i

D. JUAN FRANCISCO CÁRDENES MARTÍN SECRETARIO DEL DEPARTAMENTO DE INGENIERÍA MECÁNICA DE LA UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA,

CERTIFICA,

Que el Consejo de Doctores del Departamento en su sesión de fecha de veintisiete de marzo de dos mil seis tomó el acuerdo de dar el consentimiento para su tramitación, a la tesis doctoral titulada "MODELADO ESTADÍSTICO DE LAS CARACTERÍSTICAS DEL VIENTO PARA SU EVALUACIÓN ENERGÉTICA. APLICACIÓN A LAS ISLAS CANARIAS" presentada por la doctoranda Dña. PENÉLOPE RAMÍREZ GONZÁLEZ y dirigida por el Doctor JOSÉ ANTONIO CARTA GONZÁLEZ.

Y para que así conste, y a efectos de lo previsto en el Art^o 73.2 del Reglamento de Estudios de Doctorado de esta Universidad, firmo la presente en Las Palmas de Gran Canaria, a ventisiete de Marzo de dos mil seis.

Fdo. Juan Francisco Cardenes Martín

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA DEPARTAMENTO DE INGENIERÍA MECÁNICA

Programa de Doctorado Tecnología Industrial (Bienio 1998-2000)

TESIS DOCTORAL

MODELADO ESTADÍSTICO DE LAS CARACTERÍSTICAS DEL VIENTO PARA SU EVALUACIÓN ENERGÉTICA. APLICACIÓN A LAS ISLAS CANARIAS

Memoria presentada, en cumplimiento de los requisitos para optar al grado de DOCTORA EN INGENIERÍA INDUSTRIAL, por la Ingeniera Industrial Dña. Penélope Ramírez González

Director: Dr. D. José Antonio Carta González

 $(\mathbf{\hat{e}})$

El Director

La Doctoranda

Las Palmas de Gran Canaria, Marzo de 2006.

vi

A mi hijo Carlos

Agradecimientos

Deseo expresar mi agradecimiento a todas aquellas personas que han contribuido a la realización de esta tesis:

- Al Instituto Tecnológico de Canarias, por facilitarme el acceso a los datos de viento necesarios para el análisis y el desarrollo de esta tesis.
- □ A mi marido, que supo tener paciencia y darme aliento constante, ayudándome en el desarrollo de algunos de los algoritmos para el tratamiento y análisis de la gran cantidad de resultados que se manejan en esta tesis.
- □ A mis padres, que me enseñaron que el camino del esfuerzo y la constancia es el único para alcanzar las metas. Mi madre, luchadora e incansable, fue mi ejemplo a seguir para superarme ante la adversidad.
- Y muy especialmente a mi director de tesis, D. José Antonio Carta González. Sus sabios consejos así como su amplio conocimiento y experiencia en la materia han sido indispensables para que esta tesis viera la luz. Nunca olvidaré su inestimable apoyo y ánimo constante durante todos estos años.

Índice General

Índice de figuras

Índice de tablas

xxv

1	Intr	oduco	ción general	1
	1.1	Introd	ucción	1
	1.2	Anális	sis bibliográfico	3
	1.3	Objeti	vos de la tesis	11
	1.4	Metod	lología de la tesis	11
	1.5	Estruc	etura de la tesis	12
2	Intr	oduco	ción al proceso de evaluación energética del viento	15
	2.1	Introd	ucción	15
	2.2	Origen	n y características generales del viento	15
	2.3	Medic	ión del viento	17
	2.4	Tratar	niento de los datos de viento	24
	2.5	Repre	sentación matemática de los regímenes de viento	28
		2.5.1	Número efectivo de observaciones	30
	2.6	Prueba	as de hipótesis estadísticas	35
	2.7	Prueba	as de bondad de ajuste	36
		2.7.1	Prueba de Chi2	37
		2.7.2	Prueba de <i>K-S</i>	38
		2.7.3	Prueba de Anderson-Darling	40
		2.7.4	Prueba de los gráficos de probabilidad	40
	2.8	Parám	etros que cuantifican la energía eólica	41
		2.8.1	Energía eólica disponible	41
		2.8.2	Energía eólica máxima recuperable. Límite de Betz	44

Dist pro	tribucio babilida	ones paramétricas ad utilizadas	continuas	estándar	de
3.1	Introduc	ción			
3.2	La distri	ibución gamma generalizada	1		
	3.2.1 N	Momentos de la distribución			
	3.2.2 I	La función de distribución a	cumulada		
	3.2.3 N	Moda y mediana			
3.3	La distri	ibución híbrida gamma gene	ralizada		
	3.3.1 N	Momentos de la distribución			
	3.3.2 I	La función de distribución ac	cumulada		
	3.3.3 N	Moda y mediana			
3.4	La dist	ribución gamma			
	3.4.1	Momentos de la distribució	on		
	3.4.2	La función de distribución	acumulada .		
	3.4.3	Moda y mediana			
3.5	La dist	ribución híbrida gamma			
	3.5.1	Momentos de la distribució	on		
	3.5.2	La función de distribución	acumulada .		
	3.5.3	Moda y mediana			
3.6	La dist	ribución de Weibull			
	3.6.1	Momentos de la distribució	on		
	3.6.2	La función de distribución	acumulada .		
	3.6.3	Moda y mediana			
3.7	La dist	ribución híbrida de Weibull			
	3.7.1	Momentos de la distribució	on		
	3.7.2	La función de distribución	acumulada .		
	3.7.3	Moda y mediana			
3.8	La dist	ribución de Rayleigh .			
	3.8.1	Momentos de la distribució	on		
	3.8.2	La función de distribución	acumulada .		
	3.8.3	Moda y mediana			
3.9	La dist	ribución híbrida de Rayleigl	1		
	3.9.1	Momentos de la distribució	on		
	3.9.2	La función de distribución	acumulada .		
	3.9.3	Moda y mediana			
3.10	La dist	ribución beta generalizada			
	3.10.1	Momentos de la distribució	on		
	3 10 2	La función de distribución	acumulada		

	3.10.3 N	Moda y mediana	76
3.11	La distri	bución beta generalizada híbrida	76
	3.11.1 N	Momentos de la distribución	76
	3.11.2 I	La función de distribución acumulada	78
	3.11.3 N	Moda y mediana	78
3.12	La distri	bución beta prima híbrida	79
	3.12.1 N	Momentos de la distribución	79
	3.12.2 I	La función de distribución acumulada	82
	3.12.3 N	Moda y medina	82
3.13	La dist	ribución normal truncada simple	83
	3.13.1	Momentos de la distribución	83
	3.13.2	La función de distribución acumulada	88
	3.13.3	Moda y mediana	88
3.14	La dist	ribución Lognormal	88
	3.14.1	Momentos de la distribución	89
	3.14.2	La función de distribución acumulada	91
	3.14.3	Moda y mediana	91
3.15	La dist	ribución Lognormal híbrida	91
	3.15.1	Momentos de la distribución	92
	3.15.2	La función de distribución acumulada	93
	3.15.3	Moda y mediana	93
3.16	La dist	ribución gausiana inversa	94
	3.16.1	Momentos de la distribución	94
	3.16.2	La función de distribución acumulada	97
	3.16.3	Moda y mediana	97
3.17	La dist	ribución gausiana inversa híbrida	98
	3.17.1	Momentos de la distribución	98
	3.17.2	La función de distribución acumulada	100
	3.17.3	Moda y mediana	100
3.18	La dist	ribución Mixta de Weibull	101
	3.18.1	Momentos de la distribución	102
	3.18.2	La función de distribución acumulada	102
3.19	La dist	ribución Mixta de Normal-Truncada y Weibull	102
	3.19.1	Momentos de la distribución	103
	3.19.2	La función de distribución acumulada	103

.1	Introduce	ión
1.2	Método d	e los momentos
	4.2.1	Distribución gamma generalizada de 4 parámetros
	4.2.2	Distribución gamma generalizada de 3 parámetros
	4.2.3	Distribución híbrida gamma generalizada
	4.2.4	Distribución gamma de tres parámetros
	4.2.5	Distribución gamma de dos parámetros
	4.2.6	Distribución híbrida gamma de dos parámetros
	4.2.7	Distribución Weibull de tres parámetros
	4.2.8	Distribución Weibull de dos parámetros
	4.2.9	Distribución híbrida de Weibull de dos parámetros
	4.2.10	Distribución Rayleigh de dos parámetros
	4.2.11	Distribución Rayleigh de un parámetro
	4.2.12	Distribución híbrida de Rayleigh de un parámetro
	4.2.13	Distribución Beta de cuatro parámetros
	4.2.14	Distribución Beta de tres parámetros
	4.2.15	Distribución híbrida Beta de tres parámetros
	4.2.16	Distribución Beta prima
	4.2.17	Distribución híbrida Beta prima
	4.2.18	Distribución Normal truncada
	4.2.19	Distribución Lognormal de tres parámetros
	4.2.20	Distribución Lognormal de dos parámetros
	4.2.21	Distribución híbrida Lognormal
	4.2.22	Distribución Gausiana Inversa de tres parámetros
	4.2.23	Distribución Gausiana Inversa de dos parámetros
	4.2.24	Distribución híbrida Gausiana Inversa
	4.2.25	Distribución mixta de Weibull
	4.2.26	Distribución mixta Normal truncada-Weibull
4.3	Método d	le la máxima verosimilitud
	4.3.1	Distribución gamma generalizada de 4 parámetros
	4.3.2	Distribución gamma generalizada de 3 parámetros
	4.3.3	Distribución gamma de tres parámetros
	4.3.4	Distribución gamma de dos parámetros
	4.3.5	Distribución Weibull de tres parámetros
	4.3.6	Distribución Weibull de dos parámetros
	4.3.7	Distribución Rayleigh de dos parámetros

		4.3.8	Distribución Rayleigh de un parámetro	153
		4.3.9	Distribución Beta de cuatro parámetros	154
		4.3.10	Distribución Beta de tres parámetros	157
		4.3.11	Distribución Beta prima	160
		4.3.12	Distribución Normal truncada	161
		4.3.13	Distribución Lognormal de tres parámetros	165
		4.3.14	Distribución Lognormal de dos parámetros	167
		4.3.15	Distribución Gausiana Inversa de tres parámetros	168
		4.3.16	Distribución Gausiana Inversa de dos parámetros	171
		4.3.17	Distribuciones híbridas	172
		4.3.18	Distribución mixta de Weibull	173
		4.3.19	Distribución mixta de Normal truncada-Weibull	175
	4.4	Método d	le los mínimos cuadrados	175
		4.4.1	Distribuciones acumuladas que no pueden expresarse en forma	
			cerrada	176
		4.4.2	Distribuciones acumuladas que pueden linealizarse	183
5	Dis	tribucior	nes de máxima entropía	187
	5.1	Introduce	vión	187
	5.2	El concep	oto de entropía	187
		5.2.1	La entropía de Shannon	188
		5.2.2	El principio de entropía máxima con momentos	189
		5.2.3	Método para la determinación de los parámetros λ	193
	5.3	Estimació	ón de los errores estándar	200
6	Мо	delos de	variación de los vientos con la altura	203
	6.1	Introduce	pión	203
	6.2	Modelo le	ogarítmico	205
	6.3	Modelo p	potencial	210
		6.3.1	Modelo potencial equivalente	213
		6.3.2	Modelo potencial modificado	214
		6.3.3	Modelo potencial aplicado a la proyección de los parámetros	
			de la ley de Weibull con la altura	216
	6.4	Uso de di	stribuciones bivariables	218
		6.4.1	La familia Farlie-Gumbel-Morgenstern de distribuciones	_
		6.4.2	bivariables con Rayleigh como marginal	218
			bivariables con Weibull como marginal	221

7	Est eól	imación ico	de la producción de energía eléctrica de origen	225
	7.1	Introduce	ión	225
	7.2	Concepto	s básicos de convertidores de energía eólica	226
	7.3	Caracterí	sticas de funcionamiento de las turbinas eólicas	235
	7.4	Determin	ación de la energía obtenible	241
		7.4.1	Método estático	241
		7.4.2	Método cuasidinámico	245
		7.4.3	Método dinámico	246
8	Ap	licación a	a los regímenes de viento de las Islas Canarias	247
	8.1	Introduce	ión	247
	8.2	Peculiario	lades energéticas de Canarias	248
	8.3	Los vient	os en Canarias	251
	8.4	Campaña	s de medida del viento en Canarias	254
		8.4.1	Estaciones inicialmente consideradas en el estudio	257
		8.4.2	Estaciones utilizadas en el estudio	268
	8.5	Proceso d	le análisis realizado. Recursos informáticos	271
	8.6	Estadístic	a numérica descriptiva de los datos eólicos seleccionados	272
	8.7	Análisis o	le la bondad del ajuste de las leyes analizadas a las velocidades	
		medias ho	orarias	279
		8.7.1	Método momentos: distribuciones no híbridas	281
		8.7.2	Método momentos: distribuciones híbridas	287
		8.7.3	Método máxima verosimilitud: distribuciones no híbridas	292
		8.7.4	Método máxima verosimilitud: distribuciones híbridas	298
		8.7.5	Método mínimos cuadrados: distribuciones no híbridas	303
		8.7.6	Método mínimos cuadrados: distribuciones híbridas	307
		8.7.7	Comparación entre las distribuciones híbridas y no híbridas	310
		8.7.8	Comparación entre los métodos de estimación	315
		8.7.9	Distribuciones derivadas del principio de máxima entropía	320
		8.7.10	Distribuciones mezcla	322
		8.7.11	Influencia de la variación en altura en el grado de ajuste	329
	8.8	Análisis o	le la bondad del ajuste de las distribuciones analizadas a las	
		velocidad	les medias mensuales	337
	8.9	Estimació	ón de las energías producidas y de los tiempos equivalentes de	
		funcionar	niento de los aerogeneradores	348
		8.9.1	Características de los aerogeneradores utilizados	348

		8.9.2	Influencia del grado de ajuste de la distribución en la			
			estimación de la energía producida	351		
9	Conclusiones					
	9.1	Introdu	cción	369		
	9.2	Aporta	ciones de la tesis doctoral	370		
	9.3	Conclu	siones	371		
	9.4	Líneas	futuras de actuación propuestas	374		
	Bib	liografía	I	375		
	Apé	ndice A	1	391		
	A.1	Paráme	tros estimados mediante el método de los momentos:			
		Distribu	uciones no híbridas	391		
	A.2	Paráme	tros estimados mediante el método de los momentos:			
		Distribu	uciones híbridas	396		
	Apé	ndice B	•	403		
	B.1	Paráme	tros estimados mediante el método de los máxima			
		verosin	nilitud: Distribuciones no híbridas	403		
	B.2	Paráme	tros estimados mediante el método de la máxima			
		verosin	nilitud: Distribuciones híbridas	412		
	Apé	ndice C	, ,	421		
	C.1	Paráme	tros estimados mediante el método de los mínimos			
		cuadrac	los: Distribuciones no híbridas	421		
	C.2	Paráme	tros estimados mediante el método de los mínimos			
		cuadrac	los: Distribuciones híbridas	426		
	Apé	ndice D		433		
	D.1	Distribu	uciones de máxima entropía	433		
	Apé	ndice E		439		
	E.1	Paráme	tros estimados mediante el método de los momentos.			
		Medias	mensuales	439		
	E.2	Paráme	tros estimados mediante el método de los máxima			
		verosin	nilitud. Medias mensuales	448		

E.3	Parámetros estimados mediante el método de los mínimos			
	Cuadrados. Medias mensuales	453		
Apé	ndice F	459		
F.1	Resultados energéticos obtenidos con la turbina E-33			
F.2	Resultados energéticos obtenidos con la turbina E-48			
F.3	Resultados energéticos obtenidos con la turbina E-70			
Apé	ndice G	483		
G.1	Trabajos publicados como resultado de esta tesis			

Índice de Figuras

2.1	Mapa de los cinturones de vientos alisios y de las zonas de calmas ecuatoriales .	17
2.2	Anemómetros de cazoletas y veleta	18
2.3	Torre anemométrica	19
2.4	Dispositivo típico de registro y almacenamiento	21
2.5	Dispositivo lector de tarjetas RAM de almacenamiento	21
2.6	Evolución temporal de la velocidad registrada del viento hora a hora	24
2.7	Evolución media diaria del viento	25
2.8	Evolución de las velocidades medias mensuales	25
2.9	Histograma de frecuencias experimentales	26
2.10	Histograma de frecuencias acumuladas experimental	27
2.11	Frecuencias de direcciones	27
2.12	Densidad de probabilidad experimental y teórica	29
2.13	Distribución acumulada experimental y teórica	30
2.14	Función de autocorrelación de la estación Taca-Fuerteventura (año 1988)	31
2.15	Dependencia de la potencia del viento de la velocidad del mismo	42
2.16	Densidad de energía experimental y teórica	43
2.17	Flujo idealizado a través de una turbina eólica representada por un disco actuador.	
	(rotor) no giratorio	44
2.18	Coeficiente de potencia en función de la relación de velocidades después y antes.	
	del rotor	47
2.19	Densidad teórica de energía eólica y porcentaje de energía extraíble con una turbi	
	na eólica ideal	48
3.1	Función de densidad de Weibull para diferentes valores del factor de forma	65
3.2	Función de distribución acumulada de Weibull	66
4.1	Coeficiente de asimetría en función del parámetro de forma	115
4.2	Coeficiente de variación en función del parámetro de forma	117
4.3	Factor de irregularidad en función del parámetro de forma	118
4.4	Coeficiente de asimetría en función del parámetro β	129
5.1	Diagrama de flujo en la estimación de los parámetros λ	195

6.1	Capa límite atmosférica	204
6.2	Variación de $v(z)/v(10)$ con respecto a la altura z según la ecuación (6.11)	209
6.3	Exponente α en función de la velocidad a la altura <i>h</i> =10 m	211
6.4	Exponente α en función de la velocidad a la altura <i>h</i> =10 m. y de la rugosidad	212
6.5	Variación de α con respecto a la velocidad $v(h)$ según ecuación (6.29)	215
7.1	Aerogenerador Darreius en la zona sur de Gran Canaria	226
7.2	Aerogeneradores de eje horizontal en la zona sur de Gran Canaria	227
7.3	Transferencia de potencia en un convertidor de energía eólica	228
7.4	Coeficiente de potencia de un rotor de una turbina eólica	236
7.5	Potencia del rotor de una turbina en función de la velocidad de giro	237
7.6	Rotor acoplado a un generador de velocidad constante conectado a la red	
	eléctrica	238
7.7	Rotor acoplado a un generador síncrono de velocidad variable con	
	convertidores AC/DC/AC	238
7.8	Obtención de la curva potencia-velocidad de una turbina eólica	239
7.9	Curva de potencia-velocidad de un aerogenerador	240
7.10	Curvas de potencia normalizadas de aerogeneradores comerciales	241
7.11	Acoplamiento curva de potencia-distribución de densidad de probabilidad	242
7.12	Diagrama de bloques del procedimiento que se utiliza con este método	244
7.13	Estimación de la variación temporal de la potencia generada	246
8.1	Situación de las Islas Canarias	248
8.2	Direcciones predominantes de los vientos típicos del Archipiélago	251
8.3	Frecuencia de los vientos alisios en verano	252
8.4	Frecuencia de los vientos alisios en invierno	253
8.5	Ubicación de las estaciones instaladas en la isla de Lanzarote	258
8.6	Ubicación de las estaciones instaladas en la isla de Fuerteventura	259
8.7	Ubicación de las estaciones instaladas en la isla de Gran Canaria	261
8.8	Ubicación de las estaciones instaladas en la isla de Tenerife	264
8.9	Ubicación de las estaciones instaladas en la isla de La Palma	266
8.10	Ubicación de las estaciones instaladas en la isla de La Gomera	267
8.11	Ubicación de las estaciones instaladas en la isla de El Hierro	268
8.12	Proceso de análisis	272
8.13	Histogramas de velocidades medias horarias	275
8.14	Histogramas de velocidades medias horarias	276
8.15	Histogramas de velocidades medias mensuales	278
8.16	Distribución Gamma Generalizada de tres parámetros (GC-18)	284
8.17	Distribución Normal truncada (GC-18)	284
8.18	Distribución Beta de tres parámetros (GC-18)	285

8.19	Distribución Gamma Generalizada de tres parámetros (TF-11)	285
8.20	Distribución Normal truncada (TF-11)	286
8.21	Distribución Beta de tres parámetros (TF-11)	286
8.22	Distribución Gamma Generalizada de tres parámetros (LA-12)	290
8.23	Distribución Weibull de 2 parámetros (LA-12)	290
8.24	Distribución Gamma Generalizada híbrida de tres parámetros (FU-07)	291
8.25	Distribución Weibull híbrida de 2 parámetros (LA-12)	291
8.26	Distribución Beta prima (LA-12)	295
8.27	Distribución Gausiana Inversa de dos parámetros (LA-12)	295
8.28	Distribución Logaritmo Normal de dos parámetros (LA-12)	296
8.29	Distribución Beta prima (TF-11)	296
8.30	Distribución Gausiana Inversa de dos parámetros (TF-11)	297
8.31	Distribución Logaritmo Normal de dos parámetros (TF-11)	297
8.32	Distribución Gamma híbrida de dos parámetros (FU-07)	301
8.33	Distribución Rayleigh híbrida de un parámetro (FU-07)	301
8.34	Distribución Gamma híbrida de dos parámetros (HI-04)	302
8.35	Distribución Rayleigh híbrida de un parámetro (HI-04)	302
8.36	Distribución Beta-3 y Weibull-2 (TF-11)	306
8.37	Distribución Beta-3 y Weibull-2 (LA-12)	306
8.38	Comparación entre la distribución GG-3 y GG-3 híbrida (M.momentos)	310
8.39	Comparación entre la distribución GG-3 y GG-3 híbrida (M.Verosimilitud)	311
8.40	Comparación entre la distribución GG-3 y GG-3 híbrida (M.Cuadrados)	311
8.41	Comparación entre la distribución Beta-3 y Beta-3 híbrida (M.momentos)	312
8.42	Comparación entre la distribución Beta-3 y Beta-3 híbrida (M.Verosimilitud)	312
8.43	Comparación entre la distribución Beta-3 y Beta-3 híbrida (M.cuadrados)	313
8.44	Comparación entre la distribución Beta-3 y Beta-3 híbrida en FU-04	313
8.45	Comparación entre la distribución Weibull y Weibull híbrida (M.momentos)	314
8.46	Comparación entre la distribución Weibull y Weibull híbrida (M.Verosimilitud) .	314
8.47	Comparación entre la distribución Weibull y Weibull híbrida (M.cuadrados)	315
8.48	Comparación entre los métodos de estimación (GammaG-3)	316
8.49	Comparación entre los métodos de estimación (Beta-3)	316
8.50	Comparación entre los métodos de estimación (Normal-truncada)	317
8.51	Comparación entre los métodos de estimación (Weibull-2)	317
8.52	Comparación entre los métodos de estimación (GammaG-3)	318
8.53	Comparación entre los métodos de estimación (Beta-3)	318
8.54	Comparación entre los métodos de estimación (Normal-truncada)	319
8.55	Comparación entre los métodos de estimación (Weibull-2)	319
8.56	Comparación de R ² entre las distribuciones PME con GG-3 y Weibull-2	321

8.57	Comparación de potencias entre las distribuciones PME con GG-3 y Weibull2 .	321
8.58	Comparación de los R^2 entre las distribuciones PME en función de N	322
8.59	Comparación de los R^2 entre las distribuciones mezcla	325
8.60	Comparación de los R^2 de la distribución mezcla WW con PME y Gamma-3	326
8.61	Comparación de las potencias de la distribución WW con PME y Gamma-3	326
8.62	Distribuciones mezcla	327
8.63	Distribuciones mezcla (continuación)	328
8.64	Instalaciones del ITC en Pozo Izquierdo (Gran Canaria)	329
8.65	Torre anemométrica utilizada en el estudio	330
8.66	Correlación entre velocidades registradas a 10 m y 20 m	331
8.67	Histogramas de velocidad a tres alturas	333
8.68	Evolución media diaria del viento en las tres alturas	334
8.69	Evolución media diaria del exponente α del modelo potencial $\ldots \ldots \ldots$	334
8.70	Análisis de la permanencia de las leyes de distribución al variar la altura	336
8.71	Influencia del parámetro de posición en el grado de ajuste de leyes estándar	338
8.72	Gráfico de probabilidad de los datos de LA-12 y la distribución de Rayleigh-1	339
8.73	Gráficos de probabilidad de Weibull-2 y de Weibull-3 en la estación GC-18	340
8.74	Influencia del parámetro de posición en el ajuste de leyes de máxima	
	entropía	341
8.75	Comparación de densidades de probabilidad de ME, con y sin restricciones	342
8.76	Gráficos de probabilidad de distribuciones de ME, con y sin restricciones	343
8.77	Distribuciones de mezcla de Weibull estimadas mediante tres métodos	345
8.78	Gráficos de probabilidad de mezcla de Weibull y datos de LA-12	346
8.79	Distribuciones de mezcla de Weibull-3 estimadas mediante dos métodos	347
8.80	Probabilidad acumulada y gráfico de probabilidad de mezcla de W-3 (M.C.)	347
8.81	Probabilidad acumulada y gráfico de probabilidad de mezcla de W-3 (M.V.)	348
8.82	Curvas de potencia-velocidad de los aerogeneradores utilizados	350
8.83	Diferencia relativa en función del coeficiente R ² . Aerogenerador E-33 de	
	330 kW	352
8.84	Diferencia relativa en función del coeficiente R ² . Aerogenerador E-48 de	
	800 kW	352
8.85	Diferencia relativa en función del coeficiente R ² . Aerogenerador E-70 de	
	2000 kW	353
8.86	Comparativa de curvas de tendencia	354
8.87	Diferencia relativa en función del coeficiente R ² (intervalo 0.99-1).	
	Turbina E-33	354
8.88	Diferencia relativa en función del coeficiente R ² (intervalo 0.99-1).	
	Turbina E-48	355

8.89	Diferencia relativa en función del coeficiente R^2 (intervalo 0.99-1).	
	Turbina E-70	 355
8.90	Comparación de cuatro distribuciones en base a la diferencia relativa.	
	Turbina E-33	 356
8.91	Comparación de cuatro distribuciones en base a la diferencia relativa.	
	Turbina E-48	 357
8.92	Comparación de cuatro distribuciones en base a la diferencia relativa.	
	Turbina E-70	 358
8.93	Comparación entre las distintas leyes en base a la diferencia relativa. (LA-12)	360
8.94	Comparación entre las distintas leyes en base a la diferencia relativa. (FU-01)	360
8.95	Comparación entre las distintas leyes en base a la diferencia relativa. (FU-07)	361
8.96	Comparación entre las distintas leyes en base a la diferencia relativa. (FU-04)	361
8.97	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-18)	362
8.98	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-22)	362
8.99	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-25)	363
8.100	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-23)	363
8.101	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-11)	364
8.102	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-04)	364
8.103	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-15)	365
8.104	Comparación entre las distintas leyes en base a la diferencia relativa. (GC-17)	365
8.105	Comparación entre las distintas leyes en base a la diferencia relativa. (TF-11)	366
8.106	Comparación entre las distintas leyes en base a la diferencia relativa. (TF-16)	366
8.107	Comparación entre las distintas leyes en base a la diferencia relativa. (HI-04)	367
8.108	Comparación entre las distintas leyes en base a la diferencia relativa.(GO-02)	367

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

Índice de Tablas

2.1	Cuadro de decisiones	36
6.1	Valores típicos de la longitud de rugosidad superficial	208
8.1	Energía eléctrica anual puesta en red en Canarias desglosada por islas (Gwh)	250
8.2	Producción de energía eléctrica eólica en Canarias desglosada por islas (Mwh) .	250
8.3	Potencia eólica instalada en Canarias en el año 2004 desglosada por islas (kW) .	251
8.4	Datos preseleccionados de la isla de Lanzarote	258
8.5	Datos preseleccionados de la isla de Fuerteventura	260
8.6	Datos preseleccionados de la isla de Gran Canaria	261
8.7	Datos preseleccionados de la isla de Tenerife	264
8.8	Datos preseleccionados de la isla de La Palma	266
8.9	Datos preseleccionados de la isla de La Gomera	267
8.10	Datos preseleccionados de la isla de El Hierro	268
8.11	Estaciones seleccionadas en el Archipiélago Canario para su análisis	269
8.12	Especificaciones generales del equipo AL-2000	270
8.13	Especificaciones generales del equipo Nomad	270
8.14	Especificaciones generales del equipo DL 9200	271
8.15	Estaciones seleccionadas para el análisis con las velocidades medias	
	mensuales	272
8.16	Velocidades mínimas y máximas, probabilidades de calmas y números	
	efectivos de observaciones	273
8.17	Seis primeros momentos estadísticos respecto del origen	274
8.18	Otras medidas numéricas descriptivas	274
8.19	Velocidades medias mensuales mínimas y máximas y probabilidades de	
	velocidades medias mensuales nulas	277
8.20	Seis primeros momentos estadísticos respecto del origen	277
8.21	Otras medidas numéricas descriptivas	277
8.22	Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud	
	del coeficiente \mathbb{R}^2 (Momentos)	282

8.23	Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud	
	del coeficiente ϵ (%)(Momentos)	283
8.24	Leyes de distribución estándar híbridas, ordenadas en función de la magnitud	
	del coeficiente \mathbb{R}^2 (Momentos)	288
8.25	Leyes de distribución estándar híbridas, ordenadas en función de la magnitud	
	del coeficiente ϵ (%)(Momentos)	289
8.26	Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud	
	del coeficiente \mathbb{R}^2 (M. Veros.)	293
8.27	Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud	
	del coeficiente ϵ (%)(M. Veros.)	294
8.28	Leyes de distribución estándar híbridas, ordenadas en función de la magnitud	
	del coeficiente \mathbb{R}^2 (M. Veros.)	299
8.29	Leyes de distribución estándar híbridas, ordenadas en función de la magnitud	
	del coeficiente ϵ (%)(M. Veros.)	300
8.30	Leyes de distribución estándar híbridas, ordenadas en función de la magnitud	
	del coeficiente \mathbb{R}^2 (M. Cuadr)	304
8.31	Leyes de distribución estándar híbridas, ordenadas en función de la magnitud	
	del coeficiente ϵ (%)(M. Cuadr)	305
8.32	Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud	
	del coeficiente \mathbb{R}^2 (M. Cuadr.)	308
8.33	Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud	
	del coeficiente ϵ (%)(M. Cuadr.)	309
8.34	Valores numéricos de los parámetros de las distribuciones mezcla	
	propuestas	324
8.35	Valores numéricos del coeficiente R^2 y de ϵ de las leyes mezcla	325
8.36	Velocidades medias horarias mínimas y máximas	332
8.37	Seis primeros momentos estadísticos respecto del origen	332
8.38	Otras medidas numéricas descriptivas	332
8.39	Valores de R^2 y ϵ en tres alturas	335
8.40	Algunas características del aerogenerador E-33	349
8.41	Algunas características del aerogenerador E-48	349
8.42	Algunas características del aerogenerador E-70	350

CAPÍTULO

Introducción general.

1.1. Introducción.

Si se analiza la evolución del aprovechamiento de la energía eólica en el mundo a partir de la revolución industrial se desprende que el interés de los distintos gobiernos, fundamentalmente los europeos, por este tipo de energía ha estado íntimamente ligado a crisis bien definidas de energía convencional, Cádiz (1984). Es decir, las crisis energéticas desencadenadas durante los años en que acontecieron las dos Guerras Mundiales y los periodos que le sucedieron, como consecuencia de las dificultades de aprovisionamiento de combustibles; y las crisis energéticas de la década de los setenta provocadas por el incremento de los precios del petróleo que, según Menéndez (1998), infunde miedo al desabastecimiento energético y reaviva el interés por las energías renovables.

Sin embargo, según Rittenhouse (1981), los programas que se desarrollan en la década de los setenta son conservadores y pequeños en comparación con la demanda; subrayando Menéndez (1998), que el mayor gasto en I+D como respuesta a la crisis de los setenta lo supuso la energía nuclear, que movilizó alrededor del 60% de los gastos en I+D energéticos de los países miembros de la AIE¹, mientras la investigación en energías renovables fue solo del 8%.

¹ Agencia Internacional de la Energía, creada como una de las respuestas a la crisis de los setenta.

No obstante, en las postrimerías del siglo XX, la Comisión de la Unión Europea, con el objetivo de disminuir la dependencia energética exterior, la búsqueda de nuevas y mejores soluciones técnico económicas al problema del suministro energético y, como señala Menéndez (1998), la preocupación por la degradación medioambiental en amplios sectores de los países más desarrollados, incrementa apreciablemente su interés por las energías renovables y establece diferentes líneas de actuación, tanto de ayuda a la construcción de instalaciones de demostración, como sobre todo a la investigación y desarrollo tecnológico.

Como propuestas significativas a favor de las energías renovables en Europa, valoradas como porcentaje de penetración de la energía renovable a la cobertura de la demanda total de energía primaria, puede señalarse el Programa ALTENER², que desea duplicar dicho porcentaje pasando del 4% en 1991 al 8% en el año 2005; y la Declaración de Madrid³, aún más exigente, que fija el sustituir el equivalente al 15% antes del año 2010.

En los países de la Unión Europea, al amparo de programas estatales, regionales y comunitarios, la energía eólica ha alcanzado un notable grado de implantación; a finales de 1998 se disponía de una potencia eólica instalada superior a 6300 MW, con una producción eléctrica de origen eólico que despunta de la Norte Americana, la cual hasta muy pocos años atrás había mantenido la hegemonía mundial, Gipe (1995).

Teniendo en cuenta el carácter aleatorio del viento el pretender incrementar de forma significativa y eficiente (técnica y económicamente) la contribución de la energía eólica a la cobertura de la demanda total de un país, requiere, como señala Hiester y Pennell (1981), la instalación de sistemas fiables de conversión de energía eólica en energía eléctrica, WECS⁴, en lugares en los que se haya constatado la existencia de un adecuado recurso eólico, ya que la potencia media generada por un WECS depende directamente de los porcentajes de disponibilidades del viento y de la turbina eólica, así como del funcionamiento de la máquina.

Como indica Justus (1980), un cierto número de características del viento son fundamentales en el análisis de la energía eólica, en particular: las leyes de distribución de la velocidad del viento y las variaciones del viento con la altura ya que intervienen en el diseño, evaluación del funcionamiento, instalación y explotación de las turbinas eólicas.

De acuerdo con Justus (1980) y Koeppl (1982), la distribución de la probabilidad de la velocidad del viento es importante en numerosas aplicaciones de la energía eólica. La distribución de frecuencia de la velocidad del viento puede ser usada para evaluar la energía

² El Consejo de Ministros de la Unión Europea aprobó el 13 de Septiembre de 1993 el Programa ALTENER dedicado a las energías renovables, mediante el cual se pretende una reducción de emisiones de 180 millones de toneladas de dióxido de carbono para el año 2005, para lo que considera necesario cumplir una serie de objetivos.

³ La Declaración de Madrid, acuerdo tomado en 1994 en Madrid, por una extensa representación de los estamentos políticos, sociales, económicos y técnicos de la Unión Europea y de sus Estados Miembros, conjuntamente con su documento anexo, "Un Plan de Acción para las Fuentes de Energías Renovables en Europa", estableció las acciones necesarias para vencer la resistencia al cambio de los modelos actuales de oferta y demanda energética en Europa. ⁴ Siglas inglesas de Wind Electric Conversión Systems (Sistemas de conversión viento-electricidad)

media disponible del viento⁵, el factor de irregularidad⁶, la potencia recuperable⁷ o el factor de potencia⁸ para un tipo de WECS dado, y para estimar la probabilidad de que la velocidad del viento se encuentre en cierto intervalo de interés (por ejemplo, entre la velocidad de arranque y de parada de un determinado WECS, etc).

Como se refleja en el análisis bibliográfico siguiente, diversos han sido los estudios que se han realizado en el pasado con el objeto de encontrar el modelo estadístico que mejor describa las distribuciones de frecuencia de la velocidad del viento, con la finalidad fundamental de utilizarlo como una herramienta en la predicción de la energía generada por un WECS.

1.2. Análisis bibliográfico.

Un considerable número de estudios han sido llevados a cabo, con anterioridad a esta tesis, con el objeto de investigar las distribuciones de probabilidad estándar que mejor se ajustan a datos experimentales de velocidad del viento para su uso en aplicaciones prácticas tales como modelado de la polución del aire, estimación de cargas de viento en edificios y análisis de la energía eólica.

Sherlock (1951), debido a que el funcionamiento de cierta planta se vería afectado si las velocidades del viento excedían de ciertos valores críticos, necesitó conocer las frecuencias y duraciones de los casos en los cuales las velocidades críticas habían sido excedidas en el pasado, para que se pudieran estimar futuras ocurrencias. Para ello hace uso de dos tipos de distribuciones estadísticas; la Ley Normal y la distribución Gamma. Del ajuste de dichas distribuciones a los datos experimentales concluye que la distribución gamma, cuyos parámetros son estimados por el método de los momentos, proporciona un ajuste bastante razonable a los histogramas experimentales y puede ser usada en futuras estimaciones.

Luna y Church (1974) analizan los datos de viento de diferentes estaciones en Estados Unidos y Europa. Determinan que las distribuciones de velocidad del viento a largo plazo pueden definirse satisfactoriamente con una función Log-normal cuya desviación estándar sea 1,9 y con el valor medio de la velocidad del viento en ese lugar. Si bien la función que ellos aplican se ajusta bastante bien a los datos observados, reconocen que la condiciones orográficas y climáticas típicas de cada lugar influyen fuertemente en la distribución de vientos.

Kaminsky (1976) utiliza las funciones de densidad de probabilidad Log-Normal, Gamma, Weibull y Rayleigh para estimar la velocidad media horaria durante cuatro meses en diferentes estaciones seleccionadas de Estados Unidos. Utilizando el método de Chi-cuadrado

⁵ Es la energía que podría transforma una máquina eólica de rendimiento unidad.

⁶ Relación entre la media del cubo de la velocidad del viento y el cubo de la velocidad media.

⁷ Depende de las características del sistema de conversión utilizado.

⁸ Relación entre la potencia eólica recuperable y la potencia nominal.

para determinar la bondad de cada uno de los cuatro métodos llega a la conclusión de que las funciones Gamma y Weibull son los modelos más apropiados para estimar la velocidad media horaria del viento.

Hennessey (1977) analiza los problemas existentes en los estudios estadísticos sobre el viento. Discute la relación exacta entre la media de la velocidad del viento y la media del cubo de la velocidad del viento. Aceptando que la función de densidad de probabilidad de Weibull es un buen modelo para la distribución de velocidades de viento, tenemos un modelo de Weibull para la distribución del cubo de la velocidad del viento. Este modelo facilita el cálculo de la media y la desviación estándar de la energía total del viento, la densidad de energía eólica aprovechable y la densidad de energía durante las horas en que un aerogenerador está operando. Hennessey aplica el modelo de Weibull a los datos obtenidos en tres lugares de Oregón potencialmente aprovechables desde el punto de vista eólico y situados en terrenos abruptos, llegando a la conclusión de que la media y la desviación estándar de la velocidad del viento, que el modelo de Weibull tiene numerosas ventajas de cálculo y que los estudios de velocidad del viento basados sólo en la media total de la densidad de energía omiten mucha información valiosa sobre el potencial eólico de un emplazamiento.

Widger (1977) estima las distribuciones de frecuencias de velocidades medias de viento con los datos de velocidades medias mensuales y las rachas. El método se basa en la transformación de las velocidades a una ley de distribución normal mediante la aplicación de la raíz cuadrada.

R. W. Baker y J.P. Hennessey (1977) discuten el método descrito por Widger basado sólo en el conocimiento de la velocidad media del viento. A partir de los estudios de Justus et al. en (1976) está generalmente aceptado que para describir con suficiente flexibilidad la distribución de velocidades de viento es necesaria una distribución de dos parámetros como la de Weibull. Estudios en cuatro emplazamientos muestran que la estimación precisa de la distribución de viento es crítica y que un método empírico como el de Widger puede no ser utilizable en lugares potencialmente aprovechables desde el punto de vista eólico.

Hennessey (1978) da una guía para ayudar a los investigadores en la toma de decisión sobre el aprovechamiento eólico en aquellos lugares potencialmente buenos. Teniendo en cuenta que los datos experimentales sugieren que la distribución de Weibull se ajusta a la distribución de frecuencias de viento de muchos lugares, Hennessey debate si la distribución de Raighley puede ser una buena aproximación de la de Weibull, qué lugares son los más productivos y fiables para un aerogenerador de un tamaño específico y qué tamaño de aerogenerador debe ser utilizado dadas las características de viento de un determinado lugar.

Takle y Brown (1978) llevan a cabo una ligera variación en la función de densidad de Weibull de dos parámetros para describir distribuciones de velocidad de viento que presentan probabilidades de "calmas" no nulas. Utilizan un papel gráfico de probabilidad de Weibull especialmente diseñado para dibujar distribuciones de viento y determinar parámetros de distribución con un pequeño porcentaje de valores obtenidos por el método de máxima verosimilitud. Tomaron datos del Servicio Nacional de Meteorología para demostrar el uso de la función de densidad modificada y del papel gráfico de probabilidad de Weibull.

Corotis *et al.* (1978) utilizan los datos horarios tomados del Centro Nacional Climático para estudiar las funciones de probabilidad de velocidades del viento y la energía del viento. Comparan los histogramas de velocidades del viento observadas con las distribuciones de χ^2 y de Weibull utilizando métodos estadísticos de ajuste. Los histogramas de energía eólica se comparan con las distribuciones derivadas de estas leyes. Desde un punto de vista ingenieril, los histogramas observados se ajustan bien con los métodos, si bien existen ciertas discrepancias. Los modelos parecen prometedores desde el punto de vista del interés de aprovechamiento de la energía eólica y teniendo en cuenta el efecto de la característica de respuesta del generador eólico. El modelo de Weibull de 2 parámetros se ajusta mejor, si bien las diferencias con los histogramas de velocidades observadas son más significativas en las regiones superiores, sobre todo en los histogramas de energía. Teniendo en cuenta que la fracción de tiempo en que el viento se situará en esos regímenes altos y que el aerogenerador producirá de todas formas a su potencia nominal, las diferencias en la estimación de producción no serán tan importantes como podría parecer en principio.

Dado el interés creciente sobre análisis de viento para la obtención de energía eléctrica a partir de la energía del viento, Stewart y Essenwanger (1978) analizan datos de viento para estudiar la distribución de frecuencias de velocidades de viento cerca de la superficie de la tierra. La mayoría de las distribuciones están inclinadas hacia la derecha y generalmente la media es mayor que la mediana. Experimentalmente se demuestra que la distribución de Weibull es una buena aproximación analítica de la distribución de frecuencias de velocidades de viento. Discuten dos métodos para ajustar una distribución de Weibull con probabilidades de "calma" no nulos. Ambos métodos requieren menos esfuerzo computacional que el método de máxima verosimilitud para un modelo de tres parámetros y se ajustan para el uso práctico desde el punto de vista ingenieril. Demuestran que el modelo de tres parámetros para predecir valores extremos.

Ossenbrugen *et al.* (1979) estudian la posibilidad de aprovechar la energía eólica en instalaciones offshore. Para ello aplican la distribución de Gamma, que se ajusta bastante bien a los datos de viento que se disponen de un aeropuerto en la costa y de una estación climatológica 20 km. mar adentro. Los estudios realizados sustentan la idea preconcebida de que la velocidad del viento y la energía disponible aumentan a mayor distancia de la costa. Sin embargo, y a raíz de los datos obtenidos, reconocen que hacen falta estudios más detallados para el análisis de viento en medios marinos.

Stevens y Smulders (1979) presentan cinco métodos para estimar los parámetros de Weibull a partir de una muestra de datos de velocidades de viento. De entre estos métodos utilizan el método gráfico de probabilidad de Weibull y el de los percentiles para evaluar la energía del viento. Comparando ambos métodos sobre los datos de seis estaciones meteorológicas, se determina que el método gráfico utilizando la probabilidad de Weibull es mejor que el otro.

Auwera *et al* (1980) discuten el modelo de Weibull con tres parámetros para las estimaciones de densidad de energía media del viento. Utilizando datos de viento observados, se muestra que este modelo generalmente se ajusta mejor a la distribución de frecuencias de velocidades empíricas que las funciones de densidad con sólo uno o dos parámetros. Las estimaciones de energía del viento dependen mucho de la función de densidad de probabilidad. La variación con la altura de los tres parámetros en el modelo discutido debe seguir investigándose, pues no se trata de una simple dependencia con la altura.

Bardsley (1980) sugiere la distribución inversa de Gauss como una alternativa a la distribución de Weibull de tres parámetros para describir datos de viento con pequeñas frecuencias de velocidades bajas. Una comparación entre las dos distribuciones señala una región de gran similitud entre la distribución de tres parámetros de Weibull y los datos de viento. La estimación de los parámetros de la distribución inversa de Gauss con máxima verosimilitud es mucha más simple que el método iterativo requerido para la distribución de Weibull de tres parámetros. Varias de las propiedades aprovechables de la distribución inversa de Gauss indican que esta distribución podría jugar un papel más importante en los estudios de energía del viento.

Downey y Little (1980) llevan a cabo un estudio sobre la conveniencia de instalar turbinas eólicas en las montañas de New Hampshire, analizando los efectos económicos que tendría una modificación en las características de las turbinas para soportar los elevados vientos de las zonas montañosas. Las energías obtenidas de estas turbinas modificadas fueron simuladas con distribuciones de Weibull, así como el coste por kWh de la energía eléctrica producida por las mismas. Se vio que las simulaciones de la producción de las turbinas utilizando distribuciones de Weibull se corresponde bastante bien con las simulaciones utilizando datos reales, incluso en aquellos sitios donde la distribución de Weibull no se ajusta demasiado al histograma de velocidades de viento. De estos estudios se concluye que el coste de la energía caería primero cuando la velocidad media del viento en un lugar aumenta, pero aumentaría en lugares con velocidades medias de viento sobre los 11 m/s. En este estudio se considera también el coste de instalar turbinas en lugares remotos y la limitación del terreno disponible en las cimas de las montañas.

Haslett y Kelledy (1981) eligen, entre los diferentes modelos estadísticos propuestos, el más simple de ellos, el de Rayleigh para comparar cuatro modelos diferentes de curvas de velocidad del viento frente a la potencia de los molinos eólicos. Para estimar la producción de una máquina eólica en un determinado emplazamiento es aconsejable conocer la distribución de velocidades de viento del lugar y la curva característica de potencia frente a velocidad de la citada máquina. Cuando estas curvas no están disponibles, como en el caso de los estudios preliminares, es necesario utilizar modelos que relacionen velocidad frente a potencia. Según estos autores, la discusión entre modelos alternativos de distribuciones de viento no es necesariamente tan importante como lo es la elección entre modelos alternativos de la forma de curva de potencia frente a velocidad en la región óptima entre el momento de arranque de la máquina y las velocidades de funcionamiento de la misma.

Carlin y Haslett (1982) presentan un método para estimar la distribución de probabilidades de energía eólica a partir de un conjunto de turbinas eólicas situadas en

diferentes emplazamientos y siendo la correlación de las velocidades de viento entre ellos inferior a la unidad.

Auwera y Malet (1982) utilizan la distribución de Weibull de 3 parámetros en la realización del estudio del mapa eólico de Bélgica y Luxemburgo. A pesar de que la distribución de Weibull con 2 parámetros es muy utilizada en este tipo de estudios, reconocen, que en ciertas situaciones, la distribución de Weibull con 3 parámetros supone un mejor ajuste a los datos reales, si bien conlleva cálculos matemáticos mucho más complejos.

Lavagnini et al. (1982) utilizan dos métodos para estimar los parámetros de Weibull de las distribuciones anuales de frecuencias de viento en 48 emplazamientos italianos. Cuantifican el error medio resultante del uso de datos incompletos de la península italiana y proponen un método para calcular la energía del viento en emplazamientos donde sólo se dispone de la velocidad media del viento.

Tuller y Brett (1984) explican porqué la distribución de Weibull sólo nos da un ajuste aproximado a la distribución de frecuencias de velocidades observadas. La obtención de la distribución de Weibull a partir de una distribución normal de dos variables ofrece la justificación teórica para su uso en el análisis de velocidades de viento si se cumplen 4 condiciones. Estas condiciones son que las componentes ortogonales de la horizontal de la velocidad del viento, al elevarlas a la potencia k/2 estén normalmente distribuidas, tengan medias nulas, varianzas iguales y no estén correlacionadas. Estas cuatro condiciones caracterizan una distribución circular normal para las velocidades del viento transformadas. Los perfiles reales de la velocidad del viento son rara vez normales circulares. Los efectos topográficos y obstáculos verticales producen diferentes distribuciones de viento en cada dirección. Los estudios en siete estaciones costeras del distrito de Columbia sugieren que el ajuste de Weibull es mejor en aquellas estaciones con patrones de velocidad casi circulares y con las menores proporciones de calmas, lo cual supone una indicación preliminar muy útil del ajuste de la distribución de Weibull.

Conradsen *et al.* (1984) comparan diferentes métodos de cálculo de los parámetros de Weibull para determinar cuál es el más eficiente. Concluyen que el método de máxima verosimilitud debe ser utilizado cuando se tiene una gran muestra de datos. Sin embargo requiere de cálculos iterativos. Cuando hay pocas observaciones (menos de 25) recomiendan el uso de mínimos cuadrados. Si se dispone de una gran resolución de datos se puede utilizar como método más simple la mediana, si bien requiere de una muestra tres veces mayor que la de máxima verosimilitud para lograr la misma precisión.

Jones (1986) presenta las gráficas resultantes de sus estudios con las relaciones entre velocidades de arranque de las máquinas eólicas, velocidades nominales, velocidades medias de viento y factor de forma K de la distribución de Weibull para que sean rápidamente visualizadas y cuantificadas y faciliten el diseño, la selección eficiente que se ajuste a las condiciones de un determinado emplazamiento y predecir la producción. Muchos son los trabajos existentes resaltando los factores que afectan a la producción energética de las máquinas eólicas, mostrando la importancia de sus velocidades de arranque y velocidad nominal.

Jones (1988) esquematiza y simplifica la predicción de la energía anual producida en un lugar de conocidas condiciones eólicas por una turbina eólica de características de funcionamiento conocidas. Estos métodos sin embargo presentarán grandes errores si las condiciones de viento de partida son valores medios asumidos.

Pavia. y O'Brien (1986) emplean la distribución de Weibull de dos parámetros para estudiar la distribución de la velocidad del viento sobre los océanos del mundo. Los parámetros fueron estimados utilizando el método lineal de los mínimos cuadrados y se describieron las variaciones estacionales y latitudinales. Los resultados obtenidos eran más fiables en el hemisferio norte debido a los mejores datos disponibles. Debido a la desigual distribución de los datos disponibles en latitudes altas y en el hemisferio sur, no pudieron determinar con precisión las estadísticas de Weibull.

Sharaf-Eldeen *et al.* (1988) proponen un método general para poder realizar una predicción de producción energética y rendimiento económico de sistemas de aprovechamiento eólico en aplicaciones interconectadas. Para ello comparan tres métodos estadísticos para realizar el estudio básico eólico: Rayleigh, Weibull y método de la NASA; resultando el de Weibull el que mejor se ajusta a la distribución real de viento a partir de los valores de velocidad de viento de arranque de las máquinas eólicas y por tanto siendo éste el método empleado para estimar la producción energética de los sistemas eólicos estudiados.

Jamil (1994) utiliza la distribución de Weibull para responder a cuestiones importantes en la estimación de la producción energética de origen eólica. Utiliza el método de los mínimos cuadrados para estimar los parámetros de forma y escala de la distribución de Weibull.

Biswas *et al.* (1995) desarrollan un software en cuyo algoritmo utilizan la distribución de Weibull para estimar la producción energética anual de dos turbinas eólicas que se encontraban en funcionamiento en Canadá y compararlo con los datos reales de producción obtenidos. El algoritmo obtenido parece bastante aproximado para predecir la producción energética anual de diferentes tipos de máquinas eólicas en una primera etapa de diseño.

Sasi y Basu (1997) discuten los factores que influyen en el cálculo del factor de capacidad de un generador eólico en un emplazamiento teniendo en cuenta los parámetros de Weibull en el régimen de viento del lugar así como las características de la máquina eólica. Cada régimen de viento sugiere una velocidad nominal de viento del generador eólico para producir la máxima energía anual, si bien la elección del generador eólico apropiado para un emplazamiento debe elegirse en función de la velocidad de viento óptima para producir energía al mínimo coste.

Oliva (1997) analiza los datos de intensidad y dirección del viento en Río Gallegos, Argentina, donde hay una gran variación estacional de vientos, con intensidades fuertes de viento en los meses de verano y largos periodos de calma en invierno. Utiliza la distribución de Weibull de dos parámetros que se ajusta muy bien a los datos experimentales, pues la de Rayleigh sólo es adecuada para describir el viento en emplazamientos con bajas turbulencias. García *et al.* (1998) estiman los parámetros anuales de las distribuciones de Weibull y Lognormal para 20 localidades en Navarra partiendo de datos medios horarios de velocidades de viento. El ajuste de ambas distribuciones se juzga a partir del coeficiente R^2 con una regresión lineal para la distribución de Weibull y una regresión no lineal para la distribución Lognormal. Ambas distribuciones muestran un buen ajuste, pero los resultados para la distribución de Weibull son mejores.

Cieslikiewicz (1998) obtiene la función de densidad de la elevación superficial de un campo aleatorio de olas no gaussiano. Para ello se basa en el principio de máxima entropía utilizando como condicionantes los cuatro momentos estadísticos de la elevación superficial. La función de densidad se obtiene a partir del método de los multiplicadores lagrangianos y se demuestra que sólo dos de los cuatro multiplicadores lagrangianos son independientes. Describe el método numérico aplicado y los multiplicadores lagrangianos se calculan como función del apuntalamiento y la curtosis. Desarrolla la distribución de probabilidad aproximada de máxima entropía para olas ligeramente no lineales. La condición de la existencia de esta distribución aproximada está de acuerdo con el criterio empírico de pequeñas desviaciones de la distribución gaussiana de olas aleatorias. Los resultados teóricos se aproximan bastante a los datos experimentales incluso en casos marcadamente no gaussianos.

Torres *et al.* (1999) utilizan datos, desde 1992 hasta 1995, de once estaciones meteorológicas distribuidas en Navarra. Los datos de viento de cada estación se agruparon en ocho sectores de 45 grados dependiendo de la dirección del viento. Así mismo, dividieron las estaciones en dos grupos, según estuvieran localizadas en el valle del Ebro o en zona montañosa. Para cada grupo calcularon los parámetros de Weibull (considerando que esta distribución es la que mejor se ajusta a la zona), así como la curtosis y asimetría. Los parámetros de Weibull, especialmente el de escala, dependen fuertemente de la dirección considerada y ambos parámetros muestran una moda creciente cuando la dirección considerada se acerca a la dominante, mientras que la curtosis y la asimetría muestran una moda decreciente.

Bergström y Smedman (1999) comparan los datos de viento tomados en una pequeña isla sueca en el mar Báltico con la distribución de vientos estimada a partir de Weibull. Si bien los datos de Weibull se aproximan bastante bien a los datos de viento observados en superficies homogéneas, en este caso las predicciones diferían de la realidad debido sobre todo a la interacción de las olas superficiales y los flujos de aire marítimo.

Lun y Lam (1999) utilizaron datos de una serie de 30 años de velocidades medias horarias para calcular los parámetros de una distribución de Weibull de dos parámetros en tres localidades diferentes: área urbana, área extremadamente expuesta en el centro urbano y área abierta al mar en Hong Kong. A partir de estos datos, determinaron que los valores numéricos de los parámetros de forma y escala para estas estaciones varían en un amplio margen y que los datos de viento para el área urbana podían agruparse en dos periodos diferentes. Compararon la distribución estacional de Weibull en los tres emplazamientos y se observaron distribuciones más amplias en las áreas más abiertas. Marchante *et al.* (2000) comparan los valores obtenidos de los parámetros de Weibull utilizando para el cálculo el método de los momentos y el logarítmico con los datos observados en dos estaciones diferentes situadas en La Coruña y en Zaragoza. De la comparación de resultados se deduce que en general el método de los momentos da mejores valores que el logarítmico. Destacan la importancia de realizar una buena estimación de los parámetros de Weibull, ya que la estimación de energía anual producida por una turbina eólica depende también de la distribución de Weibull.

Seguro y Lambert (2000) presentan tres métodos para calcular los parámetros de la distribución de Weibull de dos parámetros: el método de máxima verosimilitud, el método propuesto de máxima verosimilitud modificado y el método gráfico comúnmente usado. La aplicación de cada método es demostrada usando una muestra de datos de velocidades de viento y se realiza una comparación de la precisión de cada método. El método de máxima verosimilitud es recomendado para su uso en series temporales de viento, mientras que el método modificado de máxima verosimilitud es recomendado para su uso en series temporales de viento, mientras que el método modificado de máxima verosimilitud es recomendado para datos de viento expresados como distribución de frecuencias.

Cook (2001) critica a Seguro y Lambert (2000) indicando que ambos autores introducen una desviación en la velocidad de viento al aplicar en su desarrollo una definición errónea de la función de distribución acumulativa. El desarrollo del artículo está basado en este error estadístico. La aproximación del método gráfico correctamente aplicado al método de máxima verosimilitud y al propuesto de máxima verosimilitud debilita las conclusiones de los autores.

Chadee y Sharma (2001) realizan un glosario de modelos estadísticos para el análisis de viento alternativos a la distribución de Weibull de dos parámetros que es mayoritariamente utilizada como estándar en este tipo de estudios. El objetivo de su estudio es impulsar el interés en modelos de frecuencias de velocidades de viento definiendo un catálogo de modelos teórico-empíricos como el de Jonson, Gamma y Valores Extremos. Centran su atención en modelos de tres o más parámetros que se adaptan físicamente a las velocidades de viento. No realizan una investigación y justificación de modelos particulares para velocidades de viento ni para el análisis de potencias eólicas.

Pang *et al.* (2001) realizan una estimación bayesiana de los parámetros de Weibull de 3 parámetros usando técnicas de integración de Monte Carlo con cadenas Markov. El método es extremadamente flexible. Muestran que los datos de velocidad de viento pueden ser fácilmente analizados usando estas técnicas y presentan resultados empíricos basados en los datos obtenidos de una estación meteorológica de Hong Kong.

Dorvlo (2002) modela las velocidades de viento de cuatro emplazamientos en Omán utilizando la distribución de Weibull. Los parámetros de forma y escala son estimados utilizado tres métodos diferentes, el método de Chi-cuadrado, el método de los momentos y el método de regresión. Las estimaciones obtenidas utilizando el método de Chi cuadrado fueron las que dieron un mejor ajuste de la distribución de los datos de viento.
Jaramillo y Borja (2004a; 2004b) analizan las características estadísticas de la velocidad de viento en La Ventosa, México. Al agrupar los datos anualmente, estacionalmente y por dirección de viento muestran que la distribución de velocidades de viento, con calmas incluidas, no está representada por la función típicamente usada de Weibull de dos parámetros. Desarrollan una formulación matemática usando una función de distribución de probabilidad bimodal Weibull&Weibull y una función de distribución de probabilidad bimodal Normal&Normal para analizar la distribución de frecuencias en esa región. La distribución de Weibull de dos parámetros no debe generalizarse, pues se demuestra que no es representativa en algunos regímenes de viento, como en el caso de La Ventosa.

1.3. Objetivos de la tesis.

Como se desprende del análisis de los artículos divulgados en las revistas especializadas anteriormente referenciadas y de la consulta de los libros frecuentemente citados en los estudios de la energía eólica (Justus, 1980; Hiester and Pennell, 1981; Koeppl, 1982; Freris 1990; Spera 1995), la distribución de Weibull de dos parámetros ha sido la más ampliamente utilizada y recomendada para describir las distribuciones de frecuencia de las velocidades del viento con la finalidad de evaluar su energía. A pesar de lo anterior, no se dispone de ninguna referencia donde se divulguen resultados de estudios rigurosos comparativos entre las diversas leyes de distribución estándar aplicadas a una misma serie de datos experimentales, ni donde se analice la influencia de los diferentes parámetros de que dependen y sus errores estándar.

En base a lo anterior se establece como objetivo de esta tesis doctoral la investigación y desarrollo de modelos estadísticos paramétricos estándar y no estándar con el propósito de determinar aquellos que mejor describen el régimen de viento de las Islas Canarias, atendiendo al grado de ajuste a los datos experimentales disponibles y a la capacidad del modelo para describir la energía experimental del viento, para que puedan ser utilizados como herramienta en la evaluación energética del mismo.

1.4. Metodología de la tesis.

Con el propósito de conseguir los objetivos marcados en esta tesis se ha establecido la siguiente metodología:

- □ Recopilación y análisis de la bibliografía relacionada con el tema objeto de estudio.
- Recopilación de los datos de viento que hayan sido registrados en el Archipiélago Canario para su posterior análisis y selección de los mismos en función de criterios de fiabilidad y longitud de registro.
- Análisis de las leyes de distribución estándar que hayan sido utilizadas en el pasado para describir los regímenes de viento, así como leyes de distribución continuas no utilizadas

hasta el momento en la descripción de regímenes de viento, pero que aún no consta que haya sido demostrada su ineficacia en este campo. En este apartado se pretenden incluir parámetros no contemplados en estudios previos con el objeto de determinar la eficiencia de los mismos en la bondad del ajuste a los datos experimentales. La estimación de dichos parámetros se realizará mediante la utilización de diversos métodos (Momentos, Máxima Verosimilitud y Mínimos Cuadrados), y la eficiencia de las diversas leyes de distribución analizadas se deducirá de la bondad del ajuste y de la capacidad del modelo para describir la energía experimental del viento.

- Utilización del Método de Máxima Entropía restringido por momentos estadísticos, en la búsqueda de modelos estadísticos no estándar y determinar la eficacia de los mismos en la descripción de los regímenes de viento del Archipiélago Canario. Como criterios de eficacia se aplicarán los descritos en el punto anterior.
- Utilización de los modelos de variación de los vientos con la altura, con el propósito de extrapolar las velocidades de viento, medidas a una altura de referencia, a la altura del eje del rotor de las turbinas eólicas.
- Analizar la influencia del grado de ajuste de las distribuciones consideradas en la estimación de la potencia media producida por un aerogenerador, en función del tamaño del sistema de conversión de energía.

1.5. Estructura de la tesis.

En el capítulo 2 se realiza una introducción al proceso de evaluación energética del viento, con el propósito de presentar una serie de conceptos básicos necesarios para el desarrollo de la tesis.

En el capítulo 3 se presentan las distintas distribuciones paramétricas continuas utilizadas en esta tesis y se desarrollan las propiedades de las mismas que serán utilizadas en capítulos posteriores.

En el capítulo 4 se presentan los métodos empleados para la estimación de los parámetros de las leyes paramétricas continuas utilizadas.

En el capítulo 5 se plantea el Principio de Máxima Entropía para definir leyes de distribución de probabilidad que se ajusten a los datos experimentales de viento, partiendo de la hipótesis que nuestro desconocimiento sobre la distribución de probabilidad en estudio no es absoluto, sino que se conocen determinados valores o características que son impuestos en forma de restricciones de igualdad; tales restricciones recogen la información parcial de que se dispone sobre la distribución.

En el capítulo 6 se analizan los modelos de variación de los vientos con la altura utilizados en los análisis de la energía eólica.

En el capítulo 7 se analizan las características de funcionamiento de las turbinas eólicas y los métodos utilizados para estimar la energía media producida por un aerogenerador inmerso en un determinado régimen de vientos.

En el Capítulo 8 se describen los datos de viento disponibles del Archipiélago Canario y se discuten los resultados obtenidos de la aplicación de los modelos estadísticos desarrollados.

En el capítulo 9 se plantean las conclusiones a las que se llega mediante el desarrollo de la tesis, así como posibles líneas de trabajo futuras.

En los apéndices A, B, C, D, E y F se adjuntan tablas de resultados de los estudios realizados.

En el apéndice G se adjuntan artículos publicados en revistas internacionales con índice de impacto, según JCR, que han surgido como fruto de esta tesis.

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

CAPÍTULO

Introducción al proceso de medida, análisis y evaluación energética del viento.

2.1. Introducción.

En este capítulo se lleva a cabo una introducción a las características generales del viento y al proceso de medida, análisis y evaluación energética del mismo, con el propósito de presentar una serie de conceptos básicos necesarios para el desarrollo de la tesis.

2.2. Origen y características generales del viento.

La fuente primordial de la energía inyectada a nuestra atmósfera es el Sol, que continuamente se desprende de parte de su masa irradiando al espacio ondas de energía electromagnética y partículas dotadas de elevada energía. De esta manera, al exterior de la atmósfera llegan unos 1,368¹ W/m² (Barry y Chorley, 1999), cifra denominada "constante solar"; aunque, debido a factores atmosféricos y orográficos, la radiación que llega al suelo es de unos 900 W/m² (Jarabo *et al*, 1987), que es transferida nuevamente en varias formas al aire que la circunda.

¹ Valor aproximado obtenido de mediciones recientes realizadas por los satélites.

A escala planetaria, durante el año, debido a la redondez de la Tierra y la inclinación de su eje de rotación respecto al plano de la eclíptica, las regiones tropicales reciben más energía solar y las regiones polares reciben menos. Como resultado de estos diferentes niveles de absorción de la energía solar² se originan diferentes niveles de calentamiento que ocasionan gradientes de presión en la atmósfera. El gradiente de presión es la fuerza³ motivadora que causa que el aire se desplace lejos de las áreas de altas presiones hacia las zonas donde éstas son menores produciendo el viento. Debido a que la Tierra gira alrededor del Sol describiendo una órbita elíptica, uno de cuyos focos es el mismo Sol, la intensidad de la radiación solar es distinta según las estaciones del año, y consecuentemente la velocidad y dirección del viento varían en general a lo largo del año.

Aparte de la fuerza del gradiente de presiones originada por el desigual calentamiento de la superficie terrestre, existen tres controles más sobre el movimiento horizontal del aire cerca de la superficie terrestre: las fuerzas de Coriolis, consecuencia de la rotación de la Tierra, que aceleran las partículas de aire en movimiento y modifican las trayectorias de las partículas inclinándolas hacia la derecha en el hemisferio Norte, y a la izquierda en el hemisferio Sur; las aceleraciones centrípetas, consecuencia de las curvaturas de las isobaras; y las fuerzas de fricción, debidas a la fricción del aire con la superficie terrestre cuyos efectos hacen disminuir la velocidad del viento exponencialmente cerca de la misma⁴ (Hidy, 1968).

La compleja dinámica de la circulación atmosférica (Hidy, 1968; Barry y Chorley, 1999), da lugar a varios tipos de vientos en el planeta. Diversas referencias (Koeppl, 1982; Le Gouriérès, 1983; Barry y Chorley, 1999), señalan los vientos ecuatoriales del oeste, muy patentes sobre África y sur de Asía⁵; los vientos del oeste de las latitudes medias; los vientos polares del este; y los vientos alisios, importantes a causa de su enorme área de influencia, pues soplan en ambos lados del ecuador alrededor de todo el globo y destacan por su constancia en la dirección (NE en el hemisferio norte y el SE en el hemisferio sur) y velocidad (Figura 2.1)⁶.

Además de los vientos macroclimáticos hay que señalar la existencia de vientos de carácter local provenientes de características microclimáticas locales (Barry y Chorley, 1999; Puig et *al*, 1982), los derivados de efectos térmicos como las brisas marinas y terrestres⁷ (Barry y Chorley, 1999; Puig *et al*, 1982; Cádiz, 1984; Hiester y Pennell, 1981; Ledesma y Baleriola, 1991) o provocados por características orográficas y topográficas como los efectos

 $^{^{2}}$ A las diferentes absorciones de energía solar de las regiones polares y tropicales es necesario añadir los efectos térmicos que tienen sobre la circulación general atmosférica la presencia de las grandes masas continentales y los océanos (Puig *et al*, 1982).

³ La fuerza del gradiente de presión tiene componentes horizontal y vertical, pero esta última es mucho menor que la componente horizontal (Barry y Chorley, 1999).

⁴ La modelización de la variación de los vientos con la altura se analiza en el capítulo 6.

⁵ En Asía, a estos vientos se les conoce como el "monzón de la India".

⁶ Los límites de los alisios están indicados en la figura por líneas continuas (enero) y de trazos (julio). Las Islas Canarias quedan en invierno en el límite de la zona de influencia de estos vientos, mientras en verano quedan de lleno inmersas en ella. Fuente: Crowe (1949) y Crowe (1950).

⁷ Como las brisas dependen de los fenómenos térmicos, se deduce que también se producen variaciones diarias más o menos cíclicas en la intensidad y en la dirección del viento (Le Gouriérès, 1983).

de canalización del valle o el cañón, barreras topográficas⁸, etc. (Hiester y Pennell, 1981; Ledesma y Baleriola,1991; Hladik, 1984), que se manifiestan más claramente cuando los generales son débiles, existiendo zonas en las que son de tal importancia que encubren al general o macroclimático.

Figura 2.1. Mapa de los cinturones de vientos alisios y de las zonas de calmas ecuatoriales

2.3. Medición del viento.

Como señala Justus (1980), el viento es una magnitud vectorial tridimensional, por tanto, está caracterizada por su módulo, dirección y sentido, que puede ser representada por un vector viento medio al cual se le superponen pequeñas variaciones aleatorias.

Si bien el vector viento medio puede ser representado por sus tres componentes en cualquiera de los sistemas habituales de coordenadas, se suele adoptar frecuentemente la representación en coordenadas cilíndricas. La componente horizontal del viento se representa por un vector de dos dimensiones, cuyo módulo es la velocidad horizontal, y el ángulo es la dirección sobre el plano horizontal. La componente vertical será positiva hacia arriba.

