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1

INTRODUCTION

Summary

In this chapter we present the motivations behind this thesis. Current trends in the
exploitation of the different sources of parallelism are presented, espectally describing
the data-level parallelism (DLP) paradigm and its related advantages. This chapter also
analyzes different applications of DLP in past and present computers. The relation of
this thesis with previous and current research works is presented, and some comments
are made about the application characteristics that are suitable for ezecuting in DLP

Processors.
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2 CHAPTER 1

1.1 MOTIVATIONS

Over the last two decades, microprocessors have enjoyed a continuous increase in perfor-
mance and attendant reduction in price/performance [S1a96] [Yu96] [Mal95]. Among
the different emerging tendencies, superscalar processors have succeeded in different
marketplaces [Sit92] [BDHS94] [Hun95] [TGN95] [WPS95] [Yag96] [Chro6] [Kel96]
[Pap96]. From the initial two-way execution in HP PA7100 [AAD*93], DEC Alpha
[Sit92], Intel Pentium [AA93] and IBM PowerPC [SDC94], much research efforts have
been devoted to the development and enhancement of new and existing techniques that
can provide better performance. All these techniques deal with topics such as instruc-
tion caches [SV87] [CMMP95] [LBCG95] [WOR96] [WO97], branch prediction [McF93]
[YMP93] [STSM96] [Zha96] [JSNO8], register file organization [FJC96] [WB96], regis-
ter renaming [SP94] [GGV98] [JRB+98], the increasing number of instructions issued
for execution [SV87] [FS94], dynamic instruction scheduling and out-of-order execution
[PJS97] [VM97], and data caches [WO95] (including multilevel caches [JW94], data
prefetching [Zha96] [Vei97], non-blocking accesses [Kro81] [CB92], multiported caches
[WOR96], and others [JNT97} [SF91]).

All these improvements have allowed walking one step forward in the performance
gain path. Current best of breed microprocessors operate at frequencies over 1GHz
[Int00] [Kah99] and offer superscalar instruction dispatch, sophisticated branch predic-

tion techniques and support for high performance memory systems, including on-chip

second level caches [Int00] [Kah99] [Kes99] [Yag96] [Kum96]. These advances do not .

come without a price, and all these techniques are getting even more complicated, as
can be seen when looking at complex instruction caches [RQJS97] and value speculation
mechanisms [GM96].

Given that, as technology evolves, an increasing number of transistors will be included
on a single chip [Yu96], the question is how future processors will use these additional
transistors. The majority of current processors have been focused on techniques aimed
at exploiting more and more instruction level parallelism [Eme99] [Kah99]. However,
measurements of actual performance of applications running on machines exploiting in-

struction level parallelism, show that the actual performance achieved falls very short
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Introduction 3

of the theoretical peak performance of the machines [CB96]. Many studies have pointed
out that this lack of performance can be due to different effects, such as data and in-
struction cache misses, branch mispredictions, memory dependences or lack of program
parallelism [Wal91] [LW92] [BGB93.

Therefore, although the exploitation of instruction level parallelism has yielded large
performance improvements, and scaling current superscalar processors to achieve large
amounts of ILP is an area of very active research, there is a growing consensus that
this scaling can not be done by simply trying to fetch, decode and issue more and more
instructions per cycle [PJS96] [PJS97] [AHKBO0O0]. Some of the reasons are:

= First of all, an aggressive fetch and decode engine must be designed, which is far
from being trivial due to branches as well as instruction cache bandwidth issues
[PW94] [RBS96] [CMMP95] [RLPN*99].

= Second, an aggressive issue engine, with a large instruction window, is required
to be able to feed a large number of functional units [HKLS00]. The instruction
window lookup time increases quadratically with the window size [PJS97].

m  Third, to issue a large number of instructions a heavily multiported register file is
needed, which can both endanger the cycle time and consume a large amount of
chip area [CGVT00].

»  Also, sustaining multiple memory accesses per cycle requires a multiported TLB
and cache, and their cost is also proportional to the number of independent memory
ports [JNT97] [BGK96].

All these aspects make the scalability of superscalar processors expensive and strongly
technology-dependent [AHKBO0O0]. Moreover, even if these problems can be overcome
with future technology, the performance results generally do not pay off the amount of
chip area and the design effort required [LWS96] [QCEV99], as we will see along this

thesis.

Therefore, we think that we should exploit more than one source of parallelism in

order to overcome the scalability problems of current superscalar architectures. We
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4 CHAPTER 1

will first analyze, in the following section, the different sources of parallelism available

in programs, and how they are being exploited in current processors.

1.2 SOURCES OF PARALLELISM

There are different sources of parallelism in programs: instruction level parallelism,
thread level parallelism and data level parallelism. Let us analyze each of them in more
detail.

Instruction level parallelism

Among the different sources of parallelism, the instruction level parallelism (ILP) has
been one of the most exploited sources [RF93]. A program presents ILP whenever
different instructions of a single control flow can be executed in parallel and the program
result is not altered. The detection of the instructions that can be executed in parallel
can be done at compilation time or at run time. In the first case, the compiler selects
groups of instructions that can be executed in parallel [Gas89]. These instructions are
typically packed in a single instruction. The architectures that exploit ILP in this way
are called Very Long Instruction Word (VLIW) architectures because of the large multi-
operation instructions that are generated by the compiler [KM89] [PSW91] [Gas91].
The Intel-HP’s Itanium [Sha99] is an example of VLIW-based processor. It has built-
in parallelism description to avoid “searching” for ILP that the compiler already knew
about. The concept behind VLIW is to make hardware scheduling decisions visible
to the compiler, which could make its own optimizations [Lam88]. VLIW processors
also employ new techniques [EGK*94] [Rau93], such as predication and speculation,
which allow a processor anticipating and performing calculations before the need for
the calculation, or the validity of data, can be fully checked. Of course, the drawback
of these approaches is that results of speculative executions are often tossed out when
the data can not be validated, and the practice of profiling code for VLIW processors

creates an unnecessary software burden.
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Introduction , )

The exploitation of ILP at run time is mainly supported in current superscalar proces-
sors [Joh91]. In these processors, instructions are fetched, decoded, renamed and sent
to the execution queues where they execute when their operands are available. This way
of detecting and exploiting ILP is more flexible as the hardware has full information
about the dependences between instructions (as opposed to the limited static infor-
mation available to a compiler) [RF]. Looking at current superscalar microprocessors
roadmaps, there is a disparity on how to exploit ILP and improve performance, with-
out incurring in excessive circuit complexity that may result in clock speed limitations
[AHKBO0O]. On one end, the Alpha 21464 [Eme99] and Power4 [Kah99] processors are
going for 8-wide issue. On the other, Intel’s Pentium4 [Int00] is an attempt at extreme
clock frequency with limited issue width. This processor has a trace cache [PW94] that
delivers up to 3 micro operations per clock cycle to the core but, in return, it provides

a very fast clock by using hyper pipelined technology.

Thread level parallelism

Another source of parallelism is the thread level parallelism (TLP). A program presents
TLP if it can be decomposed in different threads, or groups of instructions, that can
be concurrently executed, whether speculatively or not. This approach yields a system

with higher throughput and better resource utilization.

One of the types of TLP is the simultaneous multithreading (SMT) [TEL95]. In this
case, instructions from different threads coexist at the same time in the reorder buffer.
In each processor cycle, the processor issues to execution instructions from different
threads. A few bits of thread information in the instruction queues and per-thread
rename tables are needed in this case. One example of this trend is the announcement
of the Alpha 21464 [Eme99] being a simultaneous multithreaded processor. This pro-
cessor can execute as many as eight instructions in a clock cycle. To fully exploit that
potential, this processor uses out-of-order execution and special fetching techniques to
create four virtual “thread processing units” that make the CPU look like a four-way
multiprocessing system. This processor will be first used at the high-end server space,
where multiprocessing-ready applications already exist. Outside that space, however,

there is no such code, and to use the 21464’s virtual thread processors optimally, ap-
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6 CHAPTER 1

plications would have to be tuned to the realities of the underlying hardware resources
that are shared among the virtual thread processors. This effort in the software field is
the major drawback of the thread level parallelism approach, as it requires a significant

transition towards multithreaded software models.

There is also another approach for exploiting the TLP paradigm. It is called chip
multiprocessing (CMP) and it is based on putting more than one processor core in a
single chip. IBM uses CMP on its Powerd processor [Kah99], as well as Compaq does in
Piranha [BGM™00]. This proposal does not suffer from the software support drawback,
but incurs in the extra cost of putting two processors on a single large -and sometimes
hot- die. The problem in CMP is the increasing number of pins that are needed, so
the memory bandwidth becomes a bottleneck and prevents from achieving sustained

performance.

Data level parallelism

Finally, the third another source of parallelism in programs is data level parallelism
(DLP). A program presents data level parallelism whenever there is a piece of code
(normally a loop) that executes the same operation over a stream of data [PH96]
[Fly97]. These data are usually allocated in data structures like vectors or matrices.
The operation can be carried out over consecutively allocated data, or over elements
that are separated in memory a fixed amount of positions, called stride. The number
of elements on which the operation is carried out is called the vector length. Exploiting
data level parallelism in loops decreases the number of instructions and operations
executed. Moreover, vector instructions provide with a large amount of work, as large

as the vector length, that will keep the functional units busy for many cycles.

Although many processors have used DLP exploitation in their design [Rus78] [TW91]
[Oed92], only two companies are currently manufacturing processors that exploit word
level parallelism, NEC [vdSDO01c] and Cray [BS00]. Over the last few years, however,
there has been a growing interest on ISA extensions aimed at exploiting sub-word
level parallelism, such as MMX [PW96], Altivec [NJ99], MAX [Lee96], VIS [Koh95]
or MDMX [MIP97]. This is also a form of data level parallelism in which short data
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Introduction 7

are packed on a in single register and operations are carried out simultaneously on the

different register elements.

All in all, some of the different parallelism paradigms discussed above are orthogonal
from each other and in practice they are implemented together in a single Processor.
For example, the IBM Power4 [Kah99] has two processors on a chip, each of them
issuing several instructions in each cycle. The Alpha 21464 [Eme99] executes up to
four threads simultaneously, and each of them can issue out-of-order eight instructions
per cycle. In the limit case, we could have several processors on a single chip, each
of them could be simultaneous multithreaded and could extract ILP by issuing several
instructions per cycle. This is an important idea that leads us to conclude that there
are several natural sources of parallelism in programs, and each microprocessor tries
to achieve high performance by exploiting some of them. In this thesis we rely on this
idea, and we propose a processor design that exploits data-level parallelism coupled with
traditional superscalar ILP execution. This processor will be backed with a especially
designed cache hierarchy aimed at accessing vector and scalar data. Our design reaches
performance values for numerical and multimedia applications that the superscalar

processor can not achieve on its own.

Since our proposal is based on a fusion of ILP and DLP, let us take an in depth look

at these two paradigms.

1.3 ILP PARADIGM

The ILP paradigm is mainly exploited in current superscalar architectures [Joh91]
[SS95] [SFK97]. Table 1.1 presents the different characteristics of some of the current
superscalar processors. These processors use different techniques aimed at detecting

and exploiting instruction level parallelism:

= Pipelining. The pipelined execution of instructions exploits instruction level paral-
lelism since different parts of the different instructions are executed simultaneously.

In a pipelined datapath the execution of each instruction is carried out following

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



CHAPTER 1

” Alpha | AMD | HP | 1BM Intel Intel | MIPS ] Sun I Sun
Processor 21264C AthlonMP PA-8600 Power3-11 Itanium Pentium4 R14000 Ultra-1I Ultra-II1
Claock Rate 1001 MHz 1.2 GHz 552 MHZ 450 MHZ 800 MHz 1.8 GHz 500 MHz 480 MHz 900 MHz
Cache (1/D/L2) 64K /64K 64K /64K /256K 512K /1M 32K /64K 16K/16K/96K | 12K/8K/256K 32K /32K 16K/16K | 32K /64K
Issue Rate 4 issue 3 x86instr 4 issue 4 issue 6 issue 3 ROPs 4 issue 4 issue 4 issue
Pipeline Stages 7/9 9/11 7/9 7/8 10 22/24 6 6/9 14/15
Qut of order 80 instr 72 ROPs 56 instr 32 instr None 126 ROPs 48 instr None None
Rename Regs 48/41 36/36 56 total 16 int/24 fp 328 total 128 total 32/32 None None
Memory B/W 2.66 GB/s 2.1 GB/s 1.54 GB/s 1.6 GB/s 2.1 GB/s 3.2 GB/S 539 MB/sa 1.9 GB/S 4.8 GB/s
Die size (mm2) 115 128 477 163 300 217 204 126 210
Transiators 15.4mill 37.5mill 130mill 23mill 25mill 42mill 7.2mill 3.8mill 29mill
Availability 3Q01 2Q01 3Q00 4Q00 2Q01 3Q01 3Q01 3Q00 3Q01

Table 1.1 Main statistics for the key high-end processors available. Figure repro-
duced from [Mic01].

a set of sequential stages [Kog81] [PH96] [Fly97]. The number of stages depends
on each processor [DF90], as can be seen in table 1.1. However, the main steps in
the execution of an instruction are: fetch, decode, issue, execute and write results.
In some processors these stages can be additionally divided into different stages,
depending on the design decisions. In the instruction fetch stage, the instruction
cache is accessed in order to read the instruction. The decode and rename stage de-
codes the instruction, renames logical registers into physical registers and predicts
the outcome of the branch in order to be able to make a decision about the execu-
tion of the following instructions (wether sequentially continue execution or branch
to the destination address). After that, the instruction is issued to the execution
queues of the different functional units. Then, the instruction is executed in the
appropriate functional unit (or accesses the data cache, if it is a memory access).
The instruction finishes its execution writing the result in the register file, if it has

to.

Multiple instruction issue. The pipelined model previously commented can be
evolved to deal with more than one instruction in each cycle [SV87]. In that case
several instructions are fetched, renamed, issued, executed and finished in each

cycle. Instructions executed in parallel can not depend on each other, of course.
The early 1990s saw a number of processors, like DEC 21064 [McL93], HP PA

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



Introduction 9

7100 [AAD"93] and MIPS R8000 [Hsu94]. All of them were implementations that
achieved multiple issue by executing instructions of different types. In table 1.1 we
can see that different current processor designs issue different number of instruc-
tions. The majority of them issue four instructions in each cycle, being Itanium
[Sha99] the processor that issues the larger number of instructions (up to six in-

structions in each cycle).

»  Dynamic scheduling and Out-of-order execution. The previous technique
allows exploiting much more instruction level parallelism, but it also relies on the
ability for finding several independent instructions that can be executed in parallel.
This process can be carried out statically, at compilation time, or dynamically, at
execution time. In the first case, the compiler selects groups of independent instruc-
tions and packs them in a single VLIW instruction [PSW91] [Gas91]. In the later
case, instructions are fetched, decoded and issued in original program order, but
once issued they can be executed out of program order, based on the availability
of their operands. After execution, instructions are graduated in original program
order in order to preserve the semantics of the program [DT92]. This technique
provides the processor with additional flexibility in order to find independent in-

structions that can be executed, thus keeping the functional units busier.

All these techniques combined allow the computer to achieve high performance. Ta-
ble 1.2 presents the best reported SPEC CPU2000 (base) results for each shipping

vendor previously commented in table 1.1.

Of course, processors can reach even better performance if programs are compiled
by knowing the underlying processor design. For example, the compiler can apply
some compilation techniques, like loop unrolling or scalar replacement, in order to
expose more parallelism between instructions, thus facilitating exploiting parallelism

at execution time.

The two major challenges of an ILP processor are branches and cache memory misses.
These two elements disrupt the instruction flow and prevent instructions from flow-
ing through the pipeline. Cache misses are a problem because they stall the pipeline,

thus decreasing performance. Several techniques have been developed in order to fight
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Alpha AMD HP IBM Intel Intel MIPS Sun Sun
Processor 21264C AthlonMP PA-8600 Power3-11 Itanium Pentium4 R14000 Ultra-1I Ultra-111
System or Alpha ES40 AMD HP 9000 RS/6000 Dell Dell $GI12200 Sun Sun
Motherboard Model 6 TyanThunder J6000 44P-170 Prec. 730 Prec. 330 Enterprs 450 Blade 1000
Clock Rate 1001 MHz 1.2 GHz 552 MHZ | 450 MHZ 800 MHaz 1.8 GHz 500 MHz 480 MHz 900 MHz
External Cache 8 MB None None 8 MB 2 MB None 8 MB 8 MB 8 MB
164.gzip 466 608 376 230 332 663 266 165 348
175.vpr 482 319 421 285 262 330 460 212 384
176.gcc 636 357 577 350 359 649 367 232 491
181.mcf 374 229 384 498 187 506 607 356 474
186.crafty 803 665 472 304 355 586 409 175 442
197.paraer 405 436 361 171 246 541 342 211 414
252.e0n 798 836 395 280 414 795 433 209 463
253.perlbmk 605 759 408 215 309 328 305 247 156
254.gap 309 581 229 256 269 823 242 171 304
255 vortex 752 764 764 312 505 832 569 304 575
256.bzip2 606 401 349 258 286 471 404 237 503
300.twolf 821 417 479 414 356 444 552 243 481
[ SPECint.base2000 ][ 661 495 417 286 314 599 397 225 439
168.wupside 482 669 340 360 591* 897 321 284 413
171.swim 898 785 761 279 1369* 1294 310 285 319
172.mgrid 343 464 462 319 749* 639 249 226 233
173.applu 411 437 563 327 1022% 739 261 150 218
177.mesa 785 662 300 330 320* 671 348 273 468
178.galgel 1577 314 569 429 1019* 589 1154 735 908
179.art 1987 345 419 969 2369* 530 1213 920 973
183.cquake 179 355 347 560 834% 816 229 149 210
187 .facerec 096 417 258 257 637* 524 475 459 643
188.ammp 473 347 376 326 511* 399 475 313 409
189.lucas 511 480 370 284 837* 866 272 205 208
191.fma3d 415 446 302 340 323% 445 211 207 297
200.sixtrack 404 304 286 234 575% 307 248 159 282
301.apsi 506 315 523 349 350* 474 285 189 328
[ SPECTp-base2000 ] 585 433 400 356 703* 615 362 274 369

Table 1.2 Best reported SPEC CPU2000 (base) results for each shipping vendor.
Figure reproduced from [Mic01]. (*) Dell PowerEdge 7150 with 4MB L3 cache.

against the effect of cache misses [CB92] [SV97] [SC97] [Zha96] [Vei97] [RBS96]. How-

ever, there is always a certain number of compulsory cache misses that can not be

eliminated.

Regarding branches, the problem are misspredictions. Accurately predicting branch
outcomes is an important research topic [McF93] [YMP93] [SJSM96] [Zha96] [JSNI§]
on which there is a growing interest in the research community. Each time a branch

is misspredicted, and the wrong path is being executed, the processor pipeline must

be flushed and refilled with the appropriate instructions. In those situations there is a

performance loss because of those cycles spent in executing the wrong instructions.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



Introduction 11

1.4 DLP PARADIGM: ANOTHER SOURCE OF
PARALLELISM

The data level parallelism (DLP) paradigm uses vectorization techniques to discover
data level parallelism in a sequentially specified program and expresses this parallelism
using vector instructions [Rus78] [Oed92] [CGMW88] [NKT*95] [WKI86] [AJ88] [DH]
[SK86] [Smi91] [CTS96]. A single vector instruction specifies a series of operations to be
performed on a stream of data. Each operation performed on each individual element

is independent of all others and, therefore, a vector instruction is easily pipelineable
and highly parallel [Arn83] [HT72] [Ric78] [GBH96] [NKT195].

There are two very important advantages in using vector instructions to express data-
level parallelism. First, the total number of instructions that have to be executed to
complete a program is reduced because each vector instruction has more semantic con-
tent that the corresponding scalar instructions. Second, the fact that the individual
operations in a single vector instruction are independent allows a more efficient execu-
tion: once a vector instruction is issued to a functional unit, it will use it with useful
work for many cycles. During those cycles, the processor can look for other vector
instructions to be launched to the same or other functional units. It is very likely that,
by the time a vector instruction completes all its work, there is already another vec-
tor instruction ready to occupy the functional unit. Meanwhile, in a scalar processor,
when an instruction is launched to a functional unit, another instruction is required
at the very next cycle to keep the functional unit busy. Unfortunately, many hazards
can get in the way of this requirement: true data dependencies, cache misses, branch

misspredictions, etc.

The combination of these two effects has many related advantages:

= First, the pressure on the fetch unit is greatly reduced. By specifying many opera-
tions with a single instruction, the total number of different instructions that have
to be fetched is reduced. Many branches disappear embedded in the semantics of
vector instructions [QEV98b).
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s A second advantage is the simplicity of the control unit. With relatively few control
effort, a vector architecture can control the execution of many different functional

units, since most of them work in parallel in a fully synchronous way.

= A third advantage is related to the way the memory system is accessed: a single
vector instruction can exactly specify a long sequence of memory addresses. Con-
sequently, the hardware has considerable advance knowledge regarding memory
references and can schedule these accesses in an efficient way [VLL*92] [PVAL93]
[CEV98]. Moreover, in the DLP style of accessing memory every single data item
requested by the processor is actually needed. There is no implicit prefetching due
to cache lines. Additionally, the information on the pattern used to access memory
is conveyed to the hardware through the stride information and it can be used to
improve memory system performance [VLL*92] [VLPA95] [PVAL95).

» In addition, a vector memory instruction is able to amortize startup latencies over
a potentially long stream of vector elements. Since each vector instruction works
on a long stream of operations, functional unit latencies and memory latencies can
be amortized across all vector elements. In the particular case of memory accesses,
once a memory load operation is started, it pays for some initial latency, but then,

assuming no memory conflicts, it can deliver one word per machine cycle.

= Finally, the DLP model can be easily scaled up to higher levels of parallelism
by replicating the number of functional units and adding wider paths from the
vector registers to the functional units. All this without increasing a single bit the
complexity or the pressure on the decode unit. The semantic contents of the vector
instructions already include the notion of parallel operations. This increase can be

as large as the vector length.

All these advantages, which will be largely addressed in section 3.2, lead us to con-
sider that it is worthwhile including DLP in future microprocessor trends. Moreover,
including DLP techniques does not prevent from also exploiting ILP by issuing sev-
eral instructions to execute. Our proposal is focused on the fine architecture level and
consists in merging ILP and DLP techniques in a single chip processor. We strongly
believe that adding DLP to an ILP processor can guide us to higher levels of paral-
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lelism. Although our proposal does not include it, additionally, TLP techniques can

also be applied at the coarser level to reach even higher performance levels.

Thesis goal

The goal of this thesis is to show that ILP and DLP can be merged in a single ar-
chitecture to execute regular vectorizable code at a performance level that can not be
achieved using either paradigm on its own. We will try to show that the combination
of the two techniques yields very high performance at a low cost and a low complex-
ity: the resulting architecture has a relatively simple control unit, tolerates very well
memory latency and can be easily partitioned into regular blocks to overcome the wire
delay problem of future VLSI implementations. Also, the control simplicity and the
implementatidn regularity both help in achieving very short cycle times. Moreover, we
will show that this architecture can be scaled up very easily, while scaling up an ILP
processor is very costly in terms of hardware (and, at some point, may even not be
feasible). Even if one scales up a superscalar, we will show that their performance falls
behind the performance of the machine exploiting both ILP and DLP.

In order to reach high performance it is a key point of this thesis to also propose a
novel cache hierarchy, tuned for the exploitation of the ILP and DLP paradigms. Each
source of parallelism exposes a different way of accessing memory data. Therefore,
the exploitation of each source of parallelism requires an especially designed memory
hierarchy. In our case, we propose a memory hierarchy tuned to accessing scalar and
vector data. This memory hierarchy is based on the “vector cache”, which is a cache
aimed at accessing vector and scalar data. This cache will be able to provide high
bandwidth to the vector register file, to allow this bandwidth to scale up as we scale the
functional units, to minimize conflicts between vector and scalar data and to guarantee
that the processor cycle time is not in jeopardy due to the inclusion of a high bandwidth

port to the vector register file.
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Clock Freq. Main Memory Load
Machine Year (MHz) Mflops/CPU | No. CPUs Bw/CPU latency(ns)
Cray-1 1976 80 160 1 640 MB/s 150
Cray-XMP 1982 105 210 2 2.5 GB/s . 123
Cray-2 1082 243 486 4/8 1.0 GB/s 200
Cray-YMP 1989 167 334 8 4 GB/s 100
Cray-C90 1992 243 970 16 12 GB/s 95
Cray-J90 1995 100 200 32 1.6 GB/s 340
Cray-T90 1994 450 1800 32 21 GB/s 70/116
Cray-SVlex || 2001 500 2000 32 6.4 GB/s NA

Table 1.3 Evolution of the Cray vector machines.

1.4.1 DLP: Past, Present and Future

Given all the advantages mentioned above, one could ask what was the fault in the
previous implementations of the DLP paradigm, that made them be slowly outshaded

by other forms of computing.

Past of DLP

The DLP paradigm has been exploited using vector instruction sets [Rus78] [TW91]
[Oed92]). The first vector machines were supercomputers using memory-to-memory
operation [HT72] [Wat72], but vector machines only became commercially successful
with the addition of vector registers in the Cray-1 [Rus78]. Following the Cray-1, a
number of vector machines have been designed and sold, from supercomputers with
very high vector bandwidths [Oed92] [KISt94]| to more modest mini-supercomputers
[Con92] [PM8&6].

The peak performance of vector supercomputers has been constantly improving from
the original 160 Mflops per processor of the Cray-1 up to 10 Gflops per processor of
the more recent NEC SX-5 [vdSDOlc]. This improvement has been achieved both
through better cycle times (from 12.5 ns in the Cray-1 down to 3.2 ns in the SX-5)
and higher number of floating point operations initiated per cycle. As an example of
these improvements, table 1.3 shows the evolution of the Cray vector processors from
the initial Cray-1 until the current Cray SV1.
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Some years ago, parallel vector processors (PVP) were slowly displaced from the mar-

ketplace by other forms of supercomputing. There were several reasons:

= First, vector computers are not as general purpose as scalar processors. Vector
processors achieve their highest performance values during the execution of vector-
izable programs. For non vectorizable programs their performance results are very
low since they can not take advantage of the latency tolerant vector code. There-
fore, the flat memory system, without caches or with a small scalar cache, becomes
a bottleneck when almost every data is accessed in scalar mode. Meanwhile, scalar
processors obtain higher performance values for these non vectorizable programs,

since their memory hierarchy is aimed at accessing scalar data.

= Second, because of the high cost of traditional vector processors. In order to keep
the powerful cpu fed with enough data two related problems had to be solved. It
was necessary to provide enough bandwidth from the memory system to the pro-
cessor to ensure that the maximum processing rate is achieved. Moreover, this
bandwidth had to be provided without increasing too much the latency delays that
each memory request had to pay. Vector processors relied on high-performance,
highly-interleaved memory systems that could sustain a bandwidth rate in accor-
dance with their computing capabilities. Through the use of many parallel banks
of interleaved memory (between 256 and 1024 banks depending on processor and
configuration [SWL*91]) the necessary bandwidth was usually achieved. To keep
the latency reasonably low, the fastest memory technology must be used. Vector
processors tended to have SRAM/SSRAM memory modules [Pri96], which had a
very high cost and, usually, turned out to be a very large fraction of the overall
system cost. In comparison, their market adversaries leveraged commodity tech-
nology, which yielded a very low cost and delivered a very good price /performance

ratios.

= Fourth, vector computers could not follow the impressive evolution of scalar proces-
sors in those years. Scalar processors using CMOS technology evolved very rapidly
and their speed increased at a rate of 60% per year [PAY96]. Those scalar pro-
cessors included a variety of architecture techniques, such as decoupling [Smi82],

out-of-order execution [Tom67] [Yag96] and hierarchical memory systems based on
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caches [KELS62] [Wil65] [Hil87] [Hil88] [Smi82] [SG83] [PHI6] [LRI1], that had
greatly improved their processing power. This led to a situation where, for certain
classes of cache-friendly problems, a microprocessor could match and sometimes
exceed the performance of a vector supercomputer at a small fraction of its cost.
While it was true that not all problems were well suited for cache-based machines,
it is clear that those types of systems took a substantial share of applications that
had previously belonged to the vector computing realm. As a result, vector pro-
cessors were relegated to those classes of problems where the data size was too big

to fit in a cache-based memory system.

s Fifth, the slow decline of vector processors can also be attributed to the fact that
their architecture did not change much since the introduction of the Cray-1 [Rus78].
While superscalar microprocessors adopted many architectural features to increase
performance while still retaining low cost, vector machines used almost the same
architectural concepts introduced in 1976. In order to remain viable, and to extend

to low cost systems, vector designs needed somehow evolve.

»  Finally, despite the theoretical processing rates of vector cpus and the high band-
width memory systems built around them, a constant in the evolution of vector
supercomputers has been that the achieved performance of real programs has al-
ways been far from the theoretical peak performance [SH91] [Don93] [SH94] [Del91]
[PB88]. What is worse is that this discrepancy between peak and actual perfor-
mance occurred even for programs that were highly vectorized. As a result, the
theoretical advantage of the vector computing paradigm over other forms of super-

computing was lost.

These most notable forms of computing that outshaded vector processors were large
(MPP) and medium (SMP) scale multiprocessors built out of commodity microproces-
sors. The success of these other technologies were mostly based on leveraging CMOS
microprocessor technology and DRAM main memory systems, yielding systems that
had a high performance at a low cost. Meanwhile, PVP used expensive ECL technol-
ogy, as in those days gate-switching speed was the limit on performance. This led to a
shrinkage of the traditional PVP market niche. As a result, many companies devoted
to manufacturing vector computers, like IBM, HP/Convex, Meiko, Alliant, Thinking
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* Areafperformance

ECL Bipolar CMQS

 §X-2(1983) SX-3(1989)  SX-4(1994)  SX-5(1998)
24MCPs (2 boards) 2MCPs 2LSls 1LSI
Ratio* 1200 500 10 1

Figure 1.1 Vector processor migration from ECL to CMOS technology. Figure re-
produced from [Lan98].

Machine and others, left the vector supercomputing business, and nowadays only two

companies keep on manufacturing vector supercomputers: NEC and Cray.

Present of DLP

Over the last ten years these vector supercomputer manufacturers have made an im-
portant effort in adapting vector processors to the new technologies. All of them have
moved from the costly ECL technology to CMOS technology, which lowers the fabrica-

tion costs and the power consumption appreciably. In the NEC case, the area/performance

ratio has been reduced from 1200 down to 1 because of this evolution [Lan98}, as can

be observed in figure 1.1.

In the memory field, they. have also migrated from expensive SRAM to commodity
SDRAM chips, which provide a higher memory density, lower cost and higher perfor-
mance. Figure 1.2 shows that in fifteen years the volume/memory capacity ratio has

decreased from 500 down to 1, for NEC vector computers [Lan98].
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* Volume/memory capacity

SX-2(1983) SX-3(1989) SX-4(1994) $X-5(1998)

1 cabinet 2 boards 1 board 1 module
Capacity 128MB 256MB 256MB 256MB
VLSI 64kbSRAM 1MbSRAM 4MbSSRAM 64MbSDRAM
Ratio* 500 70 15 1

Figure 1.2 Vector processor migration from SRAM to SDRAM technology. Figure
reproduced from [Lan98].

Nowadays, parallel vector machine vendors offer supercomputing to the user at a much
Jower cost and with a higher performance. NEC is currently selling the SX-5 [IKFN98)
series. It was first introduced in 1998 and it is characterized by NEC as a machine
that works well for vectors that are not very long and for programs that also contain a
non-negligible amount of scalar code. This can be attributed to the lower multiplicity
of the vector pipes in the vector units. Each NEC SX-5 processor works at 313 MHZ,
that is 3.2 ns cycle time, and it can achieve a theoretical peak performance of 10 Gflops
[vdSDO01c].

Fujitsu has introduced in 1999 the VPP5000 series [FujOl], which is the distributed-
memory vector multiprocessor that succeed the former VPP700 systems [Uch97]. The
main enhancements have been the reduction in cycle time, down to 3.3 ns, and the
floating-point vector pipes are able to deliver floating multiply-add results. Each vector
processor is able to reach a peak performance of 9.6 Gflops. Although the system was
announced in November 1999, the first performance results have only recently been
available [vdSDO1b].

Finally, Cray has recently introduced the new SV1[BS00], a shared-memory multi-
vector processor. The Cray SV1 is built using CMOS technology and it is the successor
of both, the CMOS-based Cray J90 and the Cray T90, which was based on ECL
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technology. Although the initial cycle time was higher, they have announced a 2 ns cycle
time by the middle of 2001 [BS00], and each processor will reach a peak performance
of 2 Gflops. The very new characteristic of the SV1 vector processor is the addition
of a 256 Kbyte cache, as we already proposed at [QCEV99]. In the same way as we
did, the cache is combined with the cpu onto one ASIC. Their initial step, however, is
simpler than our proposal. Although no independent measured performance is available
at the moment, some tests have shown the importance of the cache in SV1 [vdSDO01a).
For large sized vectorizable problems the presence of the cache has almost no effect.
However, for modestly sized problems the cache can boost the performance with a factor
of 1.5 up to 2. The reason is probably that with large sized problems the program’s
working set does not fit in cache, so program execution does not benefit from exploiting
temporal locality. Therefore, many memory accesses miss in cache and data must be
brought from the main memory at a 6.4 GB/s bandwidth. On the contrary, for modestly
sized problems the program’s working set fits in the cache and data can be reused, thus
benefiting from the 14.4 GB/s processor-cache bandwidth.

Besides, the DLP paradigm has been also recently introduced in commodity micro-
processors. During the last years, PC and workstation users unknowingly have been
using a restricted form of DLP, since the commodity chip makers have began incor-
porating SIMD hardware into their mainstream superscalar processors. However, it
is important to distinguish our proposal from this tendency in microprocessor design
targeted at the exploitation of sub-word parallelism. Most major computer vendors
have recently included multimedia specific instructions in their architectures such as
MMX [PW96], VIS [TONH96], MAX [Lee96], MDMX [MIP97] or Altivec [NJ99]. Ex-
cept for the Altivec case, all other extensions only offer sub-word parallelism. That is,
a 64-bit register can be broken into independent entities of 8, 16 or 32 bits that are op-
erated on in parallel. Although the term “SIMD” is used to refer to these instructions,
they are a restricted form of vector computing, and care must be taken to distinguish

traditional vector-like SIMD operation and sub-word SIMD operation.

In this thesis we do not focus on sub-word level parallelism. Rather, we integrate a
full vector unit in an out-of-order superscalar processor. Our proposal has true vector

instructions where a single instruction operates on multiple, independent 64-bit words

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



20 CHAPTER 1

(a vector register). The advantage of having full-blown vector units is that numerical
applications can benefit greatly from them while, typically, they do not take advantage
of MMX-like ISAs. Furthermore, some multimedia applications that are not amenable
to exploit sub-word parallelism can also take advantage of our vector units. Of course,
although beyond the scope of this thesis, nothing would prevent our vector units to

also include sub-word parallel instructions, such as the ones provided by Altivec.

Future of DLP

‘Future trends in computing are very difficult to predict. What is clear, however, is
that those trends will include exploiting DLP. At the supercomputing high-end, NEC
and Cray will still keep on manufacturing vector processors. In fact, NEC has recently
announced that there will be at least three more generations of the SX processor, called
SX-6, SX-7 and SX-8 [NECO01], which give us an idea about future expectations about
vector supercomputing for this company. Meanwhile, the Cray SV2 system, currently

in development, will be the next supercomputer from Cray [Inc01].

At a lower-end, it is expected that the interest on SIMD extensions for superscalar pro-
cessors will increase, in order to meet the increasing users demand on media processing
[Wil98], such as video and audio processing, image rendering, and other media appli-
cations [DD97] [LW97] [BE98]. Also at that end, as technology continues to evolve,
miniaturization will make the space needed for a single processor much smaller than
the actual chip size [Lan00]. As a processor is 0.1 square cm in size, and the chip is
6.2 square cm, there is room for multiple processors [Kah99]. However, that is not the
only way. The alternative, which is proposed in this thesis, is to complement the su-
perscalar processor with vector processing and large, especially designed cache memory

hierarchies.
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1.5 RELATED WORK

Over the last few years, there has been an increasing interest on studies regarding
DLP. These studies deal with the different ways of exploiting DLP: vector processors

and sub-word level parallelism.

In the work presented in [LD97] and [LS98], it is proposed the use of simple vector
processors in future desktop systems. Although this may sound similar to our proposal,
indeed the differences are profound. Lee argues that by using vector units, one can keep
the scalar core in-order (dispensing with the expensive and slow out-of-order features)
and thus favor high clock rates. Although we agree with the argument, we claim that
" any feature that goes against integer performance will not be adopted by chip vendors.
That is, to successfully add a vector unit to general purpose microprocessors, the vector
unit has to be perceived as an add-on that does not disrupt, slowdown or interfere with
the performance of the integer core. Therefore, if the current tendency is to include
out-of-order execution even in high frequency designs such as the Alpha lineage, the
vector unit must be adapted to out-of-order execution and register renaming.

Furthermore, Lee does not discuss the implications of the vector unit on the memory
system, while this thesis is mainly devoted to designing a feasible cache hierarchy that
fits both the scalar engine and the vector unit.

In [EVS97] [Esp97] Espasa makes the case for an out-of-order vector processor. The
study starts from an obsolete in-order vector architecture [Con92|. Although this pro-
cessor issued only one instruction in each cycle there was overlapping between scalar
and vector instructions. However, a stall in a vector instruction prevented further vec-
_ tor instruction dispatching until the hazard was resolved. It was a register-to-register
machine with few vector registers, and connected to the functional units through a
crossbar. The main memory system was a flat multi-banked one, connected to the
processor through a single memory port. The study is focused on applying register
renaming and out-of-order execution to this vector processor, while keeping its 1-way
nature, in order to improve performance. In [EVS98] they identify two possible evolu-
tions of vector architectures. One of them, that they studied in [EV97], is the proposal

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



22 CHAPTER 1

of a simultaneous multithreaded vector processor able to be implemented with one bil-
lion transistors. This proposal is aimed at high end vector supercomputers. The other
possible evolution, situated at the mid-range servers, is what they called the “Micro
Vector”, which uses out-of-order execution, short vector registers and specialized caches.

Our proposal, which is more concerned with the “Micro Vector” that they define, does
not deal with vector processors at all, we start from a full superscalar architecture and
we study what is the minimum additional components that must be included in order
to introduce vector computing inside. We also propose a new cache hierarchy, based

on a traditional one, aimed at accessing vector and scalar data.

Villa [VEVO7] [VEV98] studies the importance of the vector registers length in vector
processors. For different vector lengths, it analyzes performance and cost. Our study
will include results for 16-element and 128-element vector registers, as we consider this
exploration essential in determining the minimum vector elements required to achieve a
performance improvement. The fact that the memory system that Villa uses is flat and
multi-banked, while our proposal is a cache hierarchy, make their behavior different.

Therefore, its conclusions can not be directly applied in our field.

In the sub-word level DLP exploitation research field there have been different ap-
proaches. Although these studies deal with DLP exploitation, they only exploit sub-
word level parallelism while we focus on word level parallelism exploitation. Moreover,
they only study multimedia applications, while we are also interested in numerical ap-
plications. Finally, some of these studies are restricted to embedded processors, while
ours are aimed at general purpose processors. As discussed above, our work could
be additionally improved with the inclusion of sub-word level instructions. Therefore,

these works complements, rather than overlaps, ours.

Among these studies, [CEV99] proposes the Matrix Oriented Multimedia (MOM) ISA
extension by fusing conventional vector ISA approaches together with media ISA ex-
tensions like MMX [PW96]. MOM instructions can be viewed as vector versions of
sub-word parallel instructions, that is, they operate on matrices where each row corre-

sponds to a packed data type. MOM is targeted at small matrix structures typically
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found in multimedia applications. This proposal has been additionally extended in
[CEVO01]. In this work the MOM ISA extension is combined with packed accumula-
tors (as found in MDMX [MIP97]) in order to deal with reduction operations. These
extensions outperform MDMX and MMX extensions.

In [SCEV99] an evaluation of different DLP oriented embedded architectures for a
media workload is presented. This study includes SIMD ISA extensions, a traditional
vector ISA (with long and short vector registers) and MOM ISA extension. For the
embedded domain, the SIMD-like architecture arises as the more cost-effective option.

In [JTVWO1] the Complex Streamed Instruction (CSI) set is presented. It is an ISA
extension with some different characteristics to previous ones: CSI instructions process
two-dimensional data streams (as MOM does), there is no architectural constraint on
the length of the data streams, and it does not include pack/unpack instructions as

conversions between different packed data are performed internally in hardware.

Another related proposal is the Imagine media processor [Wil98] [RDK*98] which has
a load/store architecture for one-dimensional streams of data records. Imagine is or-
ganized around a large 128 KB stream register file, and consists of 48 functional units
grouped in 8 arithmetic clusters. All operations are performed by transferring streams
to and from the stream register file. Memory instructions transfer streams between
the stream register file and memory. Stream computations are performed by passing a
stream from the stream register file through the arithmetic units and back to the stream
register file. In this processor the individual stream elements may be operated on in
parallel to exploit data level parallelism. Instruction level parallelism can be exploited
within the individual computation kernels. Imagine is suited for applications perform-
ing many arithmetic operations on each element of a long, one-dimensional stream. It
seems less suited when only a few operations on each record are performed or when the

vector length is small.

Another research topic that we deal with in this thesis, is the use of specialized cache
hierarchies for ILP+DLP processors. In this sense, it is interesting to comment the

cache-based memory system recently appeared in the Cray SV1 [BS00]. As we already
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proposed in [QCEV99], this processor has a 256 Kbyte cache that is combined with the

cpu onto one ASIC. Their proposal, however, is simpler than ours in several aspects:

s First, their cache is unified for instructions and scalar and vector data. Our pro-
posal, however, follows the traditional cache designs of separated instruction and
data caches [QCEV99] [QCEV01].

s Second, they propose a unique first level cache. Meanwhile, we propose a two-
level cache hierarchy system [QCEV99] [QCEV01], as we will explain in detail in
chapter 4. We will study two cache hierarchy models. In the first one both, scalar
and vector data, are located in both cache levels and they behave similarly to a
traditional cache hierarchy. In the second model the first level cache only contains
scalar data. Vector data is located in the second cache level and a direct path from
the processor to that cache allows accessing them [Hsu94] [Sha99]. Our proposal

goes further away exploring the separation of vector and scalar workload.

» Third, the cache line size in the SV1 cache is just one word. This is by no mean
common in a cache, which has traditionally been used to exploit both, temporal
and spatial locality. This cache line size prevents from exploiting spatial locality,
which is fully present in the instruction flow and in stride-1 vector accesses. The
only reason to set such small cache lines is to avoid moving useless data when non
stride-1 or gather/scatter vector memory accesses are executed. When multiple-
word line sizes are used, these types of accesses spend some memory bandwidth as
some data are moved to the cache, but they are not actually used later. However,
there are two approximations in order to solve this problem: the first one, adopted
in SV1, is to sidestep the problem by using 1-word cache lines, thus losing the
opportunity of improving performance by exploiting spatial locality. The second
one, which we propose [QCEV99] [QCEVO01], consists in facing the problem and
designing a memory hierarchy that deals well with strided memory accesses, as we

will see in chapter 6.

s Closely related to the previous consideration is the fact that the SV1 cache delivers
four data elements to the processor in each cycle [vdSD0la). As the cache line
size is just one word large, four independent memory accesses have to be done to

four different cache lines. Therefore, four independent memory ports are needed,
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which is an expensive solution. In our proposal, however, the multiple-word line
size allows having just one four-word width memory port [QCEV99] [QCEVO01].
A vector memory access goes to one cache line and brings the four consecutive

elements, which is a lower cost solution.

1.6 A SUITABLE APPLICATION SPACE FOR
EXPLOITING DLP

As stated in section 1.4, page 11, the DLP paradigm is expressed by means of vector
instructions. However, not all tasks can be expressed by using vector instructions, and
even inside a vectorizable program some parts will not be amenable to be formulated in
a vector form. Therefore, from the DLP point of view, we can say that a program has
two types of regions, data-parallel regions (D-regions) containing those zones that can
be expressed with vector instructions, and scalar regions (S-regions), whose contents

can not be formulated with vector instructions.

The DLP paradigm can be used to improve the performance of D-regions, once ex-
pressed with vector instructions. In general, the larger the fraction of the program
inside D-regions, the better the performance improvement that can be achieved. The
degree of vectorization of programs is a key parameter that determines the maximum
speedup achievable through DLP processing. In fact, Amdahl’s law [Amd67] [PH96]
shows that a balanced vector and scalar performance is also necessary to achieve high
performance. Therefore, the analysis inside S- and D-regions is essential when trying
to increase programs performance using DLP. The ability to identify and separately
study the behavior of a program inside D-regions and S-regions will allow us to predict
and understand its performance behavior. For that reason, another novel contribution
. of this thesis is the identification, separation and study of the S- and D-regions of each

program, both at the performance and instruction set architecture level.

Among the different types of programs amenable to be vectorized, it can be said that,
in general, DLP can provide large speedups mostly for highly regular, vectorizable, ap-
plications. This has been the trend at the high-end vector supercomputers where tradi-
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tional applications in the fields of environment and climate modeling [LLOO] [Mar98b],
computational fluid dynamics [Tko00] [Rhy99], reactive flows [TLO98] [FLTB99], as-
trophysics and geophysics [Mar98a], electromagnetism and plasma physics [Kat00], ap-
plied mathematics and theoretical physics [Tsu99], complex molecular systems and
biology [Kan97] [Him00], quantum chemistry and material sciences [Ran96], among
others [NEC98] [Him96], where only tractable by using this kind of machines. How-
ever, the increasing performance of each individual low-end microprocessor, and the
possibility of interconnecting these processors to achieve large sustained performance is
facilitating the movement of those traditional vector applications to the low-end super-
computers. For that reason, our proposal of an ILP+DLP processor will deal especially
well with those kinds of applications.

Moreover, as general purpose microprocessors have continued to become more powerful,
they have been asked to perform increasingly complex tasks. In fact, the increasing
performance of general purpose microprocessors has not met the requirements of the
networking and telecommunications infrastructure industry due to several emerging
applications and trends. Example applications include the explosive growth of the
Internet, the emergence of new digital communications technologies, including digi-
tal cellular phones, IP-based telephony, fax and multimedia, and wireless messaging
[DD97] [LW97) [BE98]. A general trend in the industry is using programmable pro-
cessors to implement adaptative filters, modulators/demodulators, and other functions
previously only possible in hardware. These demanding new applications, along with
the continually increasing needs of the computing market, can be met with our proposal
of superscalar+vector architecture. We believe that, in the future, our proposal will be
a single chip solution to the highest level of processing performance while expanding
the processor’s capabilities to concurrently address high-bandwidth data processing and
the algorithmic intensive computations which are typically handled off-chip by other

devices, such as dedicated hardware, DSPs or custom ASICs.

Accordingly, our experiments on the ILP+DLP architecture will be carried out by
using these types of applications as our benchmark set. We have selected programs
from both, the numerical and multimedia fields in order to study the performance

answer of our proposal. Our set of benchmarks covers traditional vectorizable floating
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point applications plus the ever-growing number of computationally and bandwidth

intensive media tasks.

Finally, we would also like to mention a key topic in including vector instructions at
the instruction set architecture level: the compiler. In order to make use of a vector
functional unit, compilers must include vector compilation techniques that can expose
data level parallelism, so that programs can be vectorized. Therefore, compiler devel-
opers will have to make an effort to include these techniques, which in fact they are
currently making in order to take advantage of the sub-word level parallelism exploita-
tion. However, they can benefit from the large experience in vectorizing compilers at
the vector supercomputers level [AJ88] [Bos88] [Brag86] [Bud84] [DH] [SK86] [Smi9i]
[CTS96].

1.7 THESIS OVERVIEW

In this thesis we show that ILP and DLP can be merged in a single architecture to
execute numerical and multimedia applications at a performance level that can not be
achieved using either paradigm on its own. We propose a current generation superscalar
processor enhanced with a vector unit. The proposed architecture is backed with a new

cache hierarchy that includes a vector cache.

The first topic we deal with is a detailed analysis of the instruction level characteris-
tics of a set of numerical and multimedia applications. This study proves that vector
programs execute fewer basic blocks, instructions and operations than superscalar pro-
grams. Therefore, less aggressive fetch and decode units are needed, which can yield a

faster clocking of the datapath.

The analysis inside S-regions and D-regions shows that superscalar programs execute
many more basic blocks, instructions and operations inside D-regions than the vec-
tor programs. The analysis inside S-regions shows that the quality of the scalar code
generated by the superscalar compiler is higher. The solution to improve the quality

of the vector programs code consists in building a new set of hybrid benchmark pro-
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grams starting from the pure superscalar and vector programs. Each hybrid vector
program consists in the original S-regions from the scalar version plus the original D-
regions from the vector version. The hybrid vector programs execute fewer instructions
and operations than the pure vector programs while keeping almost the same vector

characteristics.

From these studies we state that, given the benefits of the vector ISA, it is worth
exploring the possibility of including a vector functional unit in a current superscalar

architecture. Therefore, we outline the design of an ILP+DLP architecture.

The next topic presents the performance results of our proposed superscalar architec-
ture with a vector unit (SSV), compared with a traditional superscalar (SS) processor.
On one hand, the study of scalability and potential performance of the SSV and SS
architectures with a perfect memory shows that the SSV architecture scales very well
as more memory and computing resources are added to the processor. Moreover, it
reaches higher values of parallelism than the SS architecture with a lower cost and

control complexity.

The analysis inside D-regions and S-regions also shows that the SSV architecture
achieves high values of parallelism inside D-regions. However, their contribution to
the overall performance is determined by the relative weight of D-regions in the whole
programs. As it is expected, the performance inside S-regions is better for the SS ar-
chitecture. The reason is that the superscalar core of the SSV architecture remains
constant along the different configurations, while, in the SS architecture, the core is

scaled adding more and more resources.

On the other hand, we also study the performance of the SSV proposal when a real
cache hierarchy is introduced. We study two different cache hierarchies, based on the
introduction of the vector cache. The two models differ on where the vector cache is
located, in the first or second cache level. As a first step, we study the cache hierarchy
efficiency of both models. This study shows that numerical programs make a higher

pressure on the main memory, and that the model with the vector cache in the second
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cache level reacts much better to this pressure with lower main memory traffic and

higher hit rates.

The study of the vector cache stall time reveals that this cache can spend a large
percentage of the total execution time stalled due to different reasons. The two main
reasons are full MSHR and WB entries. The other two reasons (coherence and cache
conflicts) contribute in a lower degree to that bottleneck.

The performance evaluation with a real memory shows again that numerical programs
are limited by the memory system, while multimedia programs are not. The study
inside regions presents that, for the SSV architecture, programs scale well inside D-

regions and behave constant inside S-regions.

As a general result, we conclude that the SSV architecture is a feasible architecture
from the performance point of view. It reaches better performance than a traditional SS
architecture, either with ideal or real memory systems, as the processor configuration is
scaled. It is a good choice for multimedia programs and it achieves really good results

for numerical programs.

However, these results can still be improved by tuning the memory hierarchy. In-
creasing the memory non-blocking mechanisms in the SSV architecture diminishes the
negative effect of the vector cache stall due to the filling up of the MSHR and WB struc-
tures. The performance improvements obtained with this tuning reaches up to 37% for
128-element vector registers. Adding an extra port for scalar accesses is a profitable
enhancement for running an heterogeneous set of programs, that can even include low
vectorization programs, in the SSV, as it provides with some additional flexibility in
accessing memory. Increasing the main memory bandwidth in the SSV architecture

provides with increasing performance in those programs with large memory traffic.

We also study the effect in performance of future evolutions in microprocessor integra-
tion, which will motivate changes in the cache hierarchy design, including increasing its
size, associativity and latency, while the memory bandwidth is also increased. Programs

that are constrained by the memory bandwidth improve their performance. Meanwhile,
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the rest of the programs suffers a performance loss because of the prevail of the higher

latency over the reduced main memory traflic.

Finally we study two additional cache hierarchies aimed at dealing with the strided
vector memory accesses. Results show that these new designs, although more expen-
sive, can deliver improvements over the base case that range between 3% and 18%.
Although these cache designs are complex and costly to implement, the large perfor-
mance improvements obtained pay off the effort, so that as technology evolves they can

actually be implemented.

1.7.1 Structure of this work

This work is organized as follows:

»  Chapter 2 presents our working environment, including our tracing and simulation
tools, the set of benchmarks, as well as the performance metric that we will use in

the following chapters.

»  Chapter 3 presents a detailed instruction level characterization of the benchmark
programs, including distribution of instructions, operations, data types, vector char-
acterization and analysis by regions. We finally introduce the hybrid version of the
benchmarks used in the following chapters.

= Chapter 4 describes the superscalar+vector architecture (SSV architecture) that we
propose. After describing the general datapath we focus on the new cache hierarchy

proposed in this thesis, which includes the introduction of the new vector cache.

= Chapter 5 makes a scalability study for both, the traditional superscalar and the
superscalar+vector architectures. The study is carried out, first, with an ideal
memory system, and second with a real cache hierarchy. In the latter case we
also make a cache efficiency study, by exploring hit/miss rate and traffic with
the main memory, and a vector cache stall time time. These studies identify the
memory bottlenecks that prevent the SSV architecture from attaining even higher

performance.
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»  Chapter 6 performs some changes in the proposed memory hierarchy aimed at im-
proving performance. Several changes to the architecture presented are proposed:
enhancing the memory non-blocking mechanisms, improving memory bandwidth
and adding a memory port for scalar accesses. We also study the effect in perfor-
mance of future microprocessor integration. Finally, we introduce two additional

memory systems aimed at attacking the problem of strided vector memory accesses.

»  Finally chapter 7 summarizes the contributions of this thesis and presents open

areas for future research.
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2

TRACING AND SIMULATION TOOLS,
BENCHMARKS AND METRICS

Summary

This chapter presents the different tools that have been used for carrying out this the-
sis. We describe the scalar and vector tracing tools, which have been used for extracting
scalar and vector program traces, respectively. We also describe the simulation tools nec-
essary to study the performance characteristics of programs running on an ILP+DLP
architecture. We briefly present the vector and scalar machines from which traces have
been extracted, including the functionality of both machines and the software tools nec-
essary to gather traces of programs running on them. We introduce our benchmarks
and discuss the necessity of carrying out some modifications in order to study different
vector lengths as well as the benchmarks behavior inside regions. We analyze the quality
of the scalar code generated by the vector compiler and we propose a way of improving
it by creating hybrid benchmarks. Finally, we define the performance measure that will

be used in the following chapters.
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2.1 INTRODUCTION

This study carries out the analysis of an ILP+DLP architecture executing numerical
and multimedia applications. We have used trace-driven simulation as the base of our
experimentation methodology. The proposal presented in this work has been evaluated
by comparing the performance of the trace driven simulations of the ILP architecture
against the performance of the ILP+DLP architecture.

2.2 TRACING AND SIMULATION TOOLS

As already mentioned, we have used simulation as the base of our experimentation
methodology. The advantages of trace driven simulation are the ease of reproduction
of results and the highly controlled environment in which we execute the experiments.
Since the trace is fixed, the results of different simulation runs can not be altered or
influenced by external factors, such as machine load or memory conflicts.

We will now briefly describe the software tools that we have used in our studies. The
first tool, a tracing tool, has been targeted to a Convex C4 [Con93] and is able to gather
static traces of binaries running in vector mode on a single processor of a Convex C4
computer. The second tool is also a tracing tool. It has been used to gather dynamic
traces of scalar binaries running on an Alpha 21264 processor [Gie97] [Kes99]. The
third tool is a general simulator, which is able to be parameterized as the ILP4+DLP
architecture under study. This simulator can also be configured to act as an ILP

Processor.

2.2.1 Vector tracing tool: Dixie-c4

Dixie-c4 is a pixie-like tool adapted from the original Dixie tool [EM94] in order to deal
with Convex C4 [Con93] binaries, rather than Convex C34 [Con92] ones. The Convex
C4 architecture has more vector registers, which eliminates the large amounts of spill

code of the C34 code. It also has more vector facilities, like the vector first execution

anaria. Biblioteca Digital, 2004

ersidad de Las Palmas de Gran C:

© Unive



Tracing and Simulation Tools, Benchmarks and Metrics 35

and the addition of new vector instructions, and an improved compiler aimed at better

vectorizing programs.

