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Abstract – The application of cellular structures in additive manufactured parts combined with lightweight
optimisation has an enormous potential, reducing weight, production time and cost. This paper presents a new method
based on design of experiments, metamodels and genetic algorithms (combined with Computer Aided Design and
Finite Element Method tools) to accomplish lightweight parametric optimisation of cellular structures in additive
manufactured parts. Some specific strategies were implemented in the developed optimisation method to improve
the performance compared with conventional methods. These strategies intensify the sampling for the surrogate
model refinement in areas close to the feasible/unfeasible border, where the optimum is expected. The method
was tested in different case studies and compared with a conventional optimisation tool based on the Box-Behnken
design of experiments and the response surface method metamodel. The proposed method enhances the results
(3–4.2% of improvement) in all the case studies, with a similar optimisation time. Compared with a previous version
created during the development of the methodology, the final version achieves a similar quality of the optimum in
lower optimisation time.

Key words: Design optimisation, Additive manufacturing, Genetic algorithm, Finite element analysis,
Computer-aided design.

1 Introduction

The progressive advancement of developing new materials
and processes in Additive Manufacturing (AM) has led to a
greater uptake of AM systems [1, 2]. AM allows highly com-
plex parts with overhangs and undercuts that are costly or
impossible to be produced using conventional manufacturing.

The definition of internal cellular structures within an
additive manufactured part allows reducing the weight
compared with the solid geometry. By optimising these inter-
nal structures, there is a potential to minimise material and
weight, thus reducing the overall production cost and time.
This concept has been applied in tissue engineering [3–6]
and can potentially benefit other high-end industries such as
aerospace or automotive sectors. This paper proposes an intel-
ligent optimisation algorithm to optimise the design of the
internal cellular structures (Figure 1). Computer Aided Design

and Finite Element Method tools (CAD and FEM) are used to
define and simulate the internal geometries, thus analysing its
behaviour under different load conditions without accomplish-
ing real tests.

Some authors have proposed integrating lightweight
modelling (with complex structures) by combining CAD soft-
ware with other tools to optimise the geometry [7–12]. Those
parametric modelling techniques approximate the part surface
with Bezier surface patches, then enable the truss generation
between the patches and finally combine different optimisation
techniques to optimise the geometry [13, 14]. Although these
proposals are interesting, a complex workflow is needed
between different programs as well as manual work to decom-
pose the external surfaces. Nevertheless, this paper aims to
create a simple cellular structure by repeating a hollow pattern
and optimise it by specific optimisation algorithms.

On the other hand, most of the commercial CAD-FEM
software are able to achieve topology optimisation [15–17].
However, these optimisation techniques may lead to designs*e-mail: ruben.paz@ulpgc.es
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that cannot be manufactured by AM because of the manufac-
turing constraints, such as small wall thickness, problems with
the removal of support material (if needed), and so on. In fact,
this is a matter of discussion on recent research. Some authors
have analysed the capabilities of different topology optimiza-
tion techniques, concluding that the designs obtained by these
methods usually require post-processing in order to be manu-
facturable [18]. Other authors have proposed filters to face
problems related to overhang angles [19, 20], but many other
problems should be taken into account to guarantee a printable
design. This work focuses on parametric optimisation, which
allows controlling the constraints associated with the manufac-
turing process by the proper definition of the limits of the
design variables. Therefore, the capabilities of the AM
machine must be known to correctly define the limits of the
design variables before the simulation is run.

Regarding the optimisation strategy, Genetic Algorithms
(GAs) and FEM simulations [21] are widely used to accom-
plish the optimisation process. However, they are usually
combined with surrogate models to reduce the number of
FEM simulations and, consequently, the optimisation time
[22, 23]. There are several parametric optimisation tools avail-
able in commercial CAD-FEM software, mainly based on
Design of Experiments (DOE) and surrogate models (also
known as metamodels). DOE consists in simulating some
specific designs (among the infinite possible designs of the
search domain). The data obtained are used to create the
surrogate model, which predicts the results of any design
proposed during the optimisation without accomplishing the
FEM simulations.

