paper
39 Human Skin
40 Straw

41 Brick b

42 Corduroy

43 Salt Crystal
44 Linen

45 Concrete 3
46 Cotton

47 Stones

48 Brown Bread
49 Concrete b
50 Concrete ¢
51 Corn Husk
52 White Bread
53 Soleirolia Plant
54 Wood a

55 Orange Peel
56 Wood b

57 Peacock Feather
58 Tree Bark

59 Cracker a

60 Cracker b

Table 7.2: Texture reference list (2).
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Figure 7.14: Example of the results of searching for similar textures for texture 51

using (7.3).

order | texture number | weighted energy
1 51 0.00
2 40 16.03
3 38 49.21
4 56 118.39
5 o7 157.10

Table 7.3: Lowest energy values for texture 51.
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Figure 7.15: Example of the results of searching for similar textures for texture 45
using (7.3).

order | texture number | weighted energy
45 0.00
2 47 0.69
3 32 0.91
4 17 0.98
5 43 1.05

Table 7.4: Lowest energy values for texture 45.
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Figure 7.16: Example of the results of searching for similar textures for texture 24

using (7.3).

order | texture number | weighted energy
1 24 0.00
2 46 2.96
3 33 4.53
4 48 6.06
5 15 6.43

Table 7.5: Lowest energy values for texture 24.
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Figure 7.17: Example of the results of searching for similar textures for texture 4
using (7.3).

order | texture number | weighted energy
1 4 0.00
2 31 2.11
3 11 3.77
4 26 4.09
5 27 4.24

Table 7.6: Lowest energy values for texture 4.
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Figure 7.18: Example of the results of searching for similar textures for tetxure 11

using (7.3).

order | texture number | weighted energy
1 11 0.00
2 30 0.59
3 49 0.61
4 10 1.20
5 26 1.62

Table 7.7: Lowest energy values for texture 11.
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Figure 7.19: Example of the results of searching for similar textures for texture 18
using (7.3).

order | texture number | weighted energy
1 18 0.00
2 16 0.90
3 59 1.15
4 43 1.29
5 3 1.30

Table 7.8: Lowest energy values for texture 18.
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Figure 7.20: Results of searching for similar texture for a white-noise image using
(7.3).

order | texture number | weighted energy
1 white noise 0.00
2 41 1.87
3 19 2.06
4 54 2.15
5 42 2.16

Table 7.9: Lowest energy values for a white-noise image.
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7.3.2 Two-step clustering: energy values and multiscale analysis

As stated in the previous sections, some textures present similar orientation his-
tograms, even though they are not visually very similar. Although the comparison
of the histograms results in low energy values, the evolution of the squares of the
gradients allows attaining a more refined discrimination procedure. The following
example shows a comparison between two images corresponding to the same tex-
ture at different scales. The evolution of the squares of the gradient is similar and
it is even more when the matching factor is calculated to adjust one of them to the
other. We have calculated the absolute error between both functions to measure
quantitatively the dissimilarity, as shown in equation (7.7). As observed, the error
resulting is very low when the regions correspond to the same texture at different
scales.

ri— k'r’f

=

E(k) = > (7.7)
=0

The previous result has been used to improve the discrimination. Sometimes it

is not easy to discriminate the textures when the histograms do not state a clear
pattern and can be associated with many textures.

For example, if we compare texture 30 with the others and extract the most

similar ones, we obtain a series of results which do not state clear differences between
the similar textures and the same texture acquired at a different scale. We apply
the multiscale analysis and compare the results for textures 30 and 11 with those
for texture 30 and textures 10, 49 and 50. Even if the energy is very similar, the
error is higher when the textures are not the same, since the evolution is different
as we increase the standard deviation of the Gaussian filtering. This shows how a
two-step process (energy calculation and multiscale analysis) can be used to enhance
the discrimination when the results in the first step are not clear.

The same process has been carried out with texture 31 (rough paper), whose
best approaches are textures 26, 27, 4 and 12. Texture 12 is a zoomed version of
texture 31, but the best results are not obtained for it. As observed at the end of
this example, textures 4 and 12 (rough plastic and rough paper) are the most similar
ones.
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Figure 7.21: Example of the results of searching for similar textures for texture 30

using (7.3).
comparison | energy | weighted energy | quadratic error (*100) | absolute error
30-10 3.50 0.47 3.3053 1.035815
30-49 3.66 0.57 10.2568 1.827342
30-11 4.18 0.59 2.2914 0.877211
30-50 3.85 1.07 3.9379 1.111229

Table 7.10: Comparison of texture 30 with the most similar ones.
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Figure 7.22: Textures 30 and 11.Textures 30 and 11 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.

Figure 7.23: Textures 30 and 10.Textures 30 and 10 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 7: Texture Classification 163

LLL

Figure 7.24: Textures 30 and 49.Textures 30 and 49 after Gaussian filtering. Texture

scale adjustment using (7.6) and error.
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Figure 7.25: Textures 30 and 50.Textures 30 and 50 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.
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Figure 7.26: Example of the results of searching for similar textures for texture 31
using (7.3).

comparison | energy | weighted energy | quadratic error (*100) | absolute error
31-26 6.05 1.92 3.4939 0.966489
31-27 8.28 2.05 1.8701 0.712228
31-04 7.98 2.11 0.4681 0.373229
31-12 6.64 2.24 0.9072 0.507692

Table 7.11: Comparison of texture 31 with the most similar ones.
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LLL

Figure 7.27: Textures 31 and 12. Textures 31 and 12 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.
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Figure 7.28: Textures 31 and 12.Textures 31 and 12 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.
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Figure 7.29: Textures 31 and 27.Textures 31 and 27 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.

L

Figure 7.30: Textures 31 and 4.Textures 31 and 4 after Gaussian filtering. Texture
scale adjustment using (7.6) and error.
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Figure 7.31: Comparison between the energy (7.2), weighted energy (7.3), quadratic
error (7.5) and absolute error (7.7) when comparing two images of the same texture
at different scales (first couple) and two images of different but similar textures
(second couple).
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7.3.3 Multiscale texture orientation histogram comparison

We can study how the energy obtained when comparing the orientation histograms
evolves as we apply a Gaussian filtering on the textures. When comparing two
textures I and I’, we firstly calculate the scales where the addition of the squares of
the gradients has been reduced to a half of the initial addition, o and o, respectively.

We use the the adjusting factor &, as in equation (7.6), to calculate an intermediate
value oy as:

o+ 20’
2

aoN =

An finally, we obtain the energies for the comparison of the histograms at N dif-
ferent scales, given by equation (7.8), where n = {0, .., N—1}. With this expressions,
after computing the energies at the corresponding N scales, the last comparison an-
alyzes each texture at a scale where the addition of the squares of the gradients
is around the half of the initial addition for that texture, and the intermediate
comparisons correspond to couples of scales at which both textures are comparable.

n

On = 5ON (7.8)
o = n—ka
n N N

By analyzing the resulting energies with regard to the initial one, we can de-
termine how similar both textures are. For texture 31, if we compare the energies
obtained with textures 26, 27, 4 and 12, which were the ones selected using the
initial weighted energy, we achieve the results in figures 7.32 and 7.33. Figure 7.32
shows the absolute values of the energy, while figure 7.33 shows the percentages with
respect to the initial energy. The value represented for a certain n is the energy ob-
tained when comparing both texures after a certain Gaussian filter is applied, using
oy, for the first texture and o), for the second one. They show that the most similar
texture is texture 12, which in fact is the same texture as texture 31, but at a dif-
ferent scale. As observed, while the energy for the comparison between textures 31
and 12 decreases significantly, those obtained for the comparison of texture 31 with
textures 26, 27 and 4 increase (texture 26), remain in similar values (texture 27) or
decrease very slowly (texture 4).
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This allows us to order the textures according to their similarity with the refer-
ence one in a more accurate way, since the information provided by the evolution
of the enegies as a Gaussian filtering is applied at different scales complements that
offered by simply considering the initial energy, thus endowing our mechanism with

a higher robustness.

Figure 7.32: Evolution of the energy when applying Gaussian filtering for texture
31 compared with textures 26 (dots), 27 (dot-dash), 4 (dash) and 12 (solid).

1.5

Figure 7.33: Relative evolution of the energy when applying Gaussian filtering for
texture 31 compared with textures 26 (dots), 27 (dot-dash), 4 (dash) and 12 (solid).
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Figure 7.34: Ordered results of comparing texture 31 with textures 12, 4, 27 and 26
using the energy of the different histograms when a Gaussian filtering is applied.

comparison | initial weighted energy | final weighted energy | % final-initial energies
31-12 2.24 1.06 47.42
31-04 2.11 1.59 75.53
31-27 2.05 1.95 95.07
31-26 1.52 2.31 151.96

Table 7.12: Comparison of texture 31 with the most similar ones using the energies
at different scales.
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7.4 Robustness of texture classification under dark-

ening, lightening and inversion

The following examples show how darkening, lightening and inverting a pattern
affect the results when calculating the energy which measures the similarity between
two textures. This will allow us to test the robustness of our method when some

kinds of transformations are performed in the input signal.

Darkening is obtained by multiplying the original values by a constant, lower than
1. For lightening, the same process is executed, but in this case we use a constant
higher than 1. Finally, inversion is obtained by subtracting the input values from

255, which is the maximum value.

As observed in figures 7.35-7.38 and in table 7.13, when a texture is darkened,
the resulting energy is very low. This energy measures the dissimilarity between
two textures, i.e. the lower the values, the more similar they are. Thus, these low
results indicate that the textures are in fact almost identical. Only small differences
in the new light intensity due to the representation limitations cause a negligible
value. The use of integer values in intensity representation forces us to round the

values once they have been reduced, generating small differences in gradient values.