Dixie-c4 is able to produce a static trace of basic blocks executed as well as a trace
of the values contained in the vector length (VL) register. The ability to trace the
values of the vector length register is critical for accurate detailed simulation of the
program execution, because each vector instruction can execute potentially with a dif-
ferent vector length. Thus, our measurements do not suffer from the problems reported
in [VSH91] [RR94]. It is also important to note that Dixie-c4 instruments the output of
a commercial compiler without requiring any special properties in the binary, and that
this tracing method gives a high precision in all of our measurements. Traces gathered
using Dixie-c4 are physically stored in different files in disk. Static traces have some
advantages over dynamic traces. First, by having traces stored in disk we do not de-
pend on the Convex C4 being operative in order to be able to execute simulations. We
just gather the traces, move them to another machine and execute the simulator, which
opens the different trace files and consumes the trace according to the way the binary
program dictates. This is an important characteristic, since the Convex C4 machine is
nowadays obsolete. This machine is no longer supported by HP, which did not provide
any software patch for the so called “2000 effect”. However, the drawback of static
traces comes from their size. Current SPEC benchmarks [SPE] generate trace files that
require several tens of gigabytes on a hard disk. Given that we need around ten pro-
grams, we found that we need more than seven hundred gigabytes, just for a version of
the programs. As we will see later, our studies require to have different versions of each
benchmark program, which means several traces for each program, thus demanding a
huge amount of hard disk space. In our case, this factor was a key restriction in the

election of the benchmark programs.

The tracing procedure is illustrated in figure 2.1: the benchmark programs are com-
piled on a Convex C4 machine using the Fortran or C compiler at optimization level
-02, which enables vectorization. Then, the executables are processed using Dixie-c4,
which decomposes the executables into basic blocks and instruments the basic blocks to
produce six types of traces: a basic block trace (BB trace), a trace of all values set into
the vector length, vector stride, vector first and vector mask registers (VL trace, VS
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DIXIE c4

JINKS+

Performance
Results

Figure 2.1 The instrumentation and simulation processes. Step (1) consists in pro-
cessing a program’s executable and generating an instrumented version of it. In step
(2) we run the modified executable on the Convex C4 machine and we obtain a set of
traces that fully describe the execution of the program. In step (3) this set of traces
is fed into the simulator, which will do a cycle-by-cycle execution of the program and
will gather performance results.

trace, VF trace and VM trace), and a trace of all memory references (actually, a trace
of the base address of all memory references) (Mem trace). Dixie-c4 instruments all
basic blocks in a program, including all library code. This is especially imp.ortant since
a number of fortran intrinsic routines, such as SIN, COS or EXP, are translated by the
compiler into library calls. These library routines are highly vectorized and tuned to
the underlying architecture and can represent a high fraction of all vector operations
executed by the program. Thus, it is essential to capture their behavior in order to

accurately model the execution time of the programs.

Once the executables have been processed by Dixie-c4, the modified executables are
run on the Convex C4 machine. These runs produce the set of traces that accurately

represent the execution of the programs.
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2.2.2 Scalar tracing tool: Atom

Atom is the Compaq tracing tool [SE94]. It provides a diverse set of tools ranging from
basic block counting up to cache modeling. It provides the common infrastructure in all
code-instrumenting tools, leaving to the user the task of specifying the tool details. The
user indicates the points in the application program to be instrumented, the procedure
calls to be made, and the arguments to be passed. Starting from these specifications
it generates dynamic traces, which means that the trace items are directly passed
from the benchmark program to the simulator without using files on disk. While this
characteristic eliminates the limitation of the trace length, it is indispensable to run

both, the instrumented program and the simulator, on a Compaq computer.

9.2.3 Parameterizable Simulator: Jinks+

Jinks+ is a parameterizable simulator developed as an improvement of the previous
Jinks vector simulator [Esp95]. It has been improved with a superscalar core which
includes a reorder buffer, dynamic scheduling, out-of-order execution and branch pre-
diction. A variety of accurate memory system simulation modules has been added,
which allows simulating both, a memory system based on a multi-level cache hierarchy,

and also a typical cache-less vector memory system.

The traces gathered using either Dixie-c4 or Atom are then fed to Jinks+ (see figure 2.1).
Jinks+ closely models the behavior of a program execution on both, the ILP and
ILP+DLP architectures. It does cycle-level simulation of the architectures and keeps
detailed information about resource usage, number of hazards produced, stop issue
conditions, etc. By simulating both architectures with the same tool we guarantee a

comparison between them which is more fair than if different simulators were used.
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2.3 CONVEX C4 VECTOR ARCHITECTURE

We have gathered vector traces from a Convex C4 machine [Con93]). The Convex C4
vector architecture is a register-register architecture. It consists of a scalar unit and a

vector unit connected through a single memory port to an interleaved memory system.

The architecture defines three different sets of registers: A, S and V. Registers of type
A, the address registers, are used to generate the base address of all memory references.
Thus, all types of load/store instructions use at least one A-register in their addressing
modes. There are 32 32-bit address registers (A0 through A31). The scalar registers,
S registers, are 64 bits wide and are used to carry out all integer and floating point
computations in scalar mode. Also, S registers are used in vector instructions whenever
a vector is operated with a scalar value. There are 28 different S registers (S0 through
S27). The vector registers, V registers, hold 128 64-bit words and are used for all types
of vector computations; both integer and floating point. There are 16 vector registers
(VO through V15).

There are four different instruction formats. Two of them define 32-bit instructions,
and the others define 64-bit instructions. All the instructions, except branches, have
three operands. Two of them specify the source operands and the other specifies the
destination. The source operands are usually registers, but one of them can be replaced

by an immediate operand.

The scalar unit executes all instructions that involve scalar registers (A and S registers).
There is a 32 KB data cache that only holds scalar data, which is kept coherent with
the vector reference stream by serializing all memory references (scalar and vector)
through a single port. Vector stores invalidate the necessary lines in the data cache so
that subsequent scalar memory accesses are forced to reach main memory to get the

most up to date value. Vector loads never read the scalar cache.

The vector unit consists of three computation units and shares the memory accessing
unit with the scalar part. One of the units is a general purpose arithmetic unit capable

of executing all vector instructions. The other two are restricted functional units that
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execute all vector instructions except multiplication, division, square root, masking,

merging, compress and expand instructions. All the functional units are fully pipelined.

Vector operations are performed under control of the vector length register. This 8-bit
scalar register indicates the desired length, from 0 to 128 elements, of vector instruc-
tions. The vector first register also controls the execution of the vector instructions
and indicates the first element of the vector register on which to execute the operation.
The use of this register improves the reuse of the data in the vector registers. Vector
memory operations use a third control register, the vector stride register. This register
indicates the stride, in bytes, that separates the elements that must be fetched from

memory. Finally, the vector mask register is a 128-bit wide register that allows all

vector operations to be done under the control of a mask. Each bit in the vector mask
register determines if individual operations of a vector instruction, already executed,

are valid according to a condition, or not.

The sixteen vector registers are organized as four banks of four registers each. The
connection to the functional units is carried out through a restricted crossbar, as each
bank has three read ports and one write port. The compiler is responsible for scheduling

vector instructions and allocating vector registers so that no port conflicts arise.

The Convex C4 that we have used for gathering traces works at 140 MHZ. It runs the
ConvexOS operating system, Release V11.1. We have used the C and fortran compilers
from Convex, as the set of benchmarks are written in both languages. We used the
Convex fortran compiler, version 9.1, and the Convex C compiler, version 6.1. All
codes have been compiled using the -O2 flag, which includes all scalar optimizations
plus vectorization and vectorizing optimizations. The next optimization level implied
parallelization and thus, was not used. All binaries were fully linked, that is, no shared

libraries where used.

The quality of the vector code is good, in general, and the vectorizer performs relatively
well on most vectorizable loops. The major limitations, as we will see later, come from
the quality of the scalar code, as it is not as good quality as the code generated by the

scalar compiler.
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All these characteristics of the Convex C4 computer, and the in-order execution affect
the instruction scheduling that the compiler carries out. However, the execution of the
program traces is not handicapped thanks to the out-of-order execution of the simulated

machines.

2.4 ALPHA EV6 SCALAR ARCHITECTURE

We have gathered scalar traces from an Alpha 21264 processor [Gie97] [Kes99]. Alpha
is a 64-bit load/store RISC architecture, designed with particular emphasis on clock

speed, multiple instruction issue, out-of-order execution and multiple processors.

Each Alpha 21264 processor has a set of registers that hold the current processor state.
There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads as zero,
and writes to R31 are ignored. When R31 is specified as a register source operand, a
zero-valued operand is supplied. There are 32 floating-point registers (F0 through F31),
each 64 bits wide. When F31 is specified as a register source operand, a zero-valued
operand is supplied. A floating-point instruction that operates on single-precision data
reads all bits of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits of the destination floating-point register.

Alpha instructions are very simple. All instructions are 32 bits long. Memory is accessed
via 64-bit virtual byte addresses, using little-endian byte numbering convention. Virtual
addresses, as seen by the program, are translated into physical memory addresses by the
memory management mechanism. The basic addressable unit in the Alpha architecture
is the 8-bit byte. Memory operations are either loads or stores. All data manipulation

is done between registers.

The Alpha architecture facilitates pipelining multiple instances of the same operations
because there are no special registers and no condition codes. The instructions interact
with each other only by one instruction writing a register or memory and another
instruction reading from the same place.
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There are five basic Alpha instruction formats that contain zero, one, two or three regis-
ter fields. These are: Memory, Branch, Operate, Floating-Point Operate and PALcode.
The Memory format is used to transfer data between registers and memory, to load
an effective address and for subroutine jumps. The Branch format is used for condi-
tional branch instructions and for PC-relative subroutine jumps. The Operate format
is used for instructions that perform integer register-to-register operations. This format
allows the specification of one destination operand and two source operands. One of
the sources can be a literal constant. The Floating-point Operate format is used for
instructions that perform floating-point register to floating-point register operations.
This format also allows the specification of one destination and two source operands.
The Privileged Architecture Library (PALcode) format is used to specify extended pro-
cessor functions. The PALcode is a set of subroutines that are specific to each particular
Alpha operating system implementation. These subroutines provide operating-system

primitives for context switching, interrupts, exceptions and memory management.

The implementations of this architecture execute instructions out of order. The pro-
cessor is able to fetch, decode, rename and issue to execute up to four instructions in
each cycle. There are four integer and two floating point execution units to which four
instructions are issued in each cycle. The 64 KB L1 data cache accepts any combination
of two loads/stores in each cycle. In total, up to 80 in-flight instructions plus 32 loads

plus 32 stores can be executing at any moment.

For our tracing experiments, we have used a Compaq Alphaserver GS-160 with 16 Al-
pha 21264 processors running at 731 Mhz, 8Gb of main memory, and 108 GB of disk
capacity. The operating system was Digital UNIX OSF1 V4.0 (Rev.1091). We used
both, the C and fortran compilers, since the set of benchmarks are written in these two
high level languages. We have used the C compiler from DEC, version 5.8-015, and the
Compaq Fortran compiler, version 5.3-915. All programs were compiled using the -O4
-tune ev6 optimization flags which include local optimizations, recognition of common
subexpressions, integer multiplication and division expansion using shifts, code motion,
strength reduction and test replacement, split lifetime analysis, code scheduling, inlin-
ing of arithmetic statement functions, global optimizations that improve speed, loop

unrolling, code replication to eliminate branches, inline expansion of small procedures
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and specific tuning for the ev6 implementation. All these optimizations have yielded a

high quality code.

2.5 BENCHMARK PROGRAMS

A very important choice in this study is the set of programs to be analyzed using
simulation. We have chosen numerical and multimedia applications as the source of
our benchmarks because these types of applications have both, instruction and data
level parallelism that can be exploited in our ILP+DLP architecture. Numerical pro-
grams have been run traditionally on vector machines. They are characterized by being
dominated by do-loop style computations that consist of several numerical expressions.
Multimedia programs, as a representative of the recently appeared embedded and desk-
top applications, have also exposed data level parallelism, and for this reason they have
also been used as benchmark programs in the recent sub-word level SIMD extensions
[PW96] [NJ99] [Koh95] [MIPIT7].

The selected set of programs guarantee a wide range of behaviors as it includes programs

from low to high vectorization degrees, as we will see in section 3.7.

2.5.1 Nurﬁerical Benchmarks

Due to the limitation on the size of the program traces, we took the Perfect Club
[BCK*89] [CKPK90] and the Specfp92 [CKDK91] [SPE] programs. The Perfect Club
codes were a joint effort of the CSRD at the University of Illinois, several supercom-
puting vendors, several universities and third party software houses, to put together a
set of codes representative of the workloads of large machines, including vector super-
computers. Thus, they represent a good target for our study. Their main drawback
is that, in order to make them manageable, their data sets were somewhat trimmed
down. However, it is precisely this characteristic that make them a good option for
us, as their trace size becomes affordable in our context. The selected programs from
Perfect Club are:
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= Bdna: The Bdna code performs molecular dynamics simulations of biomolecules
in water. It is aimed at understanding the hydration, structure and dynamics of

nucleic acids, and the role of water in the operation of biological systems.

m  Arc2d: This program solves the Euler equations in generalized curvilinear coordi-
nates using an implicit finite difference algorithm with approximated factorization

and a diagonalization of the implicit operators.

The SPEC benchmarks [SPE] are today in widespread use for evaluating the perfor-
mance of computers. They are not specifically targeted at vector machines, and they
contain a fair amount of applications belonging to the scientific and engineering do-
mains that presents data level parallelism. At the time that this study was started
the specfp95 had been recently introduced. However, we decided to use the previous
specfp92 because of the large size of the traces of the specfp95 benchmarks. We selected
the following benchmarks from specfp92:

s Swim256: It is a Fortran scientific benchmark with single precision floating point
arithmetic. The program solves the system of shallow water equations using finite
difference approximations on a 513 x 513 grid. It is amenable to vectorization and

decomposition on systems that provide such capabilities.

s Hydro2d: This is a vectorizable Fortran program with double precision floating
point arithmetics. In this application program, from the area of astrophysics, hy-

drodynamical Navier Stokes equations are solved to compute galactical jets.

«  Tomcatv: Tomcatv is a vectorizable double precision floating point Fortran bench-

mark. It is a mesh generation program.

s Nasa7 This benchmark is a group of seven kernels that carry out the following
functions:
— 2D Fast Fourier Transform,
— Vectorized block tri-diagonal solver in the J direction for K constant planes,
— Cholesky decomposition/substitution,

— Inversion of 3 pentadiagonal matrices simultaneously,

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



44 : CHAPTER 2

— Computation of solid-related arrays,
— Gauss elimination of the matrix of wall influence coefficients,

— Emission of new vortices to satisfy boundary condition, computation of pres-

sure, forces, etc, and 4-way unrolled matrix multiply.

2.5.2 Multimedia Benchmarks

We have selected multimedia programs from the Mediabench suite [LPMS97]. This
suite represents the workload of emerging multimedia and communications systems. It
is composed of complete applications coded in high-level languages. All of the appli-
cations are publicly available, making the suite available to a wider user community.
Mediabench 1.0 contains 19 applications selected from available image processing, com-
munications and DSP applications. From this set we have selected the following pro-

grams:

m  Jpeg Encode: JPEG is a standardized compression method for full-color and gray-
scale images. JPEG is lossy, meaning that the output image is not exactly identical

to the input image. Jpeg Encode does image compression.

m  Jpeg Decode: This application is also derived from the JPEG source code, and it

does image decompression.

m  FEpic: An experimental image compression utility. The compression algorithms are
based on a bi-orthogonal critically sampled dyadic wavelet decomposition and a
combined run-length/Huffman entropy coder. The filters have been designed to

allow extremely fast decoding without floating-point hardware. .

s Gsm FEncode: European GSM 06.10 provisional standard for full-rate speech transcod-
ing, prI-ETS 300 036, which uses residual pulse excitation/long term prediction
coding at 13 kbit/s. GSM 06.10 compresses frames of 160 13-bit samples (8 kHz
sampling rate, i.e. a frame rate of 50 Hz) into 260 bits.

In summary, we selected the following benchmarks:
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s  From the Perfect Club: Bdna and Arc2d
s  From the Specfp92: Swim256, Hydro2d, Nasa7 and Tomcatv

s From the Mediabench: Jpeg Encode, Jpeg Decode, Epic and Gsm Encode

These ten programs will be used throughout the rest of this thesis to evaluate the
performance of the proposed ILP+DLP architecture as well as the enhancements to

the basic proposal.

2.6 BENCHMARK MODIFICATIONS

In order to make the study of the ILP+DLP architecture, we have had to make some
changes in the original program benchmarks. These changes consist in (1) some mod-
ifications in the multimedia programs in order to get them to vectorize, (2) manual

stripmining of all programs, and (3) separation of 5- and D-regions.

2.6.1 Modifying Multimedia benchmarks for vectorization

Although multimedia programs have data level parallelism to be exploited by our
ILP+DLP architecture, in some cases it was not exposed in such a way that the com-
piler could generate vector code. In those cases, some changes have been made to the

multimedia benchmarks in order to get them to vectorize.

Epic has been the most heavily modified program, since we have applied from simple
loop interchange techniques to a major rewrite of the idct algorithm following the
standard specifications [GBL*98]. In Gsm Encode, the problem was that the compiler
could not vectorize some pieces of code because some data structures involved were not
local to the function code, so the compiler could not do some assumptions about them.
In that case we privatizated those data structures, so the compiler could vectorize those

pieces of code. Jpeg Encode and Jpeg Decode were not modified.
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2.6.2 Manual Stripmining

The evaluation of the proposed ILP+DLP architecture includes a study about the size
of the Vector Register File to be included. One of the factors that determines the size
of the Vector Register File is the length of each vector register. Therefore, we need
to generate vector code that effectively uses different vector lengths. The Convex C4
compiler only generates code for 128-element vector registers, as this is the size of the
vector registers in that machine. Thus, we had to perform a manual stripmining of the

vector loops for the different vector lengths that we wanted to test.

Moreover, this manual stripmining has to be done efficiently, that is, few extra oper-
ations should be added to each loop because of this code transformations. Figure 2.2
presents (a) an original loop from the Swim256 benchmark, and (b) the stripmined ver-
sion of the same loop. The variable STRIP_LENGTH must be set to the value of the vector
length to which we want to perform the stripmine. For example, in order to obtain
a version that uses 16-element vector registers we must set STRIP_LENGTH to 16. We
can see in figure 2.2 that the JCHECK loop has been transformed into two nested loops
(STRIP and J_STRIP) plus an additional loop (J_STRIP). The two nested loops carry out
NUM_STRIPS iterations, STRIP_LENGTH times. The compiler will vectorize the J_STRIP
loop, thus generating vector instructions with vector length equal to STRIP_LENGTH, as
we needed. The final J_STRIP loop carries out the final iterations when MNMIN is not
multiple from STRIP_LENGTH. In that case, the compiler will vectorize the final loop,
using a vector length value shorter than STRIP_LENGTH.

This manual stripmining adds some extra instructions because of the calculations of
NUM_STRIPS and MODULO. It also adds the STRIP and J_STRIP variables, and their cal-
culations. However, it allows experimenting with different vector lengths in a machine

with a fixed vector length value.

The stripmining process is carried out for all the benchmark programs, and for the
different vector lengths that we want to test. After compiling the different versions
we have to gather vector traces for all of them, thus obtaining different versions of

the program traces, depending on the vector length used. In our case, we will use

© Universidad de Las Palmas de Gran Canatia. Biblioteca Digital, 2004



Tracing and Simulation Tools, Benchmarks and Metrics

DO ICHECK = 1, MNMIN
DO JCHECK = 1, MNMIN

PCHECK = PCHECK + ABS(PNEW(ICHECK, JCHECK))
UCHECK = UCHECK + ABS(UNEW(ICHECK, JCHECK))
VCHECK = VCHECK + ABS(VNEW(ICHECK, JCHECK))
ENDDO
ENDDO

(a)

NUM_STRIPS = MNMIN/STRIP_LENGTH
MODULO = MNMIN - NUM_STRIPS * STRIP_LENGTH
DO ICHECK = 1, MNMIN
JCHECK =1
DO STRIP = 1, NUM_STRIPS
DO J_STRIP = 1, STRIP_LENGTH

PCHECK = PCHECK + ABS(PNEW(ICHECK, JCHECK))
UCHECK = UCHECK + ABS(UNEW(ICHECK, JCHECK))
VCHECK = VCHECK + ABS(VNEW(ICHECK, JCHECK))
JCHECK = JCHECK + 1
ENDDO
ENDDO

DO J_STRIP = 1, MODULO ,
PCHECK + ABS(PNEW(ICHECK,JCHECK))

PCHECK =
UCHECK = UCHECK + ABS(UNEW(ICHECK,JCHECK))
VCHECK = VCHECK + ABS(VNEW(ICHECK,JCHECK))
JCHECK = JCHECK + 1
ENDDO
ENDDO

(b)

Figure 2.2 Source code of a loop (a), and the manual stripmined loop (b).
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16-element, 64-element and 128-element vector registers, thus requiring three different

vector traces for each program.

2.6.3 Slicing a Program into Regions

As stated in section 1.6, page 25, not all tasks can be expressed using vector instruc-
tions, and even inside a vectorizable program some parts will not be amenable to be
formulated in a vector form. Therefore, from the DLP point of view, a program has
two types of regions, data-parallel regions (D-regions) containing those zones that can
be expressed with vector instructions, and scalar regions (S-regions), whose contents
can not be expressed in vector form. A processor that exploits DLP will improve
performance in those regions that are amenable to be vectorized, that is, D-regions.
Therefore, in order to deeply analyze the behavior of the DLP elements of the processor,
and the potential performance that can be achieved with a ILP+DLP architecture, we
have separated S-regions and D-regions for each benchmark program. This separation

is carried out by performing the following steps:

= First, we compile the original benchmark program on the Convex C4 machine and

we obtain the compiler information about the loops that can be vectorized.

s Second, for each individual loop, we go to the source code and we put a dummy
marks at the beginning and at the end of the loop. These marks are routine calls

that do nothing, and do not affect the program behavior.

s Third, we compile again the modified program source, and we test that the compiler

vectorizes the same loops that were vectorized in the first step.

s Fourth, we check that the assembly code generated in the first and third steps are

equivalent, with the difference of two added routine calls (our marks).

»  Fifth, we find where the dummy routines are situated in the program address space,

in order to give this information to the simulator through an addresses file.

After this process has finished we have the same original programs, with the same

vectorized regions, but before/after each D-region we have a routine call that marks

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



Tracing and Simulation Tools, Benchmarks and Metrics 49

the change from a S-region to a D-regions, and from a D-region to a S-region. The
simulation carries out a separate accounting of instructions, operations, etc. inside S-
regions and inside D-regions. When the simulator starts a new simulation we are always
on a scalar region, so all the statistics collected in those instructions are accumulated for
S-regions. For each call instruction the simulator compares if the destination address
corresponds to the dummy routine (our mark). If that is the case, the simulator detects

a region change, so new statistic information is now accumulated for D-regions.

The statistics gathered in the frontier between two different regions are not easily
assigned to an S-region or a D-region because the processor carries out out-of-order
pipelined execution. In such a processor, the execution of the instructions belonging
to two adjacent regions is overlapped, thus requiring a compromise on how to make
the account properly. After evaluating different approaches, we found that the more
accurate way is to account inside a region all those instructions that were actually
executed inside that region. Therefore, in the final part of a region, when the initial
instructions of the following region enter the pipeline, it may happen that some of these
instructions finish their execution before those belonging to the previous region. This
may happen because of the out-or-order execution. However, as instructions graduate
in order, these instructions will remain ungraduated until the final instruction of the
previous region graduates. At that moment, we also look at the pending instructions,
and if they have finished their execution, we count those instructions as being executed
inside the previous region. All in all, this aspect is not that important since the total
number of overlapping operations between S-regions and D-regions, measured for every
program, is always below a 4% of the total number of operations executed by the

program.

2.7 THE QUALITY OF THE SCALAR CODE IN
VECTOR PROGRAMS

During the last years, research efforts in compilation techniques have promoted a sub-
stantial increase in the quality of the code generated by compilers. Those new compila-
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tion techniques, which have already been integrated in current compilers, have brought

out the generation of a more and more efficient code.

As a consequence, we expected the quality of the scalar code generated by the vector
compiler would be lower than that generated by the superscalar compiler, as was later
confirmed (see sections 3.9.2 and 3.9.3), since the vector compiler was developed for
a nowadays obsolete machine and can be considered as a quite rough compiler in the

scalar field.

In the following chapters we will present the results about the performance that the
proposed ILP+DLP architecture reaches. The performance metric is calculated by
using the number of operations and the number of cycles that the processor executes.
That means that the quality of the original code certainly influences the results used
to evaluate the proposed architecture. Moreover, given that some of the programs have
a low vectorization percentage, and according to Amdahl’'s Law, the larger the ratio
of scalar operations executed by the program, the larger the negative influence of a
low quality scalar code, and consequently, the lower the opportunity for a performance
improvement. Therefore, there is no doubt that this is a drawback in the original vector

programs that requires a smart solution.

The solution adopted to reach a set of programs with an acceptable scalar code consisted
in generating hybrid vector programs starting from the original superscalar and
vector programs. The hybrid version of each program is then built by merging the D-
regions generated by the vector compiler and the S-regions generated by the superscalar
compiler. In this way, the new version contains the best of both worlds, that is, it can
be vectorized and has a good quality scalar code. Of course, these programs can still
be improved as the scalar code inside D-regions was originally generated by the vector
compiler, but this would involve the development of a vectorizing compiler with current
scalar compilation techniques. That is, by no means, a trivial task and it is far beyond
the objective of this thesis. Moreover, the performance improvement obtained in return

for such an effort would be quite slight.
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Therefore, our hybrid vector benchmarks are a quite good approximation to real pro-
grams compiled using an hypothetical modern vectorizing compiler. Furthermore, if
our hybrid programs could be additionally improved, the results shown in this thesis
would in fact be a lower bound on the real performance that would be reached by using

programs compiled in a real, modern vectorizing compiler.

2.8 THE EIPC PERFORMANCE MEASURE

Comparing the execution of a scalar and a vector program in terms of instructions per
cycle (IPC) poses a significant problem. As it is widely known, to execute the same
code, a vector machine uses much fewer instructions than a scalar machine [QEV98D).
Therefore, using raw IPC as a performance measure would be meaningless. The solu-
tion consists in using a unique value of instructions for the SS and SSV performance
measures. The meaning is that the number of instructions represents the amount of
instructions needed to complete the program task. We keep this value constant for the
SS and SSV, so that the final behavior comes only from the difference in the total num-
ber of cycles needed to execute the programs in both architectures. We take the total
number of instructions executed in the SS architecture as the number of instructions
for calculating EIPC. Therefore, the Equivalent IPC (EIPC) metric for each simulation
of the SSV architecture is defined as:

Total SS instructions
PC = .
S5V BIPC Total SSV Cycles (2.1)

The intuitive meaning of EIPC is “how well a superscalar machine should perform in
order to match the performance of our proposed ILP+DLP architecture”. Note that
according to the previous equation the SS EIPC matches the SS IPC.

The performance study inside regions require the definition of a performance metric
inside S-regions and D-regions. Formally, performance results inside D-regions and S-
regions for the hybrid programs running in the ILP+DLP architecture are calculated

as follows:
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SS instr inside D-reg
SSV Cycles inside D-reg

SSV EIPC D-reg =

SS instr inside S-reg
SS Cycles inside S-reg

SSV EIPC S-reg =

Therefore, the overall SSV performance can also be calculated following the equation:

SS instr inside D-reg + SS instr inside S-reg

FIPC =
S5V ¢ SSV Cycles inside D-reg + SS Cycles inside S-reg

(2.4)

The same equations are applied to the SS architecture by replacing the SSV cycles by
SS cycles.

It is important to note that the EIPC metric is based in the relation between the total
number of instructions executed in the SS architecture and the total number of cycles
that the SSV execution lasts. Therefore, when we execute two different vector length
versions of the same programs, the increase in the total number of instructions is not
taken into account in the EIPC measure. Ounly the increase in the number of cycles is
considered, meaning that a lower EIPC will be produced. Therefore, the performance

behavior is made obvious.
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SCALAR AND VECTOR ISAS COMPARISON

Summary

This chapter studies the scalar and vector architectures from the instruction set point of
view. It presents data on the instruction level characteristics of the selected benchmarks
when compiled in both a superscalar and a vector platform. We also make an analysis
of the scalar and data-parallel regions (S- and D-regions) and introduce the ISA char-
acteristics of the hybrid versions of the benchmarks that will be used in the rest of this

thesis.

23
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3.1 INTRODUCTION

Architectures have traditionally been evaluated by using performance metrics, such as
elapsed time or number of instructions executed per cycle, on complete benchmark
programs. This type of metrics allows extracting interesting information about how
well the architecture is able to execute the program from the user’s point of view.
Although we will also analyze performance metrics in the following chapters, we will first
introduce a detailed analysis about the low level characteristics of programs compiled
on a superscalar processor as well as on a vector processor. There is a double purpose
in this study. On one side, we want to analyze the different nature of scalar and vector
instruction sets. Vector architectures have some characteristics that result in certain
advantages when instructions are executed. This will lead us to conclude that it is worth
exploring the possibility of including vector instructions (plus a vector functional unit)
in a current superscalar architecture. On the other side, this analysis allows a deep
knowledge about low level details of the benchmarks, and the performance deficiencies

detected using performance metrics can be better explained.

For example, given a vectorizable piece of code, a vector architecture generates a lower
number of instructions than a superscalar architecture. The reason is the higher se-
mantic level of the vector instructions, which implies that more than one operation
is carried out in each instruction. When this piece of code is executed in a super-
scalar processor, more instructions must be fetched and decoded in each cycle, and
a larger instruction window is needed. Only by knowing how many instructions the
superscalar and vector processors execute, can we analyze if these values are different
enough to conclude that the fetch and decode width or the instruction window depth,

are performance bottlenecks for a certain superscalar configuration.

This chapter will look at the low level characteristics of our set of benchmarks. In

particular, we are interested in the following topics:

= Benefits of a Vector ISA: It is a study about the characteristics of vector in-

struction sets that allow better instruction fetch bandwidth, memory system per-
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formance (in terms of both memory latency and memory bandwidth), and datapath

control.

= Basic Block, Instruction and Operation Counts and Data Types: These
are measures that support the previous topic and allow analyzing the differences in
terms of instructions and operations between both ISAs. It also looks at the data

types used by the programs.

= Vector Characterization: It analyzes the vectorization percentage of the differ-
ent programs as well as the distribution of vector lengths and vector strides, and

the vector mask and vector first executions.

s Influence of the Vector Length: This is an important feature because it allows
determining the length of the vector registers in the architecture we propose, as
it shows the evolution in total number of instructions, operations and processor-

memory traffic as the vector length decreases.

= Analysis by Regions: As stated in the previous chapter, we have separated scalar
and vector regions in our analysis in order to be able to identify the performance
behaviors in both zones. Scalar regions (S-regions) will perform the same in both
architectures, while data-parallel regions (D-regions) will be improved in the vector
programs. In this section, we measure the instruction level behaviors inside S- and

D-regions.

= Hybrid Benchmarks: The section introduces the hybrid versions of the programs
that will be used during the rest-of this thesis. Each hybrid benchmark is built
as a mixture of the original scalar and vector versions of each program. We will
use the best of both worlds in order to predict the behavior of future ILP+DLP

architectures running vectorizable numerical and multimedia codes.

3.2 BENEFITS OF VECTOR ISA

Exploiting data level parallelism has many advantages that can be classified in three

areas: instruction fetch bandwidth, memory system performance (latency and band-
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width), and datapath control. This section will outline the benefits of using a vector

instruction set in each of these areas.

Instruction fetch bandwidth. The main difference between a vector and a scalar
instruction is that the vector instruction has a higher semantic content in terms of
the operations specified. This semantic content also carries the notion of parallelism,
since each individual operation of a vector instruction is known to be independent of all
other operations of the same instruction. This difference results in a myriad of related
advantages [QEV98al. First, to perform a given task, a vector program executes many
fewer instructions than a scalar program, since the scalar program has to specify many
more address computations, loop counter increments and branch computations, which
are typically implicit in vector instructions (section 3.4 provides quantitative support
for this claim). As a direct consequence, the instruction fetch bandwidth required, the
pressure on the fetch engine and the negative impact of branches are all three reduced in
comparison to a scalar processor. Besides, a relatively simple control unit is enough to
dispatch a large number of operations in a single cycle, whereas a superscalar processor
devotes an always increasing part of its area to manage out-of-order execution and
multiple issue. This simple control, in turn, can potentially yield a faster clocking of
the whole datapath.

Memory system performance. Due to the ever increasing gap between memory
and cpu speed, current superscalar micros need increasingly large caches to keep up
performance. Nonetheless, despite out-of-order execution, non-blocking caches and
prefetching, superscalar micros do not make an efficient use of their memory hierarchies.
The main reason for this inefficient use comes from the inherently predictive model
embedded in cache designs. Whenever a line is brought from the next level in the
memory hierarchy, we do not know whether all data will be needed or not. Moreover,
it is very uncommon for superscalar machines to sustain the full bandwidth that their
first level caches can potentially deliver. Since load/store instructions are mixed with
computation and setup code, dependencies and resource constraints prevent a memory

operation from being launched every cycle.
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In contrast, in the vector style of accessing memory every single data item requested
by the processor is actually needed. There is no implicit prefetching due to lines.
Moreover, the information on the pattern used to access memory is conveyed to the
hardware through the stride information and it can be used to improve memory system
performance [VLL*92] [VLPA95] [PVAL95].

» Memory Latency: When it comes to memory latency, a vector memory instruc-
tion can amortize long memory latencies over many different elements. By using
some ILP techniques coupled with a vector engine, up to 100 cycles of main memory

latency can be tolerated with a very small performance degradation [Esp97].

=  Memory Bandwidth: Regarding memory bandwidth, a vector machine can make
a much more effective usage of whatever amount of bandwidth it is provided with.
While a superscalar processor requires extra issue slots and decode hardware to
exploit more ports to the first level cache, a vector machine can request several
data items with a single memory address. For example, when doing a stride-1
vector memory access, a vector machine need not send every single address to the
memory system. Simply sending every N** address, a bandwidth of N words per
cycle can be achieved [CEV98].

Datapath Control. In order to scale current superscalar performance up to, say,
twenty instructions per cycle, an inordinate amount of effort is needed. The dispatch
window and reorder buffers required for such machine are very complex. The wakeup
and select logic grows quadratically with the number of entries, so the larger the window
the more difficult it is to build such an engine [PJS97]. If superscalars with 4-wide dis-
patch logic barely sustain 1 instruction per cycle, a superscalar machine that sustained

say 20 operations per cycle seems not feasible.

On the other hand, the fact that the individual operations in a single vector instruction
are independent allows a more efficient execution: once a vector instruction is issued to
a functional unit, it will use it with effective work for many cycles. For this reason, a
vector engine can be easily scaled to higher levels of parallelism by simply replicating

the functional units and adding wider paths from the vector registers to the functional
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[ Program [ Vector ISA [ Scalar ISA |
Swim?256 2.59 6.75
Hydro2d 11.18 263.25
Nasa7 16.85 24.18
Tomcatv 19.95 19.91
Bdna 41.81 33.71
Arc2d 4.56 25.83
Jpeg Decode 6.25 8.51
Epic 2.92 2.00
Jpeg Encode 11.67 29.69
Gsm Encode 15.21 28.13

Table 3.1 Total number of dynamic basic blocks executed in the vector and scalar
machines. Both columns are in millions.

units. All this without increasing at all the complexity or the pressure on the decode
unit. The semantic contents of the vector instructions already include the notion of

parallel operations.-

It is important to note that to be able to make use of a vector instruction, compilers
must include vector compilation techniques that can expose data level parallelism, so
that programs can be vectorized. However, due to the great efforts that have been
made for vector supercomputers and their compilers [Wol90] [ZC91}, the field of vector

compilation has reached maturity and superscalar compilers can take advantage of this.

3.3 BASIC BLOCK DISTRIBUTION

Table 3.1 presents the total number of basic blocks executed in the superscalar and
vector machines for the set of benchmarks. The interesting aspect of this table is the
total number of basic blocks executed in the superscalar machine when compared to
the same value in the vector machine. Scalar programs execute a larger number of
basic blocks for almost all programs. One of the reasons is the predicated execution
that the vector processor carries out through the vector mask execution, as we will
discuss in a later section. The other reason, which is more important, is that the use
of vector instructions allows specifying multiple operations on independent data, thus

reducing the number of loop iterations. For example, given the loop in figure 3.1 (a),
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which makes an operation over the 1024 elements of two vector data structures, let us
compile it on a superscalar and on a vector platform. In the superscalar platform, see
3.1 (b), it is necessary to initialize a loop counter to 1024 that will then be decremented
by 1 in each loop iteration, until it reaches 0. The superscalar machine would need
1024 x 3 index increments, 1024 loop counter decrements and 1024 conditional branches.
Executing the same loop in a vector platform with vector length 128 would require eight
loop iterations, see figure 3.1 (c). Each iteration would execute four vector instructions
(load, load, add and store) using vector length 128, three index increment instructions,
one loop counter decrement instruction and one conditional branch instruction. The
total number of index increments would be 8 x 3 = 24, as well as 8 loop counter
decrements and 8 conditional branches. In short, the superscalar platform executes the

basic block of this loop 1024 times while the vector platform executes it only 8 times.

The example shown in figure 3.1 is rather trivial. In a real case, the number of iterations
is not likely to be an exact multiple of the vector length. In that case, the compiler
must introduce certain additional basic blocks that are used to calculate how many
iterations must be performed, and they increase the total number of basic blocks that
are executed for this loop. In the example above, if the number of loop iterations were
1028, the vector processor would execute eight iterations using vector length 128 and

one iteration using vector length 4.

Although the number of basic blocks executed is an interesting measure, it does not
provide much information on its own. In order to acquire a more accurate knowledge
of the computational load of the benchmark programs, it is necessary to measure how
many instructions are included in each basic block. The following sections present the
number of instructions and operations executed by each program, which allows a more

detailed analysis of the scalar and vector instruction sets.

3.4 INSTRUCTION BREAKDOWN

As already mentioned, vector instructions have a higher semantic content in terms of -

the operations specified. The result is that, to perform a given task, a vector program
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ENDDO

DO I =1,
c(D) =

1024
A(I) + B(I)

(a)

CHAPTER 3

loop:

mov #1024 -> 5

1d r6,0x40(r2)
1d r7,0x60(r3)
add r6,r7,r8
st r8,0x80(r4)
add r2,#4,r2
add r3,#4,r3
add r4,#4,r4
sub rb5,#1,rb5
bgt r5,lo0p

loop:

mov #8 -> rb
mov #128 -> vl

vld v6,0x40(r2)
vld v7,0x60(r3)
vadd v6,v7,v8
vst v8,0x80(r4)
add r2,#512,r2
add r3,#512,r3
add r4,#512,r4
sub r5,#128,r5
bgt r5,loop

(b)

(c)

Figure 3.1 Source code of a basic loop (a), and assembler pseudo-code of loop com-
piled in a superscalar platform (b) and in a vector platform (c).

executes many fewer instructions than a scalar program, since the scalar program has to

specify more address calculations, loop counter increments and branch computations,

which are typically implicit in vector instructions. The net effect of vector instructions

is that, in order to specify all the computations required for a certain program, much

fewer instructions are needed.

Table 3.2 presents the total number of instructions executed in the superscalar ISA and

in the vector ISA for the ten benchmark programs, in millions. Columns 2 and 3 contain

the total number of instructions executed in the superscalar and vector platforms,

respectively. Columns 4 and 5 are the breakdown of column 3 into scalar instructions
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Scalar ISA Vector ISA
Program Total Total || Scalar [ Vector
Swim256 9438.59 176.15 101.31 74.84
Hydro2d 4671.75 215.70 178.16 37.54
Nasa7 5542.03 || 1310.92 || 1253.21 57.71
Tomcatv 897.66 152.28 145.45 6.83
Bdna 1628.97 504.60 497.41 7.19
Arc2d 4905.61 140.70 101.13 39.57
Jpeg Decode 154.00 52.75 52.19 0.55
Epic 35.58 16.89 15.89 0.99
Jpeg Encode 325.02 90.96 80.48 10.47
Gsm Encode 669.24 102.61 101.77 0.83

Table 8.2 Total number of instructions executed by each program in the scalar ISA
and in the vector ISA. For the vector ISA the instructions are also classified into scalar
and vector. All columns are in millions.

and vector instructions. As observed, the differences between columns 2 and 3 are huge.
The scalar versions of the programs execute from 2 up to 53 times more instructions

than the vector versions.

Regarding the breakdown into scalar and vector instructions in the vector architecture,
although the vector instructions of the programs carry out most of the computations
(as we will see in the following sections), they execute very few instructions. Obvi-
ously, the results depend on the vectorization percentage of each program. Although
several compiler optimizations (loop unrolling, for example) can be used to lower the
overhead of typical loop control instructions in superscalar code, vector instructions

are inherently more expressive.

Having vector instructions allows a loop to do a task in fewer iterations. This implies
fewer computations for address calculations and loop control, as well as less instructions
dispatched to execute the loop body itself. As already discussed in section 3.2, the
direct consequence of executing less instructions is the reduction of the instruction
fetch bandwidth required, the pressure on the fetch engine and the negative impact of

branches, as well as a simpler control unit.

In tables 3.3, 3.4 and 3.5, we have included the basic instruction distribution for the ten

benchmark programs. For the vector programs, we have classified all the instructions
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Scalar Instructions

Program Add [ Mul [ Ld [ St [ Control || Total

Swim256 84.76 | 0.03 3.60 5.08 7.82 101.31
Hydro2d 105.09 | 0.92 | 32.27 | 19.38 20.47 178.16
Nasa7 634.43 { 92.07 | 311.67 | 110.16 | 104.84 || 1253.21
Tomcatv 11044 | 0.20 | 13.99 0.57 20.23 145.45
Bdna 264.55 | 48.49 | 101.65 | 34.68 40.81 497.41
Arc2d 66.18 | 0.55 | 2255 4.59 7.24 101.13
Jpeg Decode 30.51 | 2.60 9.61 4.46 4.99 52.19
Epic 7.91 0.36 3.24 1.94 2.43 15.89
Jpeg Encode 4510 | 0.01 9.61 9.53 10.82 80.48
Gsm Encode 63.44 | 5.84 | 14.55 6.89 11.04 101.77

Table 3.3 Breakdown of scalar instructions for the whole vector programs. All
columns are in millions.

Vector Instructions
Program Add | Mul [ Dyadic | Ld | St [ Total
Swim256 21.23 | 10.86 11.05 | 21.26 | 10.20 74.84
Hydro2d 12.73 8.14 0.82 | 11.68 4.14 37.54
Nasa7 10.35 | 12.51 9.56 | 17.90 7.37 57.71
Tomcatv 2.34 1.83 0.15 1.75 0.74 6.83
Bdna 1.42 1.93 1.04 1.70 1.07 7.19
Arc2d 6.70 | 11.36 2.52 | 14.04 4.93 39.57
Jpeg Decode 0.29 0.08 0.08 0.05 0.04 0.55
Epic 0.49 0.20 0.00 0.28 0.01 0.99
Jpeg Encode 2.33 0.41 2.40 4.97 0.34 10.47
Gsm Encode 0.37 0.03 0.14 0.21 0.07 0.83

Table 3.4 Breakdown of vector instructions for the whole vector programs. All
columns are in millions.

in two major groups: scalar (table 3.3 ) and vector (table 3.4). This classification is
not needed in superscalar programs as all instructions executed in these programs are
scalar. Each group has been further broken down in a total of six categories. These
categories are: Add, Mul, Dyadic, Ld, St and Control instructions. In the vector
group there is no Control category, as control instructions are scalar. Similarly, in the
scalar group there is no Dyadic category, as these are vector only instructions. Ld
and St categories in the vector group include, respectively, the gather and scatter
instructions. The Mul category includes all types of instructions that can only be
executed in a general purpose functional unit, that is, it includes all multiplications,

divisions and square roots. The Add category includes all other arithmetic operations
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Instructions

Program Add | Mul [ Ld | St [ Control [ Total

Swim256 3890.28 | 1750.01 | 2565.41 | 1168.04 64.83 || 9438.59
Hydro2d 1882.06 631.73 | 1469.83 398.29 289.83 || 4671.75
Nasa? 1699.81 982.82 | 2093.57 646.09 119.72 || 5542.03
Tomcatv 347.07 162.67 274.47 88.58 24.85 897.66
Bdna 609.37 362.06 450.59 173.27 33.66 || 1628.97
Arc2d 1684.41 | 1072.53 | 1524.59 543.87 80.19 || 4905.61
Jpeg Decode 123.50 0.49 16.29 7.75 5.96 154.00
Epic 18.80 3.08 9.59 0.75 3.35 35.58
Jpeg Encode 179.05 18.36 88.43 14.98 24.18 325.02
Gsm Encode 507.83 33.58 83.03 21.73 23.05 669.24

Table 3.5 Breakdown of instructions for the whole superscalar programs. All
columns are in millions.

not included in the Mul category, that is, additions, subtractions, shifts, logicals, etc.
In all these tables, the last column contains the total number of instructions executed
in that group, recalled from table 3.2 in this section.

These tables allow us to study the instruction distribution in scalar and vector pro-
grams. In table 3.3, most of the scalar instructions in vector programs belong to the
Add category. This is not surprising, since scalar code found in vectorizable programs
mostly consists of address computations (additions and shifts) and loop control instruc-
tions (decrements and comparisons). Vector instructions do not follow a clear pattern
(see table 3.4); in some programs, the majority of the vector instructions are in the
Add category while in others are found in the Ld or Mul categories. Once more, in
the scalar programs, the majority of the instructions are found in the Add category,

followed by the Ld category, as observed in table 3.5.

3.5 OPERATION DISTRIBUTION

A more accurate comparison between the superscalar and vector ISAs can be obtained
by considering the total number of operations performed. As already mentioned, the
overhead reduction due to the semantic content of vector instructions should result in
a lower number of operations executed in the vector model. Table 3.6 shows the total

number of operations executed on each platform, for each program. Columns 2 and
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3 in this table present the total number of instructions executed in the superscalar
and vector ISAs, respectively. As expected, the total number of operations is greater
in the superscalar platform than in the vector machine, for all programs. The ratio of
superscalar operations to vector operations, shown in column 6 in this table, is favorable
to the vector model by factors that normally go from 1.05 up to 1.25, being as large as

4.14 for program Gsm Encode.

The reason of the reduction in the number of operations in the vector programs comes
from the higher semantic content of vector instructions. As discussed in section 3.2, 55,
one vector instruction involves several operations (as many as the vector length indi-
cates) over a set of independent data. Therefore, it is not necessary to include specific

instructions to decrement loop counters, evaluate conditions and branch conditionally.

For example, let us consider a loop moving 256 words of data from array A to array
B. In a superscalar ISA, a typical loop would consist of about 5 instructions: a load,
a store, an addition to increment the address pointer, a subtraction to decrement the
loop counter and a compare-and-branch instruction. To move 256 words, the loop
would execute 256 x 5 = 1280 instructions (or operations). On the other hand, a vector
machine, would also have the same 5 instructions in the loop. But, the load and store
would be vector instructions, each one responsible of moving 128 elements. Thus, the
vector version of the loop would require just two iterations and, as a whole, it would
have executed about 10 instructions, or 518 operations, to perform the same task.

To get an idea about the number of reduced operations, let us consider, for exam-
ple, Swim256. In vector mode, it requires 8230.99 million operations, while in super-
scalar mode it requires 9438.59 million instructions. The difference between these two
amounts, that is 1207.60 million scalar instructions, is the extra overhead that the
superscalar machine has to pay due to the larger number of loop iterations it performs.

Columns 4 and 5 from table 3.6 present the number of scalar and vector operations
executed by the vector programs. These values show that the majority of the programs
execute much more vector than scalar operations. These values will be used in the

following section in order to calculate how vectorizable the programs are.
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Scalar ISA Vector ISA
Program Total Total [| Scalar | Vector || Ratio
Swim256 9438.59 || 8230.99 101.31 | 8129.68 1.14
Hydro2d 4671.75 || 4085.72 178.16 | 3907.56 1.14
Nasa7 5542.03 || 5139.91 || 1253.21 | 3886.70 1.07
Tomcatv 897.66 848.31 145.45 702.85 1.05
Bdna 1628.97 || 1497.31 497.41 999.90 1.08
Arc2d 4905.61 || 4089.32 101.13 | 3988.18 1.20
Jpeg Decode 154.00 133.85 52.19 81.65 1.15
Epic 35.58 28.39 15.89 12.49 1.25
Jpeg Encode 325.02 268.78 80.48 188.29 1.21
Gsm Encode 669.24 161.42 101.77 59.64 4.14

Table 3.6 Total number of operations executed by the programs. Columns 4 and 5
are the number of scalar and vector operations executed by the vector programs. All
columns are in millions.

Vector Operations

Program Add | Mul [ Dyadic [ Ld [ St [ Total

Swim256 1891.00 946.09 | 2200.43 | 2061.73 | 1030.41 || 8129.68
Hydro2d 1294.86 826.84 168.21 | 1199.57 418.06 (| 3907.56
Nasa7? 716.27 683.89 659.63 | 1273.53 553.46 || 3886.70
Tomcatv 214.52 175.47 26.01 205.44 81.40 702.85
Bdna 169.75 233.50 258.31 207.91 130.42 999.90
Arc2d 631.41 | 1075.83 483.62 | 1329.15 468.16 || 3988.18
Jpeg Decode 37.82 10.59 21.18 6.63 5.41 81.65
Epic 5.45 2.65 0.00 4.29 0.09 12.49
Jpeg Encode 51.69 15.57 63.94 49.53 7.54 188.29
Gsm Encode 16.08 0.84 23.59 15.36 3.75 59.64

Table 3.7 Breakdown of vector operations for the whole vector programs. All
columns are in millions. ‘

We will conclude this section by analyzing the operation distribution across the different
categories defined in the previous section. Although we should show measurements
regarding scalar and vector operations for the vector programs, and scalar operations
for the scalar programs, in fact, one scalar instruction carries out just one operation, so
that measurements about scalar operations and instructions match and will be recalled
from the previous section. Therefore, the only new data in this section, shown in

table 3.7, present the number of vector operations executed in vector programs.

For most of the programs, the number of scalar operations in vector programs, shown

in table 3.3, hardly influences the total number of operations executed in each category,
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Integer Floating Point
Operation type || No Size || 8 bits [ 16 bits | 32 bits | 64 bits || 32 bits | 64 bits
Memory 0 10.67 0.22 130.32 | 9437.03 - -
Arithmetic 54.99 0.86 0.53 892.34 | 1082.41 0.004 12032.24
Other 210.83 0 0 0 0 0 0

(a) Numerical Programs

Integer Floating Point
Operation type || No Size || 8 bits | 16 bits | 32 bits [ 64 bits || 32 bits | 64 bits
Memory 0 22.65 29.53 104.76 0.93 - -
Arithmetic 8.02 1.42 3.17 336.79 47.19 2.92 5.71
Other 28.61 0.70 0 0 0 0 0

(b) Multimedia Programs

Table 3.8 Basic operations counts for the different data types for the numerical and
multimedia programs. (All columns are in millions).

so we can make a raw comparison between the data shown in tables 3.5 and 3.7. Note
that, one Dyadic instruction executes two operations (one add operation plus one mul
operation). Therefore, in the Dyadic category, a half of the operations are add-type and
the other half are mul-type. Keeping this in mind, we realize that, in general, vector
programs execute less Add, Ld, St and Control operations than scalar programs.

However, more Mul operations are executed in vector programs.

3.6 DISTRIBUTION OF DATA TYPES

Table 3.8 presents the distribution of data types that are used by (a) the numerical pro-
grams, and (b) the multimedia programs for the execution of the memory instructions,
arithmetic instructions, and the rest. Column 2 has a special meaning, as it presents
those instructions that are considered to be carried out with “No Size”, for example
branch instructions, subroutine calls and some logicals. We can also see that memory
instructions can not be separated into integer and floating point. The reason is that the
Convex C4 architecture does not have integer and floating point registers that we could
use to make that separation. Rather, scalar registers (S registers) and vector registers

(V registers) are used, and they can contain either an integer or a floating point data.
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We can see in table 3.8 that the two sets of benchmarks have different characteristics
regarding the data size. For example, numerical programs mainly move 64-bit elements
with the memory system, while in multimedia benchmarks the majority of the memory
operations are carried out with 32-bit elements. Accordingly, numerical programs exe-
cute the majority of their arithmetic operations with 64-bit elements, and multimedia

programs executes its larger amount of arithmetic operations with 32-bit data.

Finally, multimedia benchmarks execute many operations with 8-bit and 16-bit data,
when compared to the numerical programs. Therefore, these multimedia benchmarks
have an intrinsic source of parallelism for short data sizes that could be exploited by
using some kind of sub-word level parallelism [CEV99] [JTVWO01].

3.7 VECTOR CHARACTERIZATION

Vector ISAs have certain inherent characteristics that do not exist in superscalar ISAs.
These characteristics include, for example, the vectorization percentage, that measures
how vectorizable the programs are, the effective usage of the vector length, the use
of the vector stride, the execution under vector mask, or the execution under vector
first. In this section we will deeply analyze these characteristics as they will be of help
in order to understand the performance behavior of these programs in the following

sections.

3.7.1 Vectorization Percentage and Average Vector Length

The first interesting question when studying the vector characterization of a set of
programs is how vectorizable programs are, that is, the percentage of the task that is
amenable to be expressed using vector instructions. We have called this measure the
vectorization percentage, and it is defined as the ratio between the number of vector
operations and the total number of operations performed by the program. Table 3.9
presents the basic statistics that allow us to compute the vectorization percentage.
Columns 2 and 3 contain the total number of instructions issued by the decode unit,

broken down into scalar and vector instructions. Column 4 contains the number of
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# instructions # vector Vect | Avg.
Program Scalar [ Vector | operations % VL
Swm256 101.31 74.84 8129.68 98.77 | 109
Hydro2d 178.16 37.54 3907.56 95.64 104
Nasa7 1253.21 | 57.71 3886.70 75.62 67
Tomcatv 145.45 6.83 702.85 82.85 | 103
Bdna 497.41 7.19 999.90 66.78 139
Arc2d 101.13 39.57 3988.18 97.53 101
Jpeg Decode 52.19 0.55 81.65 61.00 | 147
Epic 15.89 0.99 12.49 44.01 13
Jpeg Encode 80.48 10.47 188.29 70.05 18
Gsm Encode 101.77 0.83 59.64 36.95 71

Table 3.9 Basic operations counts for the set of benchmarks on the vector machine
(Columns 2-4 are in millions).

operations performed by vector instructions. Each vector instruction can perform many
operations (up to 128), hence the distinction between vector instructions and vector
operations. The fifth column is the percentage of vectorization calculated as column
4 divided by the addition of columns 2 and 4. Finally column 6 presents the average
vector length used by vector instructions, that is, the ratio between vector operations

and vector instructions (columns 4 and 3, respectively).

The analysis of the vectorization percentage shows that our benchmark programs are
either highly or moderately vectorizable, considering that a highly vectorizable program
has a vectorization percentage over 70%. Among highly vectorizable programs we have
Swim256, Hydro2d, Nasa7, Arc2d and Jpeg Encode programs, while Bdna, Jpeg Decode,

Epic and Gsm Encode are considered to be moderately vectorizable.

Another interesting point extracted from this table is the average vector length observed
in the programs. It is not strongly related to the percentage of vectorization and, in
some cases, it is greater than 128, the theoretical maximum vector length. The reason
is that dyadic vector instructions execute twice as many operations as the vector length,
which in fact makes the ratio between vector operations and vector instructions greater
than 128 if the program executes an important amount of dyadic instructions and its
vector length is close or equal to the maximum. Of course, every program that executes

dyadic instructions is affected by this increase in the average vector length even though
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it does not exceed the maximum vector length. The higher the proportion of dyadic

instructions executed, the larger the increase in the average vector length.

3.7.2 Vector Length Distribution

Vector execution is based on performing a certain operation specified in one instruction
over a large amount of independent data. The amount of data of each instruction is
dynamically specified with the value of the Vector Length register (VL). The latency
of the operation being carried out is then amortized across all VL elements. Therefore,
the larger the vector length, the better the performance. Fig. 3.2 presents the vector
length distribution for the set of programs when varying the maximum vector length
that the vector processor can use, i.e. the length of each vector register in the vector

register file. We have used vector lengths of 128, 64, 32 and 16 elements.