Different commercial CAD-FEM softwares have this type
of optimisation tools. Catia (Dassault Systèmes, Vélizy-
Villacoublay, France) includes conjugate gradients or
simulated annealing [24]. Conjugate gradients needs the first
derivative of the objective function (usually unknown), while
simulated annealing is a stochastic method that requires a
too high number of simulations. In the case of SolidWorks
(Dassault Systèmes, Vélizy-Villacoublay, France), there is an
optimisation tool based on Box-Behnken DOE [25, 26] and
the response surface method (RSM, regression model).
However, this optimisation tool has not refinement strategies
for the RSM. As a consequence, the predicted optimum may
comply with the optimisation constraints according to the esti-
mates of the RSM surrogate model, but when simulated by
FEM, maybe the design does not comply with the constraints.
Consequently, in some cases, the tool finishes the process
without giving a solution to the optimisation problem. ANSYS
(ANSYS, Inc., Canonsburg, Pennsylvania, USA) also includes
many powerful tools for optimisation. It has different DOE
strategies such as central composite design (CCD) or Box-
Behnken design. Box-Behnken DOE requires fewer levels

(and hence lower sampling effort) than CCD [27]. Regarding
metamodels, ANSYS also has different options such as
RSM, Kriging [28], or Neural Networks (NN). As mentioned
before, RSM is a regression model that fits one or two-order
polynomials to the data. On the other hand, Kriging is an inter-
polation method (exact prediction on the data) that takes into
account the space data distribution to create the metamodel.
Finally, NN is a learning method inspired by the operation of
the nervous system. In general terms, RSM is recommended
for optimisation problems with small number of design
variables, while Kriging and NN are recommended for large
number of design variables (NN typically for complex prob-
lems with a larger number of sampling points) [29]. However,
only Kriging includes refinement strategies. This refinement
consists in adding new sampling points in the zones with the
higher fitting error. This enables improving the accuracy of
the metamodel, but also means more computational time.

Although this latter tool is very interesting, the improve-
ment of the metamodel is applied in the zones with the highest
fitting error. However, this refinement can be potentially
applied in the feasible/unfeasible border where the optimum
will be located. By doing this, the surrogate model would have
a better performance, reducing the optimisation time. This is
the main contribution of the proposed method.

2 New approach: increase of the sampling
density in the feasible/unfeasible border

The method proposed in this work (Figure 2) consists in
applying an initial DOE to create a surrogate model and then
refine it through the simulation of new designs located in
regions of interest. The main idea is to apply the refinement
in specific areas to improve the performance of the surrogate
model. Once the surrogate model has achieved a certain level
of accuracy, the optimal design is searched by using GAs and
the predictions of the metamodel.

The design variables are associated with the dimensions of
the cellular geometries inside the part. These variables have a
monotonic relationship with the overall structure, which means
that an increase of a variable associated with the size of the
hollow cells results in a mass reduction. Moreover, the most
commonly analysed mechanical properties in the design
process (stiffness and strength) are also reduced. Therefore,
for these optimisation cases, the constraints usually have an
opposite behaviour compared to the mass. As a result, the
optimum design will be located in the feasible/unfeasible
border (Figure 3).

To take advantage of this statement, the approach pre-
sented consists in placing the new sampling points (needed
for the DOE and the metamodel refinement) close to the

Solid geometry Design of internal structure and
parameterisation 

Parametric
optimisation 

Figure 1. Proposed workflow for lightweight optimisation of AM parts.
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feasible/unfeasible border, thus raising the density of sampling
in the zone where the optimum will be found. This strategy
intensifies the refinement of the surrogate model in the
feasible/unfeasible border, which means that the accuracy of
the predictions is improved in the zones where the optimisation
algorithm will find the optimum. As a result, the performance
of the optimisation method will be enhanced (better quality of
the optimum with a similar CPU time).

3 Optimisation case studies

This section presents some of the case studies used to test
the optimisation strategies developed in this work. The three
first case studies explained below were based on a mini wind
blade (Figure 4 and Sects. 3.1–3.3), and the fourth is based
on the stem of a bicycle (see Sect. 3.4). The goal, in the case
of the blade, is to minimise its weight by optimising the values

of the design variable associated with the internal cellular
structure. The maximum deflection must be lower than
15 mm (constraint) when a 50N load is applied. This type of
constraint (minimum stiffness under a specific static load) is
quite common in the mechanical tests of blades and other
mechanical components. The material is ABSP400 for Fused
Deposition Modelling (FDM).

