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Abstract: Distance estimation plays an important role in location-based services, which has become
very popular in recent years. In this paper, a new short range cricket sensor-based approach is
proposed for indoor location applications. This solution uses Time Difference of Arrival (TDoA)
between an optical and an ultrasound signal which are transmitted simultaneously, to estimate
the distance from the base station to the mobile receiver. The measurement of the TDoA at the mobile
receiver endpoint is proportional to the distance. The use of optical and ultrasound signals instead
of the conventional radio wave signal makes the proposed approach suitable for environments
with high levels of electromagnetic interference or where the propagation of radio frequencies
is entirely restricted. Furthermore, unlike classical cricket systems, a double-way measurement
procedure is introduced, allowing both the base station and mobile node to perform distance
estimation simultaneously.

Keywords: visible light communications; optical wireless communications; visible light positioning;
cricket sensor; distance measurement

1. Introduction

Indoor distance measurement has traditionally been a challenging problem for many indoor
applications that require positioning information. Current location-based services demand highly
accurate positioning systems, but electromagnetic Radio-Frequency (RF) propagation is severely
affected in indoor environments, causing significant errors and poor resolution in systems based on
Ultra-Wide Band (UWB) or Received Signal Strength Indicator (RSSI) [1–3]. Other short distance
ranging solutions are based on the IEEE 802.15.4 standard using phase detection techniques [4],
or estimating the time of arrival [5], unless it is severely affected by reflections or the presence of
obstacles. Visible Light Communications (VLC) based positioning techniques, also known as Visible
Light Positioning or VLP, are being proposed for these kinds of applications [6–9]. VLP provides
an adaptive data transmission grid for cost-efficient guiding that could be used not only for visually
impaired people in indoor scenarios [6], but also by different applications in many other scenarios.
One example could be robot guidance inside an industrial facility (that can be heavily affected
by electromagnetic (EM) noise) or positioning inside a building when security forces are under
a bomb threat and jamming devices are activated, in order to avoid remote control or cell phone
detonators. It takes advantage of the relative high switching speed of Light-Emitting Diode (LED)
lamps, as well as other characteristics: low cost, high speed propagation signal, robustness against
electromagnetic interference (intentional or not) or spectrum saturation, etc. As a commercial example,
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Phillips has recently presented, in collaboration with Carrefour [10], a beaconing system based on
illumination lamps and a cell phone-based Optical Camera Communication receiver for guidance in
a commercial center.

In this paper, a VLC distance-measurement scheme, based on Time-Difference of Arrival
(TdoA) Cricket techniques [11–14] is introduced. The advantage of a hybrid optical and ultrasound
measurement system relies on easier distance estimation, as processing is performed over a slower
wave (acoustical signal), rather than a pure VLP system that requires high sampling speed and
expensive data acquisition devices. In [15], authors also made use of both systems, but they performed
distance estimation separately. The use of an optical signal instead of RF is suggested to avoid
the aforementioned radio signal problems. Additional benefits include its application in some specific
environments, such as underwater scenarios where RF becomes impractical (they suffer from high and
prohibitive attenuation). Furthermore, the transmission and reception stages have been modified in
order to provide distance measurement capabilities to both devices involved in the process.

In standard Cricket systems, only the receiver node devices are able to calculate the distance from
the signal emitted by the transmitter node. The proposed system consists of the following nodes:

• Base station or transmitter node: is the reference block, with a fixed known position, from where
the distance value will be estimated. Furthermore, it starts the measurement process emitting
both optical and ultrasound signals, used by the mobile node for distance estimation.

• Mobile or receiver node: represents the other endpoint of the line to be measured, it calculates
the distance from the signals generated by the base station. Additionally, it returns a new optical
signal to the base station so as to also perform its own distance estimation.