As we can see, the vector length distributions follow several patterns. Swim256, Tom-
catv, Bdna, Arc2d and Jpeg Decode have most of their vector lengths concentrated
around 128. As the vector length decreases, each access must be divided into two
smaller accesses. This causes an increase in the number of accesses with the maximum
vector length, as the vector length decreases. Furthermore, the percentage contribution

of small vector lengths decreases.

Hydro2d has a single dominant vector length, which is the number of grid points used
in the z-direction of the problem, i.e. 102. When the maximum vector length is 128,
a single vector instruction can carry out 102 operations in a single go. When the
maximum vector length is set to 64, an instruction with 102 operations must be carried
out by using two vector instructions; one of them with vector length 64 and the other
with vector length 38. That is the reason of the step in figure 3.2 for the VL 64 plot.

When the vector length is again divided by two, each instruction with vector length
64 is carried out with two instructions with vector length 32, and the instruction with
vector length 38 is carried by an instruction with vector length 32 plus another with
vector length 6. This is the explanation of the step in the VL 32 plot. For the VL
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Figure 3.2 VL Distribution.

16 plot, the same phenomenon happens and, in this case, the vector instructions with

vector length 6 remain the same.

Nasa? and Gsm Encode have a distribution that follows a staircase, having several
dominant vector lengths. In the same way, as the vector length decreases, the number of
instructions that use the maximum vector length increases, and the relative importance
of small vector lengths decreases. In Jpeg Encode, the dominant vector length is 8,
although there is a minor use of other larger values. In this case, the effect is the same
but it is concentrated in top left corner of the graph, as the percentage of instructions
with the dominant vector length is very large and only those instructions with large
VL values are affected by the decrease in the maximum vector length. FEpic presents
as unique vector length 16, so that there is no difference between the four plots. In

this case, decreasing the maximum vector length does not introduce any change. All
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Stride Value Gather/
Program 1 | 2 | 3 | 4 [ 5 | 8 | >16 | Scatter
Swm256 99.74 - - - - - 0.26 -
Hydro2d 99.64 - - - - - 0.26 0.10
Nasa7 35.60 | 15.41 | 0.0005 | 11.96 | 1.24 - 35.79 | 0.0008
Tomcatv 100 - - - - - - -
Bdna 86.84 - 0.001 | 13.16 - - - 0.002
Arc2d 78.80 - - - - - 12.15 9.05
Jpeg Decode || 68.83 | 12.52 | 18.84 R . - - 0.01
Epic 70.20 - - - - - 29.80 -
Jpeg Encode || 55.92 - 11.93 - - 32.15 - -
Gsm Encode 100 - - - - - - -

Table 3.10 Percentage of vector memory operations carried out with each stride
value, including gather and scatter number of operations.

these data suggest that, even among vectorizable programs, the utilization of the vector

registers varies a lot.

3.7.3 Vector Stride Distribution

Another important metric in the vector programs is the vector stride that is used in
the vector memory accesses. The vector stride is the amount of bytes that separate
two consecutive elements of a vector memory access. When the memory hierarchy
consist of a cache hierarchy, as it is in the memory hierarchy that we propose, the best
performance results are obtained for stride-1 vector memory accesses and it results in
a better utilization of the memory bandwidth. In a stride-1 vector memory access
the full cache line is delivered to the processor. A stride-2 vector memory access only
uses & half of the elements in the cache line, and so on. When the stride is larger
than the number of elements in a cache line, each cache line accessed only provides one
element, thus minimizing the benefits of exploiting the bandwidth that the memory can
deliver. Gather and scatter memory instructions access to memory elements that are

not separated a fixed stride. Therefore, they behave the same as large strided memory

accesses.

Table 3.10 presents the vector stride distribution for the set of benchmarks under study.
Some of the benchmarks, like Swim256, Hydro2d, Tomcatv and Gsm Encode, execute
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the majority of their memory accesses with stride equal 1. In this case, programs
directly benefit from the mémory bandwidth, and an increase in this characteristic will
probably translate in an improved performance. Other programs, however, execute
memory accesses with stride-1 and some other relatively short strides. This is the case
. of Jpeg Decode and Bdna, which execute their memory accesses with stride equal 1, 2,
3 and 4. In this case there will be a performance loss that depends on the vectorization
percentage of the program. Finally, the worst behavior will appear in the rest of the
programs, as they execute a large fraction of their memory operations with a large
stride. This is the case of Jpeg Encode, Nasa7, Arc2d and Epic, and especially in Nasa?
and Arc2d because of their high vectorization percentage. These programs do not make
a good use of the available memory bandwidth because of their large strides. In a large
fraction of their vector memory accesses the memory only provides one data in each
cycle. As we will see in later chapters, these programs will be limited by the memory

hierarchy.

3.7.4 Vector First Capability

A capability in the Convex C4 processor that we would like to mention is the Vector
First VF facility, which allows specifying the first element in the vector register on
which the instruction will be executed. That is, an instruction executes VL operations
starting at element VF'. This facility avoids having to reload data in the cases of data
reuses as those presented in figure 3.3(a). In these cases, instead of executing two load
instructions for matrix B (for positions I and I+1, as presented in Fig. 3.3(b)), only
one load instruction is needed. Fig. 3.3(b) shows the assembly code without vector
first. Every add instruction involves two vector load instructions, which is redundant.
In Fig. 3.3(c), using vector first, the same data can be reused in the loop body just
using the appropriate vector first value, so just one vector load is needed for each add
_ instruction. [Note that the notation “"v0” means execution under vector first].

Table 3.11 presents the distribution of the vector first values for our set of benchmarks.
This table shows the total number of instructions and operations carried out under
vector first, the percentage of total operations executed under vector first, and the

respective percentages of operations that have been executed with vector first equal
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b0 J=1, N
DOI =1, N
AC...,I,...) =B(...,I+1,...) + B(...,I,...)
ENDDO
ENDDO
(a)
mov N -> v4
mov N -> vl add #1, a4 -> ab
loop: ... mov #1 -> vf
vld v0, (B) loop: .
vld v1, (B+4) mov ab -> vl
vadd vi, v0, v2 vld v0, (B)
mov a4 -> vl
vadd “vO0, v0, vi
(b) (c)

Figure 3.3 Typical vector loop at hydro2d benchmark. (a) Source code for a vector
loop with data reuse of distance 1. (b) Assembly code without using vector first facility,
with add involving two load instructions. (c¢) Assembly code using vector first so that
every data must be loaded just once. '

to 1, 2 or other values. The compiler is able to use the vector first in benchmarks
Swim256, Hydro2d, Tomcatv and Epic. In some of these programs, the percentage
of operations executed under vector first is rather important, and this fact must be
considered as an additional reason for the decrease in the number of instructions and
operations executed by the vector programs. Programs that execute operations under
vector first only present low order data reuses (with distance 1 or 2).
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# Insns under | # Ops under | % Ops # VF Value (in %)
Program Vector First | Vector First | over total 1] 2 [ Other
Swm256 11.06 943.84 11.46 | 100 0 0
Hydro2d 3.09 312.94 7.65 | 78.3 | 21.7 0
Nasa7 0 0 0 0 0 0
Tomcatv 0.81 51.81 6.10 50 50 0
Bdna 0 0 0 0 0 0
Arc2d 0 0 0 0 0 0
Jpeg Decode 0 0 0 0 0 0
Epic 0.03 0.59 2.07 | 100 0 0
Jpeg Encode 0 0 0 0 0 0
Gsm Encode 0 0 0 0 0 0

Table 3.11 Vector First distribution. Columns 2 and 3 are in millions.
3.7.5 Vector Mask Execution

The Convex C4 vector processor allows the execution of instructions under a calculated
mask stored in the Vector Mask (VM) register. The VL operations will be carried
out, but only those that have the correct value stored in the i** position of the mask
will be finally stored in the destination register of the instruction. We have made an
analysis of the masks used during the execution of the benchmarks in order to test the

effectiveness of masked execution.

Table 3.12 shows the total amount of instructions executed under mask and the per-
centage of instructions with respect to the total amount of instructions. These data
show a relatively small use of the execution under mask in the C4 vector processor.
However, taking into account that each vector instruction implies the execution of VL
operations, table 3.12 also shows the total amount of operations executed under mask
and the percentage of operations referred to the total amount of operations executed.
From this table, we can see that the most intensive use of the masked execution is
made by the Jpeg Decode benchmark with more than 22% of their operations executed
under mask. Programs Jpeg Encode and Hydro2d execute 15.81% and 14.11% of their
operations under mask, respectively. The remaining programs execute either very few
operations under mask (Gsm Encode, Arc2d, Epic, Nasa7, Swim256 and Bdna) or even

none at all (Tomcatv).
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Instructions executed under Operations executed under
vector mask vector mask

Total Number | % over total | Total Number | % over total
Program (x108) instructions (x10°) operations
Swm256 0.003 0.0018 0.264 0.003
Hydro2d 0.569 2.64 576.367 14.11
Nasa7 0.070 0.005 8.056 0.16
Tomcatv 0 0 0 0
Bdna 0.002 0.0005 0.002 0.0002
Arc2d 0.224 0.16 21.214 0.52
Jpeg Decode 0.183 0.35 29.513 22.05
Epic 0.091 0.54 0.145 0.51
Jpeg Encode 1.103 1.21 42.494 15.81
Gsm Encode 0.071 0.007 1.925 1.19

Table 3.12 Instructions and Operations executed under vector mask

The execution of operations under mask can be considered as speculative execution,
as all VL operations are carried out but only those that correspond to the right value
in the mask are actually used. We can think of the extra operations as misspeculative
execution. The analysis of the masks allows measuring the effectiveness of masked
execution. All these instructions executed under mask, are properly speculated or not?
An operation is speculated “right” if, after the operation has been carried out, the
result is actually stored in its destination. All those operations that were carried out
but were not stored are misspeculated work. Figure 3.4 shows the distribution of right
and wrong speculated operations in the nine programs (recall that program Tomcatv is
not shown as it does not execute any instruction under mask). Four programs (Nasa7,
Bdna, Jpeg Decode and Jpeg Encode) have over 50% of right prediction. The other five
programs (Swim256, Hydro2d, Arc2d, Epic and Gsm Encode) have lower values of right
speculation, being Swim256 and Arc2d the programs with the worst behaviors (only

7.29% and 7.46% of right speculation, respectively).

Another interesting consideration that we have studied regards the distribution of op-
erations executed under mask among the different instruction types. This study has
allowed us to extract the amount of instructions executed under mask for each type of
instructions. We have considered six types of instructions: add, mul, div, dyadic, load

and store.
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Figure 3.4 Distribution of right and wrong speculative operations in vector pro-

grams.
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Figure 3.5 Distribution of operations executed under vector mask among the differ-
ent instruction types.

The first consideration comes from the fact that none of the programs executes load
instructions under mask, which is explained because of the use of gather instructions,
and it is closely related to the compiler strategy for translating code [SFS00]. Figure 3.5
shows the breakdown of operations executed under mask among the different instruction
types. Division and add-like instructions are the most used instructions for execution

under mask.
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Wrong
m Right

“% operations

Swm256 Hydro2d Nasa7 Bdna Arc2d Ipeg Decode Epic JpegEncode  Gsm Encode
Figure 3.6 Breakdown of right-wrong speculated vector operations.

Finally, we have also studied the effectiveness of execution under mask among the
different types of instructions. The results in figure 3.6 show that, in general, there
is not a clear correlation between the instruction type and the misspeculation rate.
Division instructions are an exception. For divisions, the misspeculation rates are
higher than for the rest of instructions in all cases, but program Bdna. This result is

not unreasonable since division instructions are typically executed in statements such

as the following,
if A(3) <> 0 then B(i) = B(i)/A(i) (3.1)

In such a case, misspeculation is determined by the value stored in A(i). In our pro-

grams, the A(i) vector is sparsely populated and causes large numbers of misspecula-

tions.

3.8 INFLUENCE OF THE VECTOR LENGTH

As stated in the previous sections, expressing a loop by means of vector instructions
reduces the total number of instructions and operations needed for its execution because

of the shorter number of iterations needed for the loop execution. A key factor that
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influences the number of loop iterations is the maximum vector length that can be
expressed in the architecture. The larger the vector length, the shorter the number
of loop iterations. However, large vector registers need more chip area to allocate the
vector register file, a critical parameter in the design of any microprocessor. Thus, the
potential reduction in the number of instructions and operations executed may have a

significant cost in terms of chip area.

In this section, we make an study about the behavior of the 10 benchmark programs
when varying the maximum vector length from 16 to 32, 64 or 128 elements. The study
has been made by measuring the number of instructions and operations executed, and
the processor-memory traffic (in terms of load and store operations). These values will
be compared with the superscalar results that will be used as reference values of the

improvements that can be achieved.

3.8.1 Instructions Executed

As the vector length decreases, the total number of instructions executed increases due
to the higher number of loop iterations carried out in each vector loop. Figure 3.7
shows this effect for the ten benchmark programs. This figure shows the total num-
ber of instructions executed for different vector lengths, normalized to the number of
instructions executed for vector length 128. The figure also shows, as a reference, the
total number of instructions executed in the superscalar processor normalized to the
number of instructions executed for vector length 128. As already discussed in sec-
tion 3.4, page 59, the total number of instructions executed is much lower in vector
programs than in superscalar programs, and the reason is the semantic gap between
the two ISAs. While one scalar instruction carries out just one scalar operation, Qne'
vector instruction performs multiple operations over independent data, as many as the

vector length register indicates.

Another interesting feature extracted from figure 3.7 is the different sensibility to the
variation of the vector length that programs undergo. For example, Swim256, Hydro2d
and Nasa7increase a lot the number of instructions executed as vector length decreases,

while Tomcatv, Bdna and multimedia programs undergo a moderate increase in the
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Figure 3.7 Number of instructions executed for the vector processor with vector
length 128, 64, 32 and 16 elements, and for the superscalar processor. All these values
are normalized to the number of instructions executed for vector length 128.

number of instructions executed. The reason lies on the number and size of the vector
loops that each program contains: if there are only a few vector loops with many
instructions inside, then we observe a lower increase in the number of instructions
executed than if there are many vector loops with few instructions inside. As will be
discussed in the following section, these data do not show the real behavior in terms
of computational load. The total number of operations executed in these programs is
mainly dominated by the vector operations, and this increase in the scalar operations

executed is hardly reflected on it.

3.8.2 Operations Executed

In this section, the results about the evolution of the total number of operations ex-
ecuted when the vector length decreases are presented. Figure 3.8 shows the total

number of operations executed by the ten programs as the vector length decreases,
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Figure 3.8 Number of operations executed for the vector processor with vector length
128, 64, 32 and 16 elements, and for the superscalar processor. All the values are
normalized to the number of operations executed for vector length 128.

as well as the total number of operations executed by the scalar programs. All these
values are normalized to the number of operations executed for vector length 128. As
expected, the total number of operations increases when the vector length diminishes.
In some cases, like in Swim256, Hydro2d, Nasa7 and Arc2d programs, this increase
is clearly observed, while in the rest of the programs the increase is quite slight. The
comparison between these results and the superscalar number of operations shows that,
even though the total number of operations executed by the vector programs increases,
the total number of operations executed by the superscalar programs is far beyond.
The exceptions are programs Hydro2d, Nasa7 and Tomcatv due to several reasons. On
one side, the difference in the quality of the scalar code that both the vector and scalar
compilers generate. On the other side, the extra operations executed under vector mask
that the superscalar program does not execute. As a measure of the latter reason, recall
from section 3.7.5, page 74, and from figure 3.4 that, for example, program Hydro2d

executes 11% of its operations under mask, from which only 25% are right speculated.
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Figure 3.9 Number of words moved between the processor and the memory hierarchy
for the vector processor with vector length 128, 64, 32 and 16 elements, and for the
superscalar processor. All the values are normalized to the number of words moved for
vector length 128.

3.8.3 Processor-Memory Traffic

The study of the total number of instructions and operations executed by the programs,
both in the superscalar and vector processors, has a predictable behavior taking into
account the semantic characteristics of vector instructions. Another interesting param-
eter that can be influenced by the vector length is the traffic between the processor and
the memory hierarchy, which we have measured as the total number of words moved by
load and store instructions. In figure 3.9, we can see that, although there is a variation
in the number of memory operations executed, in seven of the ten benchmarks the
increase in the memory traffic is negligible. The exceptions are Hydro2d and Tomcatv
programs. In Hydro2d, not only the number of memory operations increases as the
vector length decreases, but it also exceeds the number of memory operations executed
by the superscalar programs. The main increase appears in the number of vector and

scalar load operations. As the vector length decreases, the same data must be re-loaded
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from memory, thus making the number of load operations increase. In Tomcatv hap-
pens approximately the same, but to a lower extent. Finally, the comparison between
the superscalar and vector behaviors shows that, in general, superscalar programs move
much more words with the memory than the vector programs. This is especially true
for the 128-element vector registers executions. As the vector length decreases the
traffic increases because of the data re-loads, and in one case (the Hydro2d program
previously commented) the vector traffic overcomes the superscalar traffic. It is worth
mentioning the exception of the Jpeg Decode behavior, since it is the only program
that moves less words with the memory in the superscalar case, no matter the vector
length used in the vector programs. The superscalar compiler performs a better code

translation, thus yielding a lower memory traffic.

3.9 ANALYSIS BY REGIONS

The analysis of ISA characteristics in complete programs is quite interesting as it allows
us to roughly predict the way programs behave during their execution in a superscalar
or vector processor. As the aim of this thesis consists in showing that it is worth
including a vector unit into a superscalar processor in the field of vectorizable numerical
and multimedia codes, let us make a detailed analysis of the ISA characteristics inside
S- and D-regions. This study will lead us to a better knowledge of how vector programs

behave inside vectorizable pieces of code.

The method for splitting complete programs into S-regions and D-regions has been
explained in section 2.6.3, page 48. In this section, we will show the results of the
study of the low level characteristics inside S-regions and D-regions. First of all, the
evaluation of the importance of S- and D-regions, in terms of number of operations
executed, will be presented. Next, the measurements about the number of basic blocks,

instructions and operations executed will be shown.

It is important to note that although we will present data about the behavior inside
S-regions and D-regions, the most interesting part of this study concerns vectorizable

pieces of code, that is, D-regions. The reason is that superscalar and vector compil-
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% Ops executed | % Ops executed | Vectorization % | Average size | Average size
Program inside D-regions | inside S-regions of D-regions | of S-regions
Swim256 99.99 0.01 98.77 380988 21
Hydro2d 99.11 0.89 95.64 44420 396
Nasa7 99.05 0.95 75.62 217266 2077
Tomcatv 83.78 16.22 82.85 1178606 227814
Bdna 88.88 11.12 66.78 82990 10381
Arc2d 99.57 0.43 97.53 135348 585
Jpeg Decode 60.43 36.57 61.00 18146 11877
Epic 62.12 37.88 44.01 5824 3550
Jpeg Encode 78.77 21.23 70.05 1941 523
Gsm Encode 38.90 61.10 36.95 1098 1725

83

Table 3.13 Percentage of operations executed inside D- and S-regions, vectorization
percentage and Average size of D- and S-regions (in operations), extracted from the
vector programs. Average size is defined as the total number of operations executed
inside S-/D-regions divided into the number of S-/D-regions.

ers should theoretically behave similarly within scalar regions. Although our results
contradict this initial intuition, as we have discussed in section 2.7 (see page 49), this
mismatch has nothing to do with the superscalar and vector paradigms. The differ-
ences come from generational reasons, because the superscalar compiler is much more
modern. Moreover, it is our claim that if the vector compiler was built nowadays, using
current compiler technology, the scalar parts of vector and superscalar programs would

match.

3.9.1 General Characteristics of S-regions and D-regions

Table 3.13 presents the operation breakdown for S-regions and D-regions: percentage of
operations executed inside D-regions and S-regions, vectorization percentage (column
5 of table 3.9) and the average size of D-regions and S-regions (in terms of number
of operations). Note that the percentage of operations executed inside D-regions is
usually larger than the vectorization percentage. This is normal since a D-region also
contains scalar instructions that correspond to scalar calculations inside loops and/or

loop control.
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It is worth mentioning that in Jpeg Decode program the percentage of operations ex-
ecuted in D-regions is lower than the vectorization percentage because 1.8% of the
vector operations are executed outside D-regions due to the overlap between S-regions

and D-regions, discussed in section 2.6.3, page 48.

We can see in table 3.13 that Swim256, Hydro2d and Arc2d programs execute more
than 99% of their operations inside D-regions, and their vectorization percentage is also
over 95%, which means that the number of scalar instructions inside D-regions is small
and, therefore, will not affect significantly the performance of D-regions. Therefore,
according to the Amdahl’s Law, the execution of D-regions is hardly influenced by the

low data-parallel execution of scalar code.

Nasa7 presents a similar behavior, executing 99.05% of its operations in D-regions.
However, the vectorization percentage is lower (75%), meaning that the number of
scalar instructions executed inside D-regions is significant, and their execution will
influence the performance of D-regions. Tomcatv and Bdna have a significant amount
of operations in S-regions (around 15%), so the execution of these instructions will
influence the global performance. The difference is that, while Tomcatv has pure D-
regions, Bdna has D-regions polluted with scalar instructions, thus limiting Bdna's
performance on D-regions.

Multimedia programs execute over 20% of their operations inside S-regions, reaching
61% in Gsm Encode, which will strongly determine their global performance and the
acceleration that can be achieved by using a vector unit. Again, we can distinguish two
types of programs: programs that have pure D-regions (Gsm Encode and Jpeg Decode),
and programs with polluted D-regions (Epic and Jpeg Encode).

3.9.2 Basic Block Distribution

Table 3.14 presents the total number of basic blocks executed inside S-regions and D-
regions, in the vector and superscalar ISAs, for the set of benchmarks. Columns 2 and
5 are the total number of basic blocks executed, recalled from table 3.1. Columns 3 and

4, and columns 6 and 7 contain the number of basic blocks executed inside S-regions
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Scalar ISA Vector ISA
Program Total || S-Regions | D-Regions || Total || S-Regions | D-Regions
Swim256 6.75 0.03 6.72 2.59 0.05 2.54
Hydro2d 263.25 6.82 256.42 [ 11.18 7.14 4.04
Nasa7 24.18 1.06 23.12 || 16.85 8.13 8.72
Tomcatv 19.91 19.60 0.30 || 19.95 19.72 0.23
Bdna 33.71 11.60 22.11 || 41.81 41.25 0.56
Arc2d 25.83 0.32 25.50 4.56 1.57 2.99
Jpeg Decode 8.51 3.17 5.34 6.25 6.22 0.02
Epic 2.00 1.50 0.50 2.92 2.33 0.58
Jpeg Encode 29.69 5.61 24.07 || 11.67 8.33 3.34
Gsm Encode 28.13 24.50 3.62 || 15.21 14.50 0.71

Table 3.14 Total number of basic blocks executed in the superscalar machine and
in the vector machine; and breakdown into basic blocks executed inside S-regions and

D-regions. All columns are in millions.

and D-regions, respectively. The first interesting point from this table is the difference
in the number of basic blocks executed inside S-regions for the superscalar and vector
platforms; and also inside D-regions for the superscalar and vector platforms. The
behaviors are opposite: while inside D-regions all programs execute a larger number of
basic blocks in the superscalar platform, inside S-regions the number of basic blocks
executed in the superscalar platform is shorter. The behavior inside D-regions follows
the same explanation as the total number of basic blocks executed: a shorter number
of loop iterations due to the higher semantic content of vector instructions and the

predicated execution under vector mask.

However, inside S-regions, the effect is the opposite, and the reason, already discussed
in section 2.7, page 49, is that the superscalar compiler is more sophisticated than the
vector compiler, as it is more modern and includes additional compilation techniques

and optimizations, to better generate and schedule code.

3.9.3 Instruction Breakdown

We will now proceed to analyze the distribution of instructions executed inside the S-
regions and D-regions. Table 3.15 presents the number of instructions executed inside

S-regions and D-regions for the vector programs. For the S-regions, column 2 contains

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



86 ’ CHAPTER 3

the total number of instructions executed, while columns 3 and 4 present the breakdown
of instructions in column 2 into scalar and vector instructions. The same measurements
are shown for D-regions in columns 5, 6 and 7, in the same table. Several comments

can be made regarding this data:

»  Looking at columns 2 and 5, we can see that programs present an irregular behavior
in terms of the number of instructions executed inside S- and D-regions. While some
programs, like Tomcatv, Jpeg Decode, Epic, Jpeg Encode and Gsm Encode, execute
much more instructions inside S-regions, the rest of the programs, i.e. Swim256,
Hydro2d, Nasa7 and Bdna, behave exactly the opposite and execute much more
instructions inside D-regions. Given that each vector instruction involves several
operations, as many as the vector length, we can not draw any conclusion from
this behavior, as it is necessary to know the number of operations that each vector

instruction carries out.

= Column 4 in this table partially supports the discussion in section 2.6.3, page 48,
about the overlapping effect between S-regions and D-regions. As we can see in
this column, and compared to column 3, the fetch and decode units are mainly
devoted to the scalar instructions. Vector instructions hardly pollute S-regions,
although we must re-visit this claim in next section whenever we present the same
measurements in terms of operations executed, instead of instructions.

» Comparing columns 6 and 7, we realize that, even inside D-regions the fetch and
decode unit is mainly devoted to the scalar instructions, as D-regions execute much
more scalar than vector instructions (from 1.14 to 46 times more scalar instructions

for Tomcatv and Bdna, respectively).

Let us compare these results with the results for the superscalar programs, shown in
table 3.16. This table contains the number of instructions executed by the superscalar
programs, broken down into instructions executed inside S-regions (column 2) and D-
regions (column 3). Contrary to vector programs, superscalar programs behave all
the same, that is, all of them execute less instructions inside S-regions. Comparing
column 2 in table 3.15 with column 2 in table 3.16, superscalar programs execute less

instructions inside S-regions. As mentioned before, the reason is that, as the scalar
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S-Regions D-Regions
Program Total [| Scalar | Vector || Total ]| Scalar | Vector
Swim256 0.47 0.47 | 0.0001 175.67 100.83 74.84
Hydro2d 36.17 36.16 | 0.0005 179.53 141.99 37.54
Nasa7 48.57 48.55 | 0.0180 || 1262.34 |} 1204.65 57.69
Tomcatv 137.60 || 137.60 | 0.0003 14.68 7.85 6.83
Bdna 166.07 || 166.06 | 0.0109 338.53 331.35 7.17
Arc2d 9.40 9.34 | 0.0697 131.30 91.78 39.51
Jpeg Decode 51.50 51.49 | 0.0125 1.24 0.70 0.54
Epic 10.75 10.75 | 0.0001 6.14 5.14 0.99
Jpeg Encode 55.71 55.70 | 0.0109 35.25 24.78 10.46
Gsm Encode 98.43 98.43 | 0.0037 4.17 3.34 0.83

Table 3.15 Breakdown of instructions executed in S-regions and D-Regions for the
vector programs. All columns are in millions.

| Program [| S-Regions | D-Regions |
Swim256 0.27 9438.31
Hydro2d - 2741 4644.34
Nasa? 8.17 5533.86
Tomcatv 117.37 780.29
Bdna 64.59 1564.38
Arc2d 13.56 4892.04
Jpeg Decode 64.05 89.95
Epic 7.75 27.82
Jpeg Encode 51.98 273.03
Gsm Encode 264.15 405.08

Table 3.16 Breakdown of instructions executed in S-regions and D-regions for the
superscalar programs. All columns are in millions.

compiler is newer, it is able to generate a higher quality code. The exception are
programs Arc2d, Jpeg Decode and Gsm Encode. The reason is that the vector ISA is
able to express the same scalar operations using less instructions.

Regarding D-regions, superscalar programs execute much more instructions than vector
programs, as observed when comparing column 7 in table 3.15 with column 3 in ta-
ble 3.16. Let us study a concrete example in the Gsm Encode program. In this program,
we have made some minor changes in order to get the compiler to vectorize it. The
collateral effect of these changes in the source code is the decrease in the total number

of instructions executed in the vector program. Although similar changes were tried in
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for (lambda = 40; lambda < 120; lambda ++) {
L_result = STEP(0);
L_result += STEP(1);
L_result += STEP(2);

L_result += STEP(39);
if (L_result > Lmax) {
Nc¢ = lambda;

L_max = L_result;

Figure 3.10 Original scalar loop in the Gsm Encode program.

the superscalar program, the superscalar compiler was not able to take advantage of

them, and the same effect was not obtained.

For example, figure 3.10 shows an original loop in the program source code. This
loop belongs to function Calculation_of _the LTP_parameters that computes the long
term predictor gain and the long term predictor lag for the long term analysis
filter. This is done by calculating a maximum of the cross-correlation function between
the current sub-segment short term residual signal, which is the output of the short
term analysis filter, and the previous reconstructed short term residual signal. In
particular, this loop searches for the maximum cross-correlation and coding of the long
term predictor lag. The for loop calculates each cross-correlation as the cumulative
addition of STEP(i), that is,

39
L.result =Y STEP(i), being STEP(i) = wtli] x dp[i — lambda) (3.2)

i=0
If this cross-correlation is greater than the maximum (Lmax), it becomes the new
maximum. This is done for all the cross-correlation terms, so that, at the end of the
for loop execution, the maximum correlation and its position are stored in the L max

and Nc variables, respectively.
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lambda_loop:

bis $31,6,$20
subl $20,%$14,%1
addq $1,$1,81
addq $1,$13,$1

bic $1,6,%2

1dq $2,0($2) ; load dp[l — lambda]
141 $8,224($30) ; load wit[1]

bic $1,1,$1

extwl $2,%1,%$2
sll $8,48,%1
sl1 $2,48,%$2
sra $1,48,81
sra $2,48,%2

mull $1,$2,%1 ; STEP(1) = wt[l] x dp[1l — lambda]
stl $1,232($30) ; temporal store
[up to 40 code blocks like this|
1dq $8,200($30) ; reload STEPIi]
addq $15,%8,$15 ; cumulative addition
addq $15,$10,$15 ; cumulative addition
[loads and adds for cumulative addition]
cmple $15,$8,$1 ; if(Lresult < Lomaz) = end_if
bne $1,end_if
sll $14,48,%1 . else
stq $15,168($30) ; L_max = L_result
sra $1,48,$1
stq $1,160($30) ; Ne = lambda
end_if:
addl $14,1,$14 ; lambda + +
cmple $14,120,$1 ; if (lambda < 120)
bne $1,lambda loop ; back to lambda_loop

Figure 3.11 Assembler code of the original scalar loop in the Gsm Encode program.
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The superscalar compiler translates this code into a loop containing 40 pieces of code,
each one carrying out one of the 40 calculations of the STEP(i) terms, as observed in
figure 3.11. Each code block consists of 13 or 14 instructions, depending on where the
calculation is stored. If the calculation is kept in a processor register, the final store

instruction does not appear. These instructions are distributed as follows:

= 5 instructions to calculate the address of the dp[i-1ambda] element to be accessed.
» 2 instructions to load the dp[i-lambda] and wt[i] elements.

= 6'instructions to convert these elements from word to longword.

s 1 instruction to multiply the dp[i-lambda] and wt[i] elements.

s 1 instruction to store the result in a temporal memory location. If the result is kept

in a processor register, this instructions is not needed.

After the STEP(i) calculations there is another group of 56 instructions for accumulat-
ing them. This group of instructions consists basically of addq and 1dq instructions.

Finally, the if statement instructions and the loop control instructions close the loop.

Therefore, each loop iteration performs as many as (24 x 13) + (16 x 14) + 56 + 6 + 3
= 601 instructions. Given that the loop executes 81 iterations, and that the whole loop
is executed 7376 times during the program execution, the total number of instructions
executed by the superscalar processor for this loop is 601 x 81 x 7376 = 359.071.056

instructions.

Meanwhile, the vector compiler needs some minor changes in the original source code
in order to vectorize the loop. Among the different options, we have chosen to vectorize
the lambda for loop by executing the different iterations in parallel. The first step is
to split the for loop into two loops, one of them for the cross-correlation calculations,
and the other for the maximum calculation. In order to vectorize the first loop, the
L_result scalar variable is turned into a vector of eighty one scalar elements, as shown
in figure 3.12. The eighty one cross-correlation terms are calculated and stored into

the L_result vector, in a single go, by using vector instructions with vector length 81.
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for (lambda = 40; lambda < 120; lambda ++) {
L_result[lambda] = STEP(0);
L_result[lambda] += STEP(1);
L_result[lambda] += STEP(2);

L_result[lambda] += STEP(39);
}
for (lambda = 40; lambda < 120; lambda ++) {
if (L_result[lambda] > Lmax) {
Nc = lambda;

Lmax = L_result;

Figure 3.12 Vectorized version of the scalar loop in the Gsm Encode program.

Therefore, the loop disappears, as well as all the repetitive instructions that must be
executed in each loop iteration, like address calculations, index increments, conditional
branches, etc. The second for loop computes the maximum among the cross-correlation
terms. This loop can not be vectorized because of the if statement, so that it makes

a sequential lookup of the maximum inside the L_result vector.

The assembly code generated by the vector compiler is shown in figure 3.13. First
of all, the wt[i] scalar elements are loaded and converted from half-word into word
elements. They are temporarily stored in memory, and will be reloaded later. Then,
the dp[i-lambdal elements are accessed using a vector load, in a single go. They
are also converted from half-word into word elements. Next, the calculation of the
STEP(i) and its cumulative addition are made by using axpy instructions. Finally, the
results are moved to memory with a vector store instruction and the second for loop
looks for the maximum among the elements of the L_result vector. The first loop is
codified using 329 linear instructions, that is, no loop is needed as the original loop was
vectorized using vector length 81. Some of these instructions are scalar and the rest
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lambda_loop:
1d.h -18(fp),s0
cvth.w s0,s4

1d.h -36(fp),si5
cvth.w §15,s0
st.w s0,-1228(fp)

mov #81,vl

1d.h -2(a5),v0
cvth.w vO,vb
mul.w vb,s84,vb
1d.h -80(a5),v6
cvth.w v6,v3
axpy.w v3,v5,v6
1d.w -1228(fp),s0
axpy.w vi0,v0,v2
mov #4,vs

st.w v2,-448(fp)

lambda_loop_2:
1d.w 4(a2),s0
ge.w s4,s0,cc2
jbr.t end_if,cc2
1d0.w 4(a2),s4
mov.w s83,a8
add.h a8,#1,a8
end_if:
add.w a2,#4,a2
add.h s3,#1,s83
gt.w a3,a2,cc2
jbr.t lambda_loop_2,cc2

2

load wt{0]

load wt[39]

vl = 81
load dp[0 — lambda]

STEP(0) = wt[0] x dp[0 — lambda]
load dp[l — lambda]

L_result{lambda]+ = STEP(1)

reload wt[39]
L_result[lambda]+ = STEP(39)

L_result[lambda]
L_result[lambdal]

if (L-result[lambda] > L_max)
L_maz = L_result

Nc = lambda

lambda + +
if (lambda < 120)

; back to lambda_loop_2

Figure 3.13 Vector loop at Gsm Encode benchmark.
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are vector. In particular, there are 192 scalar instructions and 137 vector instructions.
Among the vector instructions, 39 instructions are dyadic axpy instructions. On the
other hand, the second loop executes 81 x 10 = 810 scalar instructions. Therefore, the
total number of instructions executed by the vector processor is 1139, and the total
number of operations executed is ((98 x 81) + (39 x 81 x 2) + 192 + 810) x 7376 =
112.543.008 operations.

The comparison shows that, on one hand, the total number of instructions executed by
the superscalar processor is huge when compared to the number of instructions executed
by the vector processor. On the other hand, the superscalar processor executes three
times the total number of operations of the vector processor. Moreover, we can observe
that:

s The address computation is made just once in the vector processor while in the
superscalar processor it is made 81 times, which implies much more operations
executed. Moreover, while the superscalar ISA needs five instructions to calculate

this address, the vector ISA only needs two instructions.

= The load of each wt [i] element is also made 81 times in the superscalar processor,

and just once in the vector processor.

s The STEP(i) terms are stored and reloaded later for accumulation in the superscalar
processor, while, in the vector processor, the STEP(i) terms are calculated and
accumulated in the same axpy instruction, thus reducing the number of load and

store instructions.

» In the vector ISA, the data conversion takes just one cvth.w instruction while, in

the superscalar ISA, three instructions are needed.

As a conclusion, the reduction in the number of instructions and operations executed is
mainly caused by the concise way in which the vector loop is expressed in the vector ISA.
This reduction affects not only to the vector computations, but also the typical scalar

address calculations or data conversions, as it can be expressed using less instructions.
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Scalar Instructions in S-Regions
Program Add [Mul | Ld | St [ Control ]| Total
Swim256 0.18 | 0.0t | 0.10 | 0.09 0.08 0.47
Hydro2d 17.90 | 0.01 | 10.61 | 0.45 7.18 36.16
Nasa7 17.00 | 1.82 | 13.51 | 8.89 7.32 48.55
Tomcatv 104.66 | 0.01 | 13.20 [ 0.09 19.63 || 137.60
Bdna 84.12 | 3.48 | 31.28 | 10.54 36.60 || 166.06
Arc2d 2.84 | 0.12 4.14 0.73 1.48 9.34
Jpeg Decode 30.03 | 2.60 | 9.48 | 4.39 4.97 51.49
Epic 4.94 | 0.36 2.42 0.95 2.07 10.75
Jpeg Encode 25.94 1 0.01 | 1474 | 7.15 7.84 55.70
Gsm Encode 61.66 | 5.84 | 13.82 6.70 10.37 98.43

Table 3.17 Breakdown of scalar instructions for the S-regions of the vector programs.
All columns are in millions.

Vector Instructions in S-Regions
Program Add | Mul | Dyadic | Ld | St [ Total
Swim256 0 0 0 5 36 41
Hydro2d 0 0 0 5 565 570
Nasa7 1200 | 1200 3000 | 4200 | 8427 || 18027
Tomcatv 0 0 0 101 | 206 307
Bdna 0 0 0 | 5313 | 5605 i 10918
Arc2d 0 | 1068 26100 | 29772 | 2791 || 59731
Jpeg Decode 24 4 0] 4732 7751 || 12511
Epic 6 1 0 9 9 25
Jpeg Encode 10 0 0 5450 | 5523 || 10983
Gsm Encode 0 0 0| 1858 | 1858 3716

Table 3.18 Breakdown of vector instructions for the S-regions of the vector programs.

It is important to note that these results about the total number of instructions executed
allows us to study the pressure on the fetch and decode units. As superscalar programs
execute much more instructions than vector programs, the fetch and decode units in
the superscalar processor must be more sophisticated and aggressive to match the
performance of the vector processor. These units will consume more chip area in their

implementation, and their complexity can make the clock cycle time increase.

Let us now study the instruction distribution inside S-regions using the same cate-
gories as in section 3.4, that is, Add, Mul, Dyadic, Ld, St and Control categories.
Instructions in vector programs are first classified into scalar and vector, so that the
comparison between superscalar and vector programs involves three tables. Tables 3.17,
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Instructions in S-Regions
Program Add [ Mul [ Ld | St [ Control || Total
Swim256 0.09 | 0.006 | 0.09 | 0.06 0.02 0.27
Hydro2d 16.90 | 0.005 | 3.57 | 0.18 6.74 27.41
Nasa7 464 | 060 | 075 | 1.15 1.01 8.17
Tomcatv 71.75 | 0.00 | 26.01 | 0.07 19.53 || 117.37
Bdna 30.30 { 0.88 | 18.28 | 3.67 11.44 64.59
Arc2d 6.30 | 261 | 3.53 | 0.17 0.93 13.56
Jpeg Decode 49.47 | 049 | 8.15 | 3.20 2.72 64.05
Epic 440 | 029 | 118 ] 049 1.37 7.75
Jpeg Encode 3273 | 0.01 | 10.33 | 3.89 5.01 51.98
Gsm Encode || 205.15 | 9.28 | 22.20 | 8.79 18.71 || 264.15

Table 3.19 Breakdown of instructions for the S-regions of the superscalar programs.
All columns are in millions.

3.18 and 3.19 contain the number of instructions executed inside S-regions in each cat-
egory: scalar instructions in vector programs (table 3.17), vector instructions in vector

programs (table 3.18) and instructions in superscalar programs (table 3.19).

In general, scalar Add instructions are the most frequent inside S-regions. Recalling
that the Arc2d, Jpeg Decode and Gsm Encode programs execute more scalar instructions
inside S-regions in the superscalar versions, we can see in these tables that the extra
scalar operations executed mainly belong to the Add class. These programs make an
intensive use of data conversions, which are carried out with just one instruction in the
vector ISA (cvth.w), but this requires several instructions (extwl, s11 and sra) in the

superscalar ISA.

Regarding vector instructions, they are executed inside S-regions because of the over-
lapping between adjacent S- and D-regions, as discussed in section 2.6.3, page 48. The
number of vector instructions executed inside S-regions is very low, not exceeding in
aﬁy program 0.63% of the total number of instructions. Ld and St vector instructions
are the most frequent instructions as any vector loop usually starts loading vector data
and finishes storing vector results, so when overlapping ocurrs, these “frontier” instruc-
tions are executed inside the previous or the following S-region. In the next section,
the real computational load in the overlapping zones, in terms of operations, will be
studied.
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Scalar Instructions in D-Regions

Program Add | Mul [ Ld [ St [ Control | Total

Swim256 84.58 0.01 3.49 4.98 7.74 100.83
Hydro2d 87.18 0.91 21.66 18.93 13.28 141.99
Nasa7 617.43 | 90.25 | 298.16 | 101.27 97.52 || 1204.65
Tomcatv 5.77 0.19 0.79 0.47 0.60 7.85
Bdna 180.43 | 45.01 70.36 24.13 11.40 331.35
Arc2d 63.34 0.42 18.40 3.85 5.75 91.78
Jpeg Decode 0.48 0.00 0.13 0.06 0.02 0.70
Epic 2.97 0.00 0.81 0.99 0.36 5.14
Jpeg Encode 19.16 0.00 0.26 2.37 2.98 24.78
Gsm Encode 1.77 0.00 0.72 0.18 0.66 3.34

Table 3.20 Breakdown of scalar instructions inside D-regions for the vector pro-
grams. All columns are in millions.

Vector Instructions in D-Regions
Program Add | Mul | Ld | St [ Dyadic || Total
Swim256 21.23 | 11.08 | 21.26 | 10.20 11.05 || 74.84
Hydro2d 12.73 | 8.14 | 11.68 4.14 0.82 || 37.54
Nasa7 10.35 | 12.51 | 17.90 | 7.36 9.55 | 57.69
Tomcatv 2.34 1.83 1.75 | 0.74 0.15 6.83
Bdna 1.42 1.93 1.70 1.06 1.04 7.17
Arc2d 6.70 | 11.36 | 14.01 4.92 2.50 || 39.51
Jpeg Decode 029 | 0.08 | 0.04 | 0.03 0.08 0.54
Epic 049 | 020} 0.28 | 0.01 0.00 0.99
Jpeg Encode 233 | 041 4.96 0.34 2.40 (| 10.46
Gsm Encode 037 003 ]| 020 | 0.06 0.14 0.83

Table 3.21 Breakdown of vector instructions inside D-regions for the vector pro-
grams. All columns are in millions.

Finally, tables 3.20, 3.21 and 3.22 contain the same instruction distribution across the
six categories for D-regions. The more frequent category of scalar instructions inside
D-regions is the Add category, as can be seen in table 3.20. These scalar instructions
carry out all the loop control operations: loop counter increments, condition evalua-
tions, index increments, etc. However, the majority of the computational load of these
programs is carried out by the vector instructions, as discussed in section 3.5. The
results shown in table 3.21 do not allow drawing any conclusion about the instruc-
tion distribution, as different programs behave differently, and the real computational
load comes from studying the number of operations executed rather than the number

of instructions executed. For the scalar programs, data presented in table 3.22 show
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Instructions in D-Regions

Program Add | Mul [ Ld [ St [ Control | Total

Swim?256 3890.19 | 1750.01 | 2565.32 | 1167.97 64.80 || 9438.31
Hydro2d 1865.15 | 631.73 | 1466.25 | 398.10 23.08 || 4644.34
Nasa7 1695.16 | 982.21 | 2092.82 | 644.94 | 118.70 }| 5533.86
Tomcatv 275.32 162.67 248.46 88.51 5.31 780.29
Bdna 579.07 | 361.17 | 432.31 | 169.60 22.21 || 1564.38
Arc2d 1678.10 | 1069.92 | 1521.06 | 543.70 79.25 || 4892.04
Jpeg Decode 74.02 0.00 8.14 4.54 3.24 89.95
Epic 14.39 2.78 8.41 0.25 1.97 27.82
Jpeg Encode 146.32 18.35 78.09 11.09 19.17 273.03
Gsm Encode 302.68 24.29 60.83 12.93 4.34 405.08

Table 3.22 Breakdown of instructions inside D-regions for the superscalar programs.

All columns are in millions.

that the Add-type instructions are the most frequent instructions, except for Nasa7

program, followed by the Ld-type instructions.

3.9.4 Operation Distribution

Although the instruction study provides us with some important information that al-
lows predicting the behavior of the pressure in the fetch and decode units, measurements
about the operation distribution inside S-regions and D-regions show the real compu-
tational load of the programs. It is important to note that data referring to scalar
operations will match data already presented about scalar instructions, as one scalar
instruction performs exactly one operation. For that reason, tables referring to scalar

operations will not be repeated but will be recalled from previous sections instead.

The first measurements, shown in table 3.23, refer to the total number of operations
executed inside S-regions and D-regions. Columns 2 and 5 in this table present the total
number of operations executed inside S-regions and D-regions, respectively. Columns
3 and 4, are the data in column 2 distributed among scalar and vector operations, for
S-regions. Columns 6 and 7 present the same operation distribution for D-regions. The

analysis of these data shows several points:
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S-Regions D-Regions
Program Total || Scalar | Vector || Total [ Scalar | Vector
Swim256 0.47 0.47 | 0.0005 | 8230.50 100.83 | 8129.67
Hydro2d 36.16 36.16 | 0.0053 || 4049.55 141.99 | 3907.56
Nasa7 48.69 48.55 | 0.1496 || 5091.20 [ 1204.65 | 3886.55
Tomcatv 137.60 || 137.60 | 0.0028 710.70 7.85 702.85
Bdna 167.37 || 166.06 | 1.3192 || 1329.93 331.35 998.58
Arc2d 17.61 9.34 | 8.2757 || 4071.69 91.78 | 3979.91
Jpeg Decode 52.95 51.49 | 1.4698 80.88 0.70 80.18
Epic 10.75 10.75 | 0.0021 17.63 5.14 12.49
Jpeg Encode 57.06 55.70 | 1.3680 211.70 24.78 186.92
Gsm Encode 98.62 98.43 | 0.1989 62.78 3.34 59.44

Table 3.23 Breakdown of operations executed in S-regions and D-Regions for the
vector programs. All columns are in millions.

s The majority of the operations are executed inside D-regions, which was expected
to some extent as the set of programs is quite vectorizable (recall comments in
sections 3.7 and 3.9.1, pages 67 and 83, respectively).

-m The total number of vector operations executed inside S-regions due to the over-
lapping effect is very low, reaching the worst case in program Jpeg Decode with
1% of the total number of operations executed. The execution of these vector in-
structions outside D-regions hardly pollutes S-regions. The exception is program
Arc2d. For this program, the total number of vector operations executed inside
S-Regions is very low (only 0.2% of total number of operations executed). How-
ever, the fact that the size of the S-regions is also short, makes the overlapping
operations become an important part of them, reaching 47% of the total number
of operations executed inside these regions. These data provide quantitative sup-
port to section 2.6.3, page 48, where the importance of the overlapping between

consecutive S- and D-regions was discussed.

= Inside D-regions, the majority of the operations executed are carried out by means
of vector instructions, which was already shown in a different way in table 3.13,

page 83.

Comparing this data to the superscalar programs requires recalling table 3.16 in the

previous section, while considering table 3.23. It is not worth comparing results inside
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Vector Operations in S-regions

Program Add | Mul [ Dyadic | Ld [ St | Total

Swim256 0 0 0 45 461 506
Hydro2d 0 0 0 39 5267 5306
Nasa? 7200 7200 36000 25200 | 74047 149647
Tomcatv 0 0 0 908 1958 2866
Bdna 0 0 0| 656968 | 662305 || 1319273
Arc2d 0 | 102884 | 4993800 | 2888027 | 291061 j| 8275772
Jpeg Decode 744 124 0| 591205 | 877904 | 1469853
Epic 192 32 0 984 984 2160
Jpeg Encode 294 0 0| 682770 | 685029 || 1368093
Gsm Encode 0 0 0 99482 | 99482 198964

Table 3.24 Breakdown of vector operations inside S-regions for the vector programs,
in absolute number.

S-regions in these two tables since the behaviors inside S-regions in terms of operations
and instructions mainly matches. The reason is that the only difference between the
numbers of operations and instructions comes from the vector operations executed

inside the S-regions which hardly influence, as discussed above.

Comparison inside D-regions shows that superscalar programs execute much more op-
erations inside D-regions than vector programs (from 8% to 57% more operations, being
Gsm Encode program a special case that executes 646% more operations due to the
data vectorizations already commented). The notion of a region being executed using
a superscalar or a vector processor involves the idea of a computational unit that can
be expressed and executed in two different ways. From that point of view, these data
quantitatively support the idea that the vector ISA is able to express and execute a

vectorizable computational unit using less operations and instructions.

We now turn to the analysis of the operation distribution inside regions. Table 3.24
contains the vector operation distribution inside S-regions. As pointed out above, these
vector operations are executed inside S-regions because of the overlapping between
consecutive S- and D-regions. The most frequent operations are in the Ld and St
categories, being program Arc2d a special case that executes more that 50% of these

overlapping operations in the Dyadic category.
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Vector Operations in D-regions

Program Add | Mul [ Dyadic | Ld | St [ Total

Swim256 1891.00 | 946.09 | 2200.43 | 2061.73 | 1030.41 || 8129.67
Hydro2d 1294.86 826.84 168.21 | 1199.57 418.05 || 3907.56
Nasa7 716.26 | 683.89 | 659.50 | 1273.50 | 553.38 || 3886.55
Tomcatv 214.52 | 175.47 26.01 | 205.44 81.39 702.85
Bdna 169.75 | 233.50 | 258.31 | 207.25 | 129.76 998.58
Arc2d 631.41 | 1075.73 478.63 | 1326.26 467.87 || 3979.91
Jpeg Decode 37.82 10.59 21.18 6.04 4.53 80.18
Epic 5.45 2.65 0.00 4.29 0.08 12.49
Jpeg Encode 51.69 15.57 63.94 48.85 6.85 186.92
Gsm Encode 16.08 0.84 23.59 15.26 3.65 59.44

Table 3.25 Breakdown of vector operations inside D-regions for the vector programs.
All columns are in millions.

Finally, table 3.25 contains the vector operation distribution inside D-regions for the
vector programs. Since most of the total number of operations in a program are exe-
cuted as vector operations inside D-regions, this table is very similar to table 3.7, in
which the total operation distribution for vector programs was shown, and the same

comments can be applied.

3.10 HYBRID BENCHMARKS FOR VECTOR
EXECUTION: CHARACTERISTICS

As stated in section 2.7, page 49, the evaluation of the ILP+DLP architecture will be
carried out by using hybrid vector programs. The hybrid version of each program is
built by merging the D-regions generated with the vector compiler and the S-regions
generated by the superscalar compiler. Therefore, our hybrid vector benchmarks are
a quite good approximation to real programs compiled using an hypothetical modern

vectorizing compiler.

In the following sections we will present the characteristics of the hybrid vector bench-
marks in terms of instructions and operations executed as well as their vectorization
characteristics.
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| Program [ S-regions | D-regions | Total |
Swim256 0.27 175.67 175.94
Hydro2d 27.41 179.53 206.94
Nasa? 8.17 1262.34 || 1270.51
Tomcatv 117.37 14.68 132.05
Bdna 64.59 338.53 403.12
Arc2d 13.56 131.30 144.86
Jpeg Decode 64.05 1.24 65.29
Epic 7.75 6.14 13.89
Jpeg Encode 51.98 35.25 87.23
Gsm Encode 264.15 4.17 268.32

Table 3.26 Number of instructions in the hybrid set of benchmarks: inside S-regions,
inside D-regions, and total number of instructions. All columns are in millions.

3.10.1 Instruction Breakdown

Table 3.26 contains the total number of instructions executed by the hybrid vector
benchmark programs. Each program executes as many instructions inside S-regions as
the S-regions of the scalar program (column 2), and as many instructions inside D-
regions as the D-regions of the vector program (column 3). Finally, column 4 shows the
total number of instructions executed. Provided that the hybrid vector programs have a
lower number of instructions executed inside S-regions, the general trend is the decrease
in the total number of instructions executed. However, three programs (Arc2d, Jpeg
Decode, and Gsm Encode) behave oppositely. As commented in section 3.9.3, page 89,
the reason is that the vector compiler generates a better code inside S-regions, as these
programs make data conversions that are expressed in the vector ISA by using a lower

number of instructions.

3.10.2 Operation Distribution

Although the total number of instructions executed by the benchmark programs pro-

vides interesting information about the ISA, the total number of operations executed by

the programs is the real measure of their computational load. As shown in table 3.27,

and comparing it with column 3 in table 3.6, the hybrid vector programs execute, in

general, a lower number of operations than the vector programs. The exceptions are
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| Program [| S-regions | D-regions || Total |
Swim256 0.27 8230.50 || 8230.77
Hydro2d 27.41 4049.55 || 4076.96
Nasa7 8.17 5091.20 || 5099.37
Tomcatv 117.37 710.70 828.07
Bdna 64.59 1329.93 || 1394.52
Arc2d 13.56 4071.69 || 4085.25
Jpeg Decode 64.05 80.88 144.93
Epic 7.75 17.63 25.38
Jpeg Encode 51.98 211.70 263.68
Gsm Encode 264.15 62.78 326.93

Table 3.27 Number of operations in the hybrid set of benchmarks: inside S-regions,
inside D-regions, and total number of operations. All columns are in millions.

# instructions # vector | Vect | Avg.
Program Scalar | Vector | operations % VL
Swm256 101.01 74.84 8129.68 98.77 109
Hydro2d 169.40 37.54 3907.56 95.84 104
Nasa7 1212.82 57.71 3886.70 76.21 67
Tomcatv 125.22 6.83 702.85 84.87 | 103
Bdna 395.94 7.19 999.90 71.60 139
Arc2d 105.34 39.57 3988.18 97.42 | 101
Jpeg Decode 64.75 0.55 81.65 55.32 147
Epic 12.89 0.99 12.49 49.21 13
Jpeg Encode 76.76 10.47 188.29 70.88 18
Gsm Encode 267.49 0.83 59.64 18.18 71

Table 3.28 Basic operations counts for the hybrid vector benchmarks on the vector
machine (Columns 2-4 are in millions).

Jpeg Decode and Gsm Encode programs. These programs execute a larger number of
operations than the vector programs due to the reasons discussed in the previous sec-
tion. The rest of the hybrid vector programs execute many fewer operations than the
superscalar programs, as observed when comparing the total number of operations in
table 3.27 with column 2 in table 3.6.

3.10.3 Vector Characteristics

Provided that the hybrid programs have improved S-regions, leaving the D-regions

unchanged, their vector characteristics hardly differ from the vector characteristics of
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the pure vector programs. Table 3.28 shows, for the hybrid vector programs, the more
relevant vector characteristics, that is, the vectorization percentage and the average
vector length. As commented in section 3.7, page 67, the vectorization percentage is
defined as the ratio between the number of vector operations and the total number
of operations executed by the program. Given that the total number of operations
has changed, the vectorization percentage will also suffer some variations from that
presented in table 3.9. However, this difference is very slight in almost all programs,
as can be seen comparing columns 4 from tables 3.28 and 3.9. The differences reach
values between 0.2% and 5.2% in all programs, except for Arc2d, Jpeg Decode and Gsm
Encode. In these programs the vectorization percentage diminishes in 0.11%, 4.78%

and 18.77%, respectively.

Of course, the variation in the vectorization percentage depends on the variation under-
gone in the total number of operations executed. For this reason, program Swim256, for
example, hardly changes its vectorization percentage, as the reduction in the number
of operations hardly influences the 8230.5 million operations executed inside D-regions.
On the other side, in program Gsm Encode, this variation is rather significant due to
the large increase in the number of scalar operations executed in the hybrid vector

program.