Aunque es posible inferir la velocidad y, algunas veces, la dirección de los vientos por los cambios de las propiedades de la atmósfera (Hidy, 1968), con frecuencia se necesita obtener medidas más directas del movimiento atmosférico. Los instrumentos cuyos sensores miden el flujo del aire se llaman anemómetros, los cuales, según Le Gouriérès (1983), se pueden clasificar en tres categorías principales: anemómetros de rotación (anemómetros de cazoletas, anemómetros de hélices, anemómetros de canalones, etc.), anemómetros de presión

⁸ Ejemplos de ello son los vientos de sotavento bora y föhn.

(anemómetro de Dines, anemómetro de Best Romani, etc.), y otros (anemómetros de hilo caliente, los de efecto sónico, anemómetros láser, anemómetros SODAR de efecto Doppler, anemómetros de ultrasonidos, etc.).

Figura 2.2. Anemómetro de cazoletas y veleta

Entre los anemómetros anteriormente mencionados, los más conocidos y frecuentemente empleados en el análisis de la energía del viento son los de rotación con cazoletas, los cuales normalmente consisten en tres cazoletas de forma troncocónica⁹ o semiesférica montadas simétricamente alrededor de un eje vertical (Figura 2.2). Como la fuerza en el lado cóncavo de la cazoleta es mayor que el lado convexo, la rueda de cazoletas gira, siendo la velocidad de rotación proporcional a la velocidad del viento en el plano de giro. La gran ventaja de los anemómetros de cazoletas es que miden las dos componentes horizontales del viento¹⁰, sin embargo (Justus, 1980; Freris, 1990), ya que su constante de tiempo¹¹ varía inversamente proporcional a la velocidad del viento, se aceleran más rápidamente que lo que se desaceleran y por lo tanto sobrestiman la velocidad del viento. Otra causa de error, del orden del 6 al 8%, del anemómetro de cazoletas es originada por la componente vertical de la velocidad del viento. Los sensores de los anemómetros generan alguna forma de señal¹², que es transmitida a un aparato donde es tratada para facilitar su interpretación y/o almacenamiento. Los anemómetros de rotación se complementan con un dispositivo denominado veleta para captar la dirección de la velocidad del viento. La veleta

⁹ Las de forma de tronco de cono, con ángulo en el vértice de 90° presentan la ventaja de reducir el fenómeno de sobrevelocidad. (Lindley, 1975).

¹⁰ Para las aplicaciones de la energía eólica, se considera que en las inmediaciones del suelo el viento es prácticamente horizontal, pues aunque existen vientos ascendentes o descendentes, su velocidad en sentido vertical es generalmente despreciable en comparación con la horizontal, salvo en casos singulares.

¹¹ Describe el tiempo que se requiere para que el sensor responda al 63.2% (1-1/e) frente a un cambio en escalón de la señal de entrada.

¹² Voltaje instantáneo producido por un generador eléctrico conectado al eje de la rueda de cazoletas; señal de salida de un interruptor optoeléctrico; etc.

consiste en un dispositivo montado sobre un eje vertical y de giro libre, de tal modo que puede moverse cuando el viento cambia de dirección y que se acopla a transductores que generan una señal¹³ (Hiester y Pennell, 1981).

Ubicación de los anemómetros.

Ya que, como consecuencia del rozamiento con al superficie terrestre, la velocidad del viento varía con la altura, la Organización Meteorológica Mundial (O.M.M.) precisa que el emplazamiento de los sensores de medida del viento en superficie deben situarse a una altura de 10 metros¹⁴sobre el nivel de suelo en terreno descubierto, con el objeto de que se puedan establecer comparaciones homogéneas (Justus, 1980). El terreno es definido por la O.M.M. como "una superficie donde la distancia entre el anemómetro y cualquier obstáculo debe ser por lo menos de diez veces la altura del obstáculo".

Figura 2.3. Torre anemométrica

Los sensores se suelen situar en torres (Figura 2.3) de tal manera que éstas no influyan

¹³ Generadas por potenciómetros, circuitos de capacidad o inductancia variable, reóstatos de contacto, etc.

¹⁴ En el caso de evaluación del funcionamiento y operación de una determinada turbina eólica, es conveniente realizar las medidas a la altura del buje para evitar las incertidumbres de la variación vertical del viento.

en las medidas de aquellos (Moses y Danbek, 1961; Dabbert, 1968; Gill *et al*, 1967), bien por presentar un obstáculo a la dirección del viento o porque las vibraciones desarrolladas por dichas torres bajo las cargas de viento causen falsas lecturas de los sensores y aceleren sus desgastes.

Dispositivos de registro y almacenamiento.

Los dispositivos de registro y almacenamiento son clasificados por Hiester y Pennenll (1981) en cuatro clases según su capacidad de almacenamiento y postprocesado de datos.

Los instrumentos de clase I no tienen ninguna capacidad de almacenamiento. Si los datos deben coleccionarse, un observador humano debe leer en un visualizador y anotar la información. Esto restringe las aplicaciones de los sistemas clase I a dos tipos de usos: a) programas de medida intensiva de corta duración (medidas puntuales con anemómetros manuales en puntos seleccionados de interés) y b) programas de larga duración que requieren que el observador dedique solo una pequeña porción del tiempo a la lectura de datos (Son ejemplos típicos de su uso los aeropuertos, las bases militares, los barcos, los centros meteorológicos, etc.).

Los instrumentos de clase II caracterizan el viento con un único número (por ejemplo la velocidad media del viento en un periodo dado tal como un mes) sacrificando la información utilizada para su cálculo. Por tanto, tienen una utilidad muy limitada desde el punto de vista del análisis energético eólico.

Los sistema de la clase III procesan los datos y los graban en resúmenes o histogramas. Usan un microprocesador para calcular las estadísticas de interés y almacenan la información en uno de los muchos registros de almacenamiento que disponen. Con los sistemas clase III es posible coleccionar y almacenar mucha información importante para el análisis final y presentación de resultados. Sin embargo, la secuencia de datos se pierde.

Los sistemas de clase IV almacenan datos de series de tiempo en cualquiera de las dos formas, en bruto o procesada. La información procesada puede ser simplemente la media de la velocidad del viento y su dirección para cada intervalo programado de tiempo (ejemplo 10 minutos, 20 minutos, una hora, etc.) o la media, varianza, simetría, máxima velocidad del viento, etc., para cada periodo programado a partir de muestras de 1 segundo, o de 1 minuto. La información bruta puede ser simplemente los valores instantáneos de la velocidad del viento y su dirección.

Ya que los sistemas de la clase IV proporcionan la mayor flexibilidad para el análisis de datos suelen ser, actualmente, los sistemas más empleados en el registro de datos de viento con el fin de evaluar la energía del mismo. Dichos dispositivos (figura 2.4), alimentados frecuentemente por baterías, suelen permitir registrar la información bruta o procesada en una memoria interna (buffer) así como en dispositivos de almacenamiento periféricos, tales como cintas magnéticas, disquetes, chips eprom y memorias RAM¹⁵ de diversas capacidades.

¹⁵ Acrónimo de Random Acces Memory.

Aunque la tecnología actual de estos dispositivos permite que se pueda acceder a la información almacenada en una estación remota mediante el uso de líneas de telefonía, radio, o satélite, los sistemas más frecuentemente empleados para recuperar la información almacenada precisan del desplazamiento de un operario hasta el punto de instalación del aparato. Uno de dichos sistemas requieren el uso de un ordenador portátil, de un interfase RS232 y de un programa de comunicaciones que permita establecer las comunicaciones entre el ordenador y la estación a fin de realizar el trasvase de los datos. El otro sistema, probablemente el más frecuentemente empleado, utiliza los dispositivos de almacenamiento periféricos ya mencionados para transportar la información desde la estación hasta el centro de análisis, en donde, por medio de un lector (Figura 2.5), se trasvasa de nuevo a un ordenador, vía RS232, utilizando un programa de comunicación y de conversión de códigos.

Figura 2.4. Dispositivo típico de registro y almacenamiento

Figura 2.5. Dispositivo lector de tarjetas RAM de almacenamiento

□ Frecuencias de las medidas.

La frecuencia de la toma de datos y los intervalos de promedio deben estar en consonancia con el tipo de análisis a que se destinen. Con las prestaciones actuales de los equipos de toma de datos, para una evaluación precisa del potencial eólico, es recomendable tomar muestras de valores del viento con una frecuencia de 5 a 10 segundos, y promedios en intervalos de 10 minutos a 1 hora. (Freris, 1990; Burton *et al*, 2001)

Para análisis detallados de funcionamiento de máquinas eólicas (especialmente de gran tamaño) o estudios específicos de características de viento (ráfagas, turbulencias, etc.), se requieren frecuencias de datos iguales o superiores a 1 Hz e intervalos de promedio del orden de 1 minuto.

Duración de las medidas.

Del mismo modo que la frecuencia de medida, la duración de las medidas depende principalmente de la aplicación de los datos. Si el propósito es determinar la curva de funcionamiento de una aeroturbina, la duración y número de medidas está recogida en recomendaciones prácticas internacionales aceptadas (IEC, 1993).

Una de las más comunes aplicaciones de las medidas de la velocidad del viento es la estimación de la posibilidad de instalación de aeroturbinas en un determinado lugar. Las siguientes dos directrices suelen ser aceptadas: a) Medir durante un periodo lo más largo, práctica y económicamente, posible, b) intentar, si es posible, medir en cada estación del año, dado que los patrones de la velocidad y dirección del viento son relativamente estacionales.

u Unidades de medida del viento.

Aunque los organismos meteorológicos todavía registran rutinariamente las velocidades del viento en unidades tales como km/h, nudos, millas por horas (mph), etc., en energía eólica la velocidad del viento se mide en unidades de m/s.

La dirección del viento se mide normalmente en grados, contados a partir del Norte, o en rumbos. El valor indicado en la medida expresa siempre la dirección de donde procede el viento.

□ Elección de instrumentos.

En la selección de la instrumentación más adecuada para la adquisición de datos de viento de cara a su evaluación energética, aunque esencialmente la elección debe depender de cada aplicación, influyen principalmente los siguientes factores:

• Coste y fiabilidad.

- Sensibilidad.¹⁶ Las medidas altamente especializadas (como en la investigación de las turbulencias en el interior de un parque de aeroturbinas) requieren, obviamente, instrumentos más sensibles que una estación de registro de viento para evaluación de los recursos eólicos. Es necesario prestar atención la calibración de los sensores. Los instrumentos deben ser calibrados periódicamente para garantizar la fiabilidad de los datos.
- Resolución. La resolución se define como la unidad más pequeña de una variable que se puede detectar. Por ejemplo, un sensor puede tener una resolución de ± 0.1 m/s ó ±1 m/s dependiendo del instrumento. El tipo de sistema de almacenamiento puede limitar también la resolución.
- Robustez. Algunos tipos de instrumentos, aunque son altamente sensibles, son al mismo tiempo muy susceptibles de daño o deterioro por la agresividad de los agentes atmosféricos (agua, corrosión, polvo, temperatura, etc.).
- Error. Es la diferencia entre las indicaciones y el verdadero valor de la señal medida.
- Compatibilidad de las especificaciones de sensibilidad y fiabilidad del sistema completo¹⁷.
- Exactitud y precisión. La exactitud y la precisión son dos características del funcionamiento de los instrumentos que son a menudo tratadas ambiguamente. La exactitud de un instrumento se refiere a la diferencia media entre la salida del instrumento y el verdadero valor de la variable medida. La precisión se refiere a la dispersión alrededor del valor medio.¹⁸ En general, en los sistemas de media del viento la precisión es bastante alta, siendo la exactitud la preocupación principal.
- Repetibilidad. La repetibilidad de un instrumento es la cercanía de coincidencia entre un número de medidas consecutivas de salida para el mismo valor de entrada, a condición de que las medidas sean hechas bajo las mismas condiciones.
- Reproducibilidad. La cercanía de coincidencia entre medidas de la misma cantidad donde las medidas individuales se han realizado bajo diferentes condiciones definen la reproducibilidad de la medida.
- Autonomía de registro.
- Autonomía de su fuente de alimentación.

¹⁶ Es la relación entre la salida a fondo de escala y el valor de entrada a fondo de escala, por ejemplo 10 pulsos por m/s.
¹⁷ Probabilidad de sua el instrumentaria de la sua el instru

¹⁷ Probabilidad de que el instrumento continúe funcionando dentro de unos límites de error para un tiempo especificado bajo condiciones específicas. El mejor indicador de la fiabilidad es el funcionamiento pasado de instrumentos similares. En general, los instrumentos simples y robustos con pocas partes son más fiables que los que contienen gran número de partes.
¹⁸ Por ejemplo, un instrumento puede producir el mismo valor de la medida siempre, pero que el valor puede

¹⁸ Por ejemplo, un instrumento puede producir el mismo valor de la medida siempre, pero que el valor puede estar 50% alejado. Por consiguiente, este instrumento tienen alta precisión, pero baja exactitud. Otro instrumento midiendo una variable puede producir medidas sin error medio, pero la dispersión de una medida simple puede variar ampliamente alrededor de la media. Este instrumento tiene alta exactitud, pero baja precisión.

2.4. Tratamiento de los datos de viento.

En este apartado se describen algunas de las manipulaciones que se suelen realizar con los datos de viento registrados con el objeto de facilitar un juicio respecto a lo apropiado o no del punto de medida para el aprovechamiento energético eólico.

Figura 2.6. Evolución temporal de la velocidad registrada del viento hora a hora

En este sentido, a partir de la evolución temporal de la velocidad registrada del viento (Figura 2.6), se estudian básicamente dos aspectos:

- Distribuciones temporales.
- Distribuciones de frecuencia.

Distribuciones temporales.

Desde este punto de vista son interesantes las respuestas a cuestiones tales como:

• Cuál es la variación media diaria del viento en un periodo dado. En la figura 2.7 se ha representado la media mensual de cada hora del día mostrándose las fluctuaciones medias diarias de la velocidad del viento en un mes particular. En la misma figura también se muestra la velocidad media del mes.

Figura 2.7. Evolución media diaria del viento

• Cuál es la variación de las velocidades medias mensuales a lo largo de un año. En la figura 2.8 se muestran las fluctuaciones de la velocidad del viento, comparadas con la velocidad media anual.

Figura 2.8. Evolución de las velocidades medias mensuales

 Cuál es la variación de las rachas y calmas máximas mensuales a lo largo del año. Esta información no puede ser obtenida desde las velocidades medias horarias, pero pueden ser registradas separadamente tal como se indicó en el apartado 2.3 anterior.

Distribuciones de frecuencia.

Aparte de las distribuciones de la velocidad del viento en el tiempo es importante conocer el número de horas por mes o por año durante las cuales ocurre una determinada velocidad del viento, es decir, la distribución de frecuencias de la velocidad del viento.

Para determinar estas distribuciones de frecuencias se debe en primer lugar dividir el dominio de la velocidad del viento en un número de intervalos, normalmente de un ancho de 1m/s. Entonces se procede a calcular el porcentaje de veces en que la velocidad del viento sopla en cada intervalo. La representación de dichas frecuencias relativas constituye el histograma de frecuencias relativas (Figura 2.9).

Figura 2.9. Histograma de frecuencias experimentales

A menudo es importante conocer el tiempo o frecuencia en el cual la velocidad del viento es más pequeña que una velocidad del viento dada; cuando estas frecuencias son representadas en función de la velocidad del viento se obtiene el histograma de frecuencias acumuladas (Figura 2.10).

A menudo es importante conocer el número de horas que una turbina eólica estará en funcionamiento o la fracción del tiempo que una turbina eólica produce por encima de una potencia dada. En este caso es necesario sumar el número de horas en todos los intervalos por debajo de una velocidad dada del viento. El resultado es la distribución de duración (Lysen, 1982). Los valores de duración son comúnmente representados con la velocidad del viento en el eje de ordenadas.

Figura 2.10. Histograma de frecuencias acumuladas experimentales

Figura 2.11. Frecuencias de direcciones

Otro tipo de representación a menudo utilizado en el análisis del viento son los diagramas de estructura del mismo que representa en forma de histograma de barras verticales las frecuencias de ocurrencia observadas en intervalos de dirección y velocidad dados.

Lo más habitual es dividir los 360° en 8 (Figura 2.11)¹⁹ ó 16 sectores y tomar para la velocidad 3 ó 4 intervalos, dependiendo los límites de los intervalos de la gama de velocidades más habituales del lugar de estudio.

2.5. Representación matemática de los regímenes de viento.

En el análisis estadístico del viento con la finalidad de evaluar la energía extraíble del mismo mediante máquinas eólicas es habitual trabajar con funciones de densidad de probabilidad continuas que se ajusten a los datos experimentales (Figura 2.12).

Cuando no se puede conocer de antemano los valores de medidas repetidas de una cierta variable de interés, en este caso la velocidad del viento, es práctico describir esta variable como una variable aleatoria, representada por una letra mayúscula tal como V. Esta variable aleatoria se refiere a la población. La colección de todos los posibles valores de la población se denomina espacio muestral S. Las medidas en V, se representan por letras minúsculas tales como v. Un conjunto de estas medidas es la muestra. Entonces, una muestra es un subconjunto del espacio muestral S.

El aspecto de la incertidumbre de la variable aleatoria V es modelado por una distribución estadística de probabilidad caracterizada por una función $f(v, \theta)$ que recibe el nombre de función de densidad de probabilidad. La función de densidad de probabilidad de una variable aleatoria continua V se define formalmente de la siguiente manera (Canavos, 1988): Si existe una función $f(v, \theta)$ tal que

1.
$$f(v,\theta) \ge 0$$
, $-\infty \le v < \infty$,

2.
$$\int_{-\infty}^{\infty} f(v,\theta) dv = 1$$
 (2.1)

3.
$$P(a \le V \le b) = \int_a^b f(v, \theta) dv$$

para cualesquiera $a \neq b$, entonces $f(v, \theta)$ es la función de densidad de probabilidad de la variable aleatoria continua V.

Como señala Peña (1994), la función de densidad representa una aproximación muy útil

¹⁹ Otra forma habitual de representar lo mismo lo constituye la rosa de los vientos (Justus, 1980).

para calcular probabilidades partiendo de un histograma: en primer lugar es mucho más simple, permite sustituir la tabla completa de valores de la distribución de frecuencias por la ecuación matemática de $f(v, \theta)$; en segundo lugar es más general, trata de reflejar no el comportamiento de una muestra concreta, sino la estructura de distribución de los valores de la variable a largo plazo; en tercer lugar es más operativa, permite obtener probabilidades de cualquier suceso.

Figura 2.12. Densidad de probabilidad experimental y teórica

 $f(v, \theta)$ constituye una familia de funciones de densidad de probabilidad, dependientes de los valores que pueden tomar los parámetros θ en su espacio parametral Ω . En el capítulo 3 y 5 se definen y analizan las leyes de distribución y los parámetros de que dependen que serán consideradas en el desarrollo de esta tesis.

De igual manera, la función de distribución acumulativa de una variable aleatoria continua V (Figura 2.13) es la probabilidad de que V tome un valor menor o igual a algún valor v específico. Esto es,

$$P(V \le v) = F(v;\theta) = \int_0^v f(v,\theta) dv$$
(2.2)

La distribución acumulativa $F(v; \theta)$, es una función lisa no decreciente de los valores de la variable aleatoria con las siguientes propiedades (Canavos, 1988):

(2.3)

- 1. $F(0,\theta) = 0$,
- 2. $F(\infty; \theta) = 1$,
- 3. $P(a \le V \le b) = F(b;\theta) F(a;\theta),$
- 4. $dF(v,\theta)/dv = f(v;\theta)$

Figura 2.13. Distribución acumulada experimental y teórica

La estimación de los parámetros θ involucra el uso de los datos muestrales en conjunción con alguna estadística. En el capítulo 4 de esta tesis se presentan tres estimadores que, con base en los datos muestrales, dan origen a una estimación univaluada de los valores de los parámetros.

2.5.1. Número efectivo de observaciones.

Cuando las observaciones de la muestra de viento $V_1,...,V_n$ se recogen a lo largo del tiempo es frecuente la aparición de dependencia (Lou, 1982; Sigl, 1978), como puede observarse en la Figura 2.14 donde se muestra la función de autocorrelación (f.a.c.) de la

estación de Taca (Fuerteventura) en el año 1988. Esto viola las hipótesis de las técnicas de estimación que se utilizan en esta tesis, las cuales se basan en la consideración de que las velocidades de viento son variables aleatorias. Sin embargo, esta cuestión sólo es considerada explícitamente por muy pocos de los autores (Conradsen and Nielsen, 1984; Corotis *et al.* 1977; Brett and Tuller, 1991), que han publicado artículos relativos a la estimación de distribuciones de la velocidad del viento.

Figura 2.14. Función de autocorrelación de la estación Taca-Fuerteventura (año 1988)

Conradsen y Nielsen, (1984) parten de la hipótesis que los parámetros estimados utilizando datos de viento dependientes no difieren de los parámetros estimados utilizando datos de viento independientes. Sin embargo, según dichos autores, las expresiones que proporcionan los errores estándar de los parámetros deben ser corregidos utilizando el número de datos de viento independientes. Corotis *et al.* (1977), Conradsen y Nielsen, (1984) y Brett y Tuller, (1991), utilizan el denominado "número efectivo de observaciones", n^* , propuesto por Bayley y Hammersley (1946) (2.4).

$$n^{*} = \left[\frac{1}{n} + \frac{2}{n^{2}} \sum_{j=1}^{n-1} (n-j) r(j)\right]^{-1}$$
(2.4)

donde *n* es el número total de observaciones, y r(j) representa el coeficiente de autocorrelación lineal de orden *j*, y viene dado por (2.5).

$$r(j) = \frac{\sum_{i=j+1}^{n} (v_i - m_1') (v_{i-j} - m_1')}{\sum_{i=1}^{n} (v_i - m_1')^2}$$
(2.5)

En (2.5) m'_1 es la velocidad media del viento, es decir, viene dada por (2.6).

$$m_1' = \frac{\sum_{i=1}^n v_i}{n}$$
(2.6)

Obsérvese que si la autocorrelación es nula en (2.4), entonces n^* coincide con n.

Las expresiones (2.4) y (2.5) deben ser evaluadas numéricamente. Sin embargo, Bayley y Hammersley (1946), Corotis *et al.* (1977), Conradsen y Nielsen, (1984) y Brett y Tuller, (1991), proponen modelos simples para determinar la función de autocorrelación. Ellos asumen que la autocorrelación puede decaer de forma exponencial o de forma cosenoidal amortiguada.

Para una función de autocorrelación que decae exponencialmente Corotis *et al.* (1977) indican que es posible estimar el número de observaciones independientes $n_i(T)$ de lectura en un tiempo especificado T^{20} (2.7) ajustando una función exponencial a la autocorrelación (Corotis, 1974). Por tanto, si γ es una constante definida como el inverso del tiempo de autocorrelación, el cual es el tiempo que necesita la función de autocorrelación para decaer hasta 1/e de su valor original²¹,

$$n_i(T) = \frac{\gamma T}{2\gamma T - 2e^{-\gamma T} - 2}$$
(2.7)

Para la función de autocorrelación cosenoidal Bayley y Hammersley, (1946) y Conradsen y Nielsen, (1984), estiman un número efectivo de observaciones dado por (2.8).

$$n^* \approx n \left[\frac{\sinh(\gamma\tau)}{\cosh(\gamma\tau) - \cos(\lambda\tau)} + \frac{1}{n} \frac{1 - \cosh(\gamma\tau)\cos(\lambda\tau)}{\left(\cosh(\gamma\tau) - \cos(\gamma\tau)\right)^2} \right]^{-1} \approx n \frac{\cosh(\gamma\tau) - \cos(\lambda\tau)}{\sinh(\gamma\tau)}$$
(2.8)

donde γ y λ son constantes peculiares del autoregresivo proceso en consideración.

Para seleccionar los intervalos de toma de datos de tal manera que pueda aceptarse, con un nivel de significación de 0.05, la hipótesis nula que afirma la existencia de independencia entre ellos, deberá utilizarse un contraste de autocorrelación. Box y Pierce (1970) proponen un test, posteriormente mejorado por Ljung y Box (1978), que utiliza el estadístico siguiente

²⁰ Ejemplo 24 horas, cuando se desea calcular el número de horas independientes por día.

²¹ e es la base del logaritmo.

(2.9)

$$Q = n(n+2)\sum_{k=1}^{z} \frac{r^{2}(k)}{n-k}$$
(2.9)

Bajo la hipótesis nula, Q se distribuye asintóticamente como una χ^2 con z-1²² grados de libertad, siempre y cuando las observaciones sean independientes e idénticamente distribuidas. Si se cumple lo anterior, la inferencia realizada con el estadístico (2.9) es adecuada, por lo que si $Q < \chi^2_{z,\alpha}$, entonces se acepta la hipótesis nula. r(k) representa el coeficiente de autocorrelación lineal de orden k, y viene dado por (2.5), donde j=k.

Sin embargo, según Lobato *et al* (2001), la realidad es que para muchas series de tiempo el supuesto de independencia es cuestionable, pudiendo los datos no presentar correlación y ser estadísticamente dependientes (Romero y Thornbs, 1996), por lo que el estadístico (2.9) puede producir inferencias equivocadas. En conclusión, el contraste (2.9) es válido si y solo si el proceso es Gaussiano. Es decir, si $(\sqrt{n})r$ se distribuye asintóticamente como una N(0,I). Por tanto, si la hipótesis de normalidad es rechazada por los datos²³, o que, sin serlo totalmente, hay cierta evidencia de que puede no ser cierta, es necesario realizar ciertas operaciones. Si la distribución es unimodal²⁴ y asimétrica, la solución más simple y efectiva suele ser transformarlos para convertirlos en normales.

Existen diversos tipos de transformaciones (Stuart *et al*, 1999). Entre éstas se puede señalar la siguiente familia de transformaciones que han sugerido Box y Cox (1964) para conseguir la normalidad:

$$v^{(\lambda)} = \begin{cases} \frac{\left(v+m\right)^{\lambda}-1}{\lambda} & (\lambda \neq 0) & (v > -m) \\ \\ \ln\left(v+m\right) & (\lambda = 0) & (m > 0) \end{cases}$$
(2.10)

donde λ es el parámetro de la transformación y *m* una constante

Esta transformación es recomendable para conjuntos de datos en donde no existan datos negativos, es decir, para conjuntos de datos que sean mayor o igual a cero, como ocurre con las velocidades del viento.

El parámetro λ se estima a partir de los datos y *m* se elige de forma que *v*+*m* sea siempre positiva.

²² Aceptando la sugerencia de Anderson (1979), se ha considerado z < n/4.

 ²³ Mediante la aplicación de un contraste de normalidad (Lilliefors, 1967; Shapiro y Wilk, 1965).

²⁴ Si la distribución es bimodal se precisa investigar la presencia de heterogeneidad mediante el contraste de Wilcoxon (Peña,1994).

Box y Cox (1964), presentaron un algoritmo que permitiría la selección de la transformación apropiada. Suponiendo un valor positivo de *m* y que existe un valor de λ que transforma a la variable en normal, la relación entre el modelo para los datos originales *v* y para los transformados $v^{(\lambda)}$ será²⁵:

$$f(v) = f\left[v^{(\lambda)}\right] \left| \frac{dv^{\lambda}}{dv} \right|$$
(2.11)

como:

$$\frac{dv^{\lambda}}{dv} = \frac{\lambda \left(v+m\right)^{\lambda-1}}{\lambda} = \left(v+m\right)^{\lambda-1} \tag{2.12}$$

y suponiendo que v^{λ} es $N(\mu, \sigma)$ para cierto λ , la función de densidad de las variables originales será:

$$f(v) = \frac{1}{\sigma\sqrt{2\pi}} v^{\lambda-1} \exp\left\{-\frac{1}{2\sigma^2} \left[\frac{\left(v+m\right)^{\lambda}-1}{\lambda}-\mu\right]^2\right\}$$
(2.13)

Por tanto, la función de densidad conjunta de $V = (v_1, ..., v_n)$ será, por la independencia de las observaciones:

$$f(V) = \frac{1}{\sigma^{n} \left(\sqrt{2\pi}\right)^{n}} \left[\prod_{i=1}^{n} \left(v_{i} + m\right)^{\lambda-1} \right] \exp\left\{ -\frac{1}{2\sigma^{2}} \sum \left[\frac{\left(v_{i} + m\right)^{\lambda} - 1}{\lambda} - \mu \right]^{2} \right\}$$
(2.14)

y la función soporte o logaritmo de la verosimilitud²⁶

$$L(\lambda;\mu,\sigma^{2}) = -\frac{n}{2}\ln\sigma^{2} - \frac{n}{2}\ln 2\pi + (\lambda - 1)\sum \ln(v_{i} + m) - \frac{1}{2\sigma^{2}}\sum \left[\frac{(v_{i} + m)^{\lambda} - 1}{\lambda} - \mu\right]^{2}$$
(2.15)

Para obtener el máximo de esta función se utiliza que, para λ fijo, los valores de σ^2 y μ que maximizan la verosimilitud (o el soporte) son, derivando e igualando a cero:

²⁵ Véase apartado 4.2.2 del capitulo 4 de la tesis.

²⁶ Véase apartado 4.5 del capitulo 4 de la tesis.

$$\hat{\mu}(\lambda) = \frac{1}{n} \sum \left[\frac{\left(v_i + m \right)^{\lambda} - 1}{\lambda} \right]$$
(2.16)

$$\hat{\sigma}^{2}(\lambda) = \frac{1}{n} \sum \left[\frac{\left(v_{i} + m\right)^{\lambda} - 1}{\lambda} - \hat{\mu}(\lambda) \right]^{2}$$
(2.17)

Al sustituir (2.16) y (2.17) en (2.15) se obtiene la llamada función de verosimilitud concentrada en λ cuya expresión, prescindiendo de constantes es:

$$L(\lambda; \hat{\mu}, \hat{\sigma}^2) = -\frac{n}{2} \ln \hat{\sigma}^2(\lambda) + (\lambda - 1) \sum \ln \left(v_i + m \right)$$
(2.18)

El valor de $\hat{\lambda}$ que maximice (2.18) es el estimador *MV* de la transformación.

2.6. Pruebas de hipótesis estadísticas.

Una vez seleccionada una distribución de densidad de probabilidad y estimados sus parámetros θ para representar una población de viento, se tiene que tomar decisiones sobre la misma, partiendo de la información muestral. Tales decisiones se denominan decisiones estadísticas.

Para llegar a tomar decisiones, conviene hacer determinados supuestos o conjeturas acerca de las poblaciones que se estudian. Tales supuestos que pueden ser o no ciertos se llaman hipótesis estadísticas y, en esta tesis, lo son sobre las distribuciones de probabilidad de las poblaciones de viento.

En esta tesis se formula la hipótesis de que las distribuciones teóricas propuestas se ajustan a las distribuciones empíricas, es decir, aquellas que se obtienen de los datos muestrales. Esta hipótesis se le denomina hipótesis nula y se representa por H_0 . Cualquier hipótesis que difiera de una hipótesis dada se llama hipótesis alternativa.

Los procedimientos que facilitan el decidir si una hipótesis se acepta o se rechaza o el determinar si las muestras observadas difieren significativamente de los resultados esperados se llaman ensayos de hipótesis, ensayos de significación o reglas de decisión.

En la tabla 2.1 se presentan las posibles decisiones que pueden tomarse con respecto a la hipótesis nula H_0 y las consecuencias que pueden originarse como resultado del verdadero estado de la naturaleza. (Kirch, 1975).

Decisión	Hipótesis nula H ₀	
	Verdadera	Falsa
Rechazar	Error tipo I (α)	Decisión correcta
Aceptar	Decisión correcta	Error tipo II (β)

Tabla 2.1 Cuadro de decisiones

Si se rechaza una hipótesis cuando debería ser aceptada, se dice que se comete un error del Tipo I. Si, por el contrario, se acepta una hipótesis que debería ser rechazada, se dice que se comete un error del Tipo II. En cualquiera de los dos casos se comete un error al tomar una decisión equivocada.

Para que el ensayo de hipótesis sea bueno, debe diseñarse de forma que minimice los errores de decisión. Esto no es tan sencillo como pueda parecer puesto que para un tamaño de muestra dado, un intento de disminuir un tipo de error, va generalmente acompañado por un incremento en el otro tipo de error. En la práctica, un tipo de error puede tener más importancia que el otro, y así se tiende a conseguir poner una limitación al error de mayor importancia. La única forma de reducir al tiempo ambos tipos de error es incrementar el tamaño de la muestra, lo cual puede ser o no posible.

La probabilidad máxima con la que en el ensayo de hipótesis se puede cometer un error del Tipo I se le llama nivel de significación del ensayo. Esta probabilidad se representa frecuentemente por α^{27} ; generalmente se fija antes de la prueba, de modo que los resultados obtenidos no influyen en la elección. La probabilidad de cometer un error del Tipo II se representa generalmente por β .

2.7. Pruebas de bondad de ajuste.

En las pruebas de bondad de ajuste se compara los resultados de una muestra aleatoria con aquellos que se espera observar si la hipótesis nula es correcta. La comparación se hace mediante la clasificación de los datos que se observan en cierto numero de categorías y entonces comparando las frecuencias observadas con las esperadas para cada categoría. Para un tamaño específico del error de Tipo I, la hipótesis nula será rechazada si existe una diferencia suficiente entre las frecuencias observadas y las esperadas.

²⁷ En la práctica se acostumbra a utilizar niveles de significación del 0.05 ó 0.01, aunque igualmente pueden emplearse otros valores.

Supóngase que v_1 , v_2 , v_3 ,...., v_n son observaciones independientes de una variable aleatoria V con función de distribución F(v) desconocida. Considérese la hipótesis nula

$$H_0: F(v) = F_0(\theta; v)$$
 (2.19)

donde el modelo de probabilidad propuesto $F_0(\theta, v)$ se encuentra especificado, de manera completa, con respecto a todos los parámetros θ .

Existen diversos test de ajuste (D'Agostino y Stephens, 1986). Sin embargo, en el análisis estadístico del viento, son cuatro las pruebas de bondad de ajuste que se han utilizado: la prueba Chi-cuadrado de Pearson (Conradsed *et al*, 1984; Auwera *et al.*, 1980; Corotis *et al.*, 1978), la prueba de Kolmogorov-Smirnov o prueba *K-S*. (Tuller y Brett, 1984; Öztürk y Dale, 1982; Corotis *et al.*, 1978), la prueba de Anderson-Darling (Ramírez y Carta, 2005)²⁸ y la prueba del gráfico de probabilidad (García *et al.*, 1998).

2.7.1. Prueba de Chi2.

El contraste de ajuste más antiguo es el contraste de Pearson, cuya idea es comparar las frecuencias observadas en un histograma con las especificadas por el modelo teórico que se contrasta. El test Chi2 se aplica a todo tipo de distribuciones, discretas y continuas.

La hipótesis H_0 que se utilizará en esta tesis se basa en el hecho de que los datos de la variable v provienen de un determinado modelo, del que se conoce su forma, pero no los parámetros, que se estiman a partir de los datos.

Aquí, se supone que se tiene una muestra $V = (v_1, ..., v_n)$ aleatoria simple relativamente grande ²⁹de una variable continua. Para realizar el contraste se procede de la siguiente manera:

Se agrupan los n datos en k clases. Las clases deben ser elegidas para que tengan todas igual probabilidad bajo la hipotética distribución F(v) (Stuart et al, 1999; D'Agostino y Stephens,1986).
 Mann y Wald (1942) encontraron que para una muestra de tamaño n (grande) y nivel de significación α, se deberá usar un número de clases dado, aproximadamente, por (2.20). Sin embargo, Schorr (1974), indica que el k "optimo" es más pequeño que el dado por (2.20) y recomienda tomar un número de clases dado por k = 2n^{2/5}.

²⁸ Usada por primera vez por Ramírez y Carta en un artículo, fruto de esta tesis, publicado en el año 2005 en la revista internacional Energy Conversion and Management. (veáse apéndice G)

²⁹ De acuerdo con Canavos (1988), la aplicabilidad de la prueba de bondad de ajuste Chi2 es cuestionable cuando se tienen muestras de tamaño muy grande, ya que es casi seguro el rechazar la hipótesis nula debido a que es muy difícil especificar una H_0 lo suficientemente cerca de la verdadera distribución.

$$k = 4 \left[\frac{2n^2}{c(\alpha)^2} \right]^{\frac{1}{5}}$$
(2.20)

donde $c(\alpha)$ es el punto- α superior de la distribución normal estándar.

- A las frecuencias observadas en la muestra de clase i les llamaremos O_i
 Si p_i es la probabilidad que el modelo propuesto asigna a cada clase, la frecuencia
- esperada de la clase *i* vendrá dada por $E_i = np_i$
- Se calcula la discrepancia entre las frecuencias observadas y la esperadas mediante (2.21)

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$$
(2.21)

que se distribuye aproximadamente como una χ^2 cuando el modelo es correcto. Sus grados de libertad vienen dados por *k-r*-1, donde *r* es el número de parámetros que se han estimado en el modelo haciendo uso del método de máxima verosimilitud³⁰ (Stuart *et al*, 1999).

Se rechaza el modelo cuando la probabilidad de obtener una discrepancia mayor o igual a la observada sea suficientemente baja. Es decir, cuando:

$$\chi^2 \ge \chi^2_\alpha (k - r - 1) \tag{2.22}$$

Para un cierto α pequeño.

2.7.2. Prueba de K-S.

Una prueba de bondad de ajuste más apropiada que la chi-cuadrada cuando $F_0(v)$ es continua y los parámetros de la distribución no son estimados a partir de la muestra³¹, es la basada en la estadística de Kolmogorov-Smirnov. La prueba de *K-S* no necesita que los datos se encuentren agrupados y es aplicable a muestras de tamaño pequeño. Sin embargo, el test *K-S* es una distribución libre en el sentido que los valores críticos no dependen de la distribución específica que se esté ensayando.

³⁰ Véase el apartado 4.5 del capítulo 4 de la tesis.

³¹ Cuando los parámetros son estimados a partir de los datos muestrales es necesario utilizar test basados en funciones de distribución empíricas que se han desarrollado para distribuciones concretas (D'Agostino y Stephens, 1986).

Ésta se basa en una comparación entre las funciones de distribución acumulativa que se observan en la muestra ordenada y la distribución propuesta bajo H_0 . Si esta comparación revela una diferencia suficientemente grande entre las funciones de distribución muestral y propuesta, entonces la hipótesis nula de que la distribución es $F_0(v)$, se rechaza.

Considérese la hipótesis nula por (2.19), en donde $F_0(v)$, se especifica de forma completa. Denomínese por $V_{(1)}$, $V_{(2)}$, ..., $V_{(n)}$ a las observaciones ordenadas de una muestra aleatoria de tamaño *n* y definase la función de distribución acumulativa muestral como:

$$S_{n}(v) = \begin{cases} 0 & v < v_{(1)} \\ k/n & v_{(k)} \le v < v_{(k+1)} \\ 1 & v > v_{n} \end{cases}$$
(2.23)

Ya que $F_0(v)$ se encuentra completamente especificada, es posible evaluar a $F_0(v)$ para algún valor deseado v, y entonces comparar este último con el valor correspondiente de $S_n(v)$. Si la hipótesis nula es verdadera, entonces es lógico esperar que la diferencia sea relativamente pequeña. La estadística *K-S* se define como:

$$D_n = \max |S_n(v) - F_0(v)|$$
(2.24)

La estadística D_n tiene una distribución que es independiente del modelo propuesto bajo H_0 . Por esta razón, se dice que D_n es una estadística independiente de la distribución. Lo anterior implica que la función de distribución de D_n puede evaluarse sólo en función del tamaño n de la muestra y después usarse para cualquier $F_0(v)$.

La función que entra en el cálculo de la significación puede escribirse como la suma siguiente (Press *et al*, 1996; Stuart *et al*, 1999):

$$Q_{K-S}(\lambda) = 2\sum_{j=1}^{\infty} \left(-1\right)^{j-1} e^{-2j^2 \lambda^2}$$
(2.25)

En términos de esta función, la significación de un valor observado de D_n viene dado aproximadamente (Press *et al*, 1992) por la fórmula (2.26).

$$P(D_n > d_{\alpha}) = \alpha = Q_{K-S} \left(\left[\sqrt{n} + 0.12 + 0.11 / \sqrt{n} \right] D_n \right)$$
(2.26)

De acuerdo con lo anterior, la hipótesis H_0 se rechaza si para algún valor v observado el valor de D_n se encuentra dentro de la región critica de tamaño α .

En esta tesis la estadística de Kolmogorov-Smirnov se lleva a cabo con la rutina Ksone

y la función probks contenidas en el libro de Press et al (1996).

2.7.3. Prueba de Anderson-Darling.

El test de Anderson-Darling (D'Agostino y Stephens, 1986) se usa para analizar si una muestra de datos proviene de una población con una distribución específica. Se trata de una modificación del test de Kolmogorov-Smirnov y proporciona más peso a las colas que el test de *K-S*. El test de Anderson-Darling hace uso de la distribución específica para calcular los valores críticos. Esto tiene la ventaja de conseguir un más sensible test y la desventaja que los valores críticos deben ser calculados para cada distribución.

El test de Anderson-Darling se define como

$$A^2 = -n - S \tag{2.27}$$

donde

$$S = \sum_{i=1}^{n} \frac{(2i-1)}{n} \left[\ln F(v_i) + \ln(1 - F(v_{n+1-i})) \right]$$
(2.28)

y *F* es la función de distribución acumulativa de la distribución específica. Debe tenerse en cuenta que v_i son los datos ordenados.

Los valores críticos del test de Anderson-Darling dependen de la distribución específica que está siendo analizada. Tablas de valores y fórmulas han sido publicadas por D'Agostino y Stephens, (1986) para unas pocas distribuciones especificas (normal, logaritmo-normal, exponencial, Weibull y logística). Para una distribución dada, el estadístico de Anderson-Darling debe ser multiplicado por una constante, la cual normalmente depende del tamaño de la muestra, n.

2.7.4. Prueba de los gráficos de probabilidad.

Los gráficos de probabilidad (probability plots) pueden ser generados para diversas distribuciones para ver cual proporciona el mejor ajuste. El coeficiente de correlación asociado con el ajuste lineal a los datos en el gráfico de probabilidad R^2 es una medida de la bondad del ajuste (Draper and Smith, 1998). El gráfico de probabilidad que genere el R^2 más alto proporcionará la mejor elección.

El R^2 , ajustado por los grados de libertad (DF=n-np), vendrá dado por (2.29), donde Od_i

son las ordenadas de los datos, Op_i son las ordenadas del modelo, Od la media de los valores Od_i , n el número de puntos de datos y np el número de parámetros utilizados en las correspondientes leyes de distribución de probabilidad utilizadas.

$$R^{2} = 1 - \frac{(n-1)\sum_{i=1}^{n} (Od_{i} - Op_{i})^{2}}{(DF - 1)\sum_{i=1}^{n} (Od_{i} - \overline{Od})^{2}} ; \quad i = 1, ..., n$$
(2.29)

2.8. Parámetros que cuantifican la energía eólica.

Para caracterizar las disponibilidades de energía eólica se debe distinguir (Justus, 1980) entre energía eólica disponible, que es la energía que podría transformar una máquina eólica ideal de rendimiento unidad, y la energía eólica recuperable, que depende de las características del sistema de conversión utilizado.

2.8.1. Energía eólica disponible.

La potencia eólica disponible a través de una superficie de sección circular A perpendicular al flujo de viento v viene dada por el flujo de la energía cinética por unidad de tiempo (2.30) (Putnam, 1948).

$$P_d = \frac{1}{2} \cdot Q \cdot v^2 = \frac{1}{2} \cdot \left(\rho \cdot \mathbf{A} \cdot v\right) \cdot v^2 = \frac{1}{2} \cdot \rho \cdot \mathbf{A} \cdot v^3$$
(2.30)

donde ρ es la densidad del aire, que varía con la altitud y con las condiciones atmosféricas. Esta variación puede ser del orden del 7% (Puig *et al*, 1982) sobre un valor medio que se toma normalmente de 1.225 kg/m³. Por tanto, la potencia del viento depende de la densidad del aire, de la superficie sobre la que incide y de la velocidad del viento, por estar ésta elevada a la tercera potencia en la expresión (2.30). Esta enorme dependencia de la velocidad del viento queda claramente reflejada en la figura 2.15.

Un método para caracterizar la potencia eólica disponible en distintos lugares de interés, por medio del cual se pueden comparar éstos, consiste en utilizar la potencia eólica media disponible por unidad de superfície barrida (2.31):

$$\frac{\overline{P}_d}{A} = \frac{1}{2} \cdot \rho \cdot \overline{v^3}$$
(2.31)

Figura 2.15. Dependencia de la potencia del viento de la velocidad del mismo

Si se conoce únicamente la velocidad media del viento y se desea obtener la potencia eólica media disponible, es necesario disponer de información suplementaria sobre la función de densidad de probabilidad de viento f(v). De forma más precisa, la velocidad media del viento es el momento de primer orden de la función de densidad de probabilidad

$$\overline{v} = \int_0^\infty v f(v) dv \tag{2.32}$$

y la media del cubo de la velocidad es el momento de orden tres respecto del origen

$$\overline{v^3} = \int_0^\infty v^3 f(v) dv \tag{2.33}$$

$$\overline{E}_d = \left(\frac{\overline{P}_d}{A}\right) \frac{N_h}{1000}$$
(2.34)

A partir de la potencia eólica media disponible por unidad de superficie, dada por (2.31) es posible deducir la energía eólica disponible en un determinado periodo de tiempo (2.34), en kWh/m², multiplicando esta ecuación por el número de horas N_h contenidas en dicho periodo de tiempo y dividiendo por 1000.

Figura 2.16. Densidad de energía experimental y teórica

Se define el factor de irregularidad (Golding, 1980) como la relación entre la energía eólica disponible calculada con (2.32) y la que se obtendría a partir del cubo de la velocidad media, resultando:

$$K_e = \frac{\overline{v^3}}{\left(\overline{v}\right)^3} \tag{2.35}$$

De ensayos realizados en algunas estaciones meteorológicas en Gran Bretaña (Golding, 1980), se concluye que no se debe calcular la energía disponible utilizando el cubo de la velocidad media para un periodo de tiempo largo, aunque si sirve para periodos relativamente cortos.

□ Histogramas de densidad de energía.

También, como señala Le Gouriérès (1983), se pueden trazar los histogramas de probabilidad de energía en función de la velocidad del viento por intervalos de 1 m/s. Estos histogramas permiten advertir la importancia de los vientos de intensidad comprendida entre dos valores dados, bajo del punto de vista de la producción energética (figura. 2.16).

Asimismo se puede trazar sobre la distribución experimental de energías del viento, la curva correspondiente a la distribución teórica de densidades de energía (Figura 2.16), obtenida de una distribución de probabilidad continua, y que corresponde a la ecuación:

$$E(v) = \frac{v^3 f(v)}{v^3} = \frac{v^3 f(v)}{\int_0^\infty v^3 f(v) dv}$$
(2.36)

La moda de la distribución de densidad de energía, es decir, la velocidad del viento a la cual la distribución de densidad de energía tiene un máximo proporciona la velocidad que proporciona mayor energía de la zona de estudio. Esta velocidad se denomina como velocidad de diseño de una turbina eólica, ya que la energía anual producida es normalmente máxima si una turbina eólica se diseña para operar a dicha velocidad.

2.8.2. Energía eólica máxima recuperable. Límite de Betz.

La potencia eólica que puede ser extraía del flujo de viento depende de la potencia eólica disponible y de las características de funcionamiento del dispositivo de extracción (Turbina eólica). Betz³² demuestra que la potencia máxima de salida de un sistema ideal de conversión de energía eólica está limitada. Betz supone que la máquina eólica está colocada en un aire animado con una velocidad imperturbada v_1 y una presión p_0 "aguas arriba" del rotor y con una velocidad v_2 y una presión p_0 "aguas abajo" de la misma. Como la producción de energía no se realiza más que a consta de la energía cinética, la velocidad v_2 es necesariamente inferior a v_1 . Resulta de aquí que la vena fluida atraviesa el rotor alargándose (figura 2.17).

Figura 2.17. Flujo idealizado a través de una turbina eólica representada por un disco (rotor) no giratorio

³² La teoría global del motor eólico de eje horizontal fue establecida por Betz.

De la aplicación de las ecuaciones básicas de la Mecánica de Fluidos se obtiene:

□ Ecuación de continuidad.

Si se designa por la letra v, la velocidad del aire al paso del aeromotor, por A_1 y A_2 las secciones hacia el origen y hacia el final, de la vena y por A el área barrida por la hélice, la ecuación de continuidad (admitiendo incompresibilidad del aire) puede escribirse:

$$\rho A_1 v_1 = \rho A v = \rho A_2 v_2 \tag{2.37}$$

D Ecuación de la cantidad de movimiento.

Según el teorema de Euler, la fuerza ejercida por el generador eólico sobre el aire en movimiento se dirige hacia delante y es igual en valor absoluto a:

$$F = \rho Q(v_1 - v_2) = \rho A v(v_1 - v_2)$$
(2.38)

Esta fuerza F por otro lado se puede expresar en función de la sección del rotor y de la diferencia de presiones delante y detrás del mismo.

$$F = A(p^{+} - p^{-})$$
(2.39)

Ecuación de Bernouilli.

Aplicando dos veces esta ecuación entre la sección 1 y la sección anterior del rotor y entre la sección posterior del rotor y la sección 2, se obtiene:

$$\frac{1}{2}\rho v_1^2 + p_0 + \rho g h_1 = \frac{1}{2}\rho v^2 + p^+ + \rho g h$$
(2.40)

$$\frac{1}{2}\rho v^2 + p^- + \rho gh = \frac{1}{2}\rho v_2^2 + p_0 + \rho gh_2$$
(2.41)

Debido a la incompresibilidad del aire (ρ =cte) y a que la corriente de aire es horizontal ($h=h_1=h_2$). Por tanto, restando a (2.40) la expresión (2.41) se tiene:

$$p^{+} - p^{-} = \frac{1}{2} \rho(v_{1}^{2} - v_{2}^{2})$$
(2.42)

Sustituyendo (2.42) en (2.39) se obtiene:

$$F = A(p^{+} - p^{-}) = \frac{1}{2}\rho A(v_{1}^{2} - v_{2}^{2})$$
(2.43)

Igualando (2.38) y (2.43) se deduce:

$$v = \frac{v_1 + v_2}{2} \tag{2.44}$$

La potencia absorbida por la fuera F (es decir el motor eólico) cuyo punto de aplicación se desplaza a la velocidad v respeto a las moléculas de aire en movimiento es, en estas condiciones:

$$P = Fv = \frac{1}{4}\rho A(v_1^2 - v_2^2)(v_1 + v_2)$$
(2.45)

Con el propósito de proporcionar una referencia para esta potencia de salida, ésta se compara con la potencia de la corriente de aire libre que fluye a través de la misma sección de área *A*, sin que ninguna potencia mecánica sea extraída de ella. Esta potencia viene dada por:

$$P_0 = \frac{1}{2}\rho A v_1^3 \tag{2.46}$$

La relación entre la potencia mecánica extraída por el rotor (2.45) a esta de la corriente de aire imperturbada (2.46) se le llama coeficiente de potencia c_p .

$$c_{p} = \frac{P}{P_{0}} = \frac{\frac{1}{4}\rho A(v_{1}^{2} - v_{2}^{2})(v_{1} + v_{2})}{\frac{1}{2}\rho A v_{1}^{3}}$$
(2.47)

Después de algunas operaciones en (2.47), el coeficiente de potencia puede ser expresado como una función del ratio de velocidades v_2/v_1 .

$$c_{p} = \frac{P}{P_{0}} = \frac{1}{2} \left| 1 - \left(\frac{v_{2}}{v_{1}} \right)^{2} \right| \left| 1 + \left(\frac{v_{2}}{v_{1}} \right) \right|$$
(2.48)

El coeficiente de potencia, es decir la relación entre la potencia mecánica extraíble y la potencia contenida en la corriente de aire, por lo tanto ahora depende de la relación de la
velocidad del aire antes y después del rotor. Si está interrelación se dibuja³³ se puede ver que el coeficiente de potencia tiene un máximo a un cierto ratio de velocidades (Figura 2.18).

Figura 2.18. Coeficiente de potencia en función de la relación de velocidades después y antes del rotor

Con $v_2/v_1=1/3$ el coeficiente de potencia máximo ideal, denominado factor de Betz, es:

$$c_p = \frac{16}{27} = 0.593 \tag{2.49}$$

En la figura 2.19 se representa de nuevo la densidad de energía teórica mostrada en la figura 2.16 pero donde se puede observar la energía del viento no aprovechable como consecuencia de límites físicos (2.49).

En las máquina eólicas reales la existencia de un pequeño número de palas, las pérdidas por rozamiento y los efectos de borde hacen que la potencia máxima extraíble llegue a ser como mucho, entre el 60 o 70% del valor indicado por Betz (2.49). Así, la potencia real de salida se puede expresar por:

³³ Una solución analítica naturalmente es también fácil de encontrar.

$$P_r = c_p \left(\frac{1}{2}\rho A v^3\right) \tag{2.50}$$

En la que c_p depende de varios factores, entre los que se encuentra la velocidad del viento, como se muestra en el capítulo 7 de esta tesis. Esta disminución de c_p respecto al límite de Betz dará lugar a que la potencia recuperable del viento sea inferior a la señala en la figura 2.19.

Figura 2.19. Densidad teórica de energía eólica y porcentaje de energía extraíble con una turbina eólica ideal

CAPÍTULO 3

Distribuciones paramétricas continuas estándar de probabilidad utilizadas.

3.1. Introducción.

Aunque existen múltiples funciones de densidad continuas que se han empleado en el estudio de fenómenos aleatorios en disciplinas como la ingeniería y las ciencias aplicadas o bien los negocios y la economía (Johnson *et al*, 1995; Johnson *et al*, 1994; Bury, 1999; Evans *et al*, 1993; Stuart y Ord, 2000), en este capítulo se presentan fundamentalmente aquellas distribuciones de probabilidad que han sido utilizadas en el análisis estadístico de la energía eólica y algunas otras que se pretenden ensayar con el objeto de determinar el grado de ajuste a datos observados de viento.

De manera específica se desarrollan los siguientes modelos de probabilidad:

- Modelos utilizados en análisis previos del viento: Gamma Generalizada de 3 parámetros, Gamma de 2 parámetros, Weibull de 3 y 2 parámetros, Rayleigh de 1 parámetro, Beta de 3 parámetros, Lognormal de 2 parámetros, Gaussiana Inversa de 2 parámetros, Mixta de Weibull de 2 parámetros.
- De Modelos que no han sido aún utilizados en el análisis de la energía eólica y que en esta

tesis han sido seleccionados para su estudio: Gamma Generalizada de 4 parámetros, Gamma de tres parámetros, Rayleigh de 2 parámetros, Beta de 4 parámetros, Beta prima de 2 parámetros, Normal restringida de 2 parámetros, Lognormal de 3 parámetros y Gaussiana Inversa de 3 parámetros.

Los modelos que en el pasado se han aplicado al análisis estadístico del viento han revelado el inconveniente de no representar los regímenes de viento que contienen altas frecuencias de viento en calma, es decir, altas frecuencias de velocidades nulas. Para solventar este problema Takle y Brown (1978), definieron la llamada distribución híbrida, g(v), de la siguiente manera:

$$g(v) = \theta_0 \cdot \delta(v) + (1 - \theta_0) \cdot f(v) \tag{3.1}$$

donde:

$$\delta(v) = \begin{cases} 1 & \text{Para } v = 0 \\ 0 & \text{Para } v \neq 0 \end{cases}$$
(3.2)

 θ_0 es la probabilidad de observación de la velocidad de viento nula y f(v) es la función de densidad de probabilidad estándar, que para Takle y Brown (1978) era la distribución de Weibull de 2 parámetros, para Auwera *et al* (1980)¹ la distribución Gamma generalizada de 3 parámetros y para la autora de esta tesis cualquier de las leyes de distribución estándar mencionadas anteriormente que no recojan la frecuencia de velocidad nula.

La correspondiente función de distribución G(v) de (3.1), viene dada, según Takle y Brown (1978), por:

$$G(v) = \begin{cases} P(V \le v) = \theta_0 + (1 - \theta_0) \cdot F(v) & \text{para } v \ge 0\\ 0 & \text{para otro valor de } v \end{cases}$$
(3.3)

donde F(v) es la función de distribución de la función de densidad de probabilidad f(v).

Con el objeto de determinar la influencia de las frecuencias de calmas no nulas en los modelos estadísticos anteriormente mencionados se desarrollarán en los siguientes apartados tanto las distribuciones estándar como las distribuciones híbridas definidas con ellas.

El desarrollo de las distintas leyes de distribución se centrará en la definición de las mismas, en la determinación de los momentos estadísticos que se precisarán en los capítulos posteriores, y en la exposición de sus correspondientes modas, medianas y funciones de distribución acumuladas.

¹ Auwera *et al* (1980), denominan Ley de distribución de Weibull de tres parámetros a la normalmente reconocida como Ley de distribución Gamma Generalizada de tres parámetros.

3.2. La distribución Gamma generalizada.

Una variable aleatoria V tiene una distribución Gamma Generalizada si su función de densidad de probabilidad viene definida por (Johnson *et al*, 1994):

$$f(\nu; \alpha, \theta, \eta, \gamma) = \begin{cases} \frac{\alpha \cdot (\nu - \gamma)^{\eta - 1}}{\theta^{\eta} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\left(\frac{\nu - \gamma}{\theta}\right)^{\alpha}} & \nu > \gamma; \ \alpha, \theta, \eta > 0\\ 0 & \forall \text{ otro valor} \end{cases}$$
(3.4)

Se trata de una distribución de cuatro parámetros: α , θ , η y γ .

Una segunda forma de expresar la función gamma generalizada (Auwera *et al*, 1980) se obtiene introduciendo el parámetro $\beta=\theta^{-\alpha}$ en la ecuación (3.4)

$$f(\nu;\alpha,\beta,\eta,\gamma) = \begin{cases} \frac{\alpha \cdot (\nu-\gamma)^{\eta-1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot (\nu-\gamma)^{\alpha}} & \nu > \gamma; \beta,\eta,\alpha > 0\\ 0 & \forall \text{ otro valor} \end{cases}$$
(3.5)

donde $\Gamma(\eta/\alpha)$ es la función gamma de Euler (3.6) (Thompson,1997); α y η son factores de forma; $\beta^{-1/\alpha}$ es un factor de escala y γ el factor de posición.

$$\Gamma(\eta/\alpha) = \int_0^\infty v^{\eta/\alpha - 1} \cdot e^{-v} \cdot dv$$
(3.6)

3.2.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución gamma generalizada, definida por la ecuación (3.5), puede ser determinado mediante la integral:

$$\mu'_{r} = \int_{\gamma}^{\infty} \frac{\alpha \cdot (v - \gamma)^{\eta - 1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot (v - \gamma)^{\alpha}} \cdot v^{r} \cdot dv$$
(3.7)

Haciendo el cambio de variables (3.8), sustituyendo el mismo en (3.7) e integrando entre 0 e ∞ se pueden obtener los diversos momentos respecto del origen que se utilizarán en el desarrollo de esta tesis.

$$u = \beta \left(v - \gamma \right)^{\alpha} \qquad ; \quad v = \left(u \cdot \beta^{-1} \right)^{\frac{1}{\alpha}} + \gamma ; \qquad dv = \left(\alpha \cdot \beta \right)^{-1} \cdot \left(u / \beta \right)^{\left(\frac{1}{\alpha} - 1 \right)} \cdot du \qquad (3.8)$$

Para r=1, se determina la media μ o momento de primer orden:

$$\mu'_{1} = \mu = E(V) = \beta^{-1/\alpha} \cdot \Gamma[(\eta + 1)/\alpha] / \Gamma(\eta/\alpha) + \gamma$$
(3.9)

Para *r*=2, se obtiene el segundo momento respecto del origen:

$$\mu_{2}^{'} = \beta^{-2/\alpha} \cdot \Gamma\left[\left(\eta + 2\right)/\alpha\right] / \Gamma\left(\eta/\alpha\right) + 2 \cdot \gamma \cdot \beta^{-1/\alpha} \cdot \Gamma\left[\left(\eta + 1\right)/\alpha\right] / \Gamma\left(\eta/\alpha\right) + \gamma^{2}$$
(3.10)

Para *r*=3, el tercer momento respecto del origen:

$$\mu_{3}^{'} = \beta^{-3/\alpha} \Gamma\left[(\eta+3)/\alpha\right] / \Gamma\left(\eta/\alpha\right) + 3\gamma\beta^{-2/\alpha} \Gamma\left[(\eta+2)/\alpha\right] / \Gamma\left(\eta/\alpha\right) + 3\beta^{-1/\alpha}\gamma^{2} \Gamma\left[(\eta+1)/\alpha\right] / \Gamma\left(\eta/\alpha\right) + \gamma^{3}$$
(3.11)

Para *r*=4, el cuarto momento respecto del origen:

$$\mu_{4}^{'} = \beta^{-4/\alpha} \Gamma \left[(\eta + 4)/\alpha \right] / \Gamma (\eta/\alpha) + 4\gamma \beta^{-3/\alpha} \Gamma \left[(\eta + 3)/\alpha \right] / \Gamma (\eta/\alpha) + + 6 \beta^{-2/\alpha} \gamma^{2} \Gamma \left[(\eta + 2)/\alpha \right] / \Gamma (\eta/\alpha) + + 4\gamma^{3} \beta^{-1/\alpha} \Gamma \left[(\eta + 1)/\alpha \right] / \Gamma (\eta/\alpha) + \gamma^{4}$$
(3.12)

El *r*-ésimo momento (μ_r) respecto de la media μ de la variable V viene dado por:

$$\mu_{r} = \int_{\gamma}^{\infty} \frac{\alpha \cdot (v - \gamma)^{\eta - 1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot (v - \gamma)^{\alpha}} \cdot (v - \mu)^{r} \cdot dv$$
(3.13)

Sustituyendo (3.8) en (3.13) e integrando entre 0 e ∞ se obtiene, para *r*=2, *la varianza* σ^2 o momento de segundo orden respecto a la media:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2}^{'} - \mu^{2} = \beta^{-2/\alpha} \cdot \left\{ \frac{\Gamma[(\eta+2)/\alpha]}{\Gamma(\eta/\alpha)} - \frac{\Gamma^{2}[(\eta+1)/\alpha]}{\Gamma^{2}(\eta/\alpha)} \right\}$$
(3.14)

Para *r*=3, el momento de tercer orden respecto de la media (μ_3), a partir del cual se puede obtener el tercer momento estandarizado denominado coeficiente de asimetría (α_3):

$$\alpha_{3} = \mu_{3} / (\mu_{2})^{\frac{3}{2}} = E(V - \mu)^{3} / (\mu_{2})^{\frac{3}{2}} = (\mu_{3} - 3 \cdot \mu \cdot \mu_{2} + 2 \cdot \mu^{3}) / (\mu_{2} - \mu^{2})^{\frac{3}{2}} =$$

$$= \frac{\left\{ \Gamma [(\eta + 3)/\alpha] / \Gamma (\eta/\alpha) + 2\Gamma^{3} [(\eta + 1)/\alpha] / \Gamma^{3} (\eta/\alpha) - 3\Gamma [(\eta + 1)/\alpha] \Gamma [(\eta + 2)/\alpha] / \Gamma^{2} (\eta/\alpha) \right\}}{\left\{ \Gamma [(\eta + 2)/\alpha] / \Gamma (\eta/\alpha) - \Gamma^{2} [(\eta + 1)/\alpha] / \Gamma^{2} (\eta/\alpha) \right\}^{\frac{3}{2}}}$$
(3.15)

La distribución será asimétrica positiva, negativa o simétrica si $\alpha_3>0$, $\alpha_3<0$, o $\alpha_3=0$ respectivamente (Canavos, 1988).

Para *r*=4, el cuarto momento central (μ_4), el cual se puede estandarizar para obtener el denominado coeficiente de curtosis (α_4).

$$\alpha_4 = \mu_4 / \mu_2^2 = E(V - \mu)^4 / \mu_2^2 = \left(\mu_4 - 4 \cdot \mu \cdot \mu_3 + 6 \cdot \mu^2 \cdot \mu_2 - 3\mu^4\right) / \left(\mu_2 - \mu^2\right)^2 = 0$$

$$=\frac{\Gamma[(\eta+4)/\alpha]/\Gamma(\eta/\alpha) - 4\Gamma[(\eta+3)/\alpha]\Gamma[(\eta+1)/\alpha]/\Gamma^{2}(\eta/\alpha)}{\left\{\Gamma[(\eta+2)/\alpha]/\Gamma(\eta/\alpha) - \Gamma^{2}[(\eta+1)/\alpha]/\Gamma^{2}(\eta/\alpha)\right\}^{2}} +$$
(3.16)

$$+\frac{6\Gamma^{2}\left[(\eta+1)/\alpha\right]\Gamma\left[(\eta+2)/\alpha\right]/\Gamma^{3}(\eta/\alpha)-3\Gamma^{4}\left[(\eta+1)/\alpha\right]/\Gamma^{4}(\eta/\alpha)}{\left\{\Gamma\left[(\eta+2)/\alpha\right]/\Gamma(\eta/\alpha)-\Gamma^{2}\left[(\eta+1)/\alpha\right]/\Gamma^{2}(\eta/\alpha)\right\}^{2}}$$

Si $\alpha_4>3$, la distribución de probabilidad presenta un pico relativamente alto y recibe el nombre de *leptocúrtica*; si $\alpha_4<3$, la distribución es relativamente plana y recibe el nombre de *platicúrtica*; y si $\alpha_4=3$, la distribución no presenta un pico ni muy alto ni muy bajo y recibe el nombre de *mesocúrtica* (Canavos, 1988).

El coeficiente de variación cv, definido como el cociente entre la desviación estándar σ y la media μ , vendrá dado por:

$$cv = \sqrt{\sigma^{2}}/\mu = \frac{\sqrt{\left\{\Gamma\left[(\eta+2)/\alpha\right]/\Gamma(\eta/\alpha) - \Gamma^{2}\left[(\eta+1)/\alpha\right]/\Gamma^{2}(\eta/\alpha)\right\}}}{\left\{\Gamma\left[(\eta+1)/\alpha\right]/\Gamma(\eta/\alpha) + \gamma/\beta^{-1/\alpha}\right\}}$$
(3.17)

3.2.2. La función de distribución acumulada.

La función de distribución acumulativa para una distribución gamma generalizada viene dada por:

$$F(\nu;\alpha,\beta,\eta,\gamma) = P(V \le \nu) = \int_{\gamma}^{\nu} \frac{\alpha \cdot (\nu - \gamma)^{\eta - 1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot (\nu - \gamma)^{\alpha}} \cdot d\nu$$
(3.18)

No es posible obtener una expresión de forma cerrada para la integral (3.18). En consecuencia, la función de distribución acumulativa para una variable aleatoria gamma generalizada se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.18).

3.2.3. Moda y mediana.

La moda o valor v_m que maximiza la función de densidad V viene dada por:

$$\frac{d\left[f\left(v;\alpha,\beta,\eta,\gamma\right)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \gamma + \left[\frac{\eta-1}{\alpha\cdot\beta}\right]^{1/\alpha}$$
(3.19)

La mediana $v_{0.5}$ ó valor para el cual la distribución de probabilidad se divide en dos partes iguales se determina resolviendo la ecuación (3.20).

$$P(V \le v_{0.5}) = \frac{1}{2} = \int_{\gamma}^{v_{0.5}} \frac{\alpha \cdot (v - \gamma)^{\eta - 1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot (v - \gamma)^{\alpha}} \cdot dv$$
(3.20)

La resolución de la ecuación no lineal (3.20) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.3. La distribución híbrida gamma generalizada.

Según (3.1) y (3.5) la distribución híbrida gamma generalizada viene dada por:

$$g(\nu;\alpha,\beta,\eta,\gamma,\theta_0) = \theta_0 \delta(\nu) + (1-\theta_0) \frac{\alpha(\nu)^{\eta-1}}{\beta^{-\eta/\alpha} \Gamma(\eta/\alpha)} e^{-\beta(\nu)^{\alpha}}$$
(3.21)

En el caso de $\theta_0=0$, (3.21) se reduce a la distribución gamma generalizada de tres parámetros.