Figures 7.39-7.42 and table 7.14 show similar consequences when the textures
are lightened. In this case, the overflow in light intensity values for the most bright
points due to the increase they undergo, which forces us to truncate the values which
exceed the maximum, causes a higher difference. However, it is still much lower than
those observed when similar but different textures are compared, and thus, they can
be neglected.

Finally, figures 7.43-7.46 and table 7.15 show the results when a texture has been
inverted. In most cases, the values obtained are very low and the patterns can be
considered as the same texture. Nevertheless, some cases present certain problems
due to the asymmetry of the filters used for edge orientation estimation. As the
values which result are not low enough to clarify the similarity of the textures, thus
presenting a certain ambiguity, the multiscale analysis described in the previous
sections is applied and the results in tables 7.17 and 7.20 dispel the doubts, since

they are very low when a texture is compared with its inverted version.
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Figure 7.35: Texture 15 before and after darkening.

Figure 7.36: Texture 18 before and after darkening.

Figure 7.37: Texture 21 before and after darkening.

Figure 7.38: Texture 38 before and after darkening,

comparison | weighted energy
15 - dark 15 0.0083
18 - dark18 0.0050
21 - dark 21 0.0129
38 -dark 38 0.0145

Table 7.13: Comparison with dark textures.
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Figure 7.39: Texture 3 before and after lightening.

Figure 7.42: Texture 53 before and after lightening.

comparison | weighted energy
03 - light 03 0.0374
14 - light 14 0.0117
40 - light 40 0.0052
53 - light 53 0.0757

Table 7.14: Comparison with light textures.
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Figure 7.44: Texture 23 before and after inversion.

Figure 7.45: Texture 35 before and after inversion.

Figure 7.46: Texture 52 before and after inversion.

comparison weighted energy
04 - inverted 04 0.2567
23 - inverted 23 0.4859
35 - inverted 35 0.6009
52 - inverted 52 0.4927

Table 7.15: Comparison with inverted textures.
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Figure 7.47: Results of searching for similar textures for texture 15 using (7.3).

order | texture number | energy
15 0.00
2 53 1.08
3 32 1.43
4 08 2.06
5 49 2.13

Table 7.16: Comparison of texture 15 with the most simlar ones.
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Figure 7.48: Texture 15 before and after inversion. Results of applying a Gaussian
filter on texture 15 before and after inversion. Texture scale adjustment using (7.6)

and error.
comparison energy | weighted energy | quadratic error (*100) | absolute error
15- inverted 15 | 11.8061 3.0951 0.1007 0.170245

Table 7.17: Comparison of texture 15 and its inverse.
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comparison | quadratic error (*100) | absolute error
15-33 0.0748 0.140708
15-32 2.0305 0.807616
15-08 1.9196 0.766233
15-49 2.4117 0.873240

Table 7.18: Comparison of texture 15 with the most similar ones.
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Figure 7.49: Results of searching for similar texture for texture 32 using (7.3).

order | texture number | energy
1 32 0.00
2 93 0.59
3 45 0.91
4 08 1.13
3 50 1.20

Table 7.19: Comparison of texture 32 with the most similar ones.
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Figure 7.50: Texture 32 before and after inversion. Results of applying a Gaussian

filter on texture 32 before and after inversion. Texture scale adjustment using (7.6)

and error.
comparison | energy | weighted energy | quadratic error (*100) | absolute error
32- inverted 32 | 8.0430 2.2133 0.0769 0.129451

Table 7.20: Comparison of texture 32 with its inverse.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



180 Visual Perception Models based on Contour Orientation

comparison | quadratic error (*100) | absolute error
32-53 1.5867 0.713517
32-45 4.5237 1.172753
32-08 0.0440 0.091917
32-50 0.9818 0.562147

Table 7.21: Comparison of tetxure 32 with the most similar ones.

14

Binverted

B different 1
different 2
different 3
different 4

energy weighted quadratic absolute
energy error error

Figure 7.51: Comparison between the energy (7.2), weighted energy (7.3), quadratic
error (7.5) and absolute error (7.7) when comparing a texture with its inverted
version and the same texture with 4 similar ones.
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Chapter 8

COLOR PERCEPTION

Up to now, the processes described in this work deal with greyscale images, i.e.
monochromatic information. In that case, the only important information about
a certain pixel in the image is its intensity, but not the wavelength of the light it
reflects.

For certain tasks such as shape characterization or motion analysis, the color
of the objects is not critical in most cases. However, for the global processing of a
scene, color plays an important role and the information contained in light intensity
is not enough, thus requiring to use hue values. In this chapter we show a brief
description of color processing and enhancement as well as the use of orientation
filters in image restoration. Furthermore, we explain how color information could
be used in processes such as texture classification.
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8.1 Equalization

There are different processes to allow a better identification of the elements that are
present in an image. Among them, we find equalization. Normally, it is carried out
as a global process, but we apply a local procesé in which the transformations are
based on statistical parameters of the region where every pixel (photoreceptor) is
located.

Traditional equalization tries to transform the histogram of an image in an or-
dered way to adapt it to a prefixed desired form, for example, a uniform distribution
of the intensities. Such a transformation allows lightening dark images, darkening
light images or discriminating objects whose contrast is very low. The computation
of this transformation requires the study of the whole image and, if we performed
it in three different channels for each type of receptor, the number of operations
required would be multiplied. That could be analogous to say that every cell should
be affected by the response of the rest of the retina to adapt its output. However,
the clearness with which a certain pixel is perceived depends on its contrast with
the values in the surrounding area, and not with the whole image.

Due to the inconvenience of the global transformation, we perform a local study
of the histogram that would not be the whole histogram of the image, but the
one corresponding to a reduced part of it around the pixel to be considered. This
information, besides being much more reduced, refers only to the area where the
pixel is located, allowing a faster process and a higher contrast enhancement.

However, if the region is not very large, the number of pixels could be smaller
than the number of colors to be used and, to avoid a restriction in the range, we
use a statistical distribution of the levels in such a way that the mean of the image
will be located in the mean of our vision capabilities and the mean deviation will be
such that it allows a clear differentiation of the neighbor areas. In order to achieve
this goal, each computational unit calculates the mean of the levels of the region
where it is located, as well as the mean deviation of these values from the mean.
After that, only its own color levels would be transformed according to the following
expressions:

(R_mr)s

Sr

R = +M
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where I, G and B are the original values of each channel, R, G’ and B’ are the
transformed ones, m,, m, and m; are the means of the area, M the desired mean,
8-, 8¢ and s, are the real deviations and S the desired deviation.

The fact that we are taking into account only statistical values of the area makes
it possible to consider only some points inside it, and not the whole number of pixels.
In addition, we can adjust the desired mean and deviation, so that we can select the
range we want to expand or contract.

On a greyscale image, equalization would be performed on a channel. However,
on a color image, we have three channels, which could be equalized in different
processes or in a single one. In the first case, we would have three images that
would be combined to build the final one, while in the second option we would have
only one. With the first option we can enhance the colors that are weaker, but it
represents a problem if we try to keep the importance of each channel, as that would
yield a false color image, and the hue may be deeply altered. In the second one,
the order is kept since the total light works as reference value, and all channels are
equally affected.
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Figure 8.1: Original image, equalized image and enhanced image (1).
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Figure 8.2: Original image, equalized image and enhanced image (2).
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8.2 Color enhancement

Different circumstances in image acquisition may produce poorly contrasted pictures
which require an enhancement process to be analyzed properly.

8.2.1 Lateral inhibition and color enhancement

In our retina, we find cones that are specialized in different wavelength, but the
identification of those which are not exactly their preferred ones is obtained by the
interaction of their responses, as shown in figure 8.3. Thanks to the process of lateral
inhibition, we can obtain a much more contrasted image in which predominant colors
are enhanced. A possible risk of the equalization is that, even if we can expand the
histogram, we can lose the hue.

Figure 8.3: Color lateral inhibition.

If blue cones inhibit red and green ones, and vice versa, we can enhance predom-
inant colors. In a matrix expression, we can see it as follows, being R, G’ and B’
the previous values and R”, G” and B” the enhanced ones:
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Figure 8.4: Locally equalized image (1).

Figure 8.5: Locally equalized image (2).

] /!
a11 @12 413 R R
! — i3
as G2 Q23 G = G
! 14
Q31 G32 433 B B

If we are not interested in enhancing a color more than the others, a;; would all
be equal, and all a;; (¢ and j different) too. Besides, in order to avoid distortions,
a; + 2a;; = 1 with ¢ # j. In a normal enhancement, the elements on the diagonal
would be positive and greater than 1, and out of the diagonal they would be negative.
The more different from 1 the elements of the diagonal are and from 0 those out of
the diagonal, the higher the enhancement.

The limitation of values to be used makes it necessary to truncate the values
when they exceed the limits.

8.2.2 Edge orientation and color enhancement

Since we have developed a mechanism to extract the orientation of the edges, we
can use it to determine in which direction the inhibition must take place when
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enhancement is to be performed. This will allow us to equalize the images locally
and to enhance the dominant colors in every region.

From the estimations of gradient orientation and magnitude, the most suitable
direction and strength for the diffusion or contrast process can be extracted, in such
a way that the edges are preserved or even enhanced while homogeneous regions
which may be noisy are homogenized.

~ equalization orientation

#

edge orientation

Figure 8.6: Edge orientation and equalization direction.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



Chapter 8: Color Perception 189

8.3 The role of color in shape, motion and texture

analysis

In the previous chapters, shape, motion and texture have been processed taking into
account the light intensity of the points in the image, but not their hue. For many
applications it is enough, but for many others, it is important to consider the color
of the different parts. Furthermore, it can be very helpful when qualifying objects,
discriminating textures or enhancing the contrast between different objects or an
object and the background.