Table 3.28 also shows the average vector length for the hybrid vector programs. Recall
from section 3.7 that the average vector length is the ratio between the number of vector
operations and the number of vector instructions. Since the D-regions have been kept
unchanged, both, the number of vector instructions and operations, remain constant
in the hybrid programs, so that the average vector length does not change from that

presented in table 3.9.

The rest of the vector characteristics, that is, vector length distribution, vector first
execution and vector mask execution, presented in section 3.7, do not change as they

are measured inside D-regions, which remain the same in hybrid vector programs.
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3.11 SUMMARY

In this chapter we have presented a study about the superscalar and vector programs
from the instruction set architecture level. We have started discussing the benefits of
the vector ISA in terms of instruction fetch bandwidth, memory system performance
(both latency and bandwidth) and datapath control.

Next, we have studied the distribution of basic blocks, instructions and operations ex-
ecuted. Vector programs execute fewer basic blocks, instructions and operations than
superscalar programs due to the higher semantic content of vector instructions and
the predicated execution under mask. Each vector instruction carries out several op-
erations on independent data, which reduces the total number of loop iterations, and
consequently, it also reduces the total number of operations for loop counter incre-
ments, index increments, condition evaluations and conditional branches. Therefore,
less aggressive fetch and decode units are needed, which can yield a faster clocking of
the datapath.

The study of the data types used by the programs show that while numerical programs
mainly work with 64-bit data types, multimedia programs work with 32-bit data. More-
over, multimedia programs carry out an important part of their operations with 8-bit
and 16-bit data.

The vector characterization of the ten benchmark programs analyzes the vector length
and vector stride distributions, and the vector first and vector mask executions. The
vector length distribution shows the way in which the different programs use the vector
registers. As the size of the vector registers decreases, more vector instructions with the
larger vector length are executed. The vector stride distribution shows that, although
the stride-1 memory accesses are the most frequently used, there is an important part
of memory accesses that are carried out with other larger strides. The vector first
execution analyzes a particular feature of C4 ISA [Con93]. This characteristic avoids
reloading data when executing code with data reuses inside, thus reducing the total
number of load and store operations. The execution under mask consists in executing

all the vector operations specified in one vector instruction, but only storing the results
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according to the bits of a vector mask that has been previously calculated. In this
way, the number of conditional branches and if-then-else structures are reduced, thus
making the programs less control-dependent. The operations that have been carried
out, but whose result have not been stored, can be seen as misspeculated operations.
The study of the masks has shown that, in spite of the large amount of misspeculated
work, it is probably worth using the mask execution because of the reduction in the

number of control instructions.

Another important topic discussed in this chapter is the influence of the vector length
on the total number of instructions and operations executed, as well as in the traffic
between the processor and the memory system. As the vector length increases, the
total number of instructions and operations decreases, since a lower number of loop
iterations is needed. Opposite to this effect is the increase in the size of the vector
register file as the vector length increases, which means that a greater chip area is

needed to allocate the vector register file inside the processor chip.

The analysis of the number of basic blocks, instructions and operations executed inside
S-regions and D-regions allows us to make a more detailed study of the pure scalar and
vector ISAs. The superscalar programs execute many more basic blocks, instructions
and operations inside D-regions than the vector programs. The analysis of the S-
regions shows that the quality of the scalar code generated by the superscalar compiler
is higher. The solution consists in building a new set of benchmark programs starting
from the pure superscalar and vector programs. Each hybrid vector program consists in
the original S-regions from the superscalar version plus the original D-regions from the
vector version. The hybrid vector programs execute fewer instructions and operations

than the pure vector programs while they keep almost the same vector characteristics.

In summary, we might state that, given the benefits of the vector ISA, it is worth
exploring the possibility of including a vector functional unit in a current superscalar

architecture. Next chapters will be devoted to the analysis of this proposal.
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A SUPERSCALAR PROCESSOR WITH A
VECTOR UNIT

Summary

In this chapter we describe in detail our proposed architecture, focusing first on the
datapath design, the vector register file and the vector unit included, and then describing
the memory hierarchy design. We also introduce a new cache design, named “vector
cache” that is aimed at delivering small vectors to the vector registers through a wide
path.
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4.1 INTRODUCTION

Our ILP+DLP proposal consists in adding vector facilities to a current superscalar
processor by including vector instructions in current scalar ISAs, and adding a vec-
tor register file connected to the functional units already present in the superscalar

Processor.

The critical factor that determines the overall performance of vector architectures has
always been the memory system. Traditional parallel vector supercomputers have been
backed with a memory system consisting of multiple banks and sections that can deliver
the high bandwidths that the processor requests. Moreover, to achieve low latencies,
high performance SRAM memory banks are typically used. This type of memory
systems is very expensive due to several factors. First, SRAM chips, used to achieve
low latency, are very expensive and offer a modest capacity. Therefore, a large number
of chips are needed to build a large memory system. Second, the interleaving required
to provide high bandwidth requires many independent sections and large crossbars,

which consume a large number of chips and board interconnections.

Designing a memory system that the superscalar market can afford has become a pri-
mary objective of this work. Moreover, we think that the use of alternative memory
devices with better performance/cost ratios, such as current RDRAM parts instead
of expensive SRAM ones is mandatory. In our proposed architecture we introduce a
memory system based on a novel cache design called “vector cache” which is a spe-
cially designed memory that can deliver full cache lines to the processor through a wide

connection.

The rest of this chapter is devoted to the description of the proposed architecture: the
datapath and the memory system, including the vector cache.
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Figure 4.1 Modeled architecture.

4.2 GENERAL DATAPATH

In this section, we describe the components of the datapath of our proposed architec-
ture. We will see the different pipelines present in the architecture, the units that have

been added in order to obtain vector functionality and the general characteristics of

the datapath operation.

Figure 4.1 shows the main components of the datapath for the proposed architecture.
The same figure is reproduced at full page at the end of the chapter, page 129, for a
more detailed analysis. Essentially, the architecture is modeled after a MIPS R10000
processor [Yag96], with the addition of a vector register file connected to both the

integer and the floating point functional units.

The general operation of the pipelines closely follows the R10k. Instructions are fetched
and sent to the decode stage in order, where they are renamed. Whenever a new
instruction enters the decode stage, a slot in the reorder buffer is allocated. Instructions
enter and exit the reorder buffer in program order. The renaming step consists in

translating each virtual register into a physical register by using a mapping table.
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There are four independent rename tables, one for integer registers, one for floating
point registers, one for vector registers and one for mask registers. Each table keeps
its own list of free registers. When an instruction defines a new value of a logical
register, the entry in the mapping table for that logical register must be updated with
a new physical register. The physical register is taken from the appropriate free list
and the mapping table is updated with that register number. Moreover, the old value
in the mapping table entry is stored in the reorder buffer slot of that instruction. It is
important to note that the information kept in the reorder buffer slots refers to register
numbers, and not to register values, which means that only a few bits are needed to
keep this information, so that the reorder buffer is a small size structure. Finally, the

old physical register is returned to the free list whenever the instruction is committed.

Whenever branch instructions enter the decode/rename stage, the processor predicts
the outcome of every branch and speculatively executes the branch based on this pre-
diction. The branch predictor is a gshare predictor [McF93] implemented similarly to
SimpleScalar Toolset [BA9T].

After the renaming stage, instructions are sent to one of the four issue queues according
to the instruction type. Instructions wait in these queues until their operands are ready
and then arbitrate for a free functional unit. The processor keeps decoded instructions
in four instruction queues, which dynamically issue instructions to the execution units.
The queues allow the processor to fetch and decode instructions at its maximum rate
without stalling because of instruction conflicts or dependencies. Instructions in every
queue can be executed out-of-order. The processor dynamically issues an instruction
as soon as the functional unit is ready to accept it, as long as the instruction does not
depend on other instructions that have not completed.

In general, instructions are fetched, decoded, issued and graduated in their original

program order, but they may be executed and completed out of program order.
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Figure 4.2 The four types of pipelines in the proposed architecture. The stages that

are carried out in order are shown in dark grey color.

Instruction Pipelines

There are four types of pipelines in the proposed architecture, one for each type of

instruction, as can be observed in figure 4.2.

After fetch and decode/rename stages, instructions are sent to one of the queues ac-
cording to their type. The superscalar core effectively fetches and decodes several
instructions in each cycle. Each decoded instruction is included in one of the four in-
struction queues, and each queue is able to issue instructions to one of the four types
of pipelines:

= The integer queue issues instructions to the integer pipeline.
s The floating point queue issues instructions to the floating point pipeline.
= The load/store queue issues instructions to the load/store unit.

m  The vector queue issues instructions to the vector pipeline.

The integer, floating point and vector queues check the status of all instructions in

the queue slots until they become ready, and only at that time they are issued to the
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appropriate functional unit for execution. Instructions in the Load /Store queue work in
a slightly different way. The first four stages of the Load /Store pipeline are carried out
in-order, and the rest of the stages can be performed out-of-order, based on dependence
information computed in previous stages and operand availability. The first four stages

of the load/store pipeline perform the following tasks:

Issue/Rf Stage: It issues the instruction and it reads the register file in order to obtain
the right values of the instruction operands. In particular, the integer register file is
read in order to obtain the value of the base memory register that allows calculating
the memory address to access. If necessary, the vector length and vector strides

registers are also read.

Range Stage: It performs the address range calculation, defined as the range of all
the addresses that the memory instruction can potentially modify. The range is
defined as all the memory addresses falling between the Range Start and the Range
End, that is,

Range_Start < address < Range_End

base_address < address < base_address + (VL —1) x VS,

being VL the vector length register and V'S the vector stride register. Note that,
in this expression, the multiplier could increase the processor cycle time. However,
this does not happen because of two reasons. On one side, the (VL — 1) term is
short. As the maximum vector length is 128, it will not be greater than 7 bits. On
the other side, the product (VL — 1) x V'S can be kept in an internal register that
will be implicitly updated whenever VL or V'S registers are modified.

Dependence Stages: They compute the dependences between the current instruction
and all previous instructions in the queue, using the information provided by the
range stage. Scalar memory instructions can bypass the second dependence stage
as their dependence calculations are easier to perform. Once an instruction does

not have any dependence it can proceed to the next stage.

Once the instructions have finished these stages, they can issue the memory requests

out-of-order.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



A Superscalar Processor with a Vector Unit 113

Regardless the instruction type, whenever one instruction finishes its execution is
marked as completed. However, as instructions are committed in program order, each
completed instruction can not be graduated until all previous instructions have been
graduated. An exception are store instructions, which are only allowed to be executed
and update memory when they are the head of the reorder buffer, that is, when they

are the oldest uncommitted instructions. This commit model enables a straightforward

implementation of precise exceptions, which in turn allows supporting virtual memory.

The Vector Register File and additional registers

The major addition to the superscalar processor core is the vector register file (VRF),
together with its connections to the available functional units, and a set of special

purpose registers: the vector length, vector stride, vector first and vector mask registers.

Three major parameters must be chosen concerning the Vector Register File: (1) num-
ber of logical vector registers, (2) number of physical vector registers for renaming, and

(3) length of each individual vector register.

We expect that a reasonable ISA will provide at least 16 programmer visible vector reg-
isters, to give enough flexibility to the compiler to schedule vectorized code. Previous
studies [EVS97] show that the number of physical registers required to support renam-
ing must be at least twice as many as the number of logical registers. Consequently,
we settled on 32 physical vector registers. On the other hand, the length of each vec-
tor register has to be chosen carefully. Traditional vector supercomputers have always
chosen vector lengths as large as possible (128, 256 or more). However, given the area
constraints of a microprocessor, we can not make our vector registers arbitrarily large.
Moreover, our studies show that not all multimedia applications can take advantage of
vector lengths larger than 8 or 16 elements [QCEV99] [QCEVO1].

For the purpose of this thesis, we have chosen to study different vector lengths: from 16
up to 128 elements. A vector length of 16 elements implies that the full vector register
file will use 4 Kbytes of storage (32 registersx 16 elements x 8 bytes). We consider that

this size is a reasonable choice for current and near-future technology. However, in the
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Figure 4.3 Example of (a) Parallel lanes in vector computing, (b) Superscalar Repli-
cation of functional units.

mid-term, as integration increases, larger vector registers might fit on-chip very well.
Therefore, we have also studied a vector register file where each vector register has 32,

64 or 128 elements (requiring a total of 8, 16 and 32 Kbytes of storage, respectively).

The vector instructions can operate both on integer and floating point data. Therefore,
the functional units of the original machine are also shared by the vector unit. In the
simplest design, (shown in figure 4.1) the vector unit can have a maximum of two vector
instructions in progress. As we scale up the architecture, we add parallel lanes to all
functional units. For example, in figure 4.1, k parallel lanes are shown. The addition of
parallel lanes can be achieved with a relatively simple logic by replicating the functional
units, splitting each vector register across each lane, and assigning each functional unit
to a certain lane, as shown in figures 4.1 and 4.3. The different elements of a vector
register are interleaved across lanes, allowing all lanes to work independently of each
other. In contrast, figure 4.3 also shows how this kind of scaling would be implemented
in a traditional superscalar design. Note the sharp difference in the complexity of each
organization’s crossbars. In the superscalar style, adding one functional unit requires
adding at least two read ports to the register file, which directly increases the crossbar
complexity from N x M to (N + 2) x (M + 2). However, in the vector case, adding
two functional units to this example only requires splitting the VRF into five lanes,
distributing the vector elements across the lanes and adding a 4 x 4 crossbar that

connects the new lane to the new functional units. Of course, in hardware terms the
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Register || Logical | Physical Read Write

File registers | registers ports ports

INT 32+3 64 9 3

FP 32 64 5 3

Vector 16 32 5 (per lane) | 3 (per lane)
kx5 kx3

Mask 1 18 3 2

CC 6 12 1 1
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Table 4.1 Register files characteristics. Three registers have been added to the integer
register file, which correspond to VL, VS and VF. The number of read and write ports
is global to each register file, except in the vector register file where the number of read
and write ports per lane are also specified.

addition of a small crossbar is much more simpler than the extension of an already

large one.

Besides the vector register file, a set of special purpose registers have been added.
These are the Vector Length (VL), Vector Stride (VS), Vector First (VF) and Vector
Mask (VM) registers, which have already been introduced in chapter 3. The vector
length and vector stride registers control the execution of all vector instructions while
the vector first and vector mask registers are only present in those instructions where
they are explicitly specified. The vector length, vector stride and vector first registers
are handled in the same way as integer registers, so that they are located and renamed
in the integer register file. Renaming is necessary because vector instructions are also
executed out-of-order, and each instruction needs its particular value of VL and VS.
Moreover, as instructions involving the assignment of new values to VL, VS and VF
imply the use of integer registers, it is a natural way to locate these special purpose

registers in the integer register file.

The vector mask register has as many bits inside as the maximum vector length. In
the largest case the vector mask register is 128-bit long, being larger than any integer
register. It is also necessary to rename this register in order to provide any vector
instruction with the right mask value. In figure 4.1 it must be noticed that the vector
mask registers must be accessible to the functional units in order to execute operations
under vector mask. Table 4.1 summarizes all register files present in the proposed

architecture. In this table we can also observe the characteristics of the Condition
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Code register file (CC), which contains six logical and twelve physical condition code

registers.

4.3 THE MEMORY HIERARCHY

In this section we describe the design of the memory hierarchy that provides the su-
perscalar+vector architecture with all the data that it needs. We will introduce the
vector cache, a speéially designed cache that is able to deliver “small vectors” to the
processor. We will analyze the advantages of including data caches into a scalar ar-
chitecture with vector functional units and we will explain why they were not used
in the old vector architectures. We will also address the bandwidth problem, and we
will propose an easy but effective method to increase the effective bandwidth of the
accesses already described in past works [RBS96] [CMMP95]. Finally, we will explain
the memory hierarchy designs that we will evaluate in our proposal in the following

chapters.

4.3.1 The Vector Cache: A Cache for Vector Accesses

First of all, we discuss the design of a cache-based memory system tuned to our vector
unit. The goals of our cache design are: first, to provide high bandwidth to the vector
register file. Second, to allow this bandwidth to scale up as we increase the number of
functional units. Third, due to the very distinct natures of the scalar memory stream
and the vector memory stream, to minimize the conflicts between them. Fourth, to
guarantee that the processor cycle time is not in jeopardy due to the inclusion of a high
bandwidth port to the vector register file.

The bandwidth problem

The cache hierarchy approach has been the solution for superscalar architectures to
overcome the ever increasing speed gap between processor and main memory. Current
superscalar processors integrate at least two levels of cache hierarchy. Typically, we can
find a small and fast on-chip L1 cache, backed up by a large (1-4MB) off-chip L2 cache.
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However, advances in logic integration have allowed recent superscalar processors (such
as the Alpha 21364 [Ban98]) to include both caches on-chip.

As the number of instructions executed in parallel increases, data caches with higher
bandwidth will be required. This is specially true in the case of vectorizable codes,
characterized by their memory hungry nature. To obtain high bandwidth from a cache,
several requirements must be satisfied. First, multiple TLB translations must be made
in parallel. Second, the cache must provide multiple access ports. For a small number
of ports (say 2 or 3) this is usually done by implementing a true multi-ported cache
(either time multiplexed as in the Alpha 21264 [Kes99] or with multiple cache copies
as in the Alpha 21164 [BK95]). However, research results show that for large number
of ports, say 4 to 16, this is not feasible and alternative designs using multiple banks
or hybrids of multi-bank and multi-port must be used [JNT97] [RTAD97].

Thus, no obvious solution seems to be available for scaling current superscalar pro-
cessors up to issuing four or more memory accesses per cycle. Even though accesses
tend to exhibit high spatial locality, the out-of-order nature of the references makes
it difficult to take advantage of this locality in order to maximize the effective rate of
data accesses. In many cases, the spatial locality often translates into bank collisions
in multi-bank data caches, thus decreasing the effective bandwidth of the cache ports.

Contrary to scalar memory traffic, vector memory accesses offer an easy way to exploit
the spatial locality of references. A vector access is characterized by three different
parameters: initial address, vector length (that is, number of references of the vector
access), and vector stride (that is, the distance between consecutive references inside

the vector access).

If the vector access stride is 1, then we have maximum spatial locality and an oppor-
tunity to take advantage of the bandwidth available on chip. Considering the density
of current chip technology, why not having a very wide path from the cache into the
vector registers ? When a 16-element stride-1 vector request is launched, it is easy to
envision the first level cache delivering full cache lines to the processor as opposed to

delivering a single element per cycle. Current superscalars can not take advantage of
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this, because each cache access is independent of all other cache accesses. Meanwhile,
a stride-1 vector access typically needs a single TLB translation! and then it accesses

multiple elements from the cache.
A cache for vector accesses ?

Traditional vector architectures have not used data caches for vector data. This design
decision was based on three different claims [HS93] [KSF*94], that we question as

follows:

» Claim 1: Memory latencies are amortized among the large number of data refer-
enced in a vector access. While being true that vector machines are characterized
for their ability to tolerate long memory latencies better than superscalar archi-
tectures, it has been shown in [EVS97] that typical vector codes are actually very
sensitive to increases in memory latency, resulting in severe losses of performance.
Therefore, on-chip data caches may help to reduce the average access time of the

vector memory accesses, thus improving performance.

s Claim 2: Vector workloads are claimed to have low spatial and temporal locality,
and it is already exploited by the large vector registers. As we will see later, vector-
ized versions of typical superscalar codes still exhibit enough spatial and temporal
locality to be exploited by a data cache, even with large vector registers. Further-
more, a data cache is an ideal solution to overcome the problem of the vector spill

code, typically found when we have a limited number of registers at the ISA level.

»  Claim 3: Caches do not have enough bandwidth to satisfy the bandwidth require-
ments of a vector processor. The cache bandwidth mismatch problem can be solved
by exploiting the intrinsic spatial locality of vector accesses and, indeed, this is what
our vector cache design proposes. Vector instructions allow exploiting spatial local-
ity of numerical and multimedia codes because the VL is implicit in the instruction
semantic, which supplies a natural prefetching mechanism. Moreover, the vector
approach orthogonally rearranges the memory references in comparison to the way

!When crossing page boundaries two translations would be made
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the conventional approach does, thus explicitly exposing the spatial locality with

no interleaving between heterogeneous memory access streams.

For all these reasons we consider that the inclusion of a cache for vector accesses is
a promising alternative that is worth exploring for our proposed architecture. The
following sections make an in depth description of the vector cache datapath, as well
as they describe the way the vector cache is included in the memory system, that is,

the memory hierarchy.
The vector cache

We have designed a high bandwidth data cache targeted at accessing stride-1 vector
accesses by loading a whole cache line instead of individually loading the vector elements
(see figure 4.4). Then, a shift and mask logic correctly aligns the data, eliminating
residuals. The vector cache is able to achieve high bandwidth ratios for stride-1 accesses,
even for unaligned addresses. The two main hot spots of this design, which will be
deeply discussed in the following sections, are the alignment logic and the impact of

strided vector accesses in the overall performance.

This cache design heavily borrows from the ideas introduced in [CMMP95] [RBS96]
where a similar cache architecture was proposed to deal with the problem of unaligned
accesses in instruction caches. In these previous papers, however, only the load path
to the cache was considered, since the cache was used only to fetch instructions. Our

design, in contrast, must include a store path to write data into the cache.

Figure 4.4 shows the proposed design. The cache is two-bank interleaved so that two
consecutive cache lines can be accessed. Therefore, a whole vector access overlapped
over two different lines can be accessed simultaneously. This scheme requires three
different logic blocks to perform the data alignment: an interchange switch, since we
may need to swap the position of the two lines, a shift, to align the lines accessed to
the specified initial address, and a logic to mask the unused data based on the vector

length of the required vector access.
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Figure 4.5 shows the corresponding datapath that allows loading and storing from

the vector cache.

For load operations, the cache lines loaded from both banks are

first swapped conveniently, and then shifted and masked. Once the vector has been

accessed, it is written into the appropriate vector register using a wide bus that writes

all vector elements in parallel. In [RBS96] it is claimed that a load could effectively be

completed in a single cycle, because: (1) the left-shift amount (4 modulo line size)

is known at the beginning of the cache access cycle, and has the entire cache access

to fanout to the shifter datapath, and (2) assuming a transmission gate barrel shifter,

data pass through only one transmission gate delay.
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Unfortunately, this is not possible for store operations. First, we need to shift and
mask the data from the vector register, and then swap the partition conveniently.
Once these operations have been carried out, the store over the cache banks can be
effectively performed. Therefore, we will assume that the required time to perform a

store operation is two cycles.

Unaligned accesses

An important question to take into account is why designing such a complex alignment
network for the vector accesses instead of forcing all vector loads and stores to use

naturally aligned addresses?

Three main reasons have led us to model the shift and mask logic. First of all, our
benchmark programs are compiled on a machine with no alignment constraints (a
Convex C4) and, therefore, many unaligned accesses occur during program execution.
Second, the analysis of multimedia workloads shows that misaligned accesses are the
norm and not the exception. Multimedia and DSP codes make a great use of small
matrices that are difficult to align. Third, even for numerical codes, where padding
to force the proper alignment is somewhat easier, we feel that the ability to access
misaligned vectors provides the compiler with much more freedom. Moreover, as we
shall see in the following chapter, our final design uses the vector cache previously
described as the Level-2 cache (not as an L1). Therefore, pipelining this shift and mask
logic should have minimal impact on processor cycle time and, at worst, it would only

add a single cycle of latency to the vector memory path.

The write buffer

The write buffer for our vector cache has been designed following the results presented
in [SC97]. We have implemented a coalescing write buffer with a width equal to the
cache line size, since it has to be able to insert both scalar and vector accesses. The
retirement order is FIFO, as usual, except for those cases where a load hits a write
buffer entry. In those cases, we have chosen a flush item only policy combined with a

data bypass mechanism to reduce the latency of the access. The normal retirement is
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produced when the number of write buffer entries is greater or equal than X (retire-
at-X policy), where X is half the depth of the write buffer. Additionally, our model
does not allow merging stores into an entry that is being retired, although they can
update other buffer entries while a retirement takes place. The write buffer that we
have modeled has a single port. Therefore, in the event of a cache line miss, two cycles
are required to test if the desired data are located in the write buffer (since a vector

access may be overlapped over two different write buffer entries).
The non-blocking mechanism

Intuitively, supporting bandwidth hungry codes such as numerical and multimedia ap-

plications requires a significant degree of non-blocking operation in the cache.

We have designed a Miss Status Holding Register (MSHR) table [CB92] specially tar-
geted at our proposed vector cache. When the maximum vector length is 16 a single
vector access may cause two cache line misses, since we assume that the maximum
vector length equals the size of a cache line and we also allow misaligned accesses.
Therefore, each entry of the MSHR needs to hold miss state information for two cache
lines. Scalar accesses and vector accesses with strides larger than the cache line size,
only make effective use of a half of each MSHR entry. Similarly, when the maximum
vector length is 128 a vector access may cause eight or nine cache line misses. In this
case we need four or five MSHR entries available in order to keep the non-blocking
mechanism in the cache.

When a line arrives from the upper level of the memory hierarchy, it clears the “pending
line” bit in the appropriate MSHR entries. An entry will only be freed when none of its
two line descriptors are asserted. In case of having more than one entry to be retired,

the retirement is given the highest priority based on the age of every entry.

Another important feature is the possibility of making what we have named “data
compression” in the vector memory accesses. The vector cache is targeted at providing
a given amount of 64-bit words, so that when the processor issues a stride one vector

memory instruction of a smaller data type, say for example 32-bit words, the double
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(CA) (CB)

Figure 4.6 The vector cache data path.

of elements can be provided in one single cache access, thus providing all the data in a

shorter time, and needing a half number of MSHR entries.

4.3.2 Cache Hierarchy

The design of the cache hierarchy scheme is a critical key for the performance of the
whole system. After describing the basic principles of the “vector cache”, now it is time
to decide whether this vector cache should act as a first level or as a higher level cache.
Our goal is the design of a scheme which would become the best trade-off between
performance on numerical/multimedia applications and typical non-numerical and/or
non-vectorizable codes. Furthermore, critical issues such as the inclusion property
between the cache levels, and, what is more important, the coherence of the accesses
must be taken into account since they will have a great impact on the final performance.
We have developed two alternative cache hierarchies that we will describe now and will

be evaluated and compared in the following chapter.
Model A: Vector Cache in L1

The most naive approach would simply make the vector cache a first level cache and

provide a wide path between this cache and the vector registers. This first design,
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which we refer to as the CA cache model, is shown in figure 4.6. Both, vector and
scalar accesses, are sent to the L1 cache using a Bx 64-bit words wide bus. A stride-
1 vector access of VL elements that hits in the cache uses the full bus bandwidth
and takes just [V L/B] cycles to complete. Scalar accesses and non-stride-1 vector
accesses, however, can not take advantage of the full width of the bus and simply load
a maximum of one word per cycle. Finally, the L2 data cache, which is assumed to
be on-chip, is a conventional cache that will be connected by a bidirectional bus to an
external RAMBUS controller [Cri97]. Since we would like our model to be extensible
to multiprocessing, our simulators faithfully model all the coherency traffic required to
maintain the inclusion property. The data contained in L1 must be a strict subset of
the data contained in L2. For instance, if a 128-byte line is evicted from L2, then care
must be taken to invalidate, if present, all its four 32-byte sub-lines in L1.

There are several disadvantages to having the vector cache at the first level:

= First, the complexity of the vector cache could jeopardize the processor cycle time.
The processor cycle time is mainly defined by the time taken to access the L1 data
cache. As the vector cache has extra stages in order to switch, shift and mask the
data, processor cycle time could be increased by the time needed to make these

tasks, which would involve an important performance loss.

= It would be difficult to extend the vector cache design to a multiported configura-
tion. In order to provide the processor with extra ports to the memory system, the
vector cache must be re-designed as these extra ports also require their own switch,
shift and mask logic, as well as temporal registers, multiplexors, connections to the

write buffer and other logic elements.

= Storing to the vector cache takes two cycles, which could potentially compromise
scalar performance. In current superscalar architectures, both, load and store, take
one cycle to execute. Therefore, making scalar stores to take a double number
of cycles would introduce additional execution cycles, thus yielding a serious per-
formance loss. However, vector stores are not so affected by this 2-cycle latency

because, as previously discussed, vector instructions are latency tolerant. The two-
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cycle latency is amortized among all the vector elements, providing a very small

mean latency.

= The vector working set is expected to be several times larger than the capacity of
the L1 cache although, in many cases, it might fit in a large L2 cache. If this is
the case, then constantly missing in L1 to find data in L2 incurs control overheads
that could be cut down if a direct path to L2 were provided.

Model B: Vector Cache in L2

All these problems can be overcome in the CB model, also shown in figure 4.6. The
CB model has a conventional single-ported L1 data cache with small lines, for example
32 bytes. Scalar accesses are sent to the L1 conventional data cache at a maximum
rate of one element per cycle. On the other hand, vector accesses bypass the L1 con-
ventional cache to access directly the L2 vector cache [Hsu94] [Sha99]. These accesses
are performed at a maximum rate of B elements when the stride is one, and at a rate
of 1 element per cycle for any other stride. The L1 data cache uses the wide path for
its refills. Of course, the problem when bypassing the L1 is data coherency, an issue

that we consider in the following subsection.

The CB model effectively “decouples” the scalar working set from the vector working
set. Scalar accesses are made exactly in the same way as in a pure superscalar processor,
with latency also remaining unchanged. Vector accesses pay a slightly larger latency
but, in return, they hit much more often in the L2. Since vector code is more latency
tolerant than scalar code, this increase in latency should have a minimal impact on
performance, while the better hit rate should provide the vector unit with a very large
effective bandwidth.

Coherency Protocol in the Memory System

When a vector access is made to the L2 bypassing the L1, two integrity problems must
be taken into account. First, as was the case in CA, we must follow the inclusion prin-
ciple. Second, data coherency between L1 and L2 must be maintained. Following the

inclusion principle implies that, whenever an L2 cache line is replaced, “invalidation”
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commands are sent to the L1 to flush the appropriate lines. Observing the inclusion
principle allows us to design a very simple coherence protocol to solve the data co-
herency problem. Every cache line (in L1 and L2) has an Ezclusive bit associated to
it. A certain cache line can be in exclusive state either in the L1 or in the L2 caches,
but never in both caches simultaneously. The idea is that a scalar access to the L1 or a
vector access to the L2 can only use the data in the line being accessed if its exclusive

bit is set. If the bit is not set, we have two different situations.

If a scalar access finds a line without the exclusive bit, it means that the line has been
read or written by the vector unit using the bypass path. Therefore, the L1 requests
the line to the L2 and acquires the exclusive state.

If a vector access finds a line without the exclusive bit, it means that, potentially, a
part of the line might have been written in the L1 by a scalar access (this could be a
true hazard or a false sharing situation). The L2 sends a ‘flush’ command to the L1 to
get the most recent copy of the line (acquiring the exclusive state) and then serves the

access.

Although other protocols could be more efficient, they have the drawback of being more
complex and time consuming. We have chosen this protocol because of its simplicity

and acceptable results.

4.3.3 RAMBUS Main Memory

The Direct Rambus DRAM (RDRAM) [Cri97] is the memory technology that provides
high bandwidth, which is the characteristic that the vector execution needs due to the

high bandwidth that is demanded to the main memory system.

We have modeled a 128MB Rambus main memory system, shown in figure 4.7, which
contains a RDRAM controller driving 8 Rambus chips and 16 memory banks per Rambus
chip (128 banks total). This structure is replicated to obtain the desired 64-bit word
at 400Mhz, since the CPU is assumed to work at this frequency. The bus connecting
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Figure 4.7 The main memory system modeled using RDRAM technology.

the L2 to the Rambus is a 128-bit wide, bi-directional data bus running at 200Mhz,
resulting in a memory bandwidth of approximately 3,2 Gb/s.

The L2 cache controller sends cache line requests to the Rambus controller, which
manages the RDRAM modules based on the RDRAM protocol. Two optimizations
have been added to the Rambus controller: first, no ROW command is generated on
a bank hit, and, second, the re-organization of queued requests is allowed in order to
maximize throughput. Note that a store request from the cache will have to wait for

any previous load operation to avoid collisions in the main bus.

4.4 SUMMARY

In this chapter we have presented the superscalar+vector architecture. We have de-
scribed the datapath, which is very similar to a current superscalar datapath. The
main difference comes from the addition of a Vector Register File (VRF) and its con-

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



128 CHAPTER 4

nections to the functional units present in the architecture. Some other special purpose
registers have been added: the vector length, vector stride, vector first and vector mask
registers. The datapath uses out-of-order execution and register renaming. The general
operation of the pipelines closely follows the R10k. Instructions are fetched and sent to
the decode stage where they are renamed. There are four rename tables, one for integer
registers, one for floating point registers, one for vector registers and one for mask reg-
isters. Once renamed, instructions go to the appropriate queue where they wait until
their operands are ready and then arbitrate for a free functional unit. Instructions in
every queue can be executed out-of-order, but they are graduated in program order.
There are four types of pipelines in the datapath: integer, floating point, vector and
load/store pipelines. While the three first pipelines simply monitor the status of the
instructions in their queues and when they become ready they are issued to the ap-
propriate functional unit, the latter pipeline works differently. It has four initial stages
that are carried out in order: Issue/RF, Range, Dependencel and Dependence2. These
stages are aimed at computing dependences among instructions, so that the rest of
the stages can proceed out-of-order, based on the dependence information calculated

before.

On the other side, the memory system is based on a new cache design, called “vector
cache”, which is able to deliver small vectors to the processor through a wide path.
Although traditional vector processors have not used caches for vector accesses, current
technology seems to indicate that this decision must be revisited. The vector cache is
a dual banked memory from which full lines are read. These lines are switched, shifted
and masked as necessary, and then data are sent to the processor. In this way, a high
bandwidth, low latency data path to the memory is achieved. Among the different
ways in which the vector cache can be included in the memory hierarchy, we explore
two options: either include it as the L1 cache, or include it as the L2 data cache adding
a direct path from the vector cache to the processor. Both models are backed with a

Rambus main memory. These two models will be evaluated in the following chapters.
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5

POTENTIAL PERFORMANCE AND
SCALABILITY

Summary

In this chapter we will present some performance results of the proposed superscalar
architecture with a vector unit and we will compare it with a traditional superscalar
core. We are interested in two different aspects: performance scalability and real per-
formance. The performance scalability is studied assuming a perfect memory system.
Afterwards, a study of the real performance is carried out considering the two different

cache organizations introduced in the previous chapter.
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5.1 INTRODUCTION

After describing the ILP+DLP architecture and the memory hierarchy, this chapter
evaluates their performance. We present some performance results of the superscalar
architecture with a vector unit (SSV architecture, from now on) that we proposed,
and we compare it with a traditional superscalar core. The performance evaluation is

carried out in two different aspects:

s On one hand, we study the scalability of the proposed architecture in terms of the
amount of instruction/operation level parallelism achieved with a perfect memory.
We wish to understand how performance scales as we add more and more functional

units to the processor.

=  On the other hand, we will present some results about the performance of the pro-
posed architecture backed with our cache hierarchy, discussing the relative merits
of the CA and CB cache organizations, and comparing it to a typical superscalar

core with a traditional memory hierarchy.

Scalability study with a perfect memory hierarchy

The study of scalability and potential performance analyzes how the SSV architecture
behaves as the memory and computational power increases. Intuitively, the greater the
number of functional units, the higher the performance. In the limit case, there could
be as many functional units as the vector length, so that a vector instruction could be
carried out in just one cycle. The new contribution comes from the way the functional
units are added: we keep the same two functional units and we increase the unit width

by replicating them, but controlled with the same lines.

This first approximation will be carried out considering a perfect memory system.
The goal of this study is to know the maximum potential performance that the SSV
architecture might reach. To this end, we will start by presenting performance figures

assuming a perfect cache system with infinite bandwidth and 100% hit rate.
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This chapter will also investigate the effects of vector length on scalability. The maxi-
mum vector length will influence the potential performance that the SSV architecture
can achieve. Therefore, we will carry out the study for maximum vector lengths of 16
and 128 elements, which will give us an upper and lower bound of performance for any

other vector lengths comprised between these two.

Apart from studying the overall performance, we will also discuss measures inside D-
regions and S-regions, so we will be able to understand what the contributions of
D-regions and S-regions to overall performance are, and how these contributions limit

overall performance.

For comparison purposes we have chosen a typical superscalar architecture (SS archi-
tecture, from now on) as a reference, and we have compared the relative performance

improvements of both architectures as they are scaled up.

Scalability study with a real memory hierarchy

The second important study of this chapter refers to the achieved performance of the
SSV architecture when a real memory hierarchy is attached to the processor. Obviously,
adding a real memory system will cause a significant performance loss because of the
additional cycles that every memory access will take to execute. The main factors that

influence the quantitative importance of the performance loss are the following:

s The characteristics of the memory system. In vectorizable programs, the
real bandwidth that the memory system can provide is especially important. This
real bandwidth depends on the configuration and design of the memory system. As

introduced in chapter 4, we propose two memory systems.

In this chapter, we study both memory models, not only from the performance
point of view, but also in terms of the amount of traffic that both models generate
through the memory, as well as in terms of the hit/miss rate that the processor
perceives whenever it carries out a memory access. Starting from these data, we

will discuss the relative merits of both cache organizations.
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Regarding the election of the best memory model, we will see that different factors,
such that the size of the working set or the vector stride, will provide different
performance behaviors in our set of benchmarks. Moreover, in order to make a
decision about which is the best of both memory models, it is also important to
consider what the behavior of low vectorizable programs would be, when executed

in an architecture that has been tuned to execute vectorizable programs.

The stride of the vector memory accesses. In both models the spatial locality
property is exploited by fetching sequential data from the outer memory level.
However, as mentioned before, performance will vary depending on the vector stride
and the vector length of the memory accesses. When the vector stride of the memory
accesses is 1, all data brought from memory are actually used. However, for vector
strides greater than 1, not all transferred elements are really used. The greater
the stride, the higher the number of elements of the cache lines that are not used,
thus meaning that the effective memory bandwidth that the processor perceives is

smaller.

The vector length of the vector memory accesses. The effect of the vector
length is, in some way, related to the previous discussion. A vector memory access
of 128 elements with stride 1 will take less number of cycles if the maximum vector
length is 128 than if it is 16. The reason is not only that less instructions must be
fetched, decoded, issued, executed and graduated, but also that the memory access

time must be payed just once.

The vectorization percentage of the programs. This measure will also affect
their performance results. It is intuitive that the addition of a vector unit will
provide some performance gain to those programs that can take advantage of it,
as less instructions and operations must be carried out. Therefore, the greater the
use of the vector unit, the higher the performance gain that can be obtained, to
a certain extent. All in all, the greater performance gains will be obtained for
programs with both, a high vectorization percentage and a large vector length with

vector stride equal 1.
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The performance study for the real memory system will include not only the overall
performance data, but also a deep study about the behavior inside D-regions and S-

regions.

We will compare the performance results against a superscalar architecture backed with
a traditional cache based memory system. Of course, the SS-architecture has also been
properly scaled. This comparison allows us to make an evaluation of the proposed

architecture in terms of performance feasibility.

In short, these scalability studies will show that:

s The SSV architecture scales very well as more memory and computing resources
are added.

» The SSV architecture reaches higher performance values than the traditional SS

architecture.

s The SSV architecture achieves higher parallelism inside D-regions than the SS ar-
chitecture. Performance inside S-regions is better for the SS architecture. Its
contribution to the overall performance is determined by the relative weight of D-

and S-regions in the whole programs.

»  For vectorizable programs, the overall performance is mainly determined by the

behavior inside D-regions.

= Numerical programs put a higher pressure on the main memory, and the CB mem-
ory model reacts much better to this pressure with a lower main memory traffic

and higher hit rates.

5.2 MACHINE CONFIGURATIONS

The scalability studies previously introduced will be carried out over a set of configura-
tions. Table 5.1 shows the architectural parameters of all the configurations for both,
the SSV and SS architectures. The upper part of table 5.1 presents the SSV configura-

tions and the lower part shows the SS configurations. A machine configuration, either
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[ Superscalar with Vector Unit (S5V)

[ MEMxFLOPS [ ix2 [ 2x4 J 4x4 | 4x8 [ 4x16 || 8x4 | 8x8 | 8x16 |[ 16x4 | 16x8 | 16x16 | 16x32
Fetch/issue/grad 4 - 4
# Mem. ports 1xlw - 1 x 4 words 1 x 8 words 1 x 16 words
# VEC FP units 2x1 - 2x2 2x4 2x8 2x2 | 2x4 2x8 2x2 2x4 2x8 2x16
# VEC INT units 2x1 - 2x2 2x4 2x8 2x2 2x4 2x8 2x2 2x4 2x8 2x16
ROB size 64 - : 64
L/S queue 32 - 32
BTB/Lbranch 0.5/4K - 0.5/4K

I Superscalar (SS)

[ MEMxFLOPS [ 1x2 | 2x4 || 4x4 | 4x8 [ 4x16 || 8x4 [ 8x8 | 8x16 [[ 16x4 | 16x8 | 16x16 | 16x32 ||

Fetch/issue/grad 4 8 - 16 - - - 24 - - 32 48
# Mem. ports Ixlw 2x1w - 4xlw - - - 8xlw - - 16x1w 16x1lw
# FP units 2 4 - 8 - - - 16 - - 16 32
# INT units 2 4 - 8 - - - 16 - - 16 32
ROB size 32 64 - 128 - - - 256 - - 256 512
L/S queue 16 32 - 64 - - - 128 - - 128 128
BTB/Lbranch 0.5/4K || 1/8K = | 2/16K - - - | 4/32K - B 4/32K | 4/32K

Table 5.1 Configuration parameters for the Superscalar with Vector unit (SSV) and
Superscalar (SS) architectures.

SSV or SS, is defined by two parameters MEMxFLOPS, where MEM is the total
number of 64-bit words that can be moved between memory and the register file in each
cycle, and FLOPS is the total number of floating point results that can be performed
in every cycle. For example, the SSV-8x16 configuration defines an SSV architecture
that is able to read 8 64-bit words from memory each cycle and can generate a total
of 16 floating point results per cycle (8 results per cycle in each of the two functional

units).

The SSV architecture has been built starting from a basic superscalar core that is able
to fetch, decode, issue and graduate four instructions per cycle (configuration SSV-1x2
in table 5.1). This basic configuration has a unique memory port which provides one
64-bit word in each cycle, two floating point functional units, and two integer functional
units, each one operating one result per cycle. The NxM name, for the FP and INT
vector units, means that there are N different functional units, each one able to operate
M data in each cycle. In our case N always equals 2, for the SSV architecture, as there
are two different functional units of each type (INT and FP). In each case, we will be

varying their widths, that is, the number of data that can be simultaneously operated.
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The rest of parameters that define the superscalar core of the SSV architecture have
been configured taking into account the nature of vector programs and also knowing
that this superscalar core will remain the same as the SSV architecture is scaled. It
is important to prox}ide'enough entries in the reorder buffer due to the large number
of cycles that vector instructions may take to execute. As an example, imagine a
SSV configuration with 2 functional units, each one able to operate one data in each
cycle, and maximum vector length of 128 elements. In this architecture, a vector add
instruction will take 128 cycles to execute, once the functional unit has been assigned
to the instruction. If the following instructions depend on the vector add that is being
carried out, and no independent instructions can be found to be issued to the other
functional unit, the processor will be stopped for many cycles. Dependences between
consecutive vector instructions have an important negative effect because they cause a
sequential execution of the instructions, even making some of the functional units be idle
during many cycles. Therefore, it is important to provide the superscalar core with some
additional aggressiveness. This aggressiveness will allow the processor to look further
down the instruction stream for instructions that can initiate their execution without
needing the results produced by the other instructions which are being executed. For

that reason the size of the Reorder Buffer has been set to 64 entries.

As the SSV architecture is scaled, and therefore is able to process more and more data in
each cycle, the effect previously discussed diminishes, and the additional aggressiveness
of the superscalar core does not determine so much the performance behavior of the
vector code. Following the previous example, imagine that the configuration in this
case has two functional units and each of them can now process sixteen data in each
cycle. In that case, the vector add instruction with 128 vector elements previously
mentioned would just take 8 cycles to be executed. Despite the fact that, intuitively,
it might seem that the aggressiveness of the superscalar core can be reduced as the
configurations are scaled, this is not so. The reason is that we must guarantee that the
scalar code of the vector programs execute fluidly, without becoming a performance
bottleneck. Therefore, the performance differences between two of these configurations
will come from the difference in the width of the functional units and the memory port.
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In order to select the configuration set that we study in this chapter, we define what
the relationship between the MEM and FLOPS parameters of a certain configuration
should be, so that we will obtain the best performance/cost rate. In this sense, it
is important to note that the connection with the memory system determines the
performance answer in many programs. As we will see in the next chapter, in some
of the programs, the performance is directly related to the bandwidth of the memory
system. Moreover, it is more expensive to increase the MEM parameter than the
FLOPS one. Therefore, we have designed the configuration set by fixing the MEM
parameter and exploring the FLOPS parameter. For example, we have set MEM to 4,
and we have explored FLOPS equal 4, 8 and 16, thus setting configurations SSV-4x4,
SSV-4x8 and SSV-4x16, respectively. The most aggressive configuration is SSV-16x32,
which can read/write from memory 16 64-bit words in each cycle, and perform 32
floating point results every cycle (16 results in each floating point functional unit). This
way of generating the configuration set allows us to study the effect in performance of

improving the computing power, as well as the effect of improving the memory power.

In the SS architecture, scaling the different configurations requires not only scaling
the MEM and FLOPS parameters but also properly scaling the superscalar engine.
The simpler configuration is SS-1x2, as can be seen in table 5.1. In this configuration
the processor is able to read one 64-bit word from memory in each cycle, and it can
process two floating point results in each cycle. This basic configuration is able to
fetch, decode, issue and commit four instructions in each cycle. Its reorder buffer has
32 entries and the load/store queue has 16 entries. The branch predictor is configured
with a 0.5 K entries branch target buffer (BTB) and the size of the gshare prediction
table (Lbranch) is 4K. This configuration approximates a MIPS R10000 processor and

is the basic configuration that we have used in this study.

As the SS configurations are’scaled, we add more independent memory ports and
functional units. For example, the SS-4x8 configuration, shown in table 5.1, has 4
independent memory ports, each one able to move one 64-bit word in each cycle, and
8 floating point and 8 integer functional units, all of them independent. Therefore,
20 results can be generated in each cycle. Naturally, fetch, decode and issue must be

scaled to be able to feed these execution resources. Therefore, this configuration can
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fetch, decode, issue and graduate 16 instructions in each cycle, its reorder buffer has
128 entries, the load/store queue has 64 entries and the branch predictor has a BTB of
2 K entries and a Lbranch size of 16K.

It is important to note the sharp difference between SS and SSV in each pair of configu-
rations that has the same total memory and computing power, that is, any configuration
pair that has the same MEMxFLOPS name. For example, for the pair SS-4x8 and
SSV-4x8, the SS-4x8 configuration has 4 independent memory ports. Each port is able
to move one 64-bit word in each cycle, from different memory instructions, so that they
can potentially access different memory locations. In contrast, the SSV-4x8 configura-
tion moves four 64-bit words that are sequentially located in memory. These four words
correspond to a unique vector memory access. The SSV only needs a single port, of the
appropriate width, while the SS architecture needs multiple ports, with the consequent

increase in cost and complexity.

The SS-4x8 configuration also has 8 integer functional units and 8 floating point func-
tional units, all of them independent of each other. Once again, these floating point
units operate according to 8 different instructions that must be allocated in the reorder
buffer, must be assigned to one of these functional units and must be issued for their
execution. Although this scheme is more flexible, it is more expensive and complex to
build. Its SSV counterpart can also yield 8 floating point results per cycle (4 results in
each floating point functional unit). However, these results come from the execution of
two vector instructions (one of them in each functional unit) that take their input data
from a vector register. In the SS configuration, all functional units are independent,
while in the SSV configurations they are not. As shown in figure 4.1, page 109, this
is an important difference. We could see in that figure that the SSV architecture has
only two floating point functional units (FO and F1) that are replicated K times. The
important point is that, from the point of view of the instruction issue logic, there are
only two functional units to which scalar and vector instructions can be issued. The
K replicas of the functional units are simultaneously operated, using the same control
lines. All of them execute the same operation, in the same cycle, but using different in-
put data. Each one of the K replicas takes its input data from one of the K lanes of the
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Vector Register File (VRF). Therefore, the number of lanes of the VRF is determined

by the configuration that we are considering in every case.

Regarding the superscalar core, and following the same example, we realize that while
in the SSV architecture the superscalar core is quite modest and remains unchanged
along all the configurations, in the SS architecture it is necessary to scale it in order to
take advantage of the extra functional units and memory ports that are added to the
processor. This fact means that the SS architecture devotes an ever increasing chip area
to the processor control. Increasing the computing and memory power by adding more
and more functional units leads us to an mandatory increase of the processor fetch,
decode, issue and commit facilities in order to be able to exploit these extra functional
units and memory ports. As the amount of area that the dispatch logic needs increases
quadratically with the dispatch capacity [PJS97], it is important to pay attention to
both features, the performance that is obtained in return, and the performance/cost

rate of the different configurations.

The conclusion is that, even though two equally named configurations have the same
total memory and computing power, they differ significantly in complexity terms. The
SS architecture is more complex than the SSV architecture, for the same configuration.
The reason is not only the different superscalar core of both architectures, but also the

fact that the independent functional units and memory ports of the SS architecture

are more complicated to build. This fact must be taken into account whenever a

performance comparison between the SS and SSV architectures is carried out, thus
avoiding to think that two SS and SSV configurations with the same name are exactly

equivalent.

We finish this section recalling that we will evaluate in this chapter the performance
behavior by using the hybrid set of benchmarks already discussed in chapter 2. We will
use the EIPC performance metric also discussed in that chapter.
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5.3 PERFECT CACHE AND SCALABILITY

We start by exploring the performance and the scalability of our proposed architecture
assuming an ideal memory system. As stated before, this study will allow us to explore
the maximum performance results that could be obtained with a SSV architecture
as more resources are added to the architecture. We simulate a perfect memory by
assuming that the cache is perfect, that is, all memory accesses hit in the L1 and
multiple accesses are served without conflicts. All scalar memory accesses take one
cycle. Vector memory accesses are served in [V L/B] cycles, where B is the bandwidth

of the single memory port, that is, 1, 4, 8 or 16 words per cycle.

5.3.1 General Performance

Figure 5.1 shows the performance results for the SSV architecture when using vector
lengths of 128 and 16 elements. The performance results for intermediate values of
maximum vector length will be comprised between these two. It also shows the per-
formance results for the SS architecture. It is important to note that the scale in the
y-axis is different for the different programs, a fact that must always be taken into

account for comparison purposes.

Analyzing the SSV performance results, we realize that all programs improve their
performance as more resources are added to the processor. This is especially true for
the 128-length vector registers configuration, but, nevertheless, the 16-length vector
register configurations still achieves convincing performance gains with very modest

investments in chip area (only 4KB for the Vector Register File).

We also observe that numerical programs scale much better than multimedia programs.
In general, the four multimedia benchmarks (Gsm Encode, Jpeg Encode, Jpeg Decode
and Epic) present modest performance results when compared to the numerical codes.
This seems to contradict the common belief that multimedia workloads present huge
levels of data level parallelism [CEV99]. Our analysis shows that, while this is true
in raw kernels (such as the basic idct algorithm), several problems arise when we

look at complete applications. The main reason is the vectorization percentage, dis-
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Figure 5.1 Ideal Performance of the SSV architecture, for vector lengths 128 and 16,
and comparison with the ideal performance of the SS architecture.

cussed in section 3.7, page 67. We could see there that the vectorization percentage

is smaller in the multimedia programs (less than 70%, hardly achieving 40% in two

cases). Meanwhile, numerical programs reach quite higher vectorization percentages

(over 75%, being higher than 95% in three cases). As the multimedia programs are

less vectorizable, when the SSV architecture is scaled there is a smaller instruction per-

centage that can benefit from these additional resources, and the overall performance

increase is small. Moreover, as the superscalar core of the SSV architecture remains

constant across all the configurations, the execution of the non-vectorizable pieces of the

programs does not contribute to improve performance while configurations are scaled.

In short, multimedia programs are characterized by relatively low vectorization per-

centages, and therefore, as we scale the system, the non-vectorizable fraction of code
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becomes the real performance bottleneck due to the lack of enough issue rate and scalar
resources [Amd67] [PH96].

In figure 5.1, we can also see that there is a performance loss when going from 128-length
to 16-length vector register configurations. This performance loss is caused by the
increase in the total number of instructions and operations executed when decreasing
the maximum vector length (as discussed in section 3.8, page 77). As more instructions
are executed, a higher number of cycles is needed to execute the whole program. It is
important to note that we are using the EIPC metric, which makes the performance
loss even more obvious, as discussed in section 2.8, page 51.

The performance loss from 128-length to 16-length configuration is substantial in nu-
merical programs. The reason is that, as discussed in section 3.8, page 77, decreasing
the vector length increases the total number of instructions and operations executed, es-
pecially in numerical programs. Moreover, the performance loss enlarges as the number
of lanes of the functional units is increased (keeping constant the width of the memory
port). This fact reflects that the execution time of the vector instructions decreases
while the execution time of the scalar part does not change. Therefore, by Ahmdal’s

Law [Amd67] [PH96], the execution of the scalar part limits the overall performance.

The difference in multimedia programs between both vector lengths is by contrast
quite small. The extreme case is program Epic. As discussed in section 3.7, page 67,
this program uses vector length of 16 elements in almost all its vector instructions.
Therefore, using a maximum vector length of 128 elements does not influence the
performance results at all, because the 112 extra elements of the vector registers are not
used. Thus, the performance graphs for the 128-length and 16-length configurations

are almost identical. This behavior will be seen again in the following chapters.

As far as the Gsm Encode program is concerned, the majority of its instructions use
vector length 128 (as shown in figure 3.2 in page 70), so that using 16-length vector
registers increases the total number of instructions, operations, and cycles of program
execution. However, the low vectorization percentage of this program implies that this

increase will not have important consequences in its overall performance.
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A possible solution to the modest results in ‘multimedia benchmarks would be the
adoption of new instructions based on sub-word level oriented parallelism, such as
MMX [PW96] [CEVO01], but translated to true vector operations. This would allow
increasing the effective vector length and reducing the impact of undesired recurrences
in reduction operations. The undesired side effect would be the requirement of high

efforts on compilation techniques development.

Let us now observe that keeping constant the memory port width, and increasing the
number of lanes of the functional units, an important increase in the performance results
is obtained. This is true for the different memory port widths that have been studied,
that is, 4, 8 and 16 words. In the latter case, for 16-word memory port width, the
graphs start to flatten. We can also observe the performance effect of keeping constant
the number of lanes in the functional units and increasing the memory port width
by drawing an imaginary line between the performance points for 4x4, 8x4 and 16x4
configurations, for example. We observe that the increase is very slight in comparison
to the increase when more lanes are added to the functional units. The reason is that,
as the memory system is perfect, it will bring 4, 8 or 16 words in very few cycles. As the
number of lanes is not increased, we can not process the increasing number of elements
that the main memory delivers, so we can not benefit from receiving more and more

elements per cycle.

We now turn to the comparison with the SS architecture. In figure 5.1, we can clearly
see that our proposed architecture achieves similar performance to the basic superscalar
version for the 1x2 configuration in almost all programs. As we increase the number of
processor functional units (or the number of lanes in the case of the vector functional
units), the SS architecture performance levels off. Meanwhile, our proposed processor
improves at a much higher rate, with programs Nasa7, Jpeg Decode and Gsm Encode
being the exception. Although the SS architecture has more fetch, decode, issue and
graduate facilities, it is not able to decrease the number of execution cycles that will
probably be determined by the dependences between the program instructions due to
the way in which programs are expressed by the compiler. By contrast, in the SSV
architecture, the execution of a vector instruction takes many cycles. Therefore, the

functional unit is busy during all those cycles and the processor has enough time to
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find out an independent instruction to be issued to the functional unit, as soon as it
gets free. In the SS architecture, however, an instruction takes just one or two cycles
to be executed, quite few cycles to ensure that an independent instruction, ready to be
issued for execution, will be found. Thus, it is likely that the functional unit can stay

idle during a certain number of cycles.