This blade was lightened using different type of cellular
structures to test the optimisation method with different
number of design variables. Three different internal designs
are presented below, with 3, 4 and 5 design variables
respectively.

The boundary conditions were the 50 N vertical load
uniformly distributed on the lower face and the constrained
movement in all the directions on the surface of the joint
between the blade and rotor (root of the blade). The curva-
ture-based mesher was selected since it has more flexibility
to mesh different geometries and refines the mesh according
to the curvature of the geometry. Parabolic tetrahedral elements
were used. The minimum and maximum element size was
0.25 mm and 35 mm respectively. The total number of nodes
was around 120,000, ensuring a good aspect ratio of the
elements and quality of the mesh.

3.1 Blade with 3 design variables

Three different design variables were used to define an
internal cubic hollow structure. Figure 5 shows a section of
the blade near the root (the thickest zone) to depict the three
design variables of the internal cubic hollows. The variables
were the length of the sides of the cubic hollow (‘‘L’’, limits
between 20–60 mm), the external thickness (‘‘e’’, limits
between 3–8 mm) and the thickness between the cubic hollows
(‘‘e_h’’, limits between 3–8 mm).

The optimisation problem can be summarised as:

Minimise mass (L, e, e_h)
Subject to max_deflection � 15 (mm)

20 � L � 60 (mm)
3 � e � 8 (mm)
3 � e_h � 8 (mm)

Individual (L, e, e_h)

3.2 Blade with 4 design variables

In the case of 4 design variables, the hollows had the
shape of square prisms (Figure 6). The variables were the side
of the squared base (‘‘L’’, 20–60 mm), the external thickness
(‘‘e’’, 3–8 mm), the thickness between the hollows (‘‘e_h’’,
3–8 mm) and the height of the hollows (‘‘h’’, 20–60 mm).

The optimisation problem can be summarised as:

Minimise mass (L, e, e_h, h)
Subject to max_deflection � 15 (mm)

20 � L � 60 (mm)
3 � e � 8 (mm)
3 � e_h � 8 (mm)
20 � h � 60 (mm)

Individual (L, e, e_h, h)

Figure 2. Flow chart of the general approach.

Figure 3. Feasible/unfeasible border in a 2-D problem.
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3.3 Blade with 5 design variables

In the case of 5 design variables (Figure 7), the hollows
were rectangular prisms, defined by both sides of the rectangle

(‘‘L1’’, 20–60 mm) and (‘‘L2’’, 20–60 mm), the external
thickness (‘‘e’’, 3–8 mm), the thickness between the hollows
(‘‘e_h’’, 3–8 mm) and the height of the hollows (‘‘h’’,
20–60 mm).

The optimisation problem can be summarised as:

Minimise mass (L1, L2, e, e_h, h)
Subject to max_deflection � 15 (mm)

20 � L1 � 60 (mm)
20 � L2 � 60 (mm)
3 � e � 8 (mm)
3 � e_h � 8 (mm)
20 � h � 60 (mm)

Individual (L1, L2, e, e_h, h)

3.4 Stem (5 design variables)

The stem of a bicycle was also used to test the final
version of the optimisation. The goal is to minimise the weight
of the stem using a prismatic hollow structure similar to the
one applied in the blade with 5 variables. The maximum
deflection must be lower than 6 mm when a load of
1000N is applied. Figure 8 shows the design variables used
in this case. The limits of the design variables were
‘‘Lx’’ (5–50 mm), ‘‘Ly’’ (10–40 mm), ‘‘Lz’’ (20–150 mm),

Figure 7. Design variables for a rectangular prism (blade section, 5
variables).

Figure 4. Geometry of the blade case study.

Figure 6. Design variables for a square prism (blade section, 4
variables).

Figure 5. Design variables for a cubic hollow structure (blade
section, 3 variables).
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‘‘e’’ (1–20 mm) and ‘‘eh’’ (1–20 mm). ABSP400 was also
used.