Finally, as in other solutions, for a full distance measurement system, a trilateration structure [16]
for positioning will be needed. It requires at least three base stations and one mobile node. The mobile
node position can be obtained by means of a trilateration positioning calculation, using the information
of the base stations’ positions and the estimated distances among the base stations and the mobile
node. In order to assure the correct transmission of each base station without interference among them,
a Time-Division Multiple Access (TDMA) scheme can be scheduled. As the time intervals between
transmissions are fixed and known, the distance estimation algorithm can be easily modified to include
these intervals in the calculations.

This paper is organized as follows. A description of the proposed method for obtaining
the distance is presented in Section 2. Then a proof of concept demonstration is provided in Section 3
with an implemented prototype, while Section 4 provides a detailed description of the measurements
and results obtained. Finally, a discussion about the given results and some conclusions are included.

2. System Description

The basic scheme of the proposed distance measurement protocol is presented in Figure 1.
It can be observed that the transmitter node requires ultrasound and optical emitters, but also
an optical detector, whilst the receiver node is composed of an ultrasound detector, an optical
detector, and an optical emitter. Thus, the proposed scheme enables a one-way ultrasound link
and two optical links. Without loss of generality, we consider the use of VLC technology for the optical
links, as we intend to reuse the illumination fixtures as base stations of indoor positioning systems,
however, we highlight that this scheme can also be implemented with other optical wavelengths,
such as near infrared (NIR).
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Figure 1. System block diagram. 

In the measurement process, the base station starts sending simultaneously an optical code (e.g., 
an EUI-64 ID code) and an ultrasound pulse. Both transmissions are supposed to be simultaneous, 
but due to different delays, produced by the microcontroller instruction cycles and the electronic 
components used in each transmitter, the optical and ultrasound pulses are transmitted with a small 
delay among them. Unless this delay introduces an additional error in the measurement process, it 
can be easily calculated and its effect neglected. The mobile node receives the optical code and waits 
for the ultrasound signal reception. As the time for light propagation can be neglected, at least, when 
compared with sound propagation, it can be considered that the light is transmitted with a delay 
equal to zero. Since the relative delay between both signals in reaching the receiver node depends 
only on the ultrasound propagation, we can consider the distance from the base station to mobile 
node as proportional to that delay. Therefore, the estimated distance can be calculated using  
Equation (1): ܦ = Δݒ1ݐௌ − 1ܿ ൎ ௌݒ ∙ Δ(1) ݐ 

where D defines the distance, Δݐ is the delay time, c is the speed of light and vS is the speed of sound 
that depends on the temperature. When the ultrasound signal is detected at the mobile node, it sends 
back an optical signal (again, it could be an ID code, but only the first bit is considered for time 
calculation), indicating that the ultrasound signal has reached the mobile node. Assuming that the 
optical propagation delay can also be neglected from the mobile node to the base station, the base 
station will also be able to estimate the distance by measuring the time difference between the instant 
of transmitting the ultrasound pulse (at the base station) and the arrival time of the optical signal sent 
from the mobile node (which is triggered by the transmitted ultrasound signal), providing a dual-
side distance estimation capability. Figure 2 presents the corresponding chronogram depicting how 
the same delay values are obtained in the mobile node and in the base station.  
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Figure 1. System block diagram.

In the measurement process, the base station starts sending simultaneously an optical code
(e.g., an EUI-64 ID code) and an ultrasound pulse. Both transmissions are supposed to be simultaneous,
but due to different delays, produced by the microcontroller instruction cycles and the electronic
components used in each transmitter, the optical and ultrasound pulses are transmitted with a small
delay among them. Unless this delay introduces an additional error in the measurement process,
it can be easily calculated and its effect neglected. The mobile node receives the optical code and
waits for the ultrasound signal reception. As the time for light propagation can be neglected, at least,
when compared with sound propagation, it can be considered that the light is transmitted with a delay
equal to zero. Since the relative delay between both signals in reaching the receiver node depends only
on the ultrasound propagation, we can consider the distance from the base station to mobile node as
proportional to that delay. Therefore, the estimated distance can be calculated using Equation (1):