As mentioned before, three programs do not follow the same behavior. Looking at each
program individually, we can point out the following reasons to their different behavior.
In the Gsm Encode program, the SS performance results do not overcome the SSV
graphs until the 8x16 configuration. At this point, the Gsm Encode program, which
has more than 60% of scalar instructions, takes more advantage of the improvements in
the superscalar core than in the increase in the number of lanes of the SSV functional
units. Note that in the 4x8 configuration still happened the opposite situation. This
is another proof of the importance of the scalar code in low vectorizable programs. A
similar behavior happens in Jpeg Decode program. Nasa7, however, presents a slightly
different behavior. The 128-length SSV architecture attains a higher performance than
the SS architecture. However, when the maximum vector length is reduced down to 16
elements, the total number of execution cycles increases and becomes larger than the
number of execution cycles in the SS architecture. The difference in the total number
of cycles between the 16-length SSV architecture and the SS architecture is, in fact,
quite small, thus providing similar EIPC results.

As a conclusion, the scalability of the SSV architecture is much better than the plain
superscalar machine, and, furthermore, this scalability is achieved using a much lower
control complexity. With a 4-way out-of-order engine, we are able to successfully feed

up to 32 floating point units and sustain a large fraction of peak performance.

5.3.2 Performance Breakdown by Regions

While the previous section carried out a study about the overall performance
scalability of the SSV and SS architectures, this section presents an in deep specification

of the same study, discussing the performance behavior inside D-regions and S-regions.
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% Ops executed | % Ops executed | Vectorization % | Average size | Average size
Program inside D-regions | inside S-regions of D-regions | of S-regions
Swim256 99.99 0.01 98.77 380988 21
Hydro2d 99.11 0.89 95.64 44420 396
Nasa? 99.05 0.95 75.62 217266 2077
Tomcatv 83.78 16.22 82.85 1178606 227814
Bdna 88.88 11.12 66.78 82990 10381
Arc2d 99.57 0.43 97.53 135348 585
Jpeg Decode 60.43 36.57 61.00 18146 11877
Epic 62.12 37.88 44.01 5824 3550
Jpeg Encode 78.77 21.23 70.05 1941 523
Gsm Encode 38.90 61.10 36.95 1098 1725

Table 5.2 Percentage of operations executed inside D- and S-regions, vectorization
percentage and Average size of D- and S-regions (in operations), extracted from the
vector programs. Average size is defined as the total number of operations executed
inside S-/D-regions divided by the number of S-/D-regions.

Recall from chapters 2 and 3 that every program has two types of regions, called D-
regions and S-regions. D-regions contain those pieces of code that can be vectorized,
and S-regions contain pieces of code that are not amenable to be expressed using vec-
tor instructions. We measure performance inside S-regions and D-regions by using the
EIPC S-reg and EIPC D-reg metrics, defined in section 2.8, page 51. From those defini-
tioms, it is clear that measuring performance inside D-regions and S-regions separately
will allow us to study the performance behavior in the pure vector and pure scalar
program zones. Thus, we can better understand the amount of parallelism that is ex-
tracted in each type of region, and it will help us to detect the performance bottlenecks
of the different programs.

The relative contribution of D-regions and S-regions to overall performance depends
on the average size of D-regions and S-regions, in terms of operations executed. That
information was discussed in section 3.9.1, based on data shown in table 3.13. In order

to ease readability, the table is reproduced in table 5.2 in this chapter.

Figure 5.2 shows the performance results inside D-regions, that is, the SSV EIPC
D-reg measure previously defined. From this figure, we can state that all programs
achieve higher performance results as the SSV architecture is scaled when only the

data-parallel regions are considered. It can be detected because the values in the y-axes
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Figure 5.2 Ideal Performance inside D-regions for the SSV architecture, for vector
lengths 128 and 16, and comparison with the ideal performance inside D-regions of the
SS architecture.

for the different graphs have moved to higher values in most cases. Some programs, like
Swim256, hardly show any difference when compared to the global ideal performance
because they are 99% vectorizable, so that the effect of the S-regions in the overall
performance is negligible. Nevertheless, programs like Tomcatv, Gsm Encode, Jpeg
Decode, Epic and Jpeg Encode show quite important performance improvements, being
spectacular in some cases. For example, that is the case of programs Tomcatv, which
in the overall performance obtained a maximum EIPC value of 9.7 and now reaches
as much as 27.5, Gsm Encode, moving from 2.1 to 85.6, and Jpeg Decode, which goes
from 2.3 to 38.1. Most of these programs have low vectorization percentages. So, it
is normal that, adding up the effects of S-regions and D-regions, the generated overall

performance is a rather smaller value than that obtained inside D-regions.
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Figure 5.3 Ideal Performance inside S-regions for the SSV architecture, for vector

lengths 128 and 16, and comparison with the ideal performance inside S-regions of the

SS architecture.

The rest of the programs barely modify their behavior with respect to that shown in

the overall performance, shown in figure 5.1. Nasa7 also behaves in the same way,

and it becomes the only program in which the SS architecture equals the performance

results of the SSV architecture. The performance values obtained inside D-regions are

very similar to those shown in the overall performance (figure 5.1). We can observe

in table 5.2 that this program executes 99% of their operations inside D-regions, but

it is only 75% vectorizable. Therefore, 25% of operations inside D-regions are scalar,

which means that D-regions are polluted with a large number of scalar instructions

that are executed in a 4-way superscalar core in the SSV architecture, thus reducing
the attainable EIPC.
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On the other hand, figure 5.3 shows the ideal performance results inside S-regions.
These values have been obtained from a superscalar simulation of the different SSV
configurations, extracting performance results inside S-regions. It means that the pro-
cessor configuration has been scaled in the SSV way, so that regardless of the scaling the
scalar code is always executed in a 4-way superscalar core with the same configuration
parameters. The analysis of the EIPC achieved inside S-regions, shown in figure 5.3,
leads us to the following considerations. Starting in the 1x2 configuration, the SSV and
SS performance results are very similar. Nevertheless, from that configuration upwards,
the SS architecture results are clearly better than the SSV ones. The performance in-
creases of the SS architecture, however, are rather small, and the performance values

achieved hardly range from 0.8 to 2.9 in the best case.

This kind of behavior was expected. While in the SS architecture the superscalar
engine is scaled until fetching 16 instructions in each cycle, in the SSV architecture the
superscalar core remains unchanged along all the configurations. Moreover, the SSV
results do not change as the architecture evolves because the increases in the memory
port width or the number of lanes of the functional units are not used during the
execution of the scalar code. Similarly, the SSV results do not change when moving from
vector length 128 to 16. Therefore, one could argue that the important characteristic is
the configuration of the superscalar engine, as not all programs can be vectorized, and
consequently, the vector functional unit would not be used in all cases. Nevertheless,
as shown in figure 5.3, the EIPC curves of the SS architecture tend to flatten in quite
modest configurations, after a slight initial increase. The conclusion is that, although a
certain out-of-order execution is required, the more aggressive superscalar core does not
necessarily provide the better performance. Moreover, as more and more transistors fit
in the same chip area, it is necessary to decide the way in which this extra capacity will
be used. So, once the out-of-order engine has reached the bound from which the EIPC
is not increased, the addition of a vector unit will help the exploitation of additional

parallelism.

From figures 5.2 and 5.3, we can also conclude that although vector functional units can
achieve high performance measures inside D-regions, if the relative weight of D-regions
in the total program is small, the global EIPC will be dominated by the performance
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values obtained inside S-regions, which do not reach 3, even for the very aggressive

16x32 configuration.

5.3.3 Data Parallelism Inside Vector Regions

The performance measure calculated up to now is Equivalent IPC (EIPC), as defined
in section 2.8, page 51. This measure was defined in order to be able to compare the
performance between superscalar and superscalar-+vector architectures in a trustworthy
manner. As stated before, vector programs execute less instructions and operations
than scalar programs and we had to take into account this fact when performance is

measured and compared.

Although the EIPC measure overcomes that problem, it is not an appropriate metric if
we want to measure the actual data parallelism that each architecture exploits inside
D-regions. To do that, we compute the “operations per cycle” rate (OPC) within each
D-region. This measure is calculated for pure vector and scalar programs, that is, no
hybrid programs are used. With this measure, we do not take into account the different
number of instructions and operations that each architecture provides. We just look
at the number of operations that each architecture is able to deliver per cycle, inside
D-regions.

Figure 5.4 compares the distribution of OPC for the SSV and the SS architectures. We
present the lower and upper bounds of the configuration set, that is, 1x2 and 16x32
configurations. For the SSV architecture we show the results for the 128-element and
16-element vector registers.

Each bar in figure 5.4 shows the percentage of the total number of operations that
are executed at a certain OPC. For example, this figure shows that, for the SS-16x32
configuration, about 70% of D-region operations of Swim256 are executed at a rate of 5
or more operations per cycle. The greater the OPC, the darker the corresponding bar
color. We can compare two bars at a glance and determine which one reaches a greater
OPC just looking at their colors. For example, if we compare in program Swim256
the bars corresponding to the SSV-1x2 architecture, with 128-element and 16-element
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vector registers, we can see that the main difference is the lighter lower region in the

16-element vector registers bar. It means that, with 128-element vector registers, the

SSV-1x2 architecture is able to execute almost all operations in the [2-3] OPC range,

while, with 16-element vector registers, the processor executes 80% operations in that
OPC range, and the rest in the [1-2] OPC range.

Several behaviors can be observed from figure 5.4:

As we have already discussed in the previous section, as the processor configurations
are scaled, both, the SSV and the SS architectures, are able to exploit more and
more data level parallelism, which can be seen because the bar color becomes darker
when going from the 1x2 to the 16x32 configurations.

Moreover, the SSV architecture exploits much more data level parallelism than the
SS architecture, given the darker bars for the SSV architecture. The differences are
especially large for Gsm Encode as it is not able to reach the same performance
levels than the SSV architecture neither in the 1x2 nor in the 16x32 configurations.
The same happens to Jpeg Decode, Hydro2d, and the rest of programs, although in
a lower extent. Meanwhile, the SSV architecture reaches large values of OPC, yet
it only needs to issue up to three vector instructions in parallel (two floating point
functional units and one memory port).

Many programs, like Tomcatv, Gsm Encode, Jpeg Decode, Epic and Jpeg Encode,
hardly differ in the OPC that are able to exploit inside D-regions when the vector
length is changed from 128 to 16. The rest of the programs undergo some changes
in the exploited OPC when the vector length is decreased. Comparing these results
with those shown in figure 5.2, we can see that, in figure 5.2, decreasing the vector
length also decreased performance. The different behaviors come from the different
measures used in these figures (OPC and EIPC). While OPC does not change,
EIPC decreases as it only takes into account the increase in the number of execution
cycles, but not the increased number of instructions and operations executed when
the vector length is decreased.
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As a general conclusion of the scalability study under perfect memory, we can remark
that the SSV architecture scales very well as more memory and computing resources
are added to the processor. It also reaches higher values of parallelism than the SS
architecture with a lower cost and control complexity. The analysis inside regions
shows that the SSV architecture achieves large values of parallelism inside D-regions,
although their effect in the overall performance is determined by the relative importance
of D- and S-regions in the whole program. Inside S-regions, the SS architecture reaches
higher results, although it does not scale as well as it would be expected, taking into

account the resources invested in each configuration.

5.4 REAL MEMORY HIERARCHY

Once we have analyzed the potential performance and scalability of the SSV architec-
ture, we turn now to the question of the performance under a real memory hierarchy.
We will study the two cache architectures described in section 4.3, page 116, CA and
CB. We will look at their performance studying, first, the cache hierarchy efficiency for
both models (in terms of total memory traffic and hit ratio). Then, we will make a
study about the reasons that make the vector cache stall, and, finally, we will present
some performance results. These results will also be compared to the behavior of a SS

architecture backed with a typical cache hierarchy.

5.4.1 Processor Configurations

The processor configurations that we will study are a subset of those previously de-
fined in table 5.1. There are two reasons for using a restricted number of processor
configurations from that used in the scalability study in section 5.3. On one hand, we
consider that it is time to shorten the processor configurations spectrum to a set of
feasible configurations, in terms of mem/flops ratio. In fact, the overall objective of
this work is to study the SSV architecture and to give a proposal of a SSV architec-
ture with its memory hierarchy. Shortening the configuration set will finally lead us
to the final proposal of a feasible SSV architecture. The question is how to make the

selection of a subset of configurations from those already studied in section 5.3. The
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results shown in that section achieved the better performance whenever the number of
floating point operations that can be carried out by the architecture doubles the num-
ber of words that can be simultaneously moved to/from the memory, that is, for the
SSV-1x2, SSV-2x4, SSV-4x8, SSV-8x16 and SSV-16x32 configurations. Although some
of these configurations may be inviable to be built, especially for the SS architecture,

our purpose is to show the performance behavior as both architectures are scaled.

On the other hand, practical feasibility reasons have also led us to shorten the config-
uration set. While results in section 5.3 have needed twenty eight simulations for each
program (yielding a total of 280 simulations), the study that we are carrying out in this
section would need sixty simulations for each program (thus, requiring 600 simulations
in total). Considering the amount of time that is necessary in order to finish a set
of simulations, we think that we must reduce the configuration set. Of course, this
reduction has been done according to the criterion already commented, which will lead
us to performance results where the general trends can be identified, without losing

significant information.

5.4.2 Memory Hierarchy Configurations

As stated before, we will study the processor behavior when a real memory hierarchy
is introduced. In chapter 4, we have defined the design of the memory hierarchies that
will be studied. There are two different models, CA and CB, both of them based on
the introduction of a vector cache. Figure 5.5 presents the CA and CB models again,
including some additional information about the specific parameters that will be used
in this study. The difference between both models comes from the location of the vector
cache. While, in the CA model, the vector cache is in the first cache level, in the CB
model, the vector cache is located in the second cache level. An additional difference
between both models is the direct connection between the processor and the vector
cache in the CB model. While in the CA model all data that the processor accesses
are in the first cache level, in the CB model, scalar data are accessed in the first cache
level while vector accesses are made to the second cache level [Hsu94] [Sha99]. The
underlying idea in the CB model is the decoupling between where scalar and vector

data are located, and accessed, in the cache hierarchy.
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Figure 5.5 Memory hierarchies studied for the CA and CB models of the SSV ar-
chitecture and for the SS architecture.

Figure 5.5 also shows the cache hierarchy that will be used in the SS architecture and
some of the configuration parameters. We can see in this figure that the SS architecture
has been configured following a Mips R10000 processor. There is only a memory port
connecting the processor with the cache hierarchy. In fact, this is a common character-
istic to the three cache models (CA, CB and SS). Increasing the L1 cache bandwidth
does not have much sense unless we increase the number of processor memory ports.

We will analyze those enhancements in later sections.

The general parameters of the two memory hierarchies under study are summarized
in table 5.3. This table shows three different memory configurations which correspond
to the CA, CB and SS memory hierarchies, respectively. We will use a single memory
configuration for the different processor configurations shown in previous sections. For
example, we will use the same CA configuration for the different SSV configurations. We
know that a special tuning of the memory configuration for each processor configuration
would provide a more accurate result. We will make that tuning in the following chapter

where we will study the memory hierarchy more deeply. However, at this point, we are
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CA CB SS

L1 | L2 | L1 | i2 L1 | L2
Size 32KB | 1MB || 32KB | 1MB || 32KB | 1 MB
# Sets 256 2048 1024 4096 512 4096
Line Size 128B | 256B 32B 128B 64B 128B
Associativity 1 2 1 2 1 2
Write Policy WT WB WT WB WT WB
Allocate Policy NWA | WA || NWA | NWA || NWA | NWA
Latency (cycles) 1 4 1 4 1 4
Ld/St cycles 12 [ i1 || yi | 12 || i1 | 1/1
MSHR entries 8 8 8 8 8 8
WB depth/retire || 8/4 8/4 8/4 8/4 8/4 8/4

Table 5.3 Cache Hierarchy Parameters: WT=write-through, WB=write-back,
WA=write-allocate, NWA=no-write-allocate. Ld/St cycles, cycles required for a
Load/Store operation. WB depth/retire number of Write Buffer entries/retire-at-X
policy.

more concerned about general trends that can point out performance bottlenecks. The

bottlenecks encountered will be addressed in the following sections.

The memory hierarchy parameters shown in table 5.3 were set by performing several
studies, from which we would like to mention a few facts: (a) making the L2 4-way
did not make much difference in any of the results presented; (b) the no-write-allocate
policy for the 1.2 is substantially better than the write-allocate policy in at least half the
benchmarks; (c) in the CB model, the size of the L1 (either 32Kb or 64Kb) has minimal
impact on performance; (d) from the different variations that were tested, we selected

the configuration that, on average, is best suited for the representative workload that
we are studying.

Regarding the different parameters of the three memory hierarchies, it is worthwhile
mentioning the following details:

m  Same cache sizes in all memory hierarchy models. We have used the same
cache sizes in order to make a fair comparison between different architectures. From
the processor point of view we attach a 32KB first level cache, a 1MB second level
cache and a main memory that is able to deliver 3.2 GB/s. The differences come

from how these total sizes are then configured, that is, the line size, the number of
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lines, the number of sets, etc. Although the internal configuration of a cache also

influences the total size of the cache memory, we have not analyzed such details.

Different line sizes for the different memory hierarchies. In the CA model,
the vector cache is located in the first cache level. Both, scalar and vector memory
instructions, access this cache, so that it is necessary to make a great amount of
sequential data available in order to exploit the spatial locality of stride-1 vector
memory accesses. For that reason, we have used 16-word sized lines. A 16-element
vector memory access needs just one or two cache lines in order to be executed,
while a 128-element vector memory access needs 8 or 9 cache lines. There is no
much sense in providing 32-element cache lines because it would never be used
when the vector registers are 16-element long. Moreover, as the total cache size is
constant, providing larger cache lines decreases the number of different lines, thus
worsening the exploitation of the temporal locality. In the L2 data cache, the line
size must be at least twice the size of the L1 cache line. In the CB model, however,
as only the scalar data are accessed in the L1 data cache, not so large cache lines are
needed. So, we have set 4-word cache lines. In the L2 vector cache, as vector data
are accessed, we need again large cache lines in order to exploit spatial locality. For
the same reason as in CA model, we have set 16-word cache lines. Finally, in the
SS architecture, after testing some configurations, the best configuration defines
8word L1 cache lines and 16-word L2 cache lines.

Same associativity in all memory hierarchy models. In the three memory
hierarchies, we have used a direct mapped first level cache and a two-way associative
second level cache. As stated before, improving the second level cache associativity
did not introduce a great change in performance results, so that we preferred the

cheapest option.

Latencies. We have set the L1 cache latencies to 1 cycle and the L2 cache la-
tencies to 4 cycles. In this way, we are assuming that both caches are on chip.
Although this is not a realistic assumption for the more aggressive configurations,
and especially for the SS architecture where the processor control is very complex
and it may prevent from including the secondary cache on chip, we have done it

for simplicity. In the following chapter, where we make a tuning of the memory

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



158 CHAPTER 5

system configuration according to each processor configuration, we will study the
effect of including larger secondary caches with higher latencies.

» Load/Store cycles according to the cache type. As stated in chapter 4, where
the vector cache was introduced and studied, the vector cache takes twice as many
cycles for a store operation than for a load operation. Therefore, these are extra
cycles that the SSV architecture has to pay in each store operation, when compared
to the SS architecture.

= Same MSHR and WB structures in all memory hierarchy models. Again,
as a first approximation and in order to make a fair comparison, we have used the
same MSHR and WB structures for the different memory models. However, vector
memory accesses consume a large number of entries in these data structures (as
many as the the number of cache lines involved in the access), so that they may
fill up and stall the pfocessor for many cycles. We would like to remark now this
potential source of performance loss, because, in the following chapters, we will try

to enhance performance by tuning the memory hierarchy configuration.

5.4.3 Cache Hierarchy Efficiency

As a first approximation, we will study in this section the behavior of the memory
hierarchy from both, the traffic and the hit/miss point of view. In the following sec-
tion we will study the reasons that make the vector cache stall. We will also look
at performance in terms of EIPC, and we will introduce the comparison with the SS
architecture.

It is important to remark that this study of cache hierarchy efficiency uses pure vector
programs, rather than hybrid programs. The reason is that there is not much sense in
measuring cache parameters inside S-regions and D-regions and then combining these
two measures to give just a single number. When a pure vector program executes a
S-region, the load and store instructions executed in that region change the state of
the caches, so that, when the following D-region starts its execution, a different state
is found. Some useful cache lines could be evicted due to conflicts, some other cache

lines could also be loaded and these changes influence the execution of the following
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D-region. Moreover, if we consider that, in the vector programs, the S-regions code
has a low quality (as discussed in section 2.7, page 49, and stated in section 3.10,
page 100), the total number of memory accesses will be higher, thus increasing the

effect of polluting cache memories.

Similarly, in a pure scalar program, when a D-region is executed, the different way of
accessing memory changes the cache state and influences the execution of the following
D-region. Moreover, when the measures of S-regions and D-regions are combined, we
realize that, for any pure scalar program, the state of the cache memories, at a certain
execution point, has nothing to do with what would be their state at the same program
point in the pure vector program. Therefore, this combined measure has no sense.
Instead of that, we prefer to measure the behavior of pure vector programs. Although
S-regions code has a low quality, global results are more coherent and will give us a

lower bound of the measures.

The following subsections introduce the study of the main memory traffic and the hit

percentage for the CA and CB cache hierarchies.

Memory Traffic Filtered

The first question we are concerned with is whether our workloads will take advantage
of the caches or not. Traditionally, it has been claimed that vector workloads have low
spatial and temporal locality, that this locality is well exploited by the large vector
registers and that using a cache only gets in the way of memory accesses that end up

accessing main memory regardless [KSF+94].

To answer this question, we have measured the percentage of 64-bit words that the
caches are not able to filter and eventually reach main memory, that is, the fraction of
64-bit words that are moved to or from the RDRAM array over the total number of
64-bit words requested by the processor core. Figure 5.6 presents the results for the
CA and CB cache models for both, 128-element and 16-element vector registers. In
that figure, we can see, for example, that for Hydro2d program and in the CA model,
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Figure 5.6 Non filtered traffic.

only about 20% of all the 64-bit words requested by the program end up being served
by the RDRAM array. The other 80% is served by either the L1 or L2 caches.

In figure 5.6 we can see a special situation for Swim256, Nasa?7 and Arc2d, since the
ratio is larger than 100%. This means that the amount of traffic with the main memory
is larger than the number of words that the processor actually requests. The reason is
that there is a lot of pollution in the cache lines being read from memory. That is, in
general, for every cache line we bring in (which contains either 8 or 32 64-bit words),
the processor only uses a few of them (the rest being useless traffic). This is no surprise,
since both, Nasa7 and Arc2d, have very large strides that cause this cache pollution.
For Swim256, which is dominated by stride-1 memory accesses, the problem are cache
conflicts. Although Swim256 has almost no pollution (i.e, all data in a cache line will
be used by the program), cache lines do not survive long enough in the data cache to
be useful. They are evicted from the cache without using all the data elements. Then,

these lines must be reloaded from main memory, thus increasing the main memory
traffic.

We observe in figure 5.6 that the CB model generates less main memory traffic than the
CA model. While the CA memory model reaches large values of non-filtered traffic, even
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larger than 100%, the CB model reaches a maximum of 80% of non-filtered memory
traffic for Swim256 program. For the rest of the programs, the CB model achieves even
lower values. The reason is the shorter number of L2 cache lines in the CA model, thus

increasing the number of L2 cache conflicts and the main memory traffic.

Surprisingly, results in figure 5.6 show that, in terms of traffic, it is better to use
16-element vector registers with the CB model. The reason is that, as vector memory
accesses move as much as 16 elements, a lower number of cache lines is needed to allocate
the data, thus providing a lower probability of incurring in cache conflicts. However, we
can not make any conclusion about the register vector length until performance results

will be presented.

Multimedia programs are characterized by their low main memory traffic, which be-
comes negligible when the CB memory model is used, regardless of the vector length.
These programs do not have very large working sets, so that most data fit in the cache
hierarchy without being evicted due to conflicts. Therefore, data do not need to be

reloaded from memory.

Overall, the important point is that, whether we choose the CA or CB models, a cache
hierarchy can significantly filter processor traffic and thus lessen the pressure on the
main memory system. Although the final performance measure will be EIPC, the traffic
measure gives further information about which programs make the more intensive use
of the main memory system. Given that each main memory access is expensive in terms
of the number of cycles, it is very likely that the more main memory accesses the greater
the number of cycles that the program execution takes. This fact will result in a small
real performance, as we will see later. This kind of measures will allow us to explain
the reason of the difference between ideal and real performance in the following sections

and will also give us the support to propose solutions for enhancing real performance.
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Figure 5.7 Hit percentage.

Cache Hit Rate

Although the traffic with the RDRAM has given some useful information about how
the benchmark programs behave, we can not make a decision about which memory

model will be better performance-wise only from the results in the previous subsection.

While the overall traffic filtering effect of CA and CB points to CB as the better memory
model, the hit rate study can make us change our mind. The hit percentage metric
presented in this section refers to the percentage of times that the processor makes an
access to one data element and it hits. In the CA model, this value is the direct L1 hit
rate. In the CB model, however, as the processor can directly access the L1 cache and
the L2 vector cache, the measure must be calculated taking into account the number
of elements that were accessed to the L1 cache (and the number of hits) and those that
were accessed to the L2 Vector Cache (and its number of hits).

Figure 5.7 shows the hit rate for both models, CA and CB, when 128-element and
16-element vector registers are used. Clearly, the hit rate is better in the CB memory
model. This was expected since, in the CB model, all vector accesses are served by
a 1MB vector cache, while in the CA model, vector memory accesses are served by a
32KB vector cache. Will this higher hit rate provide a better performance? The L2

vector cache is 4 cycles away from the processor, while L1 cache is just 1 cycle away.
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A back-of-the-envelope calculation would tend to favor the CA model despite its lower
hit rate.

However, two factors combine to make CB a better alternative cycle-wise. First, vector
codes have some inherent latency tolerance. Therefore, the longer latency might become
a non-issue if, indeed, the CB can provide a higher effective sustained bandwidth.
Second, communication between the L1 and L2 caches due to L1 misses is expensive
and cannot always be overlapped with other cache requests. For example, in the CA
model, an unaligned vector miss to L1 will require, by definition, two different lines
from L2, therefore, at the very least, bandwidth is reduced to a half. Therefore, the
CA model, where we have many L1 misses, delivers a lower effective bandwidth than
CB.

In figure 5.7, we can also observe that using 16-element vector registers provides a
higher hit rate in both, CA and CB memory models. The reason is the same as in the
previous section, that is, using 16-element vector registers requires using less cache lines
simultaneously, thus decreasing the number of conflicts in caches. Therefore, evicting
less cache lines allows to hit much more often the next time that the elements of a

certain line are accessed.

As a summary, we can say that the study of cache hierarchy efficiency shows that the
CB model seems to be a better memory model, as it posses a lower pressure in the
main memory and it hits much more often in caches. The 16-element vector registers

also provide better results in terms of traffic with the main memory and cache hit rate.

5.4.4 Vector Cache Stall Time and Bottlenecks

Once we have studied the cache efficiency of the memory models in terms of traffic
and hit rate, we will now analyze the characteristics of the memory hierarchy that are
becoming performance bottlenecks for the execution of the benchmarks in both models.
We will do it by studying the stall time in the vector cache as well as the reason of the

stall. We have measured four different stall time reasons:
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= Full Miss Status Holding Registers (MSHR). It happens when the number of MSHR
entries 1s not enough to preserve the non-blocking nature of the cache. Recall from
section 4.3.1, page 116, that 128-element stride-1 vector load may cause eight or

nine cache line misses, thus requiring a large number of MSHRs.

»  Full Write Buffers. It happens when the number of write buffer entries is not large
enough to compensate the different speeds at which the processor generates store

operations and the memory performs them.

m  Coherency. The CB memory model presents coherency problems between the L1
and L2 caches because of the direct path between the processor and the vector

cache. Solving these problems can stall the vector cache.

»  Conflicts. Cache conflicts must be solved by ejecting the old cache line, and loading
the new one. These situations can also stall the vector cache.

In the following sections we will present the total vector cache stall time, for the different
memory models and vector lengths. Then, we will separately study the different stall
time reasons.

Total Vector Cache Stall Time

Figure 5.8 shows the percentage of the total execution time that the vector cache is
stalled for the CA and CB memory models and for 128-element and 16-element vector
registers. In this figure, we can clearly observe that, in multimedia programs, the vector
cache is hardly stalled during the program execution. These results were expected since
we have seen in the previous sections that these programs have low traffic with the main
memory and a high hit rate. By contrast, in numerical programs, the vector cache is
stalled for many cycles during execution. We can see in this figure that fixing the vector
length, starting from the 1x2 configuration and moving to the right, the CA memory
model presents a higher stall time percentage. The exception are programs Swim256,
Hydro2d, Tomcatv and Bdna. For these programs, the same happens up to the 4x8
configuration. However, at this point, the CB memory model stalls the vector cache

for a higher percentage of the execution time.
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Figure 5.8 Percentage of the total execution time that the vector cache is stalled,
for the CA and CB memory models, for vector lengths 128 and 16.

We can also observe in figure 5.8 that using 16-element vector registers stalls the vec-
tor cache for less cycles than using 128-element vector registers. Although we might
think that it would be better to use 16-element vector registers, we can not forget
the results discussed in section 3.8, page 77, which shown that the shorter the vector
length, the larger the amount of instructions and operations executed. Moreover, we
have also discussed in section 5.3 that the ideal performance results for 16-element
vector registers are lower than for 128-element. Therefore, although the 16-element
vector registers execution stalls the processor for less cycles, the question is: will the
additional instructions and operations that must be executed increase the total number
of execution cycles, thus reducing performance? This question will be answered in the
following sections and it will allow us to make a decision about if it is better to use

16-element of 128-element vector registers.
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Figure 5.9 Percentage of the total execution time that the vector cache is stalled due
to the Miss Status Holding Registers being full, for the CA and CB memory models,
for vector lengths 128 and 16.

In the following sections, we will analyze the different reasons of the vector cache

stalls in order to understand the memory bottlenecks that can potentially constrain

the performance.

Vector Cache Stall Time due to full Miss Status Holding Reg-

isters

The first reason that can make the vector cache stall is the size of the MSHR. As
stated in table 5.3, page 156, both, the CA and CB memory models, have 8 MSHRs.
Each vector load instruction needs as many MSHRs as half the number of cache lines

involved in the access. Thus, a 128-element vector load needs four or five MSHR entries
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(2 lines/MSHRentry x 16 elements/line x 4 MSHRentries = 128 elements), depending
on alignment, and a 16-element vector load instruction needs one MSHR entry. Thus,
pressure on the eight MSHR entries available in CA and CB will be high.

Figure 5.9 shows the percentage of the total execution time that the vector cache is
stalled due to the MSHR being full. The results in that figure correspond to the CA
and CB memory models with 128-element and 16-element vector registers.

As we observe in that figure, the percentage of execution time that the vector cache
is stalled due to the MSHR is negligible for multimedia programs. For numerical
programs, however, it is rather important, being as large as 55%, 33% and 30% for
Swim256, Arc2d and Tomcatv, respectively. Programs Bdna and Nasa7 reach 13% and
23% of stall time, respectively; Hydro2d is the exception with only 1.4% of stall time
due to full MSHR.

We additionally identify two behaviors in figure 5.9. On one hand, the 128-element
vector register configurations stall the vector cache longer than the 16-element ones.
The reason is that, with the same amount of MSHR in both cases, the 128-element
registers need much more MSHR per access, so that they will fill up sooner, stalling

the vector cache until they can be reused.

On the other hand, the CA memory model stalls the vector cache longer than the
CB memory model. This is due to the shorter size of the vector cache in the CA
memory model, which requires reloading evicted data, thus making an intensive use of
the MSHR and increasing the stall time. Moreover, in the CB memory model, scalar
accesses use the L1 cache MSHR, while vector access use the L2 cache MSHR, thus

reducing the pressure on the vector cache MSHR.

From figure 5.9, we can conclude that the number of MSHR entries is a key factor of
the memory model configuration as it can stall the vector cache up to 55% of the total
execution time. Enough MSHR entries must be provided in order to decrease this stall
time so that the memory hierarchy is not under pressure and a better memory behavior

can be achieved.
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Figure 5.10 Percentage of the total execution time that the vector cache is stalled
due to the Write Buffer being full, for the CA and CB memory models, for vector
lengths 128 and 16.

Vector Cache Stall Time due to full Write Buffer

In the same way as the MSHR can stall the vector cache for many cycles, the Write
buffers can also be an important stall reason. Every vector store needs as many WB
entries as the number of cache lines involved in the access: eight or nine entries for the
128-element vector accesses (1 line/WBentry x 16 elements/line x 8 WBentries = 128
elements), depending on alignment, and one or two entries for the 16-element vector
accesses, also depending on alignment. A high pressure on the write buffer can stall

the vector cache for many cycles, which can indeed influence the performance.
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Figure 5.10 shows the percentage of the total execution time that the vector cache is
stalled due to the WB being full, for the CA and CB memory models with 128-element
and 16-element vector registers. As expected, in multimedia programs the vector cache
is stalled during a very small percentage of the execution time due to the WB being
full. Numerical programs, however, stall the vector cache up to 35%, 33% and 34% for
Swim256, Nasa7 and Arc2d, respectively. Contrary to the results in the MSHR study,
in this case, there is not a clear behavior about the memory model that stalls the vector
‘cache for a longer time. In three programs, Swim256, Hydro2d and Tomcatv, the CB
model stalls the vector cache for a larger percentage of the execution time. On the
contrary, in Nasa7 and Arc2d it is the CA model what stalls the vector cache during
a longer time. In Bdna, it depends on the configuration and in multimedia programs
.the differences are so slight that we can not extract any strong conclusion. The same

behavior appears for the different lengths of the vector registers.

What is clearly observed in figure 5.10 is that, as the configurations are scaled, the
pressure on the WB increases, so that the vector cache is stalled for a larger amount
of cycles. It seems that, as the processor configuration is scaled, the number of WB

entries must also be increased.
Vector Cache Stall Time due to cache coherency

We now turn to the study of another reason that may stall the vector cache, that is,
solving coherency problems between the L1 and L2 caches. As discussed in section 4.3.2,
page 123, the direct path from the processor to the L2 vector cache can make coherency
problems appear when some data are accessed in both, scalar and vector modes. When
a L2 data is accessed through this direct path for writing, it may happen that a copy of
the same data can be located in the L1 cache. Updating the L2 data will make L1 and
L2 caches non coherent. As we have chosen to preserve coherence between both cache
levels, we must invalidate the L1 copy of the data and update the L2 data. Of course,
those invalidations consume some L2 cycles, thus preventing L2 from performing any
other task. These coherency problems can only appear in the CB memory model due
to the direct path to the L2 vector cache. The CA memory model does not spend any
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Figure 5.11 Percentage of the total execution time that the vector cache is stalled
due to coherence problems for the CB memory model, for vector lengths 128 and 16.

cycle in maintaining coherency between caches, as data can only be accessed through

the L1 data cache.

Figure 5.11 presents the percentage of the total execution time that the vector cache is

stalled due to coherency problems for the CB memory model with 128-element and 16-

element vector registers. We observe that, in general, the vector cache is stalled during

a small percentage of the execution time for the majority of the programs, being Arc2d,

Epic and Jpeg Encode the most affected programs, with stall time percentages of 6%,

6% and 4.6%, respectively. In general the 16-element vector registers provide a lower

stall time percentage, except for Jpeg Decode.
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As we can observe in figure 5.11, the coherency maintainance is not an important stall
reason when compared to the previous MSHR and WB studies. Thus, we will propose
some enhancements to deal with the MSHR and WB stall time in the next chapter,

but we will not address the coherency stall time.

Vector Cache Stall Time due to cache conflicts

Finally, in this section we present the study of the vector cache stall time from the cache

conflicts point of view. Whenever a cache conflict ocurrs, one cache line must be evicted
from the cache (and written to the upper memory level if necessary), and another line
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must be loaded into the cache. All these tasks consume some time during which the

vector cache is stalled and it can not work on another pending memory access.

The number of cache conflicts is related to the size of the cache and the number of
cache lines. Therefore, it is very likely for the number of cache conflicts to be much
higher in the vector cache of the CA memory model, since its size is much smaller than
in the CB memory model. In this model, by contrary, the number of cache conflicts is
very small because of the large 1 MB secondary cache, thus stalling the vector cache

for a negligible amount of cycles.

Figure 5.12 shows the percentage of the execution time that the vector cache is stalled
due to cache conflicts for the CA memory model, for 128-element and 16-element vector
registers. We can see in that figure that the percentage of the execution time devoted
to solve cache conflicts is as large as 14% for Swim256, 6% for Hydro2d, 5.6% for Nasa7
and 2.2% for Arc2d. The rest of the programs only dedicate between 0% and 1% of the
total execution time. The reason for this behavior is the size of the program working

set, which is larger in the first set of programs.

Summing up, there are four reasons for the stall of the vector cache, that is, full MSHR,
full WB, coherence problems and cache conflicts. While the first two reasons can stall
the vector cache for many cycles, the other two only affect one of the memory models,
and only to a shorter extent. In general, numerical programs are affected by bottlenecks
related to their large working sets. They make a higher use of the main memory bus,
causing stalls in the vector cache when the MSHR or the write buffer entries fill up.
Clearly, the programs that put most pressure onto the RDRAM array are the ones that
stall the most due to MSHR being full. In total, the vector cache can be stalled up
to 60% of the total execution time. This fact will influence the execution time of the
different programs and the performance results that will be studied in the following
sections.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



Potential Performance and Scalability 173

5.4.5 Performance Evaluation

In this section, we will study the CA and CB memory models from the performance
point of view. Although the studies of cache hierarchy efficiency and the stall time pro-
vide with useful information about the behavior of both models when 128-element and
16-element vector registers are used, the performance study carried out in this section
will give us information about which memory model carries out a faster execution of the
benchmark programs. Moreover, in this section, we will also compare the performance
behavior with a typical SS architecture backed with a cache hierarchy. This comparison
allows us to determine whether the SSV architecture is worth at the performance level,

when a real cache hierarchy is attached.

General Performance

Figure 5.13 compares the performance of the two cache models, CA and CB, both with
128-element and 16-element vector registers, against the performance of the SS machine

with a real cache memory system.

From results in figure 5.13, we can see that, in general, the SSV architecture, both with
CA and CB memory models, reaches much better performance than the SS architecture.
Regarding the memory models of the SSV architecture, for the numerical benchmarks,
the CB model outperforms the CA model, the 128-element vector registers also provide
better performance results. This is especially true for the aggressive configurations.
The reason is that these programs are highly vectorizable and they use large vector
data, so that, the larger the vector length, the shorter the number of instructions
and operations executed, and the better the performance. This is the case of programs
Swim256, Hydro2d, Tomcatv, Bdna and Arc2d. For the Nasa7 program, the CB memory
model also achieves a better performance than the CA memory model. In the CB
memory model, the 128-element vector registers reach higher performance values. In
this program, the CA memory model provides low performance results, as even the SS

architecture outperforms its EIPC values.
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Figure 5.13 Performance evaluation of the SSV architecture backed with the CA
and CB memory models, for vector lengths 128 and 16, and comparison with the SS
architecture backed with a typical cache hierarchy.

On the other hand, for the multimedia benchmarks (Gsm Encode, Jpeg Decode, Epic
and Jpeg Encode), although the CA model outperforms the CB model, the difference in

performance results is quite small. The CA model works a little bit better because of

the high number of reduction operations (such as adding all elements of a vector), which

are very common in image applications. The results of these reductions are individually

written to their respective matrix positions using a scalar store. Therefore, in the CB

model, these data items go to the L1 cache. Later, the vector unit requests a bunch of

these results in vector mode to the L2, only to find that there is a coherency problem
with L1. The L2 must flush and invalidate data from the L1 to service the vector

request, resulting in a loss of performance.
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Comparing the results of the real cache models, shown in figure 5.13, with the results
for an ideal memory system, already shown in figure 5.1, page 142, we can observe
that, in general, the multimedia programs reach real cache performance results very
close to the ideal memory performance results. Numerical programs, however, present
a substantial performance loss when a real memory system is attached to the SSV pro-
cessor. Among the numerical programs, Swim256, Nasa7, Arc2d and Tomcatv suffer
higher performance loss (99%, 75%, 95% and 60% of performance loss relative to the
ideal EIPC, respectively). Swim256 has a large working set that does not fit in the
cache hierarchy, so that conflicts evict useful data from the cache and these data must
be reloaded later. Tomcatv presents a similar behavior. Nasa7 and Arc2d are charac-
terized by non stride-1 vector memory accesses. The performance results of Nasa7 are
aggravated by the fact that only 35.6% of the accesses are stride-1 (i. e. only 35.6% of
the accesses can be served at the maximum port bandwidth). In fact, the same case
‘happens to Jpeg Encode, where the CB results are close to the ideal ones for conser-
vative configurations but scale poorly as we simulate more aggressive configurations.
Again, the explanation lies on the low percentage of the vector accesses with stride-1.
Note that the problem of non stride-1 accesses could be solved in some cases with a
cautious code rewriting. For example, Jpeg Encode and Jpeg Decode are characterized
by having a structure where the three color components are interleaved. This results
in stride-3 memory accesses when performing the color conversion algorithm. The code
could be easily rewritten to change these accesses to stride-1. All these considerations
must be added to the vector cache stall study carried out in the previous sections.

In short, we can conclude that numerical programs are limited by the memory system
performance, while multimedia programs are not. In fact, these results match the
memory traffic and hit rate results analyzed in the previous section. In that section,
we could see that multimedia programs had a very low main memory traffic, especially
when the CB memory model is used, and their hit rate was higher than 90%. Therefore,
it seems that the main constraints appear in the execution of the numerical programs,
and the bottlenecks will be located in the memory hierarchy. These programs did not
fit in cache, their hit rate was very low in some cases (see again figure 5.7, page 162),
and the main memory traffic was an important fraction of the words that the processor

accessed (as seen in figure 5.6, page 160).
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Figure 5.14 Performance results inside D-regions for the SSV architecture backed
with a real memory (CA and CB memory models), and for the SS architecture backed
with a typical cache hierarchy.

Performance Breakdown by Regions

As in the previous sections, we will now analyze the performance results inside D-regions
and S-regions for the different configurations of the SSV architecture and memory
models. We will also compare these results with the SS architecture performance results

inside D- and S-regions, respectively.

Figure 5.14 shows the performance results inside D-regions for the SSV architecture
(backed with the CA and CB memory models) and for the SS architecture (backed with
a typical cache hierarchy). Comparing these results to those presented in figure 5.13, we

can observe two different behaviors. First, for most of the programs, the results shown
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in this figure follow the same trends than those presented in figure 5.13, meaning that
the overall performance is mainly determined by the performance obtained inside D-
regions. In some of these programs, the reached values are higher than the same values
in the overall performance. The overall performance results are lower because they
include the relatively low EIPC values reached inside S-regions. The second behavior
appears in Gsm Encode and Jpeg Decode programs. For these programs, we observe
that, while their overall performance results flattened as the machine configuration was
scaled, their performance results inside D-regions scale quite well with the processor
scaling. Therefore, the performance flattening effect is caused by the behavior inside
S-regions and their weighted contribution to the overall performance. This behavior
appears in low vectorizable programs with pure D-regions, that is, D-regions including
few scalar instructions. Moreover, as these two programs are not limited by the memory
behavior, they can expose a large amount of parallelism that is easily exploited by the
SSV architecture.

It is important to note here that the spectacular EIPC values for the Gsm Encode
program appear because of the privatization of the data structures that we made in
order to vectorize the program. These data privatizations reduced the number of load
and store instructions executed by the program, which in turn reduced a lot the number
of execution cycles. Although in the scalar version of the program we made the same
changes, the compiler was not able to reduce the number of instructions executed.
Therefore, whenever we calculate the EIPC measure we make the relation between a
large amount of scalar instruction and a short amount of cycles, thus generating large
EIPC values. These large results do not appear in the overall performance because
Gsm Encode presents a low vectorization percentage so that the overall performance

results come mainly determined by the behavior inside S-regions.

As stated for the overall performance, for numerical programs, the CB memory model
achieves a better performance, while for multimedia programs the CA memory model
presents higher results. In general, using 128-element vector registers provides a higher
performance, which was expected since less instructions and operations are executed.
Regarding the comparison to the SS architecture, the SSV architecture reaches a better

performance, regardless of the memory model, either CA or CB.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



178 CHAPTER 5

............................. PR
+ ) FUp, + + + — SRS + s U +
1 g
s ” 0.8 Qaasssadarsssafpesarasfuisiisgd EL----=-0 ------ [RERREE Q--enee ]
------ B Y
....... Bevreefheneenaeennd { )
1.0~
10 + 0.6
g g 4 £
=] = & ]
=] - =] =R =]
RO SO -ttt Q-ennee < il
0.5 hezoocs Ayo--- - Ao---- A---- - 'Y 0.5
0.2
0.0 T T T 1 0 T T T 1 00 T T T 1 0.0 T T T 1
oG W %, %, R L % m %,
SWM256 HYDRO2D NASA7 TOMCATV
------- + IR g
et e * T
10 08 e
------ [ REEEERY SYTTTLY CRRITE.Y -
06 1o
p A PO PR Beeene- -
A S [CERE SRR O-ennen o £ 4
& & &
= 0s = 04 <] 4
0.5
0.2
0.0 T T T 1 0.0 T T T 1 0.0 T T | a—
o R Ry B, K R % %y &,
BDNA ARC2D GSM
DR + e ORI enean + 15 — - +
15 - - 0.8 frrrrrrFerrrcerrrrerRoeerre R "’:
- 08 LOBp—— A4 --e-- SSV-128-CA
g IS © 1 --0-- §SV-16- CA
& T A mm e B & ] -k SSV-128-CB
= = 4 = --A-- SSV-16-CB
0.5 cake- 88
0.5 02
0.0 T T T 1 00 T T T 1 0.0 T T T 1
T G R %, % % %, Bt % e,
DIPEG EPIC CJPEG

Figure 5.15 Performance results inside S-regions for the SSV architecture backed
with a real memory (CA and CB memory models), and for the SS architecture backed
with a typical cache hierarchy.

Figure 5.15 shows the performance results inside S-regions for the SSV and the SS
architectures, with real memories attached. In general, the trends in this figure are the
same as those already studied in figure 5.3, page 148, where the performance inside
S-regions for an ideal memory system was presented. As occurred in that case, starting
in the 1x2 configuration, the SSV and SS performance results are very similar. As
configurations are scaled, however, the SS performance results are clearly better than
the SSV results. All in all, the achieved performance values are quite low and the SS
performance flattens rather quickly. Therefore, as concluded before, although a certain
out-of-order execution is needed, the more aggressive superscalar core does not provide
with a substantially better performance. Instead of investing the transistor budget in

scaling the superscalar core, once the performance results flatten, the addition of vector
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capabilities would be helpful in order to exploit more parallelism during programs

execution.

Note that, in figure 5.15, the behavior of the Swim256 program for the SS architecture
does not follow the behavior previously described. As discussed in section 3.7, page 67,
this program is 99% vectorizable, it hardly executes 0.01% of its total number of op-
erations inside S-regions and the average size of the S-regions, in operations, is 21. Tt
means that with such small S-regions, the behavior inside S-regions will be affected
by the overlapping between consecutive D- and S-regions. As explained and discussed
in section 2.6.3, page 48, some frontier instructions, which belong to a certain region
(either S- or D-), can be effectively executed (and accounted for EIPC purposes) in the
consecutive region. In general, this overlapping is very low. However, when the size
of the S-regions is so short, as it is in the Swim256 program, these overlapping oper-
ations can pollute the EIPC measure and reduce its meaningfulness. As these extra
operations are added to the region’s operations and no extra cycles are included, the
EIPC measure grows significantly. As the processor configuration is scaled, the higher
aggressiveness of the issue engine drives to have more instructions executing on-the-fly,
and the overlapping effect also increases. Whenever we have large S-regions, these extra
operations can certainly pollute performance, but in a very slight amount. For that
reason, the Swim256 program presents such spectacular increase in performance inside

S-regions.

5.4.6 Data Parallelism Inside Vector Regions

We will now present the amount of data level parallelism that the SSV and SS archi-
tectures extract inside D-regions when a real memory hierarchy is added. Similarly to
section 5.3.3, we have computed the “operations per cycle” rate (OPC) within each D-
region. Figure 5.16 compares the distribution of OPC for the SSV and SS architectures
for the lower and upper bound of the configuration set, that is, 1x2 and 16x32. It also

shows the OPC for 128-element and 16-element vector registers.

As stated in section 5.3.3, each bar in figure 5.16 shows the percentage of the total

number of operations that are executed at a certain OPC.
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Figure 5.16 Distribution of operations percentage executed within a certain OPC

range, inside D-regions.
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Comparing figures 5.4 and 5.16, we observe that the addition of a real memory hierarchy
to both, the SSV and SS architectures, diminishes significantly the amount of data level
parallelism that the architectures are able to exploit. This is especially true for the SS
architecture as, except for Jpeg Encode, it does not execute operations with OPC larger

than 5 when the real memory hierarchy is introduced.

In figure 5.16, we observe that, for the SSV architecture, the obtained OPC increases
when the processor configuration is scaled. These increases are more important for some
programs, like Hydro2d, Gsm Encode, Tomcatv and Jpeg Decode, which in the 16x32
configuration execute 99%, 90%, 60% and 80% and of their operations, respectively,
with OPC larger than 5. ’

Some of the benchmarks, like Swim256, Hydro2d, Bdna, Arc2d and Gsm Encode, change
their behavior depending on the vector length. These programs exploit more data level

parallelism with 128-element vector registers, as was expected.

Regarding the comparison with the SS architecture, the general trends remain the
same as those already commented in section 5.3.3. The SSV architecture is able to
exploit much more data level parallelism than the SS architecture, reaching, for seven

programs, OPC larger than 5.

As a conclusion of the real cache study, we have seen that the SSV architecture is a
competitive design that reaches better performance results than the SS architecture
with ideal and real memory systems. Regarding the two cache models connected to
the SSV architecture, the CB model presents a lower main memory traffic for both,
numerical and multimedia programs. It also presents a higher hit percentage for nu-
merical programs, which are more limited by memory than the multimedia programs.
Regarding the performance study, numerical programs reach better performance values
when the CB memory model is used. Although multimedia programs achieve higher
performance for the CA memory model, the difference with the CB performance results
are small. These results, together with the potential disadvantages of the CA model
already discussed in section 4.3.2, page 123, present the CB model as the selected
memory hierarchy for the SSV architecture that we propose. The rest of this work will
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use the CB memory model as the cache hierarchy to which the SSV architecture is
connected.

In these sections, we have also detected that there is an important performance loss in
numerical applications when changing from an ideal to a real memory hierarchy. Some
of the numerical programs are limited by the memory behavior, as we have studied in
the previous sections. In the following chapter, we will try to decrease the memory

pressure by tuning the memory hierarchy design.

5.5 SUMMARY

In this chapter we have presented the performance results of our proposed superscalar
architecture with a vector unit and we have compared it with a traditional superscalar
processor. We have studied two different aspects: on one hand, we have studied the
scalability and potential performance of the SSV and SS architectures when a perfect
memory is used. We have observed that the SSV architecture scales very well as more
memory and computing resources are added to the processor. Moreover, it reaches
higher values of parallelism than the SS architecture with a lower cost and control
complexity.

The analysis inside D-regions and S-regions has shown that the SSV architecture
achieves high values of parallelism inside D-regions. However its contribution to the
overall performance is determined by the relative weight c;f D-regions in the whole pro-
grams. For highly vectorizable programs, the overall performance is mainly determined
by the high performance values obtained inside D-regions. However, low vectorizable
programs have an overall performance that is also determined by the performance in-
side S-regions. As was expected, the performance inside S-regions is better for the SS
architecture. The reason is that the superscalar core of the SSV architecture remains
constant along the different configurations, while, in the SS architecture, the core is

scaled adding more and more resources.
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The study of the amount of data parallelism that each architecture is able to reach
inside D-regions has shown that, although both, the SSV and the SS architectures,
obtain larger OPC values as the configurations are scaled, the SSV architecture achieves

larger values than the SS architecture in all programs.

On the other hand, we have also studied the performance of the SSV when a real cache
hierarchy is introduced. We have studied two different cache hierarchies, CA and CB,
based on the introduction of the vector cache. CA and CB models differ on where
the vector cache is located. While in the CA model the vector cache is in the first
cache level, in the CB model, the vector cache is in the second cache level. We have
also included the performance values that a traditional superscalar processor achieves
when a typical cache hierarchy is introduced. As a first step, we have studied the cache
hierarchy efficiency of the CA and CB models in terms of traffic with the main memory
and hit/miss rate. We have observed that regardless of the memory model, CA or CB,
the cache hierarchy is able to filter the processor’s traffic. We have also observed that
multimedia programs have a very low memory traffic, while numerical programs present
a lower amount of memory traffic when the CB model is used. The results of the cache
hit rate show that multimedia programs hit much more often in cache than numerical
programs. Again, the CB model reaches higher hit rate percentages. Therefore, the
cache efficiency study has shown that numerical programs make a higher pressure on
the main memory, and that the CB model reacts much better to this pressure with

lower main memory traffic and higher hit rates.

The study of the vector cache stall time has revealed that this cache can spend up to
60% of the total execution time stalled due to different reasons. The two main reasons
are full MSHR and WB entries. The other two reasons (coherence and cache conflicts)

contribute in a lower degree to that bottleneck.

The performance evaluation with a real cache hierarchy has shown again that numer-
ical programs are limited by the rriemory system, while multimedia programs are not.
Although the introduction of a real memory system has strongly reduced the perfor-
mance values obtained by the SSV architecture, these performance results are still

higher than the SS performance values. The study inside regions has presented that,
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for the SSV architecture, programs scale well inside D-regions and behave constant
inside S-regions. The overall performance is determined by the weight of the S- and
D-regions in the whole program. Again, inside S-regions, the SS architecture reaches a

better performance due to the scaling of the superscalar core.

The study of data level parallelism for a real memory has shown the same trends
than for the ideal memory system, that is, the SSV architecture reaches higher OPC
levels than the SS architecture and these values scale as the processor configuration is

improved.

All in all, the CB memory model presents better performance results for the numerical
programs and the difference with the CA performance results for multimedia programs

is small. Therefore, the CB memory model will be the memory model that we propose

to be attached to the SSV processor, as it achieves the better results both, in the cache .

efficiency and performance studies.

We conclude that the SSV architecture is a feasible architecture from the performance
point of view. It reaches a better performance than a traditional SS architecture,
either with ideal or real memory systems, as the processor configuration is scaled. It is
a good choice for multimedia programs and it achieves really good results for numerical
programs. These results can still be improved by tuning the memory hierarchy, as we
will see in the following chapter.

Regarding the size of the vector length to be used, we consider that, although, in gen-
eral, the better performance results are obtained by using 128-element vector registers,
the final decision depends on the available transistor budget. An implementation for a
general purpose processor should use 128-element vector registers in order to achieve
the better performance. However, a low cost approach can sacrifice some of the ob-
tained performance in order to decrease its cost, thus including, in such case, 16-element

vector registers.

The performance results presented so far do not take into account cycle time. In the
previous sections, we have discussed qualitatively the differences between the proposed
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SSV architecture and a plain superscalar architecture. While both machines have the
same basic resources (in terms of arithmetic functional units), Lee argues very convinc-
ingly in {LD97] that the vector datapath takes much fewer area and is much simpler
(read, faster) than the equivalent superscalar datapath. Furthermore, the area devoted
to control (fetch, decode, reorder buffer, TLB ports, etc.) in the basic superscalar pro-
cessor grows quadratically as we scale the issue degree. Not only that, but as Palacharla
et Al. [PJS97] .argue, cycle time is also affected and does not scale as we increase issue
width. Meanwhile, in the SSV machine, control logic has been kept exactly the same
across all configurations. This is only possible thanks to the properties of vector in-
structions. Scaling the number of functional units does not require adding more issue

slots or larger instruction queues.