For instance, when classifying textures, an orientation histogram has been used to
describe the distribution of the different orientation extracted from contour direction
estimation. However, if we work with color images, three different histograms could
be extracted, thus providing three times as much information as considering a single
intensity value.
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Chapter 9

CONCLUSION

Many topics on artificial vision and image processing have been included in this work,
and after having presented them in detail, this chapter offers the main contributions,
their originality, their limitations and the future works which could arise from the
aspects studied here.

We propose a unified framework to study different problems in computer vision,
like shape representation, motion analysis or texture discrimination, based on con-
tour orientation, which provides quite robust and natural information for the visual
system.

The new approaches which have been explained represent a reduced but promis-
ing contribution to the development of new techniques and mechanisms for shape
characterization, motion analysis and texture classification.

Some aspects have been left untreated, but the basis for many of them have
already been established, so that a considerable work could be done in the future for
the application of these structures, tools and methods to various fields. Furthermore,
the already explained analysis could be adapted to certain particular applications
in which shape, motion or texture are critical aspects to take into account.

191
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9.1 Advantages, originality and limitations

The present work proposes some new methods for shape characterization, motion
analysis and texture classification based on a new set of tools for characterizing
edges. These are inspired on Newton Filters and allow an accurate processing of
local information to build a global representation of a shape. Due to the limita-
tions and disadvantages of Newton filters, some modifications have been carried out
on them in order to provide them with rotational invariance, but preserving their
invariance to global illumination changes. Some other sets of filters have been pro-
posed, such as those described by Sobel, Kirsch, Robinson and Prewitt [SHB99], but
we have adapted the features of our filters to the needs of the processes we were to
perform. The goal is not the extraction of edge location, but a local estimation of
its orientation and magnitude.

The invariance to global illumination changes is achieved by means of a normal-
ization. On the other hand, the rotational invariance is obtained by using cyclic
weights in the configuration of the set of filters. This allows comparing the out-
puts with a pattern to characterize the shapes, in such a way that we identify edge
orientation in an accurate way, which is very important when studying curvature,
singular points or selective motion detection of an object. This is also improved
by means of an interpolation of the values of the pattern provided by the filters in
order to find a more accurate estimation. Another interesting property of this new
set of filters is that it provides a complete representation of the image border up to
a translation grey-level transformation.

From this kind of basic filters, it is possible to build orientation functions which
can clearly identify shapes and extract global information to fit objects into de-
scribed patterns. We have used the discrete Fourier transform as fundamental tool
in our anlaysis. The use of Fourier coefficients provides robust results and allows re-
ducing the computational cost. A similar mechanism for shape identification, based
on continuous Fourier series, is used in Zahn and Roskies [ZR72], but oriented to
polygonal shapes with irregularly spaced series of points, while in our case, signals
are discrete, points are equally separated and the fast Fourier transform is the ba-
sic tool for the shape analysis. Moreover, the introduction of a weighting function
which affects the contribution of every term in the energy function allows regulating

the frequencies which will be more relevant in the discrimination.

The way computations are performed and the simplicity of the basic units, by
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means of which the more complex operations are built, allow a parallel implemen-
tation and a layered structure. This makes this set of filters suitable as a retinal
computation model. Even more, the completeness of this set of filters is an impor-
tant aspect concerning the preservation of information if we consider the location

and characterization of changes as the main goal.

The information extracted for a segment of an orientation function permits re-
lating different parts of a sequence in such a way that we can associate the visible
regions of an object when it is not completely accessible. This requires a common
analysis of the different segments which have been extracted, since some conditions
must be set in order to guarantee that they do belong to the same shape. Hence,
the translation, rotation and scaling relationships must be the same for all couples

of associated segments.

Furthermore, the fact that the information supplied by these mechanisms is
larger and more accurate than that provided by simply detecting edges allows us
to use them for a reliable motion analysis. In this case, the contours which are
associated do not belong to different scenes, but to different instants in a video.
Once the shapes have been analyzed and coupled, the transformations which bring
one of them to the other make it possible to extract motion parameters such as

translation, rotation and scaling in time.

Some complementary applications are directly extracted from the properties of
these filters. For example, texture analysis and classification are easily implemented
by means of a comparison of orientation histograms. In this case, we do not analyze
the outline of an object, but the contour in every point of the picture, since what
characterizes a texture is the pattern contained inside it. Thanks to the accurate
estimation of gradient orientation, we can determine the distribution of the different
orientations inside an area, and with similar techniques as those used for orientation
functions, we can establish a relationship for orientation histograms. The non-
injectivity of this histogram generation, i.e. quite different textures may generate
similar orientation histograms, makes it necessary to use some other tool to enhance
discrimination. The introduction of multiscale analysis provides a powerful tool for
this purpose, since, even if the original orientation histograms may be very similar
for clearly different textures, their evolution as a Gaussian filtering is applied will
differ, thus allowing to distinguish them. Moreover, it also allows determining the
scale relationship of two images obtained from the same texture, but at different
resolutions.
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The previous features show the usefulness of these filters when the objective is
not merely the location of edges, but the discrimination of their orientation. The
combination of the local information to build shape representations provides us with
a powerful tool for pattern recognition and motion analysis, and the study of the
distribution of the different orientations across a region in a multiscale framework
permits analyzing textures. The numerical experiences are very promising and show
a great coherence with the similarity measures and associations that humans use. In
particular, we can even discriminate between shapes which are very similar from a
perceptual point of view, follow the trajectory of a moving object and relate visually
similar textures.

The examples shown in chapter 5, where a large database containing pictures of
1000 fishes is studied to extract the most similar contours for a given one, produce
very promising numerical results, since the selection is very similar to what a human
observer would do.

In chapter 6, the numerical experiences with moving objects prove the efficiency
of the mechanism when their evolution can be defined in terms of similarity trans-
formations which preserve the outer form.

In chapter 7, the combination of the orientation estimation and the multiscale
analysis appears as a powerful technique for texture classification, with energy values
which allow a clear clustering of the different types of patterns.

Of course, there are also limitations in all these aspects. Shape characterization
has been applied in two dimensions, which means that only a single view of the
object is visible. That means that when the image of the object is acquired from
a different point of view, the contour may be different and the association may
fail. Moreover, objects are supposed to be determined by a single contour. Even
if occlusion has been treated, objects with more than one contour, f.i. with holes,
have not been handled.

As regards motion analysis, the fact that it is based on two-dimensional shape
characterization also makes it dependent of the point of view and the position of
the object.

Finally, regarding texture classification, as mentioned in chapter 7, some alter-
ations in the greyscale values may alter the histogram generated by the texture.
Even though, the similarity measures and the multiscale analysis which have been
applied are robust enough to guarantee a quite trustful classification.
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Figure 9.1: General scheme of the work.
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9.2 Future work

Due to limitations which have been previously exposed, as well as those aspects
which have not been handled, we propose some future works to continue the contri-
bution presented in this work.

In the future, it would be interesting to combine color processing with shape
characterization, motion analysis and texture classification in such a way that the
information provided by color selectivity makes these tasks more robust and more
specific. As explained in chapter 8, the use of three-chromatic systems avoids con-
fusing different objects or object and background when brightness is very similar.
Thus, the use of color information may help distinguish regions with very similar
intensity values, but with different hue values. The filters to determine edge orien-
tation could be applied to three images, one for each color channel (red, green and
blue), and that would endow us with a more reliable contrast information.

The use of orientation selective filters for segmentation, which has not been
tackled here, or image enhancement, diffusion and similar processes would enlarge
the fields in which the importance of selective units is critical. Due to the fact that
we not only locate the edges, but also estimate their orientation, a robust technique
for segmentation may arise. When enhancing or diffusing images, it is sometimes
necessary to guarantee some features of the initial image, thus requiring a selective
process in which the local properties of the image are taken into account. This could
be provided by the estimations described in this work.

Some problems have not been grappled with here, such as the characterization
of multiple contour objects, e.g. objects with holes. This would require a multiple
description of a shape, since more than one orientation function would be necessary

to characterize all the contours.

The extension of these techniques to three-dimensional images represent a pos-
sibility to enlarge the fields in which they can be applied. Two approaches could be
possible. On the one hand, modified Newton filters could be adapted to three dimen-
sions by means of cube-shaped filters with the same philosophy as two-dimensional
ones. They could be directly applied to three-dimensional images. On the other
hand, two-dimensional filters could be applied to different views of three-dimensional
images, and the combination of the information provided by the different views
would allow a three-dimensional characterization of a shape. Of course, more com-

plex energy functions would be required to assure the invariance when rotations and
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translations can be performed in three dimensions.

The use of local orientation values for the points of an object would allow a
simpler correspondence between the points in two images of the same object acquired
from different cameras. For example, in order to calculate the depth component
when stereo vision is used, the points in the first image must be related to the
corresponding ones in the second image. The search would be reduced if orientation
is considered, and the computational cost of correlation would be deeply reduced,
as the possibilities decrease.

From the implementation’s point of view, it would be very interesting to study
the optimization of the parallelization of the operations by software as well as by
hardware, since both, filter processing and Fourier analysis allow a high degree of
parallelism. This would result in a more effective calculation and a more realistic
simulation of neural computation.
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Appendix A

MODELOS DE PERCEPCION
VISUAL BASADOS EN LA
ORIENTACION DE
CONTORNOS

(Resumen en espanol)

En este apéndice presentamos un resumen en espafiol del trabajo, en €l cual resalta-
mos los puntos més significativos de la investigacién realizada. Tras una explicacién
del ambito de estudio y las bases sobre las que se cimenta, explicamos las aporta-
ciones principales y algunos ejemplos de los resultados obtenidos. Finalmente pre-
sentamos las conclusiones més relevantes y ofrecemos algunas lfneas de investigacién
futuras derivables de este trabajo.
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A.1 Objeto y objetivos de la investigacion

Debido a la importancia de la visién en la interaccién de los animales con su en-
torno, una gran proporcién de los esfuerzos humanos por construir méquinas que se
comporten como seres vivos ha sido dedicada a la visién artificial. Dentro de este
ambito de conocimiento, hemos desarrollado un marco para el procesamiento de la
informacién visual en varios canales que estén especializados en diferentes aspectos
del anslisis de la informacién, tales como la forma, el movimiento, la textura y el
color, pero que mantienen unos ciertos elementos de cohesién y hacen uso del mismo

tipo de herramientas bésicas.