D =
∆t

1
vS

− 1
c

≈ vS·∆t (1)

where D defines the distance, ∆t is the delay time, c is the speed of light and vS is the speed of
sound that depends on the temperature. When the ultrasound signal is detected at the mobile node,
it sends back an optical signal (again, it could be an ID code, but only the first bit is considered for
time calculation), indicating that the ultrasound signal has reached the mobile node. Assuming that
the optical propagation delay can also be neglected from the mobile node to the base station, the base
station will also be able to estimate the distance by measuring the time difference between the instant
of transmitting the ultrasound pulse (at the base station) and the arrival time of the optical signal sent
from the mobile node (which is triggered by the transmitted ultrasound signal), providing a dual-side
distance estimation capability. Figure 2 presents the corresponding chronogram depicting how
the same delay values are obtained in the mobile node and in the base station.
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Mathematical Analysis

Based on the diagram presented in Figure 2, the time difference ∆t between the optical and
ultrasound signals can be estimated using the following equation. topt and tus are the arrival times of
the optical and acoustic signals, respectively.

∆t =
∣∣topt − tus

∣∣ (2)

Considering the time reference as the beginning of the optical emission, as well as the transmission
chains of both the optical and ultrasound subsystems, the received signals before the detection stage
can be expressed as Equation (3):

Vopt = Vopt
tx (t)× hopt

tx (t)× hopt
ch (t)× hopt

rx (t) + nopt(t)

Vus = Vus
tx
(
t − tµC

)
× hus

tx (t)× hus
ch(t)× hus

rx(t) + nus(t)
(3)

where Vopt
tx (t) and Vus

tx (t) are the optical and acoustic excitation signals. The optical signal would
typically be a pulsed signal, whilst the acoustic signal would be sine-like. hopt

tx (t) and hus
tx (t) are

the optical and acoustic transmitters’ impulse responses, respectively. This response comprises both
the amplification chain and transduction. In white LED lamps, phosphor or perovskite would introduce
a certain persistence. Regarding acoustic transducers, ultrasonic emitters behave as bandpass filters.
The VLC indoor impulse response (even in Line-of sight or LOS scenarios, it presents tails due to
multiple reflections that extend tens of nanoseconds [17]) is taken into account in hopt

ch (t). On the other
hand, in ultrasound links, due to the nature of pressure waves, the maximum theoretical bandwidth is
just a few kHz [18] (hus

ch(t)), limiting the ranging rate of a positioning system based on the proposed
device; Priyantha’s cricket system presents the same limitation. tµC is the delay between the emitted

signals, and depends on the microcontroller clock. hopt
rx (t) and hus

rx (t) are the optical and acoustic
receiver impulse responses, respectively. Finally, nopt(t) and nus(t) are additive white Gaussian noise
or sources.

In the case of the optical channel, all the involved signals are low pass filtered, introducing a slight
delay on the received signal when enough power is emitted. On the other hand, both ultrasound
emitter and receiver are bandpass filters due to their piezoelectric response (usually very narrow).
As can be inferred from the receiver chain diagram, the detection is sensitive to the voltage threshold
Vi

th used and to the receiver’s noise power. Mathematically it can be modelled as Equation (4):

topt = inf arg
{

Vopt(t) ≥ Vopt
th

}
tus = inf arg

{
Vus(t) ≥ Vus

th
} (4)

Taking into account the shape of the received signal, the delay errors on the detection stage
could be neglected on the optical signal when compared to the same effect on the acoustic
subsystem. In this case, the received signal would be sine-like and the delay errors would be
proportional to the period of the transmitted signal. Furthermore, these delay errors would be
distance-dependent and each cycle implies an 8 mm error on distance estimation (at 343 m/s of sound
speed), complicating the achievement of a sub-centimeter system without a statistical post-processing
adjustment stage. Figure 3 illustrates this dependency.
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immediately sent back to the transmitter node. The distance estimation in the mobile node is 
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Figure 3. Effect of the received power on the estimation of the travelling time for the ultrasound signal.
We have considered two cases: using a hard detector (upper) and an envelope-based detector (lower).