3.3.1. Momentos de la distribución.

Siguiendo un procedimiento de desarrollo similar al realizado en el apartado 3.2.1, se obtiene la siguiente expresión del *r*-ésimo momento respecto al origen de la distribución (3.21).

$$\mu_{r} = (1 - \theta_{0}) \beta^{-r/\alpha} \Gamma[(\eta + r)/\alpha] / \Gamma(\eta/\alpha)$$
(3.22)

La varianza de la distribución vendrá dada por:

$$\mu_{2} = (1-\theta_{0})\beta^{-2/\alpha} \left\{ \Gamma\left[(\eta+2)/\alpha\right]/\Gamma(\eta/\alpha) - (1-\theta_{0})\Gamma^{2}\left[(\eta+1)/\alpha\right]/\Gamma^{2}(\eta/\alpha) \right\}$$
(3.23)

El coeficiente de asimetría (α_3):

$$\alpha_{3} = \mu_{3} / (\mu_{2})^{3/2} = (\mu_{3} - 3 \cdot \mu \cdot \mu_{2} + 2 \cdot \mu^{3}) / (\mu_{2} - \mu^{2})^{3/2} =$$

$$= \frac{(1 - \theta_{0})}{A^{3/2}} \Big[\Gamma \big[(\eta + 3) / \alpha \big] / \Gamma (\eta / \alpha) + 2 (1 - \theta_{0})^{2} \cdot \Gamma^{3} \big[(\eta + 1) / \alpha \big] / \Gamma^{3} (\eta / \alpha) \Big] -$$

$$- \frac{3 \cdot (1 - \theta_{0})}{A^{3/2}} \cdot \Gamma \big[(\eta + 1) / \alpha \big] \cdot \Gamma \big[(\eta + 2) / \alpha \big] / \Gamma^{2} (\eta / \alpha)$$
(3.24)

donde:

$$A = (1 - \theta_0) \cdot \left[\Gamma \left[(\eta + 2)/\alpha \right] / \Gamma (\eta/\alpha) - (1 - \theta_0) \cdot \Gamma^2 \left[(\eta + 1)/\alpha \right] / \Gamma^2 (\eta/\alpha) \right]$$
(3.25)

El coeficiente de curtosis (α_4):

$$\alpha_{4} = \mu_{4} / \mu_{2}^{2} = \left(\mu_{4}^{'} - 4 \cdot \mu \cdot \mu_{3}^{'} + 6 \cdot \mu^{2} \cdot \mu_{2}^{'} - 3\mu^{4} \right) / \left(\mu_{2}^{'} - \mu^{2} \right)^{2} =$$

$$= \frac{1}{B^{2}} \cdot \left[\Gamma \left[(\eta + 4) / \alpha \right] / \Gamma (\eta / \alpha) - 4 (1 - \theta_{0}) \cdot \Gamma \left[(\eta + 3) / \alpha \right] \cdot \Gamma \left[(\eta + 1) / \alpha \right] / \Gamma^{2} (\eta / \alpha) \right] +$$

$$+ \frac{1}{B^{2}} \cdot \left[6 (1 - \theta_{0})^{2} \cdot \Gamma^{2} \left[(\eta + 1) / \alpha \right] \cdot \Gamma \left[(\eta + 2) / \alpha \right] / \Gamma^{3} (\eta / \alpha) - 3 (1 - \theta_{0})^{3} \cdot \Gamma^{4} \left[(\eta + 1) / \alpha \right] / \Gamma^{4} (\eta / \alpha) \right]$$
(3.26)

donde:

$$B = (1 - \theta_0)^{1/2} \left[\Gamma \left[(\eta + 2)/\alpha \right] / \Gamma (\eta/\alpha) - (1 - \theta_0) \Gamma^2 \left[(\eta + 1)/\alpha \right] / \Gamma^2 (\eta/\alpha) \right]$$
(3.27)

El coeficiente de variación cv:

$$cv = \frac{\sqrt{(1-\theta_0)\cdot\Gamma[(\eta+2)/\alpha]/\Gamma(\eta/\alpha) - (1-\theta_0)^2\cdot\Gamma^2[(\eta+1)/\alpha]/\Gamma^2(\eta/\alpha)}}{(1-\theta_0)\cdot\Gamma[(\eta+1)/\alpha]/\Gamma(\eta/\alpha)}$$
(3.28)

3.3.2. La función de distribución acumulada.

La función de distribución acumulativa para una distribución gamma generalizada híbrida viene dada, según (3.3), por:

$$G(\nu;\alpha,\beta,\eta,\theta_0) = P(V \le \nu) = \theta_0 + (1-\theta_0) \int_0^\nu \frac{\alpha \cdot (\nu)^{\eta-1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot \nu^{\alpha}} \cdot d\nu$$
(3.29)

No es posible obtener una expresión de forma cerrada para la integral (3.29). En consecuencia, la función de distribución acumulativa para una variable aleatoria gamma generalizada se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.29).

3.3.3. Moda y mediana.

La moda o valor v_m que maximiza la función de densidad V viene dada por:

$$\frac{d\left[g\left(v;\alpha,\beta,\eta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \left[\frac{\eta-1}{\alpha\beta}\right]^{1/\alpha}$$
(3.30)

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.31).

$$P(V \le v_{0.5}) = \frac{1}{2} = \theta_0 + (1 - \theta_0) \int_0^{v_{0.5}} \frac{\alpha \cdot (v)^{\eta - 1}}{\beta^{-\eta/\alpha} \cdot \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot v^{\alpha}} \cdot dv$$
(3.31)

La resolución de la ecuación no lineal (3.31) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.4. La Distribución Gamma de tres parámetros.

Una variable aleatoria V tiene una *distribución gamma* si su función de distribución viene definida por (Bury, 1999):

$$f(\nu;\eta,\beta,\gamma) = \begin{cases} \frac{1}{\Gamma(\eta)\beta^{\eta}} (\nu-\gamma)^{\eta-1} e^{-(\nu-\gamma)/\beta} & \text{si } \nu > 0 \quad y \quad \eta > 0, \beta > 0; \nu > \gamma \\ 0 & \text{para cualquier otro valor} \end{cases}$$
(3.32)

La distribución gamma(α,β,γ) de tres parámetros dada por (3.32) es un caso particular de la función gamma generalizada ² (3.4) cuando α =1.

3.4.1. Momentos de la distribución.

La media µ, o primer momento respecto del origen de la distribución viene dado por:

$$\mu'_{1} = \mu = E(V) = \beta \cdot \Gamma(\eta + 1) / \Gamma(\eta) + \gamma = \beta \cdot \eta \cdot \Gamma(\eta) / \Gamma(\eta) + \gamma = \beta \cdot \eta + \gamma$$
(3.33)

El momento de segundo orden respecto al origen:

 $^{^2}$ En este caso y afectos de nomenclatura se ha sustituido el parámetro θ por $\beta.$

$$\mu_{2}' = \beta^{2} \cdot \Gamma(\eta + 2) / \Gamma(\eta) + 2 \cdot \gamma \cdot \beta \cdot \Gamma(\eta + 1) / \Gamma(\eta) + \gamma^{2}$$

$$\mu_{2}' = \beta^{2} \cdot (\eta + 1) \cdot \eta + 2 \cdot \gamma \cdot \beta \cdot \eta + \gamma^{2}$$
(3.34)

El momento de tercer orden respecto al origen:

$$\mu'_{3} = \beta^{3} \cdot \Gamma(\eta + 3) / \Gamma(\eta) + 3 \cdot \gamma \cdot \beta^{2} \cdot \Gamma(\eta + 2) / \Gamma(\eta) +$$
$$+ 3 \cdot \beta \cdot \gamma^{2} \cdot \Gamma(\eta + 1) / \Gamma(\eta) + \gamma^{3} =$$
(3.35)

$$\mu'_{3} = \beta^{3} \cdot (\eta + 2) \cdot (\eta + 1) \cdot \eta + 3 \cdot \gamma \cdot \beta^{2} \cdot (\eta + 1) \cdot \eta + 3 \cdot \beta \cdot \gamma^{2} \cdot \eta + \gamma^{3}$$

El momento de cuarto orden respecto al origen:

$$\mu_{4}^{'} = \beta^{4} \cdot \Gamma(\eta + 4) / \Gamma(\eta) + 4 \cdot \gamma \cdot \beta^{3} \cdot \Gamma(\eta + 3) / \Gamma(\eta) + 6 \cdot \beta^{2} \cdot \gamma^{2} \cdot \Gamma(\eta + 2) / \Gamma(\eta) +$$

$$+ 4 \cdot \gamma^{3} \cdot \beta \cdot \Gamma(\eta + 1) / \Gamma(\eta) + \gamma^{4} =$$

$$\mu_{4}^{'} = \beta^{4} \cdot (\eta + 3) \cdot (\eta + 2) \cdot (\eta + 1) \cdot \eta + 4 \cdot \gamma \cdot \beta^{3} \cdot (\eta + 2) \cdot (\eta + 1) \cdot \eta +$$

$$+ 6 \cdot \beta^{2} \cdot \gamma^{2} \cdot (\eta + 1) \cdot \eta + 4 \cdot \gamma^{3} \cdot \beta \cdot \eta + \gamma^{4}$$
(3.36)

La varianza:

$$\mu_2 = Var(V) = \beta^2 \cdot \left[\Gamma(\eta + 2) / \Gamma(\eta) - \Gamma^2(\eta + 1) / \Gamma^2(\eta) \right] = \beta^2 \left[(\eta + 1) \cdot \eta - \eta^2 \right] = \beta^2 \cdot \eta \quad (3.37)$$

El coeficiente de asimetría:

$$\alpha_3 = 2/\sqrt{\eta} \tag{3.38}$$

El coeficiente de curtosis (α_4):

$$\alpha_4 = 3 \cdot (1 + 2/\eta) \tag{3.39}$$

El coeficiente de variación:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \frac{\sqrt{\eta}}{\eta + \gamma/\beta}$$
(3.40)

3.4.2. La función de distribución acumulada.

La función de distribución acumulada de gamma de tres parámetros viene dada por:

$$F(\nu;\beta,\eta,\gamma) = P(V \le \nu) = \int_{\gamma}^{\nu} \frac{\left(\nu - \gamma\right)^{\eta-1}}{\beta^{\eta} \cdot \Gamma(\eta)} \cdot e^{-\left[\left(\nu - \gamma\right)/\beta\right]} \cdot d\nu$$
(3.41)

Excepto para el caso especial en que η sea entero, no es posible obtener una expresión de forma cerrada para la integral (3.41). En consecuencia, la función de distribución acumulativa para una variable aleatoria gamma, llamada función gamma incompleta, se debe obtener aplicando procedimientos de aproximación con la ayuda de ordenador.

3.4.3. Moda y mediana.

La moda o valor v_m que maximiza la función de densidad V viene dada por:

$$\frac{d\left[f\left(v;\beta,\eta,\gamma\right)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \gamma + \beta \cdot (\eta - 1) \tag{3.42}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.43).

$$P(V \le v_{0.5}) = \frac{1}{2} = \int_0^{v_{0.5}} \frac{(v - \gamma)^{\eta - 1}}{\beta^{\eta} \cdot \Gamma(\eta)} \cdot e^{-(v - \gamma)/\beta} \cdot dv$$
(3.43)

La resolución de la ecuación no lineal (3.43) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.5. La distribución híbrida gamma.

Según (3.1) y (3.32) la distribución híbrida gamma viene dada por:

$$g(v;\beta,\eta,\theta_0) = \theta_0 \cdot \delta(v) + (1-\theta_0) \frac{(v)^{\eta-1}}{\beta^{\eta} \cdot \Gamma(\eta)} \cdot e^{-(v)/\beta}$$
(3.44)

En el caso de $\theta_0=0$, (3.44) se reduce a la distribución gamma de dos parámetros.

3.5.1. Momentos de la distribución.

El r-ésimo momento respecto al origen de la distribución (3.44) viene dado por:

$$\mu'_{r} = \frac{\left(1 - \theta_{0}\right)}{\Gamma(\eta)\beta^{\eta}} \int_{0}^{\infty} v^{\eta + r - 1} e^{-\nu/\beta} \cdot d\nu$$
(3.45)

Considerando un cambio de variable de integración, tal que $u = v/\beta$, $v = \beta u$, y $dv = \beta du$; entonces:

$$\mu'_{r} = \frac{(1-\theta_{0})}{\Gamma(\eta)\beta^{r}} \int_{0}^{\infty} u^{\eta+r-1} e^{-u} \cdot du = (1-\theta_{0}) \cdot \beta^{r} \cdot \Gamma(\eta+r)/\Gamma(\eta)$$
(3.46)

La media µ de la distribución viene dada por:

$$\mu'_{1} = \mu = E(V) = (1 - \theta_{0}) \cdot \beta \cdot \Gamma(\eta + 1) / \Gamma(\eta) = (1 - \theta_{0}) \cdot \beta \cdot \eta$$
(3.47)

La varianza:

$$\mu_{2} = Var(V) = \mu_{2}' - \mu^{2} = \beta^{2} \cdot \eta \cdot (1 - \theta_{0}) \cdot (1 + \eta \cdot \theta_{0})$$
(3.48)

El coeficiente de asimetría:

$$\alpha_{3} = \mu_{3} / \mu_{2}^{3/2} = \frac{2 + \eta \theta_{0} \left(3 - \eta + 2\eta \theta_{0}^{2}\right)}{\left(1 + 2\theta_{0}\right)^{3/2} \sqrt{\left(1 - \theta_{0}\right) \eta}}$$
(3.49)

El coeficiente de curtosis (α_4):

$$\alpha_{4} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{3\eta + 6 + \eta\theta_{0} \left(\eta^{2} + 8 - 3\eta^{2}\theta_{0} + 6\eta\theta_{0} + 3\eta^{2}\theta_{0}^{2}\right)}{\eta (1 - \theta_{0}) (1 + \eta\theta_{0})^{2}}$$
(3.50)

El coeficiente de variación:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \sqrt{\frac{1+\eta \cdot \theta_0}{(1-\theta_0) \cdot \eta}}$$
(3.51)

3.5.2. La función de distribución acumulada.

La función de distribución acumulada de gamma híbrida viene dada por:

$$G(\nu;\beta,\eta,\theta_0) = P(V \le \nu) = \theta_0 + (1-\theta_0) \int_0^\nu \frac{(\nu)^{\eta-1}}{\beta^\eta \cdot \Gamma(\eta)} \cdot \mathrm{e}^{-\nu/\beta} \cdot d\nu$$
(3.52)

Excepto para el caso especial en que η sea entero, no es posible obtener una expresión de forma cerrada para la integral (3.52). En consecuencia, la función de distribución acumulativa para una variable aleatoria gamma, llamada función gamma incompleta, se debe obtener aplicando procedimientos de aproximación con la ayuda de ordenador.

3.5.3 Moda y mediana.

La moda o valor $v_{\rm m}$ que maximiza la función de densidad V viene dada por:

$$\frac{d\left[g\left(v;\beta,\eta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \beta \cdot (\eta - 1) \tag{3.53}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.41).

$$P(V \le v_{0.5}) = \frac{1}{2} = \theta_0 + (1 - \theta_0) \int_0^{v_{0.5}} \frac{(v)^{\eta - 1}}{\beta^{\eta} \cdot \Gamma(\eta)} \cdot e^{-v/\beta} \cdot dv$$
(3.54)

La resolución de la ecuación no lineal (3.54) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.6. La distribución de Weibull.

Se dice que una variable aleatoria V tiene una *distribución de Weibull* si su función de densidad de probabilidad viene dada por (Bury, 1999):

$$f(\nu;\alpha,\beta,\gamma) = \begin{cases} \frac{\alpha}{\beta} \cdot \left(\frac{\nu-\gamma}{\beta}\right)^{\alpha-1} e^{-\left[(\nu-\gamma)/\beta\right]^{\alpha}} & \nu \ge \gamma ; \ \alpha,\beta > 0\\ 0 & \forall \text{ otro valor} \end{cases}$$
(3.55)

La distribución de Weibull es una familia de distribuciones que dependen de tres parámetros: el de forma α , el de escala β , y el de posición γ . La distribución de Weibull es un caso particular de la función gamma generalizada (3.4) cuando³ $\eta = \alpha$.

3.6.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución de Weibull, puede ser determinado mediante la integral:

$$\mu_{r}^{'} = \int_{\gamma}^{\infty} \frac{\alpha}{\beta} \cdot \left[\frac{v - \gamma}{\beta} \right]^{\alpha - 1} \cdot e^{-\left[(v - \gamma)/\beta \right]^{\alpha}} \cdot v^{r} \cdot dv$$
(3.56)

Realizando el cambio de variables (3.57), sustituyendo el mismo en (3.56) e integrando entre 0 e : se pueden obtener los diversos momentos respecto del origen que se utilizarán en el desarrollo de esta tesis.

$$u = \left[\frac{v - \gamma}{\beta}\right]^{\alpha}; \quad v = \beta \cdot u^{1/\alpha} + \gamma \quad ; \ dv = \frac{\beta}{\alpha} \cdot u^{(1/\alpha - 1)} \cdot du \tag{3.57}$$

Así, para r=1, se obtiene la media μ o momento de primer orden:

$$\mu'_{1} = \mu = E(V) = \beta \cdot \Gamma(1 + 1/\alpha) + \gamma$$
(3.58)

Para *r*=2, el segundo momento respecto del origen:

$$\mu'_{2} = \beta^{2} \cdot \Gamma \left(1 + 2/\alpha \right) + 2 \cdot \gamma \cdot \beta \cdot \Gamma \left(1 + 1/\alpha \right) + \gamma^{2}$$
(3.59)

Para *r*=3, el tercer momento respecto del origen:

$$\mu_{3}^{'} = \beta^{3} \cdot \Gamma \left(1 + 3/\alpha \right) + 3 \cdot \gamma \cdot \beta^{2} \cdot \Gamma \left(1 + 2/\alpha \right) + 3 \cdot \beta \cdot \gamma^{2} \cdot \Gamma \left(1 + 1/\alpha \right) + \gamma^{3}$$
(3.60)

³ En este caso y afectos de nomenclatura se ha sustituido el parámetro θ por el β .

Para r = 4, el cuarto momento respecto del origen:

$$\mu_{4}^{'} = \beta^{4} \cdot \Gamma \left(1 + 4/\alpha \right) + 4 \cdot \gamma \cdot \beta^{3} \cdot \Gamma \left(1 + 3/\alpha \right) + 6 \cdot \beta^{2} \cdot \gamma^{2} \cdot \Gamma \left(1 + 2/\alpha \right) +$$

$$+ 4 \cdot \gamma^{3} \cdot \beta \cdot \Gamma \left(1 + 1/\alpha \right) + \gamma^{4}$$

$$(3.61)$$

El *r*-ésimo momento respecto de la media μ de la variable *V* viene dado por:

$$\mu_{r} = \int_{\gamma}^{\infty} \left\{ \frac{\alpha \cdot (v - \gamma)^{\alpha - 1}}{\beta^{\alpha}} \cdot e^{-[(v - \gamma)/\beta]^{\alpha}} \right\} \cdot \{v - \mu\}^{r} \cdot dv$$
(3.62)

Sustituyendo (3.57) en (3.62) e integrando entre γ e : se obtiene, para *r*=2, la varianza μ^2 o momento de segundo orden respecto a la media:

$$\mu_{2} = Var(V) = E(V - \mu)^{2} = \mu_{2}^{'} - \mu^{2} = \beta^{2} \cdot \left[\Gamma(1 + 2/\alpha) - \Gamma^{2}(1 + 1/\alpha)\right]$$
(3.63)

Para *r*=3, el momento de tercer orden respecto de la media (μ_3), a partir del cual se puede obtener el coeficiente de asimetría (α_3):

$$\alpha_{3} = \frac{\Gamma(1+3/\alpha) + 2 \cdot \Gamma^{3}(1+1/\alpha) - 3 \cdot \Gamma(1+1/\alpha) \cdot \Gamma(1+2/\alpha)}{\left[\Gamma(1+2/\alpha) - \Gamma^{2}(1+1/\alpha)\right]^{\frac{3}{2}}}$$
(3.64)

Para r=4, el cuarto momento central (μ_4), el cual se puede estandarizar para obtener el coeficiente de curtosis (α_4):

$$\alpha_{4} = \frac{\left[\Gamma(1+4/\alpha) - 4 \cdot \Gamma(1+3/\alpha) \cdot \Gamma(1+1/\alpha) + 6 \cdot \Gamma^{2}(1+1/\alpha) \cdot \Gamma(1+2/\alpha) - 3 \cdot \Gamma^{4}(1+1/\alpha)\right]}{\left[\Gamma(1+2/\alpha) - \Gamma^{2}(1+1/\alpha)\right]^{2}}$$
(3.65)

El coeficiente de variación:

$$cv = \sqrt{\sigma^2} / \mu = \frac{\sqrt{\left[\Gamma\left(1+2/\alpha\right) - \Gamma^2\left(1+1/\alpha\right)\right]}}{\Gamma\left(1+1/\alpha\right) + \gamma/\beta}$$
(3.66)

3.6.2. La función de distribución acumulada.

La función de distribución acumulada de Weibull viene dada por:

$$F(\nu;\alpha,\beta,\gamma) = P(V \le \nu) = \int_{\gamma}^{\nu} \frac{\alpha}{\beta} \cdot \left(\frac{\nu-\gamma}{\beta}\right)^{\alpha-1} e^{-\left[(\nu-\gamma)/\beta\right]^{\alpha}} \cdot d\nu$$
(3.67)

Existe una expresión de forma cerrada para la función de distribución acumulativa dada por (3.68), la cual puede ser utilizada para obtener áreas bajo la curva de Weibull. Para su resolución se realiza el cambio de variables (3.57), se sustituye en (3.67) y se integra entre γ y *v*.

$$F(\nu;\alpha,\beta,\gamma) = P(V \le \nu) = 1 - e^{-\lfloor (\nu-\gamma)/\beta \rfloor^{\alpha}}$$
(3.68)

3.6.3. Moda y mediana.

La moda v_m de la función de densidad de Weibull viene dada por:

$$\frac{d\left[f(v;\alpha,\beta,\gamma)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \gamma + \beta \cdot \left(1 - 1/\alpha\right)^{1/\alpha} \tag{3.69}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.70).

$$P(V \le v_{0.5}) = \frac{1}{2} = 1 - e^{-\left[(v-\gamma)/\beta\right]^{\alpha}}; \qquad v_{0.5} = \gamma + \beta \left(\ln 2\right)^{1/\alpha}$$
(3.70)

3.7. La distribución híbrida de Weibull.

Según (3.1) y (3.55) la *distribución híbrida de Weibull* viene dada por:

$$g(\nu;\alpha,\beta,\theta_0) = \theta_0 \cdot \delta(\nu) + (1-\theta_0) \cdot \alpha/\beta \cdot (\nu/\beta)^{\alpha-1} \cdot e^{-(\nu/\beta)^{\alpha}}$$
(3.71)

En el caso de $\theta_0=0$, (3.71) se reduce a la distribución de Weibull de dos parámetros, la cual ha sido la ley más frecuentemente utilizada para describir el comportamiento estadístico del viento en los textos más sobresalientes sobre energía eólica (Justus, 1980; Hiester y Pennell, 1981; Koeppl, 1982; Lysen, 1983; Spera, 1985; Eggleston y Stoddard,1987; Freris, 1990; Hau, 2000; Burton *et al*, 2001), en abundantes artículos de revista de impacto (véase apartado 1.2 del capítulo1), en normativas (IEC 61400 1,1994) y en tesis doctorales (Pelosi, 1985; Carta, 1991; Medina, 1997; Feijoo, 1998).

Figura 3.1. Función de densidad de Weibull para diferentes valores del factor de forma

Los criterios utilizados para recomendar el uso de la ley de Weibull de dos parámetros se han centrado fundamentalmente en su sencillez de cálculo (dependencia de solo dos parámetros), la flexibilidad que proporciona su parámetro de forma para describir un amplio abanico de regímenes de viento (figura 3.1)⁴ y su buen ajuste a datos experimentales.

3.7.1. Momentos de la distribución.

El r-ésimo momento respecto al origen de la distribución (3.71) viene dado por:

$$\mu'_{r} = (1 - \theta_{0}) \cdot \beta^{r} \cdot \Gamma(1 + r/\alpha)$$
(3.72)

La media µ de la distribución viene dada por:

$$\mu'_{1} = \mu = E(V) = (1 - \theta_{0}) \cdot \beta \cdot \Gamma(1 + 1/\alpha)$$

$$(3.73)$$

La varianza:

$$\mu_2 = (1 - \theta_0) \cdot \beta^2 \cdot \left[\Gamma(1 + 2/\alpha) - (1 - \theta_0) \cdot \Gamma^2(1 + 1/\alpha) \right]$$
(3.74)

⁴ En abcisas se ha representado el parámetro adimensional velocidad del viento dividida por la velocidad media.

El coeficiente de asimetría:

$$\alpha_{3} = (1 - \theta_{0}) \frac{\left[\Gamma(1 + 3/\alpha) + 2(1 - \theta_{0})^{2} \Gamma^{3}(1 + 1/\alpha) - 3(1 - \theta_{0}) \cdot \Gamma(1 + 1/\alpha) \cdot \Gamma(1 + 2/\alpha)\right]}{A^{3/2}}$$

$$A = (1 - \theta_{0}) \left[\Gamma(1 + 2/\alpha) - (1 - \theta_{0}) \Gamma^{2}(1 + 1/\alpha)\right]$$
(3.75)

donde:

El coeficiente de curtosis (α_4):

$$\alpha_{4} = \frac{\left[\Gamma(1+4/\alpha) - 4(1-\theta_{0}) \cdot \Gamma(1+3/\alpha) \cdot \Gamma(1+1/\alpha) + 6(1-\theta_{0})^{2} \Gamma^{2}(1+1/\alpha) \cdot \Gamma(1+1/\alpha) - 3(1-\theta_{0})^{3} \Gamma^{4}(1+1/\alpha)\right]}{(1-\theta_{0}) \left[\Gamma(1+2/\alpha) - \Gamma^{2}(1+1/\alpha)\right]^{2}}$$
(3.76)

El coeficiente de variación:

$$cv = \sqrt{\sigma^{2}} / \mu = \sqrt{\Gamma(1 + 2/\alpha) / (1 - \theta_{0}) \Gamma^{2}(1 + 1/\alpha) - 1}$$
(3.77)

3.7.2. La función de distribución acumulada.

La función de distribución acumulada de Weibull híbrida viene dada, según (3.3) y (3.55), por (3.78).

Figura 3.2. Función de distribución acumulada de Weibull

$$G(\nu; \alpha, \beta, \theta_0) = P(V \le \nu) = \theta_0 + (1 - \theta_0) \left[1 - e^{-(\nu/\beta)^{\alpha}} \right]$$
(3.78)

3.7.3. Moda y mediana.

La moda v_m de la función de densidad de Weibull híbrida viene dada por:

$$\frac{d\left[g\left(v;\alpha,\beta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \beta \cdot \left(1 - 1/\alpha\right)^{1/\alpha}$$
(3.79)

La mediana $v_{0.5}$

$$P(V \le v_{0.5}) = 1/2 = \theta_0 + (1 - \theta_0) \left[1 - e^{-(\nu/\beta)^{\alpha}} \right]; \qquad v_{0.5} = \beta \left\{ \ln \left[2(1 - \theta_0) \right] \right\}^{1/\alpha}$$
(3.80)

3.8. La distribución de Rayleigh.

Una variable aleatoria V se dice que tiene una *distribución Rayleigh* si su función de densidad de probabilidad está dada por (Johnson *et al*, 1994):

$$f(v;\theta,\gamma) = \begin{cases} \frac{(v-\gamma)}{\theta^2} \cdot e^{-(v-\gamma)^2/2\theta^2} & v > \gamma ; \ \theta > 0 \\ 0 & \forall \text{ otro valor} \end{cases}$$
(3.81)

La distribución de Rayleigh es un caso particular de la distribución de Weibull de 3 parámetros (3.55) cuando $\alpha=2$ y el parámetro de escala β se reemplaza por $\sqrt{2} \cdot \theta$.

3.8.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución de Rayleigh, puede ser determinado mediante la integral:

$$\mu'_{r} = E\left(V^{r}\right) = \int_{\gamma}^{\infty} v^{r} \cdot f\left(v;\theta\right) \cdot dv = \frac{1}{\theta^{2}} \int_{0}^{\infty} \left(v-\gamma\right) \cdot v^{r} \cdot e^{-\left(v-\gamma\right)^{2}/\left(2\theta^{2}\right)} \cdot dv$$
(3.82)

En (3.82), sea $u = (v - \gamma)^2 / (\theta^2 \cdot 2)$; entonces $v = \theta \cdot (2 \cdot u)^{1/2} + \gamma$ y d $v = \theta \cdot (2 \cdot u)^{-1/2}$ du. Integrando entre 0 e ∞ se pueden obtener los diversos momentos respecto del origen que se utilizarán en el desarrollo de esta tesis.

Así, para *r*=1, se obtiene:

$$\mu_{1} = \gamma + \int_{0}^{\infty} \theta \cdot 2^{1/2} \cdot u^{1/2 + 1 - 1} \cdot e^{-u} \cdot du = \gamma + \theta \cdot 2^{1/2} \cdot \Gamma(1 + 1/2) = \gamma + \theta \cdot 2^{1/2} \cdot (1/2) \cdot \Gamma(1/2)$$
(3.83)

Ya que $\Gamma(1/2) = \sqrt{\pi}$ (Adam, 1976), se tiene la siguiente expressión de la media respecto del origen:

$$\mu = \gamma + \theta \sqrt{\pi/2} \tag{3.84}$$

Para *r*=2, el segundo momento respecto del origen:

$$\mu'_{2} = 2 \cdot \theta^{2} + \gamma \cdot \theta \cdot \sqrt{8} + \gamma^{2}$$
(3.85)

Para *r*=3,el tercer momento respecto del origen:

$$\mu'_{3} = \theta^{3} \cdot 2^{3/2} \cdot (3/4) \cdot \sqrt{\pi} + 6 \cdot \gamma \cdot \theta^{2} + \theta \cdot \gamma^{2} \cdot (3/2) \cdot \sqrt{2\pi} + \gamma^{3}$$
(3.86)

Para *r*=4,el cuarto momento respecto del origen:

$$\mu_{4}^{'} = \theta^{4} \cdot 2^{3} + 2^{7/2} \cdot (3/4) \cdot \gamma \cdot \theta^{3} \cdot \sqrt{\pi} + 12 \cdot \theta^{2} \cdot \gamma^{2} + \gamma^{3} \cdot \theta \cdot \sqrt{8\pi} + \gamma^{4}$$
(3.87)

La varianza o momento de segundo orden respecto de la media vendrá dada por:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2}^{'} - \mu^{2} = 2 \cdot \theta^{2} - \left(\theta \cdot \sqrt{\pi/2}\right)^{2} = \theta^{2} \cdot \left(2 - \pi/2\right)$$
(3.88)

El coeficiente de asimetría:

$$\alpha_{3} = \frac{\mu_{3}}{(\mu_{2})^{3/2}} = \frac{E(V-\mu)^{3}}{(\mu_{2})^{3/2}} = \frac{\mu_{3}-3\cdot\mu\cdot\mu_{2}+2\cdot\mu^{3}}{(\mu_{2}-\mu^{2})^{3/2}} = \frac{2\cdot(\pi-3)\cdot\sqrt{\pi}}{\sqrt{(4-\pi)^{3}}} \approx 0.63$$
(3.89)

El coeficiente de curtosis:

$$\alpha_{4} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{E(V-\mu)^{4}}{\mu_{2}^{2}} = \frac{\mu_{4}^{2} - 4 \cdot \mu \cdot \mu_{3}^{2} + 6 \cdot \mu^{2} \cdot \mu_{2}^{2} - 3\mu^{4}}{\left(\mu_{2}^{2} - \mu^{2}\right)^{2}} = \frac{\left(32 - 3 \cdot \pi^{2}\right)}{\left(4 - \pi\right)^{2}} \approx 3.25$$
(3.90)

El coeficiente de variación cv:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \frac{\theta\sqrt{2-\pi/2}}{\gamma + \theta\sqrt{\pi/2}}$$
(3.91)

3.8.2. La función de distribución acumulada.

La función de distribución acumulada de Rayleigh viene dada por:

$$F(\nu;\theta,\gamma) = P(V \le \nu) = \int_{\gamma}^{\nu} \frac{\nu - \gamma}{\theta^2} \cdot e^{-(\nu - \gamma)^2 / (2\theta^2)} \cdot d\nu$$
(3.92)

Existe una expresión de forma cerrada para la función de distribución acumulativa dada por (3.92), la cual puede ser utilizada para obtener áreas bajo la curva de Rayleigh. Para su resolución se toma $u = (v - \gamma)^2 / (\theta^2 \cdot 2); \quad v = \theta \cdot (2 \cdot u)^{1/2} + \gamma \quad y \quad dv = \theta \cdot (2 \cdot u)^{-1/2} du$. Integrando entre 0 e ∞ : se obtiene.

$$F(v;\theta,\gamma) = P(V \le v) = 1 - e^{-(v-\gamma)^2 / (2\theta^2)}$$
(2.93)

3.8.3. Moda y mediana.

La moda v_m de la función de densidad de Rayleigh viene dada por:

$$\frac{d\left[g\left(v;\theta,\gamma\right)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \theta + \gamma \tag{3.94}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.95).

$$P(V \le v_{0.5}) = 1/2 = 1 - e^{-(v-\gamma)^2/(2\theta^2)}; \qquad v_{0.5} = \gamma + \theta \left(\ln 4\right)^{1/2}$$
(3.95)

3.9. La distribución híbrida de Rayleigh.

Según (3.1) y (3.81) la distribución híbrida de Rayleigh viene dada por:

$$g(v;\theta,\theta_0) = \theta_0 \cdot \delta(v) + (1-\theta_0) \cdot (v/\theta^2) \cdot e^{-v^2/(2\theta^2)}$$
(3.96)

En el caso de $\theta_0=0$, (3.96) se reduce a la distribución de Rayleigh de un parámetro, la cual ha sido frecuentemente utilizada en el análisis estadístico del viento en textos sobresalientes de energía eólica (Justus, 1980; Hiester y Pennell, 1981; Koeppl, 1982), en artículos de revistas (Haslett y Kelledy, 1981;Hennessey, 1978, Corotis, 1978; Oliva, 1977), en ponencias de congresos (Kaminsky, 1976,Sharaf-Eldeen *et al*, 1988; Court, 1974; Baynes, 1974) y en normativas (IEC 61400 1,1994) y tesis doctorales (Pelusi, 1985).

3.9.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución (3.96) viene dado por:

$$\mu'_{r} = (1 - \theta_{0}) \cdot (2^{1/2} \theta)^{r} \cdot (r/2) \cdot \Gamma(r/2)$$
(3.97)

Para r=1 en (3.97) se obtiene la *media* μ de la distribución:

$$\mu'_{1} = \mu = (1 - \theta_{0}) \cdot \theta \cdot 2^{1/2} \cdot \Gamma(3/2) = (1 - \theta_{0}) \cdot \theta \cdot 2^{-1/2} \cdot \Gamma(1/2) = (1 - \theta_{0}) \cdot \theta \cdot \sqrt{\pi/2}$$
(3.98)

La varianza:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2} - \mu^{2} = 2 \cdot (1 - \theta_{0}) \cdot \theta^{2} \cdot [1 - (1 - \theta_{0})\pi/4]$$
(3.99)

El coeficiente de asimetría:

$$\alpha_{3} = (1 - \theta_{0}) \frac{(3/4) \cdot \sqrt{\pi} + (1/4) \cdot (1 - \theta_{0})^{2} \pi^{3/2} - (3/2) \cdot (1 - \theta_{0}) \cdot \sqrt{\pi}}{\left[(1 - \theta_{0}) \left[1 - (1 - \theta_{0}) \pi/4 \right] \right]^{3/2}}$$
(3.100)

El coeficiente de curtosis:

$$\alpha_{4} = \frac{2 - (3/2) \cdot (1 - \theta_{0}) \cdot \pi + (3/2) \cdot (1 - \theta_{0})^{2} \cdot \pi - (3/16) \cdot (1 - \theta_{0})^{3} \cdot \pi^{2}}{(1 - \theta_{0}) [1 - \pi/4]^{2}}$$
(3.101)

El coeficiente de variación cv:

$$cv = \sqrt{\sigma^2} / \mu = \sqrt{4 / \left[\pi \left(1 - \theta_0 \right) \right] - 1}$$
(3.102)

3.9.2 La función de distribución acumulada.

La función de distribución acumulada de Rayleigh híbrida viene dada, según (3.3) y

(3.81), por:

$$G(v;\theta,\theta_0) = P(V \le v) = \theta_0 + (1-\theta_0) \int_0^v (v/\theta^2) e^{-v^2/(2\theta^2)}$$
(3.103)

Existe una expresión de forma cerrada para la función de distribución acumulativa dada por (3.104), la cual puede ser utilizada para obtener áreas bajo la curva de Rayleigh.

$$G(v;\theta,\theta_0) = P(V \le v) = \theta_0 + (1-\theta_0) \left[1 - e^{-v^2/(2\theta^2)} \right]$$
(3.104)

3.9.3. Moda y mediana.

La moda v_m de la función de densidad de Rayleigh híbrida viene dada por:

$$\frac{d\left[g\left(v;\theta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \theta \tag{3.105}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.106).

$$P(V \le v_{0.5}) = \frac{1}{2} = \theta_0 + (1 - \theta_0) \left[1 - e^{-v^2/(2\theta^2)} \right]; \quad v_{0.5} = \theta \sqrt{\ln \left[4 (1 - \theta_0)^2 \right]}$$
(3.106)

3.10. La distribución beta generalizada.

Una variable aleatoria V posee una *distribución beta generalizada* si su función de densidad de probabilidad está dada por (Bury, 1999; Johnson *et al*;1995; Evans *et al*, 1993):

$$f(\nu;\alpha,\beta,\delta,\xi) = \begin{cases} \frac{1}{\xi-\delta} \cdot \frac{1}{B(\alpha,\beta)} \cdot \left(\frac{\nu-\delta}{\xi-\delta}\right)^{\alpha-1} \cdot \left(\frac{\xi-\nu}{\xi-\delta}\right)^{\beta-1} & \text{si } \delta \le \nu \le \xi \\ 0 & \text{para cualquier otro valor} \end{cases}$$
(3.107)

donde $B(\alpha,\beta)$ es la función beta de Euler:

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} \cdot (1-x)^{\beta-1} \cdot dx = \frac{\Gamma(\alpha) \cdot \Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
(3.108)

Todas las familias de distribuciones continuas analizadas hasta ahora tienen densidad de probabilidad positiva sobre un intervalo infinito (aunque típicamente la función de densidad decrece con rapidez a cero después de varias desviaciones estándar de la media). La distribución beta proporciona densidad positiva sólo para V en un intervalo de longitud finita. La distribución de beta depende de los parámetros de perfil, α y β (ambos positivos), y los parámetros de posición δ y ξ .

3.10.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución de beta, puede ser determinado mediante la integral:

$$\mu_{r}^{'} = \int_{\delta}^{\xi} \frac{1}{\xi - \delta} \cdot \frac{1}{B(\alpha, \beta)} \cdot \left(\frac{v - \delta}{\xi - \delta}\right)^{\alpha - 1} \cdot \left(\frac{\xi - v}{\xi - \delta}\right)^{\beta - 1} \cdot v^{r} \cdot \mathrm{d}v$$
(3.109)

Realizando el cambio de variables (3.110), sustituyendo el mismo en (3.109) e integrando entre 0 y 1 se pueden obtener los diversos momentos respecto del origen que se utilizarán en el desarrollo de esta tesis.

$$u = \left(\frac{v - \delta}{\xi - \delta}\right) \qquad ; v = (\xi - \delta) \cdot u + \delta \qquad ; dv = (\xi - \delta) \cdot du \qquad (3.110)$$

Para r=1, se determina la media μ o momento de primer orden:

$$\mu = \frac{1}{B(\alpha,\beta)} \left[\delta \int_{0}^{1} u^{\alpha-1} \cdot (1-u)^{\beta-1} \cdot du + (\xi-\delta) \cdot \int_{0}^{1} u^{\alpha+1-1} \cdot (1-u)^{\beta-1} \cdot du \right] =$$
$$= \delta + (\xi-\delta) \cdot \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)} = \delta + (\xi-\delta) \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \cdot \frac{\Gamma(\alpha+1) \cdot \Gamma(\beta)}{\Gamma(\alpha+1+\beta)} =$$
(3.111)

$$=\delta + (\xi - \delta) \cdot \left[\frac{(\alpha + \beta - 1) \cdot \dots \cdot 1}{(\alpha + \beta) \cdot (\alpha + \beta - 1) \cdot \dots \cdot 1}\right] \cdot \left[\frac{\alpha(\alpha - 1) \cdot \dots \cdot 1}{(\alpha - 1) \cdot \dots \cdot 1}\right] = \delta + (\xi - \delta) \cdot \frac{\alpha}{\alpha + \beta}$$

Para *r*=2, se obtiene el segundo momento respecto del origen:

$$\mu_{2}^{'} = \frac{1}{B(\alpha,\beta)} \cdot \left[\delta^{2} \cdot \int_{0}^{1} u^{\alpha-1} \cdot (1-u)^{\beta-1} \cdot du + 2 \cdot (\xi - \delta) \cdot \delta \cdot \int_{0}^{1} u^{\alpha+1-1} \cdot (1-u)^{\beta-1} \cdot du + (\xi - \delta)^{2} \int_{0}^{1} u^{\alpha+2-1} \cdot (1-u)^{\beta-1} \cdot du \right] = \delta^{2} + 2 \cdot (\xi - \delta) \cdot \delta \cdot \frac{B(\alpha + 1, \beta)}{B(\alpha, \beta)} + (3.112)$$

+
$$(\xi - \delta)^2 \cdot \frac{B(\alpha + 2, \beta)}{B(\alpha, \beta)} = \delta^2 + \frac{(\xi - \delta) \cdot \alpha \cdot \lfloor (\alpha + 1) \cdot (\delta + \xi) + 2 \cdot \beta \cdot \delta \rfloor}{(\alpha + \beta) \cdot (\alpha + \beta + 1)}$$

Para r=3, el tercer momento respecto del origen:

$$\mu_{3}^{'} = \frac{1}{B(\alpha,\beta)} \cdot \left[\delta^{3} \cdot \int_{0}^{1} u^{\alpha-1} \cdot (1-u)^{\beta-1} \cdot du + 3 \cdot (\xi-\delta)^{2} \cdot \delta \cdot \int_{0}^{1} u^{\alpha+2-1} \cdot (1-u)^{\beta-1} \cdot du + 3 \cdot (\xi-\delta)^{2} \cdot \delta \cdot \int_{0}^{1} u^{\alpha+2-1} \cdot (1-u)^{\beta-1} \cdot du + (\xi-\delta)^{2} \cdot \delta \cdot \int_{0}^{1} u^{\alpha+3-1} \cdot (1-u)^{\beta-1} \cdot du \right] = \delta^{3} + 3 \cdot (\xi-\delta)^{2} \delta \cdot \left[\frac{B(\alpha+2,\beta)}{B(\alpha,\beta)} + 3(\xi-\delta)\delta^{2} \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)} + (\xi-\delta)^{3} \frac{B(\alpha+3,\beta)}{B(\alpha,\beta)} \right] = \delta^{3} + 3 \cdot (\xi-\delta)^{2} \cdot \delta \cdot \left[\frac{\alpha \cdot (\alpha+1)}{(\alpha+\beta+1) \cdot (\alpha+\beta)} \right] + 3 \cdot (\xi-\delta) \cdot \delta^{2} \cdot \left[\frac{\alpha}{(\alpha+\beta)} \right] + (\xi-\delta)^{3} \cdot \left[\frac{(\alpha+2)(\alpha+1)\alpha}{(\alpha+\beta+1)(\alpha+\beta)} \right] = \delta^{3} + (\xi-\delta)\alpha \left[\frac{\delta\xi(\alpha^{2}+3(\alpha\beta+\alpha+\beta)+2)}{(\alpha+\beta+2)(\alpha+\beta+1)(\alpha+\beta)} + \frac{\delta^{2} \cdot (3 \cdot \alpha \cdot \beta + 6 \cdot \beta + 3 \cdot \beta^{2} + \alpha^{2}) + \alpha^{2} \cdot \xi^{2}}{(\alpha+\beta+2) \cdot (\alpha+\beta+1) \cdot (\alpha+\beta)} \right]$$

$$(3.113)$$

Para *r*=4, el cuarto momento respecto del origen:

$$\mu_{4}^{'} = \frac{1}{B(\alpha,\beta)} \cdot \left[\delta^{4} \cdot \int_{0}^{1} u^{\alpha-1} \cdot (1-u)^{\beta-1} \cdot du + 4 \cdot (\xi-\delta) \cdot \delta^{3} \cdot \int_{0}^{1} u^{\alpha+1-1} \cdot (1-u)^{\beta-1} \cdot du + \right. \\ \left. + 6 \cdot (\xi-\delta)^{2} \cdot \delta^{2} \cdot \int_{0}^{1} u^{\alpha+2-1} \cdot (1-u)^{\beta-1} \cdot du + 4 \cdot (\xi-\delta)^{3} \cdot \delta \cdot \int_{0}^{1} u^{\alpha+3-1} \cdot (1-u)^{\beta-1} \cdot du + \right. \\ \left. + (\xi-\delta)^{4} \cdot \int_{0}^{1} u^{\alpha+4-1} \cdot (1-u)^{\beta-1} \cdot du \right] = \delta^{4} + 4 \cdot (\xi-\delta) \cdot \delta^{3} \cdot \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)} + 6 \cdot (\xi-\delta)^{2} \cdot \delta^{2} \cdot \left. \frac{B(\alpha+2,\beta)}{B(\alpha,\beta)} + 4 \cdot (\xi-\delta)^{3} \cdot \delta \cdot \frac{B(\alpha+3,\beta)}{B(\alpha,\beta)} + (\xi-\delta)^{4} \cdot \frac{B(\alpha+4,\beta)}{B(\alpha,\beta)} = \delta^{4} + 4 \cdot (\xi-\delta) \cdot \left. \frac{(3.114)}{\delta^{3} \cdot \alpha + \beta} + 6 \cdot (\xi-\delta)^{2} \cdot \delta^{2} \cdot \frac{\alpha \cdot (\alpha+1)}{(\alpha+\beta) \cdot (\alpha+\beta+1)} + 4 \cdot (\xi-\delta)^{3} \cdot \delta \cdot \left. \frac{\alpha \cdot (\alpha+1) \cdot (\alpha+2)}{(\alpha+\beta) \cdot (\alpha+\beta+1) \cdot (\alpha+\beta+2)} + \frac{(\xi-\delta)^{4} \cdot \alpha \cdot (\alpha+1) \cdot (\alpha+2) \cdot (\alpha+\beta+3)}{(\alpha+\beta) \cdot (\alpha+\beta+1) \cdot (\alpha+\beta+2) \cdot (\alpha+\beta+3)} \right]$$

El *r*-ésimo momento (μ_r) respecto de la media μ de la variable V viene dado por:

$$\mu_{r} = \int_{\gamma}^{\xi} \left\{ \frac{1}{\xi - \delta} \cdot \frac{1}{B(\alpha, \beta)} \cdot \left(\frac{\nu - \delta}{\xi - \delta} \right)^{\alpha - 1} \cdot \left(\frac{\xi - \nu}{\xi - \delta} \right)^{\beta - 1} \right\} \cdot \left\{ \nu - \mu \right\}^{r} \cdot \mathrm{d}\nu$$
(3.115)

Sustituyendo (3.110) en (3.115) e integrando entre 0 e 1 se obtiene, para r=2, la varianza σ^2 o momento de segundo orden respecto a la media:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2}^{'} - \mu^{2} = (\xi - \delta)^{2} \cdot \left[\frac{B(\alpha + 2, \beta)}{B(\alpha, \beta)} - \frac{B^{2}(\alpha + 1, \beta)}{B^{2}(\alpha, \beta)}\right] =$$
(3.116)

$$= \left(\xi - \delta\right)^{2} \cdot \left[\frac{\alpha \cdot (\alpha + 1)}{(\alpha + \beta + 1) \cdot (\alpha + \beta)} - \frac{\alpha^{2}}{(\alpha + \beta)^{2}}\right] = \left(\xi - \delta\right)^{2} \cdot \frac{\alpha \cdot \beta}{(\alpha + \beta)^{2} \cdot (\alpha + \beta + 1)}$$

Para *r*=3, el momento de tercer orden respecto de la media (μ_3), a partir del cual se puede obtener el tercer momento estandarizado denominado coeficiente de asimetría (α_3):

$$\alpha_{3} = \frac{\mu_{3}}{(\mu_{2})^{3/2}} = \frac{\mu_{3}^{'} - 3 \cdot \mu \cdot \mu_{2}^{'} + 2 \cdot \mu^{3}}{(\mu_{2})^{3/2}} = \frac{\frac{(\xi - \delta)^{3} \cdot \alpha \cdot \beta \cdot 2 \cdot (\beta - \alpha)}{(\alpha + \beta + 2) \cdot (\alpha + \beta + 1) \cdot (\alpha + \beta)^{3}}}{\left((\xi - \delta)^{2} \cdot \frac{\alpha \cdot \beta}{(\alpha + \beta)^{2} \cdot (\alpha + \beta + 1)}\right)^{3/2}}$$
(3.117)

$$\alpha_{3} = \frac{\frac{\left(\xi - \delta\right)^{3} \cdot \alpha \cdot \beta \cdot 2 \cdot \left(\beta - \alpha\right)}{\left(\alpha + \beta + 2\right) \cdot \left(\alpha + \beta + 1\right) \cdot \left(\alpha + \beta\right)^{3}}}{\frac{\left(\xi - \delta\right)^{3} \cdot \alpha \cdot \beta}{\left(\alpha + \beta\right)^{3} \cdot \left(\alpha + \beta + 1\right)} \cdot \left[\frac{\alpha \cdot \beta}{\left(\alpha + \beta + 1\right)}\right]^{1/2}} = \frac{2 \cdot \left(\beta - \alpha\right)}{\left(\alpha + \beta + 2\right)} \cdot \left[\frac{\alpha + \beta + 1}{\alpha \cdot \beta}\right]^{1/2}$$

Para *r*=4, el cuarto momento central (μ_4), el cual se puede estandarizar para obtener el denominado coeficiente de curtosis (α_4):

$$\alpha_{4} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{\mu_{4} - 4\mu\mu_{3} + 6\mu^{2}\mu_{2} - 3\mu^{4}}{\left[\left(\xi - \delta\right)^{2} \frac{\alpha \cdot \beta}{\left(\alpha + \beta\right)^{2} \cdot \left(\alpha + \beta + 1\right)}\right]^{2}} = \frac{3 \cdot \left(\alpha + \beta + 1\right) \cdot \left[2 \cdot \left(\alpha + \beta\right)^{2} + \alpha \cdot \beta \cdot \left(\alpha + \beta - 6\right)\right]}{\alpha \cdot \beta \cdot \left(\alpha + \beta + 2\right) \cdot \left(\alpha + \beta + 3\right)}$$
(3.187)

El coeficiente de variación:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \frac{\sqrt{\left(\xi - \delta\right)^2 \cdot \frac{\alpha \cdot \beta}{\left(\alpha + \beta\right)^2 \cdot \left(\alpha + \beta + 1\right)}}}{\delta + \left(\xi - \delta\right) \cdot \alpha / \left(\alpha + \beta\right)} = \frac{\left(\xi - \delta\right) \cdot \sqrt{\alpha \cdot \beta}}{\sqrt{\alpha + \beta + 1} \cdot \left(\delta \cdot \beta + \xi \cdot \alpha\right)}$$
(3.119)

3.10.2. La función de distribución acumulada.

La función de distribución acumulada beta de 4 parámetros viene dada por:

$$F(\nu;\alpha,\beta,\delta,\xi) = P(V \le \nu) = \int_{\delta}^{\nu} \frac{1}{\xi - \delta} \cdot \frac{1}{B(\alpha,\beta)} \cdot \left(\frac{\nu - \delta}{\xi - \delta}\right)^{\alpha - 1} \cdot \left(\frac{\xi - \nu}{\xi - \delta}\right)^{\beta - 1} \cdot d\nu$$
(3.120)

No es posible obtener una expresión de forma cerrada para la integral (3.120). En consecuencia, la función de distribución acumulativa para una variable aleatoria beta generalizada se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.120).

3.10.3. Moda y mediana.

La moda v_m de la función de densidad beta generalizada viene dada, para $\alpha+\beta>2$ y $\alpha \geq 1$, por:

$$\frac{d\left[f(v;\alpha,\beta,\delta,\xi)\right]}{dv} = 0 \quad \to \quad v_m = \delta + (\xi - \delta) \cdot (\alpha - 1) / (\alpha + \beta - 2) \tag{3.121}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.106).

$$P(V \le v) = \frac{1}{2} = \int_{\delta}^{v_{0,\delta}} \frac{1}{\xi - \delta} \cdot \frac{1}{B(\alpha, \beta)} \cdot \left(\frac{v - \delta}{\xi - \delta}\right)^{\alpha - 1} \cdot \left(\frac{\xi - v}{\xi - \delta}\right)^{\beta - 1} \cdot dv$$
(3.122)

La resolución de la ecuación no lineal (3.122) se lleva a cabo en esta tesis aplicando un algoritmo híbrido rtsafe (Press et al, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina gromb (Press et al, 1996) para resolver la integral.

3.11. La distribución beta generalizada híbrida.

Según (3.1) y (3.107) la *distribución híbrida beta generalizada* viene dada por:

$$g(\nu;\alpha,\beta,\xi,\theta_0) = \theta_0 \cdot \delta(\nu) + (1-\theta_0) \frac{1}{\xi} \cdot \frac{1}{B(\alpha,\beta)} \cdot \left(\frac{\nu}{\xi}\right)^{\alpha-1} \cdot \left(\frac{\xi-\nu}{\xi}\right)^{\beta-1}$$
(3.123)

.

En el caso de $\theta_0=0$, (3.123) se reduce a la distribución beta generalizada de tres parámetros.

3.11.1. Momentos de la distribución.

El r-ésimo momento respecto al origen de la distribución de beta, puede ser determinado mediante la integral:

$$\mu_{r}^{'} = (1 - \theta_{0}) \int_{0}^{\xi} \frac{1}{\xi} \cdot \frac{1}{B(\alpha, \beta)} \cdot \left(\frac{\nu}{\xi}\right)^{\alpha - 1} \cdot \left(\frac{\xi - \nu}{\xi}\right)^{\beta - 1} \cdot \nu^{r} \cdot d\nu =$$

$$= (1 - \theta_{0}) \xi^{r} \frac{(\alpha + r - 1)(\alpha + r - 2) \dots (\alpha + 1)\alpha}{(\alpha + \beta + r - 1)(\alpha + \beta + r - 2) \dots (\alpha + \beta)}$$

$$(3.124)$$

Para r=1 en (3.124) se obtiene la media μ de la distribución:

$$\mu = (1 - \theta_0) \xi \frac{\alpha}{(\alpha + \beta)} \tag{3.125}$$

Para r = 2,3 y 4 se obtienen el segundo, tercero y cuarto momento respecto del origen, respectivamente, que permiten determinar la varianza, el coeficiente de asimetría, el coeficiente de curtosis y el coeficiente de variación.

La varianza:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2}^{'} - \mu^{2} = \xi^{2} (1 - \theta_{0}) \alpha \left[\frac{\beta + \theta_{0} (\alpha^{2} + \alpha\beta + \alpha)}{(\alpha + \beta + 1)(\alpha + \beta)^{2}} \right]$$
(3.126)

El coeficiente de asimetría:

$$\alpha_{3} = \sqrt{\frac{(\alpha+\beta)}{\alpha(1-\theta_{0})}} \frac{\left[\frac{(\alpha+2)(\alpha+1)}{(\alpha+\beta+2)(\alpha+\beta+1)} - \frac{3(1-\theta_{0})(\alpha+1)\alpha}{(\alpha+\beta)(\alpha+\beta+1)} + \frac{2\alpha^{2}(1-\theta_{0})^{2}}{(\alpha+\beta)^{2}}\right]}{\left[\frac{\alpha+1}{\alpha+\beta+1} - \frac{(1-\theta_{0})\alpha}{\alpha+\beta}\right]^{3/2}}$$
(3.127)

El coeficiente de curtosis:

$$\alpha_{4} = \frac{(\alpha + \beta)}{\alpha (1 - \theta_{0})} \left\{ \frac{(\alpha + 3)(\alpha + 2)(\alpha + 1)}{(\alpha + \beta + 3)(\alpha + \beta + 2)(\alpha + \beta + 1)} - \frac{4\alpha (1 - \theta_{0})(\alpha + 2)(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 2)(\alpha + \beta + 1)} + \frac{6\alpha^{2} (1 - \theta_{0})^{2} (\alpha + 1)}{(\alpha + \beta)^{2} (\alpha + \beta + 1)} - \frac{3\alpha^{3} (1 - \theta_{0})^{3}}{(\alpha + \beta)^{3}} \right\} / \left[\frac{\alpha + 1}{\alpha + \beta + 1} - \frac{(1 - \theta_{0})\alpha}{\alpha + \beta} \right]^{3/2}$$
(3.128)

El coeficiente de variación cv:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \sqrt{\frac{\beta + \theta_0 \cdot (\alpha^2 + \alpha \cdot \beta + \alpha)}{(\alpha + \beta + 1) \cdot \alpha \cdot (1 - \theta_0)}}$$
(3.129)

3.11.2. La función de distribución acumulada.

La función de distribución acumulada beta generaliza híbrida viene dada, según (3.3) y (3.107), por:

$$G(v;\alpha,\beta,\xi,\theta_0) = P(V \le v) = \theta_0 + (1-\theta_0) \int_0^v \frac{1}{\xi} \cdot \frac{1}{B(\alpha,\beta)} \cdot \left(\frac{v}{\xi}\right)^{\alpha-1} \cdot \left(\frac{\xi-v}{\xi}\right)^{\beta-1} \cdot dv$$
(3.130)

No es posible obtener una expresión de forma cerrada para la integral (3.130). En consecuencia, la función de distribución acumulativa para una variable aleatoria beta generalizada híbrida se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina qromb (Press et al, 1996), basada en el método de Romberg, para resolver la función (3.130).

3.11.3. Moda y mediana.

_

La moda v_m de la función de densidad beta generalizada híbrida viene dada, para $\alpha + \beta > 2 \vee \alpha \ge 1$, por:

$$\frac{d\left[g\left(v;\alpha,\beta,\xi,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \delta + \xi \frac{\alpha - 1}{\alpha + \beta - 2}$$
(3.131)

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.132).

$$P(V \le v) = \frac{1}{2} = \theta_0 + \left(1 - \theta_0\right) \int_0^{v_{0.5}} \frac{1}{\xi} \cdot \frac{1}{B(\alpha, \beta)} \cdot \left(\frac{v}{\xi}\right)^{\alpha - 1} \cdot \left(\frac{\xi - v}{\xi}\right)^{\beta - 1} \cdot dv$$
(3.132)

La resolución de la ecuación no lineal (3.132) se lleva a cabo en esta tesis aplicando un algoritmo híbrido rtsafe (Press et al, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.12. La distribución beta prima híbrida.

Supóngase que *X* tiene una función beta estándar $f(x,\alpha,\beta)$, definida por (3.133).

$$f(x;\alpha,\beta) = \begin{cases} \frac{1}{B(\alpha,\beta)} \cdot x^{\alpha-1} \cdot (1-x)^{\beta-1} & \text{si} \quad 0 \le x \le 1, \ \alpha > 0, \beta > 0\\ 0 & \text{para cualquier otro valor} \end{cases}$$
(3.133)

Se realiza el cambio de variables x=v/(1+v), se obtiene una distribución con función de densidad de probabilidad:

$$f(\nu;\alpha,\beta) = \begin{cases} \frac{1}{B(\alpha,\beta)} \cdot \frac{\nu^{\alpha-1}}{(1+\nu)^{\alpha+\beta}} & \text{si } \nu > 0, \, \alpha > 0, \beta > 0\\ 0 & \text{para cualquier otro valor} \end{cases}$$
(3.134)

La función definida por (3.134) es una forma estándar de la distribución Tipo VI de Pearson, algunas veces llamada distribución beta-prima o distribución beta de segunda clase (Johnson *et al.*, 1995; Stuart y Ord, 2000; Evans *et al*, 1993; Zhang y Jin, 1996).

Según (3.1) y (3.134) la distribución híbrida beta prima viene dada por:

$$g(\nu;\alpha,\beta,\theta_0) = \theta_0 \cdot \delta(\nu) + (1-\theta_0) \frac{1}{B(\alpha,\beta)} \cdot \frac{\nu^{\alpha-1}}{(1+\nu)^{\alpha+\beta}}$$
(3.135)

En el caso de $\theta_0=0$, (3.135) se reduce a la distribución beta prima estándar (3.134).

3.12.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución de beta-prima híbrida, puede ser determinado mediante la integral:

$$\mu_{r} = \frac{\left(1-\theta_{0}\right)}{B(\alpha,\beta)} \int_{0}^{\infty} \frac{v^{\alpha-1}}{\left(1+v\right)^{\alpha+\beta}} \cdot v^{r} \cdot \mathrm{d}v \qquad (3.136)$$

Realizando el cambio de variables (3.137), sustituyendo el mismo en (3.136) e integrando entre 0 y 1 se obtiene la expresión del r-ésimo momento respecto del origen (3.138).

$$v = \left(\frac{x}{1-x}\right) \qquad ; \qquad dv = \frac{dx}{\left(1-x\right)^2} \qquad (3.137)$$

$$\mu_{r}^{'} = \frac{B(\alpha + r, \beta - r)}{B(\alpha, \beta)} = (1 - \theta_{0}) \frac{\Gamma(\alpha + r) \cdot \Gamma(\beta - r)}{\Gamma(\alpha) \cdot \Gamma(\beta)}$$
(3.138)

Desarrollando cada fracción:

$$\frac{\Gamma(\alpha+r)}{\Gamma(\alpha)} = \frac{(\alpha+r-1)!}{(\alpha-1)!} = \frac{(\alpha+r-1)\cdots\alpha\cdot(\alpha-1)\cdots1}{(\alpha-1)!} =$$

$$= \frac{(\alpha+r-1)\cdot(\alpha+r-2)\cdots(\alpha+1)\cdot\alpha}{1}$$

$$\frac{\Gamma(\beta-r)}{\Gamma(\beta)} = \frac{(\beta-r-1)!}{(\beta-1)!} = \frac{(\beta-r-1)\cdot(\beta-r-2)\cdots1}{(\beta-1)\cdot(\beta-2)\cdots1} =$$

$$= \frac{1}{(\beta-1)\cdots(\beta-r)}$$
(3.139)

Luego:

$$\mu'_{r} = (1 - \theta_{0}) \frac{(\alpha + r - 1) \cdot (\alpha + r - 2) \cdot \dots \cdot (\alpha + 1) \cdot \alpha}{(\beta - 1) \cdot \dots \cdot (\beta - r)}$$
(3.140)

Puede observarse en (3.140) que para $r \ge \beta$ los momentos son infinitos.

A partir de aquí, tomando r=1 se obtiene la media o momento de primer orden:

$$\mu'_{1} = \mu = E(V) = (1 - \theta_{0}) \frac{\alpha}{\beta - 1} \qquad ; \quad \beta > 1$$
(3.141)

Para *r*=2, se determina el segundo momento respecto del origen:

$$\mu_{2} = (1 - \theta_{0}) \frac{\alpha \cdot (\alpha + 1)}{(\beta - 1) \cdot (\beta - 2)} \quad ; \quad \beta > 2$$

$$(3.142)$$

Para *r*=3, el tercer momento respecto del origen:

$$\mu'_{3} = (1 - \theta_{0}) \frac{\alpha \cdot (\alpha + 1) \cdot (\alpha + 2)}{(\beta - 1) \cdot (\beta - 2) \cdot (\beta - 3)} \quad ; \quad \beta > 3$$

$$(3.143)$$

Para *r*=4, el cuarto momento respecto del origen:

$$\mu'_{4} = (1 - \theta_{0}) \frac{\alpha \cdot (\alpha + 1) \cdot (\alpha + 2) \cdot (\alpha + 3)}{(\beta - 1) \cdot (\beta - 2) \cdot (\beta - 3) \cdot (\beta - 4)} \quad ; \quad \beta > 4$$

$$(3.144)$$

La varianza o momento de segundo orden respecto a la media vendrá dado por:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2} - \mu^{2} = \alpha \cdot (1 - \theta_{0}) \cdot \frac{(\alpha + \beta - 1) + \theta_{0}(\alpha \cdot \beta - 2 \cdot \alpha)}{(\beta - 1)^{2} \cdot (\beta - 2)}$$
(3.145)

El coeficiente de asimetría:

$$\alpha_{3} = \sqrt{\frac{\beta - 1}{(1 - \theta_{0})\alpha}} \left\{ \frac{(\alpha + 1)(\alpha + 2)}{(\beta - 2)(\beta - 3)} - \frac{3(1 - \theta_{0})\alpha(\alpha + 1)}{(\beta - 1)(\beta - 2)} + \frac{2(1 - \theta_{0})^{2}\alpha^{2}}{(\beta - 1)^{2}} \right\} / \left[\frac{(\alpha + 1)}{(\beta - 2)} - \frac{(1 - \theta_{0})\alpha}{\beta - 1} \right]^{3/2}$$
(3.146)

El coeficiente de curtosis:

$$\alpha_{4} = \frac{\beta - 1}{(1 - \theta_{0})\alpha} \left\{ \frac{(\alpha + 1)(\alpha + 2)(\alpha + 3)}{(\beta - 2)(\beta - 3)(\beta - 4)} - \frac{4(1 - \theta_{0})\alpha(\alpha + 1)(\alpha + 2)}{(\beta - 1)(\beta - 2)(\beta - 3)} + \frac{6(1 - \theta_{0})^{2}\alpha^{2}(\alpha + 1)}{(\beta - 1)^{2}(\beta - 2)} - \frac{3(1 - \theta_{0})^{3}\alpha^{3}}{(\beta - 1)^{3}} \right\} / \left[\frac{(\alpha + 1)}{(\beta - 2)} - \frac{(1 - \theta_{0})\alpha}{\beta - 1} \right]^{2}$$
(3.147)

El coeficiente de variación:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \sqrt{\frac{(\beta - 1)}{\alpha \cdot (1 - \theta_0)}} \left[\frac{\alpha + 1}{\beta - 2} - \frac{(1 - \theta_0)\alpha}{\beta - 1} \right]$$
(3.148)

3.12.2. La función de distribución acumulada.

La función de distribución acumulada beta prima híbrida viene dada, según (3.3) y (3.135), por:

$$G(\nu;\alpha,\beta,\theta_0) = P(V \le \nu) = \theta_0 + (1-\theta_0) \int_0^{\nu} \frac{1}{B(\alpha,\beta)} \cdot \frac{\nu^{\alpha-1}}{(1+\nu)^{\alpha+\beta}} \cdot d\nu$$
(3.149)

No es posible obtener una expresión de forma cerrada para la integral (3.149). En consecuencia, la función de distribución acumulativa para una variable aleatoria beta prima híbrida se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.149).

3.12.3. Moda y mediana.

La moda $v_{\rm m}$ de la función de densidad beta prima híbrida viene dada por:

$$\frac{d\left[g\left(v;\alpha,\beta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \frac{\alpha - 1}{1 + \beta}$$
(3.150)

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.150).

$$P(V \le v) = \frac{1}{2} = \theta_0 + (1 - \theta_0) \int_0^v \frac{1}{B(\alpha, \beta)} \cdot \frac{v^{\alpha - 1}}{(1 + v)^{\alpha + \beta}} \cdot dv$$
(3.151)

La resolución de la ecuación no lineal (3.151) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método
de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.13. La distribución Normal truncada simple.

Una variable aleatoria V tiene una distribución normal doblemente truncada si su función de densidad de probabilidad viene dada por (Johnson, 1994):

$$f(\nu,\gamma,\xi,\alpha,\beta) = \frac{1}{I_0\beta\sqrt{2\pi}} e^{-(\nu-\alpha)^2/(2\beta^2)} \quad \text{para} \quad \gamma \le \nu \le \xi \quad (3.152)$$

siendo:

$$I_0 = \left[\frac{1}{\beta\sqrt{2\pi}} \int_{\gamma}^{\xi} e^{-(\nu-\alpha)^2/(2\beta^2)} d\nu\right]$$
(3.153)

donde γ y ξ son los límites inferior y superior respectivamente del truncamiento.