La identificacién de un objeto estd proporcionada, en la mayoria de los casos,
por una descripcién de su forma, lo cual requiere una localizacién precisa de sus
bordes. Sin embargo, es importante que cambios en la orientacién, el tamano o el
contraste entre el objeto y el fondo no alteren la salida del mecanismo usado para el
reconocimiento. Este trabajo presenta una descripcién multicanal del procesamiento
de la informacién visual en la que, a partir de unas etapas iniciales en las que
las caracteristicas de m&s bajo nivel son extraidas, diferentes subsistemas analizan
la informacién para propésitos més especificos, tales como la discriminacién de la
forma, el movimiento, la textura y el color.

Introducimos un conjunto de herramientas formales, basadas en los filtros de
Newton, que permiten estimar la orientacién de los bordes y cuya salida no varia
cuando la sefial de entrada es rotada o cuando ocurre un cambio global de ilumi-
nacién. Ademsds, las operaciones son realizadas en una estructura en capas que
simula la actividad de las células ganglionares de los vertebrados superiores. Las
salidas de estos filtros son usadas para diferentes propésitos, ya que la deteccién
selectiva de los bordes es una base para otras primitivas de mayor nivel seméntico.

Primeramente, permite extraer una representacién unidimensional del contorno
con el fin de caracterizar formas usando los coeficientes de Fourier. A partir de
estos coeficientes, se construye una funcién de energia para discriminar las formas.
Este trabajo presenta un método robusto para la caracterizacién de objetos que
permite discriminar entre formas bastante similares, tales como llaves o peces. El
uso de una funcién de orientacién para representar una forma y su andlisis a partir
de los coeficientes de Fourier hacen posible extraer relaciones para los diferentes
modos en que un objeto puede ser presentado, constituyendo asf un mecanismo muy
util para muchos propésitos diferentes en dreas como la industria, la medicina, la
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meteorologia, etc.

En segundo lugar, los pardmetros usados al comparar los contornos de los ob jetos
permiten estudiar una secuencia de imdgenes y extraer informacién de movimiento,
lo cual representa la introduccién de la evolucién temporal en la escena. La in-
formacién obtenida para relacionar las formas se usa también para una asociacién
temporal de imdgenes en las cuales un objeto evoluciona. Del mismo modo que
la representacién de formas est4 basada en la extraccién de la orientacién de los
bordes en cada punto del contorno, el analisis del movimiento estd basado en la
representacién de formas.

Finalmente, asf como la orientacién es usada para comparar contornos por medio
de un andlisis en la frecuencia de las funciones que las caracterizan, las texturas
pueden ser estudiadas y clasificadas. Para cada textura, se construye un histograma
de orientacién insertado en el marco de un anslisis multiescala, con el fin de des-
cribirla y compararla con otros patrones. En este caso, el andlisis multiescala de
las texturas proporciona mucha més informacién, ya que es en la evolucién de los
patrones a lo largo de las escalas donde las diferencias entre las texturas pueden ser
detectadas.

Los filtros usados para estimar la orientacién de los bordes constituyen una her-
ramienta simple pero efectiva para estos objetivos y, al mismo tiempo, son apropi-
ados para una estructura en capas como las encontradas en los sistemas naturales.
Por otro lado, el anélisis de Fourier de las funciones de orientacién permite extraer
algunas caracteristicas generales de las formas que son presentadas. Més ain, pro-
ponemos el uso de funciones de peso para los coeficientes de las diferentes frecuencias,
de tal forma que aquellos coeficientes cuya informacién es més relevante posean un
peso mayor en el esquema resultante. Analizamos las formas de tales funciones de
peso con el fin de mejorar la discriminacién y reducir la probabilidad de fallo.

Las experiencias numéricas son muy prometedoras. En particular, podemos dis-
criminar incluso entre formas que son muy similares desde un punto de vista per-
ceptual. Todas estas aplicaciones de un mismo conjunto bésico de filtros nos pro-
porcionan un marco global para el procesamiento de la informacién visual, donde
la. combinacién de médulos simples produce la abstraccién de representaciones del
mundo exterior de mayor nivel semantico.

Ast, dentro de los diferentes canales de proceso, podemos distinguir una serie de
niveles que, basédndose en los niveles inferiores, infieren nuevas primitivas con una
mayor abstraccién, desde un nivel fisico, hasta un nivel motor de reaccién, como se
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muestra en la figura A.1.

Nivel Motor

Nivel Interpretativo

Nivel Analégico

Nivel Légico

Nivel Temporal

Nivel Espacial

Nivel Fisico

Table A.1: Esquema propuesto para los niveles de proceso en el camino visual.

A
motor

= g interpretativo

\Q Q

g3 é ~ analégico

o_“_,_(.-s.n;-‘....__ s

s é < e < 16gico

25t et &l 51—

—g h = At temporal
espacial
fisico

canales

Figure A.1: Representacién bidimensional del espacio de transformaciones.
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A.2 Planteamiento y metodologia utilizada

Como base para el desarrollo posterior de las herramientas de proceso hemos uti-
lizado los filtros de Newton. Los filtros de Newton son estructuras basadas en el
uso repetido de operaciones binarias simples para construir otras més complejas que
puedan computar un rango mss amplio de entradas. Si usamos la suma y la resta
de dos niimeros reales o enteros como operaciones bésicas, podemos combinarlas en
diferentes capas, de forma que las funciones resultantes son combinaciones lineales
de los valores de entrada. Cada capa opera sobre el conjunto ordenado de resultados
de la capa previa y la operacién que se lleva a cabo es la misma para cada unidad
dentro de ella, independientemente de la posicién donde es ejecutada. Sin embargo,

las operaciones de las diferentes capas pueden variar, como se muestra en las figuras
A2y A3

+1 +1 +1 -1

b+a a-b

Figure A.2: Operaciones béasicas de los filtros de Newton.

NF(A, Do) = (1, 2, 1)

NF(Alle) = (1) 0) _1)

NF(Ao, Dy) = (1,-2, 1)

Para una sefial de entrada de longitud L podemos construir L filtros linealmente
independientes que computen L valores sobre ellos, desde el posee sélo capas aditivas,
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hasta el que posee sélo capas substractivas. Si representamos este conjunto de filtros
en forma de matriz, obtenemos matrices de transformacién como la siguiente:

ap,0 ap,1 Qao,rL—1 Zo fo
a1,0 a1, a1,r-1 - I f1 v
Ax e prasssed fry F
ar—10 ar-i11 .- GL-1,L—-1 Zr-1 fr—1

Podemos combinar filtros monodimensionales para construir un nuevo conjunto
de estructuras que operen sobre datos bidimensionales. Estos pueden ser creados
considerando la adicién y substraccién de 4 elementos como operaciones bésicas,
con la limitacién de que el peso global debe ser 0 si existen substracciones. Los 7
filtros obtenidos asi, que se muestran en la tabla A.2, no constituyen un conjunto
completo, puesto que no es posible recuperar la informacién original a partir de los
resultados.

La multiplicacién de filtros horizontales y verticales, lo que equivale a aplicar
filtros bidimensionales repetidamente, s{ que genera un conjunto completo. Son los

que denominamos filtros de Newton expandidos, y se muestran en la tabla A.3.

1 2 1 2 4 2 1 2 1)
1 0-1 2 0-2 1 0 -1
1 2 1 0 0 0 -1 -2 —1
1 0-1 0 0 0 -1 0 1
A=]1 2 1 -2 -4 —2 1 2 1
1 -2 1 2 -4 2 1 -2 1
1 0 -1 -2 0 1 0 -1
1 -2 1 0 0 -1 2 -1
1 -2 1 -2 4 -2 1 -2 1

Intentamos construir filtros que reaccionen a cambios en las 8 direcciones princi-
pales. Por lo tanto, es necesario utilizar diferentes signos a ambos lados del borde.
Serfa deseable que los pesos en la regién central del filtro no fuesen nulos, como
ocurre en los filtros originales, puesto que esto causa la duplicacién de los bordes,
incluso cuando éstos son perfectos. Para mantener el peso global igual a 0, multipli-

camos la regién negativa por 2, obteniendo los filtros que se muestran en la figura
A.4yenlatabla A4,
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X0

X1

X X3
A
D
A
NF(A;.D)=(1,1.-1,-1)

211

Figure A.3: Ejemplo de un filtro de Newton con dos capas aditivas y una substrac-

tiva.

NF(A2,D0)

1121

x(-2)

v

A

2| -4
12
1] 2

Figure A.4: Proceso de construccién

de los filtros de Newton modificados.
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-4 -2 1 1 2 1 1 -2

-2 -4 -2 1 2 1 1

1 -2 -4 -2 1 1 2 1

A 1 1 -2 -4 -2 1 1 2
2 1 1 -2 -4 -2 1 1

1 2 1 1 -2 -4 -2 1

11 2 1 1 -2 -4 =2

-2 1 1 2 1 1 -2 —4

Como se observa en los ejemplos siguientes, cuando la orientacién del borde se
varfa un miiltiplo de 45 grados, el patrén es simplemente desplazado ciclicamente,
pero los valores dentro de él no son alterados. En la figura A.5, podemos ver la
salida de los 8 filtros cuando se aplican sobre un circulo. Cada uno de los filtros
reacciona en la regién alrededor de su direccién preferida.