It is also worth mentioning the huge difference in cache and TLB ports: the plain
superscalar needs a 16-ported TLB and cache while, using the vector unit, we can get
away just using a single TLB port and a single cache port. Everything considered, it
is very likely that the SSV machine will have a faster cycle time than a hypothetical

equivalent plain superscalar and, at the same time, the SSV will require less area.
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6

IMPROVING PERFORMANCE BY TUNING
THE MEMORY HIERARCHY

Summary

This chapter presents a study about tuning the memory hierarchy of the ILP+DLP
architecture. The goal is to achieve a better performance by reducing the negative effect
of the bottlenecks detected in the previous chapter. The tuning consists in improving
the memory hierarchy by increasing non-blockingness, adding one extra scalar port and
increasing the main memory bandwidth. We also study the effect in performance of the
increasing technology integration scale by exploring the performance behavior as the size
of the L2 data cache is increased. Finally, We evaluate two additional cache designs

that try to alleviate the memory pressure of non stride-1 memory references.
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6.1 INTRODUCTION

In the previous chapter we detected some bottlenecks related to the memory system
configuration. We observed that some programs have large working sets, and because
of the cache hierarchy organization these programs have a large amount of traffic with
the main memory, and a relatively low hit rate. We also observed that the vector cache
could be stalled during many execution cycles because of the filling up of the Miss Status
Holding Registers (MSHR) and the Write Buffer (WB) devices. Maintaining coherence
between the two cache levels and cache conflicts can also stall the vector cache. This
chapter presents a study about the tuning of the SSV architecture in order to decrease
the effect of these memory bottlenecks. The tuning consists in specific actions, such as
increasing non-blockingness, adding one extra data port for scalar accesses, improving
the memory bandwidth, and attacking the problem of strided accesses by evaluating
performance under more sophisticated second level cache designs. Moreover, as tech-
nology evolves, more and more transistors will be integrated on a chip. Therefore, we
will also look at the performance behavior as the size of the L2 data cache is increased.
We will see that the performance of the SSV architecture can be substantially improved

with these adjustments in the memory hierarchy design.

The tuning study will be carried out for a selected SSV configuration, out of those
studied in the previous chapter. Among the different configuration parameters that
must be fixed, it is necessary to select the processor configuration, as well as the memory
hierarchy design and the size of the Vector Register File (that is, the length of each

vector register). Let us discuss each parameter in detail:

= Processor configuration. As stated in the previous chapter, in general, the more
aggressive the configuration, the higher the performance obtained. However, the
hardware resources needed to build such aggressive configurations are far beyond
today’s implementation capabilities, so we must concentrate on the modest con-
figurations in order to keep the study in the feasible range of SSV machines. We
have also observed that the performance increase is larger in the smaller configu-
rations, and this increase is comparatively shorter as the configurations are scaled.

Therefore, following a cost/performance relation criterion, we must choose a con-
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figuration that belongs to the low scale of the configuration set. In particular, we
have selected the SSV-4x8 configuration, already defined in table 5.1, page 136.
The major functional units of the SSV-4x8 configuration are a single memory port,
two vector integer functional units and two vector floating point units. As described
in section 4.3, the memory port can transfer four 64-bit words when operating in
vector mode, but only a single 64-bit word when operating in scalar mode. The
vector functional units can operate on multiple operands simultaneously. We have
included two functional units, each one with four replicas (8 flops/cycle), in order
to get a balanced configuration that matches the number of “lanes” in the vector
unit (width of each vector unit) with the number of words per cycle read from the
vector cache. This matching simplifies the steering logic that has to distribute each
of the four words read from the cache to one of the four lanes.

Memory system configuration. Among the two different proposed designs that
have been evaluated in the previous chapter, CA and CB, we have selected the
CB memory hierarchy model. We have seen in the previous chapter that the CB
memory model obtains a better performance than the CA model for numerical
programs, while the difference with the CA model for multimedia programs is quite
small. The CB memory model also obtains better results in the cache efficiency
study. Moreover, as we have discussed in the previous chapter, the CB memory
model is a better alternative cycle-wise because of the inherent latency tolerance
of vector code and the larger effective bandwidth that the CB model delivers.

Additionally, using the CB model favors the execution of scalar pieces of code as
it follows a memory model that is very similar to the classic memory hierarchy
attached to a superscalar processor. For any scalar memory access the processor
accesses the 1-cycle latency L1 data cache. Missing this cache implies accessing the
L2 data cache, which has a higher latency and larger cache lines. The L1 and L2
data caches are connected by using a 4-word width path. The direct connection
between the processor and the L2 cache, and the VRF, are not used, as no vector

memory accesses are made.

The basic configuration parameters of the CB model that will be used in this chapter
are those already shown in table 5.3, page 156.
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m  Size of the Vector Register File. Finally, we must also fix the total size of
the Vector Register File (VRF). Given that, as discussed in section 4.2, page 113,
the appropriate number of logical and physical vector registers has been fixed to
16 and 32 registers, the only design parameter that can be set is the length of each
individual vector register. As the aim of this study is the achievement of the better
performance for the vector code execution, we have selected large vector registers
(as shown in previous chapter, large vector registers provide higher performance
results). Each individual vector register will have either 64 or 128 elements, which
will imply a VRF size of 32KB or 64KB. We will present performance results for two
different large vector lengths in order to study if there is a significant performance
gain in using a double-sized VRF. If this is the case, the use of a greater VRF will
be justified. Otherwise, the extra 32KB of chip space can be used in a different
way in order to improve the overall performance.

We will compare the SSV performance results with a SS architecture. We will use
the SS-2x4 superscalar configuration defined in table 5.1, page 136, backed with the
typical cache hierarchy defined in table 5.3, page 156. As explained in section 5.2, this
SS configuration consists of 2 independent memory ports (64-bit word each), 4 integer
functional units and 4 floating point units. To issue enough instructions to all these
units in parallel we need an 8-way superscalar core that is able to fetch, decode and

commit 8 instructions per cycle.

The reader might complain that we are overpowering the SSV architecture (8 flops
SSV-4x8 versus 4 flops SS-2x4), but, as discussed in the previous chapter, the eight
flops of the SSV architecture come from only two different functional units executing
two vector instructions in parallel. This design is simpler than the four functional
units of the SS-2x4 architecture, which are independent of each other and, therefore,
are expensive to implement. By selecting SSV-4x8 and SS-2x4 we have chosen two
configurations with similar complexity. Moreover, it is precisely the point of this thesis
that by using a vector unit the SSV-4x8 can achieve 8 flops per cycle without requiring
a very-wide issue engine.
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Another important difference between the SSV-4x8 and the SS5-2x4 configurations ap-
pears in the four 64-bit words per cycle that the SSV-4x8 architecture is able to transfer
in stride-1 vector accesses, while the superscalar architecture can transfer just two 64-
bit words per cycle. The single port of the ILP+DLP is very simple to implement, while
implementing more than two or three ports in a cache is not feasible with true multi-
ported caches, and alternative designs using multiple banks and hybrids of multi-bank
and multi-port must be used [JNT97] [RTAD97].

Perhaps, the reader might have expected a comparison between the SSV-4x8 and SS-
4x8 configurations. However, as discussed in section 5.2, page 135, two equally named
configurations differ significantly in complexity terms. Although they have the same
total memory and computing power, the SS architecture is more complex than the SSV

architecture becausé of:

= the independent memory ports: four different memory ports in the SS archi-

tecture versus one simple memory port in the SSV architecture.

= the independent integer and floating point functional units: four indepen-
dent functional units in the SS architecture versus two independent functional units
in the SSV architecture.

= the wider superscalar core: A 16-way out-of-order core in the SS architecture

versus a 4-way out-of-order core in the SSV architecture.

= the larger reorder buffer: A 128-entry reorder buffer (and its more complex
wake-up logic) in the SS architecture versus a 64-entry reorder buffer in the SSV

architecture.

= the larger Load/Store queue: A 64-entry load/store queue in the SS architec-

ture versus a 32-entry in the SSV architecture.

= the improved branch predictor: A 2K BTB and 16K Lbranch two-level adap-
tative branch predictor in the SS architecture versus a 0.5K BTB and 4K Lbranch
2-level adaptative branch predictor in the SSV architecture.
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Therefore, fixing the budget that would allow us to implement the SS-4x8 architecture,
we could make a more complex SSV counterpart. In other words, fixing the SSV-4x8
budget, the SS machine that matches the same complexity is not the SS-4x8, but the
55-2x4 configuration.

Once we have defined the configuration parameters of the architecture, in the following
sections we introduce and evaluate some architectural improvements that can be in-
cluded in the memory system of the basic SSV architecture, based on the performance

bottlenecks detected in the previous chapter.

6.2 INCREASING NON-BLOCKINGNESS

In section 5.4.4, page 163 in the previous chapter, we observed that the vector cache
was stalled for many cycles due to the Miss Status Holding Registers (MSHR) and
Write Buffers (WB) being full. Vector accesses consume a large number of entries in
these data structures so that when they fill up, they stall the processor for many cycles.
Table 6.1 shows a summary of the percentage of time that the vector cache is stalled
and the reason of the stall for the SSV machine configuration under study. These data

have been extracted from figures 5.8, 5.9, 5.10 and 5.11 in the previous chapter.

Total Breakdown by stall reason
MSHR Full | WB Full | Coher.
Swim256 40.83 32.08 8.74 0.01
Hydro2d 4.35 0.02 3.41 0.92
Nasa7 19.82 16.80 2.73 0.29
Tomcatv 21.13 15.13 5.37 0.63
Bdna 8.42 5.67 2.66 0.09
Arc2d 31.09 21.84 3.77 5.48
Jpeg Decode 0.69 - 0.05 0.64
Epic 6.19 | 0.01 0.05 6.13
Jpeg Encode || 4.56 - 0.04 4.52
Gsm Encode 3.95 - 0.01 3.94

Table 6.1 Percentage of total execution time that the vector cache is stalled and stall
reason.

We can see in this table that, in general, numerical programs are affected by bottlenecks
related to their large working sets. They make a higher use of the main memory bus,
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Figure 6.1 Overall performance results for the basic SSV-4x8, the SSV-4x8 enhanced
with quadrupled MSHR and WB entries (both vector length 128 and 64 elements), and
the SS-2x4 superscalar processor.

causing stalls in the vector cache when the MSHR or the WB entries fill up. Clearly,
the programs that exert most pressure onto the RDRAM array are the ones that stall
the most due to MSHR. entries being full.

Therefore, in order to reduce this performance bottleneck, we have set a larger number
of entries in the memory non-blocking mechanisms. This section evaluates performance

after this improvement.
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General performance

Figure 6.1 shows the performance obtained when the number of MSHR and Write Buffer
entries is quadrupled. We observe in that figure that, in general, all numerical programs
increase their performance as the memory non-blocking mechanisms are improved. The
larger performance increases appear in Swim256, Tomcatv and Arc2d, which, as could
be seen in table 6.1, are the programs that spend a larger fraction of their execution
time stalled because of the vector cache. Moreover, by adding columns 3 and 4 of this
table we can see that these programs are the most affected by the filling up of the
MSHR and WB structures. Although in Nasa7 the vector cache also spends 19.53% of
the total execution time stalled due to the MSHR and the WB structures being full, its
performance improvement when the number of entries of the MSHR and WB structures
is enlarged is not that good. The reason is the wide use of non stride-1 vector memory
accesses in this program, as each element of a non stride-1 vector memory load needs
one MSHR entry (and one WB entry if it is a vector memory store).

Table 6.2 shows the total stall time and the reason of the stall for the execution of the
ten benchmark programs in the upgraded SSV architecture. Note that the percentage
values are referred to the lower execution times that are obtained in the SSV architec-
ture with improved memory non-blocking mechanisms. As expected from observations
in figure 6.1, the total stall time percentage has decreased in almost all programs.
Comparing table 6.2 with table 6.1 we can evaluate the decrease in the stall time. We
observe that now the filling up of the WB is not an important stall reason in any pro-
gram. Only in two programs (Swim256 and Nasa7) the filling up of the MSHR is still
an important stall reason, halting the vector cache around 15% of the total execution

time.

Performance inside D-regions

Figure 6.2 shows the performance inside D-regions for the basic SSV-4x8 architecture
and the SSV-4x8 architecture enhanced with quadrupled MSHR and WB entries. The
figure shows results for both 128-element and 64-element vector registers. It also shows

the performance inside D-regions for the SS-2x4 architecture. In this figure we observe
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Total Breakdown by stall reason
MSHR Full | WB Full | Coher.
Swim256 15.12 14.71 0.40 0.02
Hydro2d 1.19 - 0.23 0.96
Nasa7 16.61 15.14 1.13 0.34
Tomcatv 5.20 445 - 0.75
Bdna 2.01 1.49 0.40 0.12
Arc2d 10.39 2.42 0.58 7.39
Jpeg Decode || 0.64 - - 0.64
Epic 6.27 - 0.04 6.23
Jpeg Encode || 4.97 - - 4.97
Gsm Encode || 3.94 - - 3.94

195

Table 6.2 Percentage of total execution time that the vector cache is stalled and stall
reason after increasing the MSHR and WB entries.

two different behaviors. On one hand, multimedia programs are not affected by the in-
crease in the number of entries in the MSHR and WB structures. As already discussed,
these programs are not limited by a short number of entries in these structures, so
increasing them does not change performance. On the other hand, numerical programs
increase their performance as the memory non-blocking mechanisms are improved. The
performance of these programs is limited by the MSHR and WB number of entries, so
that increasing them improves performance up to 37% for Swim256 with 128-element
vector registers, and up to 46% for the same program with 64-element vector registers.

In general, the increase is larger with 128-element than 64-element vector registers. In
this case moving towards a shorter vector register implies a performance loss due to the
increasing number of instructions and operations that must be executed. In Hydro2d
this performance loss makes EIPC smaller than for basic SSV-4x8 architecture. For this
program, increasing the memory non-blocking mechanism together with moving to a
shorter vector length is not a good solution. It is better to keep the same MSHR and WB
number of entries, with 128-element vector registers. Contrary to the rest of programs,
Swim256 and Nasa7 improve their performance as the vector length is decreased. A
shorter vector length implies a different way of accessing data and a shorter number of
collisions in caches, so that this improvement, together with the increase in the MSHR
and WB entries, overcomes the increase in the number of instructions and operations

that must be executed.
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Figure 6.2 Performance results inside D-regions for the basic SSV-4x8, the SSV-4x8
enhanced with quadrupled MSHR and WB entries (both vector length 128 and 64
elements), and the $S-2x4 superscalar processor.

Summing up, increasing the memory non-blocking mechanisms in the SSV architecture
is a good solution in order to diminish the negative effect of the vector cache stall due
to the filling up of the MSHR and WB structures. This improvement will be added to
the basic SSV architecture, so that the following configuration enhancements will be

made starting from this non-blocking enhanced SSV architecture.
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(CB) (CB_2p)

Figure 6.3 The CB and CB_2p memory models. CB_2p memory model is an en-
hanced CB model with an additional scalar memory port.

6.3 ADDITIONAL MEMORY PORT FOR SCALAR
ACCESSES

As previously shown in table 3.13, page 83, there is a fair amount of scalar code in
pure S-regions, especially for multimedia programs, and there is also a fair amount of
scalar code within D-regions. Comparing the SSV-4x8 and the SS-2x4 architecture, a
key limiting resource in the SSV architecture is probably the number of scalar memory
references it can perform in parallel (1 scalar reference per cycle at most). Meanwhile,
the SS-2x4 architecture can perform two independent memory references per cycle. In
those pieces of vector code that include an important amount of scalar code it would
be helpful to have an extra memory port devoted to the scalar accesses. Figure 6.3
presents the basic CB memory model against the CB memory model enhanced with an
additional scalar port connected to the L1 data cache (named CB_2p memory model).
In the CB_2p memory model we have one shared memory port for accessing both
scalar and vector data, and one additional memory port for exclusively accessing scalar
data. In the following sections we will evaluate this enhanced memory model from the

performance point of view.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



198 CHAPTER 6

EIPC
EIPC
EIPC
EIPC

Oy, Gy Sy, Ty %, 8, S5, Gp, S, J;n‘;*
Vg iy Ty g Sy Vig hp hg ¥
Gy G G Ly o G
SWM256 HYDRO2D TOMCATV

EIPC
EIPC

=3 S§V-4x8 VL-128 - BASE
m SSV-4x8 VL-128 - 2 PORTS
= SSV-4x8 VL-64 - BASE
mm SSV-4x8 VL-64 - 2 PORTS
3 8§-2x4

EIPC
EIPC
EIPC

Figure 6.4 Overall performance results for the basic SSV-4x8, the SSV-4x8 enhanced
with an additional scalar port and the SS-2x4 superscalar processor.

General Performance

In this section we evaluate the overall performance of the SSV architecture enhanced
with an additional scalar memory port connected to the L1 data cache. Figure 6.4 shows
the performance obtained for the previously non-blocking enhanced SSV architecture
and for the SSV architecture with the CB_2p memory hierarchy attached. In both cases
this figure shows results for the 128-element and 64-element vector registers. The figure
also shows the performance obtained by the SS-2x4 architecture, which has not been
enhanced with additional ports as this machine has already two independent memory

ports.
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Figure 6.5 Performance results inside D-regions for the basic SSV-4x8, the SSV-4x8
enhanced with an additional scalar port and the SS-2x4 superscalar processor.

In figure 6.4 we observe that the larger performance improvements appear in multimedia
programs, concretely in Jpeg Decode and Jpeg Encode, with improvements of 5% and
7%, respectively. The reason is that these programs have a large fraction of scalar
code, so they can take advantage of having an extra scalar memory port in order to
increase parallelism in data accesses. The extra port will be used inside both D-regions,
in parallel with the vector data port, and inside S-regions. As discussed in section 3.9,
page 82, the effect on overall performance will also depend on the relative importance

of scalar code in the whole program.
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Performance inside D-regions

Figure 6.5 presents the performance inside data-parallel regions when we add the scalar
port just discussed. We can see in that figure that numerical programs hardly improve
their performance. Slight improvements can be observed in Nasa7 and Bdna. However,
multimedia programs like Jpeg Decode, Jpeg Encode and Gsm FEncode improve their
performance inside D-regions in 6%, 8% and 5% respectively, which was expected since
their vector regions are polluted with scalar instructions. The extra scalar port provides
additional flexibility when accessing the L1 data cache for these programs. Although
we could expect the same behavior for Epic, the coherency problems already discussed

offset any gains that the extra cache port might offer.

In general, adding an extra port for scalar accesses is a profitable enhancement for
running a heterogeneous set of programs in the ILP+DLP architecture, as it provides
some additional flexibility in accessing memory. This extra port improves the execu-
tion of low vectorizable programs with D-regions containing a large amount of scalar
instructions. We will include this enhancement in the SSV-4x8 architecture that will be

used in the following sections as a basis for the comparison with the following tunings.

6.4 IMPROVING MAIN MEMORY BANDWIDTH

Another bottleneck that we identified in the previous chapter was the large amount of
traffic that some programs generated to/from the RDRAM array. As we discussed in
section 5.4.3, page 159, multimedia programs have low main memory traffic. However,
numerical programs exert a higher pressure on the main memory, and their memory
traffic reaches higher values. This traffic will be served at the sustained bandwidth
that the main memory delivers. The effects of this bottleneck can be tackled in two
different ways: first, increasing raw bandwidth; second, making sure that the available
bandwidth is fully used by providing enough Miss Status Holding Registers and Write
Buffers. To see the effect of these bottlenecks we have doubled the RDRAM bandwidth
for both the SSV and the SS architectures, so the RDRAM main memory model now
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Figure 6.6 Overall performance results for the SSV-4x8 and one additional port,
the SSV-4x8 enhanced with one additional scalar port and double memory bandwidth,
MSHR and WB entries, the basic SS-2x4 superscalar processor and the SS-2x4 processor
enhanced with double memory bandwidth, MSHR and WB entries.

delivers 6.4 GB/s. We have also doubled again the number of MSHR and Write Buffer

entries in order to diminish the negative effect of filling these structures.

The following subsections study the effect in performance of improving bandwidth in

the SSV and SS architectures. We will present overall performance and performance

inside D-regions.
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General Performance

Figure 6.6 shows the overall performance results for the basic SSV-4x8 architecture
and the SSV-4x8 with double bandwidth, MSHR and WB entries. These values are
presented for 128-element and 64-element vector registers. This figure also shows the
performance values obtained for the basic SS-2x4 processor and the SS-2x4 processor
enhanced with double bandwidth, MSHR and WB entries.

We can see in that figure that, as expected, multimedia programs are hardly affected
by the increase in the memory bandwidth. Their small memory traffic was served at a
high rate in the basic SSV configuration so that they do not benefit from the improved
bandwidth.

Numerical programs, however, improve their performance when the memory bandwidth
is doubled. The most important improvements appear in programs Swim256, Nasa7,
Arc2d and Tomcaty, being as large as 20.2%, 15.5%, 9% and 7.8%, respectively, for
vector length 128, and as large as 23%, 12%, 11% and 10% for vector length 64. We
observe from these data that the 64-element vector registers reach higher performance
values than the 128-element vector registers for numerical programs, while for mul-
timedia programs their performance is very similar. We also observe from these data
that the higher bandwidth benefits those programs affected by either large working sets

(Swim256 and Tomcatv), or non stride-1 vector memory accesses (Nasa7 and Arc2d).

After performing all these tunings the vector cache stall time has been considerably
reduced, as can be observed in table 6.3. We can see in this table that the only reason
that stalls the vector cache for an important percentage of the total execution time is
the coherence preservation between the L1 and L2 data cache. The other stall reasons

have been reduced down to 1% of the total execution time.

In figure 6.6 we also observe that, for the superscalar architecture, the only programs
affected by doubling the main memory bandwidth are Swim256, Nasa7, Bdna and
Arc2d, with improvements of 9%, 9.5%, 7% and 21%, respectively. All in all, the

anaria. Biblioteca Digital, 2004

ersidad de Las Palmas de Gran C:

© Unive



Improving Performance by Tuning the Memory Hierarchy 203

Total Breakdown by stall reason
MSHR Full | WB Full | Coher.
Swim256 0.94 0.83 0.08 0.02
Hydro2d 1.00 - 0.05 0.95
Nasa7 1.88 0.85 0.32 0.70
Tomcatv 1.27 0.47 - 0.80
Bdna 0.16 0.01 - 0.15
Arc2d 7.27 0.06 0.06 7.14
Jpeg Decode || 0.68 - - 0.68
Epic 6.43 - - 6.43
Jpeg Encode 5.21 - - 5.21
Gsm Encode || 4.02 - - 4.02

Table 6.3 Percentage of total execution time that the vector cache is stalled and stall
reason, after increasing non-blockingness, adding one scalar memory port and doubling
the main memory bandwidth (and non-blockingness, again).

performance values that the SS architecture achieves are very far from those reached
by the SSV architecture.

Performance inside D-regions

Figure 6.7 presents the performance inside D-regions for the basic SSV-4x8 architecture
and the SSV-4x8 enhanced with double bandwidth, MSHR and WB entries, for 128-
element and 64-element vector registers. It also shows performance inside D-regions
for the basic SS-2x4 architecture and the SS-2x4 architecture with doubled bandwidth,
MSHR and WB entries.

This figure is very similar to the previous one since multimedia programs are hardly
affected by doubling the main memory bandwidth and the high vectorization percentage

of numerical programs makes overall results very similar to those inside D-regions.

Numerical programs take better advantage of doubling main memory bandwidth with
improvements comparable to those commented for the overall performance. As we in-
crease the RDRAM bandwidth in the SSV-4 architecture, programs limited by memory

bandwidth, such as Swim256, Nasa7, Arc2d and Tomcatv increase their performance in
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Figure 6.7 Performance results inside D-regions for the SSV-4x8 with one additional
port, the SSV-4x8 enhanced with one additional scalar port and double memory band-
width, MSHR and WB entries, the basic SS-2x4 superscalar processor and the SS-2x4
processor enhanced with double memory bandwidth, MSHR and WB entries.

20.3%, 15.4%, 9% and 8.6%, respectively. The rest of the programs, as expected, are
not affected.

The SS-2x4 architecture presents similar improvements for the same set of programs.
Although in some of these programs the relative improvement could be greater than in
the SSV architecture, the SS-2x4 IPC values are still very far from those of SSV-4x8
EIPC.
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[ [ IMB CB (base) ]| 2MB CB [[ 4 MB CB |

Size 1MB 2MB 4 MB

# Sets 4096 4096 4096
Line Size 128B 128B 128B
Associativity 2 4 8
Latency (cycles) || 4 8 12
MSHR, entries 64 64 64

WB depth/retire 64/32 64/32 64/32
Mem Bandwidth 6.4 GB/s 12.8 GB/s || 12.8 GB/s

Table 6.4 Cache Hierarchy Parameters for the basic and the two enhanced vector
caches: WB depth/retire is the number of Write Buffer entries /retire-at-X policy.

Summing up, doubling the main memory bandwidth is a way to overcome the perfor-
mance bottleneck found in programs with a high pressure on the main memory, because

of their large working sets or because of non stride-1 vector memory accesses.

6.5 EFFECTS OF MICROPROCESSOR INTEGRATION

Although current-generation superscalar processors typically have a large on-chip L2
cache (such as the Alpha 21364 [Ban98] that has a 1.75 MB L2 cache), advances in
logic integration are allowing more and more transistors to be integrated on a chip.
Therefore, a larger die area can be devoted to the L2 cache in future-generation proces-
sors. That is the case, for example, of the Alpha 21464 processor [Eme99] that includes
950 million transistors inside and will implement an even larger L2 data cache. These
larger L2 caches will be implemented by using more memory banks, which will favor

a natural increment in the cache associativity, and, unfortunately, also in the cache

latency.

Future improvements will also provide with a higher memory bandwidth. Following
the example of Alpha 21464 [Eme99], its 1100 signal pins will allow the memory to
transfer data to the processor at, at least, 12 GB/s. IBM Power4 [Die99], with its up
to 32 MB off-chip L3 cache, and a 16-byte width L3 port also provides over 10 GB/s

of memory bandwidth.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



206 - CHAPTER 6

This section studies the performance behavior of the SSV architecture as the size,
associativity and latency of the L2 cache is increased. We will use the CB mermory
model presented in table 5.3 as the basic memory configuration, enhanced with double
bandwidth (6.4 GB/s), 64 Miss Status Holding Registers, 64 Write Buffer entries and
one extra scalar memory port. We will improve this memory configuration by doubling
the size of the L2 cache and increasing the cache associativity and latency. The L1
data cache will not be changed, and it will keep the configuration already shown in
table 5.3. We will also increase the main memory bandwidth to 12.8 GB /s. The main
configuration parameters of both enhanced memory designs are presented in table 6.4.
We can see in this table the basic configuration and the new 2MB and 4MB cache
configurations. As the L2 cache size is increased more memory banks are added to
the cache, so associativity is increased without additional effort. Unfortunately, this

increase also causes an increase in the L2 cache latency.

General Performance

Overall performance results, presented in figure 6.8, show that the effect of increasing
the L2 cache parameters (size, associativity and latency), as well as the main memory
bandwidth, benefit especially those programs limited by memory. Swim256, Nasa?,
Tomcatv, Bdna and Arc2d improve their performance in 13%, 13%, 15%, 3% and 5%,
respectively, for the 2MB vector cache and 128-element vector registers. The use of
64-element vector registers also improves performance for the same programs, although
in slightly lower percentages (from 2.2% to 10.5%). The reason of this behavior is that
the larger L2 cache latency does not harm performance as the increase in the L2 cache
size and associativity, as well as the higher memory bandwidth, make up for the extra

cycles that the processor has to pay in every L2 cache access.

However, those programs which are not limited by memory do not compensate the
larger number of cycles that every L2 cache access costs with the decrease in the
number of main memory accesses, so that, the overall performance diminishes. All in
all, the performance loss is low, being as large as 1.8%, 3.2%, 3% and 0.1% for Hydro2d,
Jpeg Encode, Epic and Jpeg Decode, regardless of the vector length used. Gsm Encode

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



Improving Performance by Tuning the Memory Hierarchy 207

EIPC
£
|
EIPC
EIPC
EIPC

Gt Y2 B & &

TOMCATV

Tty e B & % iy Y2 % % G

SWM256 HYDRO2D

’9@

EIPC
EIPC
EIPC

O %l % % %

P Mt % % &
ARC2D GSM

j 1.5
15 ]
2

o o 104 ) =3 SSV-1MB
[ 1.0 & =] e=8 SSV-ZMB
= = =3 = SSV-4AMB

0.5 1 0.5 7 | I‘ b

00 15 | 001k E

Gp Gl & T Gy & & % Dp o Yy % % %
DIPEG EPIC CJPEG

Figure 6.8 Overall performance results for the sophisticated SSV-4x8 backed with
1MB, 2MB and 4MB vector caches.

does not modify its performance neither with 128-element nor with 64-element vector

registers.

When the L2 cache size and associativity are increased again to 4MB and 8-way the
behavior repeats. Programs limited by memory, that is Swim256, Nasa7, Tomcatv,
Bdna and Arc2d increase their performance in 12.4%, 12.5%, 11.1%, 2.9% and 4.5%,
respectively, for vector length 128, over the base configuration. Increases for vector
length 64 go from 2.1% up to 10.7%. Gsm Encode undergoes a slight slowdown of
0.04% for vector length 128 and 64, over the base configuration, and the rest of the
programs undergo an even larger performance decrease (from 0.4% for Jpeg Decode up

to 7% for Jpeg Encode).
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Figure 6.9 Performance results inside D-regions for the sophisticated SSV-4x8
backed with 1MB, 2MB and 4MB vector caches.

Comparing the 2MB and 4MB results we realize that the 2MB performance values are
only a little bit larger than the 4MB results. Although the cache latency has undergone
a 50% increase (from 8 cycles to 12 cycles) the performance results are hardly affected.
Therefore, we have reached a configuration point such that, with that higher latency,

and with the same processor cycle time, it does not pay off spending more chip area in
increasing the cache size. ‘
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Performance inside D-regions

The behavior inside D-regions is similar to the overall performance, taking into account
that measures inside data-parallel regions reach higher EIPC values as they do not
include the effect of the S-regions.

Similarly to the overall performance, figure 6.9 shows that programs that are con-
strained by the memory hierarchy improve their performance as the L2 cache param-
eters are improved. Meanwhile, the rest of the programs suffer a performance loss

because of the influence of the higher latency over the reduced main memory traffic.

Considering the same processor frequency, the 4MB vector cache presents a slight per-
formance slowdown over the 2MB vector cache. However, if the processor cycle time is

decreased the slowdown could turn into a performance increase.

6.6 ATTACKING THE STRIDE PROBLEM:
COLLAPSING AND MULTI-ADDRESS
SECONDARY CACHES

The previous sections have grappled with the extra memory traffic that the SSV ar-
chitecture undergoes by using a rough approach: double RAMBUS bandwidth, double
MSHR and WB entries, and larger caches. However, as we have also seen section 3.7.3,
page 71, a good portion of that traffic is due to non stride-1 memory accesses, which
our vector cache, designed for simplicity, does not handle very well. In this section we
evaluate two alternative cache hierarchies aimed at improving the performance of non

stride-1 vector memory accesses.

The question is, do we have enough die area to implement more complex cache designs?
In the previous section we have studied the evolution of performance as technology
evolves and both, the size of the L2 data cache and the main memory bandwidth are

increased. However, as technology evolves, this extra on-chip space can be used to
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Figure 6.10 The Collapsing Vector Cache (CVC) data path.

implement more complex cache designs, rather than simply increasing the cache size
and the memory bandwidth.

The first alternative design, shown in figure 6.10, is the Collapsing Vector Cache (CVC)
[CEV99]. It uses a collapsing buffer (proposed by Conte et. al. [CMMP95]), that is
able to retrieve several vector elements along two consecutive cache lines, even if they
are not consecutively allocated. Instead of shift and mask logic, the collapsing buffer
logic groups the requested elements together. This design will be useful for vector
strides between 2 and 2Xxcache line size-1, as in these cases there will be more than
one element of the vector access in the two consecutive cache lines that can be easily
retrieved and delivered to the processor. For vector strides equal or larger than twice
the cache line size the collapsing vector cache does not add any improvement to the
basic vector cache already evaluated in previous sections.
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RAMBUS
M
L2 L2 L2
bank 0 bank 1 bank 7

Figure 6.11 The Multi-Address Cache (MAC) data path.

[ VC [ CVC [ MAC |

# ports 1xdw | 1x4w 4
# banks 2 2 8
Latency 4 6 8

Table 6.5 Configuration parameters for the basic Vector Cache (VC), the Collapsing
Vector Cache (CVC) and the Multi-Address Cache (MAC).

211

The second alternative, shown in figure 6.11, is the Multi-Address Cache (MAC)
[CEV99]. It is a conventional cache where a vector memory access is decoupled among

all available memory ports. This model fully takes advantage of all the port resources,

and we can send independent memory addresses no matter the stride between them.

Therefore, this alternative is more flexible than the Collapsing Vector Cache as the

access to the different elements of the vector does not depend on the value of the vector

stride. Of course this design is even more complex and expensive than the Collapsing

Vector Cache, but it will show the potential of the performance achievements that can

be obtained with a suitable memory hierarchy.
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Table 6.5 shows the configuration parameters for the three cache designs, in terms of
number of ports, banks and latency. Note that we increase latency to the L2 cache as a
way to account for the extra complexity of these cache designs. Remaining parameters
do not change, that is, we have a 6.4 GB/s main memory bandwidth, 64 Miss Status
Holding Registers, 64 Write Buffers (retire-at-32 policy) and the extra scalar memory
port.

6.6.1 General Performance

Figure 6.12 presents the overall performance results for the enhanced SSV-4x8 ar-
chitecture backed with the basic vector cache, the collapsing vector cache and the
multi-address cache. The figure shows results for 128-element and 64-element vector
registers. We observe that both, the CVC and MAC improve performance. A more

detailed analysis of the figure reveals that:

s The Collapsing Vector Cache improves performance from 5% up to 90.6% for 128-
element vector registers. The larger performance improvements appear in multi-
media programs Jpeg Decode, Gsm Encode, Jpeg Encode and Epic, with values of
90.6%, 75.7%, 46.1% and 21%. Numerical programs achieve smaller improvements,
being as large as 18.2%, 17.5%, 10.4% and 9.2% for Swim256, Nasa7, Arc2d and
Tomcatv. Bdna reaches 5% improvement. Meanwhile, 64-element vector registers

achieve slightly lower improvements in the range (4.2%, 90.4%).

The exception to this general behavior is program Hydro2d as its performance
decreases when the sophisticated Collapsing Vector Cache is attached to the SSV
processor. This program does not benefit enough from accessing memory with
vector strides in the (2, 2xcache line size-1) range, so that the increasing in the L2

cache latency causes a final performance decrease.

»  The Multi-Address Cache reaches larger performance improvements than the Col-
lapsing Vector Cache, reaching values in the (16.4%, 128%) range for the 128-
element vector registers. Programs Arc2d, Swim256, Jpeg Decode, Gsm Encode and
Nasa7 achieve the largest EIPC values, with improvements of 128%, 127.5%, 90.7%,

79.8% and 67.6% respectively over the basic vector cache configuration. These pro-
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Global performance results for the enhanced SSV-4x8 architecture
backed with the base vector cache (the 1IMB vector cache from the previous section),

a collapsing vector cache, and a multi-address cache.

grams exploit the benefit of the Multi-Address Cache that is not restricted to a

certain value range in the vector stride, but favors all the vector strides.

Although they are not as large as these values, important improvements are also

achieved in programs Tomcatv, Jpeg Encode, Epic, Bdna and Hydro2d, with values
44.5%, 43.4%, 30.4%, 21.3% and 16.4% respectively. Among these programs, Jpeg
Encode has a special behavior, as its improvement is larger in CVC than in MAC.

The fact is that in this program the use of vector strides equal or larger than

twice the cache line size is not large enough to be worthwhile including a more

sophisticated cache design with a larger cache latency. Therefore, the larger latency
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is the constraining point that makes the MAC design obtain slightly lower EIPC

values.

For 64-element vector registers the performance improvements are slightly lower,
still achieving values in the (5.8%,109%) range.

In general, in the MAC design all programs improve their performance, meaning
that in spite of the larger memory latency, programs achieve a decrease in the

overall memory access time due to the easibility of strided vector memory accesses.

The analysis of figure 6.12 has shown that both the CVC and MAC designs allow
improving the performance in those programs that use strided vector memory accesses
or are limited by memory. MAC obtains better performance results, even though it has

a larger cache latency, due to its more flexible design.

6.6.2 Performance inside D-regions

Figure 6.13 presents the performance results inside D-regions for the three cache hi-
erarchies described above. As we provide more flexibility in the number and types of
memory accesses we allow, performance improves accordingly. Comparing this figure
with the previous one, we can see that although the general trends are very similar, pro-
grams Tomcatv, Gsm Encode, Jpeg Decode, Epic and Jpeg Encode reach higher EIPC
values that are then soften in the overall performance when the performance inside

S-regions is also included.

The Collapsing Vector Cache improves performance in almost all programs, from 0.5%

to 45.8% for both 128-element and 64-element vector lengths. Improvements are con--

centrated in programs that have strides 2, 3 and 4, which benefit from the collapsing

hardware.

The Muti-Address Cache improves performance for all programs. The larger improve-
ments happen in programs that either have very large strides (Bdna 23.6%, Nasa7
67.6% and Arc2d 129.5%), or are strongly memory limited (Swim256 128% and Tom-
catv 76.6%).
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Figure 6.13 Performance results inside D-regions for the enhanced SSV-4x8 archi-
tecture backed with the base vector cache (the 1MB vector cache from the previous
section), a collapsing vector cache, and a multi-address cache.

All in all, we have seen in this section that large performance improvements can be ob-
tained as the cache design is tuned in order to tackle strided memory accesses. Although
these cache designs are complex and expensive to implement, the large performance im-
provements obtained pay off the effort, so that as technology evolves they can actually

be implemented.
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6.7 SUMMARY

The studies in the previous chapter evidenced some bottlenecks related to the memory
hierarchy design. These bottlenecks mainly appeared in numerical programs with either
large working sets or strided memory accesses. These programs had a large amount of
traffic with the main memory, a relatively low hit rate, and a vector cache stall time

that in some cases reached up to 60% of the total execution time.

In this chapter we have studied how to decrease the effect of these bottlenecks and
improve the performance of the SSV architecture by tuning the memory hierarchy.
For this study we first selected the CB memory model because of its advantages when
compared to the CA memory model, and then we have analyzed different ways of di-
minishing the negative effects of the performance bottlenecks examined in the previous

chapter.

The first enhancement to the baseline SSV architecture plus CB memory model under
study has been the additional number of Miss Status Holding Register and Write Buffer
entries. Increasing the memory non-blocking mechanisms in the SSV architecture di-
minishes the negative effect of the vector cache stall due to the filling up of the MSHR
and WB structures. The performance improvements obtained with this tuning reaches

up to 37% for 128-element vector registers (46% for 64-element vector registers).

We also studied the possibility of adding an extra scalar memory port to the SSV
architecture. We realized that probably, a key limiting resource in the SSV architecture
is the number of scalar memory references it can perform in parallel (1 scalar reference
per cycle at most). Therefore, in those pieces of vector code that include an important
amount of scalar code it would be helpful to have an extra memory port devoted to

the scalar accesses.

Results show that adding an extra port for scalar accesses is a profitable enhancement
for running a heterogeneous set of programs, which could even include low vectoriza-
tion programs, in the SSV, as it provides with some additional flexibility in accessing

memory.
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Another improvement that we have studied in this chapter is the increase of the memory
bandwidth. It has been motivated by the large amount of traffic that some programs
generated to/from the RDRAM array. Although multimedia programs have low main
memory traffic, numerical programs exert a higher pressure on the main memory, and
their memory traffic reaches higher values. For this reason numerical programs have
taken the better advantage of doubling main memory bandwidth. As we increase the
RDRAM bandwidth in the SSV-4 architecture, programs limited by memory band-
width, such as Swim256, Nasa7, Arc2d and Tomcatv increase their performance up to

20%. The rest of the programs, as expected, are not affected.

We made the same memory bandwidth improvement in the SS arcﬁitecture, and we
observed that the SS-2x4 architecture presents similar improvements for the same set
of programs. Although in some of these programs the relative improvement could be
greater than in the SSV architecture, the SS-2x4 IPC values are still very far from the
SSV-4x8 EIPC values.

Finally, we also studied in this chapter two possible future evolutions of the vector
cache. The first one consists in increasing its size, associativity and latency, at the
same time that the memory bandwidth is also increased. This analysis has shown that
programs that are constrained by the memory hierarchy improve their performance as
the L2 cache parameters are improved. Meanwhile, the rest of the programs undergo a
performance loss because of the prevalence of the higher latency over the reduced main

memory traffic.

When the cache latency is increased again up to 12 cycles our results demonstrate
that, considering the same processor frequency, the 4MB vector cache presents a slight
performance slowdown with respect to the 2MB vector cache. However, if the proces-
sor cycle time is considered to decrease, the slowdown could turn into a performance

increase.

The second future enhancement of the vector cache consists in using the extra on-chip
space in order to implement more complex cache designs, rather than simply increasing

the cache size and the memory bandwidth. In particular, we evaluated two additional

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



218 : CHAPTER 6

cache designs [CEV99] aimed at better dealing with the non stride-1 memory references
found in both numerical and multimedia programs. Simulations show that these new
designs deliver improvements with respect to the base case that range from 5% up to
128%.

The Collapsing Vector Cache (CVC) uses a collapsing buffer (proposed by Conte et.
al. [CMMP95]), that is able to retrieve several vector elements along two consecutive

cache lines, even if they are not consecutively allocated.

The Multi-Address Cache (MAC) [CEV99] is a conventional cache where a vector mem-
ory access is decoupled among all available memory ports. As we can send independent
memory addresses regardless of the stride between them, this alternative is more flexible

and expensive to implement.

The study has shown that both the CVC and MAC designs, although with higher cost
than the baseline vector cache, allow improving the performance in those programs that
use strided vector memory accesses or are limited by memory. The Collapsing Vector
Cache improves performance in almost all programs, from 5% up to 90% for both 128-
element and 64-element vector lengths. Improvements are concentrated in programs
that have strides 2, 3 and 4, which benefit from the collapsing hardware. MAC obtains
better performance results, even thdugh it has a larger cache latency, due to its more
flexible design. The larger improvements happen in programs that either have very
large strides (up to 127.5% in Arc2d), or are strongly memory limited (up to 128% in
Swim256).

Therefore, large performance improvements can be obtained as the cache design is
tuned in order to tackle the strided memory accesses. Although these cache designs are
complex and expensive to implement, the large performance improvements obtained

pay off the effort, so that as technology evolves they can actually be implemented.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



7

CONCLUSIONS AND FUTURE WORK

Summary

This chapter summarizes the main contributions of this thesis. Future lines of work are

also discussed.
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7.1 CONCLUSIONS

We started this thesis realizing that the scalability of superscalar processors is expen-
sive and strongly technology-dependent. Current superscalar architectures can not be
improved by just scaling up the number of instructions that are fetched, decoded, issued
and committed. Current trends in the exploitation of available parallelism support this
statement, and the design of current and near-future processors is currently exploit-
ing new ways of parallelism. These trends identify the incipient use of ILP coupled
with other ways of exploiting parallélism, such as simultaneous multithreading or chip

multiprocessing.

Based on this analysis we have pfesented the data-level parallelism paradigm as an
alternative way to exploit a different style of parallelism. Vector instructions have
several inherent advantages: a lower number of instructions and operation executed,
reduced pressure in the instruction fetch unit, simplicity of the control unit, advance
knowledge of memory accesses (which can be scheduled in a better way), use of 100% of
the requested data, ability to amortize functional units and memory startup latencies
and simplicity to be scaled up by replicating functional units.

All these advantages have lead us to consider the exploitation of DLP as a way to
improve current ILP architectures. However, we identified first the reasons why the
success of traditional DLP architectures, that is vector architectures, was declining some
years ago. They can be summarized in the fact that they are not as general purpose
and their price/performance ratio worsened when compared to the other paradigms
of supercomputing. While absolute performance of vector machines increased, the
memory systems required to keep these powerful machines fed with data were still
large, complex and very expensive. Thus, when comparing vector mainframes against
multiprocessors using CMOS cache-based superscalar microprocessors, the cost per
megaflop clearly favors the CMOS multiprocessors. Moreover, cache based superscalar
machines were perceived to be more flexible than vector architectures, since the latter
only perform well applications that are highly vectorizable. While cache based machines
can not successfully execute all programs with very large data sets, their success in

capturing a large fraction of most application domains is unquestionable.
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Nowadays, parallel vector machine vendors offer supercomputing to the user at a much
lower cost and with a higher performance. They have moved from the expensive ECL
technology to CMOS technology, which lowers the fabrication costs and the power con-
sumption appreciably. They have also migrated from expensive SRAM to commodity
SDRAM chips, which provide a higher memory density, lower cost and higher perfor-

mance.

Besides, the DLP paradigm has been also recently introduced in commodity micropro-
cessors. However, a restricted form of vector computing aimed at exploiting sub-word
level parallelism has only been introduced. In this thesis we do not focus on sub-word
level parallelism. Rather, we integrate a full vector unit in an out-of-order superscalar
processor. The advantage is that numerical applications can benefit greatly from them
while, typically, do not take advantage of MMX-like ISAs. Furthermore, some multi-
media applications that are not amenable to exploit sub-word parallelism can also take

advantage of our vector units.

The main contribution of this thesis is to show that ILP and DLP can be merged in a
single architecture to execute numerical and multimedia applications at a performance

level that can not be achieved using either paradigm on its own.

ISA analysis

Our analyéis of the instruction set architecture level has shown that, as expected, vector
programs execute fewer basic blocks, instructions and operations than scalar programs
due to the higher semantic content of vector instructions. Moreover, the larger the
vector length, the shorter the number of instructions and operations executed. However,

large vector lengths need larger vector register files, which are chip area consuming .

Another novel contribution of this thesis is the identification, separation and study of
the S- and D-regions of each program. D-regions contain those pieces of code that
can be vectorized, and S-regions contain pieces of code that are not amenable to be
expressed using vector instructions. The ability for identifying and separately studying

the behavior of a program inside D-regions and S-regions has allowed us to predict and
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understand its performance behavior. The study inside regions at the instruction set
architecture level showed that superscalar programs execute many more basic blocks,
instructions and operations inside D-regions than the vector programs. The analysis
of the S-regions exposed the problem that the quality of the scalar code generated by
the superscalar compiler is higher than the quality of the scalar code generated by the

vector compiler.

The solution consists in building a new set of benchmark programs starting from the
pure superscalar and vector programs. Each hybrid vector program consists in the
original S-regions from the superscalar version plus the original D-regions from the
vector version. The hybrid vector programs execute fewer instructions and operations

than the pure vector programs while they keep almost the same vector characteristics.

These initial studies at the ISA level lead us to conclude that, given the benefits of the
vector ISA, it is worthwhile exploring the possibility of including a vector functional

unit in a current superscalar architecture.

Proposed Architecture

The design of the ILP+DLP architecture is very similar to a current superscalar pro-
cessor. The main difference comes from the addition of a Vector Register File (VRF)
and its connections to the functional units present in the architecture. We have also
added some special purpose registers: the vector length, vector stride, vector first and
vector mask registers

Another contribution of this thesis is the design on the memory hierarchy, which is based
on a new cache design, called “vector cache”, which is able to deliver small vectors to
the processor through a wide path. The vector cache is a dual banked memory from
which full lines are read. These lines are switched, shifted and masked as necessary,
and then data are sent to the processor. In this way, a high bandwidth, low latency

data path to the memory is achieved.
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Among the different ways in which the vector cache can be included in the memory
hierarchy, we have explored two options: either include it as the L1 cache, or include
it as the L2 data cache adding a direct path from the vector cache to the processor.

Scalability Study

We have presented the performance results of our proposed superscalar architecture
with a vector unit and we have compared it with a traditional superscalar processor.
We have studied two the scalability and potential performance of the SSV and SS archi-
tectures when a perfect memory is used. We have observed that the SSV architecture
scales very well as more memory and computing resources are added to the processor.
Moreover, it reaches higher values of parallelism than the SS architecture with a lower
cost and control complexity.

The analysis inside D-regions and S-regions has shown that the SSV architecture
achieves high values of parallelism inside D-regions. However, its contribution to the
overall performance is determined by the relative weight of D-regions in the whole pro-
grams. For highly vectorizable programs, the overall performance is mainly determined
by the high performance values obtained inside D-regions. However, low vectorizable
programs have an overall performance that is also determined by the performance in-
side S-regions. As was expected, the performance inside S-regions is better for the SS
architecture, since the superscalar core of the SSV architecture remains constant along
the different configurations, while, in the SS architecture, the core is scaled adding more

and more resources.

The study of the amount of data parallelism that each architecture is able to reach
inside D-regions has shown that, although both, the SSV and the SS architectures,
obtain larger OPC values as the configurations are scaled, the SSV architecture achieves

larger values than the SS architecture in all programs.
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Real Memory System Study

We have studied the SSV when a real cache hierarchy is introduced. We studied a cache
hierarchy, called CA, where where the vector is in the first cache level. In contrast, in

the CB model, the vector cache is in the second cache level.

The traffic study showed that regardless of the memory model, CA or CB, the cache
hierarchy is able to filter a substantial portion of the processor’s memory traffic. Mul-
timedia programs have a very low memory traffic, and numerical programs present a
lower amount of memory traffic when the CB model is used. Meanwhile, the results
of the hit/miss study showed that multimedia programs hit much more often in cache
than numerical programs. Again, the CB model reaches higher hit rate percentages.
As a conclusion, numerical programs make a higher pressure on the main memory and
the CB model, with a larger vector cache, reacts much better to this pressure with

lower main memory traffic and higher hit rates.

The study of the vector cache stall time has revealed that this cache can spend up to
60% of the total execution time stalled due to different reasons. The two main reasons
are full MSHR and WB entries. The other two reasons (coherence and cache conflicts)

contribute in a lower degree to that bottleneck.

The performance evaluation has shown that numerical programs are limited by the
memory system, while multimedia programs are not. Although the introduction of a
real memory system has strongly reduced the performance values obtained by the SSV

architecture, these performance results are still higher than the SS performance values.

The study inside regions has presented that, for the SSV architecture, programs scale
well inside D-regions and behave constant inside S-regions. The overall performance
is determined by the weight of the S- and D-regions in the whole program. Inside
S-regions the SS architecture reaches a better performance due to the scaling of the

superscalar core.
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All in all, the CB memory model presents better performance results for the numerical
programs and the difference with the CA performance results for multimedia programs
is small. Therefore, the CB memory model will be the memory model that we propose
to be attached to the SSV processor, as it achieves the better results both, in the cache

efficiency and performance studies.

We conclude that the SSV architecture is a feasible architecture from the performance
point of view. It reaches a better performance than a traditional SS architecture,
either with ideal or real memory systems, as the processor configuration is scaled. It is
a good choice for multimedia programs and it achieves really good results for numerical

programs. These results can still be improved by tuning the memory hierarchy.

Regarding the size of the vector length to be used, we observe that, although, in general,
the better performance results are obtained by using 128-element vector registers, the
final decision depends on the available transistor budget for the concrete design. An
implementation for a general purpose processor should use 128-element vector registers
in order to achieve the better performance. However, a low cost approach can sacrifice
some of the obtained performance in order to decrease its cost, thus including 16-

element vector registers.

Tuning the Memory Hierarchy

The study under a real cache hierarchy evidenced some bottlenecks related to the
memory hierarchy design. These bottlenecks mainly appeared in numerical programs
with either large working sets or strided memory accesses. These programs had a large
amount of traffic with the main memory, a relatively low hit rate, and a vector cache

stall time that in some cases reached up to 60% of the total execution time.

In order to decrease the effect of these bottlenecks and improve the performance of the

SSV architecture we have proposed several enhancements.

The first enhancement to the baseline SSV architecture plus CB memory model un-
der study has been to add additional Miss Status Holding Registers and Write Buffer
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entries. Increasing the memory noﬁ-blocking mechanisms in the SSV architecture di-
minishes the negative effect of the vector cache stall. The performance improvements
obtained with this tuning reaches up to 37% for 128-element vector registers (46% for

64-element vector registers).

We also studied the possibility of adding an extra scalar memory port to the SSV
architecture, as a key limiting resource in the SSV architecture can be the number
of scalar memory references it can perform in parallel (1 scalar reference per cycle at
most). Results showed that adding an extra port for scalar accesses is a profitable
enhancement for running a heterogeneous set of programs, that could even include low
vectorization programs, in the SSV, as it provides with some additional flexibility in

accessing memory.

Another tuning that we studied has been the increase of the memory bandwidth. This
tuning has been motivated by the large amount of traffic that numerical programs
generated to/from the RDRAM array. For that reason these programs have taken the
better advantage of doubling main memory bandwidth. As we increase the RDRAM
bandwidth in the SSV-4 architecture, programs limited by memory bandwidth increase

their performance by up to 20%.

Finally, we also studied in this chapter two possible future evolutions of the vector
cache. The first one consists in increasing its size, associativity and latency, at the
same time that the memory bandwidth is also increased. This analysis has shown that
programs that are constrained by the memory hierarchy improve their performance as
the L2 cache parameters are improved. Meanwhile, the rest of the programs suffer a
performance loss because of the prevalence of the higher latency over the reduced main

memory traffic.

The second future enhancement of the vector cache consists in using the extra on-chip
space in order to implement more complex cache designs, aimed at dealing with the
non stride-1 memory references found in both numerical and multimedia programs.

Results showed that these new designs, called Collapsing Vector Cache and Multi-
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Address cache, deliver improvements with respect to the base case that range from 5%
up to 128%.

The Collapsing Vector Cache (CVC) uses a collapsing buffer that is able to retrieve
several vector elements along two consecutive cache lines, even if they are not consec-
utively allocated. It improves performance in almost all programs, from 5% to 90%
for both 128-element and 64-element vector lengths. Improvements are concentrated

in programs that have strides 2, 3 and 4, which benefit from the collapsing hardware.

The Multi-Address Cache (MAC) is a conventional cache where a vector memory access
is decoupled among all available memory ports. As we can send independent memory
addresses no matter the stride between them, this alternative is more flexible and
expensive to implement. MAC obtains better performance results, even though it has
a larger cache latency, due to its more flexible design. The larger improvements, which
are as large as 128%, happen in programs that either have very large strides, or are

strongly memory limited.

Therefore, large performance improvements can be obtained as the cache design is tuned
in order to tackle the non stride-1 memory accesses. Although these cache designs are
complex and expensive to implement, the large performance improvements obtained

pay off the effort, so that as technology evolves they can actually be implemented.

7.2 FUTURE WORK
Implementation cost of the ILP+DLP architecture

The performance study carried out in this thesis has revealed that the ILP+DLP ar-
chitecture reaches good performance results for numerical and multimedia programs.
This work could be extended by studying the implementation cost of the ILP+DLP
processor through an accurate model that allows calculating the amount of chip area
that is required in order to build it. It would be interesting comparing, in terms of

cost, the different configurations that have been studied. In this way we could analyze
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which, among all the configurations studied, is the configuration with a minimum cost,

a minimum power consumption and a better price performance ratio.

Improving gather/scatter and non stride-1 performance

We have observed in this work that non stride-1 vector memory accesses, as well as
gather/scatter vector memory accesses do not have enough spatial locality and, conse-
quently, do not perform well under a traditional memory hierarchy. Although we have
proposed two additional cache hierarchies aimed at dealing with these types of memory
accesses, they are costly to implement. It would be interesting to study additional
memory models that could improve performance of gather/scatter and non stride-1
vector memory accesses while keeping a low cost. One solution could be not to bring to
the cache these types of accesses, but rather access them directly to the main memory.
Although the latency would be higher, these data would not pollute the cache causing
conflicts and evicting useful data.

Understanding how a VLIW performs on D-regions

An alternative to using our proposed vector extensions to attack the parallelism present
in D-regions is the use of statically-scheduled VLIW architecture. It would be inter-
esting to compare the relative merits of VLIW vs. vector on these highly regular and
data-parallel sections of code to understand which paradigm provides a better perfor-
mance and better price-performance rate.

Low End ILP+DLP processors

In this thesis we have focused on how can we use the additional transistors that will be
available on a chip in the near future. The goal was to achieve the better performance
by using as many transistor as it could be possible. However, it is also interesting to
study the low end spectrum of ILP+DLP processors, which can yield good performance

at a lower cost. In this sense, we could study a modest ILP processor coupled with a
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vector unit that uses short vector registers. These processors will be aimed at a low

power consumption and dealing with the problem of the wire delays.

In-order versus Out-of-order ILP+DLP processors

Also related with the previous topic it would be interesting to extend this work in
order to study the relative performance behaviors of the ILP core of the ILP+DLP
architecture whenever this core carries out in-order versus out-of-order execution. Al-
though the in-order ILP core is much more limited than the out-of-order core that we
have studied, its cost would be also lower, so that the price/performance ratio would
be well-suited for the execution of applications with a reasonable performance and low

cost.