3. System Implementation

As a proof of concept, a prototype based on the proposed distance measurement scheme has
been implemented. The aim of this prototype is to validate the procedure, not to present a fully
reliable system. In this way, basic circuits and components have been used, which fulfill the prototype
requirements. The real-time measurements and distance calculation are performed on microcontroller
units (MCU), one on each side of the system. We have used an Atmel ATMega328P (Arduino Nano,
Torino, Italy) for the base station and a NodeMCU (based on the ESP8266 chip, Guangzhou, China) for
the mobile node. Moreover, the built system includes a liquid crystal display (LCD) and a Universal
Serial Bus (USB) connection at the base station, in order to present the measured results. A wireless
network connection has also been included in the mobile node for presenting the measured results.
Figure 4 shows the scheme of the implemented system.
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As it was previously stated, in the transmitter node a time counter starts when the light pulse
and ultrasound signal are simultaneously sent. Since a MCU is used, an almost negligible delay is
introduced between both pulses, as they are generated sequentially by the MCU and some instruction
cycle delay is introduced. However, this delay is fixed by the MCU high frequency and accurate system
clock, so we can consider it as a constant. Therefore, this delay can be easily considered at the receiver
side calculation and does not introduce errors in the distance estimation. When the optical signal—only
a pulse for this proof of concept—is detected at the mobile node, it starts its own time counter (it can
be assumed that because of the speed of light, the time counters in both sides of the system start at
almost the same time). As the ultrasound wave is slower than the light wave, the mobile node stops its
time counter when the ultrasound signal is detected. Then, an optical pulse is immediately sent back
to the transmitter node. The distance estimation in the mobile node is performed using the measured
delay between the optical and ultrasound pulses. Furthermore, as the sound speed is highly affected
by temperature, a sensor is included in the mobile node (in this case, an AOSONG DHT22 (Guangzhou,
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China)), in order to estimate the local sound speed and to compensate the propagation-speed error.
The correction follows that shown in Equation (5):

VS = 331.5 + 0.60714T (m/s) (5)

where T is the temperature in Celsius degrees. When the base station node receives the optical
signal sent by the mobile node, it stops its time counter and calculates its relative range.
Therefore, both devices should obtain the same delay for calculating the distance with a minimum
error coming from the delay of the optical propagation. Additionally, for the MCUs, each station has
a hybrid (optical and ultrasound) communication layer. The ultrasound transducer is a Daventech
400ST/R160 (Tweedale Court Industrial Estate, Madeley, Telford, UK) with a 40 kHz clock signal
generated by the microcontroller and a MAX232 integrated circuit-based driver. The ultrasonic receiver
is based on the same transducer as the emitter, with a signal amplifier (Sony CX20106A, Tokyo, Japan),
connected to the NodeMCU. This amplifier generates one pulse for each received ultrasound train
of pulses, and a demodulation process of the 40 kHz carrier amplitude modulated (AM) ultrasound
signal is then performed.

The optical link is based on commercial white LEDs, with a BPW40 phototransistor (Telefunken,
Frankfurt am Main, Germany) and a comparison block for pulse shaping as the receiver. For practical
systems, more complex communication schemes have to be introduced. Higher ranges require more
powerful emitter stages and higher sensitivity receivers. Additionally, strategies for the reduction of
the ambient light effects have to be provided, such as new modulation schemes or sectored receivers.
If the range of the system needs to be increased, it would require the incorporation of higher power
drivers at the transmitters and higher gain schemes at the receiver. Figure 5 represents the basic scheme
of the whole implemented prototype.
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Figure 5. Electronic diagram of the implemented system, base (left) and remote (right) stations.