= et e

1
1
1

o O O

Entrada para un borde orientado en 0 radianes.

o i o s fa s o fr
8 5 0 -4 -4 -4 0 5

Salida para un borde orientado en 0 radianes.

— = O
— = O
— = O

Entrada para un borde orientado en /2 radianes.

fo i o fs fu fs fo fr
0 5 8 5 0 —4 —4 —4

Salida para un borde orientado en /2 radianes.
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Debido a que la suma de los pesos es cero en todos los filtros, podemos normalizar
los valores de salida de manera que un cambio global de iluminacién de la forma
I'(z,y) = al(x,y) + b, donde I es la sefial original e I’ es la sefial transformada, no
produzca una alteracién de estos valores:

Zi’k wi =0 4,ke{-1,0,1}

F.(z,y) = wafk[(:c +i,y+k)

ik
Tn,m (ma y) =

Fo(z,y)
Fo(z,y)

I'(z,y) =al(z,y) +b

T (2,y) = aZz-,k w?kI(x + z:,y +k)+ bZz-,k Wi
AT azi’kzuf}cl(az:-l—z,y—l—k:)—[~bzi7,€w;’}C
_ aly(z,y)
B aFn(z,y)

Ta/z,m (z,y) = Tom(z,y)

Este trabajo presenta un amplio rango de aplicaciones de los filtros de Newton
modificados en diferentes campos del procesamiento de imdgenes. Usando el anélisis
de Fourier, el andlisis multiescala, los métodos de minimizacién de errores y otras
herramientas matemdticas, y partiendo de una estimacién muy aproximada de la
orientacién de los bordes, algunas caracteristicas, tales como la forma de la silueta
de un objeto o la trayectoria de un objeto en movimiento pueden ser examinados
de forma muy precisa y con resultados numéricos bastante satisfactorios. De forma
similar, también es posible analizar y clasificar texturas a partir de histogramas de
orientacién obtenidos a partir de las salidas de los mismos filtros.
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1 0 -1
2 0 —2
1 0 -1
N11<+ B
+ —
1 2 1
0 0 0
-1 -2 -1
N3:<+ +>
1 0 -1
0 0 0
-1 0 1
+ —_—
Ns:
(-

2 1
4 2
2 1

-1 0 1
-2 0 2
-1 0 1
NQi < -t >
- +
-1 -2 -1
0 0 0
1 2 1
N4Z -
+ +
-1 0 1
0 0 O
1 0 -1
Ng: ( -
+ —

Table A.2: Filtros de Newton bidimensionales originales.
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0 -1

0 -2

0 -1
E] .

(1,2,1)1(1,0,-1)

1 2 1

0 0 0

-1 -2 -1
EQZ

(1,0,-1)%(1,2,1)

I 0 -1

0 0

-1 0 1
E32

(1,0,-1)4(1,0,-1)

1 2 1

-2 -4 =2

2 1
E4 :

(1,-2,1)¥(1,2,1)

2 1
4 2
2

E()I

(1,2,1)"(1,2,1)

1 -2 1

2 —4

1 -2 1
E5 :

(1,2,1)(1,-2,1)

1 0 -1

-2 0 2

1 0 -1
EGI

(1,-2,1)4(1,0,-1)

I -2 1

0 0 O

-1 2 -1
E7Z

(1107”1)%17‘271)

1 -2 1

-2 4 =2

1 -2 1
Eg :

(1-2,1)%(1,-2,1)

Table A.3: Filtros de Newton bidimensionales expandidos.

215

anaria. Biblioteca Digital, 2003

ersidad de Las Palmas de Gran C:

© Unive



216

Visual Perception Models based on Contour Orientation

1 1 =2 -2

2 2 -4 —4

1 1 =2 —2

My : 0 My 7

1 -2 —4 1 1 2

1 2 =2 -2 2

2 1 1 -4 -2 1

M w/4 Ms : 5r /4
-2 -4 =2 1 2 1

1 2 1 12 1

1 2 1 -2 —4 =2

My :m/2 Me : 37/2
-4 =2 1 2 1 1
-2 2 1 1 2 =2

1 1 2 1 -2 -4

Ms : 3m/4 M, Tr/4

Table A.4: Filtros de Newton modificados y correspondiente orientacion.
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7N

D CoC
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Figure A.5: Salidas positivas de los filtros de Newton modificados para un circulo.

Cuanto mayor sea la salida, méds oscura ha sido representada.
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A.3 Aportaciones originales

A continuacién mostramos los puntos m4s importantes del trabajo, sus aplicaciones
y los resultados obtenidos, sefialando cudles son las aportaciones més relevantes.
Un conjunto de aplicaciones diferentes han sido propuestas partiendo de un marco
y unas unidades bédsicas comunes:

Estimacion de la orientacién de los bordes:

Hemos introducido los filtros de Newton modificados para la caracterizacién de
bordes de forma que podemos obtener estimaciones precisas de la orientacién que

presentan éstos en cualquier punto de una imagen mediante la interpolacién de los
valores de salida.

Representacion y discriminacién de formas:

Con las estimaciones de los bordes hemos extraido funciones de orientacién que
nos permiten describir y caracterizar formas a partir de una representacién unidi-
mensional de sus contornos. El uso de funciones de energfa. a partir de los coeficientes
de Fourier de las funciones de orientacién, cuyos términos han sido ponderados para

realzar su capacidad de discriminacién, genera clasificaciones de las formas altamente
satisfactorias.

Anadlisis de movimiento:

Mediante la comparacién del contorno de un objeto en diferentes imagenes de
una secuencia, hemos extraido los pardmetros de traslacién, rotacién y escalado que

proporcionan los elementos necesarios para un anélisis de movimiento fiable.
Representacién y clasificacién multiescala de texturas:

Hemos aplicado técnicas similares a las usadas en la caracterizacién de formas
para la clasificacién de texturas mediante el estudio de los contornos en el interior de
una regién texturada y la construccién de histogramas de orientacién que describen
la distribucién de las orientaciones en esa regién permiten. Hemos incorporado el
andlisis multiescala para generar clasificaciones mucho més robustas, puesto que
el estudio de las texturas en diferentes escalas nos aporta una informacién més
completa a la hora de medir la similitud que existe entre ellas, obteniendo con ello
un alto grado de discriminacién entre texturas.
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A.3.1 Estimacion de la orientaciéon de los bordes

Los filtros de Newton modificados representan una aproximacién nueva en el de-
sarrollo de estructuras en forma de neuronas. En este caso, las salidas iniciales
son combinadas de forma que el post-proceso de la informacién que ellas producen,
genera resultados mucho més exactos que aquellos extraidos independientemente.
Las propiedades de estos filtros en lo referente a la invarianza rotacional y la no
nulidad de los pesos, el proceso de normalizacién para hacer la salida independiente
a los cambios de iluminacién, y la interpolacién de las salidas discretas generan una

extraccién de la orientacién mucho mas refinada.

Con las salidas de los filtros de Newton modificados, analizadas individualmente,
podemos discriminar a cuél de las ocho orientaciones principales se parece més un
determinado borde. Sin embargo, la distincién entre miltiplos de 45 grados no es
suficiente para una descripcién y caracterizacién precisa de los bordes. Por ello,
hemos tomado el patrén completo (ver ejemplo en la figura A.6) de los ocho filtros
v hemos interpolado entre el valor maximo y sus vecinos mediante un polinomio de
orden dos, cuyo méximo viene dado por la siguiente expresién, donde ¢ representa
el filtro cuya salida es mayor e i — 1 e ¢ + 1 son calculados mdédulo 8.

- 4(fi_fi—1)_(fi+l_fi—l) z _73 .
oo = = f) = o= foad 2l Y

Con este polinomio podemos estimar de forma mucho més exacta la orientacién

a la cual corresponde una determinada configuracién de valores en la regién de 3x3
que estamos analizando.
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Figure A.6: Salida para una orientacién principal (izquierda) y salida para una
orientacién no principal (derecha).
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A.3.2 Representaciéon y discriminacién de formas

Una vez estimada la orientacién del contorno en cada punto de éste, podemos car-
acterizar una forma mediante una funcién de orientacién unidimensional, en la que
se representan los valores que va tomando la orientacién de los bordes a medida que
recorremos la silueta del objeto. Ciertas condiciones se fijan sobre este tipo de fun-
ciones. Asi, la diferencia entre dos valores consecutivos debe ser menor o igual que
7 radianes para que sean suaves. El contorno debe ser cerrado para recorrerlo en su
totalidad, y los puntos deben ser recorridos por vecindad para que el contorno sea
continuo. Un ejemplo se muestra en la figura A.7. Estas funciones serdn analizadas
mediante sus coeficientes de Fourier, lo que nos permitird compararlas y caracteri-
zarlas. Al estar trabajando con contornos cerrados, cualquier punto dentro de uno de
ellos es vélido como comienzo. Sin embargo, el lugar sonde se comienza es relevante,
puesto que un cambio en éste transforma la funcién de orientacién obtenida.

@ (b) (©

Figure A.7: (a) Imagen original. (b) Contorno y punto de comienzo para la funcién
de orientaci6n. (c) Funcién de orientacién (sentido antihorario).

Al cambiar el punto de comienzo se produce un desplazamiento circular en la
funcién de orientacién y ciertos valores de la funcién, que aparecen en la parte
opuesta de ésta, son incrementados en 27, como se muestra en el ejemplo de la figura
A.8. Esto modificard sus coeficientes de Fourier de la siguiente manera, siendo g,
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Desplazamiento

Figure A.8: Efectos de comenzar la funcién de orientacién en un punto diferente.

una versién desplazada a posiciones y corregida de f,:

-~ 1 L1 2rk
Ge=In=7) freT
n=0
1 L—a—1 i L—-1 ok
= Z ( Z fn—f—ae—z_f— + Z (271’ + fn-—(L—a)) 6_2T>
n=f n=L—a
]_ L-1 2nk{m—a a1 27k{(m—a+L 1 - 2nkn
D D S D .
m=aqa m=0 n=L—a
o (e _ g
2wka
€L fi + o
L (1 — e"¥)
- 2wka 27T (ei%}{m - 1)
— T+ Yk #£0

A partir de esta relacién, podemos estimar cudl es el desplazamiento efectuado para
poder comparar las funciones de orientacién apropiadamente.