Si ξ se reemplaza por ∞ , la distribución se denomina *distribución Normal truncada* simple por debajo y es la que consideraremos aquí truncándola en $\gamma = 0$.

$$f(\nu,\alpha,\beta) = \beta^{-1} Z[(\nu-\alpha)/\beta] [1-\phi[-\alpha/\beta]]^{-1} \quad \text{para} \quad 0 \le \nu \le \infty$$
(3.154)

3.13.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución normal truncada, puede ser determinado mediante la integral:

$$\mu_r' = \int_0^\infty \frac{1}{\beta I_0 \sqrt{2\pi}} e^{-(v-\alpha)^2 / (2\beta^2)} v^r dv$$
(3.155)

Para r=1, se determina la media μ o momento de primer orden:

$$\mu'_{1} = \mu = E(V) = \frac{1}{\beta I_{0} \sqrt{2\pi}} \int_{0}^{\infty} e^{-(v-a)^{2}/(2\beta^{2})} v dv$$
(3.156)

Realizando el cambio de variables (3.157), sustituyendo en (3.156) e integrando se determina la media (3.158).

$$t = \frac{(v - \alpha)}{\beta} \qquad ; \quad v = \beta t + \alpha \quad ; \quad dv = \beta dt \qquad (3.157)$$

$$\mu_{1}^{'} = \frac{1}{I_{0}\sqrt{2\pi}} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} \left(\beta t + \alpha\right) dt = \frac{1}{I_{0}\sqrt{2\pi}} \left[\beta \int_{-\alpha/\beta}^{\infty} t e^{-t^{2}/2} dt + \alpha \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} dt\right] =$$

$$= \frac{1}{I_{0}\sqrt{2\pi}} \left\{\beta \left[e^{-t^{2}/2}\right]_{-\alpha/\beta}^{\infty} + \alpha\sqrt{2\pi}I_{0}\right\} = \frac{1}{I_{0}} \left[\beta Z \left[-\alpha/\beta\right] + I_{0}\alpha\right] = \alpha + \beta \frac{Z \left[-\alpha/\beta\right]}{1 - \phi \left[-\alpha/\beta\right]}$$
(3.158)

Para *r*=2 se obtiene el momento de segundo orden respecto del origen:

$$\mu_{2} = \frac{1}{\beta I_{0} \sqrt{2\pi}} \int_{0}^{\infty} e^{-(v-\alpha)^{2}/(2\beta^{2})} v^{2} dv$$
(3.159)

Realizando el cambio de variables (3.156) y sustituyendo en (3.158) se tiene:

$$\mu_{2}^{'} = \frac{1}{I_{0}\sqrt{2\pi}} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} \left(\beta t + \alpha\right)^{2} dt = \frac{1}{I_{0}\sqrt{2\pi}} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} \left(\beta^{2} t^{2} + 2\beta\alpha t + \alpha^{2}\right) dt$$

$$= \frac{1}{I_{0}\sqrt{2\pi}} \left[\beta^{2} \int_{-\alpha/\beta}^{\infty} t^{2} e^{-t^{2}/2} dt + 2\beta\alpha \int_{-\alpha/\beta}^{\infty} t e^{-t^{2}/2} dt + \alpha^{2} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} dt\right]$$
(3.160)

Resolviendo por partes la primera integral de la última igualdad de (3.160), se tiene:

$$\mu_{2}' = \frac{1}{I_{0}\sqrt{2\pi}} \left\{ \beta^{2} \left[-te^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} + \left(\beta^{2} + \alpha^{2} \right) \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} dt - 2\alpha\beta \left[e^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} \right\} =$$

$$= \frac{1}{I_{0}\sqrt{2\pi}} \left\{ \beta\alpha e^{-\alpha^{2}/(2\beta^{2})} + \left(\beta^{2} + \alpha^{2} \right) I_{0}\sqrt{2\pi} \right\} = \alpha\beta Z \left[-\alpha/\beta \right] / I_{0} + \beta^{2} + \alpha^{2}$$
(3.161)

Para *r*=3 se obtiene el momento de tercer orden respecto del origen:

$$\mu'_{3} = \frac{1}{\beta I_{0} \sqrt{2\pi}} \int_{0}^{\infty} e^{-(v-\alpha)^{2}/(2\beta^{2})} v^{3} dv$$
(3.162)

Realizando el cambio de variables (3.157) y sustituyendo en (3.162) se tiene:

$$\mu_{3}^{'} = \frac{1}{I_{0}\sqrt{2\pi}} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} \left(\beta^{3}t^{3} + 3\beta^{2}\alpha t^{2} + 3\beta\alpha^{2}t + \alpha^{3}\right) dt =$$

$$= \frac{1}{I_{0}\sqrt{2\pi}} \left[\beta^{3} \int_{-\alpha/\beta}^{\infty} t^{3} e^{-t^{2}/2} dt + 3\beta^{2} \alpha \int_{-\alpha/\beta}^{\infty} t^{2} e^{-t^{2}/2} dt + (3.163) + 3\beta\alpha^{2} \int_{-\alpha/\beta}^{\infty} t e^{-t^{2}/2} dt + \alpha^{3} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} dt \right]$$

Resolviendo por partes las dos primeras integrales de la última igualdad de (3.163), se tiene:

$$\mu_{3}^{\prime} = \frac{1}{I_{0}\sqrt{2\pi}} \left\{ \beta^{3} \left[-t^{2} e^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} + \left[3\beta^{2}\alpha + \alpha^{3} \right]_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} dt - \left[2\beta^{3} + 3\beta\alpha^{2} \right] \left[e^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} + 3\beta^{2}\alpha \left[-te^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} \right\}$$
(3.164)

Reordenando los términos y simplificando se obtiene el tercer momento respecto del origen:

$$\mu_{3}^{\prime} = \frac{1}{I_{0}\sqrt{2\pi}} \left\{ \left[\beta \alpha^{2} + 2\beta^{3} \right] e^{-\alpha^{2}/(2\beta^{2})} + \left[3\beta^{2}\alpha + \alpha^{3} \right] I_{0}\sqrt{2\pi} \right\} =$$

$$= \frac{\left(\beta \alpha^{2} + 2\beta^{3} \right)}{1 - \phi \left[-\alpha/\beta \right]} Z \left[-\alpha/\beta \right] + \alpha^{3} + 3\beta^{2}\alpha \qquad (3.165)$$

Para *r*=4 se obtiene el momento de cuarto orden respecto del origen:

$$\mu'_{4} = \frac{1}{\beta I_{0} \sqrt{2\pi}} \int_{0}^{\infty} e^{-(v-\alpha)^{2}/(2\beta^{2})} v^{4} dv$$
(3.166)

Realizando el cambio de variables (3.157) y sustituyendo en (3.166) se tiene:

$$\mu_{4}' = \frac{1}{I_{0}\sqrt{2\pi}} \int_{-\alpha/\beta}^{\infty} e^{-t^{2}/2} \left(\beta^{4}t^{4} + 4\beta^{3}\alpha t^{3} + 4\beta\alpha^{3}t + 6\beta^{2}\alpha^{2}t^{2} + \alpha^{4}\right) dt =$$

$$=\frac{1}{I_0\sqrt{2\pi}}\left[\beta^4 \int_{-\alpha/\beta}^{\infty} t^4 e^{-t^2/2} dt + 4\beta^3 \alpha \int_{-\alpha/\beta}^{\infty} t^3 e^{-t^2/2} dt + (3.167)\right]$$

$$+6\beta^2\alpha^2\int_{-\alpha/\beta}^{\infty}t^2e^{-t^2/2}dt+4\beta\alpha^3\int_{-\alpha/\beta}^{\infty}te^{-t^2/2}dt+\alpha^4\int_{-\alpha/\beta}^{\infty}e^{-t^2/2}dt\right]$$

Resolviendo por partes las tres primeras integrales de la última igualdad de (3.167), se tiene:

$$\mu_{4}^{\prime} = \frac{1}{I_{0}\sqrt{2\pi}} \left\{ \beta^{4} \left[-t^{3} e^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} + 4\beta^{3} \alpha \left[-t^{2} e^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} + \left[\left(\beta^{4} + 6\beta^{2} \alpha^{2} \right) \right]_{-\alpha/\beta}^{\infty} \left[-te^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} - \left(8\beta^{3} \alpha + 4\beta\alpha^{3} \right) \left[e^{-t^{2}/2} \right]_{-\alpha/\beta}^{\infty} + \left(\beta^{4} + 6\beta^{2} \alpha^{2} + \alpha^{4} \right) I_{0}\sqrt{2\pi} \right\}$$

$$(3.168)$$

Reordenando los términos y simplificando se obtiene el cuarto momento respecto del origen:

$$\mu_{4}' = \frac{1}{I_{0}\sqrt{2\pi}} \left\{ -\left[7\beta\alpha^{3} + 9\alpha\beta^{3}\right]e^{-\alpha^{2}/(2\beta^{2})} + \left[\beta^{4} + 6\beta^{2}\alpha^{2} + \alpha^{4}\right]I_{0}\sqrt{2\pi} \right\}$$

$$= \frac{-\alpha\beta\left(7\alpha^{2} + 9\beta^{2}\right)}{1 - \phi\left[-\alpha/\beta\right]} Z\left[-\alpha/\beta\right] + \beta^{4} + 6\beta^{2}\alpha^{2} + \alpha^{4}$$
(3.169)

La varianza o momento de segundo orden respecto a la media vendrá dado por:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2}^{'} - \mu^{2} = \alpha\beta Z [-\alpha/\beta]/I_{0} - [\alpha + \beta Z [-\alpha/\beta]/I_{0}]^{2} + \beta^{2} + \alpha^{2}$$
(3.170)

Operando y simplificando (3.170) se obtiene:

$$\mu_{2} = \beta^{2} \cdot \left\{ 1 + \frac{(-\alpha/\beta) \cdot Z[-\alpha/\beta]}{I_{0}} - \left\{ \frac{Z[-\alpha/\beta]}{I_{0}} \right\}^{2} \right\}$$

$$= \beta^{2} \left\{ 1 + \frac{(-\alpha/\beta) \cdot Z[-\alpha/\beta]}{1 - \phi[-\alpha/\beta]} - \left\{ \frac{Z[-\alpha/\beta]}{1 - \phi[-\alpha/\beta]} \right\}^{2} \right\}$$
(3.171)

El coeficiente de asimetría:

$$\alpha_{3} = \frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]} \left\{ \left(\alpha^{2}-\beta^{2}\right)+3\cdot\alpha\cdot\beta\cdot\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]} \right\}}{\beta^{2}\cdot\left\{1+\frac{\left(-\alpha/\beta\right)\cdot Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}-\left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{2}\right\}^{3/2}} + \left\{2\cdot\left[\frac{Z\left(-\alpha/\beta\right)}{1-\phi\left(-\alpha/\beta\right)}\right]^{3}\right\} \right/ \left\{1+\frac{\left(-\alpha/\beta\right)\cdot Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}-\left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{2}\right\}^{3/2} \right\}$$

$$(3.172)$$

El coeficiente de curtosis:

$$\alpha_{4} = \frac{\frac{-Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]} \left\{9\alpha^{3} + 17\alpha\beta^{2} + 4\alpha^{2}\beta\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]} + 2\beta^{3}\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}}{\beta^{3} \cdot \left\{1 + \frac{\left(-\alpha/\beta\right) \cdot Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]} - \left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{2}\right\}^{2}} + \beta^{3} \cdot \left\{1 + \frac{\left(-\alpha/\beta\right) \cdot Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]} - \left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{2}\right\}^{2}$$

$$-\frac{\left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{3}\left\{6\alpha+3\beta\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}}{\beta\cdot\left\{1+\frac{\left(-\alpha/\beta\right)\cdot Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}-\left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{2}\right\}^{2}}+\frac{1}{\left\{1+\frac{\left(-\alpha/\beta\right)\cdot Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}-\left\{\frac{Z\left[-\alpha/\beta\right]}{1-\phi\left[-\alpha/\beta\right]}\right\}^{2}\right\}^{2}}$$

$$(3.173)$$

El coeficiente de variación:

$$cv = \beta \cdot \left[1 + \frac{(-\alpha/\beta)Z[-\alpha/\beta]}{1 - \phi[-\alpha/\beta]} - \left\{ \frac{Z[-\alpha/\beta]}{1 - \phi[-\alpha/\beta]} \right\}^2 \right]^{1/2} / \left\{ \alpha + \beta \cdot \frac{Z[-\alpha/\beta]}{1 - \phi[-\alpha/\beta]} \right\}$$
(3.174)

3.13.2. La función de distribución acumulada.

La función de distribución acumulada Normal truncada viene dada por:

$$F(v;\alpha,\beta) = P(V \le v) = \int_{0}^{v} \frac{1}{I_0 \cdot \beta \cdot \sqrt{2 \cdot \pi}} \cdot e^{-(v-\alpha)^2 / (2 \cdot \beta^2)} \cdot dv$$
(3.175)

No es posible obtener una expresión de forma cerrada para la integral (3.175). En consecuencia, la función de distribución acumulativa para una variable aleatoria Normal truncada se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.175).

3.13.3. Moda y mediana.

La moda v_m de la función de densidad Normal truncada viene dada por:

$$\frac{d\left[f(v;\alpha,\beta)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \alpha \tag{3.176}$$

La mediana $v_{0.5}$ se determina resolviendo la ecuación (3.177).

$$P(V \le v_{0.5}) = \frac{1}{2} = \int_{0}^{v_{0.5}} \frac{1}{I_0 \beta \sqrt{2\pi}} e^{-(v-\alpha)^2 / (2\beta^2)} dv$$
(3.177)

3.14. La distribución Lognormal de tres parámetros.

Una variable aleatoria V tiene una *distribución logaritmo-normal* de tres parámetros si su función de densidad de probabilidad viene dada por:

$$f(v;\delta,\alpha,\beta) = \left\{ \frac{1}{(v-\delta)\cdot\beta\cdot\sqrt{2\cdot\pi}} \cdot e^{-\left\{\frac{1}{2}\left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^2\right\}} \quad \text{para} \quad \delta < v, \ \beta > 0$$
(3.178)

Siendo δ el parámetro de localización.

3.14.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución, puede ser determinado mediante la integral:

$$\mu_r' = \int_{\delta}^{\infty} \frac{1}{(v-\delta)\beta\sqrt{2\pi}} e^{-\left\{\frac{1}{2}\left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^2\right\}} v^r dv$$
(3.179)

Para r=1, se determina la media μ o momento de primer orden:

$$\mu_{1} = \mu = E(V) = \int_{\delta}^{\infty} \frac{1}{(v-\delta) \cdot \beta \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\left\{\frac{1}{2} \left[\frac{\ln(v-\delta) - \alpha}{\beta}\right]^{2}\right\}} v \cdot dv$$
(3.180)

Realizando el cambio de variables (3.181), sustituyendo en (3.180) e integrando se determina la media (3.182).

$$t = \frac{\ln(v - \delta) - \alpha}{\beta} \qquad ; \quad v = \delta + e^{\beta t + \alpha} \quad ; \quad dv = \beta e^{\beta t + \alpha} dt \qquad (3.181)$$

$$\mu_{1}' = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\delta + e^{t\beta + \alpha}\right) e^{-\frac{t^{2}}{2}} dt = \delta + \frac{1}{\sqrt{2 \cdot \pi}} \int_{-\infty}^{\infty} e^{-(t-\beta)^{2}/2} e^{\left(\alpha + \beta^{2}/2\right)} dt = \delta + e^{\left(\alpha + \beta^{2}/2\right)}$$
(3.182)

Para *r*=2 se obtiene el momento de segundo orden respecto del origen:

$$\mu_{2}' = \int_{\delta}^{\infty} \frac{1}{(v-\delta) \cdot \beta \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\left\{\frac{1}{2} \left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^{2}\right\}} \cdot v^{2} \cdot dv$$
(3.183)

Realizando el cambio de variables (3.181) y sustituyendo en (3.183) se tiene:

$$\mu_{2}' = \frac{1}{\sqrt{2 \cdot \pi}} \int_{-\infty}^{\infty} \left(\delta + e^{t \cdot \beta + \alpha}\right)^{2} \cdot e^{-t^{2}/2} dt = \delta^{2} + 2 \cdot \delta \cdot e^{\left(\alpha + \beta^{2}/2\right)} + e^{2\left(\alpha + \beta^{2}\right)}$$
(3.184)

Para *r*=3 se obtiene el momento de tercer orden respecto del origen:

$$\mu_{3}^{'} = \int_{\delta}^{\infty} \frac{1}{(v-\delta)\beta\sqrt{2\pi}} \cdot e^{\left[\left\{\frac{1}{2}\left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^{2}\right\}}v^{3}dv \qquad (3.185)$$

Realizando el cambio de variables (3.181) y sustituyendo en (3.185) se tiene:

$$\mu_{3}' = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\delta + e^{t\beta + \alpha}\right)^{3} e^{-t^{2}/2} dt = \delta^{3} + 3\delta^{2} e^{\left(\alpha + \beta^{2}/2\right)} + 3\delta e^{2\left(\alpha + \beta^{2}\right)} + e^{3\left(\alpha + 3\beta^{2}/2\right)}$$
(3.186)

Para *r*=4 se obtiene el momento de cuarto orden respecto del origen:

$$\mu_{4}' = \int_{\delta}^{\infty} \frac{1}{\left(v-\delta\right)\beta\sqrt{2\pi}} \cdot e^{-\left\{\frac{1}{2}\left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^{2}\right\}} v^{4} dv$$
(3.187)

Realizando el cambio de variables (3.181) y sustituyendo en (3.187) se tiene:

$$\mu_{4}' = \delta^{4} + 4\delta^{3} e^{\left(\alpha + \frac{\beta^{2}}{2}\right)} + 4\delta e^{3\left(\alpha + \frac{3\beta^{2}}{2}\right)} + 6\delta^{2} e^{2\left(\alpha + \beta^{2}\right)} + e^{4\left(\alpha + 2\beta^{2}\right)}$$
(3.188)

La varianza o momento de segundo orden respecto a la media vendrá dado por:

$$\mu_2 = Var(V) = \sigma^2 = \mu_2 - \mu^2 = e^{(2\alpha + \beta^2)} \left[e^{\beta^2} - 1 \right]$$
(3.189)

El coeficiente de asimetría:

$$\alpha_{3} = \frac{\mu_{3}' - 3 \cdot \mu \cdot \mu_{2}' + 2\mu^{3}}{(\mu_{2})^{3/2}} = \sqrt{\left(e^{\beta^{2}} - 1\right)^{3}} + 3 \cdot \sqrt{\left(e^{\beta^{2}} - 1\right)}$$
(3.190)

El coeficiente de curtosis:

$$\alpha_{4} = \frac{\mu_{4}}{(\mu_{2})^{2}} = \sqrt{(e^{\beta^{2}} - 1)^{8}} + 6\sqrt{(e^{\beta^{2}} - 1)^{6}} + 15\sqrt{(e^{\beta^{2}} - 1)^{4}} + 16\sqrt{(e^{\beta^{2}} - 1)^{2}} + 3$$
(3.191)

El coeficiente de variación:

$$cv = \left[e^{\alpha+\beta^2/2}\right] \left[\sqrt{e^{\beta^2}-1}\right] / \left[\delta+e^{\alpha+\beta^2/2}\right]$$
(3.192)

3.14.2. La función de distribución acumulada.

La función de distribución acumulada Lognormal viene dada por:

$$F(v;\alpha,\beta,\delta) = P(V \le v) = \int_{\delta}^{v} \frac{1}{(v-\delta)\beta\sqrt{2\pi}} e^{-\left\{\frac{1}{2}\left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^{2}\right\}} dv$$
(3.193)

No es posible obtener una expresión de forma cerrada para la integral (3.193). En consecuencia, la función de distribución acumulativa para una variable aleatoria Lognormal se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.193).

3.14.3. Moda y mediana.

La moda $v_{\rm m}$ de la función de densidad Lognormal viene dada por:

$$\frac{d\left[f\left(v;\alpha,\beta,\delta\right)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \delta + e^{\left(\alpha - \beta^2\right)} \tag{3.194}$$

La mediana $v_{0.5}$ viene dada por:

$$P(V \le v_{0.5}) = \frac{1}{2} = \int_{\delta}^{v_{0.5}} \frac{1}{(v-\delta)\beta\sqrt{2\pi}} e^{-\left\{\frac{1}{2}\left[\frac{\ln(v-\delta)-\alpha}{\beta}\right]^2\right\}} dv \qquad ; \qquad v_{0.5} = \delta + e^{\alpha}$$
(3.195)

3.15. La distribución Lognormal híbrida.

Según (3.1) y (3.178) la *distribución híbrida Lognormal* viene dada por:

$$g(v;\alpha,\beta,\theta_0) = \theta_0 \cdot \delta(v) + (1-\theta_0) \frac{1}{(v) \cdot \beta \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\left\{\frac{1}{2} \left[\frac{\ln(v) - \alpha}{\beta}\right]^2\right\}} \quad ; v > 0 \quad (3.196)$$

En el caso de $\theta_0=0$, (3.196) se reduce a la distribución Lognormal de dos parámetros, la cual ha sido empleada por diversos investigadores (García *et al.*, 1998; Luna y Church, 1974; Kaminsky, 1976) para describir el comportamiento estadístico del viento.

3.15.1. Momentos de la distribución.

El r-ésimo momento respecto al origen de la distribución (3.196) viene dado por:

$$\mu'_{r} = (1 - \theta_{0}) \cdot e^{\left[\alpha r + r^{2} \beta^{2}/2\right]}$$
(3.197)

La media µ de la distribución viene dada por:

$$\mu'_{1} = \mu = E(V) = (1 - \theta_{0})e^{\left[\alpha + \beta^{2}/2\right]}$$
(3.198)

La varianza:

$$\mu_2 = \left(1 - \theta_0\right) \left[e^{2\left[\alpha + \beta^2\right]} - (1 - \theta_0) e^{\left[2\alpha + \beta^2\right]} \right]$$
(3.199)

El coeficiente de simetría:

$$\alpha_{3} = \left[e^{3\left[\alpha+3\beta^{2}/2\right]} - 3(1-\theta_{0})e^{\left[3\alpha+5\beta^{2}/2\right]} + 2(1-\theta_{0})^{2}e^{3\left[\alpha+\beta^{2}/2\right]} \right] / A$$
(3.200)

donde A viene dado por:

$$A = \left(1 - \theta_0\right)^{1/2} \left[e^{2\left[\alpha + \beta^2\right]} - (1 - \theta_0) e^{\left[2\alpha + \beta^2\right]} \right]^{3/2}$$
(3.201)

El coeficiente de curtosis:

$$\alpha_{4} = \left[e^{4\left[\alpha+2\beta^{2}\right]} -4(1-\theta_{0})e^{\left[4\alpha+5\beta^{2}\right]} +6(1-\theta_{0})^{2}e^{\left[4\alpha+3\beta^{2}\right]} -3(1-\theta_{0})^{3}e^{\left[4\alpha+2\beta^{2}\right]} \right] \Big/ B$$
(3.202)

donde *B* viene dado por:

$$B = \left(1 - \theta_0\right) \left[e^{2\left[\alpha + \beta^2\right]} - (1 - \theta_0) e^{\left[2\alpha + \beta^2\right]} \right]^2$$
(3.203)

El coeficiente de variación:

$$cv = \left[e^{\beta^2} / (1 - \theta_0) - 1 \right]^{1/2}$$
(3.204)

3.15.2. La función de distribución acumulada.

La función de distribución acumulada Lognormal híbrida viene dada, según (3.3) y (3.178), por (3.205):

$$G(v; \alpha, \beta, \theta_0) = P(V \le v) = \theta_0 + (1 - \theta_0) \int_{0}^{v} \frac{1}{v\beta\sqrt{2\pi}} e^{-\left\{\frac{1}{2}\left[\frac{\ln(v) - \alpha}{\beta}\right]^2\right\}} dv$$
(3.205)

No es posible obtener una expresión de forma cerrada para la integral (3.205). En consecuencia, la función de distribución acumulativa para una variable aleatoria Lognormal híbrida se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.205).

3.15.3. Moda y mediana.

La moda v_m de la función de densidad Lognormal híbrida viene dada por:

$$\frac{d\left[g\left(v;\alpha,\beta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = e^{\left[\alpha+\beta^{2}\right]}$$
(3.206)

La mediana $v_{0.5}$

$$P(V \le v_{0.5}) = 1/2 = \theta_0 + (1 - \theta_0) \int_{\delta}^{v_{0.5}} \frac{1}{\nu \beta \sqrt{2\pi}} e^{-\left\{\frac{1}{2} \left[\frac{\ln(\nu) - \alpha}{\beta}\right]^2\right\}} d\nu$$
(3.207)

La resolución de la ecuación no lineal (3.207) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método

de Newton-Raphson y utilizando la subrutina qromb (Press et al, 1996) para resolver la integral.

3.16. La distribución Gausiana inversa.

Una variable aleatoria V tiene una distribución gaussiana inversa IG(α,β,γ) si su función de densidad de probabilidad viene dada por (Jonhson et al., 1994; Folks y Chhikara, 1978; Tweedie, 1957a; Tweedie, 1957b):

$$f(v;\alpha,\beta,\gamma) = \begin{cases} \left[\frac{\beta}{2 \cdot \pi \cdot (v-\gamma)^3}\right]^{1/2} \cdot \exp\left[-\frac{\beta \cdot (v-\gamma-\alpha)^2}{2 \cdot (v-\gamma) \cdot \alpha^2}\right] & v > \gamma; \ \alpha,\beta > 0 \\ 0 & \forall \text{ otro valor} \end{cases}$$
(3.208)

3.16.1. Momentos de la distribución.

Para calcular los momentos respecto del origen de la distribución gaussiana inversa definimos previamente la función generatriz de momentos. Esta se define como:

$$\psi(t) = E\left[e^{t\cdot V}\right] = \int_{\gamma}^{\infty} e^{t\cdot v} \cdot f\left(v, \alpha, \beta, \gamma\right) \cdot dv = \int_{\gamma}^{\infty} e^{t\cdot v} \cdot \left[\frac{\beta}{2 \cdot \pi \cdot (v-\gamma)^3}\right]^{1/2} \cdot e^{\left[\frac{\beta \cdot (v-\gamma-\alpha)^2}{2 \cdot (v-\gamma) \cdot \alpha^2}\right]} \cdot dv$$
(3.209)

Desarrollando los términos exponenciales se tiene:

$$\psi(t) = \int_{\gamma}^{\infty} \left[\frac{\beta}{2 \cdot \pi \cdot (v - \gamma)^3} \right]^{1/2} \cdot \exp\left\{ \frac{-\beta}{2 \cdot (v - \gamma) \cdot \alpha^2} \cdot \left(v^2 - 2 \cdot \gamma \cdot v - 2 \cdot \alpha \cdot v + 2 \cdot \gamma \cdot \alpha + \frac{1}{2 \cdot (v - \gamma)^3}\right)^{1/2} + \gamma^2 + \alpha^2 - \frac{2 \cdot \alpha^2 \cdot t \cdot v \cdot (v - \gamma)}{\beta} \right] = \int_{\gamma}^{\infty} \left[\frac{\beta}{2 \cdot \pi \cdot (v - \gamma)^3} \right]^{1/2} \cdot \exp\left\{ \frac{-\beta}{2 \cdot (v - \gamma) \cdot \alpha^2} \cdot \frac{(3.210)}{(1 - 2 \cdot \alpha^2 \cdot t / \beta) \cdot v^2 - 2 \cdot \alpha \cdot (v - \gamma) + 2 \cdot \alpha^2 \cdot \gamma \cdot t \cdot v / \beta + \alpha^2 + \gamma^2 - 2\gamma v} \right] \right\} \cdot dv$$
La última igualdad de (3.210) se puede expresar como:

La última igualdad de (3.210) se puede expresar como:

$$\psi(t) = \int_{\gamma}^{\infty} \left[\frac{\beta}{2\pi (v-\gamma)^3} \right]^{1/2} \exp\left\{ \left(-\beta \left[\frac{\sqrt{1-2\alpha^2 t/\beta}}{\alpha} \right]^2 / 2(v-\gamma) \right) \right\}$$

$$\left[\left(v-\gamma - \frac{\alpha}{\sqrt{1-2\alpha^2 t/\beta}} \right)^2 - \frac{2\alpha (v-\gamma)}{(1-2\alpha^2 t/\beta)} + \frac{2\alpha (v-\gamma)}{(1-2\alpha^2 t/\beta)^{1/2}} - \frac{2\alpha^2 t\gamma (v-\gamma)}{\beta (1-2\alpha^2 t/\beta)} \right] dv$$
(3.211)

Reordenando términos en la expresión (3.211) se tiene:

$$\psi(t) = \int_{\gamma}^{\infty} \left[\frac{\beta}{2\pi (v - \gamma)^3} \right]^{1/2} \exp\left\{ \frac{-\beta \left(1 - 2\alpha^2 t/\beta\right)}{2 (v - \gamma) \alpha^2} \left[\left(v - \gamma - \frac{\alpha}{\sqrt{1 - 2\alpha^2 t/\beta}} \right)^2 \right] \right\}$$

$$\exp\left\{ \frac{\beta}{\alpha} \left[1 - \frac{1}{\sqrt{1 - 2\alpha^2 t/\beta}} \left(1 - \frac{2\alpha^2 t}{\beta} \right) + \frac{\alpha t\gamma}{\beta} \right] \right\} dv$$
(3.212)

Sacando fuera de la integral el último término exponencial de (3.212) se tiene:

$$\psi(t) = \mathrm{e}^{\left\{\frac{\beta}{\alpha}\left[1 - \sqrt{1 - 2 \cdot \alpha^2 \cdot t/\beta}\right] + \gamma \cdot t\right\}} \cdot \int_{\gamma}^{\infty} f(v, \alpha, \beta, \gamma) \cdot dv$$
(3.213)

Como la integral de (3.213) es la unidad se obtiene como expresión de la función generatriz de momentos de la función de distribución gaussiana inversa la siguiente:

$$\psi(t) = e^{\left\{\frac{\beta}{\alpha} \left[1 - \sqrt{1 - \frac{2\cdot \alpha^2 \cdot t}{\beta}}\right] + \gamma \cdot t\right\}}$$
(3.214)

Como el momento de orden n respecto al origen es igual a la derivada n-sima de la función generatriz particularizada pata t=0, tenemos:

$$\psi^{(n)}(0) = E \left[V^n \right] = \mu'_n \tag{3.215}$$

Luego, la media o momento de primer orden respecto al origen será:

$$\psi^{(1)}(t) = \left\{ \frac{\beta}{\alpha} \left[\frac{\alpha^2}{\beta \sqrt{1 - 2\alpha^2 t/\beta}} \right] + \gamma \right\} e^{\left\{ \frac{\beta}{\alpha} \left[1 - \sqrt{1 - 2\alpha^2 t/\beta} \right] + \gamma t \right\}} \qquad \Rightarrow \qquad \mu = \mu_1' = \psi^{(1)}(0) = \alpha + \gamma$$
(3.216)

La derivada segunda de la función generatriz respecto de *t* viene dada por:

$$\psi^{(2)}(t) = \left\{ \frac{\alpha^{3}}{\beta \left(1 - 2\alpha^{2} t/\beta \right)^{3/2}} + \frac{\alpha^{2}}{\left(1 - 2\alpha^{2} t/\beta \right)} + \frac{2\alpha\gamma}{\sqrt{\left(1 - 2\alpha^{2} t/\beta \right)}} + \gamma^{2} \right\} \qquad \cdot e^{\left\{ \frac{\beta}{\alpha} \left[1 - \sqrt{\left(1 - 2\alpha^{2} t/\beta \right)} \right] + \gamma \cdot t \right\}}$$
(3.217)

Por tanto, el momento de segundo orden respecto al origen será:

$$\mu_{2}' = \psi^{(2)}(0) = \alpha^{3} / \beta + \alpha^{2} + 2\alpha\gamma + \gamma^{2}$$
(3.218)

La derivada tercera de la función generatriz particularizada para t=0, es decir, el momento de tercer orden respecto del origen, viene dada por:

$$\mu_{3}' = \psi^{(3)}(0) = 3\alpha^{5}/\beta^{2} + 3\alpha^{4}/\beta + 3\alpha^{3}\gamma/\beta + \alpha^{3} + 3\alpha^{2}\gamma + 3\alpha\gamma^{2} + \gamma^{3}$$
(3.219)

La derivada cuarta de la función generatriz particularizada para t=0, es decir, el momento de cuarto orden respecto del origen, viene dada por:

$$\mu_{4}' = \psi^{(4}(0) = 15\alpha^{7}/\beta^{3} + 15\alpha^{6}/\beta^{2} + 6\alpha^{5}/\beta + 12\alpha^{4}\gamma/\beta + 6\alpha^{3}\gamma^{2}/\beta +$$

$$+12\alpha^{5}\gamma/\beta^{2} + \alpha^{4} + 4\alpha^{3}\gamma + 6\alpha^{2}\gamma^{2} + 4\alpha^{2}\gamma^{2} + 4\alpha\gamma^{3} + \gamma^{4}$$
(3.220)

La varianza o momento de segundo orden respecto a la media vendrá dado por:

$$\mu_2 = Var(V) = \sigma^2 = \mu_2 - \mu^2 = \alpha^3 / \beta$$
(3.221)

El coeficiente de asimetría:

$$\alpha_{3} = \frac{\mu_{3}' - 3 \cdot \mu \cdot \mu_{2}' + 2\mu^{3}}{(\mu_{2})^{3/2}} = \frac{3 \cdot \alpha^{5} / \beta^{2}}{(\alpha^{3} / \beta)^{3/2}} = 3 \cdot \sqrt{\alpha / \beta}$$
(3.222)

El coeficiente de curtosis:

$$\alpha_{4} = \frac{\mu_{4}}{(\mu_{2})^{2}} = \frac{15 \cdot \alpha^{7} / \beta^{3} + 3 \cdot \alpha^{6} / \beta^{2}}{(\alpha^{3} / \beta)^{2}} = 3 + 15 \cdot \alpha / \beta$$
(3.223)

El coeficiente de variación:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \sqrt{\frac{\alpha^3}{\beta \cdot (\alpha + \gamma)^2}}$$
(3.224)

3.16.2. La función de distribución acumulada.

La función de distribución acumulada gaussiana inversa viene dada por (3.225):

$$F(\nu;\alpha,\beta,\gamma) = P(V \le \nu) = \int_{\gamma}^{\nu} \left[\frac{\beta}{2 \cdot \pi \cdot (\nu - \gamma)^3} \right]^{1/2} \cdot \exp\left[-\frac{\beta \cdot (\nu - \gamma - \alpha)^2}{2 \cdot (\nu - \gamma) \cdot \alpha^2} \right] d\nu$$
(3.225)

No es posible obtener una expresión de forma cerrada para la integral (3.225). En consecuencia, la función de distribución acumulativa para una variable aleatoria gaussiana inversa se debe obtener aplicando procedimientos de aproximación con la ayuda de computadora. En esta tesis se aplica la subrutina **qromb** (Press *et al*, 1996), basada en el método de Romberg, para resolver la función (3.225).

3.16.3. Moda y mediana.

La moda v_m de la función de densidad gaussiana inversa viene dada por (Tweedie, 1957a; Evans *et al.* 1993; Johnson *et al.*, 1994):

$$\frac{d\left[f(v;\alpha,\beta,\gamma)\right]}{dv} = 0 \quad \rightarrow \quad v_m = \gamma + \alpha \left\{ \left(1 + \frac{9\alpha^2}{4\beta^2}\right)^{1/2} - \frac{3\alpha}{2\beta} \right\}$$
(3.226)

La mediana $v_{0.5}$

$$P(V \le v_{0.5}) = \frac{1}{2} = \int_{\gamma}^{v_{0.5}} \left[\frac{\beta}{2\pi (v - \gamma)^3} \right]^{1/2} \exp\left[-\frac{\beta \cdot (v - \gamma - \alpha)^2}{2 (v - \gamma) \alpha^2} \right] dv$$
(3.227)

La resolución de la ecuación no lineal (3.227) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.17. La distribución Gausiana inversa híbrida.

Según (3.1) y (3.107) la distribución híbrida gaussiana inversa viene dada por:

$$g(v;\alpha,\beta,\theta_0) = \theta_0 \delta(v) + (1-\theta_0) \left[\frac{\beta}{2\pi v^3}\right]^{1/2} e^{-\frac{\beta(v-\alpha)^2}{2v\alpha^2}} ; v > 0$$
(3.228)

En el caso de $\theta_0=0$, (3.228) se reduce a la distribución Gaussiana inversa de dos parámetros, también denomina distribución de Wald (Evans *et al.*, 1993; Folks y Chhikara, 1978; Jonhson *et al.*, 1994); la cual ha sido empleada por Bardsley (1980) como una alternativa a la distribución de Weibull para describir datos de viento con pequeñas frecuencias de velocidades bajas.

3.17.1. Momentos de la distribución.

La función generatriz de momentos de la función de distribución gaussiana inversa híbrida viene dada por:

$$\psi(t) = (1 - \theta_0) e^{\frac{\beta}{\alpha} \left[1 - \sqrt{1 - \frac{2 \cdot \alpha^2 \cdot t}{\beta}} \right]}$$
(3.229)

Como el momento de orden n respecto al origen es igual a la derivada n-sima de la función generatriz particularizada pata t=0, tenemos:

$$\psi^{(n)}(0) = E\left[V^n\right] = \mu'_n \tag{3.230}$$

Luego, la media o momento de primer orden respecto al origen será:

$$\mu = \mu'_1 = \psi^{(1)}(0) = (1 - \theta_0)\alpha \tag{3.231}$$

Por tanto, el momento de segundo orden respecto al origen será:

$$\mu_{2}' = \psi^{(2)}(0) = (1 - \theta_{0}) \left(\alpha^{3} / \beta + \alpha^{2} \right)$$
(3.232)

La derivada tercera de la función generatriz particularizada para t=0, es decir, el momento de tercer orden respecto del origen, viene dada por:

$$\mu_{3}' = \psi^{(3)}(0) = (1 - \theta_{0}) \left(3 \cdot \alpha^{5} / \beta^{2} + 3 \cdot \alpha^{4} / \beta + \alpha^{3} \right)$$
(3.233)

La derivada cuarta de la función generatriz particularizada para t=0, es decir, el momento de cuarto orden respecto del origen, viene dada por:

$$\mu_{4}' = \psi^{(4}(0) = (1 - \theta_{0}) (15 \cdot \alpha^{7} / \beta^{3} + 15 \cdot \alpha^{6} / \beta^{2} + 6 \cdot \alpha^{5} / \beta + \alpha^{4})$$
(3.234)

La varianza o momento de segundo orden respecto a la media vendrá dado por:

$$\mu_{2} = Var(V) = \sigma^{2} = \mu_{2}^{'} - \mu^{2} = (1 - \theta_{0}) \left[\left(\frac{\alpha^{3}}{\beta} + \alpha^{2} \right) - (1 - \theta_{0}) \alpha^{2} \right]$$
(3.235)

El coeficiente de asimetría:

$$\alpha_{3} = \left[\frac{3\alpha^{2}}{\beta^{2}} + \frac{3\alpha^{4}}{\beta} + \alpha^{3} - 3\left(1 - \theta_{0}\right)\alpha\left(\frac{\alpha^{3}}{\beta} + \alpha^{2}\right) + 2\left(1 - \theta_{0}\right)^{2}\alpha^{3}\right] / C$$
(3.236)

donde C viene dado por:

$$C = (1 - \theta_0)^{1/2} \left[\left(\frac{\alpha^3}{\beta} + \alpha^2 \right) - (1 - \theta_0) \alpha^2 \right]^{3/2}$$
(3.237)

El coeficiente de curtosis:

$$\alpha_{4} = \left[15 \frac{\alpha^{7}}{\beta^{3}} + 15 \frac{\alpha^{6}}{\beta^{2}} + 6 \frac{\alpha^{5}}{\beta} + \alpha^{4} - 4 (1 - \theta_{0}) \left(3 \frac{\alpha^{5}}{\beta^{2}} + 3 \frac{\alpha^{4}}{\beta} + \alpha^{3} \right) + 6 \alpha^{2} (1 - \theta_{0})^{2} \left(\frac{\alpha^{3}}{\beta} + \alpha^{2} \right) - 3 (1 - \theta_{0})^{3} \alpha^{4} \right] / D$$
(3.238)

donde D viene dado por:

$$C = \left(1 - \theta_0\right) \left[\left(\frac{\alpha^3}{\beta} + \alpha^2\right) - \left(1 - \theta_0\right) \alpha^2 \right]^2$$
(3.239)

El coeficiente de variación:

$$cv = \frac{\sqrt{\sigma^2}}{\mu} = \sqrt{\left(\frac{\alpha}{\beta} + 1\right) / \left(1 - \theta_0\right) - 1}$$
(3.240)

3.17.2 La función de distribución acumulada.

La función de distribución acumulada gaussiana inversa híbrida viene dada por (3.241):

$$G(v; \alpha, \beta, \theta_0) = P(V \le v) = \theta_0 + (1 - \theta_0) \int_0^v \left[\frac{\beta}{2\pi v^3}\right]^{1/2} \exp\left[-\frac{\beta (v - \alpha)^2}{2v\alpha^2}\right] dv$$
(3.241)

Como señalan Folks y Chhikara (1978) para que la distribución gaussiana inversa sea útil es necesario que las probabilidades sean fáciles de obtener. Para ello se suele expresar la función de distribución acumulada en términos de la función de distribución normal estándar Φ .

$$G(\nu;\alpha,\beta,\theta_0) = \theta_0 + \left(1 - \theta_0\right) \left\{ \Phi\left[\left(\frac{\beta}{\nu}\right)^{1/2} \left(-1 + \frac{\nu}{\alpha}\right)\right] + e^{2\beta/\alpha} \Phi\left[-\left(\frac{\beta}{\nu}\right)^{1/2} \left(1 + \frac{\nu}{\alpha}\right)\right] \right\}$$
(3.242)

No es posible obtener una expresión de forma cerrada para la integral (3.242). En consecuencia, la función de distribución acumulativa para una variable aleatoria gaussiana inversa híbrida se obtiene en esta tesis aplicando procedimientos de aproximación con la ayuda de computadora.

3.17.3. Moda y mediana.

La moda v_m de la función de densidad gaussiana inversa híbrida viene dada por (Tweedie, 1957a; Evans *et al.* 1993; Jonhson *et al.* 1994):

$$\frac{d\left[g\left(v;\alpha,\beta,\theta_{0}\right)\right]}{dv} = 0 \quad \rightarrow \quad v_{m} = \alpha \left\{ \left(1 + \frac{9\alpha^{2}}{4\beta^{2}}\right)^{1/2} - \frac{3\alpha}{2\beta} \right\}$$
(3.243)

La mediana $v_{0.5}$:

$$P(V \le v_{0.5}) = \frac{1}{2} = \theta_0 + (1 + \theta_0) \int_0^{v_{0.5}} \left[\frac{\beta}{2\pi v^3} \right]^{1/2} \exp \left[-\frac{\beta \left(v - \alpha\right)^2}{2v\alpha^2} \right] dv$$
(3.244)

La resolución de la ecuación no lineal (3.244) se lleva a cabo en esta tesis aplicando un algoritmo híbrido **rtsafe** (Press *et al*, 1996), que combina el método de bisección y el método de Newton-Raphson y utilizando la subrutina **qromb** (Press *et al*, 1996) para resolver la integral.

3.18. La distribución Mixta de Weibull.

Supóngase que V_i (*i*=1,2,...,*k*) se distribuyen según distribuciones independientes de Weibull de tres parámetros (α_i , β_i , γ) con función de densidad de probabilidad dada por (3.55); entonces una variable aleatoria *V* que se distribuye como V_i con probabilidad π_i (tal que $\pi_1+\pi_2+...+\pi_k=1$) se dice que tiene una *distribución de Weibull mixta finit*a (Johnson *et al*, 1994).

La función de densidad de V viene dada por:

$$f(\nu;\alpha_i,\beta_i,\pi_i,\gamma) = \sum_{i=1}^k \pi_i \frac{\alpha_i}{\beta_i} \cdot \left(\frac{\nu-\gamma}{\beta_i}\right)^{\alpha_i-1} e^{-\left[(\nu-\gamma)/\beta_i\right]^{\alpha_i}} \quad ; \nu > \gamma;\alpha_i,\beta_i > 0$$
(3.245)

En el caso que k=2 la distribución (3.245) se suele denominar *Distribución mixta de Weibull de dos componentes*, la cual ha recibido una considerable atención por numerosos investigadores (Rider, 1961; Kaylan y Harris, 1981; Cheng y Fu, 1982; Woodward y Gunst, 1987). En el caso de la energía eólica, con anterioridad a esta tesis, dicha distribución sólo ha sido utilizada por Jaramillo y Borja (2004a, 2004b), los cuales anulan el parámetro de posición γ . Sin embargo, en esta tesis se hará uso del parámetro de posición en determinados estudios (Véase figura 8.12).

En el caso de k=2, parámetro de posición nulo y probabilidad de observación de viento nula θ_0 , la autora de esta tesis propone expresar la ecuación (3.245) de la siguiente manera:

$$g(\nu; \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \pi) = \theta_{0} \delta(\nu) + (1 - \theta_{0}) \left[\pi \frac{\alpha_{1}}{\beta_{1}} \cdot \left(\frac{\nu}{\beta_{1}} \right)^{\alpha_{1} - 1} e^{-[\nu/\beta_{1}]^{\alpha_{1}}} \right]$$
(3.246)

$$+ (1-\pi)\frac{\alpha_2}{\beta_2} \cdot \left(\frac{\nu}{\beta_2}\right)^{\alpha_2 - 1} \mathrm{e}^{-[\nu/\beta_2]^{\alpha_2}} \quad] \quad ; \nu > 0 ; \alpha_i, \beta_i > 0$$

3.18.1. Momentos de la distribución.

El *r*-ésimo momento respecto al origen de la distribución de Weibull mixta, puede ser determinado mediante la integral:

$$\mu_{r}^{'} = (1 - \theta_{0}) \int_{0}^{\infty} \left[\pi \frac{\alpha_{1}}{\beta_{1}} \cdot \left(\frac{\nu}{\beta_{1}} \right)^{\alpha_{1} - 1} e^{-[\nu/\beta_{1}]^{\alpha_{1}}} + (1 - \pi) \frac{\alpha_{2}}{\beta_{2}} \cdot \left(\frac{\nu}{\beta_{2}} \right)^{\alpha_{2} - 1} e^{-[\nu/\beta_{2}]^{\alpha_{2}}} \right] \cdot \nu^{r} \cdot d\nu \qquad (3.247)$$

Operando en (3.247) se obtiene (3.248), donde para r=1,2,3,4, se obtienen los primeros momentos respecto del origen de la distribución mixta.

$$\mu'_{r} = (1 - \theta_{0}) \Big[\pi \beta_{1}^{r} \Gamma (1 + r/\alpha_{1}) + (1 - \pi) \beta_{2}^{r} \Gamma (1 + r/\alpha_{2}) \Big]$$
(3.248)

3.18.2. La función de distribución acumulada.

La función de distribución acumulada de Weibull mixta viene dada por (3.249).

$$G(\nu;\alpha_1,\beta_1,\alpha_2,\beta_2,\pi) = P(V \le \nu) = \theta_0 + (1-\theta_0) \left[\pi \left[1 - e^{-(\nu/\beta_1)^{\alpha_1}} \right] + (1-\pi) \left[1 - e^{-(\nu/\beta_2)^{\alpha_2}} \right] \right]$$
(3.249)

3.19. La distribución Mixta Normal-Truncada y Weibull.

Supongamos que V_1 y V_2 se encuentran distribuidas independientemente como una distribución normal simplemente truncada por debajo $g(v;\alpha_1,\beta_1)$, y una distribución de Weibull de dos parámetros $f(v;\alpha_2,\beta_2)$. Entonces una variable aleatoria V que se distribuye como V_1 y V_2 con pesos de mezcla ω_1 y ω_2 (tal que $\omega_1+\omega_2=1$) se dice que tiene una distribución mezcla de Normal simple truncada por debajo-Weibull con densidad de probabilidad (3.250), la cual depende de 5 parámetros ($\alpha_1,\beta_1, \alpha_2,\beta_2,\omega$).

$$gf(v;\alpha_1,\beta_1,\alpha_2,\beta_2,\omega) = \omega g(v;\alpha_1,\beta_1) + (1-\omega)f(v;\alpha_2,\beta_2)$$
(3.250)

donde $\omega_1 = \omega y \omega_2 = (1 - \omega)$.

Esta distribución mixta (3.251) no ha sido empleada con anterioridad a esta tesis y presenta la ventaja de tener en cuenta la frecuencia de vientos nulos.

$$gf(v;\alpha_{1},\beta_{1},\alpha_{2},\beta_{2},\omega) = \omega \left[\frac{1}{I_{0}\beta_{1}\sqrt{2\pi}} \exp\left[-\left(\frac{v-\alpha_{1}}{\sqrt{2}\beta_{1}}\right)^{2} \right] \right]$$

$$+ (1-\omega) \left[\frac{\alpha_{2}}{\beta_{2}} \left(\frac{v}{\beta_{2}}\right)^{\alpha_{2}-1} \exp\left[-\left(\frac{v}{\beta_{2}}\right)^{\alpha_{2}} \right] \right]$$
(3.251)

3.19.1. Momentos de la distribución.

En este caso, la media de la velocidad del viento, la media del cubo de la velocidad del viento y la varianza vendrán dadas por las ecuaciones (3.252), (3.253) y (3.254), respectivamente.

$$\overline{v}_{TN-W} = \omega \overline{v}_{TN} + (1-\omega)\overline{v}_{W}$$
(3.252)

$$\overline{v_{TN-W}^3} = \omega \overline{v_{TN}^3} + (1-\omega) \overline{v_W^3}$$
(3.253)

$$\sigma_{TN-W}^{2} = \omega \left[\sigma_{TN}^{2} - (\omega - 1) (\overline{\nu}_{TN} - \overline{\nu}_{W})^{2} \right] - (\omega - 1) \sigma_{W}^{2}$$
(3.254)

3.19.2. La función de distribución acumulada.

La función de distribución acumulada viene dada por la ecuación (3.255), la cual no puede ser expresada totalmente en forma cerrada.

$$GF(v;\alpha_1,\beta_1,\alpha_2,\beta_2,\omega) = \Pr(V \le v) = \omega G(v,\alpha_1,\beta_1) + (1-\omega)F(v,\alpha_2,\beta_2)$$
(3.255)

Es decir,

$$GF(v;\alpha_{1},\beta_{1},\alpha_{2},\beta_{2},\omega) = \omega \left[\int_{0}^{v} \frac{1}{I_{0}\beta_{1}\sqrt{2\pi}} \exp\left[-\left(\frac{v-\alpha_{1}}{\sqrt{2}\beta_{1}}\right)^{2} \right] \right] + (1-\omega) \left[1 - e^{-(v/\beta_{2})^{\alpha_{2}}} \right] \right\}$$
(3.256)

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

CAPÍTULO

Métodos utilizados para la estimación de los parámetros de las distribuciones analizadas.

4.1. Introducción.

El objetivo de este capítulo de la tesis es presentar procedimientos óptimos para estimar los parámetros de las leyes de distribución analizadas en el capítulo 3.

Los métodos paramétricos¹ suponen que los datos de viento provienen de una distribución que puede caracterizarse por un pequeño número de parámetros que se estiman a partir de los datos muestrales. Para ello, suponen la forma de la distribución conocida (gamma generalizada de 4 parámetros, gamma generalizada de 3 parámetros, Weibull de 3 parámetros, Weibull de 2 parámetros, etc.) y deducen procedimientos óptimos para estimar sus parámetros.

Respecto a la información considerada se utilizara el enfoque clásico²; el cual supone que los parámetros son cantidades fijas desconocidas sobre las que no se dispone de información inicial relevante.

¹ Los métodos no paramétricos suponen únicamente aspectos muy generales de la distribución (que es continua, simétrica, etc.) y tratan de estimar su forma o contrastar su estructura.

² El enfoque bayesiano considera a los parámetros del modelo como variables aleatorias y permite introducir información inicial sobre sus valores mediante una distribución de probabilidad que se denomina distribución a priori.

En esta tesis la estimación de los parámetros se lleva acabo de forma puntual³, es decir, se busca un estimador que, con base a los datos muestrales, dé origen a una estimación univaluada del valor de los parámetros.

Hay varios métodos diferentes para encontrar estimadores puntuales de parámetros con propiedades deseables (Canavos, 1988; Peña, 1995; Stuart *et al*, 1999). En esta tesis se considerarán el método de los momentos, el método de máxima verosimilitud y el método de mínimos cuadrados; normalmente utilizados en las estimaciones de las distribuciones empleadas en los análisis estadísticos del viento (Conradsen y Nielsen, 1984; Auwera *et al*, 1980; Justus *et al*, 1978).

4.2. Método de los momentos.

Quizá el método más antiguo para la estimación de parámetros es el método de los momentos formalizado por K. Pearson a finales del siglo XI. Éste consiste en igualar un cierto número de momentos de la muestra con sus correspondientes de la población, obteniendo de esta forma un número de igualdades que permiten determinar los parámetros desconocidos de la distribución.

En general, si se trata de estimar un vector de parámetros $\overline{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_r)$ cuyos componentes pueden expresarse en función de *r* momentos de la población, $\mu_1, ..., \mu_r$, donde:

$$\alpha_1 = g_1(\mu_1, \mu_2, ..., \mu_r); \qquad \alpha_2 = g_2(\mu_1, \mu_2, ..., \mu_r), \ ..., \alpha_r = g_r(\mu_1, \mu_2, ..., \mu_r)$$
(4.1)

Se calculan los correspondientes momentos muestrales, $m_1, ..., m_r$ y se sustituyen en el sistema de ecuaciones (4.1), para obtener los estimadores $\hat{\alpha}_1, ..., \hat{\alpha}_r$.

En este capítulo de la tesis los momentos muestrales utilizados son:

• La media o momento de primer orden respecto del origen:

$$m'_{1} = m = \overline{v} = \frac{1}{n} \sum_{i=1}^{n} v_{i}$$
 (4.2)

• El momento de segundo orden respecto del origen:

³ En la estimación por intervalo se determina un intervalo en el que, en forma probable, se encuentre el valor del parámetro. Este intervalo recibe el nombre de intervalo de confianza estimado.

$$m_2' = \frac{1}{n} \sum_{i=1}^n v_i^2 \tag{4.3}$$

• El momento de tercer orden respecto del origen:

$$m'_{3} = \frac{1}{n} \sum_{i=1}^{n} v_{i}^{3}$$
(4.4)

• El momento de cuarto orden respecto del origen:

$$m'_{4} = \frac{1}{n} \sum_{i=1}^{n} v_{i}^{4}$$
(4.5)

• La varianza:

$$m_2 = s^2 = \left(\frac{1}{n-1}\right) \sum_{i=1}^n \left(v_i - \overline{v}\right)^2$$
(4.6)

• El coeficiente de asimetría:

$$g_{1} = \frac{m_{3}}{\left(\sqrt{m_{2}}\right)^{3}} = \left[\frac{1}{n}\sum_{i=1}^{n}\left(v_{i}-\overline{v}\right)^{3}\right] / \left[\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(v_{i}-\overline{v}\right)^{2}}\right]^{3}$$
(4.7)

• El coeficiente de curtosis:

$$g_{2} = \frac{m_{4}}{\left(\sqrt{m_{2}}\right)^{4}} = \left[\frac{1}{n}\sum_{i=1}^{n} \left(v_{i} - \overline{v}\right)^{4}\right] / \left[\frac{1}{n-1}\sum_{i=1}^{n} \left(v_{i} - \overline{v}\right)^{2}\right]^{2}$$
(4.8)

• Coeficiente de irregularidad⁴:

$$Ke = \frac{m'_{3}}{(m'_{1})^{3}} = \left[\frac{1}{n}\sum_{i=1}^{n}v_{i}^{3}\right] / \left[\frac{1}{n}\sum_{i=1}^{n}v_{i}\right]^{3}$$
(4.9)

Como señala Peña (1995), los estimadores por el método de los momentos son

⁴ Para su definición véase el apartado 2.8.1.del capítulo 2 de esta tesis.

consistentes⁵, pero no son ni centrados⁶, ni con varianza mínima⁷, ni robustos⁸. La ventaja de estos estimadores es su simplicidad; su inconveniente es que al no tener en cuenta la distribución de la población que genera los datos no utiliza toda la información de la muestra. Según Canavos (1988), el método de los momentos proporciona una alternativa razonable cuando no se pueden determinar los estimadores de máxima verosimilitud.

4.2.1. Distribución Gamma generalizada de 4 parámetros.

Para determinar los cuatro parámetros desconocidos de la distribución gamma generalizada se igualarán cuatro momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán:

• La media:

$$\overline{\nu} = \beta^{-1/\alpha} \cdot \Gamma\left(\frac{\eta+1}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) + \gamma$$
(4.10)

• La varianza:

$$s^{2} = \beta^{-2/\alpha} \cdot \left[\Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right) \right]$$
(4.11)

• El coeficiente de asimetría:

$$g_{1} = \frac{\left[\Gamma\left(\frac{\eta+3}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) + 2 \cdot \Gamma^{3}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{3}\left(\frac{\eta}{\alpha}\right) - 3 \cdot \Gamma\left(\frac{\eta+1}{\alpha}\right) \cdot \Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]}{\left[\Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]^{\frac{3}{2}}}$$
(4.12)

• El coeficiente de curtosis:

⁵ Se entiende por ello que se aproxime, al crecer el tamaño muestral, al valor del parámetro.

⁶ Un estimador es centrado si la esperanza matemática del estimador coincide con el valor del parámetro que se trata de estimar. Un estimador centrado también se suele denominar insesgado.

⁷ Considerando todos los estimadores posibles cuyas distribuciones muestrales tienen la misma media, el estimador que tenga la varianza mínima es el mejor estimador.

⁸ Cuando un buen estimador de un parámetro en un modelo, sigue siendo razonablemente bueno como estimador del parámetro si el modelo experimenta una pequeña modificación.

$$g_{2} = \frac{\Gamma\left(\frac{\eta+4}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - 4 \cdot \Gamma\left(\frac{\eta+3}{\alpha}\right) \cdot \Gamma\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)}{\left[\Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]^{2}} + \frac{6 \cdot \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) \cdot \Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma^{3}\left(\frac{\eta}{\alpha}\right) - 3 \cdot \Gamma^{4}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{4}\left(\frac{\eta}{\alpha}\right)}{\left[\Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]^{2}}$$

$$(4.13)$$

Como se puede comprobar el conjunto de ecuaciones (4.10) a (4.13) constituye un sistema de ecuaciones no lineales con cuatro incógnitas $(\hat{\alpha}, \hat{\beta}, \hat{\eta}, \hat{\gamma})$.

Para resolver este sistema de ecuaciones, con las restricción (4.14) de los parámetros $\hat{\alpha}$, $\hat{\beta}$, $\hat{\eta}$ y $\hat{\gamma}$ se ha utilizado el método de optimización con restricciones de Rosen (Belegundu y Chandrupatla, 1999).

$$\hat{\gamma} \ge 0$$
 ; $\hat{\gamma} \le v_{\min}$; $\hat{\alpha} > 0$; $\hat{\beta} > 0$; $\hat{\eta} > 0$ (4.14)

Es decir, se trata de minimizar la función (4.15), sujeta a las restricciones de desigualdad (4.14).

$$f = (\overline{\nu} - \mu)^2 + (s^2 - \sigma^2)^2 + (g_1 - \alpha_3)^2 + (g_2 - \alpha_4)^2$$
(4.15)

Como punto de comienzo de la optimización se utilizan los valores indicados en (4.16), los cuales se obtienen de considerar una distribución de Weibull de 2 parámetros y que éstos se estiman por el método de los momentos.⁹

$$\hat{\alpha}_0 = \hat{\eta}_0 = \left[\frac{s}{\overline{v}}\right]^{-1.091} ; \qquad \hat{\beta}_0 = \left[\frac{\overline{v}}{\Gamma} \left(1 + \frac{1}{\hat{\eta}_0}\right)\right]^{-\hat{\eta}_0} ; \qquad \hat{\gamma}_0 = \frac{v_{\min}}{2}$$
(4.16)

4.2.2. Distribución Gamma Generalizada de tres parámetros.

Para determinar los cuatro parámetros desconocidos de la distribución gamma generalizada se igualarán tres momentos muestrales con los correspondientes momentos de la

⁹ Véase su deducción en el apartado 4.2.8.

distribución. En este caso se utilizarán:

• La media:

$$\overline{\nu} = \beta^{-1/\alpha} \cdot \Gamma\left(\frac{\eta+1}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right)$$
(4.17)

• La varianza:

$$s^{2} = \beta^{-2/\alpha} \cdot \left[\Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right) \right]$$
(4.18)

• El coeficiente de asimetría:

$$g_{1} = \frac{\left[\Gamma\left(\frac{\eta+3}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) + 2 \cdot \Gamma^{3}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{3}\left(\frac{\eta}{\alpha}\right) - 3 \cdot \Gamma\left(\frac{\eta+1}{\alpha}\right) \cdot \Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]}{\left[\Gamma\left(\frac{\eta+2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - \Gamma^{2}\left(\frac{\eta+1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]^{\frac{3}{2}}}$$
(4.19)

Como se puede comprobar el conjunto de ecuaciones (4.17) a (4.19) constituye un sistema de ecuaciones no lineales con tres incógnitas $(\hat{\alpha}, \hat{\beta}, \hat{\eta})$.

Para resolver este sistema de ecuaciones, con las restricción (4.20) de los parámetros $\hat{\alpha}$, $\hat{\beta}$ y $\hat{\eta}$ se ha utilizado el método de optimización con restricciones de Rosen (Belegundu y Chandrupatla, 1999).

 $\hat{\alpha} > 0 \quad ; \quad \hat{\beta} > 0 \quad ; \quad \hat{\eta} > 0 \tag{4.20}$

Es decir, se trata de minimizar la función (4.21), sujeta a las restricciones de desigualdad (4.20).

$$f = (\overline{v} - \mu)^2 + (s^2 - \sigma^2)^2 + (g_1 - \alpha_3)^2$$
(4.21)

Como punto de comienzo de la optimización se utilizan los valores indicados en (4.22), los cuales se obtienen de considerar una distribución de Weibull de 2 parámetros y que éstos se estiman por el método de los momentos.¹⁰

¹⁰ Véase su deducción en el apartado 4.2.8.

$$\hat{\alpha}_{0} = \hat{\eta}_{0} = \left[\frac{s}{\overline{v}}\right]^{-1.091} ; \qquad \hat{\beta}_{0} = \left[\overline{v} / \Gamma \left(1 + \frac{1}{\hat{\eta}_{0}}\right)\right]^{-\eta_{0}}$$

$$(4.22)$$

4.2.3. Distribución híbrida gama generalizada.

Para determinar los tres parámetros desconocidos de la distribución hibrida gamma generalizada se igualarán tres momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán:

• La media:

$$\overline{v} = (1 - \theta_0) \beta^{-1/\alpha} \cdot \Gamma\left(\frac{\eta + 1}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right)$$
(4.23)

• La varianza:

$$s^{2} = (1 - \theta_{0})\beta^{-2/\alpha} \cdot \left[\Gamma\left(\frac{\eta + 2}{\alpha}\right) / \Gamma\left(\frac{\eta}{\alpha}\right) - (1 - \theta_{0})\Gamma^{2}\left(\frac{\eta + 1}{\alpha}\right) / \Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]$$
(4.24)

• El coeficiente de asimetría:

$$g_{1} = \frac{\left(1-\theta_{0}\right)\left[\Gamma\left(\frac{\eta+3}{\alpha}\right)/\Gamma\left(\frac{\eta}{\alpha}\right)+2\left(1-\theta_{0}\right)^{2}\Gamma^{3}\left(\frac{\eta+1}{\alpha}\right)/\Gamma^{3}\left(\frac{\eta}{\alpha}\right)-3\left(1-\theta_{0}\right)\Gamma\left(\frac{\eta+1}{\alpha}\right)\cdot\Gamma\left(\frac{\eta+2}{\alpha}\right)/\Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]}{\left\{\left(1-\theta_{0}\right)\left[\Gamma\left(\frac{\eta+2}{\alpha}\right)/\Gamma\left(\frac{\eta}{\alpha}\right)-\left(1-\theta_{0}\right)\Gamma^{2}\left(\frac{\eta+1}{\alpha}\right)/\Gamma^{2}\left(\frac{\eta}{\alpha}\right)\right]\right\}^{\frac{3}{2}}}$$
(4.25)

Para resolver este sistema de ecuaciones, con las restricción (4.26) de los parámetros $\hat{\alpha}$, $\hat{\beta}$ y $\hat{\eta}$ se ha utilizado el método de optimización con restricciones de Rosen (Belegundu y Chandrupatla, 1999).

$$\hat{\alpha} > 0 \quad ; \quad \hat{\beta} > 0 \quad ; \quad \hat{\eta} > 0 \tag{4.26}$$

Es decir, se trata de minimizar la función (4.27), sujeta a las restricciones de desigualdad (4.26).

$$f = (\overline{v} - \mu)^{2} + (s^{2} - \sigma^{2})^{2} + (g_{1} - \alpha_{3})^{2}$$
(4.27)

Como punto de comienzo de la optimización se utilizan los valores indicados en (4.22), los cuales se obtienen de considerar una distribución de Weibull de 2 parámetros y que éstos se estiman por el método de los momentos.¹¹

4.2.4. Distribución Gamma de tres parámetros.

Para determinar los tres parámetros desconocidos de la distribución gamma se igualarán tres momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán:

• La media:

$$\overline{\nu} = \beta \cdot \eta + \gamma \tag{4.28}$$

• La varianza:

$$s^2 = \beta^2 \cdot \eta \tag{4.29}$$

• El coeficiente de asimetría:

$$g_1 = \frac{2}{\sqrt{\eta}} \tag{4.30}$$

A partir de (4.30) se obtiene $\hat{\eta}$.

$$\hat{\eta} = \frac{4}{g_1^2} \tag{4.31}$$

Sustituyendo (4.31) en (4.29) se obtiene $\hat{\beta}$.

$$\hat{\beta} = \frac{s}{\sqrt{\hat{\eta}}} = \frac{sg_1}{2} \tag{4.32}$$

Sustituyendo (4.31) y (4.32) en (4.28) y operando se determina $\hat{\gamma}$.

$$\hat{\gamma} = \overline{v} - \hat{\beta}\hat{\eta} = \frac{\overline{v}g_1 - 2s}{g_1} \tag{4.33}$$

¹¹ Véase su deducción en el apartado 4.2.8.

La solución se considera válida si se cumplen las condiciones (4.34).

$$\hat{\gamma} \ge 0$$
 ; $\hat{\gamma} \le v_{\min}$ (4.34)

4.2.5. Distribución Gamma de dos parámetros.

Para determinar los dos parámetros desconocidos de la distribución gamma se igualarán dos momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán la media y la varianza:

• La media:

$$\overline{v} = \beta \cdot \eta \tag{4.35}$$

• La varianza:

$$s^2 = \beta^2 \cdot \eta \tag{4.36}$$

Resolviendo el sistema de ecuaciones (4.35) y (4.36) se obtienen $\hat{\eta}$ y $\hat{\beta}$.

$$\hat{\beta} = \frac{s^2}{\overline{v}} \tag{4.37}$$

$$\hat{\eta} = \frac{\overline{v}^2}{s^2} \tag{4.38}$$

4.2.6. Distribución híbrida gamma de dos parámetros.

En el caso de la distribución híbrida gamma (3.44), la determinación de los parámetros $\hat{\beta}$ y $\hat{\eta}$ a partir de la media \overline{v} y la varianza s^2 de la muestra se llevará a cabo de la siguiente manera:

• La media según (3.47) se expresa por:

$$\mu = (1 - \theta_0) \beta \cdot \eta \tag{4.39}$$

• La varianza según (3.48) viene dada por:

$$\sigma^2 = \beta^2 \cdot \eta (1 - \theta_0) (1 + \eta \theta_0) \tag{4.40}$$

Ya que la media y varianza experimentales recogen los periodos de vientos nulos θ_0 , con objeto de igualar sus valores a los correspondientes momentos de la distribución (4.39) y (4.40), y facilitar la resolución del sistema de ecuaciones se eliminan dichos periodos de los momentos experimentales.

En el caso de la media el proceso es inmediato:

$$\overline{v}_0 = \frac{\overline{v}}{\left(1 - \theta_0\right)} = \beta \cdot \eta \tag{4.41}$$

En el caso de la varianza la eliminación de las frecuencias de vientos nulos se lleva a cabo en los momentos respecto del origen, por su mayor facilidad. De acuerdo con (3.46), que proporciona los momentos respecto al origen de la distribución, el método de los momentos permite determinar (4.42).

$$\left(m_{r}'\right)_{0} = \frac{m_{r}'}{\left(1 - \theta_{0}\right)} = \beta^{r} \cdot \frac{\Gamma(\eta + r)}{\Gamma(\eta)}$$

$$(4.42)$$

Así, teniendo en cuenta la relación existente entre los momentos respecto al origen y los momentos respecto a la media (Stuart y Ord, 2000) (4.43), la varianza experimental, sin considerar las frecuencias de vientos nulos, vendrá dada por (4.44).

$$(m_r)_0 = \sum_{j=0}^r (-1)^j \frac{i!}{j!(i-j)!} \left(\frac{\overline{\nu}}{1-\theta_0}\right)^j \left(\frac{m'_{i-j}}{1-\theta_0}\right)$$
(4.43)

$$s_0^2 = (m_2)_0 = \frac{m_2'}{(1-\theta_0)} - \left(\frac{m}{1-\theta_0}\right)^2$$
(4.44)

Por tanto, usando la ecuación (4.41) y sustituyendo s^2 (4.29) por s_0^2 (4.44) se obtiene un sistema de dos ecuaciones con dos incógnitas que permite determinar los parámetros $\hat{\eta}$ y $\hat{\beta}$.

4.2.7. Distribución Weibull de 3 parámetros.

Para determinar los tres parámetros desconocidos de la distribución de Weibull (3.55) se igualarán tres momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán:

• La media:

$$\overline{v} = \beta \cdot \Gamma \left(1 + \frac{1}{\alpha} \right) + \gamma \tag{4.45}$$

• La varianza:

$$s^{2} = \beta^{2} \cdot \left[\Gamma \left(1 + \frac{2}{\alpha} \right) - \Gamma^{2} \left(1 + \frac{1}{\alpha} \right) \right]$$
(4.46)

• El coeficiente de asimetría:

$$g_{1} = \left[\Gamma\left(1 + \frac{3}{\alpha}\right) + 2 \cdot \Gamma^{3}\left(1 + \frac{1}{\alpha}\right) - 3 \cdot \Gamma\left(1 + \frac{1}{\alpha}\right) \cdot \Gamma\left(1 + \frac{2}{\alpha}\right) \right] / \left[\Gamma\left(1 + \frac{2}{\alpha}\right) - \Gamma^{2}\left(1 + \frac{1}{\alpha}\right) \right]^{\frac{3}{2}}$$
(4.47)

Figura 4.1. Coeficiente de asimetría en función del parámetro de forma

Ya que la ecuación (4.47) depende exclusivamente de α es posible determinar este parámetro de forma gráfica (figura 4.1), o utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996).

Sustituyendo $\hat{\alpha}$ en la ecuación (4.46) se determina $\hat{\beta}$, y sustituyendo el valor de estos dos parámetros en (4.45), se calcula $\hat{\gamma}$. La solución se considera válida si se cumplen las condiciones (4.34).

4.2.8. Distribución Weibull de 2 parámetros.

Para determinar los dos parámetros desconocidos de la distribución de Weibull se igualarán dos momentos muestrales con los correspondientes momentos de la distribución. En la aplicación de esta ley en energía eólica, en función de los momentos utilizados el método recibe distinta denominación. Así, si se utilizan la media y la varianza, el método se denomina *método de los momentos*, pero si se utilizan la media y el factor de irregularidad¹², el método se denomina *método de la factor de irregularidad* (Lysen, 1983; Justus et al, 1978).