Simple Simultaneous Multithreaded ILP+DLP processors

As discussed earlier, different techniques aimed at the exploitation of different styles of
parallelism are currently being merged into a single processor. It would be interesting to
study the performance of a simultaneous multithreaded ILP+DLP architecture backed
with a memory hierarchy based on a vector cache. In order to restrict the study
to a feasible set of configurations, the study would be focused on a narrow-way ILP
core, with a vector functional unit with short vectors, and a modest simultaneous

multithreaded execution, running at a high clock rate.
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APPENDIX A

Resumen de la tesis (en castellano)
Summary

En cumplimiento del Reglamento de los Estudios de Doctorado de la Universidad de
Las Palmas de Gran Canaria, capitulo III, seccion 1, articulo 68, este apéndice es
un resumen de la tesis doctoral, en castellano, donde se incluyen el objeto y los ob-
jetivos de la investigacion, el planteamiento y la metodologia utilizada, las principales

aportaciones y la conclusiones y el trabajo futuro.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



ii

A.1 OBJETO Y OBJETIVOS DE LA INVESTIGACION

En las ultimas décadas, los microprocesadores han experimentado un aumento continuo
de rendimiento y una reduccién en la relacién precio/rendimiento [Sla96]. Entre las
diferentes tendencias observadas, los procesadores superescalares se han caracterizado
por su éxito en diferentes mercados [Sit92] [BDHS94] [Hun95] [TGN95] [WPS95] [Yag96]
[Chr96] [Kel96] [Pap96]. A partir de los primeros microprocesadores superescalares, que
podian lanzar a ejecutar dos instrucciones en cada ciclo de reloj (HP PA7100 [AAD*93],
DEC Alpha [Sit92], Intel Pentium [AA93], IBM PowerPC [SDC94]), se han realizado
numerosos trabajos de investigacion con el objetivo de mejorar el rendimiento de los
mismos. Todos estos trabajos tratan sobre temas como las caches de instrucciones, la
prediccion de saltos, la organizacién del banco de registros, el renombre de registros,
la posibilidad de lanzar a ejecutar cada vez mas instrucciones en cada ciclo de reloj, la
planificacién dindmica de instrucciones y la ejecucién fuera de orden, y las caches de
datos (incluyéndose en este ltimo tema las caches multinivel, la prebiisqueda de datos,

los accesos no bloqueantes y las caches con multiples puertos, entre otros).

Todas estas mejoras han permitido avanzar en el camino de la mejora del rendimiento.
Los procesadores actuales mds avanzados son capaces de operar a frecuencias por
encima de 1GHz [Int00] [Kah99] y ofrecen un niicleo de ejecucién superescalar, pre-
dictores de saltos sofisticados y soporte para sistemas de memoria de alto rendimiento
[Int00] [Kah99] [Kes99] [Yag96] [Kum96]. Estos avances, sin embargo, no se producen
de manera gratuita, y todas estas técnicas se estdn complicando cada vez més, como
puede verse al examinar las complejas caches de instrucciones de hoy en dia [RQJS97]

o las técnicas de especulacién de datos [GM96] que actualmente se estudian.

Dado que a medida que la tecnologia evoluciona se incluird cada vez un mayor mimero
de transistores en un tnico chip [Yu96], la cuestién es cémo usardn los procesadores
futuros ese incremento en el niimero de transistores. La mayoria de los procesadores ac-
tuales estan centrados en el uso de técnicas dirigidas a explotar cada vez més paralelismo
a nivel de instruccién [Eme99] [Kah99]. Sin embargo, las medidas del rendimiento
real de las aplicaciones que ese ejecutan en estas mdquinas [CB96] muestran que el

rendimiento alcanzado estd muy por debajo del rendimiento teérico maximo de estas
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méquinas. Muchos estudios han apuntado que esta falta de rendimiento puede deberse
a diferentes efectos, como los fallos en las caches de datos y de instrucciones, los fallos
en la prediccién de saltos, las dependencias de memoria o la falta de paralelismo de los
propios programas [Wal91] [LW92] [BGB98].

Por lo tanto, aunque la explotacién del paralelismo a nivel de instruccién ha producido
grandes mejoras en el rendimiento, y escalar los procesadores superescalares actuales
es un area de investigacién muy activa, existe un consenso generalizado en la idea de
que este escalado no puede hacerse simplemente buscando, decodificando y ejecutando
m&s y més instrucciones por ciclo de reloj [PJS96] [PJS97] [AHKBO00]. Algunas de las

razones son las siguientes:

s En primer lugar, es necesario disefiar unidades de bisqueda y decodificacion agresi-
vas, lo cual no es un tema trivial debido a la existencia de los saltos, asi como el re-
stringido ancho de banda de las caches de instrucciones [PW94] [RBS96] [CMMP95]
[RLPN*+99).

= En segundo lugar, se necesita una unidad de lanzamiento de instrucciones a eje-
cucién que sea agresiva, con una gran ventana de instrucciones, para asi poder
alimentar a un gran nimero de unidades funcionales [HKLS00]. El tiempo de
bisqueda en la ventana de instrucciones aumenta cuadriticamente con el tamano
de la misma [PJS97].

= En tercer lugar, para lanzar a ejecutar un gran nimero de instrucciones se necesita
disponer de un banco de registros con gran nimero de puertos, lo que puede hacer
que el tiempo de ciclo del procesador aumente, y ademds requiere un aumento
significativo del 4rea del chip dedicado al banco de registros [CGVT00].

s Por dltimo, realizar miltiples accesos a memoria en cada ciclo de reloj requiere
tanto una cache como un TLB multipuerto, y su coste es también proporcional al

ntimero de puertos independientes de memoria que posean [JNT97] [BGK96].

Todos estos aspectos hacen que la escalabilidad de los procesadores superescalares sea
cara y fuertemente dependiente de la tecnologia [AHKBO00]. Ademds, incluso si se
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pudiesen resolver estos problemas tecnoldgicos y de coste con la futura tecnologia,
veremos a lo largo de esta tesis que el rendimiento obtenido generalmente no justifica
la cantidad de drea del chip y de esfuerzo de disefio que se requieren [LWS96] [QCEV99).

Por lo tanto, para poder superar los problemas de escalabilidad de los procesadores
superescalares actuales, creemos que el camino debe ser la explotacion de mas de una
fuente de paralelismo. Analizaremos primero, en las siguientes secciones, las diferentes
fuentes de paralelismo disponibles en los programas, y como se estan explotando en los

procesadores actuales.

A.1.1 Fuentes de paralelismo

En los programas existen diferentes fuentes de paralelismo: paralelismo de instruccién,
paralelismo de datos y paralelismo de thread. Analicemos cada uno de ellos en més
detalle.

Paralelismo de instruccion

Entre las diferentes fuentes de paralelismo existentes, el paralelismo de instruccién
(ILP) ha sido una de las fuentes de paralelismo mds explotadas [RF93]. Un programa
presenta ILP cuando diferentes instrucciones de un tnico flujo de control se pueden
ejecutar en paralelo y el resultado final del programa no se altera. La deteccion de
las instrucciones que pueden ser ejecutadas en paralelo puede realizarse en tiempo de
compilacién o en tiempo de ejecucién. Cuando se detectan en tiempo de compilacién,
el compilador selecciona grupos de instrucciones que pueden ejecutarse en paralelo
[Gas89]. Estas instrucciones son tipicamente empaquetadas en una tnica instruccion.
Las arquitecturas que explotan ILP de esta manera se denominan arquitecturas de pal-
abra de instruccién muy ancha (Very Long Instruction Word - VLIW) debido a la gran
longitud de las instrucciones, que incluyen la especificacién de multiples operaciones
[KM89] [PSW91] [Gas91].

El procesador Itanium de Intel-HP [Sha99] es un ejemplo de procesador VLIW. Posee

una descripcién de paralelismo en el propio disefio, lo que evita que el hardware deba

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



buscar un paralelismo que el compilador ya conocia. El concepto basico del VLIW es
hacer visibles al compilador las decisiones de planificacién de instrucciones del hard-
ware. De este modo, el compilador puede hacer las optimizaciones oportunas, puesto
que conoce el hardware subyacente donde se van a ejecutar los programas [Lam88].
Los procesadores VLIW también emplean nuevas técnicas [EGKT94] [Rau93], como la
ejecucién predicada o la especulacién, lo que les permite anticiparse, y realizar calculos
antes de que sean necesarios. Por supuesto, el inconveniente de estas aproximaciones
es que los resultados de la ejecucién especulativa deben descartarse cuando los datos
no pueden ser validados, y tener que realizar profiling del cédigo se convierte en una

carga software innecesaria.

La explotacién de ILP en tiempo de ejecucién se lleva a cabo en los procesadores
superescalares actuales [Joh91]. En los procesadores superescalares, las instrucciones
se buscan, se decodifican, se renombran, y se envian a las colas de ejecucion, donde se
ejecutan cuando sus operandos estdn disponibles. Esta manera de detectar ILP es mas
flexible puesto que el hardware posee informacién completa acerca de las dependencias
entre las instrucciones (en contraposicién con la informacion estitica limitada que posee
el compilador) [RF]. Si exploramos las tendencias de los procesadores superescalares
actuales, veremos que existe una disparidad sobre cémo explotar ILP y mejorar el
rendimiento, todo ello sin incurrir en una complejidad excesiva en el circuito que pueda
llevarnos a limitar la velocidad de funcionamiento del procesador [AHKBOO]. Por un
lado, los procesadores Alpha 21464 [Eme99] e IBM Power4 [Kah99] apuestan por lanzar
a ejecutar hasta 8 instrucciones en cada ciclo de reloj. Por otro lado, el procesador
Intel Pentium4 [Int00] es un intento de explotar al méximo la frecuencia de reloj con
un lanzamiento limitado de instrucciones en cada ciclo de reloj. Este procesador tiene
una trace cache [PW94] que envia hasta 3 micro-operaciones por ciclo de reloj a la
unidad de ejecucién, pero, a cambio, consigue un tiempo de ciclo muy bajo usando

supersegmentacion.
Paralelismo de thread

Otra fuente de paralelismo es el paralelismo de thread (TLP). Un programa presenta

TLP si puede ser descompuesto en diferentes threads, o grupos de instrucciones, que
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pueden ejecutarse concurrentemente, tanto si es de forma especulativa como si no. Esta
aproximacién produce un sistema con una productividad alta y una mejor utilizacién

de los recursos.

Uno de los tipos de TLP es el multithreading simultdneo (SMT) [TEL95]. En este
caso, instrucciones de threads diferentes coexisten a la vez en el buffer de reordenacién.
En cada ciclo de ejecucion, el procesador lanza a ejecutar instrucciones que pueden
pertenecer a threads diferentes. Para realizar una implementacién adecuada de SMT
son necesarios unos pocos bits para cada instruccién, que mantengan la informacién
de thread, asi como tablas de renombre diferentes para cada uno de los threads. Un
ejemplo de esta tendencia es el procesador Alpha 21464 [Eme99], segin ha anunciado
la compaiiia que lo fabrica. Este procesador Alpha puede ejecutar hasta 8 instrucciones
en un ciclo de reloj. Para explotar este potencial de ejecucion, este procesador utiliza
ejecucion de instrucciones fuera de orden y técnicas de busqueda de instrucciones es-
peciales para crear cuatro unidades virtuales de procesamiento de threads, lo que hace
que la CPU se asemeje a un sistema multiprocesador de 4 vias. El mayor problema
de esta propuesta es el soporte software que se necesita para extraer threads de las

aplicaciones.

Existe también otra aproximacion para explotar el paradigma TLP. Se denomina mul-
tiprocesamiento en un chip (CMP) y se basa en poner més de un procesador en un solo
chip. IBM utiliza CMP en el procesador Power4 [Kah99], como también hace Compaq
en el procesador Piranha [BGM*00]. Esta propuesta no posee el inconveniente del
soporte software, pero incurre en el coste extra que supone poner dos procesadores en

un unico chip.
Paralelismo de datos

Finalmente, la tercera fuente de paralelismo en un programa es el paralelismo de datos
(DLP). Un programa posee paralelismo de datos cuando existe un trozo de cédigo (nor-
malmente un bucle) que ejecuta la misma operacién sobre una serie de datos [PH96]
[Fly97]. Estos datos se encuentran normalmente en estructuras de datos tipo vector

o matriz. La operacién a realizar puede llevarse a cabo sobre datos consecutivos en
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memoria o sobre elementos que estan separados en memoria una cantidad fija de posi-
ciones, llamada stride. El nimero de elementos sobre el que se realiza la operacion
se denomina longitud vectorial. Explotar DLP en bucles disminuye el nimero de in-
strucciones y operaciones que se han de ejecutar. Ademads, las instrucciones vectoriales
proporcionan una gran cantidad de trabajo a las unidades funcionales del procesador
(tanto como indique la longitud vectorial), lo que mantendra las unidades funcionales

ocupadas durante un gran niimero de ciclos.

Aunque muchos procesadores han utilizado la explotacién de DLP en su disefio [Rus78]
[IW91] [Oed92], solo dos compaiiias estdn dedicadas actualmente a la fabricacién de
procesadores que explotan paralelismo a nivel de palabra: NEC [vdSDO01c] y Cray
[BS00]. Sin embargo, en los wltimos afios han surgido las populares extensiones del
repertorio de instrucciones que tratan con paralelismo intra palabra, como MMX [PW96],
Altivec [NJ99], VIS [Koh95] y MDMX [MIP97]. Esta es también una forma de par-
alelismo de datos en la que datos de pequefio tamafios se empaquetan en un dnico
registro del procesador y se realizan las operaciones simultdneamente sobre los distin-

tos elementos.

Con todo, algunos de los paradigmas de paralelismo que acabamos de discutir son
ortogonales entre si, y en la practica se implementan juntos en un mismo procesador.
Por ejemplo, el IBM Powerd [Kah99] posee dos procesadores en un unico chip, cada
uno de ellos capaz de lanzar a ejecutar varias instrucciones por ciclo. El procesador
Alpha 21464 [Eme99] ejecuta hasta cuatro threads simultdneamente, y cada uno de
ellos puede lanzar a ejecutar hasta ocho instrucciones fuera de orden en cada ciclo de
reloj. En el caso limite, podriamos tener varios procesadores en un tnico chip, cada
uno de ellos podria explotar multithreading simultdneo, y podria también extraer ILP
de los programas lanzando a ejecutar varias instrucciones en cada ciclo de reloj. Esta
es una idea importante que nos lleva a concluir que existen diversas fuentes naturales
de paralelismo en los programas, y cada procesador trata de alcanzar niveles altos de
rendimiento explotando algunas de estas fuentes. En esta tesis nos basamos en esa, idea
y proponemos el disefio de un procesador que explota paralelismo de datos junto con
la ejecucién superescalar tradicional. Este procesador estard acoplado a una jerarquia

de memorias cache especialmente disefiada, que estard orientada a acceder a datos
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escalares y vectoriales. Nuestro diseno alcanza valores de rendimiento para aplicaciones
numéricas y de multimedia que un procesador superescalar no puede alcanzar por si

mismo.

Dado que nuestra propuesta esta basada en la fusién del ILP méas DLP, a continuacién

presentamos un estudio mas profundo de estos dos paradigmas.

A.1.2 Paradigma ILP

El paradigma ILP se explota principalmente en las procesadores superescalares actuales
[Joh91] [SS95]. Estos procesadores utilizan diferentes técnicas orientadas a la deteccién

y explotacién de paralelismo de instrucciones:

= Segmentacién o pipelining. La ejecucién segmentada de un flujo de instruc-
ciones explota ILP, puesto que diferentes partes de diferentes instrucciones se eje-
cutan simultdneamente. En una ruta de datos segmentada la ejecucién de cada in-
struccién se lleva a cabo siguiendo una serie de etapas secuenciales [Kog81] [PH96]
[Fly97]. El nimero exacto de etapas depende del disefio de cada procesador [DF90)].
Sin embargo, los pasos principales que se llevan a cabo en la ejecucién de una in-
struccién son: busqueda, decodificacién y renombre de registros, issue, ejecucién y
almacenamiento de resultados. En algunos procesadores estas etapas pueden ser
dividas ademds en etapas adicionales, dependiendo de las decisiones de disenio. En
la etapa de busqueda de la instruccién, se accede a la cache de instrucciones para
leer la instruccién. La etapa de decodificacién y renombre de registros realiza la
decodificacién de la instruccién, renombra los registros ldgicos a registros fisicos del
procesador y predice el resultado del salto para poder tomar una decisién acerca de
la ejecucion de las instrucciones siguientes (si se continua la ejecucién secuencial-
mente o si se salta a la direccién de destino del salto). Después de eso, se envia la
instruccion a la colas de ejecucién de las distintas unidades funcionales. Entonces
la instruccién se ejecuta en la unidad funcional apropiada (o accede a la cache de

datos si se trata de una instruccién de acceso a memoria). La instruccién termina,
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su ejecucién escribiendo el resultado en el banco de registros, si es que produce

algtin resultado que deba ser almacenado.

s Ejecucién de multiples instrucciones. El modelo segmentado que hemos co-
mentado se puede evolucionar para que sea capaz de tratar con mas de una in-
struccién en cada ciclo de reloj [SV87]. En ese caso, se buscan, decodifican, renom-
bran, se ejecutan y se terminan varias instrucciones en cada ciclo. Por supuesto, las
instrucciones que se ejecutan en paralelo no pueden depender unas de las otras. En
los primeros afios de la década de los 90 se fabricaron algunos procesadores, como
el DEC 21064 [McL93], el HP PA 7100 [AAD793] y el MIPS R8000 [Hsu94], que
realizaban la ejecucién de muiltiples instrucciones, siempre que fueran de diferente
tipo. Los procesadores actuales son capaces de ejecutar miiltiples instrucciones
por ciclo de reloj, aunque sean del mismo tipo. La mayoria de ellos lanzan cuatro
instrucciones en cada ciclo, aunque existen algunos, como el Itanium [Sha99] que

puede lanzar a ejecutar hasta seis instrucciones por ciclo de reloj.

s Planificacién dindmica de instrucciones y ejecucién fuera de orden. La
técnica anterior, junto con la segmentacién de la ejecucion de las instrucciones, per-
mite explotar mucho més ILP, pero esta fuertemente basada en la habilidad para
encontrar varias instrucciones independientes que puedan ejecutarse en paralelo.
Este proceso de bisqueda de instrucciones independientes puede llevarse a cabo
estaticamente, en tiempo de compilacién, o dindmicamente, en tiempo de ejecucion.
En el primer caso, el compilador selecciona grupos de instrucciones independientes
v las empaqueta en una tnica instruccién VLIW [PSW91] [Gas91]. En el otro caso,
se buscan las instrucciones, se decodifican y se envian a las colas de ejecucion en
el orden original del programa, pero una vez estdn alli, pueden ejecutarse fuera de
orden siempre que sus operandos estén disponibles. Después de la ejecucidn, las
instrucciones se gradidan en el orden original del programa de forma que se pre-
serve la semantica del programa [DT92]. Esta técnica le proporciona al procesador
una flexibilidad adicional a la hora de encontrar instrucciones independientes que

puedan ejecutarse, manteniendo asi las unidades funcionales ocupadas.

Todas estas técnicas combinadas permiten al procesador alcanzar altos niveles de

rendimiento. Por supuesto, los procesadores podrian alcanzar ain mejor rendimiento
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si los programas se compilaran conociendo las caracteristicas de la maquina donde se
va a realizar la ejecucién. Por ejemplo, el compilador puede aplicar algunas técnicas de
compilacién, como desenrollado de bucles o reemplazamiento escalar, como forma de
exponer una mayor cantidad de paralelismo de instruccién, lo que facilita la explotacion

de ILP en tiempo de ejecucion.

Los dos mayores retos de un procesador que explota ILP son los saltos y los accesos a
la memoria. Estos dos elementos interrumpen de algin modo el flujo de instrucciones
e impiden que las instrucciones avancen por el pipeline. Los fallos de cache son un
problema debido a que paran el pipeline, disminuyendo asi el rendimiento. Se han de-
sarrollado diversas técnicas para luchar contra el efecto de los fallos de cache y disminuir
asi el tiempo de acceso a la memoria [CB92] [SV97] [SCI7] [Zha96] [Vei97] [RBS96]. Sin
embargo, siempre existe un cierto numero de fallos de cache que no pueden eliminarse

debido a la primera vez que se accede a los datos (fallos forzosos).

En cuanto a los saltos, el problema son los fallos en la prediccién del salto. La prediccién
de forma precisa del resultado de los saltos es un tema de investigacién muy activo
[McF93] [YMP93] [SJISM96] [Zha96] [JSN98], en el que hay un gran interés en la co-
munidad investigadora. Cada vez que se falla en la prediccién de un salto, y se estd
ejecutando el camino equivocado, es necesario vaciar el pipeline del procesador. En esas
situaciones existe una pérdida de rendimiento debido a los ciclos de ejecucién empleados

en ejecutar las instrucciones del camino equivocado.

A.1.3 Paradigma DLP: Otra fuente de paralelismo

El paralelismo de datos (DLP) utiliza técnicas de vectorizacién para descubrir par-
alelismo de palabra en un programa especificado secuencialmente, y expresa este par-
alelismo utilizando instrucciones vectoriales [Rus78] [Oed92] [CGMWS88] [NKT*95]
[WKI86] [AJ88] [DH] [SK86] [Smi9l] [CTS96]. Una tinica instruccién vectorial es-
pecifica una operacion que se llevara a cabo, repetidamente, sobre una serie de datos.
Cada operacion realizada sobre cada elemento individual es independiente del resto
de operaciones y, por lo tanto, una instruccién vectorial es ficilmente segmentable y
altamente paralela [Arn83] [HT72] [Ric78] [GBH96] [NKT*95].
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Existen dos ventajas muy importantes en la utilizacién de instrucciones vectoriales
para expresar paralelismo de datos. La primera es que se reduce el nimero total de
instrucciones que tienen que ejecutarse para completar un programa, dado que cada
instruccién vectorial posee mas contenido semantico que las instrucciones escalares cor-
respondientes. En segundo lugar, el que las operaciones individuales de una instruccién
vectorial sean independientes entre si permite una ejecucién més eficiente: una vez que
se lanza a ejecutar una instruccién vectorial en una unidad funcional, ésta estard ocu-
pada con trabajo ttil durante una gran cantidad de ciclos. Durante esos ciclos, el
procesador puede ir buscando otras instrucciones vectoriales que puedan ser lanzadas a
ejecucién en la misma unidad funcional, o en otra. Es muy probable que, en el momento
en que una instruccién vectorial termine su trabajo, exista ya otra instruccién vectorial
preparada para ser ejecutada y ocupar asi la misma unidad funcional. Sin embargo,
en un procesador escalar, cuando una instruccién se envia a una unidad funcional, se
requiere otra instruccion en el ciclo siguiente para poder asi mantener las unidades fun-
cionales ocupadas. Desafortunadamente, pueden ocurrir muchos riesgos que impidan
poder encontrar estas instrucciones independientes con la rapidez con que se requiere:
dependencias de datos, fallos de cache, fallos en la prediccion de los saltos, etc.

La combinacion de estos dos efectos tiene muchas ventajas relacionadas:

=  En primer lugar, se disminuye la presién en la unidad de bisqueda de instrucciones.
Especificando muchas operaciones en una unica instruccién, se reduce el nimero
total de instrucciones que es preciso ejecutar. Ademds, desaparecen muchos saltos,

integrados en la semantica de las instrucciones vectoriales [QEV98b].

= Una segunda ventaja es la simplicidad de la unidad de control. Con relativamente
poco esfuerzo de control, una arquitectura vectorial puede controlar la ejecucién de
muchas unidades funcionales diferentes, ya que muchas de ellas trabajan en paralelo

de forma completamente sincrona.

= La tercera ventaja esta relacionada con la forma de acceder a los datos en memoria:
una instruccién vectorial puede especificar de forma exacta un secuencia larga de
direcciones de memoria. Por consiguiente, el hardware posee conocimiento, por

adelantado, sobre las referencias a memoria, y puede planificar estos accesos de
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forma eficiente [VLL*92] [PVAL95] [CEV98]. Ademads, en el modo de acceso a
memoria DLP, cada dato que el procesador pide se utiliza finalmente para realizar
algin célculo. No existe ningln tipo de prebiisqueda, como el que aparece en las
lineas de la cache. Por ultimo, la informacién sobre el patrén de acceso utilizado
en los accesos a memoria se envia al hardware a través del stride, y éste puede usar
esa informacién para mejorar el rendimiento del sistema de memoria [VLL*92]
[VLPA95] [PVAL95].

Otra ventaja mas es que una operacién vectorial de memoria puede amortizar la
latencia de memoria sobre un gran conjunto de datos vectoriales. Dado que cada
instruccién vectorial funciona sobre una larga serie de datos, las latencias de las
unidades funcionales y de la memoria se pueden amortizar sobre todos los elementos
vectoriales. En el caso particular de los accesos a memoria, una vez se comienza
una operacién de carga de datos de memoria, se paga una latencia inicial, pero
entonces, suponiendo que no haya conflictos, se obtiene una palabra de datos en

cada ciclo de reloj.

Por ltimo, el modelo DLP puede escalarse ficilmente a niveles mayores de par-
alelismo haciendo réplicas de las unidades funcionales y ahadiendo caminos mds
anchos desde los registros vectoriales a las unidades funcionales. Todo esto puede
hacerse sin tener que incrementar la complejidad o la presién en la unidad de de-
codificacién. El contenido semantico de las instrucciones vectoriales ya incluye la
nocién de operaciones paralelas. Este aumento puede ser tan grande como lo sea

la longitud vectorial.

Todas estas ventajas nos llevan a considerar que vale la pena incluir técnicas DLP en los

microprocesadores futuros. Ademas, incluir técnicas DLP no impide explotar también

ILP, lanzando a ejecutar varias instrucciones en cada ciclo de reloj. Nuestra propuesta

consiste en mezclar técnicas ILP y DLP en un unico procesador en un chip. Creemos

que afladir DLP a un procesador ILP puede llevarnos a explotar mayores niveles de

paralelismo. Aunque nuestra propuesta no lo incluye, adicionalmente podrian aplicarse

también técnicas TLP para alcanzar ain mayores niveles de rendimiento.
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A.1.4 Objetivo de la tesis

El objetivo de esta tesis es mostrar que las técnicas ILP y el DLP pueden mezclarse
en una dnica arquitectura para ejecutar codigo regular vectorizable con un nivel de
rendimiento que cada paradigma, por separado, no podria alcanzar. Trataremos de
mostrar que la combinacién de los dos tipos de técnicas produce un rendimiento alto
con un coste y una complejidad reducidos: la arquitectura resultante posee una unidad
de control relativamente sencilla, tolera muy bien la latencia de memoria y puede par-
ticionarse ficilmente en bloques regulares para superar asi los problemas de retardo de
las implementaciones VLSI futuras. Ademaés, la simplicidad del control y la regulari-
dad de la implementacién ayudan ambas a conseguir un tiempo de ciclo reducido. Més
aln, mostraremos que esta arquitectura se puede escalar muy facilmente, mientras que
escalar un procesador ILP es muy costoso en términos hardware (y, en cierto sentido,
no puede realizarse). Mostraremos que, incluso si escalamos un procesador superescalar
sin tener en cuenta las consideraciones anteriores, el rendimiento que se obtiene esta

muy por debajo del rendimiento que obtiene la maquina que explota ILP y DLP.

Para alcanzar un rendimiento alto en la arquitectura ILP+DLP que se propone, es un
punto clave de esta tesis la propuesta de una nueva jerarquia de cache, especialmente
diseniada para la explotacién de los paradigmas ILP y DLP. Cada fuente de paralelismo
utiliza una estrategia diferente en los accesos a los datos de memoria. Por lo tanto, la
explotaciéon de cada fuente de paralelismo requiere un diseno especial de la jerarquia
de memoria. En nuestro caso, proponemos una jerarquia de memoria adaptada para
el acceso a datos escalares y vectoriales. Esta jerarquia de memoria esta basada en la
cache vectorial, o vector cache, que es una cache orientada a realizar accesos a datos
escalares y vectoriales. Esta cache podra proporcionar un gran ancho de banda al banco
de registros vectorial, permitird escalar este ancho de banda a medida que escalamos las
unidades funcionales, minimizara los conflictos entre los datos escalares y vectoriales
y garantizard que el tiempo de ciclo del procesador no tendrd que aumentarse por el

hecho de incluir un puerto de gran ancho de banda con el banco de registros vectorial.
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“A.15 Sintesis de la tesis

Esta tesis realiza una contribucién en el campo de la microarquitectura de los proce-
sadores. El objetivo es mostrar que las técnicas ILP y DLP pueden mezclarse en una
{inica arquitectura para ejecutar aplicaciones numéricas y multimedia con un nivel de
rendimiento que cada paradigma, por separado, no podria alcanzar. Proponemos un
procesador superescalar de la generacién actual mejorado con una unidad vectorial. La
arquitectura propuesta se acopla con un nuevo disefio de una jerarquia de cache que

incluye una cache vectorial.

El primer tema que desarrollamos es un estudio detallado de las caracteristicas, a nivel
de repertorio de instrucciones, de un conjunto de aplicaciones numéricas y de multime-
dia. Este estudio ha mostrado que las versiones vectoriales de los programas ejecutan
menos bloques bésicos, menos instrucciones y menos operaciones que las versiones es-
calares. Por lo tanto, nuestra propuesta de procesador necesitard unidades de blisqueda
y decodificacién de instrucciones menos agresivas, lo que nos puede llevar a conseguir

un menor tiempo de ciclo del procesador.

El andlisis dentro de las regiones S (escalares) y D (vectoriales, DLP) muestra que
las versiones escalares de los programas ejecutan muchos mds bloques basicos, muchas
m4s instrucciones y muchas mas operaciones dentro de las regiones D que las versiones
vectoriales de los mismos programas. El analisis de las regiones S muestra que la calidad
del cdigo escalar generado por el compilador escalar es mejor que la del c6digo generado
por el compilador vectorial. La solucién a este inconveniente consiste en construir
una versién hibrida de los programas de prueba, a partir de las versiones vectorial y
escalar puras. Cada programa vectorial hibrido consta de las regiones S originales de la
version escalar del programa, més las regiones D de la versién vectorial del programa.
Los programas vectoriales hibridos ejecutan menos instrucciones y operaciones que los
programas vectoriales puros, mientras siguen manteniendo las mismas caracteristicas

vectoriales.

A partir de estos estudios afirmamos que, dadas las ventajas que ofrece el repertorio

de instrucciones vectorial, se justifica la exploracién de la posibilidad de anadir una
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unidad vectorial a una arquitectura superescalar actual. Por lo tanto, realizamos el

disefio de un procesador superescalar con una unidad vectorial y lo comentamos.

A continuacién presentamos los resultados en forma de rendimiento de nuestra prop-
uesta de arquitectura superescalar con una unidad vectorial (SSV), comparada con
un procesador superescalar tradicional (SS). Por un lado, el estudio de escalabilidad
y rendimiento potencial de las arquitecturas SSV y SS, con un sistema de memoria
ideal, muestra que la arquitectura SSV escala muy bien, a medida que se anaden al
procesador més recursos de memoria y de cémputo. Ademads, alcanza unos valores de

paralelismo mayores que la arquitectura SS con un coste y una complejidad menores.

El anélisis de las regiones S y D también muestra que la arquitectura SSV alcanza
mayores valores de paralelismo dentro de las regiones D. Sin embargo, su contribucién
al rendimiento global viene determinado por el peso relativo de las regiones D en el
programa completo. Tal y como se esperaba, el rendimiento dentro de las regiones S es
mejor para la arquitectura SS. La razén es que el nicleo superescalar de la arquitectura
SSV permanece constante a lo largo de las diferentes configuraciones, mientras que en

la arquitectura SS el nicleo superescalar se escala afiadiendo mds y més recursos.

Por otro lado, estudiamos también el rendimiento de la propuesta SSV cuando se intro-
duce una jerarquia de cache real. Hemos estudiado dos jerarquias de cache diferentes,
ambas basadas en el disefio de la cache vectorial. Los dos modelos difieren en dénde
se coloca la cache vectorial, si en el primer de nivel de la jerarquia o en el segundo
nivel. Como un primer paso estudiamos la eficiencia de la jerarquia de cache en ambos
modelos. Este estudio muestra que los programas numéricos ejercen una mayor presion
en la memoria principal, y que el modelo con la vector cache en el segundo nivel de la
jerarquia reacciona mucho mejor a esta presién produciendo un menor trafico con la

memoria principal y unas tasas de acierto en la cache mas altas.

El estudio del tiempo de detencién de la cache vectorial revela que esta cache puede estar
detenida durante un largo porcentaje del tiempo total de ejecucién debido a diversas

razones. Las dos razones principales son el llenado de las estructuras del MSHR y
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de los buffers de escritura. Las otras dos razones (coherencia y conflictos de cache)

contribuyen en menor medida a esas detenciones.

La evaluacién del rendimiento con una memoria real muestra de nuevo que los progra-
mas numéricos estan limitados por la memoria, mientras que los programas multimedia
no lo estan. El estudio dentro de las regiones S y D muestra que, para la arquitectura
SSV, los programas escalan bien dentro de las regiones D y se comportan de manera

constante dentro de las regiones S.

Como resultado general de estos estudios concluimos que la arquitectura SSV es una ar-
quitectura factible desde el punto de vista del rendimiento. Alcanza un mejor rendimiento
que la arquitectura SS tradicional, tanto con sistemas de memoria ideal como real, a
medida que se escala la configuracién del procesador. Es una buena opcion para pro-

gramas multimedia y alcanza muy buenos resultados para los programas numéricos.

No obstante, estos resultados pueden aiin mejorarse ajustando los pardmetros de la
jerarquia de memoria de manera que se eliminen los cuellos de botella que han sido
detectados. Aumentando los mecanismos no bloqueantes de la memoria (esto es, au-
mentando el nimero de entradas en el MSHR y en los buffers de escritura) se obtiene
una disminucién del efecto negativo que producia el llenado de los MSHR y los buffers
de escritura. Las mejoras de rendimiento obtenidas con estos minimos cambios alcan-
zan hasta un 37% para los programas que usan registros vectoriales de 128 elemen-
tos. Afiadir un puerto de memoria extra para realizar accesos escalares es una mejora
beneficiosa para la ejecucién de programas heterogéneos (que podrian incluir incluso
programas con baja vectorizacién) en la maquina SSV. Este puerto escalar adicional
proporciona una mayor flexibilidad en los accesos a memoria. Aumentar el ancho de
banda con la memoria en el procesador SSV proporciona un aumento del rendimiento

en aquellos programas que presentaban un gran trafico con la memoria principal.

Estudiamos también el efecto de las evoluciones futuras en los microprocesadores, en
lo que a nivel de integracién de transistores en un chip se refiere. El aumento de la
integracién provocard cambios en el diseno de la jerarquia de memoria, incluyendo un

aumento del tamano, de la asociatividad y de la latencia de las memorias cache; y al

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



xvii

mismo tiempo, un aumento en el ancho de banda con memoria. Los programas que
estan limitados por el ancho de banda de memoria mejoran su rendimiento. Mientras
tanto, el resto de programas sufriran una pérdida de rendimiento debido a que prevalece

ol aumento de la latencia sobre el menor trafico con la memoria principal.

Finalmente, estudiamos dos jerarquias de cache adicionales para tratar el problema
de los accesos a memoria vectoriales con stride distinto de la unidad. Los resultados
muestran que estas jerarquias de memoria, aunque son mas caras de implementar,
pueden alcanzar mejoras del 3% al 18% sobre la jerarquia de memoria bésica. Cuanto
més se ajusta el diseio de la cache para tratar el problema de los accesos con stride,
mejores son los resultados obtenidos. Aunque estas caches son complejas, y costosas de
implementar, las mejoras que se obtienen a cambio hacen que valga la pena plantearse

su implementacién en el futuro, cuando la tecnologia disponible lo permita.

A.2 PLANTEAMIENTO Y METODOLOGIiIA
UTILIZADA

En esta seccién presentamos la metodologia utilizada en la investigacién, asi como las
diferentes herramientas utilizadas. Hemos utilizado simulacién alimentada por trazas
como base de nuestra metodologia de experimentacién. Los estudios desarrollados en
esta tesis han sido realizado comparando el rendimiento de las simulaciones alimentadas
por trazas de las arquitecturas ILP e ILP+DLP. Cuando, en alguna seccion, se propone
una mejora sobre lo previamente propuesto, es interesante mostrar la mejora sobre la

propuesta bésica. En ese caso se incluyen también los resultados de la propuesta basica.

Herramientas de generacién de trazas y de simulacién

Como acabamos de mencionar, hemos utilizado simulaciones alimentadas por trazas
de ejecucién, como base de nuestra metodologia de experimentacién. Las ventajas
de utilizar simulaciones alimentadas por trazas son la facilidad para reproducir los

resultados y el entorno controlado en el que se realizan los experimentos.
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Figure A.1 El proceso de instrumentacién.

En concreto, hemos utilizado dos herramientas para obtener trazas y una herramienta
para realizar las simulaciones. La primera herramienta de obtencién de trazas es Dizie-
¢4, que es una herramienta tipo pixie, adaptada para el Convex C4 [Con93] a partir de
una versién previa [EM94]. Esta herramienta produce trazas estéticas de programas
binarios que se ejecutan en modo vectorial en un tnico procesador Convex C4. En
concreto, produce una traza de los bloques bésicos ejecutados, asi como una traza de
los valores contenidos en el registro de longitud vectorial (VL). Las trazas obtenidas
se almacenan fisicamente en diferentes ficheros en memoria. La, ventaja de usar trazas
estaticas es que, una vez obtenidas las trazas, no es necesario disponer de una méquina
Convex C4 para realizar las simulaciones. Sin embargo, la desventaja que posee este
tipo de trazas es que los ficheros que contienen las trazas son demasiado grandes, si la
traza es muy larga. Este hecho ademds se agrava si necesitamos varias versiones de las
trazas de cada programa, como es nuestro caso.

El proceso para extraer las trazas y realizar la simulacién se muestra en la figura A.1:
los programas se compilan en el Convex C4 con optimizacién -O2, que permite vec-

torizacion. Después los ejecutables se procesan usando Dixie-c4, que descompone los
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ejecutables en bloques basicos e instrumenta los bloques basicos para producir seis tipos
de trazas: la traza de bloques basicos (BB), la trazas de los valores almacenados en los
registros de longitud vectorial (VL), stride vectorial (VS), vector first (VF) y mascara
vectorial (VM), y la traza de todas las referencias a memoria (realmente es una traza
de las direcciones base de todas las referencias a memoria) (Mem). Dixie instrumenta
todos los bloques bésicos de los programas, incluyendo el cédigo de las librerias, lo que
es importante porque las llamadas a las rutinas altamente vectorizadas que ofrece el

sistema operativo también se analizan y se incluyen en nuestros estudios.

Una vez los ejecutables han sido procesados con Dixie-c4, los ejecutables modificados
se ejecutan en el Convex C4. Estas ejecuciones son las que producen las trazas en si,

que representan de forma precisa la ejecucién de los programas.

La segunda herramienta para obtener trazas es Atom [SE94], una herramienta propia de
Digital que solo puede ejecutarse en esas maquinas. Esta herramienta se ha utilizado
para obtener trazas dindmicas de binarios escalares ejecutdndose en un procesador
Alpha 21264 [Gie97] [Kes99]. Esta herramienta proporciona un juego de herramientas
diverso que permite realizar desde la cuenta de los bloques bésicos que se han ejecutado
hasta un modelado del comportamiento de la cache. Proporciona la infraestructura
comun para todas las herramientas de instrumentacién de cédigo, dejando que el usuario
especifique los detalles. El usuario especifica los puntos en el programa donde desea
realizar la instrumentacién, las llamadas a procedimiento que se deben realizar y los
argumentos que hay que pasar a esos procedimientos. A partir de estas especificaciones
se generan trazas dindmicas, lo que significa que los elementos de la traza son pasados
directamente del programa al simulador, sin necesidad de utilizar ficheros de disco.
Aunque esta caracteristica elimina los largos ficheros de traza de las trazas estaticas,

es necesario ejecutar tanto el programa como el simulador en un computador Digital.

Por ultimo, la tercera herramienta es un simulador general parametrizable, llamado
Jinks+, desarrollado como una mejora del simulador previo Jinks [Esp95|. Este simu-
lador incluye un ntcleo superescalar, y la posibilidad de afiadir o no unidades vectori-
ales. Posee también médulos de simulacién muy precisos de la jerarquia de memoria,

utilizando diversos modelos de memoria posibles.
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Las trazas obtenidas, usando tanto Dixie-c4 como Atom, alimentan al simulador Jinks+,
que es capaz de modelar el comportamiento de la ejecucion de un programa en una ar-
quitectura ILP y en una arquitectura ILP+DLP. Realiza una simulacién, a nivel de
ciclo, de ambas arquitecturas y mantiene informacién detallada sobre la utilizacién de
los recursos, nimero de ciclos de ejecucién, etc. Simulando ambas arquitecturas con
la misma herramienta conseguimos eliminar los errores que podrian acumularse por el

hecho de utilizar simuladores diferentes.

A.2.1 Las arquitecturas utilizadas: Convex C4 y Alpha EV6

La arquitectura vectorial Convex C4 [Con93] es una arquitectura del tipo registro-
registro. Consiste en una unidad escalar y una unidad vectorial conectadas a través de
un tunico puerto de memoria a un sistema de memoria entrelazado. En la arquitectura
se definen tres tipos diferentes de registros: A, S y V. Los registros A (registros de
direcciones) se usan para generar la direccién base de todas las referencias a memoria.
Existen 32 registros de tipo A, de 32 bits cada uno. Los registros escalares (registros S)
son de 64 bits y se utilizan para contener todos los cdlculos realizados en modo escalar,
tanto enteros como de coma flotante. Los registros vectoriales (registros V) contienen
hasta 128 palabras, de 64 bits cada una. Estos registros se utilizan en todos los célculos

vectoriales, enteros y de coma flotante. Existen 16 registros vectoriales.

La unidad escalar ejecuta todas las instrucciones que implican registros escalares (A
y S). Existe una cache de datos de 32 KB que se utiliza sélo para los accesos a datos
escalares. La unidad vectorial posee tres unidades de cdmputo y comparte la unidad
de acceso a memoria con la unidad escalar. Una de las unidades de computo es una
unidad aritmética de propésito general capaz de ejecutar todas las instrucciones vec-
toriales. Las otras dos son unidades funcionales restringidas que no ejecutan todas las

instrucciones.

Las instrucciones vectoriales se realizan bajo el control del registro de longitud vec-
torial. Este registro escalar de 8 bits indica la longitud deseada de las instrucciones
vectoriales (desde 0 hasta 128). El registro vector first también controla la ejecucion

de las instrucciones vectoriales puesto que indica el primer elemento de los registros
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vectoriales sobre el que ejecutar la operacion. Las operaciones vectoriales de memoria
utilizan un tercer registro de control, el registro de stride vectorial. Este registro indica
la distancia, en bytes, que separa los datos que deben buscarse en memoria. Por altimo,
el registro de méscara vectorial es un registro de 128 bits que permite hacer todas las
operaciones bajo el control de una méscara. Cada bit de este registro determina si cada

operacién individual realizada es vélida o no, de acuerdo con una condicién.

Por otro lado, el procesador Alpha 21264 [Gie97] [Kes99] sigue una arquitectura RISC
de load/store de 64 bits disefiada haciendo un énfasis particular en la velocidad del
reloj, el lanzamiento de multiples instrucciones en cada ciclo, la ejecucién fuera de

orden y los multiples procesadores.

Cada procesador Alpha 21264 posee un conjunto de registros que mantienen el estado
actual del procesador. Existen 32 registros enteros, cada uno de 64 bits. Existen
también 32 registros de coma flotante, cada uno de 64 bits. Las instrucciones son muy
simples y son todas de 32 bits. La memoria se accede a través de direcciones de byte de
64 bits, utilizando la convencién little-endian o big-endian. Las direcciones virtuales,
tal como las ve el programa, se traducen a direcciones fisicas de memoria mediante el
mecanismo de manejo de memoria. La unidad bésica direccionable es el byte (8 bits).
Las operaciones de memoria son cargas o almacenamientos, y toda la manipulacién de

datos se realiza a través de los registros.

La implementacién de esta arquitectura ejecuta las instrucciones fuera de orden. El
procesador puede buscar, decodificar, renombrar y lanzar a ejecutar hasta cuatro in-
strucciones en cada ciclo de reloj. Existen cuatro unidades de ejecucion enteras y cuatro
de coma flotante a las que se pueden lanzar hasta cuatro instrucciones en cada ciclo.
La cache de datos de primer nivel es de 64 KB y acepta cualquier combinacion de dos
operaciones de carga/almacenamiento en cada ciclo. En total, pueden estarse ejecu-
tando en cualquier momento hasta 80 instrucciones a la vez, mds 32 cargas, mas 32

almacenamientos.
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A.2.2 Conjunto de programas de prueba

Hemos elegido un conjunto de programas numéricos y de multimedia como conjunto
de programas de prueba. Dentro de los programas numeéricos elegimos los SPEC{p92
[CKDK91] y los Perfect Club [BCK*89]. Aunque nos habria gustado utilizar programas
SPEC mé4s actuales, el problema del almacenamiento de las trazas estaticas nos impidi6
hacerlo. En cuanto al conjunto de programas multimedia, utilizamos los programas
Mediabench [LPMS97]. En resumen, nuestro conjunto de programas de prueba estd

formado por:

» Perfect Club: Bdna and Arc2d
m  Specfp92: Swim256, Hydro2d, Nasa7 and Tomcatv

s  Mediabench: Jpeg Encode Jpeg Decode Epic and Gsm Encode

A.2.3 Modificaciones de los programas de prueba

Hemos tenido que realizar diversos cambios a los programas de prueba originales para
realizar nuestros estudios. Estos cambios han sido: algunas modificaciones en los pro-
gramas multimedia para poder vectorizarlos, el stripmining manual de todos los pro-
gramas para utilizar distintas longitudes vectoriales y la separacién de las regiones S y
D en todos los programas.

De estas modificaciones vale la pena comentar el stripmining manual, que nos permitira
cortar los bucles de forma que obliguemos al compilador a utilizar una longitud vectorial
menor que la méxima longitud vectorial disponible. Esta es una manera de simular que

disponemos de registros vectoriales menores de los que en realidad existen.

En cuanto a la separacion de la regiones S y D, la motivacién viene de que una maquina
DLP realmente‘ extrae un mejor rendimiento de las regiones D de los programas. En
este sentido, nos interesa estudiar cuanto paralelismo puede alcanzarse en esas regiones,
sin que se vean influenciadas por las regiones S. Esta separacién de regiones se llevé a

cabo mediante un proceso de varios pasos que requiere la codificacién, a mano, de las
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fronteras entre cada dos regiones. Cuando estos programas se ejecutan, se recogen las

trazas y se realizan simulaciones, nos damos cuenta de que se produce un interesante
’, . ’ 24

fenémeno de solape entre cada dos regiones adyacentes. Este fenémeno debe tratarse

con cuidado para realizar una medida tan fiable como se pueda.

A.2.4 La calidad del cédigo escalar en los programas
vectoriales

Dado que realizamos comparaciones de programas ejecutados con dos compiladores
diferentes, uno més viejo y otro mas nuevo, era de esperar que la calidad del cédigo
generado por el compilador méds viejo fuese peor. Asi fue efectivamente el caso. El
c6édigo escalar generado por el compilador vectorial adolece de ciertas optimizaciones

que el compilador escalar si utiliza.

La solucién adoptada para disponer de unos programas vectoriales de calidad fue con-
struir programas vectoriales hibridos procedentes de una mezcla de las dos versiones.
Cada programa hibrido posee como parte escalar las regiones S del programa generado
con el compilador escalar, y como parte vectorial las regiones D del programa generado

por el compilador vectorial.

A.2.5 La métrica de rendimiento EIPC

Comparar la ejecucién de programas escalares y vectoriales usando la métrica estdndar
de instrucciones por ciclo (IPC) no tiene sentido debido a la diferencia seméntica entre
las instrucciones de ambas arquitecturas. La solucién adoptada consistio en utilizar un
{Unico valor de instrucciones (el nimero de instrucciones de la maquina SS), variando
el nimero de ciclos de ejecucién. Esta medida tiene el significado intuitivo de “lo bien
que deberfa funcionar una maquina superescalar para lograr llegar al rendimiento de la
arquitectura ILP+DLP”. De este modo, la medida EIPC se define como:

NumTotal instrucciones SS (A1)

EIPC S5V = NumTotal ciclos SSV
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Para realizar el estudio dentro de las regiones S y D también es preciso definir el EIPC

dentro de las regiones, que se realiza de la forma siguiente:

instrucciones SS en regiones-D
ciclos SSV en regiones-D

EIPC SSV regiones-D = (A.2)

instrucciones SS en regiones-S
ciclos SS en regiones-S

EIPC SSV regiones-S = (A.3)

A.3 PRINCIPALES APORTACIONES

Las principales aportaciones de esta tesis son un estudio en profundidad de la com-
paracién entre repertorios de instrucciones escalar y vectorial, una propuesta de arqui-
tectura ILP+DLP con un sistema de memoria especialmente disefiado para ella, y una
evaluacién de esta propuesta utilizando tanto memoria perfecta como la jerarquia de

memoria que se propone.

A.3.1 Comparacién de los repertorios de instrucciones
escalar y vectorial

Aunque las arquitecturas se han evaluado de manera tradicional utilizando medidas
de rendimiento, es interesante en este caso detenerse a realizar en primer lugar un es-
tudio detallado que compare los repertorios de instrucciones escalar y vectorial. Este
estudio nos permitira analizar la diferente naturaleza de ambos repertorios de instruc-
ciones. El estudio estd enfocado en los siguientes temas: ventajas de los repertorios
de instrucciones vectoriales, caracterizacién de los benchmarks, caracterizacién vecto-
rial, influencia de la longitud vectorial, andlisis de regiones y caracterizacién de los

benchmarks hibridos.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



XXV

Ventajas de los repertorios de instrucciones vectoriales

Las ventajas de los repertorios de instrucciones vectoriales se derivan del hecho de que
las instrucciones vectoriales especifican la realizacién de una serie de operaciones sobre
un conjunto de datos, de forma que cada operacién realizada es independiente del resto
de operaciones. Esto conlleva una serie de ventajas en cuanto a ancho de banda de
busqueda de instrucciones, rendimiento del sistema de memoria y control de la ruta de

datos.

Ancho de banda de biisqueda de instrucciones. Dado el mayor contenido semantico
de las instrucciones vectoriales, se necesita un menor nimero de ellas para especificar
una tarea. Por lo tanto, se reduce el ancho de banda necesario para realizar la bisqueda
de las instrucciones, ademas de reducirse también el impacto negativo de los saltos y

la presién en la unidad de bisqueda de instrucciones.

Rendimiento del sistema de memoria. En los procesadores superescalares uno de
problemas principales es la memoria, debido a los fallos de cache y a las altas latencias.
El ancho de banda que se consume trayendo de memoria a la cache las lineas de datos
muchas veces no se ve recompensada pues no todos los datos traidos seran efectivamente
utilizados. En un procesador vectorial, por el contrario, todos los elementos que se traen
de memoria se utilizan. Ademaés, la informacién del stride que se envia a la memoria
puede ser utilizada por ésta para mejorar el rendimiento en los accesos a la misma
[VLL*92] [VLPA95] [PVAL95]. En el caso de la latencia de memoria, una instruccién
de memoria vectorial puede amortizar la latencia entre un nimero grande de elementos.
En cuanto al ancho de banda de memoria, una maquina vectorial puede hacer un uso
m4s eficiente del ancho de banda pues con un solo puerto a memoria puede solicitar un

gran niimero de elementos [CEV98].

Control de la ruta de datos. Para escalar los procesadores superescalares actuales
es necesario invertir muchos transistores en la implementacin de la ventana de dispatch,
los buffers de reordenacién, la légica de seleccién de instrucciones, etc [PJS97]. En el

caso vectorial, sin embargo, sélo es necesario replicar las unidades de ejecucién y poner
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caminos més anchos entre el banco de registros y las unidades funcionales, sin modificar

la unidad de decodificacion.

Caracterizacion de los benchmarks: bloques basicos, instruc-
ciones, operaciones y tamanos de datos

Este estudio nos revela que los programas escalares ejecutan mas bloques basicos que los
programas vectoriales, para la mayoria de los programas. Las razones son: la ejecucién
predicada que los programas vectoriales ejecutan y el mayor contenido seméantico de las

instrucciones vectoriales, lo que reduce el niumero de bucles ejecutados.

Tal como se esperaba, los programas vectoriales ejecutan muchas menos instrucciones
que los programas escalares. El uso de las instrucciones vectoriales permite realizar un
bucle en un menor numero de iteraciones, lo que ademas implica un menor nimero de
calculos de direcciones y control del bucle. Por este motivo, el niimero de operaciones
ejecutadas también es menor en los programas vectoriales. El ratio entre el nimero de
operaciones superescalares y vectoriales estd entre 1.05 y 1.25, siendo de 4.14 para el

programa Gsm Fncode.

En cuanto al tamano de datos, los dos conjuntos de programas presentan caracteristicas
diferentes. Los programas numéricos realizan operaciones con memoria de tamano 64
bits, mayormente, mientras que en los programas multimedia estas operaciones se real-
izan principalmente con datos de tamano 32 bits. Ademds, los programas multimedia
ejecutan gran cantidad de operaciones con datos de tamaiio 8 bits y 16 bits, en com-

paracién con los numéricos.
Caracterizacion vectorial de los benchmarks

Analizadas las distintas caracteristicas vectoriales de los programas, como el porcentaje
de vectorizacién, la distribucién de longitudes vectoriales utilizadas, la distribucién de
strides, la ejecucién bajo méscara y el uso del vector first, los resultados obtenidos

muestran diversos comportamientos.
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Nuestros programas tienen un porcentaje de vectorizacién entre alto y moderado, con-
siderando que una vectorizacién alta es aquella que es mayor del 70%. Los programas
maés vectorizables son Swim256, Hydro2d, Nasa7, Arc2d y Jpeg Encode, y los moder-
adamente vectorizables son Bdna, Jpeg Decode, Epic'y Gsm Encode.

La distribucién de la longitud vectorial, cuando se varia la longitud vectorial maxima,
muestra patrones de comportamiento diferentes para los distintos programas. Los pro-
gramas Swim256, Tomcatv, Bdna, Arc2d y Jpeg Decode utilizan longitudes vectoriales
muy cercanas a 128. A medida que se disminuye la longitud vectorial maxima, la
contribucién porcentual de las longitudes vectoriales pequefias disminuye. El resto
de programas presentan una distribucién més desigual. Hydro2d presenta una unica
longitud vectorial (102) que corresponde al nimero de punto de la malla usada en la
direccién Z del problema que resuelve. Nasa7y Gsm Encode presentan una distribucion
en escalera; en Jpeg Encode la longitud vectorial dominante es 8; y Epic presenta una
tinica longitud vectorial 16. Esto sugiere que, incluso entre programas vectorizables, la

utilizacién de la longitud vectorial varia bastante.

La distribucién de stride vectorial muestra que algunos benchmarks, como Swim?256,
Hydro2d, Tomcatv'y Gsm FEncode, ejecutan la mayoria de los accesos a memoria con
stride 1, beneficidndose asi del ancho de banda de memoria. Otros programas ejecutan
accesos a memoria con stride 1 y algin otro stride pequeno, como en Jpeg Decode
y Bdna. Por tltimo en Jpeg Encode, Nasa7, Arc2d y Epic existe una gran cantidad
de accesos a memoria realizados con strides grandes, y por tanto estos programas no

utilizan bien el ancho de banda de memoria disponible.

La ejecucién con el vector first muestra que esta capacidad sélo la utilizan los programas
Swim256, Hydro2d, Tomcatvy Epic, lo que quiere decir que sélo estos programas hacen

reuso de los datos de los registros vectoriales en recurrencias.

Por 1ltimo, la ejecucién bajo mdscara muestra que en nuestros programas esta facilidad
se utiliza relativamente poco. El uso mas intensivo lo realiza el programa Jpeg Decode,

que realiza mas del 22% de sus operaciones bajo mdscara. Los programas Jpeg Encode
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e Hydro2d ejecutan 15.81% y 14.11%. El resto, o no lo usan, o el porcentaje de uso es

muy pequeno.
Influencia de la longitud vectorial

Este estudio analiza la repercusién de la longitud vectorial maxima en el numero de
instrucciones, operaciones y en el trafico con la memoria. El estudio muestra que, a
medida que disminuye la longitud vectorial maxima, el nimero de instrucciones eje-
cutadas aumenta, aunque no llega nunca a los valores alcanzados por los programas
escalares. El nimero de operaciones ejecutadas también aumenta al disminuir la longi-
tud vectorial. En algunos programas, como en Swim256, Hydro2d, Nasa7y Arc2d, este

incremento es importante, mientras que en el resto no lo es tanto.