2 + Lgy (1 — e_"'%)

i27ra.lc .

o + Lfx (1 _ e—i%>

(<
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2k

2rk 21 + Lﬁc (1 — e"T)

Sin embargo, esta expresion calcula el desplazamiento sufrido por la sefial a partir
de una pareja de coeficientes de Fourier. Dado que podemos obtener un valor més
exacto considerandolos todos, hemos introducido funciones de energia para medir
la similitud de las formas. En ellas determinamos cuén parecidas son dos formas
mediante un sumatorio de términos que relacionan los coeficientes de Fourier de las
sehales de orientacién.

Fe=iyilre ™ VEk=01,2,..,L-1

oty

E(a) = (eizkaaJ?k - §k> (ei%%ﬁ: - §k>

1

Nl

I

~ |2 - [2mka o, s2mka oy *
(7] 5 - e fgi - (= 7))

k=1

27
L (1 — e‘iQ%k)

donde fk = ﬁc +

Asi, la estimacién de la orientacién se traduce en la posibilidad de usar esta
informacién local para caracterizar y discriminar formas que son visualmente muy
similares y cuyas diferencias son muy sutiles, incluso para un observador humano.

De forma similar, hemos estudiado qué ocurre cuando la forma es reflejada o
cuando se sigue el contorno en la direccién opuesta, obteniendo relaciones semejantes
que nos permiten estudiar los diferentes fenémenos que pueden presentarse. En el
caso de trabajar con secuencias obtenidas en sentido contrario, se detectaria puesto
que, en un caso, diferencia entre el principio y el fin de la sefial serfa positivo, y
en el otro serfa negativo. Para el caso de formas reflejadas, los coeficientes serfan
transformados de la siguiente manera, donde g, es una versién reflejada de f,, y C
es una constante que depende del punto de comienzo y el eje de reflexién:
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Figure A.9:
caras.

Visual Perception Models based on Contour Orientation

Imégenes de tres llaves en diferentes posiciones y mostrando ambas

S

SIE
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~fr— %= if k#0

El primer conjunto de prueba estd constituido por nueve imigenes de tres llaves

diferentes (ver figura A.9). Para poder estudiar los valores, se ha normalizado el

conjunto de energfas obtenidas dividiendo los valores de la tabla por la media de la

energia producida cuando dos imégenes distintas de la misma llave eran comparadas,

de forma que los valores cercanos o inferiores a 1 representan formas muy similares,

mientras que los que son bastante superiores a 1 representan formas diferentes.
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Enin | kia k1. k1.3 ko1 ko ka3 k3.1 k3.2 k3.3
k1.1 | 0.0000 | 1.1273 | 0.8219 | 3.5856 | 4.1306 | 4.1161 | 6.8020 | 5.9809 | 5.6455
k1.2 0.0000 | 0.5607 | 5.4166 | 5.7934 | 5.7902 | 7.5247 | 6.4634 | 6.3026
kis 0.0000 | 4.5853 | 5.2063 | 5.0216 | 7.4232 | 6.1860 | 6.0272
ko 0.0000 | 0.9050 | 1.1134 | 8.6651 | 8.5584 | 8.0708
koo 0.0000 | 1.0617 | 8.9780 | 6.7763 | 6.6304
ko3 0.0000 | 8.8944 | 8.9579 | 8.3986
k3.1 0.0000 | 1.3734 | 1.2102
ka.o 0.0000 | 0.8266
k3.3 0.0000

Table A.5: Valores normalizados de la energia minima.
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Estas funciones de energfa han sido ponderadas con el fin de realzar la capacidad
de caracterizacién de esta técnica, dando mds importancia a aquellos coeficientes
que son mas significativos para el propésito del trabajo. Més ain, se han testeado
varios tipos diferentes de funciones (ver figuras A.10-A.18) para estudiar qué forma
debe presentar la funcién de peso para facilitar la discriminacién tanto como sea
posible. Dado que cuanto ma&s alto es el orden del coeficiente, més sensible es al
ruido, se han tomado funciones decrecientes que conceden una mayor importancia a
los primeros coeficientes. Kl coeficiente de orden cero no ha sido considerado puesto
que es el Uinico que se ve alterado por una rotacién del objeto y esto provocaria que
el resultado no fuese invariante frente a rotaciones.

[N [

o on (2) (- i ()
1

k=
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Figure A.10: Funcién de peso constante 1.
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Figure A.11: Funcién de peso lineal 1 — z/2 .
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Figure A.12: Funcién de peso lineal 1 — z.
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Figure A.13: Funcién de peso cuadrética —z? -+ 1.
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Figure A.14: Funcién de peso cuadritica z2 — 2z + 1.
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Figure A.15: Funcién de peso exponencial e™** para s = 1.
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Figure A.16: Funcién de peso exponencial e=%% para s = 5.
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Figure A.17: Funcién de peso exponencial ¢~*% para s = 10.
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Figure A.18: Funcién de peso exponencial e~*% para s = 50.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2003



230 Visual Perception Models based on Contour Orientation

Para medir la bondad de una funcién de peso se ha tomado como pardmetro el
cociente entre la energia menor entre imégenes de dos llaves diferentes y la energfa
mayor entre imdgenes diferentes de la misma llave. Los resultados obtenidos mues-
tran que las funciones exponenciales generan los mejores valores, y en concreto la

102 o5 ]a que mejor se comporta. Si comparamos los resultados en la tabla

funcién e~
A.5 con los de la tabla A.9, vemos que estos ultimos generan una discriminacién

més clara de las formas.

w(z) | min(D) | max(S) | Quw

1 3.5856 | 1.3734 | 2.6107
1—% | 37549 | 1.3957 | 2.6903
1—=z | 3.9771 | 1.4250 | 2.7909

Table A.6: Ratio de discrimninacién para funciones constantes y lineales.

w(x) min(D) | max(S) | Qu
—z2+1 3.7838 | 1.3972 | 2.7081
22— 2+ 1| 4.2645 | 1.4663 | 2.9083

Table A.7: Ratio de discriminacién para funciones cuadraticas.

s | w(z) | min(D) | max(S) | Qu

0 1 3.5856 | 1.3734 | 2.6107

1 | e® | 3.8642 | 1.4110 | 2.7386
5 | e® | 4.5941 | 1.5125 | 3.0374
10 | e7102 | 48422 | 1.5318 | 3.1611
15 | e715% | 4.3416 | 1.4837 | 2.9662
25 | e™?® | 3.2275 | 1.5928 | 2.0263
50 | e | 1.7315 | 1.8574 | 0.9322
100 | 71002 | 0.8781 | 2.0743 | 0.4233

Table A.8: Ratio de discirminacién para funciones exponenciales.

La aplicacién de estas técnicas a una base de datos constituida por 1000 imégenes
de peces (ver figuras 5.27-5.36 en la versién en inglés) produce una clasificacion muy
satisfactoria en una situacién bastante complicada, como se puede observar en los

resultados mostrados en las figuras A.20-A.22.
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Figure A.19: Resultados obtenidos para funciones constantes, lineales, cuadréticas

y exponenciales (0 < s < 15), usadas para ponderar los términos de energia. El gris

oscuro y el gris calro senalan el peor y el mejor valor del ratio de discriminacién

para cada categoria, respectivamente.
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min | KL k1.2 k13 ka1 ko2 ko3 k3.1 k3.2 k3.3
k1.1 | 0.0000 | 1.1595 | 0.7754 | 4.8422 | 5.4602 | 4.8694 | 11.0473 | 9.0618 | &.5987
ki.o 0.0000 | 0.4007 | 8.2601 | 8.5063 | 7.0163 | 11.9956 | 9.2841 | 8.9991
ki3 0.0000 | 6.7835 | 6.8951 | 5.9262 | 11.8338 | 9.0418 | 8.7061
ka.1 0.0000 | 0.8663 | 1.3553 | 14.1622 | 14.3641 | 13.0408
ka.o 0.0000 | 1.0698 | 14.5646 | 12.3600 | 11.6192
ko3 0.0000 | 14.3818 | 15.8590 | 13.7275
ka1 0.0000 | 1.5318 | 1.1737
k3.2 0.0000 { 0.6675
ks:3 0.0000

Table A.9: Valores normalizados de nergia minima con funcién de peso w(z) = =%,
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Figure A.20: Ejemplo de los resultados de una bisqueda de formas similares (1).

orden | nimero de forma | energfa ponderada

1 554 0.00

2 553 1279.90
3 552 1535.54
4 569 1997.10
5 521 2424.76
6 b7 2613.10
7 560 2617.37
8 487 2625.74
9 529 2795.74
10 558 2855.33

Table A.10: Valores de energia mds bajos para la forma 554.
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Figure A.21: Ejemplo de los resultados de una bisqueda de formas similares (2).

orden | nimero de forma | energia ponderada

1 378 0.00

2 372 1818.41
3 373 2213.36
4 381 2438.41
5 863 2619.30
6 244 2839.06
7 851 3332.50
8 222 3394.02
9 371 3509.69
10 856 3602.97

Table A.11: Valores de energia mds bajos para la forma 378.
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Figure A.22: Ejemplo de los resultados de una bisqueda de formas similares (3).