□ En el caso del método de los momentos se tiene:

• La media:

$$\overline{v} = \beta \cdot \Gamma \left(1 + \frac{1}{\alpha} \right) \tag{4.48}$$

• La varianza:

$$s^{2} = \beta^{2} \cdot \left[\Gamma \left(1 + \frac{2}{\alpha} \right) - \Gamma^{2} \left(1 + \frac{1}{\alpha} \right) \right]$$
(4.49)

Si se divide la raíz de la varianza dada por (4.49) por la velocidad media dada por (4.48) se obtiene el coeficiente de variación, que depende exclusivamente de α (4.50).

$$cv = \frac{s}{\overline{v}} = \sqrt{\Gamma\left(1 + \frac{2}{\alpha}\right) - \Gamma^2\left(1 + \frac{1}{\alpha}\right)} / \Gamma\left(1 + \frac{1}{\alpha}\right)$$
(4.50)

¹² Véase el apartado 2.8.1.del capítulo 2 para su definición.

La función *cv* respecto a α se representa en la figura 4.2, la cual permite determinar gráficamente el parámetro de forma $\hat{\alpha}$ a partir del conocimiento del coeficiente de variación de la muestra.

Figura 4.2. Coeficiente de variación en función del parámetro de forma

Justus (1980) señala que el método más simple para resolver la ecuación (4.50) y obtener $\hat{\alpha}$ en función del coeficiente de variación es utilizar la expresión aproximada (4.51).

$$\hat{\alpha} = \left(\frac{s}{\overline{v}}\right)^{-1.086} \tag{4.51}$$

que representa satisfactoriamente la relación (4.50) en el intervalo $1 \le \alpha \le 10$ con un error máximo absoluto de 0.0352^{13} . Una vez determinado $\hat{\alpha}$, la ecuación (4.48) puede ser rescrita (4.52) para obtener el parámetro de escala $\hat{\beta}$.

Una mayor precisión en el cálculo de α se consigue resolviendo la ecuación no lineal (4.50) mediante la utilización de una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996).

 $^{^{13}}$ Los ajustes realizados en esta tesis indican que si el exponente se sustituye por -1.091 el error máximo absoluto es de 0.0296.

$$\hat{\beta} = \overline{v} / \Gamma \left(1 + \frac{1}{\alpha} \right) \tag{4.52}$$

□ En el caso del método del factor de irregularidad se tiene:

La media dada por (4.48) y el factor de irregularidad dado por (4.53), que solo depende de α .

$$K_{e} = \frac{\overline{v^{3}}}{\left(\overline{v}\right)^{3}} = \frac{m'_{3}}{\left(\overline{v}\right)^{3}} = \frac{\Gamma\left(1 + \frac{3}{\alpha}\right)}{\Gamma^{3}\left(1 + \frac{1}{\alpha}\right)}$$
(4.53)

La función K_e respecto a α se representa en la figura 4.3, la cual permite determinar gráficamente el parámetro de forma $\hat{\alpha}$ a partir del conocimiento del factor de irregularidad de la muestra.

Figura 4.3. Factor de irregularidad en función del parámetro α

Un método más cómodo para resolver la ecuación (4.53) y obtener $\hat{\alpha}$ en función del factor de irregularidad es utilizar una expresión analítica simple. Un ajuste por mínimos cuadrados mediante el método de Levenberg-Marquardt (Draper y Smith, 1998) ha permitido
hallar la expresión (4.54) con la que se puede estimar $\hat{\alpha}$ con un error estándar de 0.0056 y un error máximo absoluto de 0.017.

$$\hat{\alpha} = \frac{19.17 + 75.43 \ln K_e}{1 + 30.28 \ln K_e + 31.68 (\ln K_e)^2}$$
(4.54)

Una mayor precisión en el cálculo de $\hat{\alpha}$ se consigue resolviendo la ecuación no lineal (4.53) mediante la utilización de una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996).

Una vez determinado $\hat{\alpha}$, la ecuación (4.52) permite obtener el parámetro de escala $\hat{\beta}$.

4.2.9. Distribución híbrida de Weibull de 2 parámetros.

En el caso de la distribución híbrida de Weibull de 2 parámetros (3.71), la determinación de los parámetros $\hat{\alpha}$ y $\hat{\beta}$ a partir de la media \overline{v} y la varianza s^2 de la muestra se llevará a cabo de la siguiente manera:

D En el caso del método de los momentos se tiene:

• La media según (3.73) se expresa por:

$$\mu = \left(1 - \theta_0\right) \beta \Gamma\left(1 + \frac{1}{\alpha}\right) \tag{4.55}$$

• La varianza según (3.74) viene dada por:

$$\sigma^{2} = (1 - \theta_{0})\beta^{2} \left[\Gamma(1 + 2/\alpha) - (1 - \theta_{0})\Gamma^{2}(1 + 1/\alpha) \right]$$

$$(4.56)$$

Ya que la media y varianza experimentales recogen los periodos de vientos nulos θ_0 , con objeto de igualar sus valores a los correspondientes momentos de la distribución (4.55) y (4.56), y facilitar la resolución del sistema de ecuaciones se eliminan dichos periodos de los momentos experimentales.

En el caso de la media el proceso es inmediato:

$$\overline{v}_0 = \frac{\overline{v}}{(1-\theta_0)} = \beta \cdot \Gamma(1+1/\alpha)$$
(4.57)

En el caso de la varianza la eliminación de las frecuencias de vientos nulos se lleva a cabo en los momentos respecto del origen, por su mayor comodidad. De acuerdo con (3.72), que proporciona los momentos respecto al origen de la distribución, el método de los momentos permite determinar (4.58).

$$\left(m_r'\right)_0 = \frac{m_r'}{\left(1 - \theta_0\right)} = \beta^r \cdot \Gamma\left(1 + r/\alpha\right) \tag{4.58}$$

Por tanto, la varianza experimental, sin considerar las frecuencias de vientos nulos, vendrá dada por (4.44).

Así, usando la ecuación (4.57) y sustituyendo s^2 (4.46) por s_0^2 (4.58) se obtiene un sistema de dos ecuaciones con dos incógnitas que permite determinar los parámetros $\hat{\alpha}$ y $\hat{\beta}$

D En el caso del método del factor de irregularidad:

Se dispone de la media dada por (4.55) y el factor de irregularidad dado por (4.59), que solo depende de α .

$$K_{e} = \frac{\overline{v^{3}}}{\left(\overline{v}\right)^{3}} = \frac{m'_{3}}{\left(\overline{v}\right)^{3}} = \frac{\Gamma\left(1 + \frac{3}{\alpha}\right)}{\left(1 - \theta_{0}\right)^{2} \Gamma^{3}\left(1 + \frac{1}{\alpha}\right)}$$
(4.59)

La función $(1-\theta_0)^2 K_e$ respecto a α se representa en la figura 4.3, la cual permite determinar gráficamente el parámetro de escala $\hat{\alpha}$ a partir del conocimiento del factor de irregularidad de la muestra.

Un método más cómodo resolver la ecuación (4.59) y obtener $\hat{\alpha}$ en función del factor de irregularidad es utilizar una expresión analítica simple. Un ajuste por mínimos cuadrados mediante el método de Levenberg-Marquardt (Draper y Smith, 1998) ha permitido hallar la expresión (4.60) con la que se puede estimar $\hat{\alpha}$ con un error estándar de 0.0056 y un error máximo absoluto de 0.017.

$$\hat{\alpha} = \frac{19.17 + 75.43 \ln\left[\left(1 - \theta_0\right)^2 K_e\right]}{1 + 30.28 \ln\left[\left(1 - \theta_0\right)^2 K_e\right] + 31.68 \left\{\ln\left[\left(1 - \theta_0\right)^2 K_e\right]\right\}^2}$$
(4.60)

Una mayor precisión en el cálculo de $\hat{\alpha}$ se consigue resolviendo la ecuación no lineal (4.59) mediante la utilización de una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996).

4.2.10. Distribución Rayleigh de 2 parámetros.

Para determinar los dos parámetros desconocidos de la distribución de Rayleigh se igualarán dos momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán la media y la varianza:

• La media:

$$\overline{v} = \gamma + \theta \sqrt{\pi/2} \tag{4.61}$$

• La varianza:

$$s^2 = \theta^2 \left(\frac{4-\pi}{2}\right) \tag{4.62}$$

A partir de la ecuación (4.62) se obtiene $\hat{\theta}$ (4.63).

$$\hat{\theta} = \frac{\sqrt{2}s}{\sqrt{4-\pi}} \tag{4.63}$$

Sustituyendo (4.63) en (4.61) y despejando se obtiene $\hat{\gamma}$. La solución se considera válida si se cumplen las condiciones (4.34).

$$\hat{\gamma} = \overline{v} - \frac{\sqrt{\pi}}{2}\hat{\theta} \tag{4.64}$$

4.2.11. Distribución Rayleigh de 1 parámetro.

Para determinar el parámetro θ de la distribución de Rayleigh se igualará la media

muestral con la media de la distribución. Por tanto:

$$\overline{v} = \theta \sqrt{\pi/2} \longrightarrow \hat{\theta} = \sqrt{\frac{2}{\pi}} \overline{v}$$
 (4.65)

4.2.12. Distribución híbrida de Rayleigh de 1 parámetro.

En el caso de la distribución híbrida de Rayleigh (3.96), la determinación de l parámetro $\hat{\theta}$ se lleva a cabo mediante la resolución de la ecuación (4.66).

$$\overline{v} = (1 - \theta_0) \theta \sqrt{\pi/2} \longrightarrow \hat{\theta} = \frac{\sqrt{2}}{(1 - \theta_0) \sqrt{\pi}} \overline{v}$$
(4.66)

4.2.13. Distribución Beta de 4 parámetros.

Para estimar los cuatro parámetros de la distribución Beta es conveniente usar los primeros momentos respecto de la media de la muestra, los cuales pueden ser definidos en términos de los momentos respecto del origen.

$$m_2 = m'_2 - m^2;$$
 $m_3 = m'_3 - 3mm'_2 + 2m^3;$ $m_4 = m'_4 - 4mm'_3 + 6m^2m'_2 - 3m^4$ (4.67)

Para estimar los parámetros de forma se hará uso de los coeficientes de asimetría (4.68) y curtosis (4.69) (Bury, 1999).

$$g_1 = \frac{m_3}{\left(m_2\right)^{3/2}} = \frac{2 \cdot \left(\beta - \alpha\right)}{\left(\alpha + \beta + 2\right)} \left[\frac{\alpha + \beta + 1}{\alpha \cdot \beta}\right]^{1/2}$$
(4.68)

$$g_{2} = \frac{m_{4}}{(m_{2})^{2}} = \frac{3 \cdot (\alpha + \beta + 1) \cdot \left[2 \cdot (\alpha + \beta)^{2} + \alpha \cdot \beta \cdot (\alpha + \beta - 6)\right]}{\alpha \cdot \beta \cdot (\alpha + \beta + 2) \cdot (\alpha + \beta + 3)}$$
(4.69)

Para resolver este sistema de ecuaciones, con las restricción (4.70) de los parámetros $\hat{\alpha}$

y $\hat{\beta}$ se ha utilizado el método de optimización con restricciones de Rosen (Belegundu y Chandrupatla, 1999).

$$\hat{\alpha} > 0 \quad ; \quad \hat{\beta} > 0 \tag{4.70}$$

Es decir, se trata de minimizar la función (4.71), sujeta a las restricciones de desigualdad (4.70).

$$f = (g_1 - \alpha_3)^2 + (g_2 - \alpha_4)^2$$
(4.71)

Los parámetros $\hat{\delta}$ y $\hat{\xi}$ se obtienen a partir de la media (3.111) y la varianza (3.116). Es decir:

$$\hat{\delta} = m - \sqrt{m_2} \sqrt{\frac{\hat{\alpha} \left(\hat{\alpha} + \hat{\beta} + 1\right)}{\hat{\beta}}}$$
(4.72)

$$\hat{\xi} = m + \sqrt{m_2} \sqrt{\frac{\hat{\beta}(\hat{\alpha} + \hat{\beta} + 1)}{\hat{\alpha}}}$$
(4.73)

La solución se considera válida si se cumplen las condiciones (4.75).

$$\hat{\xi} \ge v_{\max}$$
; $0 \le \hat{\delta} \le v_{\min}$ (4.75)

4.2.14. Distribución Beta de 3 parámetros.

Para determinar los tres parámetros desconocidos de la distribución Beta se igualarán los tres primeros momentos respecto del origen de la muestra con los correspondientes momentos de la distribución.

• La media:

$$\overline{v} = \xi \frac{\alpha}{\alpha + \beta} \tag{4.76}$$

• El segundo momento:

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

$$m'_{2} = \xi^{2} \frac{\alpha \left(\alpha + 1\right)}{\left(\alpha + \beta + 1\right)\left(\alpha + \beta\right)}$$

$$(4.77)$$

• El tercer momento:

$$m'_{3} = \xi^{3} \frac{\alpha (\alpha + 1)(\alpha + 2)}{(\alpha + \beta + 2)(\alpha + \beta + 1)(\alpha + \beta)}$$

$$(4.78)$$

Para resolver este sistema de ecuaciones, con las restricción (4.79) de los parámetros $\hat{\alpha}$, $\hat{\beta}$ y $\hat{\xi}$ se ha utilizado el método de optimización con restricciones de Rosen (Belegundu y Chandrupatla, 1999).

$$\hat{\alpha} > 0 \quad ; \quad \hat{\beta} > 0 \quad ; \quad \hat{\xi} \ge v_{\max}$$

$$(4.79)$$

Es decir, se trata de minimizar la función (4.80), sujeta a las restricciones de desigualdad (4.79).

$$f = (m - \mu_1)^2 + (m'_2 - \mu'_2)^2 + (m'_3 - \mu'_3)^2$$
(4.80)

4.2.15. Distribución híbrida Beta de tres parámetros.

Para determinar los tres parámetros desconocidos de la distribución Beta híbrida se igualarán los tres primeros momentos respecto del origen de la muestra con los correspondientes momentos de la distribución.

• La media:

$$\overline{v} = \xi \frac{\alpha}{\alpha + \beta} \left(1 - \theta_0 \right) \tag{4.81}$$

• El segundo momento:

$$m'_{2} = \xi^{2} \frac{\alpha (\alpha + 1)}{(\alpha + \beta + 1)(\alpha + \beta)} (1 - \theta_{0})$$

$$(4.82)$$

• El tercer momento:

$$m'_{3} = \xi^{3} \frac{\alpha (\alpha+1)(\alpha+2)}{(\alpha+\beta+2)(\alpha+\beta+1)(\alpha+\beta)} (1-\theta_{0})$$

$$(4.83)$$

Para resolver este sistema de ecuaciones, con las restricción (4.79) de los parámetros $\hat{\alpha}$, $\hat{\beta}$ y $\hat{\xi}$ se ha utilizado el método de optimización con restricciones de Rosen (Belegundu y Chandrupatla, 1999).

Es decir, se trata de minimizar la función (4.84), sujeta a las restricciones de desigualdad (4.79).

$$f = (m - \mu_1)^2 + (m'_2 - \mu'_2)^2 + (m'_3 - \mu'_3)^2$$
(4.84)

4.2.16. Distribución Beta prima.

Para determinar los dos parámetros de la distribución Beta prima se igualará la media y varianza muestrales con la media y varianza de la de la distribución. Por tanto:

$$\overline{v} = \frac{\alpha}{\beta - 1} \tag{4.85}$$

$$s^{2} = \frac{\alpha \left(\alpha + \beta - 1\right)}{\left(\beta - 1\right)^{2} \left(\beta - 2\right)}$$

$$(4.86)$$

Despejando α de la ecuación (4.85) y sustituyendo en (4.86), se tiene:

$$\hat{\beta} = 2 + \frac{\overline{v}(\overline{v}+1)}{s^2} \tag{4.87}$$

Sustituyendo (4.87) en (4.85) se obtiene:

$$\hat{\alpha} = \overline{v} \left[1 + \frac{\overline{v} \left(\overline{v} + 1 \right)}{s^2} \right]$$
(4.88)

4.2.17. Distribución híbrida Beta prima.

Para determinar los dos parámetros de la distribución híbrida Beta prima se igualará la

media y varianza muestrales con la media y varianza de la de la distribución. Por tanto:

$$\overline{v} = \frac{\alpha}{\beta - 1} \left(1 - \theta_0 \right) \tag{4.89}$$

$$s^{2} = \alpha \left(1 - \theta_{0}\right) \frac{(\alpha + \beta - 1) + \theta_{0} \left(\alpha \beta - 2\alpha\right)}{(\beta - 1)^{2} (\beta - 2)}$$
(4.90)

Despejando α de la ecuación (4.89) y sustituyendo en (4.90), se tiene:

$$\hat{\beta} = 2 + \frac{(1+\overline{\nu})\left[\overline{\nu}\left(1-\theta_{0}\right)\right]}{s^{2}\left(1-\theta_{0}\right)-\overline{\nu}^{2}\theta_{0}}$$

$$(4.91)$$

Sustituyendo (4.91) en (4.89) se obtiene:

$$\hat{\alpha} = \frac{\overline{\nu}}{\left(1 - \theta_0\right)} \left\{ 1 + \frac{\left(\overline{\nu} + 1\right) \left[\overline{\nu} \left(1 - \theta_0\right)\right]}{s^2 \left(1 - \theta_0\right) - \overline{\nu}^2 \theta_0} \right\}$$
(4.92)

4.2.18. Distribución Normal truncada.

Cohen (1950b), en el caso de una distribución normal simplemente truncada, estima los parámetros α y β usando los tres primeros momentos de la muestra respecto del origen.

Sea la integral I_{n-1} :

$$I_{n-1} = \frac{1}{\beta \cdot \sqrt{2 \cdot \pi}} \cdot \int_{0}^{\infty} \frac{t^{n-1}}{(n-1)!} \cdot e^{\frac{-(t-\alpha)^{2}}{2 \cdot \beta^{2}}} \cdot dt$$
(4.93)

Si en la integral (4.93) se realiza el siguiente cambio de variables se obtiene (4.95).

$$y = e^{\frac{(t-\alpha)^{2}}{2\cdot\beta^{2}}} \qquad dy = -\frac{(t-\alpha)^{2}}{\beta^{2}} \cdot e^{\frac{(t-\alpha)^{2}}{2\cdot\beta^{2}}} \cdot dt \qquad (4.94)$$
$$dx = \frac{t^{n-1}}{(n-1)!} \cdot dt \qquad x = \int \frac{t^{n-1}}{(n-1)!} \cdot dt = \frac{t^{n}}{n \cdot (n-1)!}$$

$$I_{n-1} = \frac{1}{\beta^2 \cdot \beta \cdot \sqrt{2 \cdot \pi}} \cdot \left[\int_{0}^{\infty} \frac{t^{n+1}}{n!} \cdot e^{-\frac{(t-\alpha)^2}{2 \cdot \beta^2}} \cdot dt - \alpha \cdot \int_{0}^{\infty} \frac{t^n}{n!} \cdot e^{-\frac{(t-\alpha)^2}{2 \cdot \beta^2}} \cdot dt \right] = \frac{(n-1)}{\beta^2} \cdot I_{n+1} - \frac{\alpha}{\beta^2} \cdot I_n$$
(4.95)

Es decir, se obtiene la siguiente ecuación recurrente:

$$(n+1) \cdot I_{n+1} - \alpha \cdot I_n - \beta^2 \cdot I_{n-1} = 0$$
(4.96)

Como se indicó en (3.155) el *r*-esimo momento de la distribución normal truncada respecto del origen viene dado por:

$$\mu_r' = \int_0^\infty \frac{1}{\beta \cdot I_0 \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{(v-\alpha)^2}{2 \cdot \beta^2}} \cdot v^r \cdot dv$$
(4.97)

Si (4.97) se multiplica y divide por r! y se compara con (4.93) se obtiene:

$$\mu_r' = \left(r!\right) \cdot \frac{I_r}{I_o} \tag{4.98}$$

Sustituyendo r = 1, 2 y 3 sucesivamente en (4.98) se obtiene:

$$\mu_1' = \frac{I_1}{I_o}$$
; $\mu_2' = \frac{2 \cdot I_2}{I_o}$; $\mu_3' = \frac{6 \cdot I_3}{I_o}$ (4.99)

Haciendo n=1 y 2, respectivamente, en (4.96) se tiene:

$$2 \cdot I_2 = \alpha \cdot I_1 + \beta^2 \cdot I_0 \tag{4.100}$$

у

$$3 \cdot I_3 = \alpha \cdot I_2 + \beta^2 \cdot I_1 \tag{4.101}$$

Sustituyendo (4.100) en (4.101) y simplificando se obtiene:

$$6 \cdot I_3 = I_1 \cdot \left(\alpha^2 + 2 \cdot \beta^2\right) + \beta^2 \cdot \alpha \cdot I_0 \tag{4.102}$$

Eliminando I_2 e I_3 de (4.99) con la ayuda de (4.100) y (4.101), se obtiene:

$$\mu_{1}' = \frac{I_{1}}{I_{o}} \quad ; \qquad \mu_{2}' = \frac{\alpha \cdot I_{1} + I_{0} \cdot \beta^{2}}{I_{o}} \quad ; \qquad \mu_{3}' = \frac{I_{1} \cdot (\alpha^{2} + 2 \cdot \beta^{2}) + \alpha \cdot \beta^{2} \cdot I_{0}}{I_{o}} \tag{4.103}$$

Resolviendo las ecuaciones (4.103) se obtiene:

$$\mu'_1 \cdot \alpha + \beta^2 = \mu'_2$$

$$(4.104)$$

$$\mu'_2 \cdot \alpha + 2 \cdot \beta^2 \cdot \mu'_1 = \mu'_3$$

Resolviendo por Cramer el sistema de ecuaciones (4.104), se relacionan los parámetros α y β de la distribución con los tres primeros momentos respecto del origen de la distribución.

$$\alpha = \frac{\begin{vmatrix} \mu_{2}' & 1 \\ \mu_{3}' & 2 \cdot \mu_{1}' \end{vmatrix}}{\begin{vmatrix} \mu_{1}' & 1 \\ \mu_{2}' & 2 \cdot \mu_{1}' \end{vmatrix}} = \frac{\mu_{2}' \cdot 2 \cdot \mu_{1}' - \mu_{3}'}{2 \cdot (\mu_{1}')^{2} - \mu_{2}'} \quad ; \quad \beta^{2} = \frac{\begin{vmatrix} \mu_{1}' & \mu_{2}' \\ \mu_{2}' & \mu_{3}' \end{vmatrix}}{\begin{vmatrix} \mu_{1}' & 1 \\ \mu_{2}' & 2 \cdot \mu_{1}' \end{vmatrix}} = \frac{\mu_{1}' \cdot \mu_{3}' - (\mu_{2}')^{2}}{2 \cdot (\mu_{1}')^{2} - \mu_{2}'} \quad (4.105)$$

Si los tres primeros momentos de la distribución se igualan a los tres primeros momentos respecto del origen de la muestra se tiene:

$$\hat{\alpha} = \frac{m'_2 \cdot 2 \cdot m - m'_3}{2 \cdot (m)^2 - m'_2} \quad ; \quad \hat{\beta}^2 = \frac{m \cdot m'_3 - (m'_2)^2}{2 \cdot (m)^2 - m'_2} \tag{4.106}$$

4.2.19. Distribución Lognormal de 3 parámetros.

Para determinar los tres parámetros desconocidos de la distribución Lognormal (3.178) se igualarán tres momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán:

• La media:

$$\overline{v} = \delta + e^{\left(\alpha + \frac{\beta^2}{2}\right)} \tag{4.107}$$

• La varianza:

$$s^{2} = e^{(2\alpha + \beta^{2})} \left[e^{\beta^{2}} - 1 \right]$$
(4.108)

• El coeficiente de asimetría:

$$g_1 = \sqrt{\left(e^{\beta^2} - 1\right)^3} + 3\sqrt{e^{\beta^2} - 1}$$
(4.109)

El coeficiente de asimetría se representa en la figura 4.4. Dicha gráfica permite determinar el parámetro $\hat{\beta}$ a partir del conocimiento del coeficiente de asimetría de la muestra.

Figura 4.4. Coeficiente de asimetría en función del parámetro β

Un método más cómodo para resolver la ecuación (4.109) y obtener $\hat{\beta}$ en función del coeficiente de asimetría es utilizar una expresión analítica simple. Un ajuste por mínimos cuadrados mediante el método de Levenberg-Marquardt (Drape y Smith, 1998) ha permitido hallar la expresión (4.110), con la que se puede estimar $\hat{\beta}$ con un error máximo absoluto de 8.99 10⁻⁶.

$$\hat{\beta} = \frac{-7.312 + 3g_1 - 2.356g_1^2}{1 - 0.783g_1 - 0.594g_1^2 + 0.4872g_1^3}$$
(4.110)

El parámetro $\hat{\alpha}$ puede determinarse a partir de (4.108).

$$\hat{\alpha} = \ln \sqrt{\frac{s^2}{e^{\beta^2} - 1}} - \frac{\hat{\beta}}{2}$$
(4.111)

El parámetro de posición $\hat{\delta}$ se obtiene a partir de la ecuación (4.107).

$$\hat{\delta} = \overline{v} - e^{\left(\hat{\alpha} + \frac{\hat{\beta}^2}{2}\right)} \tag{4.112}$$

La solución se considera válida si se cumplen las condiciones (4.113).

$$\hat{\delta} \ge 0$$
 ; $\hat{\delta} \le v_{\min}$ (4.113)

4.2.20. Distribución Lognormal de 2 parámetros.

Para determinar los dos parámetros la distribución Lognormal de 2 parámetros se igualará la media y varianza muestrales con la media y varianza de la de la distribución. Por tanto:

• La media:

$$\overline{v} = e^{\left(\hat{\alpha} + \frac{\hat{\beta}^2}{2}\right)} \tag{4.114}$$

• La varianza:

$$s^{2} = e^{(2\alpha + \beta^{2})} \left[e^{\beta^{2}} - 1 \right]$$
(4.115)

Despejando $\hat{\alpha}$ de la ecuación (4.114) y sustituyendo en (4.115), se tiene:

$$\hat{\beta} = \sqrt{\ln\left[1 + \frac{s^2}{\overline{v}^2}\right]} \tag{4.116}$$

Sustituyendo (4.116) en (4.114) se obtiene:

$$\hat{\alpha} = \ln\left[\overline{v} / \sqrt{1 + \frac{s^2}{\overline{v}^2}}\right]$$
(4.117)

4.2.21. Distribución híbrida Lognormal.

Para determinar los dos parámetros la distribución híbrida Lognormal se igualarán los dos primeros momentos respecto del origen de la muestra con los correspondientes de la distribución teórica. Por tanto:

$$\overline{v} = \left(1 - \theta_0\right) e^{\left(\hat{a} + \frac{\hat{\beta}^2}{2}\right)} \tag{4.118}$$

$$m'_{2} = (1 - \theta_{0}) e^{2(\alpha + \beta^{2})}$$
(4.119)

Despejando $\hat{\alpha}$ de la ecuación (4.118) y sustituyendo en (4.119), se tiene:

$$\hat{\beta} = \sqrt{\ln\left[\frac{m_2'(1-\theta_0)}{\overline{v}^2}\right]}$$
(4.120)

Sustituyendo (4.120) en (4.118) se obtiene:

$$\hat{\alpha} = \ln \overline{\nu} - \frac{\hat{\beta}^2}{2} \tag{4.121}$$

4.2.22. Distribución Gausiana Inversa de 3 parámetros.

Para determinar los tres parámetros desconocidos de la distribución Gausiana inversa (3.207) se igualarán tres momentos muestrales con los correspondientes momentos de la distribución. En este caso se utilizarán:

• La media:

$$\overline{v} = \hat{\alpha} + \hat{\gamma} \tag{4.122}$$

• La varianza:

$$s^2 = \frac{\hat{\alpha}^3}{\hat{\beta}} \tag{4.123}$$

• El coeficiente de asimetría:

$$g_1 = 3\sqrt{\hat{\alpha}/\hat{\beta}} \tag{4.124}$$

Despejando $\hat{\alpha}$ de la ecuación (4.124) y sustituyendo en (4.123) se obtiene $\hat{\beta}$.

$$\hat{\beta} = \left(\frac{3}{g_1}\right)^3 s \tag{4.125}$$

Sustituyendo (4.125) en (4.124) se obtiene $\hat{\alpha}$.

$$\hat{\alpha} = \frac{3}{g_1}s \tag{4.126}$$

Despejando de (4.122) se obtiene el parámetro de posición $\hat{\gamma}$.

$$\hat{\gamma} = \overline{v} - \frac{3}{g_1} s \tag{4.127}$$

La solución se considera válida si se cumplen las condiciones (4.128).

$$\hat{\gamma} \ge 0 \quad ; \quad \hat{\gamma} \le v_{\min}$$

$$(4.128)$$

4.2.23. Distribución Gausiana Inversa de 2 parámetros.

Para determinar los dos parámetros la distribución Gausiana de 2 parámetros se igualará la media y varianza muestrales con la media y varianza de la de la distribución. Por tanto:

• La media:

$$\overline{v} = \hat{\alpha} \tag{4.129}$$

• La varianza:

$$s^2 = \frac{\hat{\alpha}^3}{\hat{\beta}} \tag{4.130}$$

 $\hat{\alpha}$ se obtiene directamente de la ecuación (4.129). Operando con las ecuaciones (4.129)

y (4.130) se obtiene $\hat{\beta}$.

$$\hat{\beta} = \frac{\overline{\nu}^3}{s^2} \tag{4.131}$$

4.2.24. Distribución híbrida Gausiana Inversa.

Para determinar los dos parámetros la distribución híbrida Gausina inversa se igualarán los dos primeros momentos respecto del origen de la muestra con los correspondientes de la distribución teórica. Por tanto:

$$\overline{v} = (1 - \theta_0)\hat{\alpha} \tag{4.132}$$

$$m'_{2} = (1 - \theta_{0}) (\hat{\alpha}^{3} / \hat{\beta} + \hat{\alpha}^{2})$$
(4.133)

 $\hat{\alpha}$ se obtiene de despejar de la ecuación (4.132). Operando con las ecuaciones (4132) y (4.133) se obtiene $\hat{\beta}$.

$$\hat{\beta} = \frac{\overline{v}^3}{\left(1 - \theta_0\right) \left[m_2'\left(1 - \theta_0\right) - \overline{v}^2\right]}$$
(4.134)

4.2.25. Distribución mixta de Weibull.

Los estimadores (α_1 , β_1 , α_2 , β_2 , π) del método de los momentos son aquellos que satisfacen la ecuación (4.135) y están sujetos a las restricciones expresadas en la ecuación (4.136).

$$m'_{r} = \pi \beta_{1}^{r} \Gamma \left(1 + \frac{r}{\alpha_{1}} \right) + \left(1 - \pi \right) \beta_{2}^{r} \Gamma \left(1 + \frac{r}{\alpha_{2}} \right) \quad ; \quad r = 1, \dots 5$$

$$(4.135)$$

$$\alpha_1 > 0 \ ; \ \alpha_2 > 0 \ ; \ \beta_1 > 0 \ ; \ \beta_2 > 0 \ ; \ 0 \le \pi \le 1$$
 (4.136)

En general, existe un número potencial de problemas relacionados con la aplicación del método de los momentos en distribuciones mezcla (Titterington et al, 1995).

a) No existe una solución explicita del sistema de ecuaciones (4.135).

b) La solución del sistema de ecuaciones anterior puede no ser único y puede no encontrarse en una región viable.

c) Los parámetros estimados pueden no ser eficientes asintoticamente.d) El cálculo exacto de la covarianza de los estimadores de los parámetros no es generalmente posible.

Para determinar los parámetros mediante el método de los momentos se ha de resolver el sistema de ecuaciones no lineales (4.135). El sistema de ecuaciones (4.135) no tiene una solución analítica y, por lo tanto, ha de resolverse numéricamente. En esta tesis se propone el uso de un algoritmo Quasi-Newton (Belegundu y Chandrupatla, 1999; Press et al, 1996; Akai, 1999) para resolver numéricamente el sistema de ecuaciones (4.135).

La técnica de programación no lineal usada para determinar (α_1 , β_1 , α_2 , β_2 , ω) requiere un punto de inicio o punto base. Buenos valores de inicio permiten a menudo que las técnicas iterativas converjan a una solución mucho más rápidamente. Las expresiones (4.137) (véase apartado 4.2.8) se han usado en esta tesis para determinar los valores de los parámetros en el cálculo de la distribución mezcla de Weibull.

$$\alpha_1 = \alpha_2 = \left(\frac{\sqrt{s^2}}{m_1'}\right)^{-1.086} ; \quad \beta_1 = \beta_2 = m_1' \left[\Gamma\left(1 + \frac{1}{\alpha_1}\right)\right]^{-1} ; \qquad \pi = 0.25, 0.5, 0.75$$
(4.137)

donde m'_1 y s^2 son la media y la varianza de la muestra.

Se considera que se ha encontrado una solución cuando se satisface la condición $|\overline{v}_{WW,r} - m'_r| \le \varepsilon$, donde ε es el error aceptado, el cual en esta tesis se ha tomado como 10⁻³.

4.2.26. Distribución mixta de Normal truncada-Weibull.

Los estimadores (α_1 , β_1 , α_2 , β_2 , ω) del método de los momentos son aquellos que satisfacen la ecuación (4.138) y están sujetos a las restricciones expresadas en la ecuación (4.139).

$$m'_{r} = \omega \frac{1}{\beta_{1} I_{0} \sqrt{2\pi}} \int_{0}^{\infty} \exp\left[-\frac{(v-\alpha_{1})}{2\beta_{1}^{2}}\right] v^{r} dv + (1-\omega)\beta_{2}^{r} \Gamma\left(1+\frac{r}{\alpha_{2}}\right) \quad ; \quad r = 1,...5$$
(4.138)

$$\alpha_1 > 0 \ ; \ \alpha_2 > 0 \ ; \ \beta_1 > 0 \ ; \ \beta_2 > 0 \ ; \ 0 \le \omega \le 1$$

$$(4.139)$$

En esta tesis se propone el uso de un algoritmo Quasi-Newton (Belegundu y Chandrupatla, 1999; Press et al, 1996) para resolver numéricamente el sistema de ecuaciones (4.138).

4.3. Método de la Máxima Verosimilitud.

Fue introducido por Fisher y es el más empleado y general de cuantos existen. En esencia, el método de estimación de máxima verosimilitud, selecciona como estimadores aquellos valores de los parámetros que tienen la propiedad de maximizar el valor de la probabilidad de la muestra aleatoria observada. En otras palabras, el método de máxima verosimilitud consiste en encontrar el valor del parámetro que maximiza la función de verosimilitud.

Sea V una variable aleatoria que se distribuye según una ley de probabilidad cuya función de densidad viene dada por $f(v;\alpha_1, \alpha_2,...,\alpha_m)$, siendo $\alpha_1, \alpha_2,...,\alpha_m$ los parámetros desconocidos que se desean estimar; para una muestra $v_1, v_2,...,v_n$ de tamaño *n* extraída aleatoriamente se define la función de verosimilitud $L(v_1, v_2,...,v_n; \alpha_1, \alpha_2,...,\alpha_m)$ de la forma:

$$L(v_1, v_2, \dots, v_n; \alpha_i) = f(v_1; \alpha_i) \cdot f(v_2; \alpha_i) \cdot \dots \cdot f(v_n; \alpha_i) \text{ con } i=1 \dots m$$

$$(4.140)$$

Si la función alcanza su máximo, las primeras derivadas respecto de $\alpha_1, \alpha_2, ..., \alpha_m$ se anulan, pero para mayor comodidad se toma la función ln *L* que también alcanza su máximo para el mismo valor que *L*, teniendo:

$$\frac{\partial \ln L}{\partial \alpha_1} = 0, \ \frac{\partial \ln L}{\partial \alpha_2} = 0, \dots, \frac{\partial \ln L}{\partial \alpha_m} = 0$$
(4.141)

Las soluciones de este sistema de ecuaciones son:

$$\alpha_1^*(v_1, v_2, ..., v_n), \quad \alpha_2^*(v_1, v_2, ..., v_n), ..., \alpha_m^*(v_1, v_2, ..., v_n)$$
(4.142)

Si al sustituir (4.142) en las derivadas segundas se obtiene:

$$\frac{\partial^2 \ln L}{\partial \alpha_1^2} < 0, \ \frac{\partial \ln L}{\partial \alpha_2} = 0, \dots, \frac{\partial \ln L}{\partial \alpha_m} = 0$$
(4.143)

Entonces $\alpha_1^*(v_1, v_2, ..., v_n)$, $\alpha_2^*(v_1, v_2, ..., v_n)$,, $\alpha_m^*(v_1, v_2, ..., v_n)$ son estimadores de máxima verosimilitud de los parámetros $\alpha_1, \alpha_2, ..., \alpha_m$.

El método de máxima verosimilitud proporciona estimadores que son:

- o Asintóticamente centrados.
- Con distribución asintótica normal.
- Asintóticamente de varianza mínima (eficientes).

- Si existe un estadístico suficiente para el parámetro, el estimador máximoverosímil es suficiente.
- Invariantes en el sentido siguiente: si $\hat{\theta}$ es el estimador máximo-verosímil de un parámetro θ , y g es una función continua biunívoca, $g(\hat{\theta})$ es el estimador máximo-verosímil de $g(\theta)$.

Las desventajas de este método son:

- Las ecuaciones de máxima verosimilitud han de ser desarrolladas específicamente para una distribución dada. Las ecuaciones no son a menudo fáciles, particularmente si se desean intervalos de confianza para los parámetros.
- La estimación numérica no es generalmente fácil. Excepto para unos pocos casos donde las formulas de máxima verosimilitud son simples, generalmente es necesario recurrir a software estadísticos de alta calidad para obtener estimadas de máxima verosimilitud.
- Las propiedades óptimas puede que no se puedan aplicar a muestras pequeñas.
- La máxima verosimilitud puede ser sensible a los valores de comienzo elegidos.

Errores estándar de los parámetros.

En la práctica, interesa no solamente dar una estimación de un parámetro sino, además, un intervalo que permita precisar la incertidumbre existente en la estimación.

Si θ es cualquier parámetro de una población y $\hat{\theta}$ su estimación máximo-verosímil, asintóticamente:

$$E(\hat{\theta}) \to \theta \tag{4.144}$$

$$\sigma^{2}(\hat{\theta}) = Var(\hat{\theta}) \rightarrow \left[-\frac{\partial^{2}L(\theta)}{\partial \theta^{2}} \right]_{\hat{\theta}}^{-1} = \mathbf{H}^{-1}$$
(4.145)

Por tanto, el error relativo de estimación de θ , dado por (4.146) sigue una distribución normal estándar, y se puede construir el intervalo (4.147).

$$\frac{\theta - \hat{\theta}}{\sigma(\hat{\theta})} \tag{4.146}$$

$$\hat{\theta} - z_{\alpha/2}\sigma(\hat{\theta}) \le \theta \le \hat{\theta} + z_{\alpha/2}\sigma(\hat{\theta}) \tag{4.147}$$

donde $z_{\alpha/2}$ es un valor de la normal estándar tal que (Peña, 1994):

$$P(z > z_{\alpha/2}) = 1 - \Phi(z_{\alpha/2}) = \frac{\alpha}{2}$$
(4.148)

✤ Errores estándar de las funciones.

A menudo interesa estimar el error de una función g que depende de varios parámetros. Igual que para un parámetro estimado $\hat{\theta}$, una función estimada \hat{g} deberá estar acompañada de su error estándar.

La varianza de la función g puede ser obtenida aproximadamente de la fórmula de propagación de error (Bury, 1999).

$$Var(g) = \sum_{i} \sum_{j} \left(\frac{\partial g}{\partial \theta_{i}} \right) \left(\frac{\partial g}{\partial \theta_{j}} \right) Cov(\theta_{i}, \theta_{j})$$
(4.149)

4.3.1. Distribución Gamma generalizada de 4 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta,\eta,\gamma) = \left[\Gamma\left(\frac{\eta}{\alpha}\right)\right]^{-n} \cdot \alpha^{n} \cdot \beta^{n\cdot\eta/\alpha} \cdot \prod_{i=1}^{n} (v_{i}-\gamma)^{\eta-1} \cdot \exp\left\{-\beta \cdot \sum_{i=1}^{n} (v_{i}-\gamma)^{\alpha}\right\}$$
(4.150)

y la función $lnL(\alpha, \beta, \eta, \gamma)$, vendrá dada por:

$$\ln L(\alpha, \beta, \eta, \gamma) = n \cdot \left[\ln \alpha + \frac{\eta}{\alpha} \cdot \ln \beta - \ln \Gamma\left(\frac{\eta}{\alpha}\right) \right] +$$
(4.151)

$$+(\eta-1)\cdot\sum_{i=1}^{n}\ln(v_{i}-\gamma)-\beta\cdot\sum_{i=1}^{n}(v_{i}-\gamma)^{\alpha}$$

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\eta},\hat{\gamma}} = \hat{\eta} - \frac{\hat{\alpha} \cdot \hat{\beta}}{n} \cdot \sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}} = 0$$
(4.152)

$$\frac{\partial \ln L}{\partial \gamma} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\eta},\hat{\gamma}} = \hat{\beta} \cdot \hat{\alpha} \cdot \sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha} - 1} - (\hat{\eta} - 1) \cdot \sum_{i=1}^{n} \frac{1}{(v_i - \hat{\gamma})} = 0$$
(4.153)

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta},\hat{\eta},\hat{\gamma}} = n \cdot \left[\frac{1}{\hat{\alpha}} - \frac{\eta}{\hat{\alpha}^2} \cdot \ln \hat{\beta} - \psi_{\hat{\alpha}}\left(\hat{\eta}/\hat{\alpha}\right)\right] - \hat{\beta} \cdot \sum_{i=1}^n \left(v_i - \hat{\gamma}\right)^{\hat{\alpha}} \cdot \ln\left(v_i - \hat{\gamma}\right) = 0$$
(4.154)

$$\frac{\partial \ln L}{\partial \eta} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\eta},\hat{\gamma}} = n \cdot \left[\frac{\ln \hat{\beta}}{\hat{\alpha}} - \psi_{\hat{\eta}} \left(\hat{\eta} / \hat{\alpha} \right) \right] + \sum_{i=1}^{n} \ln \left(v_i - \hat{\gamma} \right) = 0$$
(4.155)

Denominando (4.156) y (4.157) (Amos, 1983; Abramowitz y stegun, 1972):

$$T_{1} = n^{-1} \cdot \sum_{i=1}^{n} (v_{i} - \gamma)^{\alpha} \qquad T_{2} = n^{-1} \cdot \sum_{i=1}^{n} (v_{i} - \gamma)^{\alpha} \cdot \ln(v_{i} - \gamma) \qquad (4.156)$$

$$T_{3} = n^{-1} \cdot \sum_{i=1}^{n} \ln(v_{i} - \gamma) \qquad T_{4} = \sum_{i=1}^{n} \frac{1}{(v_{i} - \gamma)} \qquad T_{5} = \sum_{i=1}^{n} (v_{i} - \gamma)^{\alpha - 1} \qquad (4.157)$$

Teniendo en cuenta (4.158):

$$\psi_{\hat{a}} = -\frac{\hat{\eta}}{\hat{\alpha}}\psi_{\hat{\eta}} \tag{4.158}$$

y sustituyendo (4.155) en (4.154), las ecuaciones (4.152), (4.153), (4.154) y (4.155) quedan:

$$\hat{\alpha} \cdot \hat{\beta} \cdot T_1 - \hat{\eta} = 0 \tag{4.159}$$

$$\hat{\alpha} \cdot \hat{\beta} \cdot T_5 - (\hat{\eta} - 1) \cdot T_4 = 0 \tag{4.160}$$

$$-1 - \hat{\eta} \cdot T_3 + \hat{\alpha} \cdot \hat{\beta} \cdot T_2 = 0 \tag{4.161}$$

$$\ln \hat{\beta} - \Psi(\hat{\eta}/\hat{\alpha}) + \hat{\alpha} \cdot T_3 = 0 \tag{4.162}$$

donde:

$$\psi_{\eta}(\eta/\alpha) = \frac{\Psi(\eta/\alpha)}{\alpha} \qquad \text{y} \qquad \Psi(\eta/\alpha) = \int_{0}^{\infty} v^{\frac{\eta}{\alpha}} e^{-v} \ln v dv \qquad (4.163)$$

Operando con las ecuaciones (4.159) y (4.161) se obtiene:

$$\hat{\beta} = \frac{1}{\hat{\alpha} \cdot \left(T_2 - T_1 \cdot T_3\right)} \tag{4.164}$$

Sustituyendo (4.164) en (4.159) se obtiene:

$$\hat{\eta} = \frac{T_1}{T_2 - T_1 \cdot T_3} \tag{4.165}$$

Sustituyendo (4.164) y (4.165) en (4.162) se obtiene:

$$\hat{\alpha} \cdot T_3 - \ln\left[\hat{\alpha} \cdot \left(T_2 - T_1 \cdot T_3\right)\right] - \Psi\left[\frac{T_1}{\hat{\alpha} \cdot \left(T_2 - T_1 \cdot T_3\right)}\right] = 0$$
(4.166)

Para resolver el sistema de ecuaciones se estima un valor inicial del parámetro de posición $0 \le \hat{\gamma} \le v_{\min}$ y se calculan las expresiones (4.156) y (4.157). Se resuelve la ecuación (4.166), utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\alpha}$ y seguidamente $\hat{\beta}$ y $\hat{\eta}$ a través de las ecuaciones (4.164) y (4.165) respectivamente.

Se compara el valor de $\hat{\beta}$ así obtenido con el deducido de la expresión (4.159). Si la diferencia absoluta es menor que una cierta tolerancia preestablecida, el sistema estará resuelto. En caso contrario se estimarán nuevos valores, entre 0 y v_{\min} , del parámetro de posición hasta lograr la resolución.

Estimación de errores de los parámetros.

Los elementos de la matriz H, ecuación (4.145), vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = n \left[-\frac{1}{\alpha^2} + \frac{2\eta}{\alpha^3} \ln \beta - \frac{\partial^2 \ln(\Gamma(\eta/\alpha))}{\partial \alpha^2} \right] - \beta \sum_{i=1}^n (v_i - \gamma)^\alpha \left[\ln(v_i - \gamma) \right]^2$$
(4.167)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = -n \left[\frac{\eta}{\beta \alpha^2} + \frac{1}{n} \sum_{i=1}^n (v_i - \gamma)^\alpha \ln(v_i - \gamma) \right]$$
(4.168)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \eta} = \frac{\partial^2 \ln L}{\partial \eta \partial \alpha} = -n \frac{\partial^2 \ln(\Gamma(\eta/\alpha))}{\partial \alpha \partial \eta} - n \frac{\ln \beta}{\alpha^2}$$
(4.169)

$$h_{14} = h_{41} = \frac{\partial^2 \ln L}{\partial \alpha \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \alpha} = \beta \left[\alpha \sum_{i=1}^n (v_i - \gamma)^{\alpha - 1} \ln (v_i - \gamma) + \sum_{i=1}^n (v_i - \gamma)^{\alpha - 1} \right]$$
(4.170)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n \frac{\eta}{\alpha \beta^2}$$
(4.171)

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \eta} = \frac{\partial^2 \ln L}{\partial \eta \partial \beta} = \frac{n}{\alpha \beta}$$
(4.172)

$$h_{24} = h_{42} = \frac{\partial^2 \ln L}{\partial \beta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \beta} = \alpha \sum_{i=1}^n (v_i - \gamma)^{\alpha - 1}$$
(4.173)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \eta^2} = -n\psi'_{\eta} \tag{4.174}$$

$$h_{34} = h_{43} = \frac{\partial^2 \ln L}{\partial \eta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \eta} = \sum_{i=1}^n \frac{-1}{(v_i - \gamma)}$$
(4.175)

$$h_{44} = \frac{\partial^2 \ln L}{\partial \gamma^2} = -\beta \alpha (\alpha - 1) \sum_{i=1}^n (v_i - \gamma)^{\alpha - 2} - (\eta - 1) \sum_{i=1}^n (v_i - \gamma)^{-2}$$
(4.176)

Por tanto, los errores estándar de los parámetros vendrán dados por la raíz cuadrada de la diagonal principal de la inversa de la matriz **H** (4.177).

$$\mathbf{H} = -\begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix}$$
(4.177)

4.3.2. Distribución Gamma generalizada de 3 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es (Wingo, 1987):

$$L(\alpha,\beta,\eta) = \left[\Gamma\left(\frac{\eta}{\alpha}\right)\right]^{-n} \cdot \alpha^{n} \cdot \beta^{n\cdot\eta/\alpha} \cdot \prod_{i=1}^{n} (v_{i})^{\eta-1} \cdot \exp\left\{-\beta \cdot \sum_{i=1}^{n} (v_{i})^{\alpha}\right\}$$
(4.178)

y la función $lnL(\alpha, \beta, \eta)$, vendrá dada por:

$$lnL(\alpha,\beta,\eta) = n \cdot \left[\ln \alpha + \frac{\eta}{\alpha} \cdot \ln \beta - \ln \Gamma\left(\frac{\eta}{\alpha}\right) \right] +$$
(4.179)

$$+(\eta-1)\cdot\sum_{i=1}^{n}\ln(v_{i})-\beta\cdot\sum_{i=1}^{n}(v_{i})^{\alpha}$$

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\eta}} = \hat{\eta} - \frac{\hat{\alpha} \cdot \hat{\beta}}{n} \cdot \sum_{i=1}^{n} (v_i)^{\hat{\alpha}} = 0$$
(4.180)

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta},\hat{\eta}} = n \cdot \left[\frac{1}{\hat{\alpha}} - \frac{\eta}{\hat{\alpha}^2} \cdot \ln \hat{\beta} - \psi_{\hat{\alpha}}\left(\hat{\eta}/\hat{\alpha}\right)\right] - \hat{\beta} \cdot \sum_{i=1}^n \left(v_i\right)^{\hat{\alpha}} \cdot \ln\left(v_i\right) = 0$$
(4.181)

$$\frac{\partial \ln L}{\partial \eta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\eta}} = n \cdot \left[\frac{\ln \hat{\beta}}{\hat{\alpha}} - \psi_{\hat{\eta}}\left(\hat{\eta}/\hat{\alpha}\right)\right] + \sum_{i=1}^{n} \ln\left(v_{i}\right) = 0$$
(4.182)

Denominando (4.183), teniendo en cuenta (4.158) y (4.163) y sustituyendo (4.182) en (4.181), las ecuaciones (4.180), (4.181) y (4.182) se transforman en (4.184), (4.185) y (4.186).

$$T_{1} = n^{-1} \cdot \sum_{i=1}^{n} (v_{i})^{\alpha} \qquad T_{2} = n^{-1} \cdot \sum_{i=1}^{n} (v_{i})^{\alpha} \cdot \ln(v_{i}) \qquad T_{3} = n^{-1} \cdot \sum_{i=1}^{n} \ln(v_{i}) \qquad (4.183)$$

$$\hat{\alpha} \cdot \beta \cdot T_1 - \hat{\eta} = 0 \tag{4.184}$$

$$-1 - \hat{\eta} \cdot T_3 + \hat{\alpha} \cdot \hat{\beta} \cdot T_2 = 0 \tag{4.185}$$

$$\ln \hat{\beta} - \Psi(\hat{\eta}/\hat{\alpha}) + \hat{\alpha} \cdot T_3 = 0 \tag{4.186}$$

Operando con las ecuaciones (4.184) y (4.185) se obtiene:

$$\hat{\beta} = \frac{1}{\hat{\alpha} \cdot \left(T_2 - T_1 \cdot T_3\right)} \tag{4.187}$$

Sustituyendo (4.187) en (4.184) se obtiene:

$$\hat{\eta} = \frac{T_1}{T_2 - T_1 \cdot T_3} \tag{4.188}$$

Sustituyendo (4.187) y (4.188) en (4.186) se obtiene:

$$\hat{\alpha} \cdot T_3 - \ln\left[\hat{\alpha} \cdot \left(T_2 - T_1 \cdot T_3\right)\right] - \Psi\left[\frac{T_1}{\hat{\alpha} \cdot \left(T_2 - T_1 \cdot T_3\right)}\right] = 0$$
(4.189)

Se resuelve la ecuación (4.189), utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\alpha}$ y seguidamente $\hat{\beta}$ y $\hat{\eta}$ a través de las ecuaciones (4.187) y (4.188) respectivamente.

Estimación de errores de los parámetros.

Los elementos de la matriz H, ecuación (4.145), vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = n \left[-\frac{1}{\hat{\alpha}^2} + \frac{2\hat{\eta}}{\hat{\alpha}^3} \ln \hat{\beta} - \frac{\partial^2 \ln(\Gamma(\hat{\eta}/\hat{\alpha}))}{\partial \hat{\alpha}^2} \right] - \hat{\beta} \sum_{i=1}^n (v_i)^{\hat{\alpha}} \left[\ln(v_i) \right]^2$$
(4.190)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = -n \left[\frac{\hat{\eta}}{\hat{\beta} \hat{\alpha}^2} + \frac{1}{n} \sum_{i=1}^n (v_i)^{\hat{\alpha}} \ln (v_i) \right]$$
(4.191)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \eta} = \frac{\partial^2 \ln L}{\partial \eta \partial \alpha} = -n \frac{\partial^2 \ln(\Gamma(\hat{\eta}/\hat{\alpha}))}{\partial \hat{\alpha} \partial \hat{\eta}} - \frac{n \ln \hat{\beta}}{\hat{\alpha}^2}$$
(4.192)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n \frac{\hat{\eta}}{\hat{\alpha} \hat{\beta}^2}$$
(4.193)

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \eta} = \frac{\partial^2 \ln L}{\partial \eta \partial \beta} = \frac{n}{\hat{\alpha}\hat{\beta}}$$
(4.194)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \eta^2} = -n\psi'_{\hat{\eta}} \tag{4.195}$$

Por tanto, los errores estándar de los parámetros vendrán dados por la raíz cuadrada de la diagonal principal de la inversa de la matriz \mathbf{H} (4.196).

$$\mathbf{H} = -\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$
(4.196)

4.3.3. Distribución Gamma de 3 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es:

$$L(\eta,\beta,\gamma) = \left[\Gamma(\eta)\right]^{-n} \cdot \beta^{-n\cdot\eta} \prod_{i=1}^{n} (v_i - \gamma)^{\eta-1} \cdot \exp\left\{-\frac{1}{\beta} \cdot \sum_{i=1}^{n} (v_i - \gamma)\right\}$$
(4.197)

y la función $\ln L(\eta, \eta, \gamma)$, viene dada por:

$$\ln L(\eta,\beta,\gamma) = -n\ln \left[\Gamma(\eta)\right] - n\eta\ln\beta + (\eta-1)\sum_{i=1}^{n}\ln(v_i-\gamma) - \frac{1}{\beta}\sum_{i=1}^{n}(v_i-\gamma)$$
(4.198)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \eta}\Big|_{\hat{\eta},\hat{\beta},\hat{\gamma}} = -n\frac{\partial \ln(\Gamma(\hat{\eta}))}{\partial \hat{\eta}} - n\ln\hat{\beta} + \sum_{i=1}^{n}\ln\left(v_{i} - \hat{\gamma}\right) = 0$$
(4.199)

$$\frac{\partial \ln L}{\partial \beta} \bigg|_{\hat{\eta}, \hat{\beta}, \hat{\gamma}} = \frac{-n\hat{\eta}}{\hat{\beta}} + \frac{1}{\hat{\beta}^2} \sum_{i=1}^n (v_i - \hat{\gamma}) = 0$$
(4.200)

$$\frac{\partial \ln L}{\partial \gamma}\Big|_{\hat{\eta},\hat{\beta},\hat{\gamma}} = -(\hat{\eta}-1)\sum_{i=1}^{n}\frac{1}{(v_i-\hat{\gamma})} + \frac{n}{\hat{\beta}} = 0$$
(4.201)

De (4.200) se obtiene (4.202) y de (4.201) se obtiene (4.203).

$$\hat{\beta} = \frac{1}{n\hat{\eta}} \sum_{i=1}^{n} (v_i - \hat{\gamma})$$
(4.202)

$$\hat{\beta} = n \left[\left(\hat{\eta} - 1 \right) \sum_{i=1}^{n} \left(v_i - \hat{\gamma} \right)^{-1} \right]^{-1}$$
(4.203)

Igualando las ecuaciones (4.202) y (4.203) se puede despejar $\hat{\eta}$.

$$\hat{\eta} = \left[1 - \frac{1}{\left(\overline{\nu} - \hat{\gamma}\right)T_1}\right]^{-1} \tag{4.204}$$

Sustituyendo (4.204) en (4.199) se tiene:

$$\psi\left\{\left[1-\frac{1}{\left(\overline{\nu}-\hat{\gamma}\right)T_{1}}\right]^{-1}\right\}+\ln\left[\overline{\nu}-\hat{\gamma}-\frac{1}{T_{1}}\right]-T_{2}=0$$
(4.205)

donde:

$$T_1 = \frac{1}{n} \sum_{i=1}^n (v_i - \hat{\gamma})^{-1} \qquad T_2 = \frac{1}{n} \sum_{i=1}^n \ln(v_i - \hat{\gamma}) \qquad (4.206)$$

Cuando existe una solución $0 \le \hat{\gamma} \le v_{\min}$, es fácil calcularla resolviendo la ecuación (4.205). Una vez obtenido $\hat{\gamma}$, se puede estimar $\hat{\eta}$ mediante (4.204) y $\hat{\beta}$ mediante (4.202).

Estimación de errores de los parámetros.

Los elementos de la matriz H, ecuación (4.145), vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \eta^2} = -n\psi'(\hat{\eta}) \tag{4.207}$$

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \eta \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \eta} = -\frac{n}{\hat{\beta}}$$
(4.208)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \eta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \eta} = -\sum_{i=1}^n \left(v_i - \hat{\gamma}\right)^{-1} = -\frac{n}{\hat{\beta}(\hat{\eta} - 1)}$$
(4.209)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = \frac{n\hat{\eta}}{\hat{\beta}^2} - \frac{2}{\hat{\beta}^3} \sum_{i=1}^n (v_i - \hat{\gamma}) = -\frac{n\hat{\eta}}{\hat{\beta}^2}$$
(4.210)

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \beta} = -\frac{n}{\hat{\beta}^2}$$
(4.211)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \gamma^2} = (\hat{\eta} - 1) \sum_{i=1}^n (v_i - \hat{\gamma})^{-2}$$
(4.212)

Por tanto, los errores estándar de los parámetros vendrán dados por la raíz cuadrada de la diagonal principal de la inversa de la matriz **H** (4.196).

4.3.4. Distribución Gamma de 2 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es:

$$L(\eta,\beta) = \left[\Gamma(\eta)\right]^{-n} \cdot \beta^{-n\cdot\eta} \prod_{i=1}^{n} (v_i)^{\eta-1} \cdot \exp\left\{-\frac{1}{\beta} \cdot \sum_{i=1}^{n} (v_i)\right\}$$
(4.213)

y la función $\ln L(\eta, \eta, \gamma)$, viene dada por:

$$\ln L(\eta,\beta) = -n \ln \left[\Gamma(\eta) \right] - n\eta \ln \beta + (\eta - 1) \sum_{i=1}^{n} \ln(v_i) - \frac{1}{\beta} \sum_{i=1}^{n} (v_i)$$
(4.214)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

$$\frac{\partial \ln L}{\partial \eta}\Big|_{\hat{\eta},\hat{\beta}} = -n\frac{\partial \ln(\Gamma(\hat{\eta}))}{\partial \hat{\eta}} - n\ln\hat{\beta} + \sum_{i=1}^{n}\ln(v_i) = 0$$
(4.215)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\eta},\hat{\beta}} = \frac{-n\hat{\eta}}{\hat{\beta}} + \frac{1}{\hat{\beta}^2} \sum_{i=1}^n (v_i) = 0$$
(4.216)

De (4.215) se obtiene (4.217) y de (4.216) se obtiene una ecuación en función solo de $\hat{\eta}$ (4.218).

$$\ln(\hat{\beta}) + \psi(\hat{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \ln(v_i)$$
(4.217)

$$\hat{\eta}\hat{\beta} = \frac{1}{n}\sum_{i=1}^{n} (v_i)$$
(4.218)

Combinando las ecuaciones (4.217) y (4.218) se obtiene:

$$\ln(\hat{\eta}) - \psi(\hat{\eta}) = \ln\left(\frac{\sum_{i=1}^{n} v_{i}}{\sum_{i=1}^{n} \ln(v_{i})}\right)$$
(4.219)

Se resuelve la ecuación (4.219), utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\eta}$ y seguidamente $\hat{\beta}$ a través de las ecuaciones (4.218).

Estimación de errores de los parámetros.

Los elementos de la matriz H, vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \eta^2} = -n\psi'(\hat{\eta}) \tag{4.220}$$

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \eta \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \eta} = -\frac{n}{\hat{\beta}}$$
(4.221)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = \frac{n\hat{\eta}}{\hat{\beta}^2} - \frac{2}{\hat{\beta}^3} \sum_{i=1}^n (v_i) = -\frac{n\hat{\eta}}{\hat{\beta}^2}$$
(4.222)

Por tanto, la inversa de la matriz H, vendrá dad por:

$$Var = -\mathbf{H}^{-1} = \frac{1}{n[\hat{\eta}\psi' - 1]} \begin{pmatrix} \hat{\eta} & -\hat{\beta} \\ -\hat{\beta} & \hat{\beta}^2\psi' \end{pmatrix}$$
(4.223)

4.3.5. Distribución Weibull de 3 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es (Zanakis y Kyparisis, 1986):

$$L(\alpha,\beta,\gamma) = \alpha^{n} \cdot \beta^{-n \cdot \alpha} \prod_{i=1}^{n} (v_{i} - \gamma)^{\alpha - 1} \cdot \exp\left\{-\beta^{-\alpha} \cdot \sum_{i=1}^{n} (v_{i} - \gamma)^{\alpha}\right\}.$$
(4.224)

y la función $\ln L(\eta, \eta, \gamma)$, viene dada por:

$$\ln L(\alpha,\beta,\gamma) = n \ln \alpha - n\alpha \ln \beta + (\alpha - 1) \sum_{i=1}^{n} \ln(v_i - \gamma) - \beta^{-\alpha} \sum_{i=1}^{n} (v_i - \gamma)^{\alpha}$$
(4.225)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = \frac{-n\hat{\alpha}}{\hat{\beta}} + \sum_{i=1}^{n} \left(v_i - \hat{\gamma}\right)^{\hat{\alpha}} \hat{\alpha} \hat{\beta}^{-\hat{\alpha}-1} = 0$$
(4.226)

$$\frac{\partial \ln L}{\partial \gamma}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = -(\hat{\alpha}-1)\sum_{i=1}^{n} (v_i - \hat{\gamma})^{-1} + \hat{\beta}^{-\hat{\alpha}}\hat{\alpha}\sum_{i=1}^{n} (v_i - \hat{\gamma})^{(\hat{\alpha}-1)} = 0$$
(4.227)

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = \frac{n}{\hat{\alpha}} - n \ln \hat{\beta} + \sum_{i=1}^{n} \ln \left(v_i - \hat{\gamma}\right) - \sum_{i=1}^{n} \left[\frac{\left(v_i - \hat{\gamma}\right)}{\hat{\beta}}\right]^{\hat{\alpha}} \ln \left[\frac{\left(v_i - \hat{\gamma}\right)}{\hat{\beta}}\right] = 0$$
(4.228)

Operando con las ecuaciones (4.226), (4.227) y (4.228) se obtienen las ecuaciones (4.229), (4.230) y (4.231).

$$\hat{\beta} = \left(\frac{1}{n}\sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}}\right)^{\frac{1}{\hat{\alpha}}}$$
(4.229)

$$\hat{\beta}^{\hat{\alpha}} \cdot \frac{(\hat{\alpha} - 1)}{\hat{\alpha}} = \frac{\sum_{i=1}^{n} (v_i - \hat{\gamma})^{(\hat{\alpha} - 1)}}{\sum_{i=1}^{n} (v_i - \hat{\gamma})^{-1}}$$
(4.230)

$$\frac{n}{\hat{\alpha}} - n\ln\hat{\beta} + \sum_{i=1}^{n}\ln\left(v_i - \hat{\gamma}\right) - \sum_{i=1}^{n} \left(\frac{v_i - \hat{\gamma}}{\hat{\beta}}\right)^{\hat{\alpha}} \ln\left(\frac{v_i - \hat{\gamma}}{\hat{\beta}}\right) = 0$$
(4.231)

Sustituyendo (4.229) en (4.230) y (4.231) se obtienen dos ecuaciones en $\hat{\alpha}$ y $\hat{\gamma}$.

$$\frac{\hat{\alpha}}{\hat{\alpha}-1} = \frac{\sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}} \sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}-1}}{n \sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}-1}}$$
(4.232)

$$\frac{1}{\hat{\alpha}} - \frac{\sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}} \ln(v_i - \hat{\gamma})}{\sum_{i=1}^{n} (v_i - \hat{\gamma})^{\hat{\alpha}}} + \frac{1}{n} \sum_{i=1}^{n} \ln(v_i - \hat{\gamma}) = 0$$
(4.233)

En principio, la solución ($\hat{\alpha}$, $\hat{\gamma}$) se obtiene resolviendo el sistema de ecuaciones (4.232) y (4.233), y $\hat{\beta}$ se obtiene de (4.229).

+ Estimación de errores de los parámetros.

Los elementos de la matriz H, vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -\frac{n}{\hat{\alpha}^2} - \sum_{i=1}^n \left[\frac{v_i - \hat{\gamma}}{\hat{\beta}} \right]^{\hat{\alpha}} \left\{ \ln \left[\frac{v_i - \hat{\gamma}}{\hat{\beta}} \right] \right\}^2$$
(4.234)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = \frac{\hat{\alpha}}{\hat{\beta}} \left\{ \frac{n}{\hat{\alpha}} + \sum_{i=1}^n \ln \left[\frac{v_i - \hat{\gamma}}{\hat{\beta}} \right] \right\}$$
(4.235)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \alpha} = -\frac{\sum_{i=1}^n \left(\frac{v_i - \hat{\gamma}}{\beta}\right)^{-1}}{\hat{\beta} \hat{\alpha}} + \frac{\hat{\alpha}}{\hat{\beta}} \sum_{i=1}^n \left(\frac{v_i - \hat{\gamma}}{\hat{\beta}}\right)^{\hat{\alpha} - 1} \ln\left(\frac{v_i - \hat{\gamma}}{\hat{\beta}}\right)$$
(4.236)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n \left(\frac{\hat{\alpha}}{\hat{\beta}}\right)^2 \tag{4.237}$$

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \beta} = -\frac{\hat{\alpha} \left(\hat{\alpha} - 1\right)}{\hat{\beta}^2} \sum_{i=1}^n \left(\frac{v_i - \hat{\gamma}}{\hat{\beta}}\right)^{-1}$$
(4.238)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \gamma^2} = -\frac{\hat{\alpha} - 1}{\hat{\beta}^2} \left\{ \sum_{i=1}^n \left(\frac{v_i - \hat{\gamma}}{\hat{\beta}} \right)^{-2} + \hat{\alpha} \sum_{i=1}^n \left(\frac{v_i - \hat{\gamma}}{\hat{\beta}} \right)^{\hat{\alpha} - 2} \right\}$$
(4.239)

Por tanto, los errores estándar de los parámetros vendrán dados por la raíz cuadrada de la diagonal principal de la inversa de la matriz **H** (4.196).

4.3.6. Distribución Weibull de 2 parámetros.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta) = \alpha^{n} \cdot \beta^{-n \cdot \alpha} \prod_{i=1}^{n} (v_{i})^{\alpha-1} \cdot \exp\left\{-\beta^{-\alpha} \cdot \sum_{i=1}^{n} (v_{i})^{\alpha}\right\}.$$
(4.240)

y la función $\ln L(\eta, \eta, \gamma)$, viene dada por:

$$\ln L(\alpha,\beta) = n \ln \alpha - n\alpha \ln \beta + (\alpha - 1) \sum_{i=1}^{n} \ln(v_i) - \sum_{i=1}^{n} \left(\frac{v_i}{\beta}\right)^{\alpha}$$
(4.241)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta}} = \frac{-n\hat{\alpha}}{\hat{\beta}} + \frac{\hat{\alpha}}{\hat{\beta}^{\hat{\alpha}+1}} \sum_{i=1}^{n} v_i^{\hat{\alpha}} = 0$$
(4.242)

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta}} = \frac{n}{\hat{\alpha}} - n \ln \hat{\beta} + \sum_{i=1}^{n} \ln \left(v_i\right) - \sum_{i=1}^{n} \left[\frac{v_i}{\hat{\beta}}\right]^{\hat{\alpha}} \ln \left[\frac{v_i}{\hat{\beta}}\right] = 0$$
(4.243)

Operando con las ecuaciones (4.242) y (4.243) se obtienen las ecuaciones (4.244) y (4.245).

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(v_i\right)^{\hat{\alpha}}\right)^{\frac{1}{\hat{\alpha}}}$$
(4.244)

$$\frac{n}{\hat{\alpha}} - n \ln \hat{\beta} + \sum_{i=1}^{n} \ln \left(v_i \right) - \sum_{i=1}^{n} \left(\frac{v_i}{\hat{\beta}} \right)^{\hat{\alpha}} \ln \left(\frac{v_i}{\hat{\beta}} \right) = 0$$
(4.245)

Sustituyendo (4.244) en (4.245) se obtiene una ecuación en función sólo de $\hat{\alpha}$.

$$\frac{1}{\hat{\alpha}} - \frac{\sum_{i=1}^{n} v_i^{\hat{\alpha}} \ln v_i}{\sum_{i=1}^{n} v_i^{\hat{\alpha}}} + \frac{1}{n} \sum_{i=1}^{n} \ln \left(v_i \right) = 0$$
(4.246)

Se resuelve la ecuación (4.246), utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\alpha}$ y seguidamente $\hat{\beta}$ a través de las ecuaciones (4.244).