The boundary conditions were the 1000N vertical load
uniformly distributed on the internal cylindrical face of the
stem (horizontal axis) and the constrained movement in all
the directions on the internal cylindrical face (vertical axis).
The curvature-based mesher was selected. Parabolic tetrahedral
elements were used, with a minimum and maximum element
size of 0.5 mm and 10 mm respectively. These values were
selected since they guaranteed a good aspect ratio of the
elements and no problems were found with the different
designs meshed.

The optimisation problem can be summarised as:

Minimise mass (Lx, Ly, Lz, e, eh)
Subject to max_deflection � 6 (mm)

5 � Lx � 50 (mm)
10 � Ly � 40 (mm)
20 � Lz � 150 (mm)
1 � e � 20 (mm)
1 � eh � 20 (mm)

Individual (Lx, Ly, Lz, e, eh)

4 New parametric optimisation method based
on DOE, feasible/unfeasible border
approximation, addition of new middle
points, border approximation by GAs
and final GA

This section presents the functioning of the final optimisa-
tion algorithm developed in this research. SolidWorks software
was used as a CAD-FEM tool. The optimisation method was
implemented in a subroutine of Matlab (The MathWorks,
Inc, Natick, Massachusetts, USA). The previous case studies
were used to test the different optimisation versions developed
until the final one was achieved. Therefore, the final methodol-
ogy was the result of the evolution of different versions that
were improved progressively through the analysis of the results
obtained in different case studies. The final methodology was
compared not only with the previous versions, but also with
a standard optimisation tool available in SolidWorks, which
is based on Box-Behnken DOE and estimation of the optimum
by the RSM metamodel (BBRS method). The aim of the

comparison is to validate if the new method improves the
quality of the optimum (lower weight) without increasing the
optimisation time. Since the main CPU time of the optimisa-
tion process is associated with the number of FEM simulations,
the optimisation time was compared through the total number
of designs simulated.

The new method was developed to specifically intensify
the sampling in the feasible/unfeasible border. Several steps
are carried out to address the optimisation process. Figure 9
summarises the overall optimisation process.

Step 1: DOE (2n + central point)

The first stage is a 2-level full factorial DOE with central
point. Each point or design is simulated by FEM to evaluate
the mechanical behaviour and then save the data of interest
(constraints and weight).

Step 2: Feasible/unfeasible border approximation

A phase of border approximation along the edges is carried
out. This stage automatically identifies the edges cut by the
feasible/unfeasible border in accordance to the results obtained
in the corners with the 2-level full factorial DOE. Based on the
results of the two vertices of the edge, a new point is added
between the vertices, using Hermite interpolation [30] to
determine the location of the new point (to reach the
feasible/unfeasible border). In previous versions of the
algorithm, linear interpolation was used, but the convergence
was slower. Hermite polynomial interpolation showed better
results even than splines (no oscillations, Figure 10). This stage
is repeated in a loop until the deviation of the more restrictive
constraint is less than 5% of the limit value. This idea was
initially applied in all the edges cut by the feasible/unfeasible
border. However, after several tests with different geometries
and taking into account the next steps of the algorithm, it
was observed a pattern of behaviour that could be used to
reduce the number of sampling points needed for this stage.
After this observation, the border approximation along the
edges was programmed so that the approximation was carried
out only along certain edges. The algorithm identifies the best
corner of the cut across edges and then does the approximation
along the cut across edges containing this corner.

Y

XZX

Y

Figure 8. Design variables for the stem of a bicycle.
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Step 3: Addition of new middle points

In the next step, the programme identifies the best design
added in the last iteration of the previous phase. Geometrically,
this point represents the best corner (lower weight) of the
feasible/unfeasible border. Then, new middle points are added
between this point and the remaining adjacent corners of the
feasible/unfeasible border (the last points added in the border
approximation stage).