10

orden | nimero de forma | energfa ponderada

1 11 0.00

2 385 1508.93
3 570 1522.45
4 67 1549.49
5 79 1910.27
6 183 2094.56
7 186 2453.26
8 181 2516.63
9 103 4354.88
10 83 7700.93

Table A.12: Valores de energfa méds bajos para la forma 11.
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Hemos considerado también la comparacién de formas parcialmente ocultas, en
las que sélo ciertas partes de las funciones de orientacién son emparejables. Para
poder asociar segmentos de las funciones de orientacién, no s6lo deben ser coinci-
dentes entre si, sino que deben mantener la misma relacién de rotacién y traslacién,
de modo que la forma global no sufra otro tipo de transformaciones. Un ejemplo de
tal tipo de clasificaciones se muestra en las figuras A.23 y A.24.

o

Lagmoe s

Figure A.23: Parte coincidente de la funcién de orientacion.

N

lln, VN

)' | \ e
v

Figure A.24: Asociacién de pares de segmentos en el reconocimiento de formas
parcialmente ocultas.
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A.3.3 Anailisis de movimiento

La exactitud de las estimaciones de la orientacién de los bordes hace posible extender
el rango de aplicaciones a aquéllas en las que el refinamiento de estos valores favorece
considerablemente la extraccién de pardmetros significativos, como el anélisis de
movimiento. En este caso, proponemos un método para identificar la evolucién de
un objeto siguiendo una transformacién en la que la forma del objeto se mantiene,
es decir, incluyendo traslacién, rotacién y escalado.

Asumiendo esta conservacién de la forma, el contorno y los valores de orientacién
que han sido extraidos para la caracterizacién de formas hacen posible adaptar
una figura a los correspondientes contornos en diferentes instantes de tiempo, y la
relacién entre estos contornos permite determinar la evolucién temporal del objeto.

Las siguientes expresiones muestran c6mo se pueden extraer los pardmetros de
traslacién T', escalado S y rotacién 6 para dos imagenes del mismo objeto, asi como
la distancia d que mide la exactitud de la estimacién. Las figuras A.25 y A.26

muestran un ejemplo de una secuencia y la caracterizacién del movimiento que se
ha extraido.

. = Z(m,y)él ZIJO(I, y)
‘ Z(m,y)ef O(CE, y)

Yo = Z(m,y)é] ’yO(x, y)
‘ E(m,y)e_[ O(z,y)

T:( i—xZ>yi_y§)

A= Z O(z,y)

(z,y)el

Al
S=\%

L_
6 = arctan ( Zi:ll (ziy; = y}xf))

S (zha? + yly?)

Zplecl Ming,ec, [|p1 — pe|

(&Y

d(Cla CZ) =
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g

Figure A.25: Secuencia de imdgenes de un objeto en movimiento.
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Figure A.26: Secuencia de imégenes y evolucién temporal. La trayectoria del objeto
se muestra a la derecha y los vectores representados en ella indican los cambios de

Visual Perception Models based on Contour Orientation

orientacién con respecto a la situacién original.

Table A.13: Traslacién (13,T,),

Frames T Ty 6 S d
1-2 -12.6985 | -5.5378 | 0.1332 | 1.0130 | 0.4069
2-3 -15.8720 | -8.1660 | 0.2356 | 0.9602 | 0.5150
3-4 -12.2985 | -10.3341 | 0.2360 | 0.9793 | 0.5317
4-5 -6.7458 | -18.3505 | 0.1306 | 1.0091 | 0.5258
5-6 -4.9547 | -13.5380 | 0.2053 | 0.9880 | 0.4464
6-7 -7.7208 | -12.7441 | 0.2154 | 0.9939 | 0.4866

angulo de rotacién 6, proporcién de escala S y

distancia media d para el ejemplo.
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A.3.4 Representacion y clasificacién multiescala de texturas

Avanzando en el estudio de las propiedades de un objeto, hemos aplicado estos fil-
tros a la clasificacién de texturas. Para ello hemos estimado la orientacién de los
contornos en todos los puntos de la regién texturada y, a partir de estas estima-
ciones, hemos contruido un histograma de orientacién para cada textura, de forma
que en él queda reflejada la distribucién de las diferentes orientaciones. La compara-
cién de estos histogramas mediante sus coeficientes de Fourier permite clasificar y
relacionar diferentes texturas, utilizando energias similares a las empleadas en la

caracterizacién de formas.

E(a)=) w <%> (fk - gke“"z’*”z'°ﬁ> (fk _ gke—ﬁ"ﬁ““)*
k=1

Debido al hecho de que las texturas pueden presentar diferentes escalas, y esto
podria afectar a los histogramas de orientacién que son utilizados para su carac-
terizacién, hemos incluido un anélisis multiescala para ser capaces de procesar las
texturas independientemente de la escala a la que han sido adquiridas. La combi-
nacién de los filtros de Newton modificados y el analisis multiescala representa una
nueva aproximacion en este tipo de procesos que genera clasificaciones apropiadas
de las bases de datos de texturas. El andlisis multiescala ha sido utilizado primer-
amente para estudiar la evolucién de la suma de los cuadrados de los gradientes
dentro de cada textura. Esta evolucién nos permite extraer un pardmetro de ajuste
k que relaciona las escalas de dos texturas de la siguiente manera:

L D)
o N-1/ 972
Zi:o (Tz)

donde r} y r? son los ratios, para ambas texturas, de la suma de los cuadrados
de los gradientes en la escala i—ésima con respecto a esa misma suma en la escala
inicial. Tras ajustar ambas funciones, podemos considerar el error absoluto entre
una de ellas y la otra corregida, de forma que cuanto menor sea el error, mas similares
son las texturas.

Al igual que con la caracterizacién de formas, hemos usado una base de datos de
texturas para aplicar nuestra técnica (ver figuras 7.12 y 7.13 en la versién en inglés),
y a continuacién mostramos algunos resultados.
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Figure A.27: Ejemplo de los resultados de la bisqueda de texturas similares a la
textura 11.

orden | nimero de textura | energfa ponderada
1 11 0.00
2 30 0.59
3 49 0.61
4 10 1.20
5 26 1.62

Table A.14: Valores de energfa mas bajos para la textura 11.
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Figure A.28: Ejemplo de los resultados de la biisqueda de texturas similares a la
textura 51.

orden | nimero de textura | energia ponderada
1 51 0.00
2 40 16.03
3 38 49.21
4 56 118.39
5 57 157.10

Table A.15: Valores de energia més bajos para la textura 51.
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LLL

Figure A.29: Texturas 30 y 11.Texturas 30 y 11 después de un filtrado gaussiano.
Ajuste de la escala de las texturas y error.

Figure A.30: Texturas 30 y 10.Texturas 30 y 10 después de un filtrado gaussiano.
Ajuste de la escala de las texturas y error.
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LLL

Figure A.31: Texturas 30 y 49.Texturas 30 y 49 después de un filtrado gaussiano.
Ajuste de la escala de las texturas y error.

LLL

Figure A.32: Texturas 30 y 50.Texturas 30 y 50 después de un filtrado gaussiano.
Ajuste de la escala de las texturas y error.
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comparacion | energfa | energfa ponderada | error cuadratico (*100) | error absoluto
30-10 3.50 0.47 3.3053 1.035815
30-49 3.66 0.57 10.2568 1.827342
30-11 4.18 0.59 2.2914 0.877211
30-50 3.85 1.07 3.9379 1.111229

Table A.16: Comparacién de la tetxura 30 con las mds similares.

energy

@ same
3 dHTerent

welghted
energy

quadratic

error

absolute error

Figure A.33: Comparacién entre la energfa, la energfa ponderada, el error cuadrético

v el error absoluto cuando se comparan dos imdgenes de la misma textura a dife-

rentes escalas (primera pareja) y dos imagenes de texturas diferentes pero similares

(segunda pareja).
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Podemos estudiar cémo evoluciona la energia obtenida cuando se comparan los
histogramas de orientacién de dos texturas I e I’ a medida que se van aplicando
filtrados gaussianos sobre ellas. Primero calculamos la escala en la que la suma de
los cuadrados de los gradientes es la mitad que esta misma suma en la escala inicial,
para cada una de ellas. Con estos valores, o y ¢’, y el factor de ajuste &, calculamos

un valor de escala intermedio oy como:

1
0+ka

oON = 5

Y finalmente comparamos las energias obtenidas a lo largo de una serie de escalas
que progresan como se muestra a continuacion:

n
, nk
g, = -]VO'N

Como se observa en las figuras A.34 y A.35, la comparacién de las evoluciones
de las energias complementa la informacién proporcionada por la energia inicial, de
forma que la clasificacién y las comparaciones son més exactas.

También hemos considerado los efectos del oscurecimiento, aclarado e inversién
de las texturas en la energfa de los histogramas. Los resultados muestran una
gran robustez frente a estos tipos de transformaciones, y en los casos en los que se
presentan algunas dudas a la hora de clasificar las texturas, el andlisis multiescala
aumenta la informacién, de manera que la caracterizacién es mucho més precisa.
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Figure A.34: Evolucién de la energfa cuando se aplica un filtrado gaussiano al com-
parar la tetxura 31 con la 26 (puntos), 27 (punto-raya), 4 (rayas) y 12 (sélida).

Figure A.35: Evolucién relativa de la energfa cuando se aplica un filtrado gaussiano
al comparar la tetxura 31 con la 26 (puntos), 27 (punto-raya), 4 (rayas) y 12 (sélida).
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Figure A.36: Resultados ordenados al comparar la textura 31 con las texturas 12,

4, 27 y 26 usando la energia de los histogramas a diferentes escalas con filtrado

gaussiano.
comparacién | energia inicial | energfa final | % energia final-inicial
31-12 2.24 1.06 47.42
31-04 2.11 1.59 75.53
31-27 2.05 1.95 95.07
31-26 1.52 2.31 151.96

Table A.17: Comparacién de la tetxura 31 con las més similares usando las energias

ponderadas a diferentes escalas.
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Figure A.37: Textura 15 antes y después del oscurecimiento.