Estimación de errores de los parámetros.

Los elementos de la matriz H, vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -\frac{n}{\hat{\alpha}^2} - \sum_{i=1}^n \left[\frac{v_i}{\hat{\beta}} \right]^{\hat{\alpha}} \left\{ \ln \left[\frac{v_i}{\hat{\beta}} \right] \right\}^2$$
(4.247)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = -\frac{\hat{\alpha}}{\hat{\beta}} \left(\frac{n}{\hat{\alpha}} + \sum_{i=1}^n \ln \left(\frac{v_i}{\hat{\beta}} \right) \right)$$
(4.248)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n \left(\frac{\hat{\alpha}}{\hat{\beta}}\right)^2 \tag{4.249}$$

Por tanto, los errores estándar de los parámetros vendrán dados por la raíz cuadrada de la diagonal principal de la inversa de la matriz **H**.

4.3.7. Distribución Rayleigh de 2 parámetros.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\theta,\gamma) = \frac{1}{\theta^{2n}} \prod_{i=1}^{n} (v_i - \gamma) \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \left(\frac{v_i - \gamma}{\theta}\right)^2\right\}$$
(4.250)

y la función $\ln L(\theta, \gamma)$, viene dada por:

$$\ln L(\theta, \gamma) = -2n \ln \theta + \sum_{i=1}^{n} \ln (v_i - \gamma) - \frac{1}{2\theta^2} \sum_{i=1}^{n} (v_i - \gamma)^2$$
(4.251)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \theta}\Big|_{\hat{\theta},\hat{\gamma}} = \frac{-2n}{\hat{\theta}} + \frac{1}{\hat{\theta}^3} \sum_{i=1}^n \left(v_i - \hat{\gamma}\right)^2 = 0$$
(4.252)

$$\frac{\partial \ln L}{\partial \gamma}\Big|_{\hat{\theta},\hat{\gamma}} = -\sum_{i=1}^{n} \left(v_i - \hat{\gamma}\right)^{-1} + \frac{1}{\hat{\theta}^2} \sum_{i=1}^{n} \left(v_i - \hat{\gamma}\right) = 0$$
(4.253)

151

Operando en (4.252) y (4.253) se obtienen (4.254) y (4.255), respectivamente.

$$\hat{\theta} = \left(\frac{1}{2n} \sum_{i=1}^{n} (v_i - \hat{\gamma})^2\right)^{\frac{1}{2}}$$
(4.254)

$$\hat{\theta} = \left[\frac{\sum_{i=1}^{n} (v_i - \hat{\gamma})}{\sum_{i=1}^{n} (v_i - \hat{\gamma})^{-1}}\right]^{\frac{1}{2}}$$
(4.255)

Igualando (4.254) y (4.255) se obtiene

$$\sum_{i=1}^{n} (v_i - \hat{\gamma})^2 \sum_{i=1}^{n} (v_i - \hat{\gamma})^{-1} = 2n \sum_{i=1}^{n} (v_i - \hat{\gamma})$$
(4.256)

Se resuelve la ecuación (4.256), utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\gamma}$ y seguidamente $\hat{\theta}$ a través de las ecuaciones (4.254).

+ Estimación de errores de los parámetros.

Los elementos de la matriz H, vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \theta^2} = \frac{2n}{\hat{\theta}^2} - \frac{3}{\hat{\theta}^4} \sum_{i=1}^n (v_i - \hat{\gamma}) = -\frac{4n}{\hat{\theta}^2}$$
(4.257)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \theta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \theta} = -\frac{2}{\hat{\theta}^3} \sum_{i=1}^n (v_i - \hat{\gamma})$$
(4.258)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \gamma^2} = -\sum_{i=1}^n (v_i - \hat{\gamma})^{-2} - \frac{n}{\hat{\theta}^2}$$
(4.259)

Por tanto, los errores estándar de los parámetros vendrán dados por la raíz cuadrada de

la diagonal principal de la inversa de la matriz H.

4.3.8. Distribución Rayleigh de 1 parámetro.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\theta) = \prod_{i=1}^{n} \left(\frac{v_i}{\theta^2}\right) \exp\left\{-\frac{1}{2} \left(\frac{v_i}{\theta}\right)^2\right\}$$
(4.260)

y la función $\ln L(\theta)$, viene dada por:

$$\ln L(\theta) = -2n \ln \theta + \sum_{i=1}^{n} \ln(v_i) - \frac{1}{2\theta^2} \sum_{i=1}^{n} (v_i)^2$$
(4.261)

La ecuación de máxima verosimilitud, de acuerdo con (4.141) es:

$$\frac{\partial \ln L}{\partial \theta}\Big|_{\hat{\theta}} = \frac{-2n}{\hat{\theta}} + \frac{1}{\hat{\theta}^3} \sum_{i=1}^n \left(v_i\right)^2 = 0$$
(4.262)

Operando en (4.262.) se obtiene:

$$\hat{\theta} = \left(\frac{1}{2n} \sum_{i=1}^{n} (v_i)^2\right)^{\frac{1}{2}}$$
(4.263)

Estimación de errores de los parámetros.

Los elementos de la matriz H, vienen dados por:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \theta^2} = \frac{2n}{\hat{\theta}^2} - \frac{3\hat{\theta}^2}{\hat{\theta}^6} \sum_{i=1}^n v_i^2 = -\frac{4n}{\hat{\theta}^2}$$
(4.264)

Por tanto, la varianza y el error estándar vendrán dados por (4.265).

$$Var = -\mathbf{H}^{-1} = \frac{\hat{\theta}^2}{4n} \qquad SE(\hat{\theta}) = \frac{\hat{\theta}}{2\sqrt{n}} \qquad (4.265)$$

4.3.9. Distribución Beta de 4 parámetros.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta,\delta,\xi) = B^{-n}(\alpha,\beta) \prod_{i=1}^{n} (v_i - \delta)^{\alpha - 1} \prod_{i=1}^{n} (\xi - v_i)^{\beta - 1} (\xi - \delta)^{n(1 - \alpha - \beta)}$$
(4.266)

y la función $\ln L(\alpha, \beta, \delta, \xi)$, viene dada por:

$$\ln L(\alpha,\beta,\delta,\xi) = -n\ln[B(\alpha,\beta)] + (\alpha-1)\sum_{i=1}^{n}\ln(v_i-\delta) + (\beta-1)\sum_{i=1}^{n}\ln(\xi-v_i) + (\beta-1)\sum_{i=1}^{n}\ln$$

$$+n(1-\alpha-\beta)\ln(\xi-\delta) = -n\ln[\Gamma(\alpha)] - n\ln\Gamma(\beta) + n\ln[\Gamma(\alpha+\beta)] + (4.267)$$

$$+(\alpha-1)\sum_{i=1}^{n}\ln(v_i-\delta)+(\beta-1)\sum_{i=1}^{n}\ln(\xi-v_i)+n(1-\alpha-\beta)\ln(\xi-\delta)$$

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \alpha} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\delta},\hat{\xi}} = -n\psi(\hat{\alpha}) + n\psi(\hat{\alpha} + \hat{\beta}) + \sum_{i=1}^{n} \ln(v_i - \hat{\delta}) - n\ln(\hat{\xi} - \hat{\delta}) = 0$$
(4.268)

$$\frac{\partial \ln L}{\partial \beta} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\delta},\hat{\xi}} = -n\psi(\hat{\beta}) + n\psi(\hat{\alpha} + \hat{\beta}) + \sum_{i=1}^{n} \ln(\hat{\xi} - v_i) - n\ln(\hat{\xi} - \hat{\delta}) = 0$$
(4.269)

$$\frac{\partial \ln L}{\partial \delta} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\delta},\hat{\xi}} = -(\hat{\alpha}-1)\sum_{i=1}^{n} \left(v_i - \hat{\delta}\right)^{-1} - n\frac{1 - \hat{\alpha} - \hat{\beta}}{\hat{\xi} - \hat{\delta}} = 0$$
(4.270)

$$\frac{\partial \ln L}{\partial \xi} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\delta},\hat{\xi}} = (\hat{\beta} - 1) \sum_{i=1}^{n} \left(\hat{\xi} - v_i\right)^{-1} + n \frac{1 - \hat{\alpha} - \hat{\beta}}{\hat{\xi} - \hat{\delta}} = 0$$

$$(4.271)$$
Operando con las cuatro últimas ecuaciones se obtiene:

$$\psi(\hat{\alpha}) - \psi(\hat{\alpha} + \hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ln\left[\frac{v_i - \hat{\delta}}{\hat{\xi} - \hat{\delta}}\right]$$
(4.272)

$$\psi(\hat{\beta}) - \psi(\hat{\alpha} + \hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ln\left[\frac{\hat{\xi} - v_i}{\hat{\xi} - \hat{\delta}}\right]$$
(4.273)

$$\frac{1 - \hat{\alpha} - \hat{\beta}}{\hat{\xi} - \hat{\delta}} + \frac{\hat{\alpha} - 1}{n} \sum_{i=1}^{n} \left(v_i - \hat{\delta} \right)^{-1} = 0$$
(4.274)

$$\frac{1 - \hat{\alpha} - \hat{\beta}}{\hat{\xi} - \hat{\delta}} + \frac{\hat{\beta} - 1}{n} \sum_{i=1}^{n} \left(\hat{\xi} - v_i\right)^{-1} = 0$$
(4.275)

Operando con las ecuaciones (4.274) y (4.275) se obtiene (4.276) y (4.277).

$$\hat{\alpha} = \frac{\frac{1}{n} \sum_{i=1}^{n} \left(v_{i} - \hat{\delta}\right)^{-1} \left[\left(\hat{\xi} - \hat{\delta}\right) \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\xi} - v_{i}\right)^{-1} - 1\right]}{\frac{1}{n} \sum_{i=1}^{n} \left(\hat{\xi} - v_{i}\right)^{-1} \left[\left(\hat{\xi} - \hat{\delta}\right) \frac{1}{n} \sum_{i=1}^{n} \left(v_{i} - \hat{\delta}\right)^{-1} - 1\right] - \frac{1}{n} \sum_{i=1}^{n} \left(v_{i} - \hat{\delta}\right)^{-1}}$$
(4.276)

$$\hat{\beta} = \frac{\frac{1}{n} \sum_{i=1}^{n} (\hat{\xi} - v_i)^{-1} \left[(\hat{\xi} - \hat{\delta}) \frac{1}{n} \sum_{i=1}^{n} (v_i - \hat{\delta})^{-1} - 1 \right]}{\frac{1}{n} \sum_{i=1}^{n} (\hat{\xi} - v_i)^{-1} \left[(\hat{\xi} - \hat{\delta}) \frac{1}{n} \sum_{i=1}^{n} (v_i - \hat{\delta})^{-1} - 1 \right] - \frac{1}{n} \sum_{i=1}^{n} (v_i - \hat{\delta})^{-1}}$$
(4.277)

Sustituyendo (4.276) y (4.277) en (4.272) y (4.273) se obtienen dos expresiones dependientes solo de $\hat{\delta}$ y $\hat{\xi}$.

$$\psi \left\{ \frac{T_1 \left[\left(\hat{\xi} - \hat{\delta} \right) T_2 - 1 \right]}{T_2 \left[\left(\hat{\xi} - \hat{\delta} \right) T_1 - 1 \right] - T_1} \right\} - \psi \left\{ 1 + \frac{\left(\hat{\xi} - \hat{\delta} \right) T_1 T_2}{T_2 \left[\left(\hat{\xi} - \hat{\delta} \right) T_1 - 1 \right] - T_1} \right\} = T_3 - \ln \left(\hat{\xi} - \hat{\delta} \right)$$
(4.278)

$$\psi \left\{ \frac{T_2 \left[\left(\hat{\xi} - \hat{\delta} \right) T_1 - 1 \right]}{T_2 \left[\left(\hat{\xi} - \hat{\delta} \right) T_1 - 1 \right] - T_1} \right\} - \psi \left\{ 1 + \frac{\left(\hat{\xi} - \hat{\delta} \right) T_1 T_2}{T_2 \left[\left(\hat{\xi} - \hat{\delta} \right) T_1 - 1 \right] - T_1} \right\} = T_4 - \ln \left(\hat{\xi} - \hat{\delta} \right)$$
(4.279)

donde:

$$T_{1} = \frac{1}{n} \sum_{i=1}^{n} \left(v_{i} - \hat{\delta} \right)^{-1} \qquad T_{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\xi} - v_{i} \right)^{-1}$$

$$T_{3} = \frac{1}{n} \sum_{i=1}^{n} \ln \left(v_{i} - \hat{\delta} \right) \qquad T_{4} = \frac{1}{n} \sum_{i=1}^{n} \ln \left(\hat{\xi} - v_{i} \right)$$

$$(4.280)$$

La solución $(\hat{\delta}, \hat{\xi})$ se obtiene resolviendo el sistema de ecuaciones (4.278) y (4.279). Posteriormente se determinan $\hat{\alpha}$ y $\hat{\beta}$ mediante (4.276) y (4.277).

Hay que tener en cuenta que puede que no exista solución, como suele ocurrir cuando la muestra es pequeña. Incluso, cuando existe una solución, no siempre es fácil localizarla. Por tanto, es fundamental utilizar valores adecuados de inicio del cálculo de las ecuaciones (4.278) y (4.279). En esta tesis se utilizan como valores iniciales de cálculo los estimados a partir de la aplicación del método de los momentos (véase el apartado 4.2.13), aunque generalmente el método de los momentos proporciona valores distantes de los proporcionados por el método de la máxima verosimilitud.

Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -n\psi'(\hat{\alpha}) + n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.281)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = n \psi'(\hat{\alpha} + \hat{\beta})$$
(4.282)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \delta} = \frac{\partial^2 \ln L}{\partial \delta \partial \alpha} = -\frac{n\hat{\beta}}{(\hat{\alpha} - 1)(\hat{\xi} - \hat{\delta})}$$
(4.283)

$$h_{14} = h_{41} = \frac{\partial^2 \ln L}{\partial \alpha \partial \xi} = \frac{\partial^2 \ln L}{\partial \xi \partial \alpha} = -\frac{n}{\left(\hat{\xi} - \hat{\delta}\right)}$$
(4.284)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n\psi'(\hat{\beta}) + n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.285)

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \delta} = \frac{\partial^2 \ln L}{\partial \delta \partial \beta} = \frac{n}{\left(\hat{\xi} - \hat{\delta}\right)}$$
(4.286)

$$h_{24} = h_{42} = \frac{\partial^2 \ln L}{\partial \beta \partial \xi} = \frac{\partial^2 \ln L}{\partial \xi \partial \beta} = \frac{n\hat{\alpha}}{\left(\hat{\beta} - 1\right)\left(\hat{\xi} - \hat{\delta}\right)}$$
(4.287)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \delta^2} = n \left[\frac{\hat{\alpha} + \hat{\beta} - 1}{\left(\hat{\xi} - \hat{\delta}\right)^2} - \frac{\left(\hat{\alpha} - 1\right)}{n} \sum_{i=1}^n \left(v_i - \hat{\delta}\right)^{-2} \right]$$
(4.288)

$$h_{34} = h_{43} = \frac{\partial^2 \ln L}{\partial \delta \partial \xi} = \frac{\partial^2 \ln L}{\partial \xi \partial \delta} = -n \frac{\hat{\alpha} + \hat{\beta} - 1}{\left(\hat{\xi} - \hat{\delta}\right)^2}$$
(4.289)

$$h_{44} = \frac{\partial^2 \ln L}{\partial \xi^2} = n \left[\frac{\hat{\alpha} + \hat{\beta} - 1}{\left(\hat{\xi} - \hat{\delta}\right)^2} - \frac{\left(\hat{\beta} - 1\right)}{n} \sum_{i=1}^n \left(\hat{\xi} - v_i\right)^{-2} \right]$$
(4.290)

4.3.10. Distribución Beta de 3 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta,\xi) = B^{-n}(\alpha,\beta) \prod_{i=1}^{n} (v_i)^{\alpha-1} \prod_{i=1}^{n} (\xi - v_i)^{\beta-1} (\xi)^{n(1-\alpha-\beta)}$$
(4.291)

y la función $\ln L(\alpha, \beta, \xi)$ viene dada por:

$$\ln L(\alpha,\beta,\xi) = -n\ln[B(\alpha,\beta)] + (\alpha-1)\sum_{i=1}^{n}\ln(v_i) + (\beta-1)\sum_{i=1}^{n}\ln(\xi-v_i) + (\beta-1)\sum_{i=1}^{n}\ln(\xi-v$$

$$+n(1-\alpha-\beta)\ln(\xi) = -n\ln[\Gamma(\alpha)] - n\ln\Gamma(\beta) + n\ln[\Gamma(\alpha+\beta)] + (4.292)$$

+
$$(\alpha - 1)\sum_{i=1}^{n} \ln(v_i) + (\beta - 1)\sum_{i=1}^{n} \ln(\xi - v_i) + n(1 - \alpha - \beta)\ln(\xi)$$

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta},\hat{\xi}} = -n\psi\left(\hat{\alpha}\right) + n\psi\left(\hat{\alpha} + \hat{\beta}\right) + \sum_{i=1}^{n}\ln(v_i) - n\ln(\hat{\xi}) = 0$$
(4.293)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\xi}} = -n\psi(\hat{\beta}) + n\psi(\hat{\alpha} + \hat{\beta}) + \sum_{i=1}^{n} \ln(\hat{\xi} - v_i) - n\ln(\hat{\xi}) = 0$$
(4.294)

$$\frac{\partial \ln L}{\partial \xi} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\xi}} = (\hat{\beta} - 1) \sum_{i=1}^{n} (\hat{\xi} - v_i)^{-1} + n \frac{1 - \hat{\alpha} - \hat{\beta}}{\hat{\xi}} = 0$$
(4.295)

Operando con las tres últimas ecuaciones se obtiene:

$$\psi(\hat{\alpha}) - \psi(\hat{\alpha} + \hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ln\left[\frac{v_i}{\hat{\xi}}\right]$$
(4.296)

$$\psi(\hat{\beta}) - \psi(\hat{\alpha} + \hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ln\left[\frac{\hat{\xi} - v_i}{\hat{\xi}}\right]$$
(4.297)

$$\frac{1-\hat{\alpha}-\hat{\beta}}{\hat{\xi}} + \frac{\hat{\beta}-1}{n} \sum_{i=1}^{n} \left(\hat{\xi}-v_i\right)^{-1} = 0$$
(4.298)

Despejando $\hat{\xi}$ de (4.298) se obtiene:

$$\hat{\xi} = \exp\left[\psi\left(\hat{\alpha} + \hat{\beta}\right) - \psi\left(\hat{\alpha}\right) + \frac{1}{n}\sum_{i=1}^{n}\ln v_i\right]$$
(4.299)

Sustituyendo (4.299) en (4.297) y (4.298), se obtiene un sistema de ecuaciones en $\hat{\alpha}$ y $\hat{\beta}$.

$$\psi(\hat{\beta}) - \psi(\hat{\alpha} + \hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ln \left[1 - v_i \exp\left[\psi(\hat{\alpha}) - \psi(\hat{\alpha} + \hat{\beta}) - \frac{1}{n} \sum_{i=1}^{n} \ln v_i \right] \right]$$
(4.300)

$$\frac{\hat{\alpha} + \hat{\beta} - 1}{\hat{\beta} - 1} = \frac{1}{n} \sum_{i=1}^{n} \left[1 - v_i \exp\left[\psi(\hat{\alpha}) - \psi(\hat{\alpha} + \hat{\beta}) - \frac{1}{n} \sum_{i=1}^{n} \ln v_i \right] \right]^{-1}$$
(4.301)

La solución $(\hat{\alpha}, \hat{\beta})$ se obtiene resolviendo el sistema de ecuaciones (4.300) y (4.301). Posteriormente se determina $\hat{\xi}$ mediante (4.299).

+ Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -n\psi'(\hat{\alpha}) + n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.302)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.303)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \xi} = \frac{\partial^2 \ln L}{\partial \xi \partial \alpha} = -\frac{n}{\hat{\xi}}$$
(4.304)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n\psi'(\hat{\beta}) + n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.305)

159

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \xi} = \frac{\partial^2 \ln L}{\partial \xi \partial \beta} = \frac{n\hat{\alpha}}{\left(\hat{\beta} - 1\right)\hat{\xi}}$$
(4.306)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \xi^2} = n \left[\frac{\hat{\alpha} + \hat{\beta} - 1}{\left(\hat{\xi}\right)^2} - \frac{\left(\hat{\beta} - 1\right)}{n} \sum_{i=1}^n \left(\hat{\xi} - v_i\right)^{-2} \right]$$
(4.307)

4.3.11 Distribución Beta prima.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta) = B^{-n}(\alpha,\beta) \prod_{i=1}^{n} \left[\frac{\left(v_i\right)^{\alpha-1}}{\left(1+v_i\right)^{\alpha+\beta}} \right]$$
(4.308)

y la función $\ln L(\alpha, \beta)$, viene dada por:

$$\ln L(\alpha,\beta) = -n \ln [B(\alpha,\beta)] + (\alpha-1) \sum_{i=1}^{n} \ln v_i - (\alpha+\beta) \sum_{i=1}^{n} \ln (1+v_i) =$$
(4.309)

$$= -n\ln[\Gamma(\alpha)] - n\ln\Gamma(\beta) + n\ln[\Gamma(\alpha+\beta)] + (\alpha-1)\sum_{i=1}^{n}\ln v_i - (\alpha+\beta)\sum_{i=1}^{n}\ln(1+v_i)$$

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta}} = -n\psi\left(\hat{\alpha}\right) + n\psi\left(\hat{\alpha} + \hat{\beta}\right) + \sum_{i=1}^{n}\ln(v_i) - \sum_{i=1}^{n}\ln(1+v_i) = 0$$
(4.310)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta}} = -n\psi\left(\hat{\beta}\right) + n\psi\left(\hat{\alpha} + \hat{\beta}\right) - \sum_{i=1}^{n}\ln\left(1 + v_i\right) = 0$$
(4.311)

La solución $(\hat{\alpha}, \hat{\beta})$ se obtiene resolviendo el sistema de ecuaciones (4.310) y (4.311).

Para localizar el punto de inicio en la resolución del sistema en esta tesis se usan los parámetros estimados mediante la aplicación del método de los momentos (véase apartado 4.2.16).

+ Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -n\psi'(\hat{\alpha}) + n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.312)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.313)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -n\psi'(\hat{\beta}) + n\psi'(\hat{\alpha} + \hat{\beta})$$
(4.314)

Por tanto, la matriz de varianzas será:

$$Var = -\mathbf{H}^{-1} = \frac{\begin{bmatrix} \left(\psi'(\hat{\beta}) - \psi'(\hat{\alpha} + \hat{\beta})\right) & \psi'(\hat{\alpha} + \hat{\beta}) \\ \psi'(\hat{\alpha} + \hat{\beta}) & \left(\psi'(\hat{\alpha}) - \psi'(\hat{\alpha} + \hat{\beta})\right) \end{bmatrix}}{n\left\{\psi'(\hat{\alpha})\psi'(\hat{\beta}) - \psi'(\hat{\alpha} + \hat{\beta})\left\{\psi'(\hat{\alpha}) + \psi'(\hat{\beta})\right\}\right\}}$$
(4.315)

4.3.12. Distribución Normal truncada.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta) = \left[\frac{1}{\beta \cdot \sqrt{2 \cdot \pi} \cdot I_o}\right]^n \cdot e^{-\sum_{i=1}^n \frac{(\nu-\alpha)^2}{2 \cdot \beta^2}}$$
(4.316)

y la función $\ln L(\alpha, \beta)$, viene dada por:

$$\ln L(\alpha,\beta) = -n \ln \beta - \frac{n}{2} \ln (2\pi) - n \ln I_o - \sum_{i=1}^n \frac{(v_i - \alpha)^2}{2\beta^2}$$
(4.317)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta}} = -n\frac{\partial \left(\ln \hat{I}_o\right)}{\partial \hat{\alpha}} + \frac{1}{\hat{\beta}^2} \left(-n\hat{\alpha} + \sum_{i=1}^n v_i\right) = 0$$
(4.318)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta}} = \frac{-n}{\hat{\beta}} - n\frac{\partial \left(\ln \hat{I}_{o}\right)}{\partial \beta} + \frac{n\hat{\alpha}^{2}}{\hat{\beta}^{3}} - \frac{2\hat{\alpha}}{\hat{\beta}^{3}}\sum_{i=1}^{n}v_{i} + \frac{1}{\hat{\beta}^{3}}\sum_{i=1}^{n}v_{i}^{2} = 0$$
(4.319)

donde:

$$\frac{\partial \left(\ln I_{o}\right)}{\partial \alpha}\Big|_{\hat{a},\hat{\beta}} = \frac{\frac{\partial}{\partial \alpha} \left[\frac{1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{(v-\alpha)^{2}}{2\beta^{2}}} dv\right]}{\frac{1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{2\beta^{2}}} dv}\Big|_{\hat{a},\hat{\beta}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} -\frac{(v-\alpha)}{\beta^{2}} \cdot e^{\frac{-(v-\alpha)^{2}}{2\beta^{2}}} dv}{\frac{1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{2\beta^{2}}} dv}\Big|_{\hat{a},\hat{\beta}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} -\frac{(v-\alpha)^{2}}{\beta^{2}} \cdot e^{\frac{-(v-\alpha)^{2}}{2\beta^{2}}} dv}}{\frac{1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{2\beta^{2}}} dv}\Big|_{\hat{a},\hat{\beta}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{\beta^{2}}} dv}}{\frac{1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{\beta^{2}}} dv}\Big|_{\hat{b},\hat{b}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{\beta^{2}}} dv}\Big|_{\hat{b},\hat{b}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{\beta^{2}}} dv}\Big|_{\hat{b},\hat{b}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}{\beta\sqrt{2\pi}}} dv}\Big|_{\hat{b},\hat{b}} = \frac{\frac{-1}{\beta\sqrt{2\pi}} \int_{0}^{\infty} e^{\frac{-(v-\alpha)^{2}}$$

(4.320)

$$=\frac{\frac{-1}{\hat{\beta}\sqrt{2\pi}}\left[e^{-\frac{(\nu-\hat{\alpha})^2}{2\hat{\beta}^2}}\right]_0^{\infty}}{\frac{1}{\hat{\beta}\sqrt{2\pi}}\int_0^{\infty}e^{-\frac{(\nu-\hat{\alpha})^2}{2\hat{\beta}^2}}d\nu}=\frac{\frac{-1}{\hat{\beta}\sqrt{2\pi}}\left[0-e^{-\frac{(-\hat{\alpha})^2}{2\hat{\beta}^2}}\right]}{1-\phi\left[\frac{-\hat{\alpha}}{\hat{\beta}}\right]}=\frac{\frac{1}{\hat{\beta}}Z\left[\frac{-\hat{\alpha}}{\hat{\beta}}\right]}{1-\phi\left[\frac{-\hat{\alpha}}{\hat{\beta}}\right]}$$

donde:

$$\frac{\partial (\ln I_o)}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta}} = \frac{\frac{\partial}{\partial \beta} \left[\frac{1}{\beta\sqrt{2\pi}} \int_0^\infty e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv\right]}{\frac{1}{\beta\sqrt{2\pi}} \int_0^\infty e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv}\Big|_{\hat{\alpha},\hat{\beta}} = \left[\frac{\frac{1}{\beta^2\sqrt{2\pi}} \int_0^\infty \frac{(v-\alpha)^2}{\beta^2} e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv}{1-\phi\left(\frac{-\alpha}{\beta}\right)} - \frac{1}{\beta\sqrt{2\pi}} \int_0^\infty \frac{(v-\alpha)^2}{\beta^2} e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv}\right]$$

(4.322)

$$\frac{\frac{1}{\beta^2 \sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv}{1-\phi\left(\frac{-\alpha}{\beta}\right)} \bigg|_{\hat{\alpha},\hat{\beta}} = \left[\frac{\frac{-1}{\beta^2 \sqrt{2\pi}} \int_{0}^{\infty} -\frac{(v-\alpha)^2}{\beta^2} e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv}{1-\phi\left(\frac{-\alpha}{\beta}\right)} - \frac{\frac{1}{\beta} \left(1-\phi\left(\frac{-\alpha}{\beta}\right)\right)}{1-\phi\left(\frac{-\alpha}{\beta}\right)}\right]_{\hat{\alpha},\hat{\beta}}$$

Resolviendo por partes la integral (4.322):

$$y = \frac{(v - \alpha)}{\beta^2} \qquad dy = \frac{dv}{\beta^2}$$

$$dx = \frac{(v - \alpha)}{\beta^2} e^{\frac{(v - \alpha)^2}{2\beta^2}} dv \qquad x = \int \frac{(v - \alpha)}{\beta^2} e^{\frac{-(v - \alpha)^2}{2\beta^2}} dv = e^{\frac{-(v - \alpha)^2}{2\beta^2}}$$
(4.323)

se tiene:

$$\frac{-1}{\beta^2 \sqrt{2\pi}} \int_0^\infty -\frac{(v-\alpha)^2}{\beta^2} e^{-\frac{(v-\alpha)^2}{2\beta^2}} dv = \frac{-1}{\sqrt{2\pi}} \left(\frac{(v-\alpha)}{\beta^2} e^{-\frac{(v-\alpha)^2}{2\beta^2}} \right)_0^\infty + \frac{1}{\beta} \left(1 - \phi \left(\frac{-\alpha}{\beta} \right) \right) =$$
(4.324)

$$=\frac{1}{\sqrt{2\pi}}\left(\frac{-\alpha}{\beta^2}\right)e^{-\frac{\alpha^2}{2\beta^2}}+\frac{1}{\beta}\left(1-\phi\left(\frac{-\alpha}{\beta}\right)\right)$$

Sustituyendo (4.324) en (4.322) queda:

$$\frac{\partial (\ln I_o)}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta}} = \left[\frac{\frac{1}{\sqrt{2\pi}}\left(-\frac{\hat{\alpha}}{\hat{\beta}^2}\right)e^{-\frac{\hat{\alpha}^2}{2\hat{\beta}^2}}}{1-\phi\left(\frac{-\hat{\alpha}}{\hat{\beta}}\right)}\right] = \left[\frac{\frac{-\hat{\alpha}}{\hat{\beta}^2}Z\left(-\frac{\hat{\alpha}}{\hat{\beta}}\right)}{1-\phi\left(\frac{-\hat{\alpha}}{\hat{\beta}}\right)}\right]$$
(4.325)

Definiendo el parámetro $\hat{\delta}$ (4.326) y sustituyendo (4.320) en (4.318) se obtiene (4.327).

$$\hat{\delta} = -\hat{\alpha} / \hat{\beta} \tag{4.326}$$

$$\hat{\beta} = \left(\frac{Z(\hat{\delta})}{1 - \phi(\hat{\delta})} - \hat{\delta}\right)^{-1} m$$
(4.327)

Teniendo en cuenta (4.326) y sustituyendo (4.325) en (4.319) se tiene:

$$\left[\frac{\hat{\beta}}{m}\right]\left[\frac{\hat{\beta}}{m} - \hat{\delta}\right] = \frac{1}{n(m)^2} \sum_{i=1}^n v_i^2$$
(4.328)

donde *m* es la velocidad media de la muestra (4.2). Sustituyendo (4.327) en (4.328) se obtiene una ecuación en función sólo de $\hat{\delta}$.

$$\left[\frac{Z(\hat{\delta})}{1-\phi(\hat{\delta})}-\hat{\delta}\right]^{-1}\left\{\left[\frac{Z(\hat{\delta})}{1-\phi(\hat{\delta})}-\hat{\delta}\right]^{-1}-\hat{\delta}\right\}=\frac{1}{n(m)^2}\sum_{i=1}^n v_i^2$$
(4.329)

La ecuación (4.329) se la conoce como ecuación de Pearson-Lee-Fisher (Cohen, 1950), y se resuelve en esta tesis utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\delta}$ y seguidamente $\hat{\beta}$ a través de las ecuaciones (4.327) y $\hat{\alpha}$ mediante la ecuación (4.326).

Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = \frac{-n}{\hat{\beta}^2} \left[\frac{\hat{\delta} Z(\hat{\delta})}{(1 - \phi(\hat{\delta}))} - \frac{Z^2(\hat{\delta})}{(1 - \phi(\hat{\delta}))^2} + 1 \right]$$
(4.330)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = -\frac{n}{\hat{\beta}^2} \left[\frac{\hat{\delta}^2 Z(\hat{\delta})}{(1 - \phi(\hat{\delta}))} + \frac{Z(\hat{\delta})}{(1 - \phi(\hat{\delta}))} - \frac{\hat{\delta} Z^2(\hat{\delta})}{(1 - \phi(\hat{\delta}))^2} \right]$$
(4.331)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = \frac{n}{\hat{\beta}^2} \left[-2 - \frac{\hat{\delta}Z(\hat{\delta})}{(1 - \phi(\hat{\delta}))} - \frac{\hat{\delta}^3 Z(\hat{\delta})}{(1 - \phi(\hat{\delta}))} + \frac{\hat{\delta}^2 Z^2(\hat{\delta})}{(1 - \phi(\hat{\delta}))^2} \right]$$
(4.332)

4.3.13. Distribución Lognormal de 3 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta,\delta) = \beta^{-n} (2\pi)^{-\frac{n}{2}} \prod_{i=1}^{n} (v_i - \delta)^{-1} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \left[\frac{\ln(v_i - \delta) - \alpha}{\beta}\right]^2\right\}$$
(4.333)

y la función $\ln L(\alpha, \beta, \delta)$, viene dada por:

$$\ln L(\alpha,\beta,\delta) = -n\ln\beta - \frac{n}{2}\ln(2\pi) - \sum_{i=1}^{n}\ln(v_i - \delta) - \frac{1}{2}\sum_{i=1}^{n} \left[\frac{\ln(v_i - \delta) - \alpha}{\beta}\right]^2$$
(4.334)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.136) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta},\hat{\delta}} = \frac{1}{\hat{\beta}^2} \sum_{i=1}^n \left[\ln \left(v_i - \hat{\delta} \right) - \hat{\alpha} \right] = \frac{1}{\hat{\beta}^2} \left[-n\hat{\alpha} + \sum_{i=1}^n \ln \left(v_i - \hat{\delta} \right) \right] = 0$$
(4.335)

$$\frac{\partial \ln L}{\partial \beta} \bigg|_{\hat{\alpha},\hat{\beta},\hat{\delta}} = \frac{-n}{\hat{\beta}} + \frac{1}{\hat{\beta}^3} \sum_{i=1}^{n} \left[\ln \left(v_i - \hat{\delta} \right) - \hat{\alpha} \right]^2 = 0$$
(4.336)

$$\frac{\partial \ln L}{\partial \delta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\delta}} = \sum_{i=1}^{n} \left(v_i - \hat{\delta}\right)^{-1} + \frac{1}{\hat{\beta}^2} \sum_{i=1}^{n} \frac{\ln\left(v_i - \hat{\delta}\right)}{\left(v_i - \hat{\delta}\right)} - \frac{\hat{\alpha}}{\hat{\beta}^2} \sum_{i=1}^{n} \left(v_i - \hat{\delta}\right)^{-1} = 0$$
(4.337)

Operando con (4.335), (4.336) y (4.337) se obtienen las ecuaciones (4.338), (4.339) y (4.340) respectivamente.

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \ln\left(v_i - \hat{\delta}\right) \tag{4.338}$$

$$\hat{\beta}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[\ln \left(v_{i} - \hat{\delta} \right) - \hat{\alpha} \right]^{2}$$
(4.339)

$$\left(\hat{\beta}^{2} - \hat{\alpha}\right)\sum_{i=1}^{n} \left(v_{i} - \hat{\delta}\right)^{-1} + \sum_{i=1}^{n} \frac{\ln\left(v_{i} - \hat{\delta}\right)}{v_{i} - \hat{\delta}} = 0$$
(4.340)

Eliminando $\hat{\alpha}$ y $\hat{\beta}^2$ de las ecuaciones anteriores se obtiene una ecuación que depende sólo de $\hat{\delta}$.

$$\left\{\frac{1}{n}\sum_{i=1}^{n}\left[\ln\left(v_{i}-\hat{\delta}\right)-\frac{1}{n}\sum_{i=1}^{n}\ln\left(v_{i}-\hat{\delta}\right)\right]^{2}-\frac{1}{n}\sum_{i=1}^{n}\ln\left(v_{i}-\hat{\delta}\right)\right\}\sum_{i=1}^{n}\left(v_{i}-\hat{\delta}\right)^{-1}+\sum_{i=1}^{n}\frac{\ln\left(v_{i}-\hat{\delta}\right)}{\left(v_{i}-\hat{\delta}\right)}=0$$
 (4.341)

La ecuación (4.341) se resuelve en esta tesis utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\delta}$ y seguidamente $\hat{\alpha}$ a través de las ecuaciones (4.338) y $\hat{\beta}$ mediante la ecuación (4.339).

+ Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -\frac{n}{\hat{\beta}^2}$$
(4.342)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = 0$$
(4.343)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \delta} = \frac{\partial^2 \ln L}{\partial \delta \partial \alpha} = \frac{-\sum_{i=1}^n \left(v_i - \hat{\delta}\right)^{-1}}{\hat{\beta}}$$
(4.344)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -\frac{2n}{\hat{\beta}^2}$$
(4.345)

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \delta} = \frac{\partial^2 \ln L}{\partial \delta \partial \beta} = \frac{2\sum_{i=1}^n \left(v_i - \hat{\delta}\right)^{-1}}{\hat{\beta}}$$
(4.346)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \delta^2} = -\frac{-\sum_{i=1}^n \ln \left(v_i - \hat{\delta} \right) (v_i - \hat{\delta})^{-2} + (\hat{\alpha} + 1) \sum_{i=1}^n \left(v_i - \hat{\delta} \right)^{-2}}{\hat{\beta}^2} + \sum_{i=1}^n \left(v_i - \hat{\delta} \right)^{-2}$$
(4.347)

4.3.14. Distribución Lognormal de 2 parámetros.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta) = \beta^{-n} (2\pi)^{-\frac{n}{2}} \prod_{i=1}^{n} (v_i)^{-1} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \left[\frac{\ln(v_i) - \alpha}{\beta}\right]^2\right\}$$
(4.348)

y la función $\ln L(\alpha, \beta)$, viene dada por:

$$\ln L(\alpha,\beta) = -n\ln\beta - \frac{n}{2}\ln(2\pi) - \sum_{i=1}^{n}\ln(v_i) - \frac{1}{2}\sum_{i=1}^{n} \left[\frac{\ln(v_i) - \alpha}{\beta}\right]^2$$
(4.349)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.136) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta}} = \frac{1}{\hat{\beta}^2} \sum_{i=1}^n \left[\ln \left(v_i \right) - \hat{\alpha} \right] = \frac{1}{\hat{\beta}^2} \left[-n\hat{\alpha} + \sum_{i=1}^n \ln \left(v_i \right) \right] = 0$$
(4.350)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta}} = \frac{-n}{\hat{\beta}} + \frac{1}{\hat{\beta}^3} \sum_{i=1}^{n} \left[\ln \left(v_i \right) - \hat{\alpha} \right]^2 = 0$$
(4.351)

167

Operando con (4.350) y (4.351) se obtienen las ecuaciones (4.352) y (4.353) respectivamente.

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \ln\left(v_i\right) \tag{4.352}$$

$$\hat{\beta}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[\ln(v_{i}) - \hat{\alpha} \right]^{2}$$
(4.353)

Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -\frac{n}{\hat{\beta}^2}$$
(4.354)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = 0$$
(4.355)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -\frac{2n}{\hat{\beta}^2}$$
(4.356)

Por tanto, la matriz de varianzas vendrá dada por:

$$Var = -\mathbf{H}^{-1} = \frac{1}{n} \begin{bmatrix} \hat{\beta}^2 & 0\\ 0 & \frac{\hat{\beta}^2}{2} \end{bmatrix}$$
(4.357)

4.3.15. Distribución Gausiana inversa de 3 parámetros.

Para un conjunto de *n* observaciones independientes, la función de máxima verosimilitud es (Padgett y Wei, 1979; Jones y Cheng, 1984; Chan et al, 1984; Cheng y Amin, 1981):

$$L(\alpha,\beta,\gamma) = \left(\frac{\beta}{2\pi}\right)^{\frac{n}{2}} \prod_{i=1}^{n} \left[\frac{1}{\left(v_{i}-\gamma\right)^{3}}\right]^{\frac{1}{2}} \exp\sum_{i=1}^{n} \left[\frac{-\beta\left(v_{i}-\gamma-\alpha\right)^{2}}{2\left(v_{i}-\gamma\right)\alpha^{2}}\right]$$
(4.358)

y la función $\ln L(\alpha, \beta, \gamma)$, viene dada por:

$$\ln L(\alpha,\beta,\gamma) = \left(\frac{n}{2}\right) \ln \left[\frac{\beta}{2\pi}\right] - \frac{3}{2} \sum_{i=1}^{n} \ln(v_i - \gamma) - \beta \sum_{i=1}^{n} \frac{(v_i - \gamma - \alpha)^2}{2\alpha^2(v_i - \gamma)}$$
(4.359)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = \hat{\beta} \sum_{i=1}^{n} \frac{\left(v_i - \hat{\gamma} - \hat{\alpha}\right)}{\hat{\alpha}^{'2} \left(v_i - \hat{\gamma}\right)} + \hat{\beta} \sum_{i=1}^{n} \frac{\left(v_i - \hat{\gamma} - \hat{\alpha}\right)^2}{\hat{\alpha}^3 \left(v_i - \hat{\gamma}\right)} = 0$$
(4.360)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = \frac{n}{2\hat{\beta}} - \sum_{i=1}^{n} \left[\frac{\left(v_{i} - \hat{\gamma} - \hat{\alpha}\right)^{2}}{2\hat{\alpha}^{2} \left(v_{i} - \hat{\gamma}\right)} \right] = 0$$
(4.361)

$$\frac{\partial \ln L}{\partial \gamma}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = \frac{3}{2} \sum_{i=1}^{n} \left(v_{i} - \hat{\gamma}\right)^{-1} + \frac{n\hat{\beta}}{2\hat{\alpha}^{2}} - \frac{\hat{\beta}}{2} \sum_{i=1}^{n} \left(v_{i} - \hat{\gamma}\right)^{-2} = 0$$
(4.362)

Operando con (4.360) (4.361) y (4.362) se obtienen las ecuaciones (4.363), (4.364) y (4.365) respectivamente.

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \left[v_i - \hat{\gamma} \right] \tag{4.363}$$

$$\hat{\beta} = n \left\{ \sum_{i=1}^{n} \left(v_i - \hat{\gamma} \right)^{-1} - n^2 \left(\sum_{i=1}^{n} \left(v_i - \hat{\gamma} \right) \right)^{-1} \right\}^{-1}$$
(4.364)

$$\frac{3}{2}\sum_{i=1}^{n} (v_i - \hat{\gamma})^{-1} + \frac{\hat{\beta}}{2} \left[\frac{n}{\alpha^2} - \sum_{i=1}^{n} (v_i - \hat{\gamma})^{-2} \right] = 0$$
(4.365)

Sustituyendo (4.363) y (4.364) en (4.365) se obtiene una ecuación que es función sólo de $\hat{\gamma}$.

$$\frac{3}{2}\sum_{i=1}^{n} (v_i - \hat{\gamma})^{-1} + \frac{n}{2} \left\{ \sum_{i=1}^{n} \left[(v_i - \hat{\gamma})^{-1} - T^{-1} \right] \right\}^{-1} \left[nT^{-2} - \sum_{i=1}^{n} (v_i - \hat{\gamma})^{-2} \right] = 0$$
(4.366)

donde:

$$T = \frac{1}{n} \sum_{i=1}^{n} (v_i - \hat{\gamma})$$
(4.367)

La ecuación (4.366) se resuelve en esta tesis utilizando una combinación del método de bisección y el método de Newton-Raphson (Press *et al*, 1996), para determinar $\hat{\gamma}$ y seguidamente $\hat{\alpha}$ a través de las ecuaciones (4.363) y $\hat{\beta}$ mediante la ecuación (4.364).

+ Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -\beta \left[\sum_{i=1}^n \left(v_i - \gamma \right)^{-1} + \frac{1}{\alpha} \sum \frac{v_i - \gamma - \alpha}{v_i - \gamma} + \frac{1}{\alpha^2} \sum_{i=1}^n \frac{\left(v_i - \gamma - \alpha \right)}{v_i - \gamma} \right]$$
(4.368)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = \sum_{i=1}^n \frac{\left(v_i - \hat{\gamma} - \hat{\alpha}\right)}{\hat{\alpha}^2 \left(v_i - \hat{\gamma}\right)} + \sum_{i=1}^n \frac{\left(v_i - \hat{\gamma} - \hat{\alpha}\right)^2}{\hat{\alpha}^3 \left(v_i - \hat{\gamma}\right)}$$
(4.369)

$$h_{13} = h_{31} = \frac{\partial^2 \ln L}{\partial \alpha \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \alpha} = -\frac{n\hat{\beta}}{\hat{\alpha}^3}$$
(4.370)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -\frac{n}{2\hat{\beta}^2}$$
(4.371)

$$h_{23} = h_{32} = \frac{\partial^2 \ln L}{\partial \beta \partial \gamma} = \frac{\partial^2 \ln L}{\partial \gamma \partial \beta} = \frac{n}{2\hat{\alpha}^2} - \frac{1}{2} \sum_{i=1}^n (v_i - \hat{\gamma})^{-2}$$
(4.372)

$$h_{33} = \frac{\partial^2 \ln L}{\partial \gamma^2} = \frac{3}{2} \sum_{i=1}^n (v_i - \hat{\gamma})^{-2} - \hat{\beta} \sum_{i=1}^n (v_i - \hat{\gamma})^{-3}$$
(4.373)

4.3.16. Distribución Gausiana inversa de 2 parámetros.

Para un conjunto de n observaciones independientes, la función de máxima verosimilitud es:

$$L(\alpha,\beta) = \left(\frac{\beta}{2\pi}\right)^{\frac{n}{2}} \prod_{i=1}^{n} \left[\frac{1}{v_i^3}\right]^{\frac{1}{2}} \exp\sum_{i=1}^{n} \left[\frac{\beta(v_i - \alpha)^2}{2v_i \alpha^2}\right]$$
(4.374)

y la función $\ln L(\alpha, \beta)$, viene dada por:

$$\ln L(\alpha,\beta) = \left(\frac{n}{2}\right) \ln \left[\frac{\beta}{2\pi}\right] - \frac{3}{2} \sum_{i=1}^{n} \ln(v_i) - \beta \sum_{i=1}^{n} \frac{(v_i - \alpha)^2}{2\alpha^2 v_i}$$
(4.375)

Las ecuaciones de máxima verosimilitud, de acuerdo con (4.141) son:

$$\frac{\partial \ln L}{\partial \alpha}\Big|_{\hat{\alpha},\hat{\beta}} = \hat{\beta} \sum_{i=1}^{n} \frac{(v_i - \hat{\alpha})}{\hat{\alpha}^2 v_i} + \hat{\beta} \sum_{i=1}^{n} \frac{(v_i - \hat{\alpha})^2}{\hat{\alpha}^3 v_i} = 0$$
(4.376)

$$\frac{\partial \ln L}{\partial \beta}\Big|_{\hat{\alpha},\hat{\beta},\hat{\gamma}} = \frac{n}{2\hat{\beta}} - \sum_{i=1}^{n} \left[\frac{\left(v_{i} - \hat{\alpha}\right)^{2}}{2\hat{\alpha}^{2}v_{i}} \right] = 0$$
(4.377)

Operando con (4.376) y (4.377) se obtienen las ecuaciones (4.378) y (4.379) respectivamente.

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} v_i \tag{4.378}$$

$$\hat{\beta} = n \left\{ \sum_{i=1}^{n} v_i^{-1} - n^2 \left(\sum_{i=1}^{n} (v_i) \right)^{-1} \right\}^{-1}$$
(4.379)

+ Estimación de errores de los parámetros.

Los errores estándar aproximados de los parámetros estimados pueden deducirse de la inversa de la matriz **H**, cuyos elementos se obtienen de las siguientes ecuaciones:

$$h_{11} = \frac{\partial^2 \ln L}{\partial \alpha^2} = -\beta \left[\sum_{i=1}^n v_i^{-1} + \frac{1}{\alpha} \sum_{i=1}^n \frac{v_i - \alpha}{v_i} + \frac{1}{\alpha^2} \sum_{i=1}^n \frac{(v_i - \alpha)}{v_i} \right]$$
(4.380)

$$h_{12} = h_{21} = \frac{\partial^2 \ln L}{\partial \alpha \partial \beta} = \frac{\partial^2 \ln L}{\partial \beta \partial \alpha} = \sum_{i=1}^n \frac{\left(v_i - \hat{\alpha}\right)}{v_i} + \sum_{i=1}^n \frac{\left(v_i - \hat{\alpha}\right)^2}{\hat{\alpha} v_i}$$
(4.381)

$$h_{22} = \frac{\partial^2 \ln L}{\partial \beta^2} = -\frac{n}{2\hat{\beta}^2}$$
(4.382)

4.3.17. Distribuciones híbridas.

Las distribuciones híbridas analizadas en esta tesis proporcionan los mismos valores de los parámetros, cuando se utiliza el método de máxima verosimilitud, que las distribuciones no híbridas.

El método de máxima verosimilitud consiste en encontrar los valores de los parámetros ϕ que maximizan la función de verosimilitud, (4.383).

$$L(v_i; \phi; \theta_0) = \prod_{i=1}^n \left[g\left(v_i; \phi; \theta_0\right) \right]$$
(4.383)

donde $g(v_i; \phi; \theta_0)$ viene dada, según (3.1), por (4.384).

$$g(v_i;\phi,\theta_0) = \theta_0 \delta(v_i) + (1-\theta_0) f(v_i;\phi)$$
(4.384)

Por tanto, se pretende maximizar (4.385).

$$L(v_i;\phi;\theta_0) = \prod_{i=1}^n \left[\theta_0 \delta(v_i) + (1-\theta_0) f(v_i;\phi) \right]$$
(4.385)

La función objetivo que queremos maximizar es el logaritmo de la función de verosimilitud (4.386).

Maximizar
$$\ln L(v_i; \phi; \theta_0) = \ln \prod_{i=1}^n \left[\theta_0 \delta(v_i) + (1 - \theta_0) f(v_i; \phi) \right]$$
 (4.386)

Es decir:

Maximizar
$$\ln L(v_i; \phi; \theta_0) = \sum_{i=1}^n \ln \left[\theta_0 \delta(v_i) + (1 - \theta_0) f(v_i; \phi) \right]$$
 (4.387)

Si n_1 es el número de velocidades nulas y n_2 el de no nulas, se tiene:

Maximizar
$$\ln L(v_i; \phi; \theta_0) = \sum_{i=1}^{n_1} \ln [\theta_0] + \sum_{i=n_1+1}^{n_2} \ln [(1-\theta_0)f(v_i; \phi)]$$
 (4.388)

Operando en (3.88) se obtiene:

Maximizar
$$\ln L(v_i; \phi; \theta_0) = n_1 \ln [\theta_0] + n_2 \ln(1 - \theta_0) + \sum_{i=n_1+1}^n \ln [f(v_i; \phi)]$$
 (4.389)

Ya que, para una muestra de velocidades dada los dos primeros sumandos de (4.389) son una constante, maximizar (4.389) supone maximizar el último término, tal como se ha llevado a cabo en las distribuciones no híbridas.

4.3.18. Distribución mixta de Weibull.

En esencia, el método de estimación por máxima verosimilitud, selecciona como estimador a aquellos valores de los parámetros que tienen la propiedad de maximizar el valor de la probabilidad de la muestra aleatoria observada (Stuart et al., 1999). Es decir, el método de máxima verosimilitud consiste en encontrar los valores de los parámetros (α_1 , β_1 , γ_1 , α_2 , β_2 , γ_2 , π) que maximizan la función de verosimilitud, (4.390).

$$L(v_{i};\alpha_{1},\beta_{1},\gamma_{1},\alpha_{2},\beta_{2},\gamma_{2},\pi) = \prod_{i=1}^{n} \left\{ \pi \left[\frac{\alpha_{1}}{\beta_{1}} \left(\frac{v_{i}-\gamma_{1}}{\beta_{1}} \right)^{\alpha_{-1}} \exp \left[-\left(\frac{v_{i}-\gamma_{1}}{\beta_{1}} \right)^{\alpha_{1}} \right] \right] + \left(1-\pi \right) \left[\frac{\alpha_{2}}{\beta_{2}} \left(\frac{v_{i}-\gamma_{2}}{\beta_{2}} \right)^{\alpha_{2}-1} \exp \left[-\left(\frac{v_{i}-\gamma_{2}}{\beta_{2}} \right)^{\alpha_{2}} \right] \right] \right\}$$
(4.390)

La función objetivo que queremos maximizar es el logaritmo de la función de verosimilitud (4.391). En el caso de no querer considerar los parámetros de posición, éstos se anulan en (4.391).

$$\begin{aligned} \text{Maximizar} & \ln L(v_{i}; \alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2}, \pi) = \ln \prod_{i=1}^{n} \left\{ \pi \left[\frac{\alpha_{1}}{\beta_{1}} \left(\frac{v_{i} - \gamma_{1}}{\beta_{1}} \right)^{\alpha_{-1}} \exp \left[- \left(\frac{v_{i} - \gamma_{1}}{\beta_{1}} \right)^{\alpha_{1}} \right] \right] + \\ & + \left(1 - \pi \right) \left[\frac{\alpha_{2}}{\beta_{2}} \left(\frac{v_{i} - \gamma_{2}}{\beta_{2}} \right)^{\alpha_{2} - 1} \exp \left[- \left(\frac{v_{i} - \gamma_{2}}{\beta_{2}} \right)^{\alpha_{2}} \right] \right] \right\} = \end{aligned}$$

$$\begin{aligned} \text{(4.391)} \\ \sum_{i=1}^{n} \ln \left\{ \pi \left[\frac{\alpha_{1}}{\beta_{1}} \left(\frac{v_{i} - \gamma_{1}}{\beta_{1}} \right)^{\alpha_{-1}} \exp \left[- \left(\frac{v_{i} - \gamma_{1}}{\beta_{1}} \right)^{\alpha_{1}} \right] \right] + \left(1 - \pi \right) \left[\frac{\alpha_{2}}{\beta_{2}} \left(\frac{v_{i} - \gamma_{2}}{\beta_{2}} \right)^{\alpha_{2} - 1} \exp \left[- \left(\frac{v_{i} - \gamma_{2}}{\beta_{2}} \right)^{\alpha_{2}} \right] \right] \right\} \end{aligned}$$

Este método tiene una serie de ventajas y de desventajas. Entre las ventajas cabe señalar las indicadas en el apartado (4.3). Entre las desventajas debe resaltarse que la estimación numérica de modelos mezcla no es trivial y que este método puede ser sensible a los valores de los parámetros de comienzo elegidos. Se han propuesto varios métodos numéricos para resolver la ecuación (4.384) (Titterington et al, 1995; Kaylan y Harris, 1981; McLachlan y Krishnan, 1996; McLachlan y Peel, 2000). Entre los más familiares podemos mencionar el método de Newton-Raphson (NR), el método de Scoring (MS) y el Expectation-Maximization (EM) Algorithm. Cada uno de ellos presenta una serie de ventajas e inconvenientes (Titterington et al, 1995). En esta tesis para resolver la ecuación (4.391), con las restricciones indicadas en la ecuación (4.136), hemos usado el método del Gradiente Conjugado (Belegundu y Chandrupatla, 1999; Press et al, 1996; Engeln-Müllges y Uhlig, 1996). Como punto de inicio hemos usado los resultados obtenidos de la aplicación del método de los mínimos cuadrados.

4.3.19. Distribución mixta Normal truncada-Weibull.

En este caso la función de verosimilitud viene dada por (4.392).

$$L(v_{i};\alpha_{1},\beta_{1},\alpha_{2},\beta_{2},\omega) = \prod_{i=1}^{n} \left\{ \omega \left[\frac{1}{I_{0}\beta_{1}\sqrt{2\pi}} \exp\left[-\left(\frac{v_{i}-\alpha_{1}}{\sqrt{2}\beta_{1}}\right)^{2} \right] \right] + (1-\omega) \left[\frac{\alpha_{2}}{\beta_{2}} \left(\frac{v_{i}}{\beta_{2}}\right)^{\alpha_{2}-1} \exp\left[-\left(\frac{v_{i}}{\beta_{2}}\right)^{\alpha_{2}} \right] \right] \right\}$$
(4.392)

La función objetivo que queremos maximizar es el logaritmo de la función de verosimilitud (4.393).

Maximizar
$$\ln L(v_i; \alpha_1, \beta_1, \alpha_2, \beta_2, \omega) = \ln \prod_{i=1}^n \left\{ \omega \left[\frac{1}{I_0 \beta_1 \sqrt{2\pi}} \exp \left[-\left(\frac{v_i - \alpha_1}{\sqrt{2}\beta_1} \right)^2 \right] \right] + (1 - \omega) \left[\frac{\alpha_2}{\beta_2} \left(\frac{v_i}{\beta_2} \right)^{\alpha_2 - 1} \exp \left[-\left(\frac{v_i}{\beta_2} \right)^{\alpha_2} \right] \right] \right\} = \sum_{i=1}^n \ln \left\{ \omega \left[\frac{1}{I_0 \beta_1 \sqrt{2\pi}} \exp \left[-\left(\frac{v_i - \alpha_1}{\sqrt{2}\beta_1} \right)^2 \right] \right] + (4.393) + (1 - \omega) \left[\frac{\alpha_2}{\beta_2} \left(\frac{v_i}{\beta_2} \right)^{\alpha_2 - 1} \exp \left[-\left(\frac{v_i}{\beta_2} \right)^{\alpha_2} \right] \right] \right\}$$

En esta tesis para resolver la ecuación (4.393), con las restricciones indicadas en la ecuación (4.139), hemos usado el método del Gradiente Conjugado (Belegundu y Chandrupatla, 1999; Press et al, 1996). Como punto de inicio hemos usado los resultados obtenidos de la aplicación del método de los mínimos cuadrados (apartado 4.4.1).

4.4. Método de los mínimos cuadrados.

El método de los mínimos cuadrados proporciona una alternativa al método de la máxima verosimilitud¹⁴. En la estimación por mínimos cuadrados, los $r(\xi_1, \xi_2, ..., \xi_r)$ valores desconocidos de los parámetros de una función de densidad $f(v; \xi_1, \xi_2, ..., \xi_r)$ pueden ser estimados buscando los valores numéricos de los parámetros que minimizan la suma de los cuadrados de las desviaciones entre los valores experimentales y los obtenidos con el modelo.

En esta tesis el método de los mínimos cuadrados será aplicado a la función de distribución acumulada $F(v; \xi_1, \xi_2, ..., \xi_r)$. Matemáticamente, la suma de los cuadrados que se minimiza para obtener los parámetros estimados es (Seber y Wild, 1989; Bates y Watts, 1988):

$$S = \sum_{i=1}^{z} \left[P_i - F\left(v_i; \xi_1, \xi_2, ..., \xi_r\right) \right]^2$$
(4.394)

donde P es un vector que contiene las frecuencias relativas experimentales acumuladas. Es decir, si los valores observados de la velocidad del viento se agrupan en z intervalos de

¹⁴ El método de los mínimos cuadrados se considera que tiene menos propiedades óptimas deseables que el método de máxima verosimilitud.

velocidad $0-v_1, v_1-v_2, v_2-v_3,..., v_{z-1}-v_z$, y se asigna a cada intervalo su frecuencia relativa de ocurrencia $fr_1, fr_2, fr_3,..., fr_z$, entonces las frecuencias acumuladas serán calculadas mediante (4.395).

$$P_1 = fr_1; P_2 = P_1 + fr_2; P_3 = P_2 + fr_3; \dots; P_z = P_{z-1} + fr_z$$
(4.395)

El vector V contiene los valores máximos de la velocidad registrados dentro de cada uno de los z intervalos.

Las funciones de distribución utilizadas en esta tesis no son lineales. Sin embargo, aquellas que pueden expresarse en forma cerrada son susceptibles de linealización (Distribución de Weibull y distribución de Rayleigh.) En el caso de funciones de distribución que no pueden ser linealizadas, el cálculo de los parámetros que minimizan la ecuación (4.394) se llevará acabo mediante la utilización del método de Levenberg-Marquardt (Draper y Smith, 1998; Press *et al*, 1996), el cual requiere la elección de valores de inicio para los parámetros que se desean encontrar. Dichos valores de inicio serán determinados en esta tesis a partir de la aplicación del método de los momentos.

4.4.1. Distribuciones acumuladas que no pueden expresarse en forma cerrada.

Distribución Gamma Generalizada de 4 parámetros.

La expresión (4.394), particularizada para el caso de la distribución gamma generalizada viene dada por:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \alpha, \beta, \eta, \gamma) \right]^2 = \sum_{i=1}^{z} \left[P_i - \int_{\gamma}^{v_{\text{max}i}} \frac{\alpha \left(v - \gamma \right)^{\eta - 1}}{\beta^{-\eta/\alpha} \Gamma(\eta/\alpha)} \cdot e^{-\beta \cdot \left(v - \gamma \right)^{\alpha}} dv \right]^2$$
(4.396)

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\eta}, \hat{\gamma}$ que minimizan S en (4.396) estarán restringidos por (4.397)

$$\hat{\alpha} > 0 ; \hat{\beta} > 0 ; \hat{\gamma} > 0 ; \hat{\gamma} \le v_{\min}$$
 (4.397)

Distribución Gamma Generalizada híbrida.

La expresión (4.394), particularizada para el caso de la distribución gamma generalizada híbrida viene dada por:

$$S = \sum_{i=1}^{z} \left[P_{i} - F(v; \alpha, \beta, \eta, \theta_{0}) \right]^{2} = \sum_{i=1}^{z} \left\{ P_{i} - \left[\theta_{0} + (1 - \theta_{0}) \int_{\gamma}^{v_{\max i}} \frac{\alpha v^{\eta - 1}}{\beta^{-\eta/\alpha} \Gamma(\eta/\alpha)} e^{-\beta v^{\alpha}} dv \right] \right\}^{2}$$
(4.398)

En el caso de $\theta_0=0$ la expresión (4.398) se utiliza para estimar los parámetros de la distribución gamma generalizad de tres parámetros.

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\eta}$ que minimizan S en (4.398) estarán restringidos por (4.399).

$$\hat{\alpha} > 0 \; ; \; \hat{\beta} > 0 \; ; \; \hat{\eta} > 0 \tag{4.399}$$

🔶 Distribución Gamma.

La expresión (4.394), particularizada para el caso de la distribución gamma se expresa por:

$$S = \sum_{i=1}^{z} \left[P_{i} - F(v;\eta,\beta,\gamma) \right]^{2} = \sum_{i=1}^{z} \left[P_{i} - \int_{\gamma}^{v_{\max i}} \frac{(v-\gamma)^{\eta-1}}{\beta^{\eta} \Gamma(\eta)} e^{-[(v-\gamma)/\beta]} dv \right]^{2}$$
(4.400)

Los valores $\hat{\eta}, \hat{\beta}, \hat{\gamma}$ que minimizan S en (4.400) estarán restringidos por (4.401).

$$\hat{\eta} > 0$$
; $\hat{\beta} > 0$; $\hat{\gamma} \le v_{\min}$ (4.401)

Distribución Gamma híbrida.

La expresión (4.394), particularizada para el caso de la distribución gamma híbrida es:

$$S = \sum_{i=1}^{z} \left[P_{i} - F(v; \eta, \beta, \theta_{0}) \right]^{2} = \sum_{i=1}^{z} \left\{ P_{i} - \left[\theta_{0} + (1 - \theta_{0}) \int_{0}^{v_{\max i}} \frac{(v)^{\eta - 1}}{\beta^{\eta} \Gamma(\eta)} \cdot e^{-v/\beta} dv \right] \right\}^{2}$$
(4.402)

En el caso de $\theta_0=0$ la expresión (4.402) se utiliza para estimar los parámetros de la distribución gamma estándar de 2 parámetros.

Los valores $\hat{\eta}, \hat{\beta}$ que minimizan S en (4.402) estarán restringidos por (4.403).

$$\hat{\eta} > 0 ; \hat{\beta} > 0$$
 (4.403)

Distribución Weibull.

La distribución de Weibull de 3 parámetros puede expresarse en forma cerrada, como puede observarse en el apartado 3.6.2. Sin embargo, la determinación del parámetro de posición γ no es inmediata (Monchy, 1990), como ocurre con la distribución de Weibull de 2 parámetros (véase apartado 4.4.2). Por este motivo la distribución de Weibull de 3 parámetros se ha incluido en este bloque de distribuciones.

La expresión (4.394), particularizada para el caso de la distribución de Weibull de 3 parámetros se expresa por:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \alpha, \beta, \gamma) \right]^2 = \sum_{i=1}^{z} \left[P_i - \left(1 - e^{-\left[(v_{\max_i - \gamma)} / \beta \right]^\alpha} \right) \right]^2$$
(4.404)

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\gamma}$ que minimizan S en (4.404) estarán restringidos por (4.405).

$$\hat{\alpha} \ge 0$$
; $\hat{\beta} \ge 0$; $\hat{\gamma} \le v_{\min}$ (4.405)

Distribución Rayleigh.

La distribución de Rayleigh de 2 parámetros puede expresarse en forma cerrada, como puede observarse en el apartado 3.8.2. Sin embargo, la determinación del parámetro de posición γ no es inmediata, como ocurre con la distribución de Rayleigh de 1 parámetro (véase apartado 4.4.2). Por este motivo la distribución de Rayleigh de 2 parámetros se ha incluido en este bloque de distribuciones.

La expresión (4.394), particularizada para el caso de la distribución de Rayleigh de 2 parámetros se expresa por:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \theta, \gamma) \right]^2 = \sum_{i=1}^{z} \left[P_i - \left(1 - e^{-(v_{\max i} - \gamma)^2 / (2\theta^2)} \right) \right]^2$$
(4.406)

Los valores $\hat{\theta}, \hat{\gamma}$ que minimizan S en (4.406) estarán restringidos por (4.407)

$$\theta > 0$$
; $\hat{\gamma} \le v_{\min}$ (4.407)

Distribución beta generalizada.

La expresión (4.394), particularizada para el caso de la distribución beta generalizada es:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \alpha, \beta, \delta, \xi) \right]^2 = \sum_{i=1}^{z} \left[P_i - \int_{\delta}^{v_{\text{max}i}} \frac{1}{\xi - \delta} \frac{1}{B(\alpha, \beta)} \left(\frac{v - \delta}{\xi - \delta} \right)^{\alpha - 1} \left(\frac{\xi - v}{\xi - \delta} \right)^{\beta - 1} dv \right]^2$$
(4.408)

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\delta}, \hat{\xi}$ que minimizan S en (4.408) estarán restringidos por (4.409).

$$\hat{\alpha} > 0$$
; $\hat{\beta} > 0$; $\hat{\xi} > v_{\text{max}}$; $\hat{\delta} \le v_{\text{min}}$ (4.409)

Distribución beta generalizada híbrida.

La expresión (4.394), particularizada para el caso de la distribución gamma híbrida es:

$$S = \sum_{i=1}^{z} \left\{ P_{i} - \left[\theta_{0} + (1 - \theta_{0})^{v_{\max i}} \frac{1}{\xi} \frac{1}{B(\alpha, \beta)} \left(\frac{v}{\xi} \right)^{\alpha - 1} \left(\frac{\xi - v}{\xi} \right)^{\beta - 1} dv \right] \right\}^{2}$$
(4.410)

En el caso de $\theta_0=0$ la expresión (4.410) se utiliza para estimar los parámetros de la distribución beta generalizada de 3 parámetros.

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\xi}$ que minimizan S en (4.403) estarán restringidos por (4.411).

$$\hat{\alpha} > 0$$
; $\hat{\beta} > 0$; $\xi < v_{\text{max}}$ (4.411)

Distribución beta prima híbrida.

La expresión (4.394), particularizada para el caso de la distribución beta prima híbrida viene dada por:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \alpha, \beta, \theta_0) \right]^2 = \sum_{i=1}^{z} \left\{ P_i - \left[\theta_0 + \left(1 - \theta_0\right) \int_0^{v_{\text{max}i}} \frac{1}{B(\alpha, \beta)} \frac{v^{\alpha - 1}}{(1 + v)^{\alpha + \beta}} dv \right] \right\}$$
(4.412)

En el caso de $\theta_0=0$ la expresión (4.412) se utiliza para estimar los parámetros de la distribución beta prima estándar de 2 parámetros.

Los valores $\hat{\alpha}, \hat{\beta}$ que minimizan S en (4.412) estarán restringidos por (4.413).

$$\hat{\alpha} > 0 \ ; \ \hat{\beta} > 3 \tag{4.413}$$

Distribución Normal truncada simple.

La expresión (4.394), particularizada para el caso de la distribución Normal truncada simple es:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \alpha, \beta, \delta, \xi) \right]^2 = \sum_{i=1}^{z} \left[P_i - \int_{0}^{v_{\text{max},i}} \frac{1}{I_0 \beta \sqrt{2\pi}} e^{-(v-\alpha)^2 / (2\beta^2)} dv \right]^2$$
(4.414)

Los valores $\hat{\alpha}, \hat{\beta}$ que minimizan S en (4.414) estarán restringidos por (4.415).

$$\hat{\alpha} > 0 \ ; \ \hat{\beta} > 0 \tag{4.415}$$

Distribución Lognormal.