También hemos estudiado el trafico generado entre el procesador y la memoria, cuando
se disminuye la longitud vectorial. Los resultados muestran que, aunque existe variacién
entre el nimero de operaciones de memoria ejecutadas, en siete de los programas el
aumento del trafico con memoria es despreciable. Dos de las excepciones son los pro-
gramas Hydro2d y Tomcatv. La comparacién con el tréfico generado por los programas
escalares muestra que, en general, los programas escalares mueven muchos mas datos
con la memoria que los programas vectoriales. La tercera excepcién es el programa Jpeg
Decode, que es el tinico programa que genera menos trafico con memoria en su versién

escalar.
Analisis de regiones

Como ya se ha discutido, hemos separado las regiones escalares y vectoriales de los
programas para poder realizar un estudio mas detallado de su comportamiento. Por
supuesto, la parte méas interesante de este estudio serd la que se refiera a las regiones
vectoriales puesto que las regiones escalares no varian su comportamiento al pasar de

una arquitectura ILP a una arquitectura ILP+DLP con el mismo nicleo superescalar.

Analizando las caracteristicas generales de las regiones S y D hemos visto que el por-

centaje de operaciones ejecutadas dentro de las regiones D es normalmente mayor que
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el porcentaje de vectorizacién, lo cual es normal puesto que las regiones D contienen
también las instrucciones escalares necesarias para realizar los cdlculos escalares dentro

de los bucles.

El analisis de bloques bésicos ejecutados dentro de las regiones S y D muestra que en
las regiones S los programas vectoriales ejecutan muchos méas bloques bésicos debido a
la mala calidad del cédigo escalar generado por el compilador vectorial. En las regiones
D, sin embargo, los programas vectoriales ejecutan menos bloques bésicos que los es-
calares. Los mismos comportamientos se aprecian para el recuento de instrucciones y
operaciones. Ademds, la mayoria de las operaciones ejecutadas se encuentran dentro de
las regiones D, y en el caso de los programas vectoriales estas operaciones corresponden
a instrucciones vectoriales, lo que era de esperar dado el grado de vectorizacién de los

programas.
Caracterizacién de los programas hibridos

Este estudio realiza la caracterizacién de los programas hibridos en cuanto a instruc-
ciones, operaciones y caracteristicas vectoriales. Cada programa hibrido se construye
como la mezcla de las regiones S del programa escalar original més las regiones D del
programa vectorial original. Estos programas hibridos son una aproximacién bastante
buena a lo que serfan los programas reales compilados en un compilador moderno con

capacidades vectoriales.

Los programas hibridos poseen un menor nimero de instrucciones ejecutadas que los
programas vectoriales originales, lo cual es debido al menor nimero de instrucciones
de las regiones S. La excepci6n son los programas Arc2d, Jpeg Decode y Gsm Encode,
que tienen un nimero de instrucciones mayor. Ello es debido a que las regiones S de
los programas vectoriales generaban un menor nimero de instrucciones ya que estos
programas realizan conversiones de datos que el repertorio de instrucciones vectorial

expresa utilizando un menor nimero de instrucciones.
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Los programas hibridos ejecutan, en general, menos operaciones que los programas
vectoriales originales. Las excepciones son, de nuevo, los programas Jpeg Decode y

Gsm Encode, que ejecutan mas operaciones por la razén anteriormente comentada.

En cuanto a las caracteristicas vectoriales, estos programas hibridos apenas modifican
su comportamiento, puesto que lo que los diferencia de los programas vectoriales puros
son las regiones S, y las caracteristicas vectoriales se extraen de las regiones D. Las
diferencias que se aprecian en el porcentaje de vectorizacién se derivan de que el nimero
total de operaciones que el programa ejecuta ha disminuido un poco, lo que eleva
ligeramente el porcentaje de vectorizacién. El resto de caracteristicas vectoriales no

varia.

A.3.2 El diseno de la arquitectura ILP+DLP

Para describir el diseno de la arquitectura ILP+DLP hemos de centrarnos en varios
aspectos. Por un lado la ruta de datos, los pipelines, el banco de registros vectorial, y

por otro la jerarquia de memoria.

La ruta de datos de la arquitectura ILP+DLP

La descripcién de la arquitectura ILP4+DLP comienza con la descripcién de la ruta de
datos. La figura A.2 muestra los componentes principales de la ruta de datos para la
arquitectura propuesta. Esencialmente, la arquitectura estd modelada basindonos en
el disefio del procesador ILP Mips R10000 [Yag96], al que le hemos afiadido un banco
de registros vectoriales y conectado a las unidades enteras y a las unidades de coma

flotante.

El funcionamiento general de pipeline es el siguiente: las instrucciones se buscan y
se envian en orden a la etapa de decodificacién, donde son renombrados los registros.
Cuando una instruccién entra en la etapa de decodificacién se asigna una entrada en
el buffer de reordenacién. Las instrucciones entran y salen del buffer de reordenacién
en orden. La etapa de renombre consiste en traducir cada registro virtual a un registro

fisico usando una tabla de mapeo. Existen cuatro tablas de mapeo independientes,
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Figure A.2 La arquitectura modelizada.

una para registros enteros, una para registros de coma flotante, una para registros
vectoriales y una para registros de mascara. Cada tabla mantiene su propia lista de
registros libres. Cuando una instruccién define un nuevo valor de un registro légico, la
entrada en la tabla de mapeo para ese registro logico debe ser actualizada con el nuevo
registro fisico. El registro fisico se obtiene de la lista de registros libres apropiada y se
actualiza la tabla de mapeo con ese nimero de registro. Ademads, el valor antiguo en
la entrada de la tabla de mapeo se almacena en la entrada del buffer de reordenacién
de esa instruccién. El registro fisico antiguo se devuelve a la lista de registros libres

cuando la instruccién se gradia.

Cuando una instruccion de salto entra en la etapa de decodificacién y renombre, el
procesador predice el resultado del salto y ejecuta especulativamente el salto basdndose
en la prediccién realizada. El predictor de saltos es un predictor gshare [McF93] im-
plementado de manera similar a como se implementa en la herramienta SimpleScalar
[BA97].

Después de la etapa de renombre, las instrucciones se envian a una de las cuatro colas de

ejecucién, basandose en el tipo de instruccion. Las instrucciones esperan en estas colas
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Figure A.3 Los cuatro tipos de pipelines de la arquitectura propuesta. Las etapas

que se realizan en orden estan marcadas en color gris oscuro.

hasta que sus operandos estan disponibles y entonces pasan a ejecutarse a una de las
unidades funcionales. El procesador mantiene las instrucciones decodificadas en cuatro
colas de instrucciones, que lanzan dindmicamente instrucciones a ejecutar a las unidades
de ejecucidon. Las colas permiten al procesador buscar y decodificar instrucciones a la
maxima velocidad sin necesidad de pararse debido a conflictos o dependencias entre
instrucciones. Las instrucciones de cada cola pueden ejecutarse fuera de orden. El
procesador lanza dindmicamente una instruccién a ejecucin tan pronto como la unidad
funcional esté lista, la instruccién tenga sus operandos disponibles y no dependa de

otra instruccién que adn no ha terminado de ejecutarse.

En general, las instrucciones se buscan, se decodifican, se envian a las colas de ejecuciéon
y se gradian en el orden original del programa, pero pueden ejecutarse y completarse
fuera de orden.

Existen cuatro tipos de pipelines en la arquitectura propuesta, una para cada tipo de
instruccién, como puede observarse en la figura A.3. Estos cuatro pipelines vienen
determinados por las cuatro colas de ejecucidn existentes: entera, de coma flotante,
de memoria y vectorial. De todas éstas, las mds interesantes son la vectorial y la de
memoria. La cola vectorial (al igual que las colas entera y de coma flotante) chequean

el estado de todas las instrucciones en las entradas de la cola hasta que estan listas
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Figure A.4 La estructura de doble banco de la cache vectorial.

para ejecutarse. En ese momento se lanza a ejecutar en la unidad funcional apropiada.
La cola de memoria funciona de una forma un poco diferente puesto que todas las

instrucciones de memoria han de pasar por varias etapas.

El elemento principal que se ha afadido al procesador superescalar es el banco de
registros vectorial, junto con sus conexiones a las unidades funcionales, y un conjunto
de registros de propésito especial: el registro de longitud vectorial, el registro de stride
vectorial, el registro vector first y el registro de méscara. A la hora de introducir el
banco de registros vectorial es preciso elegir tres pardmetros: el nimero de registros
16gicos, el niimero de registros fisicos y la longitud de cada registro. El nimero de
registros 16gico lo fijamos a 16, por ser un valor razonable. Algunos estudios previos
realizados [EVS97] muestran que el nimero de registros fisicos debe ser al menos el doble
del nimero de registros 1égicos, asi que colocamos 32 registros fisicos. En cuanto a la
longitud de cada registro, es deseable que sean cudnto mas largos mejor; sin embargo,
dadas las restricciones de 4rea, restringiremos nuestros estudios a registros de hasta

128 elementos.
La jerarquia de memoria propuesta

La jerarquia de memoria que proponemos es una jerarquia de memorias cache basadas

en la inclusién de un nuevo disefio de cache denominado cache vectorial. La cache
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Figure A.5 Caminos de load y store de la cache vectorial.

vectorial es una cache que proporciona un gran ancho de banda, pensada para accesos
a vectores con stride 1, accediendo a lineas completas de la cache en lugar de acceder
de forma individual a cada uno de los elementos. A continuacién, un bloque légico de
dezplazamiento y mascara alinea correctamente los datos, eliminando los residuos. La
cache vectorial permite alcanzar grandes ratios de ancho de banda para accesos con
stride 1, incluso para datos no alineados. Los dos puntos més importantes del diseno
son la logica de alineamiento y el impacto en el rendimiento de los accesos con stride
distinto de 1.

La cache (ver figura A.4) es de doble banco, entrelazada, de forma que se puede acceder
a dos lineas consecutivas a la vez. De este modo, un acceso vectorial que tenga los
datos solapados en dos lineas de cache consecutivas se pueden acceder simultaneamente.
Este esquema requiere tres partes: una légica de intercambio, que se utiliza cuando
necesitamos intercambiar la posicién de las dos lineas, una ldégica de desplazamiento,
para alinear los datos accedidos a la direccién inicial que se especificé, y una légica de
enmascaramiento, que elimina los datos que no se utilizan basandose en la informacion

suministrada por la longitud vectorial (ver figura A.5).

La vector cache posee ademas buffers de escritura y estructuras MSHR para manejar
de forma efectiva los fallos de cache sin necesidad de bloquearse mientras resuelve estos

fallos.
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Figure A.7 Elsistema de memoria principal modelizado usando tecnologia RDRAM.

Esta vector cache que proponemos vamos a integrarla en una jerarquia de caches. En
concreto proponemos dos jerarquias de cache, el modelo CA y el modelo CB (ver
figura A.6). En el modelo CA la vector cache actia como una cache de primer nivel,

y proporciona un camino ancho entre la cache y los registros vectoriales. Tanto los

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



xxxvi

accesos escalares como vectoriales se realizan a la vector cache. Un acceso vectorial con
stride 1 que acierta en la cache utiliza completamente el ancho de banda del bus y tarda
en ejecutarse [V L/B] ciclos. Los accesos escalares, o los accesos con stride distinto de
1, no pueden aprovechar todo el ancho de banda y cargan un méaximo de una palabra
por ciclo. La cache de segundo nivel, que se asume que estd también dentro del chip,
es una cache convencional que se conecta a un bus bidireccional hacia un controlador
de RAMBUS [Cri97] externo (ver figura A.7). Ademds, obligamos a que se cumpla la

propiedad de inclusion entre las caches de primer y segundo nivel.

Esta jerarquia de caches tiene las siguientes desventajas: la complejidad de la cache
vectorial puede obligar a aumentar el tiempo de ciclo del procesador, puede ser dificil
extender el diseno de la vector cache a una versién de miiltiples puertos, realizar un
almacenamiento en la cache vectorial tarda el doble de ciclos que realizar un acceso de
lectura y el conjunto de datos de los programas sera seguramente mucho mayor que el
tamano de la cache de primer nivel.

Por estos motivos, proponemos también otra jerarquia de caches denominada modelo
CB. Este modelo posee una cache convencional en el primer nivel, y la cache vectorial
en el segundo nivel. Los accesos escalares se realizan en la cache de primer nivel a
razén de un dato por ciclo. Los accesos vectoriales, en cambio, se realizan en la cache
de segundo nivel, haciendo un bypass de la cache de primer nivel. Estos accesos se
realizan a razén de B elementos por ciclo (siendo B el ancho del bus que una la cache
de segundo nivel con el procesador) si el stride es 1. Si el stride no es 1, entonces se
accede a un elemento en cada ciclo. De este modo se desacoplan los datos escalares de
los vectoriales, puesto que los escalares estan en la cache de nivel uno, mientras que
los datos vectoriales se encuentran en la cache de segundo nivel. El problema al hacer
bypass es mantener la coherencia entre las dos caches, lo que se lleva a cabo realizando

invalidacién de las lineas de la cache de primer nivel siempre que sea necesario.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



XXXVl

A.3.3 Rendimiento potencial y escalabilidad de la
arquitectura propuesta

Una vez descrita la arquitectura y la jerarquia de memoria propuestas, pasamos a
realizar su evaluacién. Esta evaluacién se lleva a cabo realizando en primer lugar un
estudio de rendimiento y escalabilidad cuando se dispone de un sistema de memoria
ideal. A continuacién se realiza una evaluacién con una jerarquia de memoria real, que

es la descrita anteriormente.

Estudio de rendimiento y escalabilidad con un sistema de
memoria ideal

El estudio de rendimiento y escalabilidad analiza cémo se comporta un disefio ILP+DLP
(0 SSV) a medida que se aumentan los recursos de computacion y de memoria. Este
estudio se lleva a cabo sobre un conjunto configuraciones que se mueven desde las con-
figuraciones méas modestas (1x2) a las mds agresivas (16x32). El primer nimero indica
el numero de palabras que pueden leerse de memoria en un ciclo y el segundo nimero
indica el nidmero de resultados en coma flotante que se pueden generar, teniendo en
cuenta que en la miquina SSV tenemos tinicamente dos unidades funcionales y lo que
hacemos es replicarlas para obtener asi configuraciones mas agresivas en computo, pero

no més complejas de fabricar.

Los resultados de este estudio muestran que, para la arquitectura SSV, todos los pro-
gramas mejoran su rendimiento a medida que se ahaden recursos al procesador. Esto
es especialmente cierto para los resultados que incluyen registros vectoriales de 128
elementos. Los resultados para registros de 16 elementos, sin ser tan buenos, alcanzan
también unos niveles de rendimiento bastante aceptables con muy poca inversién en

4rea del chip (sélo 4KB para el banco de registros vectoriales).

Observamos también que los programas numéricos escalan mucho mejor que los pro-
gramas multimedia. En general, los cuatro programas multimedia alcanzan niveles de
rendimiento modestos, cuando se comparan con los programas numéricos. La razdn

principal es el porcentaje de vectorizacién, que segin ya estudiamos, es menor para los
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programas multimedia que para los programas numéricos (menos del 70%, con valores
del 40% en dos de los programas). Mientras tanto, los programas numéricos alcanzan
porcentajes de vectorizacién bastante altos (por encima del 75%, llegando en algunos
casos a valores por encima del 95%). Dado que los programas multimedia son menos
vectorizables, cuando se escala la arquitectura SSV existe un menor porcentaje de
instrucciones que pueden beneficiarse de estos recursos adicionales, y el aumento de
rendimiento global es pequeno. Ademas, dado que el nicleo superescalar de la arqui-
tectura SSV permanece constante a lo largo de todas las configuraciones, la ejecucion
de las partes no vectorizables de los programas no contribuye a mejorar el rendimiento
a medida que se escalan las configuraciones. En resumen, los programas multimedia
estan caracterizados por unos porcentajes de vectorizacién relativamente bajos, y por
lo tanto, a medida que escalamos el sistema, la parte no vectorizable del cédigo se
convierte en un cuello de botella debido a la restriccidn en el nimero de instrucciones

que se pueden lanzar a ejecutar en cada ciclo.

Ademads, ese estudio también muestra que existe una pérdida de rendimiento cuando
pasamos de registros de 128 elementos a registros de 16 elementos. Esto se debe al
aumento en el niimero total de instrucciones y operaciones que hay que ejecutar cuando
se disminuye la longitud de los registros vectoriales. Esta pérdida de rendimiento es
sustancial en los programas numéricos. En los programas multimedia, sin embargo, esta
pérdida no es tan significativa. El caso extremo es el programa Epic, que no cambia
su comportamiento al pasar de registros de 128 elementos a registros de 16 elementos

puesto que la tnica longitud vectorial que se utiliza durante todo el programa es 16.

Observemos que manteniendo constante el ancho del puerto de memoria, y aumentando
el nimero de vias de las unidades funcionales, se obtiene un aumento importante en el
rendimiento. Por otro lado, manteniendo constante el nimero de vias de las unidades
funcionales y aumentando el ancho del puerto de memoria observamos que el aumento
es muy pequeiio en comparacién con el otro caso. La razén es que, dado que estamos
estudiando un sistema de memoria perfecta, ésta puede traer de memoria la cantidad
de datos necesarios en muy pocos ciclos de reloj. Dado que no se aumenta el nimero

de vias de la unidades funcionales, no podemos procesar el niimero de elementos, cada
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vez mayor, que la memoria envia al procesador, asi que no podemos beneficiarnos del

hecho de recibir cada vez mas y més elementos en cada ciclo.

La comparacién con la arquitectura superescalar (SS) muestra que nuestra propuesta
alcanza valores de rendimiento similares para la configuracién mas modesta (1x2) en casi
todos los programas. Sin embargo, a medida que aumentamos el nimero de unidades
funcionales (o el niimero de vias en el caso SSV), el rendimiento de la arquitectura SS se
aplana. Mientras tanto, nuestra propuesta mejora a una velocidad mucho mayor, con
excepcién de los programas Nasa?, Jpeg Decode'y Gsm Encode. Aunque la arquitectura
SS tiene més capacidad de bisqueda, decodificacion, ejecucién y graduacidn, no es capaz
de disminuir el nimero de ciclos de ejecucién que vendra determinado, seguramente, por
las dependencias entre las instrucciones del programa. En contraste, en la arquitectura
SSV la ejecucién de una instruccién vectorial tarda muchos ciclos. Por lo tanto, la
unidad funcional estd ocupada durante gran cantidad de ciclos, lo que le da tiempo
suficiente al procesador para encontrar una instruccién independiente que pueda lanzar
a la misma unidad funcional, tan pronto como termine la ejecucién de la instruccion
que estd realizando. En la arquitectura SS, sin embargo, la instruccion tarda solo uno o
dos ciclos en ejecutarse, lo que no da tiempo suficiente en muchos casos para encontrar
otra instruccién que esté lista para ejecutarse. Esto hard, probablemente, que la unidad

funcional se detenga durante un cierto nimero de ciclos.

Podemos decir, por lo tanto, que la escalabilidad de la arquitectura SSV es mucho mejor
que la de la arquitectura SS, y ademas esta escalabilidad se alcanza usando una menor
complejidad de la unidad de control. Con un nicleo superescalar que lanza a ejecutar
4 instrucciones en cada ciclo, fuera de orden, podemos alimentar hasta 32 unidades de
coma flotante, a la vez que alcanzamos una fraccién bastante grande del rendimiento

pico.

El estudio de rendimiento y escalabilidad dentro de las regiones S y D también ha sido
realizado, y muestra que dentro de las regiones D todos los programas alcanzan todavia
un mayor rendimiento que al medir los programas completos. Algunos programas, como
Swim256, apenas presentan diferencias cuando se comparan con el rendimiento global,
puesto que son 99% vectorizables, asi que el efecto de las regiones S es despreciable.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



xl

Sin embargo, otros programas, como Tomcatv, Gsm Encode, Jpeg Decode, Epic 'y Jpeg
FEncode, muestran un aumento de rendimiento considerable. La mayoria de estos pro-
gramas posee un porcentaje de vectorizacién moderado, asi que es normal que al anadir
los efectos de las regiones S y D el rendimiento global obtenido disminuya. El resto
de los programas apenas modifica su comportamiento con respecto al mostrado en el

rendimiento global.

En cuanto al comportamiento dentro de las regiones S, los resultados muestran que
el comportamiento de los programas para la arquitectura SSV permanece constante
a medida que aumentamos la configuracién. Esto se debe a que la arquitectura SSV
tiene un ntcleo superescalar fijo en todas las configuraciones, varidndose el ancho del
puerto a memoria y el nimero de réplicas de las unidades funcionales. Por lo tanto,
la parte escalar se ejecuta siempre en las mismas condiciones. Los resultados de la
arquitectura SS, sin embargo, mejoran a medida que se aumenta la configuracion, lo cual
se debe a una mejora del nicleo superescalar a medida que cambiamos de configuracién.
La comparacién de la arquitectura SS con la arquitectura SSV muestra que para la
configuracién més baja ambas arquitecturas obtienen un rendimiento parecido. Sin
embargo, al mejorar las configuraciones, el comportamiento de la arquitectura SSV
permanece constante y el de la arquitectura SS aumenta, superando el rendimiento de

la arquitectura SSV.

Por tltimo, analizamos también el paralelismo de datos alcanzado dentro de las regiones
vectoriales, utilizando la medida “operaciones ejecutadas por ciclo de reloj” (OPC).
Esta medida nos permite estudiar el paralelismo real que cada arquitectura es capaz
de alcanzar. Los resultados muestran que, a medida que se aumenta la configuracion,
tanto la arquitectura SSV como la SS explotan cada vez mds paralelismo. Adems3s, la
arquitectura SSV explota mucho mas paralelismo que la arquitectura SS, y la diferencia
entre utilizar registros vectoriales de 128 elementos o de 16 elementos apenas se percibe

para muchos de los programas.
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(CA) (CB) (SS)

Figure A.8 Las jerarquias de memoria estudiadas para los modelos CA, CB y para
la arquitectura superescalar (SS).

Estudio de escalabilidad con un sistema de memoria real

El siguiente estudio realizado es el estudio de escalabilidad conectando un sistema de
memoria real al procesador ILP+DLP. Este sistema de memoria contiene dos modelos
diferentes, CA y CB, que ya han sido discutidos previamente (ver figura A.8). Ademds,
realizaremos la comparacién con la arquitectura SS a la que se le ha conectado un
sistema de memoria convencional consistente en dos niveles de cache. En los tres

sistemas de memoria se han respetado las mismas caracteristicas, que son:

= Se han utilizado los mismos tamafios para las caches que pertenecen a un mismo

nivel, en los distintos sistemas de memoria.

»  Se han ajustado los tamaiios de lineas de cache a las distintas necesidades de cada

sistema de memoria, y de cada nivel.

= Se ha utilizado la misma asociatividad en las diferentes caches de un mismo nivel,

en los diferentes sistemas de memoria.
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= Se han puesto las mismas latencias para las caches de primer y segundo nivel,
en los distintos sistemas de memoria, asumiendo ademas que ambas caches estan
dentro del chip. Esto tltimo no es demasiado realista para las configuraciones mas

agresivas, especialmente en la arquitectura SS.

» El numero de ciclos que se tarda en realizar una operacién de lectura y escritura se
ha puesto de acuerdo al tipo de cache. La cache vectorial tarda dos ciclos en hacer

una escritura y un ciclo en hacer una lectura.

= Se ha utilizado el mismo nimero de entradas en las estructuras MSHR y buffers de

escritura en todos los sistemas de memoria.

El estudio con memoria real comienza con un estudio de eficiencia de la cache, en
términos de trafico generado con la memoria principal, porcentaje de aciertos/fallos en

la cache vectorial y porcentaje de tiempo que la cache vectorial estd parada.

Las medidas de trafico con la memoria principal nos dan una idea sobre si las caches son
capaces de filtrar parte del trafico que el procesador genera. Estas medidas muestran
que los programas Swim256, Nasa7 y Arc2d generan mas trafico con la memoria que
“el que genera el procesador. Aunque esto pueda parecer extrafio, sucede cuando existe
mucha polucién en las lineas de cache que se traen de memoria, no se utilizan todos
los datos que se han traido de memoria principal y entonces se estdn trayendo en
realidad mas datos de los que en realidad se necesitan. También se produce debido a
los conflictos en la cache.

En general, el modelo CB genera menos trafico con la memoria que el modelo CA.
El motivo es el menor nimero de lineas de datos que existen en la cache de segundo
nivel en el modelo CA, lo que aumenta el nimero de conflictos en la cache de segundo
nivel, y por tanto aumenta también el trafico con la memoria principal. Los resultados
muestran ademas que, en términos de trafico, es mejor utilizar registros vectoriales de
16 elementos con el modelo CB, puesto que asi existe mayor probabilidad de reutilizar
los datos, disminuyendo asi el trafico con memoria.
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Los programas multimedia se caracterizan por el pequefio nimero de palabras que
mueven con la memoria. Estos programas no tienen conjuntos de datos muy grandes,

asi que la mayoria de los datos caben en la cache.

La idea importante del estudio de trafico es que, sin importar qué modelo de memoria
se utilice, CA o CB, la jerarquia de cache permite filtrar significativamente el trafico que
el procesador genera, haciendo que el trifico que se mueve con la memoria disminuya.

Esto disminuye la presién ejercida sobre el sistema de memoria.

El estudio de tasa de aciertos de la cache vectorial muestra que la tasa de aciertos
es mayor en el modelo CB, lo cual era de esperar puesto en el modelo CB todos los
accesos vectoriales los sirve la cache de segundo nivel de 1MB de tamano, y no como en
el modelo CA, en que los sirve la cache de nivel uno de 32 KB. Sin embargo, la cache de
segundo nivel se encuentra a 4 ciclos de latencia del procesador, y no a 1 ciclo como la
cache de primer nivel, asi que la pregunta es si esta mejor tasa de aciertos provocara un
aumento final en el rendimiento. Creemos que si, porque el c6digo vectorial es tolerante

a la latencia de memoria.

En cuanto al uso de registros vectoriales largos o cortos, se observa que usar registros
vectoriales de 16 elementos proporciona una mejor tasa de aciertos en ambos modelos

de memoria.

Para terminar el estudio de eficiencia de la cache, hemos analizado también la cantidad
de tiempo que la cache vectorial estd parada, y la razén de que lo esté. Existen diversas
razones para que la cache vectorial esté parada: que se haya llenado el MSHR, que se
haya llenado el buffer de escritura, que se esté resolviendo un problema de coherencia

con la cache de primer nivel o que se esté resolviendo un conflicto.

En los programas multimedia se observa que la cache vectorial apenas estd parada
durante su ejecucién. Estos resultados eran de esperar ya que hemos visto que estos
programas poseen un trafico con memoria bajo y una alta tasa de aciertos. Por el con-
trario, en los programas numéricos la cache vectorial est4 parada durante un porcentaje

significativo del tiempo de ejecucién. En general, el modelo de memoria CA presenta
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un mayor porcentaje de tiempo de parada, con la excepcién de los programas Swim256,
Hydro2d, Tomcatv y Bdna. Ademas, observamos también que utilizar registros vecto-

riales de 16 elementos hace que la cache vectorial esté parada mas tiempo.

En general, los programas pasan la mayor parte del tiempo parados debido a que se ha
llenado el MSHR o los buffers de escritura. Los otros dos motivos apenas influyen en el
tiempo total que la cache vectorial estd parada. En total, la cache vectorial puede estar
parada hasta un 60% del tiempo de ejecucién, lo que influye en el tiempo de ejecucién

de los distintos programas y en el rendimiento que se obtiene.

~ Por ultimo, estudiamos el rendimiento que ofrece la arquitectura ILP+DLP cuando se
conecta con el sistema de memoria real que proponemos. Este estudio muestra que, en
general, la arquitectura SSV (tanto para el modelo CA como el CB), obtiene un mejor

rendimiento que la arquitectura SS.

En cuanto a la comparacién de los modelos de memoria de la arquitectura SSV,
para los programas numéricos el modelo CB obtiene mayor rendimiento que el mod-
elo CA. El uso de registros vectoriales de 128 elementos proporciona también mejor
rendimiento.Por otro lado, para los programas multimedia, aunque el modelo CA
obtiene mejor rendimiento que el modelo CB, la diferencia de rendimientos es muy
pequeiia. El modelo CA funciona un poco mejor debido al gran nimero de operaciones

de reduccién que se realizan en estos programas.

El estudio de rendimiento dentro de regiones D arroja unos resultados muy similares
a los de los programas globales, lo que significa que el rendimiento global estd de-
terminado, principalmente, por el comportamiento en las regiones vectoriales de los
programas. También en este caso se obtiene mejor rendimiento para las aplicaciones
numéricas cuando se utiliza el modelo CB de memoria, mientras que las aplicaciones
multimedia obtienen mejor rendimiento con el modelo CA. Ademds, utilizar registros
vectoriales de 128 elementos proporciona un mejor rendimiento, lo que era de esperar
ya que en ese caso se ejecutan menos instrucciones y operaciones. En cuanto a la com-
paracién con la arquitectura SS, ésta obtiene menor rendimiento que la arquitectura
SSV tanto si se usa el modelo CA como el CB.

© Universidad de Las Palmas de Gran Canaria. Biblioteca Digital, 2004



xlv

En cuanto al estudio dentro de las regiones S, los resultados son similares a los obtenidos
con un sistema de memoria ideal. En la configuraciéon méas modesta los resultados de
ambas arquitecturas casi coinciden, pero a medida que crecen las configuraciones la
arquitectura SS obtiene mejores resultados, ya que el nicleo superescalar es escalado.
En contraste, en la arquitectura SSV el nucleo superescalar se mantiene en todas las

configuraciones, y su rendimiento permanece constante.

Por tltimo, el estudio de rendimiento con un sistema de memoria real termina evaluando
la cantidad de paralelismo real que cada arquitectura es capaz de extraer dentro de las
regiones D, utilizando para ello la medida “operaciones ejecutadas por ciclo” (OPC).
Lo que observamos en este estudio es que aniadir un sistema de memoria real a las
- arquitecturas SSV y SS hace que disminuya de manera significativa la cantidad de
paralelismo de datos que las arquitecturas son capaces de explotar. Esto ultimo es
especialmente cierto para la arquitectura SS, que experimenta mayores pérdidas de

rendimiento que la arquitectura SSV.

A.3.4 Mejoras adicionales en el diseno del sistema de
memoria

Estudiamos en las secciones anteriores que la cache vectorial podia pasar hasta el 60%
del tiempo de ejecucién parada, debido a varias razones, lo que ocasiona un cuello
de botella en la ejecucién de los programas. Trataremos cada una de las razones
que provocan que la vector cache se tenga que parar. Asimismo, trataremos el efecto
en el rendimiento de las tendencias futuras en materia de integracién de circuitos,
y estudiaremos por tltimo unos sistemas de memoria cuyo funcionamiento hace que
los programas con accesos a memoria con strides distintos de la unidad mejoren su

rendimiento.

Aumento de los mecanismos no bloqueantes: MSHR y buffers
de escritura

Una de las causas de parada de la cache, segiun hemos visto, es que las estructuras

MSHR y los buffers de escritura se llenan, lo que provoca que la cache no pueda aceptar
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més accesos. En general, los programas numeéricos son los méas afectados por este tipo
de cuello de botella, debido a que su conjunto de datos es bastante mayor que el de los

programas multimedia.

Para reducir estos periodos de espera del procesador, debido a que la cache vectorial no
acepta més peticiones de memoria, la solucién mas directa es aumentar el nimero de
entradas en las estructuras MSHR y buffers de escritura. De este modo, logramos que
estas estructuras tarden més en llenarse (o no se llenen), evitando asi que el procesador
tenga que quedar parado esperando para realizar peticiones a memoria. Los resultados
que obtenemos muestran que, en general, todos los programas numeéricos mejoran su
rendimiento al incrementar los mecanismos no bloqueantes. Los mayores ratios de
mejora aparecen para los programas Swim256, Tomcatvy Arc2d, que son los programas
en los que el procesador pasaba un mayor porcentaje de tiempo parado debido a la cache

vectorial.

El rendimiento dentro de las regiones D, al realizar esta mejora en el diseno de la jer-
arquia de memoria, muestra que los programas multimedia apenas se ven afectados. Sin
embargo, los programas numéricos aumentan su rendimiento a medida que se aumentan
los mecanismos de no bloqueo de la cache vectorial. En general, el aumento que se pro-
duce es mayor para registros vectoriales de 128 elementos que para registros vectoriales
de 64 elementos. En este caso, moverse hacia registros vectoriales mas pequenios implica
una pérdida de rendimiento debido al mayor nimero de instrucciones y operaciones que

deben ejecutarse.
Un puerto de memoria adicional para accesos escalares

Dado que existe una cantidad representativa de cédigo escalar en las regiones S, es-
pecialmente en los programas multimedia, y existe también una cantidad importante
de cédigo escalar dentro de las regiones D, una forma de mejorar la ejecucion de este
c4digo, que puede estar limitado por la memoria, es anadir un puerto de memoria es-
calar, adicional, que permita que los accesos a memoria escalares se realicen utilizando
este puerto especial (ver figura A.9). De este modo estamos aumentando el nimero

de referencias a memoria que pueden realizarse en cada ciclo: ahora puede realizarse
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Figure A.9 ' Los modelos de memoria CB y CB_2p. El modelo CB_2p es un modele -
CB mejorado con un puerto escalar adicional.

un acceso escalar por el puerto escalar, y un acceso vectorial por el puerto comin

escalar /vectorial.

La evaluacion del rendimiento de esta propuesta muestra que las mejoras més signi-

ficativas de rendimiento aparecen en los programas multimedia, concretamente en los'

programas Jpeg Decode y Jpeg Encode con mejoras del 5% y 7%, respectlvamente La B

razén es que estos programas poseen un gran porcentaje de cédigo escalar, de forma que

pueden mejorar su rendimiento por el hecho de poseer un puerto de memoria dedicado .

para accesos escalares. De este modo aumentan el paralelismo en el acceso a datos. El
puerto de memoria extra se utiliza tanto dentro de las regiones S como dentro de las

regiones D, en paralelo con el puerto vectorial.

El efecto que provoca en el rendimiento dentro de las regiones D el haber afiadido un
puerto escalar extra también lo hemos estudiado. Los resultados muestran que los pro-
gramas numéricos apenas mejoran su rendimiento. En los programas Nasa7 y Bdna

se producen mejoras de rendlmlento‘muy ligeras. Sin embargo, los programas multi-

media, como Jpeg Decode, Jpeg Encode y Gsm Encodé, ‘r'nejoran su rendimiento en un

6%, 8% y 5% respectivamente, lo que era de esperar ya que sus regiones vectoriales

estdn polucionadas con cédigo escalar. El puerto escalar extra proporciona flexibili-
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dad adicional en el acceso a la cache de datos de primer nivel para estos programas.
Aunque podriamos esperar que Epic se comportase del mismo modo, los problemas de
coherencia de este programa impiden que se realicen esas ganancias de rendimiento que

el puerto escalar extra podria aportar.

A.3.5 Aumento del ancho de banda de memoria

Identlﬁcamos previamente que existian algunos programas caracterizados porque gener-
aban una gran cantidad de tréfico con la memoria pr1nc1pal Estos programas eran prin-

cipalmente los programas numéricos, y el trafico que solicitan de memoria serd servido

con un ancho de banda méximo igual al que la memoria principal puede sostener. Por.

lo tanto, aumentar el ancho de banda con la memoria mejorard la ejecucion de estos
programas puesto que los accesos a memoria que les limitan serd servidos con un ancho
de banda mayor. Ademds de aumentar el ancho de banda, hemos de asegurarnos de
que este ancho de banda se utiliza completamente. Para ello aumentamos tamb1en de

nuevo, el tamano de las estructuras MSHR y buffers de escritura.

El anilisis de los resultados nos muestra que, tal como se esperaba, los programas mul-
timedia apenas se ven afectados por el incremento en el ancho de banda de la memoria.
El poco trafico que generan con la memoria ya se sirve a una tasa de transferencia

elevada, asi que no se benefician de un aumento en el ancho de banda de memoria.

Por el contrario, los programas numéricos mejoran su rendimiento cuando se dobla
el ancho de banda con la memoria. Las mejoras mas importantes aparecen en los
programas Swim256, Nasa7, Arc2d y Tomcatv, con mejoras del 20.2%, 15.5%, 9% y
7.8%, respectivamente, para registros vectoriales de 128 elementos, y con mejoras del
23%, 12%, 11% y 10% para registros vectoriales de 64 elementos. De estos resultados
observamos que los registros vectoriales de 64 elementos obtienen mejor rendimiento que
los registros vectoriales de 128.élementos', para los programas numéricos, mientras que
para los programas multimedia su rendimiento es muy similar. También observamos
que un ancho de banda mayor béneﬁcia eépecialmente a los programas que, o bien tienen

conjuntos de datos grandes, como es el caso de los programas Swim256 y Tomcatv, o
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bien poseen accesos a memoria con stride distinto de la unidad, como en los programas
Nasa7y Arc2d.

Una vez realizadas estas mejoras en el sistema de memoria, observamos que el tiempo
de parada de la cache vectorial se reduce considerablemente, hasta el punto de que
la unica razén que hace que el procesador se pare debido a la cache vectorial sea los
problemas de coherencia entre las caches de primer y segundo nivel. El resto de razones

de parada se han reducido por debajo del 1% del tiempo total de ejecucidn.

Para los programas superescalares también se ha realizado el aumento del ancho de
banda, y los tinicos programas afectados por esta mejora son Swim256, Nasa7, Bdna 'y
Arc2d, con mejoras del 9%, 9.5%, 7% y 21%, respectivamente. Ain asi, el rendimiento
que se obtiene para la arquitectura SS estan muy lejos de los resultados que se obtienen

con la arquitectura SSV.

El anélisis de rendimiento dentro de las regiones D muestra un comportamiento similar.
Los programas numéricos se benefician méas de la mejora realizada en el ancho de banda
de memoria, con porcentajes de mejora comparables a los obtenidos para los programas

completos.

A.3.6 Analisis de los efectos de la integracion en los
microprocesadores

Aunque la generacién actual de procesadores superescalares poseen tipicamente una
gran cache de segundo nivel integrada en el chip, como es el caso del procesador Alpha
21364 [Ban98| que posee una cache de segundo nivel de 1.75 MB, los avances en la légica

de integracion estan permitiendo introducir cada vez més transistores en un dnico chip. -

Por lo tanto, en los microprocesadores futuros podrd dedicarse gran parte del area
del chip a la cache de segundo nivel. Ese es el caso, por ejemplo, del procesador
Alpha 21464 [Eme99], que incluye 250 millones de transistores y que implementard

una cache de segundo nivel atin mayor que la del 21364. Estas caches tan grandes se

implementaran utilizando miltiples bancos de memoria, lo que favorece un aumento
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natural de la asociatividad de la cache, pero que, desafortunadamente, implica también

un aumento de la latencia.

Las mejoras futuras proporcionarin, ademds, un mayor ancho de banda. Siguiendo con
el ejemplo del procesador Alpha 21464 [Eme99], sus 1100 pines permitirdn a la memoria
transferir datos al procesador con un ancho de banda de 12 GB/s, como minimo. Otro
ejemplo es el IBM Powerd [Die99], que con su cache de tercer nivel fuera del chip, y
un puerto a esta cache de 16 bytes de ancho, también proporciona mas de 10 GB/s de

ancho de banda con la memoria.

Hemos realizado el estudio de nuestra cache vectorial basica de 1 MB de tamano, y
hemos doblado y cuadruplicado este tamafo de cache, a la vez que incrementamos las
latencias correspondientes, para analizar qué efecto tendra en el rendimiento el uso de

estas caches en el futuro.

Los resultados muestran que el efecto de aumentar la cache de segundo nivel, asi como
el ancho de banda de memoria, benefician especialmente a aquellos programas limitados
por la memoria. Los programas Swim256, Nasa7, Tomcatv, Bdna 'y Arc2d mejoran su
rendimiento en un 13%, 13%, 15%, 3% y 5%, respectivamente, para la cache de 2MB,
y usando registros vectoriales de 128 elementos. El uso de registros vectoriales de 64
bits también mejora el rendimiento, pero en porcentajes un poco menores (desde un
2.2% hasta un 10.5%).

Para los programas que no estan limitados por memoria, sin embargo, no compensa el
mayor nimero de ciclos de latencia de la cache de segundo nivel con el mayor tamao
o el mayor ancho de banda de memoria. Estos programas ya se ejecutaban bien porque
cabian en la cache de 1MB, asi que aumentarla no les ha beneficiado, pero si les ha
perjudicado el aumento experimentado en la latencia de la cache de segundo nivel. Las
pérdidas de rendimiento para estos programas son bastante bajas, siendo del orden de
1.8%, 3.2%, 3% y 0.1% para los programas Hydro2d, Jpeg Encode, Epicy Jpeg Decode,

independientemente de la longitud de los registros vectoriales.
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Al aumentar el tamafio de la cache de segundo nivel hasta 4 MB el comportamiento
se repite. Los programas limitados por la memoria, como Swim256, Nasa7, Tomcatv,
Bdnay Arc2d aumentan su rendimiento un 12.4%, 12.5%, 11.1%, 2.9% y 4.5%, respec-
tivamente, para registros vectoriales de longitud 128. Para registros vectoriales de 64
elementos-los aumentos de rendimiento van desde el 2.1% hasta el 10.7%.

La comparacién de los resultados para caches de 2 MB y 4 MB muestran que los
resultados de la cache de 2 MB son un poco mejores que los de 4 MB. Aunque la
latencia de la cache ha experimentado un aumento del 50% (de 8 ciclos a 12 ciclos),
los resultados de rendimiento apenas se ven afectados. Por lo tanto, hemos alcanzado
un punto en la configuracién que, con una latencia larga, y con el mismo tiempo de
ciclo del procesador, hace que no valga la pena gastar mas area del chip en aumentar

el tamafio de la cache de segundo nivel.

Los resultados dentro de las regiones D son similares a los obtenidos para los programas
completos. Tal como ocurria para el rendimiento global, los programas que estan.
limitados por la jerarquia de memoria mejoran su rendimiento a medida que se mejoran
los parametros de la cache de segundo nivel. El resto de los programas sufre una pérdida

de rendimiento debido a la influencia de las altas latencias.

A.3.7 Sistemas de memoria para accesos con stride no
unitario: Caches secundarias Collapsing y
Multi-Address

Mientras que en las secciones previas hemos solucionado los problemas de memoria

usando una aproximacién mas directa, aumentando el ancho de banda con la memoria,
doblando el nimero de entradas en las estructuras MSHR y buffers de escritura, y
usando caches mas grandes, en esta seccién vamos a tratar de hacerlo de una manera
més inteligente. Teniendo en cuenta que hemos visto que una buena part_e. del trafico
con la memoria se debe a accesos a memoria vectoriales con stride distinto de la unidad,
y que nuestra cache vectorial (que se diseé para que fuese sencilla) no se comporta,

muy bien con este tipo de accesos vectoriales, en esta seccién evaluamos dos jerarquias
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Figure A.10 La ruta de datos de la cache vectorial collapsing (CVC).

de cache alternativas, que estdn pensadas para mejorar el rendimiento cuando existen

accesos a memoria vectoriales con stride distinto de la unidad.

Es interesante comentar que estos disenos de memorias cache son mas complejos que
la vector cache que hemos propuesto. Sin embargo, hemos visto también que a medida
que la tecnologia evoluciona, sera posible integrar mas transistores en un dnico chip, lo
que permitiré integrar funcionalidad adicional a las caches. Estos disefios de cache que
proponemos podrian ser parte de la funcionalidad que se afiada a las futuras memorias
cache.

La primera alternativa a la cache vectorial (ver figura A.10) es la Cache Vectorial Col-

lapsing (CVC) [CEV99]. Utiliza un. buffer collapsing, propuesto -por Conte [CMMP95],

que permite recuperar varios elementos vectoriales que se encuentran en dos lineas de
cache consecutivas, incluso aunque estos elementos vectoriales no sean consecutivos. En

lugar de la légica de desplazamiento y mascara que posee la cache vectorial, el buffer
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Figure A.11 La ruta de datos de la cache Multi-Address (MAC).

collapsing agrupa juntos los elementos pedidos. Este diseno serd 1til para accesos con
strides entre 2 y.2xtamano de linea-1, dado que en estos casos existird mas de un ele-
mento de los solicitados en dos lineas consecutivas de la cache. Para valores de stride
iguales 0 mayores al doble del tamaifio de la linea de cache, el buffer collapsing no anade

ninguna mejora a la cache vectorial basica que ya se ha evaluado.

La segunda alternativa (ver figura A.11) es la Cache MultiAddress (MAC) [CEV99]. Se
trata de una cache convencional en la que un acceso a memoria vectorial de desacopla
entre los diferentes puertos disponibles. Este modelo se beneficia de todos los recursos
disponibles, dado que podemos enviar direcciones de memoria independientes sin tener
en cuenta el stride que exista entre ellas. Esta alternativa es, por tanto, més flexible
que la CVC ya que el acceso a los diferentes elementos solicitados no depende del stride

que exista entre ellos. Por supuesto, este disefio es atin més complejo y caro que'la

cache CVC, pero mostraré, la ganancia potencial de rendimiento que se puede obtener ‘

con un sistema de memoria apropiado.
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La evaluacién del rendimiento obtenido con estos dos modelos (CVC y MAC) muestra

que ambos disefios mejoran el rendimiento. Ademads, CVC aumenta el rendimiento entre
un 5% y un 90.6% para registros -vectoriales de 128 elementos. Las mayores mejoras
de rendimiento se producen en los programas multimedia, Jpeg Decode, Gsm Encode,
Jpeg Encode 'y Epic, con mejoras del 90.6%, 75.7%, 46.1% y 21%, respectivamente. Los

programas numéricos alcanzan menores mejoras de rendimiento, siendo estas mejoras

del 18.2%, 17.5%, 10.4% y 9.2% para los programas Swim256, Nasa?7, Arc2dy Tomcatv,

respectivamente. Con registros vectoriales de 64 elementos se ‘alcanzan mejoras mas
discretas, entre el 4.2% y el 90.4%.

La cache Multi-Address (MAC) mejora mds el rendimiento que la CVC, alcanzando
‘mejoras en el rango (16.4%, 128%) para registros vectoriales de 128 elementos. Los
programas Arc2d, Swim256, Jpeg Decode, Gsm Encode y Nasa7 alcanzan las mayores
mejoras de rendimiento, 128%, 127.5%, 90.7%, 79.8% y 67.6%, respectivamente, sobre
la cache vectorial béasica. Estos programas se benefician de la flexibilidad de la cache
-MAC que no estd restringida a un cierto rango de valores para el stride, sino que,
en general, favorece los accesos con cualquier stride. Para registros vectoriales de 64

- elementos las mejoras de rendimiento son algo mas bajas, pero alin alcanzan valores en
el rango (5.8%,109%).

El anélisis en las regiones D muestra que, a medida que proporcionamos mayor flexibil-

idad en el nimero y tipo de accesos a memoria que se pueden realizar, el rendimiento

aumenta paralelamente. Comparando con los resultados obtenidos para programas -

completos, observamos que aunque se obtiene un comportamiento muy similar, los
programas Tomcatv, Gsm Encodé, Jpeg Decode, Epic 'y Jpeg Encode alcanzan valores

mayores de rendimiento.

La cache CVC mejora el rendimiento en casi todos los programas, desde un 0.5% hasta

- un 45.8% para registros vectoriales de 128 y 64 elementos. Las mejoras se concentran

-en los programas que poseen stride 2, 3 y 4, que son los que se benefician del hardware
- collapsing. '
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La cache Multi-Address mejora el rendimiento para todos los programas. Las mejoras .-
mayores se producen en programas.que, 0 bien tienen strides muy grandes (Bdna un . - -
23.6%, Nasa7 un 67.6% y Arc2d.un 129.5%), o estan fuertemente limitados-per la -

memoria (Swim256 un 128% y Tomcatv un 76.6%).

"A.4 CONCLUSIONES Y TRABAJO FUTURO

La escalabilidad de los procesadores superescalares es costosa y fuertemente dependiente
de la tecnologia. Las arquitecturas superescalares actuales no pueden evolucionarse
simplemente aumentando el niimero de instrucciones que se ejecutan en cada ciclo de

reloj. Las tendencias actuales en el disefio de los procesadores muestran que se estan

explorando fuentes alternativas de paralelismo-que estdn disponibles en los programas.” -
Estas tendencias identifican el uso incipiente de paralelismo de instrucciones (ILP) junto

con otras formas de paralelismo, como el multithreading simultdneo o multiprocesadores -

en un chip.

Basindonos en este andlisis hemos presentado el paradigma del paralelismo de datos
(DLP) como una alternativa que merece la pena explorar, de forma que la propuesta

consiste en estudiar una maquina que utilice a la vez ILP y DLP. El DLP tiene ciertas

ventajas inherentes, como la disminucién del nimero de instrucciones y operaciones. -
ejecutadas, una menor presién en la unidad de bisqueda de instrucciones, una unidad -
de control mas sencilla, un conocimiento por adelantado de los datos de memoria que
se van a acceder, un uso del 100% de los datos que se traen de memoria, la capacidad -
de amortizar largas latencias sobre un gran conjunto de datos y la facilidad de-escalar -

el diseno.

La contribucién principal de esta tesis consiste en demostrar que ILP ¥ DLP pueden -

unirse en una tnica arquitectura para ejecutar aplicaciones numéricas y multimedia -

con un buen nivel de rendimiento.” -~

La comparacién de los repertorios de instrucciones escalar y vectorial ha mostrado que

los programas vectoriales ejecutan menos bloques bdsicos, instrucciones y operaciones
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.. que los programas escalares debido al mayor nivel seméntico de las instrucciones vecto-
riales. Estos estudios iniciales del repertorio de instrucciones nos llevan a concluir que,
dadas las ventajas de los repertorios de instrucciones vectoriales, vale la pena explorar
la posibilidad de incluir una unidad funeional vectorial en una arquitectura superescalar

actual.

R N
¢

-+ Otra contribucién de esta tesis es la identificacién, separacién y estudio de las regiones
S y D para cada programa. -La posibilidad de identificar y estudiar separadamente
el comportamiento de un programa dentro de las regiones S y D nos ha permitido

comprender y predecir mejor su respuesta en rendimiento.

El disefio de la arquitectura ILP+DLP es muy similar al de un procesador superescalar
actual. La principal diferencia viene del banco de registros vectoriales afiadido, asi
como sus conexiones con las unidades funcionales presentes en la arquitectura. También
hemos anadido algunos registros de propésito especial: el de longitud vectorial, el de
stride, el vector first y el registro de mdscara. ‘

Esta arquitectura ILP+DLP la hemos conectado a un sistema de memoria basado en
un nuevo disefio de cache, llamada cache vectorial, que es capaz de enviar pequefios
vectores al procesador a través de un bus ancho. La cache vectorial es una memoria de
- doble.banco de la que se leen lineas completas de datos. Estas lineas se intercambian,
se desplazan y se les pasa una mdscara, segin sea necesario, y se envian entonces al
procesador. De esta forma se consigue un-enlace con la memoria con un ancho de banda

alto y una latencia baja.

Hemos presentado los resultados de rendimiento de nuestra arquitectura ILP+DLP y
la hemos comparado con un procesador superescalar tradicional, estudiando la escal-
abilidad y el rendimiento potencial que puede -obtenerse cuando se utiliza un sistema
de memoria ideal. Los resultados muestran la arquitectura ILP+DLP escala muy bien
a medida que se afiaden mds memoria y-més unidades funcionales, sobre todo dentro
de las regiones D. Ademds, obtiene mayores valores de paralelismo que la arquitectura

superescalar a la vez que limita el coste y la complejidad del disefio.
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Cuando anadimos un sistema de memoria real al disefio ILP+DLP el comportamiento
sigue siendo mejor que en el procesador superescalar, para los dos modelos de memoria
propuestos. En ambos modelos se ha visto que la jerarquia de cache es capaz de filtrar
el trafico del procesador a la memoria. Los programas multimedia poseen un tréfico con
la memoria principal més bajo qué los programas numéricos, aunque en los programas
numéricos la cantidad de trafico se reduce al utilizar el modelo de memoria CB. Los
estudios de acierto/fallo de cache también muestran que los programas multimedia
aciertan con mas frecuencia en la cache que los programas numricos, y que el modelo
CB presenta mejores resultados. En general, los programas numéricos ejercen una
mayor presién en la memoria principal, y el modelo CB reacciona mucho mejor a esta

presién con niveles de trafico menores y tasas de acierto més altas.

El estudio de la cache vectorial muestra que esta cache puede estar hasta un 60% del
tiempo de ejecucién parada debido a distintas razones, de las cuales las dos principales

son que las estructuras MSHR y los buffers de escritura se llenan.

El estudio de rendimiento corrobora que los programas numéricos estdn limitados por
la memoria, mientras que los programas multimedia no lo estdn tanto. Los valores de
rendimiento obtenidos siguen siendo més altos que los valores obtenidos por el proce-

sador superescalar tradicional.

El modelo de memoria CB presenta un mejor rendimiento para los programas numeéricos
que el modelo CA, mientras que para los programas multimedia las diferencias entre
ambos modelos son muy pequefias. Por ello proponemos el modelo CB como el sistema

de memoria que se deberfa incluir en nuestra propuesta ILP+DLP.

Los resultados de rendimiento pueden mejorarse aiin més realizando ciertas mejoras en
el sistema de memoria. Estas mejoras van desde aumentar el tamafo de las estructuras
MSHR vy los buffers de escritura, incluir un puerto de memoria adicional para accesos
escalares, aumentar el ancho de banda o incluir ciertas modificaciones a la vector cache
para que realice los accesos vectoriales con stride mayor que uno de una manera mas
eficiente. Todas estas mejoras aumentan el rendimiento que se obtiene de la arquitectura
ILP+DLP.
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Por todo ello, concluimos que la arquitectura ILP4+DLP es una arquitectura factible
desde el punto de vista del rendimiento. Alcanza un mejor rendimiento que una ar-
quitectura superescalar tradicional, tanto con memoria ideal como real, a medida que
se escala la configuracién del procesador. Es una buena propuesta para programas

multimedia y alcanza muy buenos resultados para programas numéricos.

En lo que al tamano de los registros vectoriales se refiere, consideramos que, aunque en
general se obtienen los mejores resultados de rendimiento con registros vectoriales de
128 elementos, la decisién final depende del nimero de transistores disponibles. Una
implementacién de propdsito general deberia utilizar registros de 128 elementos para
poder asi alcanzar un mejor rendimiento. Sin embargo, una aproximacién con un coste
menor puede sacrificar parte del rendimiento obtenido para disminuir asi el coste de

implementacién. En ese caso se incluirian registros vectoriales de 16 elementos.

Los trabajos futuros se enmarcan en los temas siguientes:

»  Estudio del coste de implementacién de la arquitectura ILP+DLP siguiendo un
modelo preciso de estimacién que permita calcular los requerimientos de area de
la arquitectura. Determinar la configuracion de coste minimo, la configuracién de

consumo minimo y la que produzca una mejor relacién coste/rendimiento.

s Estudiar modelos de memoria adicionales que mejoren el rendimiento de los ac-
cesos a memoria con stride diferente de 1, asi como los accesos a memoria tipo
gather/scatter.

» Entender cémo se comporta una arquitectura tipo VLIW dentro de las regiones D,

y los méritos relativos de la ejecucién VLIW frente a la ejecucién en la arquitectura
ILP+DLP.

= Estudiar el espectro de configuraciones modestas de la arquitectura ILP+DLP, en
el que se puede obtener un rendimiento aceptable con un coste reducido. Estas
configuraciones modestas se consiguen con un procesador ILP4+DLP que posea una

unidad vectorial con registros cortos.

s FEstudiar el efecto de la ejecucién en orden o fuera de orden en los procesadores

ILP+DLP. Aunque un procesador ILP+DLP que realiza ejecucién en orden de las
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instrucciones es mucho més limitado, su coste también es menor, asi que la relacién
coste/rendimiento puede ser la apropiada para la ejecucion de aplicaciones con un

rendimiento razonable, a la vez que se mantiene un coste reducido.

Estudiar el rendimiento de un procesador ILP+DLP que incluya multithreading
simultdneo y un sistema de memoria basado en la cache vectorial introducida en
esta tesis. El estudio estaria restringido a un conjunto de configuraciones que
puedan ser realmente construidas, lo cual implica un ntcleo superescalar modesto,
una unidad vectorial con vectores cortos, y una ejecucién SMT también modesta,

de forma que todo funcione a una frecuencia de reloj elevada.
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