Figure 11 shows the concept of these three first steps in
a 3D problem. The cube represents the search domain
and the curved lines the unknown feasible/unfeasible border.
In Figure 11A, the black circles are the corners and the central
point of the initial DOE (Step 1). In Figure 11B, the grey edges
represent the edges that are cut across the feasible/unfeasible
border. Among the corners of these edges, the best one is
selected (grey point, Figure 11B) and the feasible/unfeasible

border approximation is carried out along the grey edges that
start from this point (Figure 11B (Step 2). The last point added
on each edge will be a corner of the feasible/unfeasible border,
as shown by the black triangles in Figure 11C. Among these,
the best is selected (grey triangle in Figure 11D) and combined
with the rest to add new middle points (grey circles in
Figure 11D) (Step 3). The number of new middle points
can vary depending on the shape of the feasible/unfeasible
border.

This proposal achieves a high sampling density close to the
feasible/unfeasible border just with the information of the
2-level factorial DOE. According to different tests carried
out, this strategy can achieve similar results to existing para-
metric optimisation methods with a reduced sampling, which
means a lower optimisation time. The feasible/unfeasible
border approximation along the edges (black triangles in
Figure 11C) has demonstrated an improved performance in

Figure 9. Flow chart of the optimisation method (version 3).
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the optimisation. In most of the optimisation problems, there is
a set of variables with a greater influence on the results.
This leads to an optimum with most of the variables with their
maximum or minimum value, which means optimums close to
the corners of the feasible/unfeasible border (black triangles in
Figure 11C).

Step 4: Border approximation by GAs

The next step consists in a border approximation by GAs.
RSM based on a least square fitting of 2-order polynomials
(LSF2) (1) is used to evaluate the fitness function during the
GA evolution. This function is used to evaluate the quality
of the designs proposed by the GA (mass plus penalties if they
exist).

ue ¼ c0 þ
Pn

i¼1
ci � vari þ

Pn

i¼1

Pn

j¼1;j�i
cij � vari � varj ð1Þ

ue = estimated value by the least square fitting of 2-order
polynomials (LSF2),
c0, ci, cij = fitting coefficients,
vari, varj = values of the design variables.

The best result achieved by the GA is analysed by the FEM
and added to the database to upload the metamodel. This GA is
executed again but penalising the individual points close to
those points previously added in this phase of the program.
This penalty, hereinafter called as ‘‘proximity penalty’’, adds
a value to the fitness function (2) if the point is too close to
another added before (3), reducing its quality from the point
of view of the GA. This strategy allows converging to a
different optimum at each GA execution, which forces the
system to explore new zones (similar concept to the resource
sharing method used in multimodal optimisation [31, 32])
along the feasible-unfeasible border. This step is repeated until

‘‘n’’ points have been added. After that, the GA is run again but
without applying the proximity penalty.

F ¼ massþ P constraints þ P proximity ð2Þ

F = fitness function,
Pconstraints = penalization due to violation of the constraints.

P proximity ¼
P

P proximity;i ð3Þ

Pproximity,i = 0, if the distance (di) between the individual and
the sampling point ‘‘i’’ is higher than the radius of influence
established,
Pproximity,i = 1/di · 1099, if the distance between the individual
evaluated and the sampling point ‘‘i’’ is lower than the radius
established.

The GA is repeated again, but in this case the metamodel
employed is linear interpolation based on Delaunay triangula-
tion (LIDT) (4). In previous versions, this metamodel was
utilised in all the optimisation process. However, through
different tests it was observed that the use LSF2 in the first
stages of the optimisation process improved the initial conver-
gence to the optimum design. Nevertheless, since LSF2 is a
regression model, when the sampling is intensified in a specific
zone the metamodel suffers from distortion and the optimisa-
tion algorithm does not converge to the optimum. Therefore,
an interpolation metamodel is more suitable for the final steps
of the optimisation algorithm. For this reason, once added
‘‘n + 1’’ points in this stage, the metamodel used is LIDT.
In conclusion, LSF2 metamodel (regression method) can be
useful in the early stages, where a general idea of the system
behaviour is needed, while LIDT (interpolation method) is

Figure 11. Steps of the new strategy for the border approximation
phase.
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Figure 10. Comparison of different interpolation methods.
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more appropriated for the final GA, where more accurate
results are needed.

p ¼
Pnþ1

i¼1
wi � pi

A ¼
Pnþ1

i¼1
Ai

wi ¼ Ai
A

ð4Þ

p = estimated value of a point inside a Delaunay element
(triangles in 2D). The value is obtained as linear combination
of the known values of the triangle vertexes,
pi = data value of vertex ‘‘i’’,
wi = weight of vertex ‘‘i’’,
n = number of design variables (in 2D, 2 variables),
A = area of the Delaunay element (triangle in 2D),
Ai = area of the sub-element ‘‘i’’. In a 2D problem, the triangle
shaped between the point to be estimated and the vertexes
opposite to vertex ‘‘i’’.