La expresión (4.394), particularizada para el caso de la distribución beta generalizada es:

$$S = \sum_{i=1}^{z} \left[P_{i} - F(v; \alpha, \beta, \delta) \right]^{2} = \sum_{i=1}^{z} \left[P_{i} - \int_{\delta}^{v_{\max i}} \frac{1}{(v - \delta)\beta\sqrt{2\pi}} e^{-\left\{ \frac{1}{2} \left[\frac{\ln(v - \delta) - \alpha}{\beta} \right]^{2} \right\}} dv \right]^{2}$$
(4.416)

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\delta}$ que minimizan S en (4.416) estarán restringidos por (4.417).

$$\hat{\alpha} > 0$$
; $\hat{\beta} > 0$; $\hat{\delta} \le v_{\min}$ (4.417)

Distribución Lognormal híbrida.

La expresión (4.394), particularizada para el caso de la distribución beta prima híbrida viene dada por:

$$S = \sum_{i=1}^{z} \left[P_{i} - F(v; \alpha, \beta, \theta_{0}) \right]^{2} = \sum_{i=1}^{z} \left\{ P_{i} - \left[\theta_{0} + (1 - \theta_{0}) \int_{\delta}^{v_{\max i}} \frac{1}{v\beta\sqrt{2\pi}} e^{-\left\{ \frac{1}{2} \left[\frac{\ln(v) - \alpha}{\beta} \right]^{2} \right\}} dv \right\} \right\}^{2}$$
(4.418)

En el caso de $\theta_0=0$ la expresión (4.418) se utiliza para estimar los parámetros de la distribución Lognormal de 2 parámetros.

Los valores $\hat{\alpha}, \hat{\beta}$ que minimizan S en (4.418) estarán restringidos por (4.419).

$$\hat{\alpha} > 0; \, \hat{\beta} > 0 \tag{4.419}$$

Distribución Gausiana inversa.

La expresión (4.394), particularizada para el caso de la distribución Gausiana inversa viene dada por:

$$S = \sum_{i=1}^{z} \left[P_{i} - F(v; \alpha, \beta, \gamma) \right]^{2} = \sum_{i=1}^{z} \left[P_{i} - \int_{\gamma}^{v_{\text{max}i}} \left[\frac{\beta}{2\pi (v - \gamma)^{3}} \right]^{1/2} \exp \left[-\frac{\beta (v - \gamma - \alpha)^{2}}{2(v - \gamma)\alpha^{2}} \right] dv \right]^{2}$$
(4.420)

Los valores $\hat{\alpha}, \hat{\beta}, \hat{\gamma}$ que minimizan S en (4.420) estarán restringidos por (4.421).

$$\hat{\alpha} > 0 \; ; \; \hat{\beta} > 0 \; ; \; \hat{\gamma} \le v_{\min} \tag{4.421}$$

Distribución Gausiana inversa híbrida.

La expresión (4.394), particularizada para el caso de la distribución Gausiana inversa híbrida viene dada por:

$$S = \sum_{i=1}^{z} \left[P_i - F(v; \alpha, \beta, \theta_0) \right]^2 = \sum_{i=1}^{z} \left\{ P_i - \left[\theta_0 + (1 - \theta_0) \int_0^{v_{\max,i}} \left[\frac{\beta}{2\pi v^3} \right]^{1/2} \exp\left[-\frac{\beta (v - \alpha)^2}{2v\alpha^2} \right] dv \right] \right\}^2 \quad (4.422)$$

En el caso de $\theta_0=0$ la expresión (4.422) se utiliza para estimar los parámetros de la distribución Gausiana inversa de de 2 parámetros.

Los valores $\hat{\alpha}, \hat{\beta}$ que minimizan S en (4.422) estarán restringidos por (4.423).

$$\hat{\alpha} > 0$$
; $\hat{\beta} > 0$ (4.423)

Distribución Mixta de Weibull.

La expresión (4.394), particularizada para el caso de la distribución Mixta de Weibull de dos componentes viene dada por:

$$S = \sum_{i=1}^{z} \left[P_{i} - G(v; \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \pi, \theta_{0}) \right]^{2} = \sum_{i=1}^{z} \left\{ P_{i} - \left[\theta_{0} + (1 - \theta_{0}) \left\{ \pi \left[1 - e^{-(v/\beta_{1})^{\alpha_{1}}} \right] + (4.424) \right] \right\} \right\}^{2}$$

$$(1 - \pi) \left[1 - e^{-(v/\beta_{2})^{\alpha_{2}}} \right] = \left[\left\{ 1 - e^{-(v/\beta_{2})^{\alpha_{2}}} \right\} \right]^{2}$$

En el caso de $\theta_0=0$ la expresión (4.424) se utiliza para estimar los parámetros de la distribución mixta de Weibull de dos componentes, sin probabilidad de observación de la velocidad del viento nula.

Los valores $\hat{\alpha}_1, \hat{\beta}_1, \hat{\alpha}_2, \hat{\beta}_2, \pi$ que minimizan S en (4.424) estarán restringidos por:

$$\hat{\alpha}_1 > 0$$
; $\hat{\beta}_1 > 0$; $\hat{\alpha}_2 > 0$; $\hat{\beta}_2 > 0$; $0 \le \pi \le 1$ (4.425)

Si se desea considerar el parámetro de posición, entonces la función a minimizar será (4.426).

$$S = \sum_{i=1}^{z} \left[P_{i} - G(v; \alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2}, \pi) \right]^{2} = \sum_{i=1}^{z} \left\{ P_{i} - \left\{ \pi \left[1 - e^{-((v - \gamma_{1})/\beta_{1})^{\alpha_{1}}} \right] + (4.426) \right\} \right\}^{2}$$

$$(1 - \pi) \left[1 - e^{-((v - \gamma_{2})/\beta_{2})^{\alpha_{2}}} \right] \right\}^{2}$$

Los valores $\hat{\alpha}_1, \hat{\beta}_1, \hat{\gamma}_1, \hat{\alpha}_2, \hat{\beta}_2, \hat{\gamma}_2, \pi$ que minimizan S en (4.426) estarán restringidos por (4.427).

$$\hat{\alpha}_1 > 0 ; \ \hat{\beta}_1 > 0; \ 0 \le \hat{\gamma}_1 \le v_{\min}; \hat{\alpha}_2 > 0 ; \ \hat{\beta}_2 > 0 ; \ 0 \le \hat{\gamma}_2 \le v_{\min}; 0 \le \pi \le 1$$
(4.427)

Distribución Mixta Normal-truncada y Weibull.

La expresión (4.394), particularizada para el caso de la distribución Mixta de Normaltruncada y Weibull de dos componentes viene dada por:

$$S = \sum_{i=1}^{z} \left[P_{i} - G(v; \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \omega) \right]^{2} = \sum_{i=1}^{z} \left\{ P_{i} - \left[\left\{ \omega \left[\int_{0}^{v_{\text{max}i}} \frac{1}{I_{0}\beta_{1}\sqrt{2\pi}} \exp\left[-\left(\frac{v - \alpha_{1}}{\sqrt{2}\beta_{1}}\right)^{2} \right] dv \right] + \left(4.428 \right) \right\} \right\}$$

$$(1-\omega)\left[1-\mathrm{e}^{-(v_i/\beta_2)^{\alpha_2}}\right]\right\} \right]$$

Los valores $\hat{\alpha}_1, \hat{\beta}_1, \hat{\alpha}_2, \hat{\beta}_2, \omega$ que minimizan S en (4.428) estarán restringidos por (4.429)

$$\hat{\alpha}_1 > 0; \, \hat{\beta}_1 > 0; \, \hat{\alpha}_2 > 0; \, \hat{\beta}_2 > 0; \, 0 \le \omega \le 1$$
(4.429)

4.4.2. Funciones de distribución acumuladas que pueden linealizarse.

Distribución de Weibull híbrida.

Como se puede observar en el apartado 3.7.2, la función de distribución acumulada de Weibull híbrida viene dada por (4.430).

$$G(v; \alpha, \beta, \theta_0) = P(V \le v) = \theta_0 + (1 - \theta_0) \Big[1 - e^{-(v/\beta)^{\alpha}} \Big]$$
(4.430)

Con el objeto de ajustar la función (4.430) a las frecuencias relativas acumuladas experimentales (4.388), y determinar así los parámetros $\hat{\alpha}$, $\hat{\beta}$, la función (4.430) debe ser transformada en una recta de la forma indicada en (4.431).

$$Y = a + bX \tag{4.431}$$

Para ello, se reordena la ecuación (4.430) en la forma (4.432).

$$e^{-(\nu/\beta)^{\alpha}} = 1 - \frac{G(\nu) - \theta_0}{1 - \theta_0}$$
(4.432)

Aplicando log neperiano a los dos miembros de la ecuación (4.432) se tiene:

$$-\ln\left[1 - \frac{G(\nu) - \theta_0}{1 - \theta_0}\right] = \left(\nu/\beta\right)^{\alpha}$$
(4.433)

Aplicando de nuevo log neperiano a ambos miembros de la ecuación (4.433) se obtiene una relación lineal como la mostrada en la ecuación (4.431).

$$\ln\left\{-\ln\left[1-\frac{G(\nu)-\theta_0}{1-\theta_0}\right]\right\} = \alpha \ln\left(\nu/\beta\right) = \alpha \ln\nu - \alpha \ln\beta$$
(4.434)

Comparando las ecuaciones (4.431) y (4.434) se deducen las igualdades (4.435).

$$Y_{i} = \ln \left\{ -\ln \left[1 - \frac{G(v_{i}) - \theta_{0}}{1 - \theta_{0}} \right] \right\}$$

$$X_{i} = \ln v_{i}$$

$$(4.435)$$

$$b = \alpha \qquad \qquad a = -\alpha \ln \beta$$

Por tanto, una vez determinadas la pendiente "b" y la ordenada en el origen "a" de la recta de regresión (4.431), los parámetros $\hat{\alpha}, \hat{\beta}$ vendrán dados por (4.436).

$$\hat{\alpha} = b \qquad \qquad \hat{\beta} = exp(-\frac{a}{b}) \qquad (4.436)$$

Para determinar los parámetros "a" y "b" se minimiza la expresión (4.437).

$$S = \sum_{i=1}^{z} \left[Y_i - a - bX_i \right]^2$$
(4.437)

Para determinar los valores de "a" y "b" que minimizan (4.437) se fuerza que las derivadas primeras de (4.437) respecto de "a" y "b" se anulen.

$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{z} \left[Y_i - a - bX_i \right] = \sum_{i=1}^{z} Y_i - za - b\sum_{i=1}^{z} X_i = 0$$

$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{z} \left[Y_i - a - bX_i \right] X_i = \sum_{i=1}^{z} Y_i X_i - a\sum_{i=1}^{z} X_i - b\sum_{i=1}^{z} X_i^2 = 0$$
(4.438)

Despejando "a" y "b" del sistema de dos ecuaciones (4.438).

$$a = \frac{\sum_{i=1}^{z} Y_{i} \sum_{i=1}^{z} X_{i}^{2} - \left(\sum_{i=1}^{z} X_{i}\right) \left(\sum_{i=1}^{z} X_{i}Y_{i}\right)}{z \sum_{i=1}^{z} X_{i}^{2} - \left(\sum_{i=1}^{z} X_{i}\right)^{2}}$$

$$b = \frac{z \sum_{i=1}^{z} Y_{i}X_{i} - \left(\sum_{i=1}^{z} X_{i}\right) \left(\sum_{i=1}^{z} Y_{i}\right)}{z \sum_{i=1}^{z} X_{i}^{2} - \left(\sum_{i=1}^{z} X_{i}\right)^{2}}$$
(4.439)

Distribución Rayleigh híbrida.

La función de distribución acumulada de Rayleigh híbrida viene dada por (4.440).

$$G(v; \theta, \theta_0) = P(V \le v) = \theta_0 + (1 - \theta_0) \left[1 - e^{-v^2/(2\theta^2)} \right]$$
(4.440)

Linealizando la ecuación (4.440) de forma similar a la realizada anteriormente para la distribución de Weibull se obtiene.

$$\ln\left\{-\ln\left[1 - \frac{G(v) - \theta_0}{1 - \theta_0}\right]\right\} = 2\ln v - (\ln 2 + 2\ln \theta)$$
(4.441)

Comparando las ecuaciones (4.431) y (4.441) se deducen las igualdades (4.442).

$$Y_{i} = \ln \left\{ -\ln \left[1 - \frac{G(v_{i}) - \theta_{0}}{1 - \theta_{0}} \right] \right\}$$

$$X_{i} = \ln v_{i}$$

$$(4.442)$$

$$b = 2$$

$$a = -(\ln 2 + 2 \ln \theta)$$

Por tanto, una vez determinadas la ordenada en el origen "*a*" de la recta de regresión (4.431), el parámetro $\hat{\theta}$ vendrá dado por (4.443).

$$\hat{\theta} = \sqrt{\frac{exp(-a)}{2}} \tag{4.443}$$

Para determinar los parámetros "a" y "b" se minimiza la expresión (4.444).

$$S = \sum_{i=1}^{z} \left[Y_i - a - 2X_i \right]^2$$
(4.444)

Para determinar el valor de "a" que minimiza (4.444) se fuerza que la derivada primera de (4.444) respecto de "a" se anule.

$$\frac{dS}{da} = -2\sum_{i=1}^{z} \left[Y_i - a - 2X_i \right] = \sum_{i=1}^{z} Y_i - za - 2\sum_{i=1}^{z} X_i = 0$$
(4.445)

Despejando "a" de la ecuación (4.445).

$$a = \frac{1}{z} \left[\sum_{i=1}^{z} Y_i - 2 \sum_{i=1}^{z} X_i \right]$$
(4.446)

CAPÍTULO

Distribuciones de Máxima Entropía.

5.1. Introducción.

Como señala Siddall y Diab (1975), en la mayoría de los casos de modelado estadístico en ciencia e ingeniería, la representación analítica de la distribución de probabilidad es esencialmente empírica. La experiencia sugiere que una distribución matemática en particular proporciona un buen ajuste a los datos experimentales. Según dichos autores sería preferible que el problema de estimación de probabilidades se basara en un principio general, válido para todas las poblaciones.

En este sentido, en este capítulo de la tesis se plantea el método de la máxima entropía para definir la mejor distribución de probabilidad que se ajuste a los datos experimentales de viento, partiendo de la hipótesis que nuestro desconocimiento sobre la distribución de probabilidad en estudio no es absoluto, sino que se conocen determinados valores o características que son impuestos en forma de restricciones de igualdad; tales restricciones recogen la información parcial de que se dispone sobre la distribución.

5.2. El concepto de entropía.

Como subraya Wu (1997), la entropía definida como *una medida de la* "*disponibilidad*" *de un sistema para convertir calor en trabajo*, es un concepto viejo, ya que fue introducido inicialmente en termodinámica por Clausius a mediados del siglo diecinueve.

A partir de 1860 Maxwell y Boltzmann (Gray y Haight,1975), empezaron a relacionar las leyes termodinámicas con la estructura molecular de la materia. En particular Boltzmann, a través de la mecánica estadística, trató de interpretar los cambios termodinámicos en función de cambios en la configuración y movimientos de los átomos y moléculas que integran la materia. Según Faires (1970), Boltzmann definió la entropía *S* como una función de la probabilidad de un estado particular, *S*=*f*(W), donde W es la citada probabilidad. Planck expresó el principio establecido por Boltzmann en la forma:¹

$$S = k \cdot \ln W \tag{5.1}$$

Boltzmann fue el primero en enfatizar el significado probabilístico de la entropía clásica termodinámica y concluyó que *la entropía de un sistema físico se puede considerar como una medida del desorden del sistema*. En un sistema físico con muchos grados de libertad², el número que mide el desorden del sistema mide también la incertidumbre en relación a los estados de las partículas individuales.

1

Como señala Wu (1997), la entropía también es un concepto moderno, ya que fue propuesto por Shannon (1948) como *una medida H de la incertidumbre de experimentos probabilísticos arbitrarios*. Por analogía con la expresión probabilística de Boltzmann la medida H se le llama también entropía o, para mayor claridad, "entropía de la teoría de la información" o "entropía de Shannon".

La entropía es un concepto oscuro, y su oscuridad es típica de conceptos que son esencialmente definiciones abstractas, basadas en intuiciones pero con características deseables y consistentes. Como subraya Siddall (1983), al ser conceptos arbitrarios no pueden realmente ser explicados, por consiguiente, intentar explicarlos generalmente da lugar a que se envuelvan de oscuridad y misterio. La entropía en realidad es un concepto simple si uno acepta que es arbitrario.

Estos conceptos se desarrollaron inicialmente en el campo de la "Teoría de la Información" para su aplicación a las comunicaciones, pero actualmente, como reflejan los trabajos de Kapur (1989), Gzyl (1994) y Wu (1997), se aplica en numerosos campos de la ciencia y la ingeniería. A pesar de ello, la única referencia (Cieslikiewicz, 1998), que se dispone que menciona la palabra "viento" y las "distribuciones de máxima entropía" se refiere al ajuste de funciones de densidad a las elevaciones de las olas debidas al viento.

5.2.1. La entropía de Shannon.

Como indican Gil (1981) y Gil et al. (1993), la incertidumbre, en el sentido usual de la palabra, es una falta de certeza, de seguridad, ante cierta situación, y la importancia del trabajo original de Shannon (1948) al dar las bases de lo que hoy se entiende por Teoría de la

¹ k es la constante de Boltzmann y S es la entropía total del sistema.

² Por ejemplo, un gas perfecto.

Información, radica en haber puesto de manifiesto que al término coloquial *incertidumbre* era posible dotarle de un significado matemático sobre la base de un modelo probabilístico, en términos de una cantidad numérica que denominó *entropía*.

El término "información" es aquello que nos reduce la incertidumbre. Cuanto menos probable es un suceso v, mayor información nos aporta conocerlo de antemano. La información en este sentido se define como:

$$I(v) = \log_b \left(\frac{1}{f(v)}\right) = -\log_b \left[f(v)\right]$$
(5.2)

Donde f(v) es la función de densidad del suceso v, y b define la unidad en la que se medirá la Información. Así, si b vale 2, I se medirá en bits³ por símbolo de fuente y si b vale el número e, I se medirá en nat⁴ por símbolo fuente. En este último caso, la operación log es la operación Ln⁵.

De acuerdo con Shannon si ξ es una variable aleatoria unidimensional absolutamente continua, con función de densidad $f(v) \ge 0$, y tal que:

$$\int_{R} f(v) \cdot dv = 1 \tag{5.3}$$

se llama entropía de la variable ξ al valor, si existe, de la expresión (5.3), es decir, la entropía es el valor medio de la información:

$$H(\xi) = H(f(v)) = -\int_{R} f(v) \cdot \ln[f(v)] \cdot dv$$
(5.4)

La entropía así definida es adimensional; se puede expresar, sin embargo, en distintas unidades según la base elegida para los logaritmos (Pardo, 1997).

5.2.2. El principio de entropía máxima con momentos.

El método de la máxima entropía se basa en los trabajos de Jaynes (1957-a, 1957-b). El principio de máxima entropía se puede usar para generar una función de densidad a partir de los datos de la muestra.

El problema que a continuación se trata se basa en la idea de suponer que el desconocimiento sobre la distribución de probabilidad en estudio no es absoluto, sino que se

³ Binary digits.

⁴ Natural digit.

⁵ La base usada para los logaritmos no es demasiado importante, ya que solamente cambia el valor de la información por una constante.

conocen determinados valores o características que son impuestos en forma de restricciones de igualdad; tales restricciones recogen la información parcial de que se dispone de la distribución (Mead y Papanicolau, 1984; Rosenblueth y Hong, 1987; Landau, 1987; Forte et al, 1989).

En términos matemáticos el problema consiste en:

Maximizar
$$H(f) = -\int_{R} f(v) \cdot \ln[f(v)] \cdot dv$$
 (5.5)

Sujeta a las restricciones:

$$\int_{R} f(v) \cdot dv = 1 \tag{5.6}$$

$$\int_{R} v^{i} \cdot f(v) \cdot dv = m_{i} \quad \text{con} \quad i = 1, ..., m$$
(5.7)

Donde *m* es el numero de momentos que van a ser usados y m_i es el i-esimo momento respecto al origen, determinado numéricamente a partir de la muestra.

Es posible demostrar que la función de densidad inherente tiene una forma analítica específica. Para ello si aplicamos a las expresiones (5.5) a (5.7) el método de los multiplicadores de Lagrange (Siddall, 1982), podemos deducir la función f(v) que hace máxima la entropía (5.8).⁶

$$\overline{H(f)} = H(f) + (\lambda_0 + 1) \cdot \left[\int_{R} f(v) \cdot dv - 1 \right] + \sum_{i=1}^{m} \lambda_i \cdot \left[\int_{R} v^i \cdot f(v) \cdot dv - m_i \right]$$
(5.8)

Derivando (5.8) respecto a f(v) e igualando a cero se tiene:

$$-\int_{R} \left\{ \ln \left[f(v) \right] + 1 \right\} \cdot dv - \left(\lambda_{0} + 1 \right) \cdot \int_{R} dv - \sum_{i=1}^{m} \lambda_{i} \cdot \left[\int_{R} v^{i} \cdot dv \right] = 0$$
(5.9)

Combinando términos debajo del signo integral, se obtiene:

$$\int_{R} \left\{ -\ln\left[f(v)\right] - 1 + \lambda_0 + 1 + \sum_{i=1}^{m} \lambda_i \cdot v^i \right\} \cdot dv = 0$$
(5.10)

Para que la expresión (5.10) sea nula debe serlo el argumento, por tanto:

$$\ln\left[f(v)\right] = \lambda_0 + \sum_{i=1}^m \lambda_i \cdot v^i$$
(5.11)

⁶ Se usa el multiplicador (λ_0 +1) en lugar de λ_0 para proporcionar un resultado más conveniente.
0

$$f(v) = \exp\left[\lambda_0 + \sum_{i=1}^m \lambda_i \cdot v^i\right]$$
(5.12)

La forma analítica de la función de densidad dada por (5.12) es la que proporciona la máxima entropía. Sin embargo, para ser rigurosos se debe confirmar que esta solución es un óptimo global. Para ello definamos una función g(v), con entropía expresada como:

$$H'(g) = -\int_{R} g(v) \cdot \ln[g(v)] \cdot dv$$
(5.13)

Sujeta a las restricciones:

$$\int_{R} g(v) \cdot dv = 1 \tag{5.14}$$

$$\int_{R} v^{i} \cdot g(v) \cdot dv = m_{i} \quad \text{con} \quad i = 1, ..., m$$
(5.15)

Combinemos (5.5) y (5.13)

$$H(f) - H'(g) = -\int_{R} f(v) \cdot \ln \left[f(v) \right] \cdot dv + \int_{R} g(v) \cdot \ln \left[f(v) \right] \cdot dv$$

$$+ \int_{R} g(v) \cdot \ln \left[\frac{g(v)}{f(v)} \right] \cdot dv$$
(5.16)

Sustituyendo (5.11) en el primer término de (5.16) y ordenando queda:

$$H(f) - H'(g) = -\lambda_0 \cdot \int_R f(v) \cdot dv + \lambda_0 \cdot \int_R g(v) \cdot dv$$

$$\sum_{i=1}^m \lambda_i \cdot \left[\int_R g(v) \cdot v^i \cdot dv - \int_R f(v) \cdot v^i \cdot dv \right] + \int_R g(v) \cdot \ln\left[\frac{g(v)}{f(v)}\right] \cdot dv$$
(5.17)

Cuando aplicamos las restricciones a (5.17) todos los términos se anulan excepto el último (5.18).

$$H(f) - H'(g) = \int_{R} g(v) \cdot \ln\left[\frac{g(v)}{f(v)}\right] \cdot dv$$
(5.18)

Definiendo, por conveniencia, S como:

$$S = g(v) \cdot \ln\left[\frac{g(v)}{f(v)}\right] - g(v) + f(v)$$
(5.19)

Tenemos que (5.18) queda como:

$$H(f) - H'(g) = \int_{R} S \cdot dv \tag{5.20}$$

La derivada primera de S respecto de g:

$$\frac{\partial S}{\partial g} = \ln[g(v)] - \ln[f(v)]$$
(5.21)

La derivada segunda:

$$\frac{\partial^2 S}{\partial g^2} = \frac{1}{g(v)} \tag{5.22}$$

La primera derivada (5.21) se anula en g(v) igual a f(v), y la segunda derivada (5.22) es siempre positiva. Entonces, como H es un óptimo global para todos los valores de v, H(f) debe ser mayor que H'(g) para todos los valores de g(v) excepto f(v), y H representa el máximo global para la entropía.

Una vez demostrado que f(v) dada por (5.12) representa un óptimo global el problema consiste en determinar los valores de las λ .

Para determinar los valores de los parámetros λ , necesitamos dos expresiones. Sustituyendo la expresión (5.12) en la expresión (5.6).

$$\int_{R} \exp\left[\lambda_{0} + \sum_{i=1}^{m} \lambda_{i} \cdot v^{i}\right] \cdot dv = 1$$
(5.23)

Multiplicando ambos lados de la expresión (5.23) por $e^{-\lambda_0}$, se tiene:

$$e^{-\lambda_0} = \int_R \exp\left[\sum_{i=1}^m \lambda_i \cdot v^i\right] \cdot dv$$
(5.24)

Aplicando logaritmos neperianos a la expresión (5.24), se obtiene la primera expresión que se buscaba.

$$\lambda_0 = -\ln\left[\int_R \exp\left[\sum_{i=1}^m \lambda_i \cdot v^i\right] \cdot dv\right]$$
(5.25)

Para obtener la segunda expresión derivamos (5.24) con respecto a λ_i .

$$-e^{-\lambda_0} \cdot \frac{\partial \lambda_0}{\partial \lambda_i} = \int_R v^i \cdot \exp\left[\sum_{i=1}^m \lambda_i \cdot v^i\right] \cdot dv$$
(5.26)

0

$$\frac{\partial \lambda_0}{\partial \lambda_i} = -\int_R v^i \cdot \exp\left[\lambda_0 + \sum_{i=1}^m \lambda_i \cdot v^i\right] \cdot dv$$
(5.27)

Comparando (5.7), (5.12) y (5.27), podemos deducir la segunda expresión que buscábamos.

$$\frac{\partial \lambda_0}{\partial \lambda_i} = -m_i \tag{5.28}$$

Para determinar los valores de los parámetros λ_i se deben resolver un sistema de ecuaciones simultáneas. Derivando (5.25) con respecto a λ_i :

$$\frac{\partial \lambda_0}{\partial \lambda_i} = -\frac{\int_R v^i \cdot \exp\left[\sum_{i=1}^m \lambda_i \cdot v^i\right] \cdot dv}{\int_R \exp\left[\sum_{i=1}^m \lambda_i \cdot v^i\right] \cdot dv}$$
(5.29)

Sustituyendo el miembro izquierdo de la igualdad (5.29) por $-m_i$, usando (5.28), se tiene:

$$m_{j} = \frac{\int_{R} v^{j} \cdot \exp\left[\sum_{i=1}^{m} \lambda_{i} \cdot v^{i}\right] \cdot dv}{\int_{R} \exp\left[\sum_{i=1}^{m} \lambda_{i} \cdot v^{i}\right] \cdot dv} \quad \text{donde} \quad j = 1, \dots, m$$
(5.30)

Lo que representa *m* ecuaciones simultaneas para encontrar los $\lambda_1, \lambda_2, ..., \lambda_m$ parámetros. Una vez determinados estos parámetros, λ_0 se obtiene de (5.25).

5.2.3. Método para la determinación de los parámetros λ .

Como señalan Mead y Papanicolau (1984), el sistema (5.30) no tiene solución analítica excepto para m=1, por lo que ha de ser resuelto numéricamente. Para llevar a cabo la resolución numérica las expresiones anteriores se expresan de una forma más conveniente. De (5.30) se obtiene:

Donde los m_j primeros momentos de los datos de la muestra se suponen conocidos, y los límites v_{min} y v_{max} de la variable aleatoria v de la función de densidad desconocida deben ser conocidos o asumidos.

Los errores R_j deben minimizarse por una técnica numérica. Una solución es usar una programación no lineal para obtener el mínimo de la suma de los cuadrados de los residuos.

$$\operatorname{Minimizar} R = \sum_{j=1}^{m} R_j^2 \tag{5.32}$$

Existe solución cuando se cumple:

$$R \le \varepsilon \tag{5.33}$$

0

$$R_j \leq |\varepsilon|$$
 para todo j (5.34)

donde ε es un error aceptado.

Para resolver las ecuaciones (5.25) y (5.31) las integrales han de ser evaluadas numéricamente. La ecuación (5.25) podrá ser escrita en forma de integración numérica (5.35).

$$\lambda_0 = -\ln\left[\sum_{k=1}^{s} a_k \cdot \exp\left[\sum_{i=1}^{m} \lambda_i \cdot v_k^i\right]\right]$$
(5.35)

donde los a_j son los multiplicadores de la integración numérica de la regla de Simpson extendida (Nakamura, 1992), los v_j son los valores discretos de v, y s es el número de intervalos integración que se ha tomado igual a 30.

Las ecuaciones (5.31) expresadas en forma numérica vendrán dadas por (5.36):

$$R_{j} = 1 - \frac{\sum_{k=1}^{s} a_{k} \cdot v_{k}^{j} \cdot \exp\left[\sum_{i=1}^{m} \lambda_{i} \cdot v_{k}^{i}\right]}{m_{j} \cdot \sum_{k=1}^{s} a_{k} \cdot \exp\left[\sum_{i=1}^{m} \lambda_{i} \cdot v_{k}^{i}\right]} \qquad \text{con} \quad j = 1, \dots, m$$

$$(5.36)$$

Para obtener la solución de la ecuación (5.32) se utiliza la técnica de programación no lineal de Jacobson y Oksman (Siddall, 1982).

El algoritmo utilizado para resolver el problema se basa en el propuesto por Siddally Diab (1975) y Siddall (1983) (Figura 5.1).

Figura 5.1. Diagrama de flujo en la estimación de los parámetros λ

Transformación de momentos.

Como se desprende del apartado (1) del algoritmo de la figura 5.1 se precisa transformar el dominio de la variable v desde los límites originales v_{min} y v_{max} a los nuevos límites 0 y 1.

La variable transformada es v' y la transformación vendrá dada por:

$$v = \frac{(v' - v'_{min})}{S} + v_{min} = A + \frac{v'}{S} \quad \to \quad v' = (v - A) \cdot S = (v - v_{min}) \cdot S \tag{5.37}$$

donde:

$$S = \frac{v'_{max} - v'_{min}}{v_{max} - v_{min}}$$
(5.38)

$$A = \frac{S \cdot v_{\min} - v'_{\min}}{S}$$
(5.39)

En la transformación del primer momento se tiene:

$$(\mu_1)' = (\mu_1 - v_{min}) \cdot S$$
 (5.40)

Teniendo en cuenta la relación entre funciones cuando se llevan a cabo transformaciones de variables (Canavos, 1988), se tiene:

$$f(v) = f'(v') \cdot \frac{dv'}{dv} = S \cdot f'(v')$$
(5.41)

Por definición

$$(\mu_{i})' = \int_{0}^{1} \left[v' - (\mu_{1})' \right]^{i} \cdot f'(v') \cdot dv'$$
(5.42)

Sustituyendo las transformaciones en el lado derecho de la ecuación (5.42), se tiene:

$$\left(\mu_{i}\right)' = \mu_{i} \cdot S^{i} \tag{5.43}$$

Debido a que los momentos de entrada en el algoritmo, apartado (2), están referidos a la media es necesario transfórmalos en momentos respecto del origen. Por el teorema del binomio se pueden expandir los argumentos de los valores esperados de los momentos centrales (Stuart y Ord, 2000).

$$(v - \mu)^{i} = v^{i} + (-1) \cdot i \cdot \mu \cdot v^{i-1} + (-1)^{2} \cdot \frac{i \cdot (i-1)}{2!} \cdot \mu^{2} \cdot v^{i-2} + \dots + (-1)^{i} \cdot \mu^{i} =$$

$$= \sum_{j=0}^{i} (-1)^{j} \frac{i!}{j!(i-j)!} \cdot \mu^{j} \cdot v^{i-j}$$
(5.44)

La esperanza matemática a ambos lados de la ecuación (5.44) será:

$$E\left[\left(v-\mu\right)^{i}\right] = \sum_{j=0}^{i} (-1)^{j} \frac{i!}{j!(i-j)!} \cdot \mu^{j} \cdot E\left(v^{i-j}\right)$$
(5.45)

El lado izquierdo de la ecuación (5.45) es el *i*-esimo momento respecto de la media, y $E(v^{i-j})$ representa el (*i-j*)-esimo momento respecto al origen.

Transformación de dominios.

Como se puede observar en las ecuaciones (5.31) y (5.35) se opera con potencias del orden v^{2m} , donde *m* es el número de momentos especificados, por tanto se puede presentar desbordamiento del ordenador. Para evitar esta situación, el algoritmo transforma el dominio original λ que define la distribución de máxima entropía, a los λ ' del nuevo dominio en el intervalo 0-1.

Sea f'(v') la función de distribución en el dominio 0-1.

$$f'(v') = \exp\left[\lambda'_0 + \sum_{i=1}^m \lambda'_i \cdot (v')^i\right]$$
(5.46)

Teniendo en cuenta la relación entre funciones cuando se llevan a cabo transformaciones de variables (Canavos, 1988), si se utilizan las expresiones (5.37) y (5.38) se tiene:

$$f(v) = f'(v') \cdot \frac{dv'}{dv} = S \cdot f'(v')$$
(5.47)

Sustituyendo esta transformación en (5.12) se tiene:

$$S \cdot f'(v') = \exp\left[\lambda_0 + \sum_{i=1}^m \lambda_i \cdot \left(A + \frac{v'}{S}\right)^i\right]$$
(5.48)

Pasando S del lado izquierdo de la ecuación (5.48) al lado derecho, y usando la expansión binomial, tenemos:

$$f'(v') = \exp\left[-\ln S + \lambda_0 + \sum_{i=1}^m \lambda_i \cdot \left(\sum_{k=0}^i \frac{i!}{(i-k)!k!} A^{i-k} + \left(\frac{v'}{S}\right)^k\right)\right]$$
(5.49)

Ordenando términos en la ecuación (5.49) se obtiene:

$$f'(v') = \exp\left[-\ln S + \lambda_0 + \sum_{i=1}^m \lambda_i \cdot A^i + \sum_{i=1}^m \sum_{k=1}^m \frac{k! A^{i-k} \lambda_k}{(k-i)! i! S^i} v^i\right]$$
(5.50)

Comparando la ecuación (5.46) con (5.50) se obtienen las siguientes relaciones:

$$\lambda_0' = -\ln S + \lambda_0 + \sum_{i=1}^m \lambda_i \cdot A^i$$
(5.51)

$$\lambda_i' = \sum_{k=i}^m \left(-1\right)^{i+1} \frac{k! A^{i-k} \lambda_k}{(k-i)! i! S^i} v^i \quad ; i=1,\dots,m$$
(5.52)

Valores iniciales.

La técnica de programación no lineal utilizada para calcular los valores λ requiere que se le proporcione un punto inicial para comenzar el algoritmo de optimización (apartado 3). Afortunadamente, el óptimo global está garantizado y es independiente del punto inicial dado. Sin embargo, la rapidez de convergencia del algoritmo depende de la posición del punto inicial. Nuestra experiencia y la de Siddall y Diab (1975), nos indica que algunas distribuciones no convergen con puntos de comienzo desfavorables.

Para seleccionar los valores iniciales de los parámetros λ , se han utilizado cuatro métodos con el objeto de proporcionar una alternativa si uno de los métodos falla.

1.- Hipótesis de distribución normal.

La función de densidad de una distribución normal viene dada por (Canavos, 1988):

$$f(v,\mu,\sigma) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \left(\frac{v-\mu}{\sigma}\right)^2} \quad ; \quad \begin{cases} -\infty < v < \infty \\ -\infty < \mu < \infty, \sigma > 0 \end{cases}$$
(5.53)

De acuerdo con (5.12) la forma analítica de la función de densidad que proporciona la máxima entropía viene dada por:

$$f(\nu,\lambda_0,\lambda_1,\lambda_2,\cdots,\lambda_m) = e^{\lambda_0 + \lambda_1 \cdot \nu + \lambda_2 \cdot \nu^2 + \cdots + \lambda_m \cdot \nu^m}$$
(5.54)

Desarrollando la función (5.53) e igualándola a la expresión (5.54), se tiene:

$$\frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{\nu^2}{2 \cdot \sigma^2}} \cdot e^{+\frac{2 \cdot \nu \cdot \mu}{2 \cdot \sigma^2}} \cdot e^{-\frac{\mu^2}{2 \cdot \sigma^2}} = e^{\lambda_0} \cdot e^{\lambda_1 \cdot \nu} \cdot e^{\lambda_2 \cdot \nu^2} \cdot \dots \cdot e^{\lambda_m \cdot \nu^m}$$
(5.55)

De la expresión (5.55) se desprenden los valores siguientes de los parámetros λ :

$$\lambda_1 = \frac{\mu}{\sigma^2} \qquad \qquad \lambda_2 = -\frac{1}{2 \cdot \sigma^2} \qquad \qquad \lambda_3 = \lambda_4 = \dots = \lambda_m = 0 \qquad (5.56)$$

2.- Hipótesis de distribución uniforme, la cual es apropiada para distribuciones con forma de $J^7 y U (bañera)^8$.

La función de densidad de una distribución uniforme viene dada por (Nortes, 1977):

$$f(v; v_{\min}, v_{\max}) = \frac{1}{v_{\max} - v_{\min}} \quad ; \quad v_{\min} \le v \le v_{\max}$$
(5.57)

Igualando la expresión (5.57) y (5.54), se tiene que todos los parámetros λ son nulos, excepto λ_0 .

3.- Los (m+1) puntos de comienzo.

En este método las restricciones (5.6) y (5.7) son satisfechas utilizando (m+1) valores discretos de la variable continua v.

Escribiendo la expresión (5.6) en forma discreta se tiene:

$$a_1 \cdot f(v_1) + a_2 \cdot f(v_2) + \dots + a_i \cdot f(v_i) + \dots + a_{m+1} \cdot f(v_{m+1}) = \sum_{i=1}^{m+1} a_i \cdot f(v_i) = 1$$
(5.58)

Transformando la ecuación (5.7) en forma discreta se obtiene:

$$a_{1} \cdot v_{1} \cdot f(v_{1}) + a_{2} \cdot v_{2} \cdot f(v_{2}) + \dots + a_{i} \cdot v_{i} \cdot f(v_{i}) + \dots + a_{m+1} \cdot v_{m+1} \cdot f(x_{m+1}) = m_{1}$$

$$a_{1} \cdot v_{1}^{2} \cdot f(v_{1}) + a_{2} \cdot v_{2}^{2} \cdot f(v_{2}) + \dots + a_{i} \cdot v_{i}^{2} \cdot f(v_{i}) + \dots + a_{m+1} \cdot v_{m+1}^{2} \cdot f(x_{m+1}) = m_{2}$$

$$a_{1} \cdot v_{1}^{m} \cdot f(v_{1}) + a_{2} \cdot v_{2}^{m} \cdot f(v_{2}) + \dots + a_{i} \cdot v_{i}^{m} \cdot f(v_{i}) + \dots + a_{m+1} \cdot v_{m+1}^{m} \cdot f(x_{m+1}) = m_{m}$$
(5.59)

⁷ Por ejemplo, en la distribución beta de dos parámetros (3.133) si β<1 y α≥1, el perfil es una J.

⁸ Por ejemplo en la distribución beta de dos parámetros (3.133) si tanto α como β son menores que uno, la distribución tiene un perfil en forma de U o bañera.

Por tanto se disponen de (m+1) ecuaciones lineales con (m+1) valores desconocidos de $f(v_i)$.

Conocidos los (m+1) valores $f(v_i)$ de la función, se calculan los (m+1) parámetros λ desconocidos, que se usarán como parámetros de inicio, al resolver el sistema lineal de ecuaciones (5.60).

$$f(v_{1}) = exp\left[\lambda_{0} + \lambda_{1} \cdot v_{1} + \lambda_{2} \cdot v_{1}^{2} + \dots + \lambda_{i} \cdot v_{1}^{i} + \dots + \lambda_{m} \cdot v_{1}^{m}\right]$$

$$f(v_{2}) = exp\left[\lambda_{0} + \lambda_{1} \cdot v_{2} + \lambda_{2} \cdot v_{2}^{2} + \dots + \lambda_{i} \cdot v_{2}^{i} + \dots + \lambda_{m} \cdot v_{2}^{m}\right]$$

$$(5.60)$$

$$f(v_{m+1}) = exp\left[\lambda_{0} + \lambda_{1} \cdot v_{m+1} + \lambda_{2} \cdot v_{m+1}^{2} + \dots + \lambda_{i} \cdot v_{m+1}^{i} + \dots + \lambda_{m+1} \cdot v_{m+1}^{m}\right]$$

4.- Método de paso a paso.

Este método es lento y se usa como última alternativa. En este método se comienza utilizando el método 1 (distribución normal), ya definido, pero procediendo a satisfacer solamente los tres primeros momentos. Esta solución proporciona λ_0 , λ_1 y λ_2 los cuales son usados como valores de comienzo en la búsqueda de los parámetros que satisfagan los cuatro primeros momentos, y así sucesivamente se va procediendo hasta satisfacer todos los momentos.

5.3. Estimación de los errores estándar.

Los estimadores de máxima verosimilitud de los *j* momentos estadísticos con respecto del origen μ'_j de la función (5.12) vienen dados por los *j* momentos estadísticos con respecto del origen de la muestra m'_j . Es decir, se obtiene un mínimo local de ln *L* (5.61) como una función de $\lambda_1, \lambda_2, ..., \lambda_N$, cuando se cumple (5.62).

$$\ln L = n\lambda_0 + \sum_{j=1}^N \left(\lambda_j \sum_{i=1}^n v_i^j\right)$$
(5.61)

$$\frac{\partial \ln L}{\partial \lambda_j} = n \frac{\partial \lambda_{n_0}}{\partial \lambda_j} + \sum_{i=1}^n v_i^j = 0 \quad ; \qquad -\frac{\partial \lambda_{n_0}}{\partial \lambda_j} = \mu'_j = m'_j = n^{-1} \sum_{i=1}^n v_i^j \quad ; \quad j = 1, \dots, N$$
(5.62)

La matriz estimada de varianzas-covarianzas, (5.63) de los estimadores de máxima verosimilitud de los parámetros viene dada por la inversa de la matriz negativa de segundas derivadas de (5.61) (Canavos, 1988; Bury, 1999).

Puede demostrarse, haciendo uso de las propiedades de la función de partición Z^9 (Wu, 1997), que los elementos de la matriz Hessian de segundas derivadas **H**, evaluados en dicho punto vienen dados por (5.64):

$$\mathbf{VAR} = -\mathbf{H}^{-1} = -\left[\frac{\partial^2 L}{\partial \lambda_j \partial \lambda_k}\right]_{\lambda=\hat{\lambda}}^{-1}$$
(5.63)

$$h_{j,j} = \left[\frac{\partial^2 \ln L}{\partial \lambda_j^2}\right]_{\lambda=\hat{\lambda}} = -n \left[\mu_{2j}' - \left(\mu_j'\right)^2\right] ; \quad h_{j,k} = h_{k,j} = \left[\frac{\partial^2 \ln L}{\partial \lambda_j \partial \lambda_k}\right]_{\lambda=\hat{\lambda}} = -n \left[\mu_{j+k}' - \mu_j' \mu_k'\right]$$
(5.64)

Los errores estándar estimados vienen dados por (5.65).

$$SE(\hat{\lambda}_{j}) = (var_{jj})^{1/2}$$
; $j = 1,...,N$ (5.65)

Por tanto, los parámetros estimados, $\hat{\lambda}_j$, corresponderán a un máximo si **H** es definida negativa.

Para estimar el error estándar del parámetro $\hat{\lambda}_0$ se puede recurrir al empleo de la fórmula de propagación de error (4.144). Es decir, teniendo en cuenta (5.66) se determina su varianza mediante (5.67), donde **cov** es la matriz de covarianzas.

$$\hat{\lambda}_0 = -\ln\left[\int_R \exp\left[\sum_{i=1}^m \hat{\lambda}_i \cdot v^i\right] \cdot dv\right]$$
(5.66)

$$Var(\hat{\lambda}_{0}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\partial \lambda_{0}}{\partial \lambda_{i}} \right)_{\hat{\lambda}_{i},\hat{\lambda}_{j}} \left(\frac{\partial \lambda_{0}}{\partial \lambda_{j}} \right)_{\hat{\lambda}_{i},\hat{\lambda}_{j}} \mathbf{cov} \qquad \begin{array}{l} i = 1 \dots N \\ j = 1 \dots N \end{array}$$
(5.67)

⁹ Generalmente, $exp(\lambda_0)$ se representa con la letra Z y se le denomina función de partición.

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

CAPÍTULO

Modelos de variación de los vientos con la altura.

6.1. Introducción.

Uno de los fenómenos más significativos en la explotación de la energía eólica es el incremento de la velocidad media del viento con la altura. Debido a la fricción de la masa de aire que fluye sobre la superficie de la Tierra, la velocidad del viento disminuye desde un valor imperturbado a gran altura, llamada gradiente de altura y típicamente alrededor de 2000m., hasta cero sobre el suelo- Los cambios en la velocidad del viento a la altura de gradiente solo depende del campo de presiones y de la latitud. La capa límite planetaria puede considerarse que consiste en un número de capas, cada una gobernada por un diferente conjunto de parámetros de flujo. Sin embargo, de éstas es la capa límite superficial y las capa de Ekman las que son de interés para los diseñadores estructurales (Freris, 1990). La capa límite superficial, que se extiende desde el suelo a una altura aproximada de 100 m., es la región donde la variación de la tensión cortante puede despreciarse y en su interior van a quedar instaladas las turbinas eólicas (Figura 6.1).

Cuando se desea estimar el potencial eólico de un lugar es muy frecuente que las series de datos de viento disponibles hayan sido medidos a una altura de referencia, por ejemplo, 10 metros sobre el nivel del suelo. Normalmente, la altura de referencia no coincide con la altura del eje del rotor de una turbina eólica.

Figura 6.1. Capa límite atmosférica

Como señala Hiester y Pennell (1981), sólo las medidas realizadas, por lo menos, a la altura del eje del rotor de la turbina, cuya energía se desee evaluar, proporcionarán una suficiente precisión para hacer un cálculo responsable del valor del recurso eólico. Sin embargo, para estimaciones preliminares un posible planteamiento que reduce el costo de realizar medidas a alturas elevadas, consiste en usar las medidas del viento realizadas a una altura de referencia y extrapolarlas hasta la altura del eje del rotor de la turbina.

Dos modelos matemáticos o "leyes" se han usado comúnmente¹ para cuantificar el perfil vertical de la velocidad del viento en regiones de terreno plano homogéneo (Burton *et al*, 2001; Freris, 1990; Guzzi y Justus, 1986; Spera, 1995; Hau, 2000; Mikhail y Justus, 1981; Dixon y Swift, 1984). Estas son la ley logarítmica y la ley potencial. La primera puede ser obtenida teóricamente de los principios básicos de mecánica de fluidos e investigaciones atmosféricas. Se deriva de una combinación de investigaciones teóricas y semi-empíricas. Es válida sobre un gran rango de altitudes e incorpora el fenómeno de estabilidad atmosférica. Por contraste, la ley potencial, es empírica y su validez está generalmente limitada a las más bajas elevaciones de la atmósfera. Debido a su simplicidad, sin embargo, la ley potencial es el modelo más comúnmente usado para describir las variaciones de la velocidad del viento en

¹ Existen otros modelos distintos a éstos, entre los que se puede señalar el modelo lineal propuesto por Peterson y Hennessey (1978).

elevaciones sobre el suelo, aunque los intentos para incorporar nuevos parámetros en ella para describir características de fluidos más complicados han dado lugar también a una sustancial complejidad.

Como señalan diversos investigadores (Justus, 1980, Mikhail y Justus, 1981) existen dos problemas fundamentales ligados al perfil vertical del viento que interesan en energía eólica:

- a) El perfil vertical de las velocidades de viento "instantáneas (por ejemplo, el viento medio de 1 minuto a una hora.
- b) El perfil vertical de las velocidades medias de viento (por ejemplo las medias mensuales o anuales), o las distribuciones de frecuencia de viento medio.

Estos son dos problemas distintos e independientes, sin posibilidad de ser tratados por un único método. La proyección de los perfiles verticales de viento instantáneos está muy estudiada, pudiéndose utilizar la teoría de la capa límite turbulenta. Por el contrario, la proyección vertical de las velocidades medias durante largos periodos esta relacionada con las estadísticas sobre la ocurrencia de los diversos fenómenos que la influyen, tal como la estabilidad de la atmósfera, y su estudio necesita una aproximación más empírica.

En este capítulo de la tesis se presentan las técnicas más frecuentemente utilizadas para extrapolar los vientos en altura con el objeto de utilizarlas en capítulos posteriores de aplicación y determinar la permanencia o no de la bondad del ajuste, de las familias de leyes de distribución analizadas a 10 metros de altura, cuando los velocidades de viento son extrapoladas a mayores alturas mediante dichas técnicas.

6.2. Modelo logarítmico.

En la atmósfera hay varias formas de llegar a una predicción de un perfil del viento logarítmico (Hiester y Pennell, 1981); por ejemplo, la teoría de la longitud de mezcla, la teoría de la viscosidad de torbellino, y la teoría de la capa límite similar. Estos desarrollos generalmente comienzan con la definición (hipótesis) de que en la capa límite superficial los flujos de calor y momento son constantes con la altura y los efectos de la fuerza de Coriolis son despreciables.

La forma del perfil de velocidades en el interior de la capa límite superficial depende de la estabilidad o inestabilidad atmosférica (Justus, 1980; Frost y Shieh, 1981; Justus y Mikhail,1976)).

La estabilidad de la atmósfera es gobernada por la vertical distribución de temperatura resultante del calentamiento o enfriamiento de la superficie de la tierra y la consecuente mezcla convectiva del aire adyacente a la superficie. El concepto de estabilidad atmosférica (Spera, 1995) se ilustra considerando el desplazamiento hacia arriba de un pequeño elemento

de aire hasta una altura con más baja presión ambiente. Asumiendo un desplazamiento rápido, no habrá tiempo de perder o ganar calor y el elemento se expandirá adiabáticamente. Si el elemento expandido es menos denso que el aire que le rodea, éste continuará elevándose debido a la flotabilidad y no volverá a su posición original. Este estado de atmósfera inestable se caracteriza por mezclas significativas que tienden a decrecer el gradiente vertical de la velocidad del viento. Si el elemento expandido de aire tiene la misma densidad que el aire que se encuentra en su nueva posición éste no se moverá más, y la atmósfera es neutralmente estable. Hay pequeñas mezclas en una atmósfera neutralmente estable, y el gradiente de la velocidad del viento tiende a permanecer constante. Finalmente, si el elemento es más denso que su nuevo aire circundante volverá a su posición original. Este estado de atmósfera estable se caracteriza también por mezclas muy pequeñas entre capas de diferentes alturas, así el gradiente vertical tiende a ser más grande.

Así, de acuerdo con la teoría de la similitud de la capa límite (Monin y Obukhov, 1954; Businger, 1973; Panofsky, 1964; Calder 1966; Mikhail, 1977), la variación de la velocidad media del viento calculada en un corto periodo de tiempo (medias de 1 minuto a 1 hora), en función de la altura viene dada por:

$$\frac{kz}{v^*}\frac{\partial v}{\partial z} = \varphi(z/L) \tag{6.1}$$

donde v es el valor medio de la velocidad turbulenta (en dirección horizontal); z es la altura relativa a L; L la longitud de Monin-Obukov (1954), que caracteriza la altura² donde los dos términos de producción de energía turbulenta (las fuerzas de empuje y las tensiones cortantes) se igualan (Hiester y Pennel, 1981; Justus, 1980; Mikhail y Justus, 1981). L se define como:

$$L = -\left(v^*\right)^3 \frac{C_p \rho T}{kgH} \tag{6.2}$$

donde; *k* es la constante de Von Karman (Hidy, 1968) de valor aproximadamente 0.4, según observaciones experimentales; *T* es la temperatura media; ρ es la densidad del aire; *g* es la aceleración de la gravedad; *H* es el flujo de calor turbulento; C_p es el calor específico bajo presión constante; y v* es la velocidad de fricción, definida como:

$$v^* = \left(\frac{\tau}{\rho}\right)_{z=0}^{\gamma_2} \tag{6.3}$$

donde τ es la tensión turbulenta de Reynolds³ y ϕ es una función empírica que ha sido verificada por medidas y se ha encontrado que tiene la forma (Mikhail y Justus, 1981).

² Generalmente algo mayor que la altura a la que se igualan los dos términos de energía.

³ El subíndice 0 indica que los valores son medidos muy cerca de la superficie.

$$\varphi(z/L) = \left(1 - 10\frac{z}{L}\right)^{-1/4} \qquad \text{para } \frac{1}{L} < -0.003 \qquad \text{(Atmósfera inestable)}$$
(6.4)

$$\varphi(z/L) = \left(1 + 4.7\frac{z}{L}\right)$$
 para $\frac{1}{L} > 0.003$ (Atmósfera estable) (6.5)

$$\varphi(z/L) = 1$$
 para $-0.003 < \frac{1}{L} \le 0.003$ (Atmósfera neutra) (6.6)

Paulson (1970) integró la ecuación (6.1) usando las ecuaciones (6.4), (6.5) y (6.6) y obtuvo los perfiles del viento en la capa superficial para el rango completo de estabilidad. Estos perfiles vienen dados por:

$$v(z) = \left(\frac{v^*}{k^*}\right) \left[\ln\left(\frac{z}{z_0}\right) - \psi(z/L) \right]$$
(6.7)

donde z_0 es la rugosidad del terreno y la función ψ viene dada por:

• Para atmósfera inestable:

$$\psi(z/L) = 2\ln\left(\frac{1+\chi}{2}\right) + \ln\left(\frac{1+\chi^2}{2}\right) - \arctan(\chi) + \pi/2 \qquad \text{para } \frac{1}{L} < -0.003 \text{m}^{-1}$$

$$\chi = \left(1 - 10\frac{z}{L}\right)^{-1/4}$$
(6.8)

• Atmósfera estable:

$$\psi(z/L) = -4.7 \frac{z}{L}$$
 para $\frac{1}{L} > 0.003 \text{m}^{-1}$ (6.9)

• Atmósfera neutra:

$$\psi(z/L) = 0$$
 para $-0.003 < \frac{1}{L} \le 0.003 \text{m}^{-1}$ (6.10)

Justus (1980) y Mikhail y Justus (1981) han mostrado como L, ψ , y por lo tanto v(z) puede ser determinada usando la rugosidad superficial de un lugar y la velocidad del viento y la radiación neta en un tiempo dado.

Si no se dispone de un pirorradiómetro diferencial⁴ para medir la radiación neta y poder utilizar las tablas propuestas por Mikhail y Justus (1981), existe otro método para determinar 1/L basado en las clases de estabilidad de Pasquill-Gifford (Justus,1980). Este método (Turner, 1964) requiere de información respecto del tipo de insolación (fuerte, moderada, débil) y sobre la nubosidad (relación de nubosidad, techo de nubes, periodo del día) para determinar la clase de estabilidad. Con la clase de estabilidad y conocida la rugosidad del terreno se puede determinar el valor de 1/L (Justus, 1980).

La rugosidad del terreno en una determinada superficie se determina por la media y la distribución de los elementos rugosos que contiene (Justus, 1980; Lettau, 1969). Para caracterizar la influencia de las irregularidades de la superficie en el perfil vertical de la velocidad del viento se utiliza la longitud de rugosidad superficial, z_0 , que es un parámetro empírico. En ausencia de datos experimentales, z_0 debe ser seleccionado en la base de inspecciones visuales del terreno donde se instala la turbina, en la dirección en la que sopla el viento y consultando referencias como las indicadas en la tabla 6.1 (Counihan, 1975; Frost et al, 1978).

Características superficiales del terreno	z_0 (m)
Barro liso, hielo	0.00001÷0.00003
Mar en calma	0.00002÷0.00003
Arena	0.00001÷0.0003
Llanura cubierta de nieve	0.0049
Superficie cubierta de hierba	0.017
Hierba cortada	0.001÷0.01
Hierba baja o estepa	0.032
Región llana	0.021
Hierba alta	0.039
Trigal	0.045
Remolacha	0.064
Palmito	0.1÷0.3
Bosque bajo	0.05÷0.1
Bosque alto	0.2÷0.9
Suburbios	1÷2
Ciudad	1÷4

Tabla 6.1. Valores típicos de la longitud de rugosidad superficial

⁴ La unidad utilizada para la medida de la radiación neta es en general el vatio por metro cuadrado.

En la práctica de la energía eólica suele ser usual suponer atmósfera neutra y hacer una estimación de la longitud de rugosidad. Por ello, el mejor uso de la expresión (6.7) para predecir la variación de la velocidad media del viento se logra cuando la velocidad media del viento a la altura z se expresa respecto a una altura de referencia h, que a menudo se toma de 10 m. De esta forma se elimina la desconocida velocidad de fricción y sólo se necesitan datos de medida a la altura h, y un valor del parámetro de longitud de rugosidad z_0 .

$$\frac{v(z)}{v(h)} = \ln\left(\frac{z}{z_0}\right) / \ln\left(\frac{h}{z_0}\right) \qquad ; \qquad v(z) = v(h) \left[\ln\left(\frac{z}{z_0}\right) / \ln\left(\frac{h}{z_0}\right)\right] \tag{6.11}$$

La ecuación (6.11) es el tan conocido modelo logarítmico frecuentemente empleado en los análisis energéticos eólicos europeos (Gipe, 1995).

En la figura 6.2, se representa el cociente entre la velocidad a la altura z, v(z), y la velocidad a la altura de referencia h, v(10), en función de la altura z y para tres valores de la longitud de rugosidad del terreno z_0 .

Figura 6.2. Variación de v(z)/v(10) con respecto a la altura z según la ecuación (6.11)

6.3. Modelo potencial.

En ingeniería eólica es común⁵ usar una ley potencial para definir los perfiles verticales de viento debido a que es simple y directa. La ecuación básica de la ley potencial es:

$$\frac{v(z)}{v(h)} = \left(\frac{z}{h}\right)^{a} \tag{6.12}$$

donde α es un exponente empírico.

En general, el exponente α es una cantidad altamente variable⁶, a menudo cambia desde menos de 1/7 durante el día a más de 1/2 en la noche en el mismo terreno (Spera, 1995). Desde los primeros trabajos en energía eólica, se ha reconocido que α varía con la altura, el tiempo del día, estación del año, naturaleza del terreno, velocidad del viento, temperatura y varios parámetros térmicos y mecánicos de mezcla (Golding, 1977).

En los últimos años, algunos investigadores han propuesto métodos para estimar la velocidad del viento haciendo uso de la ley potencial (6.12) pero que requieren medidas de la velocidad del viento a dos altura, al contrario de los métodos tradicionales. Bechrakis y Sparis (2000) proponen el uso de una red neural artificial, pero se requieren medidas a la altura de interés, en combinación con datos en una altura particular para la implementación de la red neural.

Generalmente, los especialistas en energía eólica aceptan la naturaleza empírica de la ley potencial y eligen los valores de α que mejor se ajuste a los datos disponibles de viento. Los métodos empíricos más populares para determinar exponentes representativos de la ley potencial son:

Exponente en función de la velocidad y la altura de referencia.

Justus (1980) presenta una técnica de ajuste de mínimos cuadraos aplicada a las mediciones de viento efectuadas en cuatro torres meteorológica (con valores de z_0 variando entre 0.05 y 0.5 m) para deducir el valor del exponente α de (6.12). En este caso el exponente se considera variable según la relación:

$$\alpha = a + b \ln[v(h)] \tag{6.13}$$

donde los coeficientes a y b vienen dados por:

⁵ El modelo potencial es empleado comúnmente en los análisis energéticos eólicos americanos (Gipe, 1995; Smith,1993).

⁶ Peterson y Hennessey (1978) sugieren para α el valor constate de 1/7.

$$a = 0.37 / \left[1 - 0.0881 \ln \left(h / 10 \right) \right] \tag{6.14}$$

$$b = -0.0881 / [1 - 0.0881 \ln (h/10)]$$
(6.15)

Sustituyendo (6.14) y (6.15) en (6.13) se obtiene la expresión:

$$\alpha = \frac{0.37 - 0.0881 \ln[v(h)]}{1 - 0.0881 \ln\left[\frac{h}{10}\right]}$$
(6.16)

donde v(h) viene dado en m/s y h en m.

En la figura 6.3 se representa el exponente α en función de la velocidad v(h) a la altura de referencia h=10 m.

Figura 6.3. Exponente α en función de la velocidad a la altura *h*=10 m

No existe ninguna razón para esperar que la expresión (6.16) sea de aplicabilidad universal debido a la dependencia de α respecto a las variables ya mencionadas. Para valores

grandes de la velocidad de referencia $[v(h) \ge 6m/s]$, la influencia de z_0 sobre α es preponderante. Para valores débiles de la velocidad de referencia $[v(h) \le 3 m/s]$, α varía principalmente con la estabilidad del lugar.

Exponente en función de la velocidad y la longitud de la rugosidad.⁷

Spera y Richards (1979) proponen una ecuación para α basada en la longitud de la rugosidad superficial z_0 , y en la velocidad del viento a la altura de referencia v_h .

$$\alpha = \left[\frac{z_0}{10}\right]^{0.2} \left[1 - 0.55 \log v(h)\right] \tag{6.17}$$

Sus desarrollos se basan en la generalización de la ecuación (6.16). Ellos asumen que α tiene una distribución normal con desviación estándar σ especto del valor medio α . También asumen que tanto α como σ son funciones de la velocidad del viento.

En la figura 6.4 se representa el exponente α en función de la velocidad v(h) a la altura de referencia h=10 m y de tres valores del parámetro de longitud de rugosidad z_0 .

Figura 6.4. Exponente α en función de la velocidad a la altura *h*=10 m y de la rugosidad

⁷ Este modelo fue usado extensivamente por investigadores de la NASA.

La ecuación (6.17) se basa en la presunción de que el viento llega a ser uniforme u homogéneo a altas velocidades para todos los valores de la rugosidad del terreno (Koeppl, 1982).

Exponente en función de las velocidades de viento a dos alturas.

Sen (2000) aplica una metodología de perturbación en la ley potencial y señala que el exponente es función de las medias de viento a dos alturas $(\overline{v}_h, \overline{v}_z)$, de las desviaciones estándar (s_h, s_z) y de los coeficientes de correlación (r_{hz}) entre dos series de velocidades de viento a diferentes alturas (h y z).

$$\alpha = \frac{\ln\left(\frac{\overline{v}_{h}}{\overline{v}_{z}}\right) + \ln\left(1 - \frac{s_{h}}{\overline{v}_{h}}\frac{s_{z}}{\overline{v}_{z}}r_{hz}\right)}{\ln\left(\frac{h}{z}\right)}$$
(6.18)

6.3.1. Modelo potencial equivalente.

Implícitamente α depende de la estabilidad atmosférica (Touma, 1977; Panofsky y Dutton, 1984). Por tanto, se han sugerido relaciones para calcular α a partir de los parámetros de la ley logarítmica, que es físicamente más correcta. Estas relaciones, generalmente complicadas, reducen la simplicidad de la ley potencial.

La ley logarítmica y la ley potencial pueden ser igualadas para ver como el exponente α de la ley potencial varía en un terreno plano. Por tanto:

• Para atmósfera neutra, sustituyendo la relación v(z)/v(h), obtenida desde (6.11) en la expresión de α despejada de la ecuación (6.12), se tiene:

$$\alpha = \ln\left[\frac{v(z)}{v(h)}\right] / \ln\left[\left(\frac{z}{h}\right)\right] = \ln\frac{\left[\frac{\ln\left(z/z_0\right)}{\ln\left(h/z_0\right)}\right]}{\ln\left(\frac{z}{h}\right)} \qquad -0.003 < \frac{1}{L} \le 0.003 \,\mathrm{m}^{-1} \tag{6.19}$$

• Para atmósfera estable, utilizando la expresión (6.9):

$$\alpha = \ln\left[\frac{v(z)}{v(h)}\right] / \ln\left[\left(\frac{z}{h}\right)\right] = \ln\frac{\left[\frac{\ln\left(z/z_0\right) + 4.7 z/L}{\ln\left(h/z_0\right) + 4.7 z/L}\right]}{\ln\left(\frac{z}{h}\right)} \qquad \qquad \frac{1}{L} > 0.003 \text{m}^{-1} \qquad (6.20)$$

• Para atmósfera inestable, empleando la ecuación (6.8):

$$\alpha = \ln\left[\frac{v(z)}{v(h)}\right] / \ln\left[\left(\frac{z}{h}\right)\right] = \ln\frac{\left[\frac{\ln\left(z/z_0\right) - \psi(z/L)}{\ln\left(h/z_0\right) - \psi(z/L)}\right]}{\ln\left(\frac{z}{h}\right)} \qquad \frac{1}{L} < -0.003 \,\mathrm{m}^{-1} \tag{6.21}$$

Por lo tanto, α es una función de z, h, z₀, y L; no es función de la velocidad del viento.

6.3.2. Modelo potencial modificado.

Ya que el modelo potencial es, desde el punto de vista de cálculo, más fácil de manipular que el modelo de similaridad, se han realizado intentos para incorporar la longitud de rugosidad en el modelo de la ley potencial a partir del modelo de similaridad (Panofsky, 1977; Mikhail y Justus, 1981; Dixon y Swift, 1984).

Para que la ley potencial (6.12) y el perfil de Monin-Obukhov (6.7) sean equivalentes se hacen iguales a la media geométrica de la altura z_g , dada por:

$$z_g = \exp\left[\frac{\ln(10) + \ln(z)}{2}\right]$$
(6.22)

Seguidamente, se diferencia (6.12) para obtener $\partial v/\partial z$ en z_g y sustituir en (6.1) para obtener una expresión para el exponente α_e de la ley potencial que haga (6.7) igual a (6.12), es decir:

$$\alpha_{e} = \frac{\varphi(z_{g}/L)}{\left[\ln(z_{g}/z_{0}) - \psi(z_{g}/L)\right]}$$
(6.23)

Tomando el límite $L \rightarrow \infty$ (atmósfera neutra) en la ecuación (6.23), se obtiene el exponente equivalente de la ley potencial para atmósfera neutra α_{en} .

$$\alpha_{en} = 1 / \ln \left(z_g / z_0 \right) \tag{6.24}$$

De la ecuación (6.14), el correspondiente exponente para condiciones neutras en la ley potencial α_{pn} y para una altura de referencia h = 10 m.

$$\alpha_{pn} = a - 0.0881 \ln\left(v_n\right) \tag{6.25}$$

donde el valor de v_n es un valor de la velocidad del viento suficientemente alto para asegurar que el perfil es neutro.

Igualando ecuaciones (6.25) y (6.24) se puede obtener el valor del parámetro a.

$$a = \frac{1}{\ln\left(\frac{z_g}{z_0}\right)} + 0.0881\ln\left(v_n\right)$$
(6.26)

Sustituyendo (6.26) en (6.25), se obtiene:

$$\alpha = \frac{1}{\ln\left(\frac{z_g}{z_0}\right)} - 0.0881 \ln\left[\frac{v(h)}{v_n}\right]$$
(6.27)

Que es válida para una altura del anemómetro de 10 m. Si la altura del anemómetro no es de 10 m., (6.27) se expresa por:

$$\alpha = \frac{1}{\ln(z_g/z_0)} - \frac{0.0881}{1 - 0.0881 \ln(h/10)} \ln\left[\frac{v(h)}{v_n}\right]$$
(6.28)

Figura 6.5. Variación de α con respecto a la velocidad v(h) según la ecuación (6.30)

El valor de v_n fue estimado para que el error entre los perfiles pronosticados usando el modelo de similaridad y (6.20) tuvieran un mínimo para $z_g=22.4$ m. El valor de v_n que asegura un perfil neutro y una mínima desviación del modelo de similaridad es de 6m/s. Por lo tanto, el exponente para modificar la ley potencial viene dado por:

$$\alpha = \frac{1}{\ln\left(\frac{z_g}{z_0}\right)} - 0.0881 \ln\left[\frac{v(h)}{6}\right]$$
(6.29)

Si el la altura del anemómetro no es de 10 metros, entonces (6.29) queda:

$$\alpha = \frac{1}{\ln\left(\frac{z_g}{z_0}\right)} - \frac{0.0881}{1 - 0.0881 \ln\left(\frac{h}{10}\right)} \ln\left[\frac{v(h)}{6}\right]$$
(6.30)

En la figura 6.5, se representa el exponente α en función de la velocidad v(h) a la altura de referencia h=10 m, para algunos valores de la altura z y de la longitud de rugosidad del terreno z_0 .

6.3.3. Modelo potencial aplicado a la proyección de los parámetros de la ley de Weibull con la altura.

Reed (1975) propone una relación entre velocidades a dos alturas dada por:

$$v(z) = \eta \left[v(h) \right]^{\beta} \tag{6.31}$$

donde $\eta \neq \beta$ son funciones de *z* $\neq h$.

Justus y Mikhail (1976) mostraron que las relaciones funcionales (6.12) y (6.31) son compatibles con tal de que α y β satisfagan las ecuaciones:

$$\eta = \left[v(z) / v(h) \right]^a \tag{6.32}$$

$$\beta = 1 + b \ln[z/h] \tag{6.33}$$

donde los coeficientes *a* y *b* dependen de la altura de referencia *h* y sus valores vienen dados por (6.14) y (6.15). El exponente α viene dado por (6.13).

La distribución de densidad de frecuencia de Weibull de dos parámetros a una altura h puede ser expresada como la función de distribución acumulada F[v(h)]:

 $F[v(h)] = 1 - \left\{ -\left[\frac{v(h)}{c_h}\right]^{d_h} \right\}$ (6.34)

donde c_h es el factor de escala y d_h el factor de forma de la distribución de Weibull de dos parámetros⁸ para la altura *h*.