4. Results

This section presents the experimental results of the implemented system. The test setup is similar
to that shown in Figure 4, where the measurement devices are aligned and the mobile node changes
its position along a line. Figure 6 shows an experimental delay measurement, where the optical and
ultrasound pulses, received by the mobile node, are illustrated. A delay between the two signals of
∆X = 400 µs is observed. Introducing this value of ∆t in Equation (1) along with the sound speed
(0.0343 cm/s) gives an estimated distance of 13.72 cm; for this evaluation the distance between
terminals was set to 14 cm. Different distances up to 80 cm were measured whose results, obtained in
both base and mobile stations, are presented in Figure 7. It can be observed that the relative error
value remains below 2%, except at the operational limit of this system (as it was a proof of concept
with low-gain configuration, it was set to 80 cm), where the error grows to 5%. Error is also significant
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for ultra-short distances (below 5 cm), where the relative error grows due to the minimum resolution
limits of this implementation (measured values rose up to 17% at 3 cm).Sensors 2017, 17, 330 7 of 9 
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5. Discussion

There are four main challenges usually kept in mind when dealing with indoor
positioning systems:

• Accuracy (depending on the application requirements): the harshness of indoor environments
on signal propagation, (caused by obstacles, wandering people, shadowing), makes it hard to
achieve accuracy. Eventually, it will also be necessary in some study cases to provide not only
position in a coordinate system, but also orientation.

• Scalability: Indoor environments often contain a large number of physical objects and a large
density of people, all requiring a location. Hence, an indoor location system needs to scale well
with the number and the density of users of the system. This is especially true for large scenarios
such as airports or dense commercial areas.

• User privacy: The ability to obtain user location without tracking previous positions is important
for preserving user privacy.

• Ease of deployment: The location system should be easy to deploy, configure, and maintain.
The amount of manual configuration and precise placement should be as small as possible,
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while accuracy considerations have been discussed in the results section. Ease of maintenance
also implies low power consumption (when it is powered by batteries).

We can now discuss the evaluation of the proposed system based on this metric. Privacy is
guaranteed by the inherent security capabilities of the VLC system. It offers additional security when
compared to radio frequency systems due to the nature of the light signals that, in contrast to RF
signals, cannot be interfered with, nor read through walls. We can even imagine a scenario in which
someone tries to produce an intentional error in a distance measurement by using a fake beacon
signal from an external radio emitter. Regarding ease of deployment, a pre-installed facility can
be used as the illumination network. The key factor is that the delay measurement is performed
over the delay of the ultrasound signal, so less complex sampling of the received signal is required,
compared to trying to evaluate the delay of an optical transmission, and lower cost devices can be used.
Furthermore, the necessity of maintaining synchronization among the lamps is avoided. Scalability is
the main problem for these devices, but can be achieved when different users receive the optical code
from a base station, all of them will be waiting to “hear” the ultrasound ping and calculate the delay to
locate themselves independently, waiting for the signals from the lamps.

6. Conclusions

This work has presented a new distance measurement scheme based on a TDoA technique that
uses a dual optical-ultrasound system. This proposed system uses the same principle as the cricket
technology but introduces some modifications, which provide advantages for some specific application
scenarios. In contrast to traditional cricket systems, the proposed scheme measures the distance at
the mobile node but also at the base station node, providing distance measurement capability to both
devices involved in the process. It also introduces reinforced security compared with traditional RF
systems, as each room can be considered as an isolated cell, as light does not propagate through walls.
It also can be employed in scenarios where RF systems are not practical, such as underwater systems.
As a proof of concept, we have implemented a basic TDoA visible light ultrasound sensor prototype in
order to validate the proposed distance measurement scheme. Results show that both base station and
mobile node devices are able to calculate the distance between them, with similar accuracy (about 2%
error). These results can be easily improved (mainly in terms of range and accuracy) by introducing
more powerful and efficient circuits and components. Future work will develop a complete positioning
system and study the effects of the channel and interference effects on the accuracy and performance
of the system. The main application area of this technique is for short-range distance estimation
for location-based services, even in environments where RF communications are restricted, such as
in water.
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