Once the GA evolves to the optimum using the estimates
of the LIDT metamodel, that design is simulated by FEM
and the algorithm evaluates the mean absolute percentage error
(MAPE) (5) of the estimations in comparison with the simula-
tion results, taking into account all the results of the constraints
and the objective (weight of the part). If the MAPE is higher
than 5%, the metamodel is uploaded with the results of this
point and this GA is run again. Otherwise, the optimisation
continues to the next stage. This loop guarantees a certain level
of accuracy of the metamodel in the zones close to the final
optimum.

MAPE of estimated values ¼

Pk

i

estimated valuei�simulated valuei
simulated valuei

�100

� �

k

ð5Þ

k = number of sampling points,
i = sampling point evaluated.

Step 5: Final GA

To end the optimisation, a final GA is run (using the
LIDT estimations to calculate the fitness function of each
individual of the GA). The best individual is simulated using
FEM. If this design improves the results of the best design
simulated so far, it will be the optimum. Otherwise, the
outcome is added to the database and the LIDT is uploaded
to execute again the GA. This stage is repeated until reaching
a design that improves the best one obtained in the previous
steps of the algorithm.

5 Results and discussion

In the case of the blade with 3 design variables, the
optimum obtained (Figure 12) had a mass of 1635 g with
17 simulations, while the BBRS method achieved an optimum
of 1690 g with 14 points. Therefore, the new method improved

the optimum 3.3% with only 3 more sampling points. On the
other hand, a previous version of the optimisation programme
achieved an optimum of 1632 g with 22 sampling points,
which means that the final version implemented in this work
needed 2 less sampling points to achieve almost the same
result, then reducing the optimisation time.

In the case of 4 design variables, the optimum obtained
with the final version had a mass of 1628 g after 27 FEM
simulations (Figure 13). However, the BBRS method achieved
an optimum of 1679 g with 26 points. Therefore, the result was
improved 3.09% with only one more sampling point. On the
other hand, the previous version of the optimisation pro-
gramme obtained an optimum of 1639 g with 28 sampling
points. Thus, the final methodology compared with the
previous one, not only reduced the weight of the optimum,
but also reduced the optimisation time.

In the case of 5 design variables, the final methodology
achieved an optimum of 1590 g with 42 sampling points
(Figure 14), while the BBRS method obtained an optimum
of 1660 g with 42 sampling points. As a result, the proposed
methodology improved the optimum 4.35% with the same
optimisation time. On the other hand, the previous version
achieved an optimum of 1601 g with 43 sampling points. Once
again, the final version improved the quality of the optimum
and reduced the optimisation time.

In the case of the stem, the final methodology obtained and
optimum of 1610 g with 48 sampling points, while the BBRS
method achieved an optimum of 1679 g using 42 sampling
points. The methodology presented improved the optimum
4.1% compared with the BBRS method, but required 6 more
sampling points. Figure 15 shows the displacements of the
optimal design.

Table 1 summarises the results obtained in the different
case studies for the BBRS method, the previous version and
the final version proposed in this paper. The last column shows
the percentage quality improvement of the optimum obtained
by the final version compared with the BBRS method (weight
reduction). The methodology presented improves the results

Figure 12. Section view of the optimum blade (3 design variables).
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between 3 and 4.2% compared with the BBRS method with a
similar sampling effort.

On the other hand, the final version, compared with the
previous one, reduces the sampling effort keeping a similar
quality of the optimum.