Figure A.38: Textura 18 antes y después del oscurecimiento.

Figure A.39: Textura 21 antes y después del oscurecimiento.

Figure A.40: Textura 38 antes y después del oscurecimiento.

comparacion | enegfa ponderada
15~ oscura 15 0.0083
18- oscura 18 0.0050
21- oscura 21 0.0129
38- oscura 38 0.0145

Table A.18: Comparacién con texturas oscurecidas.
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Figure A.41: Textura 3 antes y después del aclarado.

Figure A.42: Textura 14 antes y después del aclarado.

Figure A.43: Textura 40 antes y después del aclarado.

Figure A.44: Textura 53 antes y después del aclarado.

comparacién | energia ponderada
03- clara 03 0.0374
14- clara 14 0.0117
40- clara 40 0.0052
53- clara 53 0.0757

Table A.19: Comparacién con texturas aclaradas.
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Figure A.46: Textura 23 antes y después de la inversién.

Figure A.47: Textura 35 antes y después de la inversién.

Figure A.48: Textura 52 antes y después de la inversion.

comparacion energla ponderada
04- invertida 04 0.2567
23- invertida 23 0.4859
35- invertida 35 0.6009
52- invertida 52 0.4927

Table A.20: Comparacién con texturas invertidas.
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Figure A.49: Resultados de la bisqueda de texturas similares a la textura 15.

orden | nimero de textura | energia
1 15 0.00
2 53 1.08
3 32 1.43
4 08 2.06
5 49 2.13

Table A.21: Comparacién de la textura 15 con las mds similares.

251
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Figure A.50: Textura 15 y su invertida. Textura 15 y su invertida después de un
filtrado gaussiano. Ajuste de la escala de las texturas y error.

comparacién | energia | energfa ponderada | error cuadratico(*100) | error absoluto
15- inverted 15 | 11.8061 3.0951 0.1007 0.170245

Table A.22: Comparacién de la tetxura 15 con su inversa.

comparacién | error cuadratico(*100) | error absoluto
15-53 0.0748 0.140708
15-32 2.0305 0.807616
15-08 1.9196 0.766233
15-49 2.4117 0.873240

Table A.23: Comparacién de la textura 15 con las més similares.
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energy weighted quadratic absolute
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Figure A.51: Comparacién entre la energfa, la energia ponderada, el error cuadrético
y el error absoluto al comparar una textura con su inversa y la misma textura con
cuatro texturas similares.
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Finalmente, también hemos considerado el papel del color en todos estos proce-
s0s, ya que las bases que se han establecido aqui pueden ser ampliamente comple-
mentadas tomando otros factores como el color, las imdgenes tridimensionales, etc.
A partir de la inspiracién biol6gica, hemos construido un sistema que es capaz de
procesar la informacién visual de una escena en diferentes canales. El paralelismo
de muchas de las tareas que han sido implementAa,das y la interaccién entre diferentes
subsistemas hacen posible disefiar una estructura efectiva para tal tipo de computa-
ciones. Por otro lado, las unidades bésicas son las mismas para varios subsistemas,
tales como la representacién de formas, el analisis de movimiento y la clasificacién
de texturas. La aplicabilidad, adaptabilidad y precisién de estas técnicas, junto a
su modularidad, las convierten en apropiadas para el desarrollo de sistemas guiados

por la visién y la simulacién de sistemas naturales.
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A.4 Conclusiones y futuras lineas de investigacion

Fl presente trabajo propone un método para la caracterizacién de formas, el anéli-
sis de movimiento y la clasificacién de texturas basado en un nuevo conjunto de
herramientas para el calculo y la identificacién de los bordes. Estos nuevos filtros
estdn inspirados en los filtros de Newton y permiten un procesamiento preciso de la
informacién local para construir una representacién global de una forma. Debido a
las limitaciones y desventajas de los filtros de Newton, algunas modificaciones se han
efectuado en ellos con el fin de proveerlos de invarianza rotacional, pero preservando
su invarianza frente a cambios globales de iluminacién. Otros conjuntos de filtros
similares han sido propuestos con anterioridad, como los descritos por Sobel, Kirsch,
Robinson y Prewitt, pero nosotros hemos adaptado las caracteristicas de nuestros
filtros a los requerimientos de los procesos que llevamos a cabo.

La invarianza frente a cambios globales de iluminacién se alcanza mediante un
proceso de normalizacién. Por otra parte, la invarianza rotacional se obtiene usando
pesos de los filtros distribuidos de forma ciclica en la configuracién del conjunto de
filtros. Esto permite comparar las salidas con un patrén a fin de caracterizar las
formas, de modo que identificamos la orientacién de los bordes de forma precisa, lo
cual es muy importante cuando se estudia la curvatura, los puntos singulares o la
detecion selectiva del movimiento de un objeto. Incluso mejoramos las estimaciones
mediante la interpolacién de los valores del patrén proporcionado por los filtros para
encontrar un valor ain més preciso.

A partir de este tipo de filtros bésicos es posible construir funciones de orien-
tacién que pueden identificar claramente las formas y extraer informacién global
para encajar objetos en patrones previamente descritos. Utilizamos la transformada
de Fourier discreta como herramienta fundamental en el analisis. El uso de los
coeficientes de Fourier proporciona resultados robustos y permite reducir el coste
computacional. Un mecanismo similar para la identificacién de formas, basado en
series continuas de Fourier, es usado por Zahn y Roskies, pero orientado a formas
poligonales con series de puntos irregularmente separados, mientras que en nuestro
caso los puntos son equidistantes y usamos la transformada répida de Fourier como
herramienta bésica para el andlisis de las formas. M4s aun, la introduccién de una
funcién de peso que afecta a la contribucién de cada término en la funcién de energia
permite regular las frecuencias que serén més relevantes en la discriminacién.

La forma en que se realizan las computaciones y la simplicidad de las unidades
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bésicas, por medio de las cuales se construyen las més complejas, permiten una
implementacién paralela y una estructura en capas. Esto hace estos filtros apropia-
dos como modelo de computacién retinal. Més atin, la complecién de este conjunto
de filtros es un aspecto importante en lo referente a la conservacién de la informa-
cién si consideramos la localizacién y caracterizacion de los cambios como principal
objetivo. '

La informacién extrafda para un segmento de la funcién de orientacién permite
relacionar diferentes partes de una secuencia de forma que podamos asociar las partes
visibles de un objeto cuando éste estd parcialmente oculto. Esto requiere un anslisis
comun de los diferentes segmentos que han sido extraidos, ya que se deben fijar
clertas condiciones para garantizar que ciertamente pertenecen a la misma forma.
Asf, las relaciones de traslacién, rotacién y escalado deben ser las mismas para todas
la parejas de segmentos asociados.

Més atin, el hecho de que la informacién proporcionada por estos mecanismos
es mayor y més exacta que la obtenida mediante una simple localizacién de los
bordes nos permite usarlos para un fiable andlisis de movimiento. En este caso, los
contornos que deben asociarse no pertenecen a diferentes escenas, sino a diferentes
instantes en un video. Una vez que las formas han sido analizadas y emparejadas,
las transformaciones que llevan una de ellas sobre la otra hacen posible extraer

pardmetros de movimiento, tales como traslacién, rotacién y escalado, en el tiempo.

Algunas aplicaciones complementarias se extraen directamente de las propiedades
de estos filtros. Por ejemplo, el andlisis y la clasificacién de texturas se implementa
facilmente mediante una comparacién de histogramas. En este caso, no es el con-
torno del objeto lo que se analiza, sino el contorno en cada punto dentro de la
regién texturada, puesto que es el patrén contenido dentro de la regién lo que ca-
racteriza a la textura. Gracias a la estimacién aproximada de la orientacién del
gradiente, podemos determinar la distribucién de las diferentes orientaciones dentro
de un 4drea, y con técnicas similares a las usadas con las funciones de orientacién,
podemos establecer una relacién entre histogramas de orientacién. Sin embargo, la
no inyectividad de la generacién de estos histogramas, puesto que texturas bastante
diferentes pueden generar histogramas de orientacién muy similares, hace necesario
el uso de otra herramienta que realce la discriminacién. La introduccién del analisis
multiescala proporciona una herramienta potente para este propdsito, puesto que,
incluso si los histogramas de orientacién pudieran ser muy similares para texturas

claramente diferentes, su evolucién a medida que se les aplica un filtrado gaus-
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Estimacion de la Orientacion de los Bordes <« Filtros de Newton Modificados

Caracterizacion de Formas Clasificacion de Texturas <----------- Andlisis Multiescala

e
s

Andlisis de Fourier

Andlisis de Movimiento

Figure A.52: Esquema general del trabajo.

siano serd diferente, permitiendo asi distinguirlos. Esto incluso permite determinar
la relacién de escalas de dos imégenes obtenidas de la misma textura a diferentes

resoluciones.

Las caracteristicas descritas anteriormente y los resultados obtenidos en las di-
ferentes aplicaciones que de estas técnicas se han realizado muestran la utilidad de
estos filtros cuando el objetivo no es meramente la localizacién de los bordes, sino
también la discriminacién de su orientacién.

En el futuro, serfa interesante ampliar estos métodos a sistemas con diferentes
canales de color de manera que la informacién serfa triplicada, si usamos un canal de
rojo, otro de verde y otro de azul, o analizada de forma individual para la intensidad,
la saturacién y el brillo. Asimismo, otras ampliaciones significativas podrian tratar
la visién binocular y las imédgenes tridimensionales. Otros problemas abordables son

la segmentacién de escenas o la presencia de objetos con multiples contornos.
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