An improved method to optimise cellular structures in
additive manufacturing was presented based on a 2-level full
factorial design of experiments and central point, border
approximation along the edges, addition of new middle points
between the best border corner and the adjacent corners,
subsequent addition of new points along the feasible/unfeasible
border using genetic algorithms with proximity penalty and
least square fitting of 2-order polynomials and linear interpola-
tion metamodels and, finally, a search of the optimum using a
genetic algorithms combined with a linear interpolation
metamodel. This proposal improves the results obtained by
the optimisation method based on Box-Behnken design of
experiments and optimum estimation by response surfaces
(BBRS). Not only improves this new method the results with

a similar sampling effort, but also ensures the achievement
of the optimum thanks to the refinement loops included.

The border approximation phase along the edges results in
an optimal design outcome with a low sampling. In many
cases, the optimum is on the boundary of the domain because
a variable can have a greater influence on the results than
others. The proximity penalty in the genetic algorithm allows
the addition of new points along the feasible/unfeasible border,
thus exploring interesting zones. This phase is important when
the surrogate model leads to an optimum output that is far
away from the real optimum because of the prediction error
made by the surrogate model. In these cases, the points added
during this stage of the program can improve the fit of the
surrogate model and, at the same time, explore new zones of
the feasible/unfeasible border. The points added during this
stage of exploration contribute by improving the fit of the
metamodel in the area of interest near the optimum. Linear
interpolation based on Delaunay triangulation and least square
fitting (2-order polynomials) metamodels drastically reduced
the number of numerical simulations. Least square fitting
was found to be more effective in the early stages of the
algorithm to obtain a general idea of the system behaviour,
while linear interpolation was more appropriate for the final
phase where more accurate estimates are needed.

The proposed methodology has enabled lightweight
optimisation of cellular structures to be achieved for additive
manufactured parts. The time has been reduced for the 3D
CAD modelling of the cellular structure and the optimisation
process itself. In terms of CAD modelling, this methodology
enables a simple and fast generation of the 3D CAD structure
within the same tool, which is a clear advantage compared with
the references presented in Section 1, where manual work is
needed as well as the interaction and workflow between differ-
ent programs. Compared with the previous version developed,
the final methodology reduces the optimisation time and
achieves a similar quality of the optimum. On the other hand,
the final version compared with the BBRS method improves
the result 3.3% in a problem with 3 design variables, 3% in
a problem with 4 design variables and 4.1 and 4.2% in two
different problems with 5 design variables, keeping a similar
optimisation time. These results should be highlighted because
the BBRS method (Box-Behnken DOE and response surface)

Figure 14. Section view of the optimum blade (5 design variables).

Figure 13. Section view of the optimum blade (4 design variables).

Figure 15. Displacements of the optimum design.
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is the most efficient and fastest parametric optimisation
strategy when dealing with a low number of design variables.

However, the method proposed shows a good performance
only for problems with a low number of design variables
(lower than 7). When the number of variables is higher, the
sampling effort and the LIDT metamodel become a bottleneck
for the optimisation process. For this reason, future research
will investigate even more streamlined strategies when dealing
with a larger number of design variables. These strategies will
be also implemented using the Application Programming
Interface available within the CAD/FEM software to automate
the entire optimisation process. Once automated, this method
will be able to be used by CAD designers, mechanical
engineers or any AM user who wants to apply parametric light-
weight optimisation in AM designs, allowing the application of
this improved optimisation strategies for actual components.

Although this methodology can be applied with any
Additive Manufacturing technology, the hollow structure of
these case studies is oriented for FDM (Fused Deposition
Modelling). The internal structure proposed consists of the
repetition of a hollow pattern, which leads to internal hollows
not connected between them. Since FDM can produce internal
hollows, this technology would be the most appropriate.
For other technologies such as SLS (Selective Laser Sintering),
the type of pattern must be designed so that the powder trapped
inside can be removed.

6 Conclusion

The proposed method allows the parametric lightweight
optimization of internal cellular structures for AM parts. The
algorithm uses specific strategies to improve the location of
the sampling points, hence reducing the number of FEM
simulations and time required. Moreover, the design and
parameterization of the internal structure can be easily tackled
and controlled through the correct definition of the limits of the
design variables, ensuring the manufacturability of the designs
obtained.
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