Cuando se utiliza la ecuación (6.30) para eliminar v(h) en la ecuación (6.34), se obtiene como resultado F[v(z)].

$$F[v(z)] = 1 - \left\{ -\left[\frac{v(z)}{\alpha}\right]^{d_h/\beta} c_h^{-d_h} \right\} = 1 - \left\{ -\left[\frac{v(z)}{c_z}\right]^{d_z} \right\}$$
(6.35)

siendo c_z es el factor de escala y d_z el factor de forma de la distribución de Weibull de dos parámetros para la altura z, los cuales vienen dados por la ecuaciones:

$$c_z = \alpha c_h^{\beta} \tag{6.36}$$

$$d_z = d_h / \beta \tag{6.37}$$

Una comparación de las ecuaciones (6.36) y (6.31) indican que la relación funcional entre la velocidad del viento y la altura, y el factor de escala de Weibull de dos parámetros y la altura es la misma, luego:

$$\frac{c_z}{c_h} = \left(\frac{z}{h}\right)^{\alpha} \tag{6.38}$$

Como β viene dado por (6.33) y *b* vale (6.15), la relación (6.36) resulta:

$$\frac{d_z}{d_h} = \frac{1 - 0.0881 \ln\left(\frac{h}{10}\right)}{1 - 0.0881 \ln\left(\frac{z}{10}\right)}$$
(6.39)

⁸ Se ha cambiado la nomenclatura utilizada para representar los parámetros de Weibull en los capítulos 3 y 4 para evitar confusiones con los parámetros utilizados en los modelos de los perfiles verticales del viento.

De esta manera si c_h y d_h son conocidos para la altura h, mediante las expresiones (6.39), (6.38) y (6.13) se podrán determinar los parámetros de Weibull c_z y d_z a la altura z.

6.4. Uso de distribuciones bivariables.

Como señala Pelosi (1985), los modelos anteriormente expuestos predicen los valores de la velocidad v(z) asumiendo una relación determinista entre v(h) y v(z), cuando según Pelosi (1985), v(h) y v(z) son variables dependientes. Por tanto, como se señaló en la introducción de este capítulo, se introduce un error cuando se estima la energía producida por una turbina eólica utilizando los modelos expuestos en los apartados anteriores.

Pelosi (1985) propone estimar las características del viento a una cierta altura z en base a los datos registrados a una altura inferior h, denominada altura de referencia, tratando las velocidades del viento en las dos alturas como variables aleatorias dependientes. Para ello, obtiene e investiga varias distribuciones Weibull y Rayleigh bivariables.

Un método para construir una distribución Weibull bivariable puede incluirse dentro de las metodologías generales para construir distribuciones de la forma de distribuciones marginales. En el caso propuesto por Pelosi (1985), las distribuciones marginales utilizadas son tanto la distribución Weibull como la Rayleigh.

Ya que las distribuciones marginales no determinan de manera única la forma de la distribución conjunta, hay una variedad de diferentes familias de distribuciones con las mismas distribuciones marginales.

Pelosi (1985) propone la familia Farlie-Gumbel-Morgenstein (FGM) y las distribuciones tipo contingencia de Plackett. Pelosi (1985) ha examinado la familia FGM de distribuciones bivariables con la distribución Rayleigh como marginal y la familia FGM con la distribución Weibull como marginal. Sin embargo, las distribuciones tipo contingencia de Plackett solo las aplicó a la distribución de Rayleigh como marginal debido a la complejidad de su deducción.

6.4.1. La familia Farlie-Gumbel-Morgenstern de distribuciones bivariables con Rayleigh como marginal.

Pelosi (1985), en el caso de la familia FGM y la distribución de Rayleigh como marginal, obtuvo la función acumulada conjunta (6.40), la función de densidad conjunta (6.41) y la función de densidad condicionada (6.42)

$$F(v_{h}, v_{z}) = \left[1 - \exp(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}})\right] \left[1 - \exp(-\frac{\pi v_{z}^{2}}{4\alpha_{z}^{2}})\right] \left[1 + \omega \exp\left(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}} - \frac{\pi v_{z}^{2}}{4\alpha_{z}^{2}}\right)\right]$$
(6.40)

$$f(v_h, v_z) = \frac{\pi v_h}{4\alpha_h^2} \frac{\pi v_z}{4\alpha_z^2} \exp\left[-\frac{\pi v_h^2}{4\alpha_h^2} - \frac{\pi v_z^2}{4\alpha_z^2}\right] \left[(1+\omega) - 2\omega \exp\left(-\frac{\pi v_h^2}{4\alpha_h^2}\right) - 2\omega \exp\left(-\frac{\pi v_z^2}{4\alpha_z^2}\right) \right]$$
(6.41)

$$g(v_{z}|v_{h}) = \frac{\pi v_{z}}{2\alpha_{z}} \exp\left[\frac{\pi v_{z}^{2}}{4\alpha_{z}^{2}}\right] \left[(1+\omega) - 2\omega \exp\left(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}}\right) - 2\omega \exp\left(-\frac{\pi v_{z}^{2}}{4\alpha_{z}^{2}}\right) + 4\omega \exp\left(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}} - \frac{\pi v_{z}^{2}}{4\alpha_{z}^{2}}\right) \right]$$
(6.42)

donde:

$$v_h, v_z \ge 0 \quad ; \quad \alpha_z, \alpha_h \ge 0; \quad \omega \in [-1, 1]$$
(6.43)

Asimismo, obtuvo expresiones para la esperanza condicional (6.44) y la varianza condicional (6.45).

$$E(v_{z}|v_{h}) = \alpha_{z} \left[1 + \omega - \frac{\sqrt{2}\omega}{2} + \omega \left(\sqrt{2} - 2\right) \exp\left(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}}\right) \right]$$
(6.44)
$$V(v_{z}|v_{h}) = \frac{2\alpha_{z}^{2}}{\pi} \left[(2 + \omega) - 2\omega \exp\left(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}}\right) \right] - \alpha_{z}^{2} \left[\left(1 + \frac{2 - \sqrt{2}}{2}\omega\right) + \left(\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}}\right) \right] \right]$$
(6.45)
$$\left(\sqrt{2} - 2\right) \omega \exp\left(-\frac{\pi v_{h}^{2}}{4\alpha_{h}^{2}}\right) \right]^{2}$$

Como se ha indicado hay diversas formas de distribuciones bivariables de Rayleigh o Weibull. Para determinar si una forma en particular es útil para aplicaciones de la velocidad del viento, deben examinarse las propiedades de la distribución particular considerada. Por ejemplo, analizando el coeficiente de correlación, que en este caso viene dado por (6.46) se deduce que su valor máximo se obtiene cuando $\omega=1$, y su valor es 0.31.

$$\rho = \frac{\omega \left(1 + \frac{\sqrt{2} - 4}{2\sqrt{2}}\right)}{\left(\frac{4}{\pi} - 1\right)} \tag{6.46}$$

Por tanto, como resultado del estudio realizado, Pelosi (1985) concluye que:

• La familia de distribuciones FGM solo es válida cuando los coeficientes de correlación entre las velocidades de viento medidas a dos alturas es inferior a 0.31. Esta restricción no se elimina cuando las distribuciones de Rayleigh o Weibull se emplean como distribuciones marginales.

• Pelosi (1985) argumenta que no existe evidencia en la literatura de la energía eólica que indique la magnitud de la correlación entre las velocidades de viento en una altura y las velocidades de viento a una segunda altura, y por tanto, la familia de distribuciones dada por la ecuación (6.39) parece que proporciona un modelo útil para resolver el problema. Pelosi (1985), sin embargo, indica que el estudio del comportamiento del coeficiente de correlación para dos variables aleatorias v(z) y v(h) es un área donde se necesita investigar más. Por ahora, se ha de tener cuidado cuando se aplica este modelo. Esta familia de distribuciones no puede ser aplicada en un lugar donde se sabe que la correlación entre las velocidades de viento a varias alturas es mayor que 1/3.

• Para estimar los parámetros α_h y α_z se puede aplicar el método de los momentos indicado en el capítulo 4, a las series de velocidades de viento registradas a las dos alturas consideradas. Para estimar ω Pelosi (1985) propone diferentes formas. Entre éstas se puede señalar el método de máxima verosimilitud (6.47) y el coeficiente de correlación de Spearman (6.48).

$$\hat{\omega} = \frac{\sum_{i=1}^{n} \left[1 - 2 \exp(-\frac{\pi}{4} \frac{v(h)_{i}^{2}}{\alpha_{h}^{2}}) \right] \left[1 - 2 \exp(-\frac{\pi}{4} \frac{v(z)_{i}^{2}}{\alpha_{z}^{2}}) \right]}{\sum_{i=1}^{n} \left[1 - 2 \exp(-\frac{\pi}{4} \frac{v(h)_{i}^{2}}{\alpha_{h}^{2}}) \right]^{2} \left[1 - 2 \exp(-\frac{\pi}{4} \frac{v(z)_{i}^{2}}{\alpha_{z}^{2}}) \right]^{2}}$$
(6.47)

$$\hat{\omega} = r_s \left/ \left[12 \left(\frac{1}{3} e^{\frac{-3\pi}{4\alpha_h^2}} - \frac{1}{2} e^{\frac{-3\pi}{2\alpha_h^2}} + \frac{1}{6} \right) \left(\frac{1}{3} e^{\frac{-3\pi}{4\alpha_z^2}} - \frac{1}{2} e^{\frac{-3\pi}{2\alpha_z^2}} + \frac{1}{6} \right) \right]$$
(6.48)

donde r_s es el coeficiente de Spearman (6.49).

$$r_{s} = 1 - \frac{6\sum_{k=1}^{n} d_{k}^{2}}{n(n^{2} - 1)}$$
(6.49)

y d_k es la diferencia entre las variables $v(h)_k$ y $v(z)_k$.

6.4.2. La familia Farlie-Gumbel-Morgenstern de distribuciones bivariables con Weibull como marginal.

Según Pelosi (1985) no está demostrado que la distribución acumulada obtenida con la familia FGM de distribución bivariable con Weibull como distribución marginal proporcione una mejor descripción significativa de las variables v(h) y v(z) que la distribución dada por la ecuación (6.40).

En este caso, la distribución acumulada conjunta viene dada por (6.50), la función de densidad conjunta por (6.51) y la función de densidad condicionada por (6.52).

$$F(v_h, v_z) = \left[1 - \exp\left(-\frac{v_h}{\beta_h}\right)^{\alpha_h}\right] \left[1 + \exp\left(-\frac{v_z}{\beta_z}\right)^{\alpha_z}\right] \left[1 + \omega \exp\left(-\left\{\frac{v_h}{\beta_h}\right\}^{\alpha_h} - \left\{\frac{v_z}{\beta_z}\right\}^{\alpha_z}\right)\right]$$
(6.50)

$$f(v_{h}, v_{z}) = \frac{\alpha_{h}}{\beta_{h}} \frac{\alpha_{z}}{\beta_{z}} \left[\frac{v_{h}}{\beta_{h}} \right]^{\alpha_{h}-1} \left[\frac{v_{z}}{\beta_{z}} \right]^{\alpha_{z}-1} \exp\left[-\left(\frac{v_{h}}{\beta_{h}}\right)^{\alpha_{h}} - \left(\frac{v_{z}}{\beta_{z}}\right)^{\alpha_{z}} \right]$$

$$\left[1 + \omega \left(1 - 2e^{-\left(\frac{v_{h}}{\beta_{h}}\right)^{\alpha_{h}}} \right) \right] \left[1 - 2e^{-\left(\frac{v_{z}}{\beta_{z}}\right)^{\alpha_{z}}} \right]$$

$$g(v_{z} | v_{h}) = \frac{\alpha_{z}}{\beta_{z}} \left(\frac{v_{z}}{\beta_{z}} \right)^{\alpha_{z}-1} \exp\left[-\left(\frac{v_{z}}{\beta_{z}}\right)^{\alpha_{z}} \right] \left\{ 1 + \omega \left[1 - 2\exp\left[-\left(\frac{v_{h}}{\beta_{h}}\right)^{\alpha_{h}} \right] \right] \right\}$$

$$(6.52)$$

$$\left[1 - 2\exp\left[-\left(\frac{v_{z}}{\beta_{z}}\right)^{\alpha_{z}} \right] \right]$$

donde:

 $v_h, v_z \ge 0; \ \alpha_z, \alpha_h \ge 0$ (parametros de forma); $\beta_h, \beta_z \ge 0$ (parametros de escala) $\omega \in [-1, 1]$ (6.53)

La esperanza condicional (6.54) y la varianza condicional (6.55):

$$E(v_z|v_h) = \beta_z \Gamma(1+\frac{1}{\alpha_z}) \left\{ 1 + \omega \left[1 - 2 \exp\left[-\left(\frac{v_h}{\beta_h}\right)^{\alpha_h} \right] \right] \left[1 - 2^{\frac{-1}{\alpha_z}} \right] \right\}$$
(6.54)

$$V(v_{z}|v_{h}) = \beta_{z}^{2}\Gamma(1+\frac{2}{\alpha_{z}})\left\{1+\omega\left[1-2\exp\left[-\left(\frac{v_{h}}{\beta_{h}}\right)^{\alpha_{h}}\right]\right]\left[1-2^{\frac{-1}{\alpha_{z}}}\right]\right\}$$

$$(6.55)$$

$$-\beta_{z}^{2}\Gamma(1+\frac{1}{\alpha_{z}})\left\{1+\omega\left[1-2\exp\left[-\left(\frac{v_{h}}{\beta_{h}}\right)^{\alpha_{h}}\right]\right]\left[1-2^{\frac{-1}{\alpha_{z}}}\right]\right\}^{2}$$

Analizando el coeficiente de correlación, que en este caso viene dado por (6.56) se deduce que su valor máximo se obtiene cuando ω =1, y su valor es 0.31.

$$\rho = \frac{\omega \left(1 - 2^{\frac{-1}{\alpha_h}}\right) \left(1 - 2^{\frac{-1}{\alpha_z}}\right) \Gamma \left(1 + \frac{1}{\alpha_h}\right) \Gamma \left(1 + \frac{1}{\alpha_z}\right)}{\left\{ \left[\Gamma(1 + \frac{2}{\alpha_h}) - \Gamma^2(1 + \frac{1}{\alpha_h})\right] \left[\Gamma(1 + \frac{2}{\alpha_z}) - \Gamma^2(1 + \frac{1}{\alpha_z})\right] \right\}^{\frac{1}{2}}}$$
(6.56)

Por tanto, como resultado del estudio realizado, Pelosi (1985) concluye que:

• Esta familia de distribuciones no puede ser aplicada en un lugar donde se sabe que la correlación entre las velocidades de viento a varias alturas es mayor que 1/3.

• Para estimar los parámetros $\alpha_h \alpha_z$, $\beta_h y \beta_z$ se pueden aplicar los métodos indicados en el capítulo 4, a las series de velocidades de viento registradas a las dos alturas consideradas. Para estimar ω Pelosi (1985) propone diferentes formas. Entre estas se puede señalar el método de máxima verosimilitud (6.57) y el coeficiente de correlación de Spearman (6.58).

$$\hat{\omega} = \frac{\sum_{i=1}^{n} \left[1 - 2 \exp\left[-\left(\frac{v(h)_{i}}{\beta_{h}}\right)^{\alpha_{h}} \right] \right] \left[1 - 2 \exp\left[-\left(\frac{v(z)_{i}}{\beta_{z}}\right)^{\alpha_{z}} \right] \right]}{\sum_{i=1}^{n} \left[1 - 2 \exp\left[-\left(\frac{v(h)_{i}}{\beta_{h}}\right)^{\alpha_{h}} \right] \right]^{2} \left[1 - 2 \exp\left[-\left(\frac{v(z)_{i}}{\beta_{z}}\right)^{\alpha_{z}} \right] \right]^{2}}$$
(6.57)

$$\hat{\omega} = r_s \left/ \left[12 \left\{ \frac{1}{3} exp \left[-\left(\frac{3}{\beta_h^{\alpha_h}}\right) \right] - \frac{1}{2} exp \left[-\left(\frac{2}{\beta_h^{\alpha_h}}\right) \right] + \frac{1}{6} \right\} \right]$$

$$\left\{ \frac{1}{3} exp \left[-\left(\frac{3}{\beta_z^{\alpha_z}}\right) \right] - \frac{1}{2} exp \left[-\left(\frac{2}{\beta_z^{\alpha_z}}\right) \right] + \frac{1}{6} \right\} \right]$$
(6.58)

donde r_s es el coeficiente de Spearman (6.49).

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

CAPÍTULO

Estimación de la producción de energía eléctrica de origen eólico.

7.1. Introducción.

La potencia producida por un aerogenerador depende del viento que sopla sobre el rotor¹ de la máquina y de las características aerodinámicas, mecánicas, eléctricas, electrónicas, etc., de la misma (Jones, 1986).

Como señalan Biswas *et al* (1995), uno de los problemas que se presentan al intentar instalar turbinas eólicas para la generación de potencia, es obtener una estimación razonable de la energía generada por una turbina eólica instalada en un lugar, en un determinado periodo de tiempo. Es esencial para un ingeniero obtener la estimación con antelación, para que pueda decidir si la energía producida esperada de la turbina eólica cuando se instale, en un periodo de tiempo, es adecuada para la demanda de energía para la cual la máquina eólica se ha elegido.

En este capítulo de las tesis se presentan, en primer lugar, una serie de conceptos básicos sobre convertidores modernos de energía eólica y, en segundo lugar, se analizan los

¹ Parte de la máquina que transforma la energía del viento en energía mecánica.

métodos más frecuentemente empleados para estimar la potencia producida por un aerogenerador, de una determinada característica potencia generada-velocidad del viento, cuando éste se encuentra inmenso en un determinado régimen de vientos y conectado a una red eléctrica grande.

7.2. Conceptos básicos de convertidores de energía eólica.

Los aparatos que convierten la energía cinética contenida en una corriente de aire en trabajo mecánico han evolucionado considerablemente a lo largo de la historia (Cádiz, 1984; Gipe, 1995). En general, han sido máquinas rotativas de muy diverso tamaño en las que el rotor, o sistema de captación, está unido a un eje.

La clasificación básica de estas máquinas ha sido por la posición de su eje: vertical u horizontal.

Figura 7.1. Aerogenerador Darreius en la zona sur de Gran Canaria

Los aerogeneradores de eje vertical de mayor desarrollo han sido los denominados Darreius (Figura 7.1). Estas turbinas, a pesar de presentar ciertas ventajas de carácter estructural, como son el no necesitar mecanismo de orientación y la facilidad de instalar el
generador eléctrico en tierra, muestran desventajas considerables, entre las que cabe destacar su menor producción energética, a igual potencia instalada, respecto a un aerogenerador de eje horizontal, así como la necesidad de motorizar el aerogenerador para su arranque (Le Gouriérès, 1983).

Los aerogeneradores de eje horizontal son (Fig. 7.2), con diferencia, los tipos de sistemas de captación eólica más desarrollados y utilizados en la producción energética, empleándose desde capacidades del orden de vatios a grandes aerogeneradores de potencia superior al MW. Debido a ello, serán el tipo de máquinas eólicas utilizadas en esta tesis y, por tanto, las que básicamente se comentarán en los siguientes apartados.

Figura 7.2. Aerogeneradores de eje horizontal en la zona sur de Gran Canaria

En general, los aerogeneradores de eje horizontal constan de un subsistema que capta la energía cinética del viento y la transforma en energía mecánica de rotación y de un subsistema de conversión de la energía mecánica en eléctrica, compuesto de un tren de potencia y del generador eléctrico. El conjunto se completa con un bastidor y una carcasa, que alberga los distintos mecanismos, así como una torre que sustenta todo el sistema y los correspondientes subsistemas de control, orientación e infraestructura eléctrica.

El diagrama de bloques de la figura 7.3, que muestra la conexión entre los componentes más importantes y las etapas de conversión de energía asociadas, puede servir como base de las breves descripciones que de los mismos se realizarán seguidamente. El diagrama también

da una idea de cómo el funcionamiento puede ser influenciado por los procesos de control y supervisión.

Figura 7.3. Transferencia de potencia en un convertidor de energía eólica

El rotor o subsistema de captación de energía es la parte del aerogenerador que transforma la energía cinética del viento en energía mecánica de rotación. El rotor está compuesto por las palas y el buje. El rotor es a menudo considerado como el subsistema más importante tanto desde el punto de vista del funcionamiento como del de costos (Manwell *et al*, 2002). Los componentes más importantes del rotor son las palas. Ellas son los dispositivos que convierten la fuerza del viento en el par necesario para generar potencia útil. La forma básica y dimensiones de las palas vienen dadas inicialmente por el diseño global de la turbina y por consideraciones aerodinámicas (Eggleston y Stoddard, 1987). Las palas habitualmente se fabrican en resina de poliéster reforzadas con fibra de vidrio, disponiendo internamente de un larguero resistente, sobre el que se incorporan los perfiles aerodinámicos variables en forma, tamaño y orientación a lo largo de la pala.

El buje de la turbina eólica es el componente que conecta las palas al árbol principal de transmisión y finalmente al resto del tren de potencia. Hay tres tipos básicos de bujes que se aplican en las turbinas modernas de eje horizontal: Bujes rígidos, bujes balanceantes (teetering), y bujes para palas articuladas. Los bujes rígidos, como su nombre indica, tiene todas las partes unidas rígidamente al árbol principal de transmisión. Son los diseños más comunes, y son casi universales para las máquinas con tres (o más) palas. Los bujes basculantes permiten un movimiento relativo entre las partes que se conectan a las palas y que se conectan al árbol principal. Los bujes balanceantes son usados comúnmente en turbinas con dos y una pala. Los cubos con palas articuladas permiten movimientos independientes de aleteo de cada pala con respecto al plano de rotación. Estos bujes son usados sólo en pocos diseños de turbinas y son de alguna forma una mezcla entre los bujes rígidos y los bujes balanceantes. Son básicamente bujes rígidos con "bisagras" para las palas (Manwell *et al*, 2002; Eggleston y Stoddard, 1987; Spera, 1995).

Los rotores se clasifican en:

- Rotores lentos y rápidos. Dicha clasificación viene dada por relación específica de velocidades λ_o (Le Gouriérès, 1983), definida como el cociente entre la velocidad lineal en la punta de la pala del rotor y la velocidad del viento. Los rotores utilizados para la producción de electricidad son rápidos (λ_o.>3). Debido a su gran velocidad de rotación, los rotores rápidos llevan pocas palas: 2, 3, normalmente, adquiriendo por ello diversas ventajas respecto de los lentos o multipalas (Le Gouriérès, 1983).
- Rotores de paso fijo y variable. Según que el ángulo de calaje de las palas sea constante o permita un movimiento de giro sobre su propio eje (Figura 7.3). La posibilidad del cambio de paso de pala permite una mayor producción energética causada por una mejor adaptación aerodinámica de la pala al viento incidente. Se controla de este modo la potencia obtenida.
- Rotores de velocidad constante y velocidad variable. Muchos aerogeneradores se diseñan para que la velocidad de giro del rotor sea constante (fijada en los 50 Hz de la red eléctrica a la que se conectan), pero también existen aerogeneradores de velocidad de giro variable, lo que les permite una mayor adaptación a la velocidad del viento.
- Rotor a barlovento y rotor a sotavento. La mayoría de los aerogeneradores actuales disponen de rotor enfrentado a la dirección del viento (barlovento), pero también existen aerogeneradores con su rotor situado a sotavento. Con esta última disposición se consiguen ventajas desde el punto de vista de la orientación, sin embargo, se presenta un problema adicional conocido como efecto sombra, producido por la torre de sustentación, el cual origina oscilaciones en las palas, además de ciertos fenómenos acústicos de baja frecuencia.
- El tren de potencia mecánico. Un tren de potencia completo de un aerogenerador está compuesto por todas las partes en rotación de la turbina. Éstas incluyen un árbol de baja velocidad (en el lado del rotor), acoplamientos, freno, caja multiplicadora de engranajes, y un árbol de alta velocidad (en el lado del generador).

Toda turbina tiene un árbol principal, algunas veces denominado árbol de baja velocidad o árbol del rotor. El árbol principal transfiere el par torsor desde el rotor al resto del tren de potencia.

Los acoplamientos tienen como función conectar los árboles. Hay dos lugares en particular de las turbinas eólicas donde es probable que se instalen grandes acoplamientos: Entre el árbol principal y la caja de engranajes, y entre el árbol de salida de la caja de engranajes y el generador.

El multiplicador tiene como función adaptar la baja velocidad de rotación del eje del rotor a las mayores velocidades de operación del generador eléctrico. Existen dos tipos básicos de cajas de engranajes usadas en los aerogeneradores: Cajas de engranajes de árboles paralelos y cajas de engranajes planetarios. En algunos diseños no se considera el uso del multiplicador, siendo sustituida su función por elementos de carácter eléctrico o electrónico.

Casi todos los aerogeneradores emplean frenos mecánicos en alguna parte del tren de potencia. Estos frenos son incluidos normalmente además de la existencia de frenos aerodinámicos. En la mayoría de los casos, el freno mecánico es capaz de parar la turbina. En otros casos, el freno mecánico se usa sólo para impedir que el rotor gire cuando la turbina no esta funcionando. El freno de uso más común en los aerogeneradores es el freno de disco y suele estar ubicado bien en el lado de baja velocidad de la caja de engranajes o en el lado de alta velocidad de la misma.

- El sistema eléctrico. El sistema eléctrico de un aerogenerador incluye todos los componentes para convertir la energía mecánica en energía eléctrica, si bien el generador constituye el foco de dicho sistema. Los generadores que actualmente se utilizan en las aeroturbinas suelen ser alternadores, que a su vez puede ser de inducción (asíncronos) o de excitación (síncronos). Cada uno de estos tipos de generadores tiene diferentes características, tanto en los requerimientos de entrada como en las particularidades de la corriente de salida.
- Un generador asíncrono produce energía eléctrica, en el estator, cuando la velocidad de giro de su rotor, impulsado por el eje de alta, es superior a la velocidad de giro del campo magnético de excitación creado por el estator. El generador asíncrono necesita tomar energía de la red para crear el campo de excitación del estator. Esta energía al alimentar una bobina consumirá corriente desfasada de la tensión (energía reactiva), con lo que la línea eléctrica de distribución, a la que se encuentra conectada la instalación eólica, desestabiliza su cos φ.
- El generador síncrono está formado por un rotor compuesto por electroimanes generadores del campo magnético y de un estator en cuyo devanado se producirá la corriente alterna inducida por el campo magnético variable creado por el rotor. Los electroimanes del rotor del generador son alimentados con corriente continua, rectificando parte de la propia electricidad generada.

El sistema eléctrico de un aerogenerador de eje horizontal está condicionado por las características de operación del rotor, es decir, si su rotor opera a revoluciones constantes o revoluciones variables, y por el sistema de utilización, ya sea conexión directa a la red o funcionamiento aislado, por lo que se pueden presentar diversas posibilidades (Hau, 2000; Heier, 1998).

La mayoría de las actuales turbinas eólicas están equipadas todavía con generadores que funcionan a velocidad constante y que operan acopladas directamente a la red. En la mayoría de los casos, incluso hoy día, las consideraciones de costos prefieren este concepto a pesar de las considerables desventajas para la operación aerodinámica del rotor y de las superiores cargas dinámicas en los componentes del tren de potencia. Con el progreso en la tecnología de los inversores el acoplamiento directo a la red con generadores operando a velocidad variable ha comenzado a incrementar el atractivo económico. Las posibilidades más destacadas, dentro de un cierto abanico (Hau, 2000), son:

- Generadores síncronos operando a velocidad de giro constante y conectados directamente a la red.
- Generadores asíncronos operando a velocidad de giro constante y conectados directamente a la red.
- Generadores síncronos con convertidores AC/DC/AC operando a velocidad de giro variable conectados a la red.
- Generadores asíncronos con control de deslizamiento.

Desde el punto de vista de la ingeniería eléctrica, los aerogeneradores son plantas de generación de potencia, parecidas a las plantas hidroeléctricas o las plantas de generación diesel. Sus sistemas eléctricos son similares y deben reunir los requisitos de los sistemas conectados a la red pública. Estos requisitos conciernen principalmente a los sistemas de seguridad y calidad de la potencia. Los generadores eléctricos realmente representan la pieza central del sistema eléctrico, pero el sistema completo comprende numerosas piezas de equipos eléctricos y electrónicos (contactores, instrumentos de medida, elementos de transformación, etc).

- Sistema de orientación. El cambio de dirección del viento incidente, hace necesaria la orientación del rotor situándole perpendicularmente a dicha dirección. Existen dos clases de sistemas de orientación: orientación activa y pasiva. Las turbinas con orientación activa normalmente disponen de rotor a barlovento. Para realizar la orientación se utiliza la información obtenida a partir de los datos de dirección de viento y posición de la máquina. La información conseguida es transmitida a un motorreductor de orientación. El motorreductor que está embridado sobre el bastidor actúa sobre una corona de grandes dimensiones, uno de sus aros fijos al bastidor y el otro a la torre. La actuación del motorreductor sobre la corona produce el giro del bastidor. Para inmovilizar el giro se suele utilizar un freno. Los sistemas de orientación denominados pasivos cuentan con elementos mecánicos (veletas, rotores laterales auxiliares) o disponen de rotor a sotavento, que debido al efecto de conicidad del mismo genera unas fuerzas aerodinámicas que tienden a autoorientar la turbina en la dirección del viento (Burton et al, 2001; Eggleston y Stoddard, 1987).
- Control. Para generar potencia con éxito a partir de los componentes de las turbinas, éstas necesitan de un sistema de control que enlace la operación de todos los subsistemas. La determinación del control óptimo vendrá condicionado por factores como la protección y seguridad del sistema, la optimización de la energía producida o el incremento de la vida

útil de los equipos. Por otra parte el sistema de control suele llevar incorporado dispositivos de comunicación con el que recibir y enviar información al operador del conjunto de la instalación.

Los sistemas de control constan de sensores que informan sobre el estado de la máquina y del viento incidente (velocidad, dirección, etc), un sistema central que compara dicha información con la programada como óptima, y unos actuadores que, controlados por el sistema central, modifican el comportamiento de la turbina, acercándolo al óptimo.

Aunque los detalles de los sistemas de control varían significativamente de una turbina a otra (Manwell *et al*, 2002; Hau, 2000; Heier, 1998), todos los aerogeneradores tienen un propósito común: convertir la energía cinética del viento en energía eléctrica. Este propósito común define elementos comunes que es necesario considerar en el diseño de cualquier sistema de control.

Los elementos más importantes de control hacen referencia al control de potencia y régimen de giro así como de orientación (Fig. 7.3).

Los problemas fundamentales del control de potencia en una turbina eólica quedan particularmente patentes si la tarea de control se compara con la de una planta convencional de vapor. En una planta convencional existen tres métodos de control disponibles para controlar el sistema global (el suministro de fuel, la alimentación de vapor a la turbina, la excitación del generador eléctrico). Si se observa una turbina eólica, se comprende inmediatamente que el primer control, la dosificación de la energía primaria de entrada, no existe. Para regular la velocidad de rotación y la potencia generadas las turbinas eólicas pueden contar con la modificación de dos parámetros: El ángulo de paso de las palas² y el par del generador eléctrico.

La turbina eólica debe hacer frente a una variación aleatoria de la fuente de energía primaria, es decir, el viento. La energía primaria del rotor de la turbina puede ser controlada únicamente con el cambio del ángulo de paso de las palas. Las fluctuaciones extremadamente breves (turbulencias del viento y rachas) de menos de unos pocos segundos no pueden ser respondidas con el control del ángulo de paso de las palas. La inercia de las palas del rotor y de los elementos actuantes no lo permiten. Como el sistema de control no puede responder dentro de estos periodos de tiempo, las cargas resultantes deben ser soportadas por la turbina y las fluctuaciones de varios segundos pueden ser respondidos por el sistema de control. Esta es la tarea real del sistema de control. Con la ayuda de las dos variables de control mencionadas, el sistema de control puede garantizar puntos de operación estables. El control de velocidad es indispensable cuando la velocidad no es mantenida por la frecuencia de la red. Este es siempre el caso del funcionamiento en régimen aislado. Pero también en turbinas conectadas a la red, el control de velocidad es necesario durante el arranque o cuando se cierra y en generadores con conexión no directa

² Es posible controlar la potencia mediante rotores provistos de palas diseñadas para regular la captación de energía por pérdidas aerodinámicas, pero que son poco precisos. En el apartado 7.3 se puede observar su efecto en la curva de potencia-velocidad característica de un aerogenerador conectado a al red.

a la red. El control de potencia es un imperativo para proteger las turbinas de sobrecarga, o porque la demanda de potencia de los consumidores lo requiere.

La estructura de control de una turbina debe ser diseñada para ajustar las características del sistema mecánico-eléctrico. Aquí pueden distinguirse cinco subsistemas: características mecánicas del sistema de cambio de paso de las palas, aeroelasticidad de las palas, par aerodinámico del rotor, dinámica del tren de potencia mecánico y características eléctricas del generador.

En operación en sistemas aislados o en operación en una red eléctrica frágil, las características de la red y a veces del consumidor deben ser consideradas adicionalmente.

Desde el punto de vista del control, el funcionamiento de una turbina a una frecuencia fijada por la red representa el caso más simple. Con respecto a la turbina eólica, las redes públicas grandes pueden siempre considerarse que tienen una frecuencia constante. Los cambios de carga causados por la turbina alimentando a la red, incluso en instalaciones de megavatios, son demasiado pequeñas como para ejercer una influencia considerable en la frecuencia, comparada con la carga total de la red.

Desde el punto de vista del control, el funcionamiento en aislado de una turbina eólica puede ser definido inversamente al de la operación en conexión a una red: No se dispone de la posibilidad de que la velocidad del generador se guíe por una frecuencia fija de red y la potencia instantánea de salida de la turbina eólica ya no es arbitraria, pero debe ser controlada en relación a la demanda de potencia instantánea del consumidor. En redes débiles la turbina deberá mantener la frecuencia de la red y adaptar su potencia de salida a ciertas condiciones de carga de la red.

El control de la velocidad de giro en sistema aislados mediante el control del ángulo de paso de las palas sólo es posible si la potencia suministrada por el viento es mayor que la potencia tomada por el consumidor. En los sistemas aislados deben diferenciarse dos áreas de operación:

- a) Si la energía suministrada por el viento es mayor que la potencia demandada por el consumidor (área de carga completa), la velocidad y potencia de salida pueden ser controladas por el cambio del ángulo de paso de las palas.
- b) Si la potencia del viento es más pequeña que la potencia demandada por el consumidor (operación a carga parcial), la turbina debe entonces asegurar que la potencia tomada por el consumidor se reduce en consecuencia. Esto tiene que ser gestionado por un gestor de cargas que decide qué consumidores son desconectados o conectados del suministro.

En el caso de turbinas que carezcan de rotor de paso variable las posibilidades de control se encuentran altamente restringidas. No obstante, si se elige un sistema de generación adecuado pueden reunirse los requisitos de operación en red sin gran dificultad. En sistemas aislados de la red, sin embargo, es una tarea mucho más complicada, pero posible, no obstante. Cuando la potencia capturada por el rotor no puede ser controlada adecuadamente, el control de la velocidad o frecuencia puede sólo ser conseguido cambiando la carga del generador (Carta y González, 2001; Carta *et al*, 2003a). El circuito de cargas del consumidor, no es generalmente suficientemente rápido para el control de velocidad, entonces son necesarias cargas adicionales llamadas cargas de volcado. Con su ayuda la carga puede ser rápidamente adaptada a las fluctuaciones del régimen de vientos.

El control de la orientación del rotor de la turbina está caracterizado por un conflicto de intereses. Por un lado, la desviación de la orientación del rotor respecto a la dirección del viento se supone que debe ser tan pequeña como sea posible para evitar pérdidas de potencia. Por otro lado, el sistema de orientación no debe ser demasiado sensible, para evitar permanentes pequeños movimientos de orientación que reducen la vida de los componentes mecánicos. Los modernos sistemas de orientación se nutren de la información que, sobre el valor medio de la dirección del viento, proporciona una veleta situada en la góndola o en zonas estáticas del rotor.

- □ Góndola. Los elementos anteriormente descritos van instalados sobre una estructura portante que constituye el bastidor. El bastidor descansa sobre un rodamiento de grandes dimensiones a través del cual está acoplado a la torre, estando todo ello resguardado de las inclemencias mediante una carcasa o estructura de cierre y protección. Normalmente al conjunto de bastidor y carcasa se le denomina góndola.
- □ La torre y cimentación. La mayoría de las torres de las turbinas se construyen de acero, aunque también se fabrican de hormigón (Burton *et al*, 2001). La función de la torre es elevar las partes principales de la turbina. En las turbinas de eje horizontal la torre debe ser al menos tan alta que permita mantener las puntas de las palas alejadas del suelo al girar. En la práctica, como los vientos incrementan su intensidad y son menos turbulentos según se alejan del suelo, las torres tiende a ser bastante elevadas. La elección de la altura de la torre depende de un compromiso entre el coste de la misma y el incremento de energía que se consigue. Las opciones más comunes de torres son tubulares, estructuras tipo tuberías o celosías (normalmente atornilladas). Los criterios de elección suelen estar condicionados por sus frecuencias naturales de vibración, modos de instalación y estética (Manwell *et al*, 2002).

Las torres van cimentadas en el terreno mediante pilotes o zapatas de hormigón armado cuyo tamaño dependerá de las características del terreno y las solicitaciones mecánicas que deba soportar. En su base superior llevan las bridas de anclaje, incorporándose además los tubos para el paso de los cables. Las torres de turbinas de alta potencia se fijan a las cimentaciones mediante pernos de alta resistencia.

7.3. Características de funcionamiento de las turbinas eólicas.

La determinación del funcionamiento de una turbina eólica bajo un cierto régimen de vientos que permita estimar su potencia de salida y su producción energética requiere involucrar las características de operación de los componentes que la integran, es decir, las características del rotor, del tren de potencia, del sistema eléctrico y del sistema de control.

El punto de comienzo para determinar el funcionamiento de una turbina eólica son las características aerodinámicas del rotor. Generalmente, estas características se suelen expresar por medio de curvas de operación adimensionales. Los parámetros, que se representan en función de la relación de velocidades en la punta de la pala λ .³ (7.1) y del ángulo de paso de la pala \mathcal{P}^4 , suelen ser los coeficientes de potencia⁵, de par torsor⁶ y de empuje axial⁷ (Le Gourieres, 1983; Burton *et al*, 2001; Eggleston y Stoddard, 1987).

$$\lambda = \frac{U}{V} = \frac{\omega R}{V} = \frac{\text{Velocidad punta pala}}{\text{Velocidad del viento}}$$
(7.1)

En la figura 7.4 se representa el coeficiente de potencia C_p (7.2)⁸ del rotor de una determinada turbina en función de λ y \mathcal{G}^9 .

$$C_{p} = \frac{P}{1/2\rho V^{3}A} = \frac{\text{Potencia del rotor}}{\text{potencia del viento}}$$
(7.2)

donde p es la densidad del aire, V la velocidad del viento y A el área barrida por el rotor de la eólica. Este coeficiente, que representa la cantidad de energía eólica transformada en energía mecánica en el rotor de la eólica, tiene un valor máximo ideal de 0.593, al cual se le denomina *factor de Betz* (Hau, 2000; Burton, *et al*, 2001; Le Gouriérès, 1983).

³ Relación entre la velocidad lineal del rotor en la punta de la pala y la velocidad del viento. Por tanto, función de la velocidad de rotación ω , del radio del rotor *R* y de la velocidad del viento *V*.

⁴ Ángulo formado entre el plano del rotación del rotor y la cuerda de la pala.

⁵ Relacionado con la con la cantidad de energía capturada por el rotor de la eólica.

⁶ Relacionado con el par mecánico que es capaz de desarrollar el rotor de la eólica.

⁷ Relacionado con el empuje axial que el viento realiza según el eje del rotor y que influye en el diseño estructural de la torre de la eólica.

⁸ Las curvas C_p - λ obtenidas a través de medidas experimentales o de cálculo pueden aproximadas por funciones no lineales.

⁹ El ángulo de paso de una pala varía a lo largo de su longitud (Lysen, 1982), por tanto, el ángulo que se suele representar en estas gráficas es el correspondiente a una distancia del eje del rotor entre el 70° y 75°, aproximadamente, del radio del mismo (Koeppl, 1982).

Figura 7.4. Coeficiente de potencia de un rotor de una turbina eólica

Por tanto, de la teoría aerodinámica de las palas (Burton *et al*, 2001; Manwell *et al*, 2002; Eggleston y Stoddard, 1987; Le Gouriérès, 1983; Spera, 1995), la potencia mecánica del rotor vendrá dada por (7.3).

$$P = \frac{\rho}{2} C_p(\lambda, \vartheta) A V^3$$
(7.3)

A partir de las curvas de la figura 7.4 y teniendo en cuenta la relación (7.1), es posible expresar la potencia mecánica del rotor (7.3) como una función de la velocidad de giro del mismo ω , del ángulo de paso \mathcal{G} y de la velocidad del viento V. En la figura 7.5 se ha representado la variación de P en función, exclusivamente, de ω y V.

El método usado para predecir la curva de potencia del aerogenerador se basa en acoplar la potencia mecánica generada por el rotor de la eólica (Figura 3.5), con la potencia del generador eléctrico, trazada ésta en función de la velocidad de rotación del rotor de la eólica.

El problema es complejo debido a que la curva potencia-velocidad de rotación depende del tipo de generador, del factor de potencia y la magnitud de la carga, del campo de corriente, y de que la velocidad de rotación de la máquina sea mantenida constante por la red o que se permita su variación. Además existe una complicación añadida ya que muchos generadores se diseñan para operar a una única óptima velocidad de rotación, y a menudo es difícil encontrar sus características a velocidades más bajas.

Figura 7.5. Potencia del rotor de una turbina en función de la velocidad de giro

Si se asume que se trata de un generador que suministra energía a una red eléctrica de frecuencia constante que comprende otras unidades de producción y que se dispone de su curva de potencia en función de la velocidad de rotación y de las curvas de potencia del rotor de la máquina eólica (Figura 7.5), la única variable es la relación de transmisión de la caja de engranajes (k), necesaria para el correcto acoplamiento de la velocidad de giro del rotor (ω_g/k) y la velocidad de giro constante¹⁰ del generador (ω_g) .

Una vez que la relación ha sido fijada (Figura 7.6), las ordenadas de los puntos de intersección de la recta representativa del generador con las características potencia-velocidad de la eólica, corresponden a los diversos valores de la potencia aportada por la eólica al generador para los diferentes valores de la velocidad del viento.

En la práctica, se adopta como relación de transmisión un valor de k tal que la vertical de abscisa (ω_g/k), corte las curvas características de potencia velocidad de la eólica relativas a los vientos aprovechables más próximos a sus valores máximos.

El conocimiento del rendimiento global del sistema (rodamientos, multiplicador, sistema eléctrico) y de la intensidad de la excitación permiten obtener para cada punto de la recta vertical o inclinada¹¹ (ω_g/k) la potencia proporcionada por el generador a la red en función de la velocidad del viento.

 ¹⁰ Lo mismo sucede con la velocidad de giro del rotor de la eólica en la medida que su relación de transmisión permanece invariable.
 ¹¹ Vertical continua para el caso de un generador síncrono e inclinada para el generador asíncrono, ya que la

¹¹ Vertical continua para el caso de un generador síncrono e inclinada para el generador asíncrono, ya que la velocidad de rotación de este último aumenta ligeramente con la carga (Le Gouriérès, 1983; Lysen, 1983; Heier, 1998).

Figura 7.6. Rotor acoplado a un generador de velocidad constante conectado a la red eléctrica

En la figura 7.7 se muestra la conexión de las características de un rotor con las de un generador síncrono operando a velocidad variable con convertidores AC/DC/AC. Como en el caso de la figura 7.6, la intersección de la curva representativa del generador con las características potencia-velocidad de la eólica, corresponden a los diversos valores de la potencia aportada por la eólica al generador para los diferentes valores de la velocidad del viento. Sin embargo, en este caso, puede observarse que puede lograrse un mejor aprovechamiento de la energía del viento.

Figura 7.7. Rotor acoplado a un generador síncrono de velocidad variable con convertidores AC/DC/AC

Como puede deducirse de las figuras 7.6 y 7.7, las posibilidades de acoplamiento son muy variadas (Heier, 1998), ya que la estrategia de $control^{12}$ juega también un papel fundamental.

En la figura 7.8 se muestra la obtención de la curva que representa la potencia eléctrica generada por la turbina eólica en función de la velocidad del viento a la altura del eje del rotor de la misma. Como puede observarse, las condiciones de operación fuerzan la existencia de una velocidad mínima necesaria para que la eólica comience a generar; a dicha velocidad se le denomina velocidad de arranque V_a . Asimismo, puede observarse como a partir de la velocidad V_a la potencia generada por la turbina se incrementa con la velocidad del viento. Dicho incremento se limita, mediante procedimientos de control, a partir de una velocidad V_n , denominada velocidad nominal; de tal manera que para velocidades superiores a V_n la potencia tienda a mantenerse constante. A dicha potencia se la denomina potencia nominal P_n . Por último, para evitar la rotura de la turbina cuando la velocidad del viento alcanza magnitudes altas, el sistema de control detiene el funcionamiento de la turbina se la denomina velocidad de parada V_p .

Figura 7.8. Obtención de la curva potencia-velocidad de una turbina eólica

En la práctica, la relación potencia-velocidad característica del funcionamiento de una aerogenerador se obtiene experimentalmente mediante ensayos normalizados (IEC, 1994). De dichos ensayos se desprende que la mencionada relación presenta una cierta dispersión, como se muestra en la figura 7.9.

¹² El uso o no del control del ángulo de paso. Uso del control del ángulo de paso en todo el rango de velocidades o en rangos parciales, etc.

Mediante el procedimiento explicitado en las normas de ensayo (IEC, 1994) a dicha dispersión se le ajusta una curva que representa la curva característica potencia –velocidad del aerogenerador, para una determinada densidad del aire, y que se incluye en los catálogos técnicos de los fabricantes. Esta curva característica relaciona la potencia generada por la turbina con la velocidad del viento a la altura del eje del rotor de la misma bajo condiciones de flujo estacionario.

Figura 7.9. Curva de potencia experimental de un aerogenerador

En la figura 7.10 se muestran dos curvas potencia-velocidad normalizadas típicas de aerogeneradores con rotores con control de ángulo de paso y de aerogeneradores de paso fijo (stall)¹³. En este último caso el perfil de la pala ha sido diseñado aerodinámicamente para que a determinada velocidad de viento el flujo aerodinámico se separe de la superficie de la pala y se produzca una disminución de la potencia capturada del viento (Hau, 2000; Le Gouriérès, 1983; Eggleston y Stoddard, 1987; Freris, 1990).

¹³ En los últimos años ha aparecido un sistema de control híbrido, mezcla entre control de ángulo de paso y stall, denominado "stall activo".

Figura 7.10. Curvas de potencia normalizadas de aerogeneradores comerciales

Como puede observarse en la figura 7.10, la máquina no genera potencia hasta que la velocidad del viento ha alcanzado un valor crítico, "velocidad de arranque" v_a . Cuando la velocidad del viento continúa incrementándose, la potencia de salida también se incrementa hasta la "velocidad nominal" v_n , en la que la máquina produce su salida nominal P_n . Para velocidades del viento mayores que vn la salida se controla para mantenerla constante hasta alcanzar "la velocidad de parada" v_p , a la cual la máquina deja de generar por razones de seguridad mecánica o eléctrica.

7.4. Determinación de la energía obtenible.

La determinación de la energía eléctrica producida por un aerogenerador de curva potencia-velocidad P(v) (Figura 7.10) inmerso en un determinado régimen de vientos puede llevarse a cabo mediante tres procedimientos diferentes.

7.4.1. Método estático.

En este método se acopla (Figura 7.11) la ley de densidad de probabilidad del viento de un determinado periodo, f(v), con la curva característica potencia-velocidad, P(v), de un

aerogenerador para obtener la curva de probabilidad de potencia, cuya integral (7.4) da como resultado la potencia media estimada para el periodo considerado. La ventaja de este método es su simplicidad. El método puede utilizarse para realizar una estimación global de la energía producida, así como para analizar su sensibilidad frente a diversos parámetros de interés, como por ejemplo, las velocidades características de funcionamiento de las aeroturbinas. Este método es, probablemente, el más ampliamente divulgado en prácticamente todas las revistas internacionales relacionadas con las energías renovables (García *et al.*, 1998; Jaramillo y Borja, 2004; Jamil ,1994; Hussain *et al.*, 1986).

$$\mathbf{P} = \int_{v_a}^{v_p} P(v) f(v) dv \tag{7.4}$$

Figura 7.11. Acoplamiento curva de potencia-distribución de densidad de probabilidad

Algunos autores utilizan curvas de potencia-velocidad idealizadas (Haslett y Kelledy, 1981; Lysen, 1983 Jones, 1988; Jones, 1986; Koeppl, 1982; Sharaf-Eldeen *et al.*, 1988; Sasi y Sujay, 1997) con formas lineales, cuadráticas, cúbicas, incluso de más alta potencia o combinación de éstas.

Sin embargo, ya que los fabricantes de aerogeneradores proporcionan de forma discretizada (en N puntos) la curva de potencia-velocidad de sus máquinas es posible utilizarlas en la ecuación (7.4) si se realiza una aproximación (Troen y Petersen, 1989). Dicha aproximación consiste en suponer lineal la variación entre dos puntos de la curva de potencia-velocidad. Se tendrá pues que dados dos puntos "i" e "i+1", la expresión de la potencia en este intervalo, en función de la velocidad podrá ser escrita como:

$$P(v) = \frac{P_{i+1} - P_i}{v_{i+1} - v_i} (v - v_i) + P_i$$
(7.5)

Luego, sustituyendo en (7.4) la expresión de la potencia media podrá ser calculada de la siguiente forma:

$$\overline{\mathbf{P}} = \sum_{i=1}^{N-1} \left\{ \int_{v_i}^{v_{i+1}} f(v) \left[\frac{P_{i+1} - P_i}{v_{i+1} - v_i} (v - v_i) + P_i \right] dv \right\}$$
(7.6)

La estimación de la energía producida se realiza mediante (7.7), donde T es el periodo de tiempo considerado.

$$\overline{E} = T\overline{P} \tag{7.7}$$

Con este método puede también estimarse el denominado "factor de capacidad", *CF*. Es decir, el porcentaje de tiempo que una turbina tendría que haber estado funcionando a la potencia nominal P_n para producir la misma cantidad de energía en el periodo de tiempo considerado. Dicho factor se determina en este método mediante la expresión (7.8).

$$CF = \left(\frac{\overline{P}}{P_n}\right) 100 \tag{7.8}$$

Asimismo, pueden estimarse las denominadas "horas equivalentes" o "tiempo equivalente". Es decir, el número de horas que una turbina eólica tendría que haber estado funcionando a la potencia nominal P_n para producir la misma cantidad de energía en el periodo de tiempo considerado.

$$t_e = \left(\frac{\overline{E}}{P_n}\right) \tag{7.9}$$

En la figura 7.12 se muestra un diagrama de bloques básico del procedimiento seguido para estimar la potencia media, la energía media, el factor de capacidad y el tiempo equivalente utilizando este método.

Como puede observarse, el proceso se inicia con la lectura de las velocidades de viento v_i , que representan el régimen de vientos de actúa sobre una determinada turbina eólica. El procedimiento de toma de datos de viento y su almacenamiento se indican en el capítulo 2 de esta tesis.

El siguiente paso consiste en la extrapolación de las velocidades de viento, registradas a una altura de referencia h_r , hasta la altura del eje del rotor h_e de la turbina considerada. Los diversos modelos de extrapolación que suelen utilizarse se indican en el capítulo 6 de esta tesis.

Figura 7.12. Diagrama de bloques del procedimiento que se utiliza con este método

El tercer paso del proceso consiste en la determinación de la ley de densidad de probabilidad que mejor describa el régimen de vientos considerado. Este paso se compone de tres etapas.

En la primera etapa se selecciona la ley de densidad de probabilidad que se desea ensayar. Las distribuciones de densidad de probabilidad utilizadas hasta el momento para describir regimenes de viento, así como otras aún no ensayadas se indican en los capítulos 3 y 5 de esta tesis.

En la segunda etapa se elige el método para determinar los parámetros de la ley de distribución seleccionada en la primera etapa. En los capítulos 4 y 5 se indican los distintos métodos que pueden emplearse para estimar los parámetros de las mencionadas distribuciones.

En la tercera etapa se utiliza un test de ajuste para estimar, con una cierta probabilidad, si la muestra ensayada procede o no de una población que sigue la ley de distribución considerada.

En el cuarto paso se obtienen los resultados solicitados haciendo uso de las ecuaciones (7.6), a (7.9).

7.4.2. Método cuasidinámico.

En este método se parte de una serie temporal de velocidades de viento v_i , la cual se compara con la curva característica potencia-velocidad de un aerogenerador $P(v)^{14}$ (Figura 7.13) para obtener una serie temporal de la potencia eólica generada, y así de la potencia (7.10) y energía (7.11) media del periodo utilizando los *n* datos de viento.

La ventaja de este método es que puede proporcionar información acerca de los arranques y paradas experimentados por la aeroturbina, así como, mediante los datos adecuados, investigar sobre las estrategias de arranques y paradas en el funcionamiento de la aeroturbina.

$$\overline{P} = 1/n \sum_{i=1}^{n} P(v_i)$$
(7.10)

$$\overline{E} = \sum_{i=1}^{n} P(v_i) \tag{7.11}$$

¹⁴ Utilizando la expresión (7.5).

Con este método puede también estimarse el denominado "factor de capacidad", *CF*, y "tiempo equivalente", haciendo uso de las ecuaciones (7.8) y (7.9).

Figura 7.13. Estimación de la variación temporal de la potencia generada

Este método, debido a la ventaja anteriormente señalada, ha sido ampliamente utilizado en la modelización del funcionamiento de diversos sistemas que operan con energía eólica, ya sean sistemas híbridos (Carta y González, 2001; Bueno y Carta, 2005a; Bueno y Carta, 2005b; Bueno y Carta, 2006) o aislados (Carta y Calero, 1990; Carta y Calero, 1994).

7.4.3. Método dinámico.

En este método se utiliza una serie temporal de velocidades de viento v_i como entrada a un modelo numérico de funcionamiento de la aeroturbina (Hau, 2000; Heier, 1996; Lubosny, 2003). De este modo pueden obtenerse de una forma más fiables la energía producida, el número de arranques y paradas, así como llevar a cabo investigaciones sobre el efecto de diversas opciones o cambios en la estrategia de control de la aeroturbina.

CAPÍTULO

Aplicación a los regímenes de viento de las Islas Canarias.

8.1. Introducción.

El propósito de este octavo capítulo de la tesis doctoral es presentar los resultados de la aplicación de las distribuciones analizadas en los capítulos 3 y 5 a los datos de viento recopilados en el Archipiélago Canario, después de que éstos hayan sido filtrados en función de criterios de fiabilidad y longitud de registro.

Tal como se indicó en la metodología establecida en el capítulo 1, se pretende analizar la eficacia de las distintas leyes de distribución y de los parámetros de que dependen, estimados mediante la utilización de los métodos expuestos en el capítulo 4, basándose en la bondad del ajuste a los datos experimentales recopilados y en la capacidad del modelo para describir la potencia eólica media anual disponible.

Asimismo, se pretende en este capítulo estudiar la permanencia o no de los modelos de función de densidad de probabilidad que mejor describen los regímenes de viento del Archipiélago, medidos a 10 metros sobre el nivel del suelo, cuando se varía la altura.

Por último, se persigue analizar la influencia del grado de ajuste de las funciones de densidad de probabilidad que mejor describen los regímenes de viento del Archipiélago en la estimación de la potencia media producida por los aerogeneradores y en las horas equivalentes de operación, en función del tamaño de los mismos.

8.2. Peculiaridades energéticas de Canarias.

El Archipiélago Canario, región ultraperiférica de la Unión Europea, constituido por siete islas principales de pequeña dimensión (Lanzarote, Fuerteventura, Gran Canaria, Tenerife, La Gomera, La Palma y El Hierro) se encuentra situado al Noroeste del Continente Africano, entre las latitudes 27° 37' y 29° 25' Norte (situación subtropical) y las longitudes 13° 20' y 18° 10' al Oeste de Greenwich (Figura 8.1).

Figura 8.1. Situación de las Islas Canarias

El Archipiélago presenta, desde el punto de vista energético ciertas peculiaridades. Las características más destacables en este sentido son:

- Su alejamiento geográfico que dificulta enormemente la interconexión a las grandes redes de abastecimiento energético de los territorios continentales.
- Carencia de fuentes convencionales de energía, siendo su dependencia respecto al exterior prácticamente absoluta y polarizada hacia el petróleo.
- Escasez de agua potable, lo que origina que un porcentaje importante de la energía eléctrica generada se destine al bombeo y desalinización de agua con el objeto de cubrir las necesidades propias y las del relativamente importante número de turistas que visitan las islas anualmente.

Este cúmulo de circunstancias origina que en Canarias se haya planteado una estrategia propia en materia de energía¹, la cual puede sintetizarse en los puntos siguientes, varios de los cuales indican la necesidad de potenciar los recursos energéticos autóctonos, es decir, las energías renovables:

- Garantizar el abastecimiento energético.
- Reducir el grado de vulnerabilidad de los abastecimientos diversificando las fuentes.
- Fomentar la utilización racional de la energía.
- Reducir la dependencia energética del exterior. potenciando en lo posible la utilización de nuevas fuentes de energía.
- Garantizar una oferta de energía estable y segura.
- Minimizar los costes de la energía en los distintos sectores productivos.
- Contribuir a la protección y conservación del medio ambiente.

Como ha ocurrido en todo el Estado Español, la producción de energía eléctrica en el Archipiélago Canario no sólo ha crecido año tras año, como puede observase en la Tabla 8.1² donde se refleja la evolución de la energía eléctrica puesta en red en Canarias, por islas, sino que el ritmo de crecimiento ha sido superior al resto del Estado (Calero y Carta, 2004). El incremento anual de la demanda de energía eléctrica³ ha ido acompañado de un aumento de la generación de energías renovables, principalmente de la energía eléctrica eólica (Tabla 8.2); aunque la aportación de la tecnología eólica a la demanda energía eléctrica anual del Archipiélago es, en el año 2004, aún sólo del 3.90%.

La potencia eólica instalada en el Archipiélago a 31 de diciembre del año 2004 era de 136.390 kW⁴, desglosada por islas tal como se refleja en la tabla 8.3; aunque, habría que añadir las instalaciones que se encuentran en obras y en tramitación.⁵

¹ Plan Energético de Canarias (PECAN-89), aprobado por Resolución del Parlamento Autónomo Canario el 31 de enero de 1990. Posteriormente se elaboró el PECAN-2002, el cual fue aprobado en Consejo de Gobierno con restricciones, pero que no fue elevado al Parlamento de Canarias para su aprobación. Actualmente, se ha redactado el PECAN-2006, el cual aún o ha sido aprobado.

² Se entiende por energía eléctrica puesta en red a la energía bruta descontando los autoconsumos en las centrales de generación.

³ Con un ritmo promedio del 6.2% en el conjunto de Canarias entre los años 2003 y 2004.

 ⁴ Los aerogeneradores empleados ascienden a 411 y tienen potencias nominales unitarias comprendidas entre 90 y 660 kW.
 ⁵ Las solicitudes de instalación siguen incrementándose. La potencia eólica en trámite a 31 de diciembre de 2004

⁵ Las solicitudes de instalación siguen incrementándose. La potencia eólica en trámite a 31 de diciembre de 2004 era de 19,650 kW, según Estadísticas Energéticas de Canarias (2004).

Año	Lanzarote	Fuerteventura	Gran Canaria	Tenerife	La Palma	La Gomera	El Hierro	Total
1985	49.16	147.59	1,020.72	794.24	80.71	13.14	6.56	2,112.12
1990	293.94	143.78	1,594.02	1,253.91	103.68	22.35	10.84	3,422.51
1995	386.92	228.23	2,065.04	1,691,40	149.04	33.23	16.61	4,570.48
1996	405.48	258.54	2,128,61	1,761.06	149.10	33.67	17.29	4,753.75
1997	444.47	272.14	2,254.22	1,899.19	155.20	36.36	19.47	5,081.04
1998	487.12	293.12	2,385.35	2,046.16	171.13	40.33	21.18	5,444.40
1999	543.91	309.77	2,544.88	2,201.96	183.17	44.56	22.28	5,850.53
2000	594.66	341.58	2,720.37	2,367.53	198.06	47.14	22.99	6,292.32
2001	608.11	418.85	2,836.87	2,547.23	193.92	50.76	26.20	6,681.94
2002	658.23	456.36	2,893.88	2,697.63	196.09	54.83	27.07	6,984.08
2003	716.98	496.05	3,134.63	2,949.44	216.02	61.67	29.28	7,604.06
2004	771.14	533.99	3,359.00	3,144.99	234.36	63.66	32.90	8,140.05

Tabla 8.1. Energía eléctrica anual puesta en red en Canarias desglosada por islas (Gwh)⁶

Tabla 8.2. Producción de energía eléctrica eólica en Canarias desglosada por islas (MWh)

Año	Lanzarote	Fuerteventura	Gran Canaria	Tenerife	La Palma	La Gomera	El Hierro	Total
1990			215.98	102.00				317.98
1991			1,396.34	1,766.68				3,163.02
1992	4,204.30	970.40	4,607.65	3,193.05				12,975.40
1993	11,710.24	2,763.30	8,546.53	2,857.48			312.83	26,190.38
1994	18,092.20	21,831.17	13,582.36	5,241.76	2,743.63		836.32	62,327.45
1995	16,882.49	24,292.31	12,757.88	5,920.89	2,509.74		643.53	63,006.84
1996	18,755.57	26,257.45	15,367.68	6,292.89	2,512.60	370.60	963.50	70,520.30
1997	12,758.35	21,362.60	28,311.67	10,504.17	2,010.60	728.80	761.24	76,437.42
1998	17,443.34	25,195.20	40,068.87	23,217.23	8,209.20	600.80	921.38	115,379.85
1999	17,933.85	28,037.94	110,133.73	56,691.16	9,357.60	314.40	965.08	223,433.76
2000	16,107.80	25,722.93	126,444.63	62,463.67	8,336.40	796.80	991.46	243,007.39
2001	15,803.50	27,994.10	217,098.24	69,170.01	7,290.00	321.60	764.56	338,442.01
2002	14,917.58	27,688.18	239,402.89	67,605.04	7,494.30	462.68	511.68	358,082.35
2003	13,447.96	26,337.94	240,945.47	64,815.55	12,471.25	251.56	334.40	358,604.13
2004	9,307.77	22,844.82	225,129.37	65,757.11	13,004.63	511.86	327.36	336,882.92

⁶ Estadísticas Energéticas de Canarias (2004). Gobierno de Canarias. Consejería de Industria, Comercio y Nuevas Tecnologías. Dirección General de Industria y Energía.

Lanzarote	Fuerteventura	Gran Canaria	Tenerife	La Palma	La Gomera	El Hierro	Total
6,405	11,610	75,645	36,690	5,580	360	100	136,390

Tabla 8.3. Potencia eólica instalada en Canarias en el año 2004 desglosada por islas (kW)

Debido a que los niveles de integración eólica en los sistemas de pequeño y medio tamaño, como lo son los de las Islas Canarias, están condicionados por parámetros fundamentales como son la tensión y frecuencia (Medina, 1997), las potencias eólicas autorizadas para conectar a la redes eléctricas insulares se encuentran limitadas⁷. Dichas limitaciones exigirán, entre otras actuaciones, la utilización de aerogeneradores del alto rendimiento y fiabilidad y la utilización de modelos de estimación de la producción de energía eléctrica de origen eólico más precisos.

8.3. Los vientos en Canarias.

El Archipiélago Canario se ve sometido a lo largo del año a distintos tipos de vientos; unos regulares y dominantes y otros no constantes pero de regularidad local (Figura 8.2).

Figura 8.2. Direcciones predominantes de los vientos típicos del Archipiélago

⁷ ORDEN de 9 de septiembre de 2004, por la que se regulan las condiciones técnico-administrativas de las instalaciones eólicas ubicadas en Canarias.

Debido a su situación latitudinal y a la proximidad del anticiclón de las Azores, el Archipiélago Canario se ve afectado, durante casi todo el año, por los vientos alisios. Estos vientos están originados como consecuencia de la diferencia de presión entre dos zonas. Por una parte, una zona de altas presiones, situada al Norte, en torno al paralelo 30°, correspondiente al anticiclón de las Azores, y por otra, las zonas de bajas presiones ecuatoriales, situadas al Sur del Archipiélago.

Estos vientos presentan en Canarias dos componentes: vientos alisios inferiores, frescos y húmedos⁸, procedentes del NE y N, que actúan entre el nivel del mar y los 1.500 m. aproximadamente, y vientos alisios superiores, procedentes del NO, cálidos y secos⁹, que soplan por encima de los 1,500 m. (Hernández, 2003).

Los alisios varían en intensidad en relación al desplazamiento que sufre el anticiclón de las Azores a lo largo del año. Durante el verano, gran parte de la primavera y aún parte del otoño, la frecuencia del régimen de alisios es muy alta, siendo del 90 al 95% del tiempo durante el verano¹⁰ (Figura 8.3).

Figura 8.3. Frecuencia de los vientos alisios en verano

⁸ Al permanecer durante gran parte de su recorrido en contacto con una superficie oceánica fría (Corriente marina fría de Canarias).

⁹ Al no entrar en contacto con el mar.

¹⁰ En verano, el anticiclón se sitúa más lejos de Canarias, en las Azores, por lo que la acción de los alisios es más intensa.

En el invierno¹¹, el límite septentrional de la región de los alisios baja de latitud, pero aún quedan las islas Canarias dentro de esta zona de régimen de vientos, aunque cerca de su límite superior. En esta estación su frecuencia sólo llega al 50% (Figura 8.4.).

Figura 8.4. Frecuencia de los vientos alisios en invierno

Estos vientos alisios, al ser muy regulares y de velocidad media moderada, son ideales para el aprovechamiento de la energía eólica (Salva, 1982).

Además de los vientos alisios, soplan en el Archipiélago otros vientos, no constantes pero de una cierta regularidad local: Los vientos saharianos del Este, los vientos marítimos polares y los vientos tropicales del Sur.

En los vientos de componente Sur, y fundamentalmente Este, procedentes del Sahara, secos, calientes y cargados de polvo (calima) se pueden distinguir dos tipos principales. Los vientos saharianos en niveles bajos y en niveles altos. Los primeros se producen por el debilitamiento o alejamiento del anticiclón de las Azores, y su escasa influencia sobre le Archipiélago Canario. Suelen aparecer en otoño y primavera, cuando un anticiclón se sitúa sobre el norte de África o sur de Europa. La masa de aire recorre la superficie del desierto, disminuyendo su humedad y aumentando su temperatura, alcanzando las costas atlánticas africanas, adentrándose en el Océano Atlántico y llegando hasta Canarias. Los vientos

¹¹ En invierno, el anticiclón sitúa su núcleo muy cerca de Canarias, en Madeira, por lo que la acción de los alisios es menos importante.

saharianos de niveles altos se producen durante los meses más cálidos del verano. En esta situación el sol calienta la superficie del desierto. Esta masa de aire seco y muy cálido asciende a cotas más alta, provocando la presencia de una borrasca seca sobre el Sahara. Al alcanzar los niveles altos (sobre los 500 m. de altitud) la masa de aire se dirige hacia el Oeste, alcanzando las medianías y cumbres altas del Archipiélago Canario.

El viento marítimo polar se produce por la presencia de una fuerte borrasca a latitudes de 40° N, o a que el Anticiclón de las Azores se hace más extenso y su centro alcanza latitudes superiores. En ambos casos una masa de aire frío proveniente de latitudes altas y con extenso recorrido sobre el Atlántico, alcanza el Archipiélago Canario. Estas advenciones de aire frío, de componentes Norte y Noroeste, dejan sentir su efecto en invierno y se notan mucho más claramente por encima de lo 1500 a los 2000 metros que al nivel del mar (Font, 1956).

Los vientos tropicales, de componente Suroeste y Oeste, se producen por la llegada de borrascas atlánticas provenientes del sur de Azores. Actúan sobre todo en épocas invernales, provocando abundantes lluvias, especialmente, en las zonas altas de la vertiente meridional; aunque pueden transcurrir varios años sin que hagan acto de presencia en Canarias.

8.4. Campañas de medida del viento en Canarias.

El estudio en el pasado de los vientos en las Islas Canarias se ve muy condicionado por lo que entonces era la casi exclusiva misión de la Meteorología: Informar a la aviación, civil y militar, de las incidencias de la ruta a elegir y estado meteorológico de los terminales.

Como consecuencia de ello, casi sólo se hacían observaciones de viento en los aeropuertos y aeródromos. Sin embargo, con la finalidad de utilizar la energía eólica como fuente de generación de energía eléctrica, se han realizado diversas campañas de medida en el Archipiélago.

En la primera campaña, llevada a cabo por la Comisión Nacional de Energías Especiales (C.N.E.E.) en las décadas del 50 y del 60, se realizaron mediciones sistemáticas del viento en 20 estaciones seleccionadas por su alto potencial eólico, distribuidas así: 3 en Lanzarote, 4 en Fuerteventura, 6 en Gran Canaria, 4 en Tenerife y 3 en El Hierro (Salva, 1982).

Sin embargo, ya que los datos proporcionan solamente la velocidad media del viento, las mediciones se han realizado a diferentes alturas, la periodicidad de las medidas es muy grande,¹² se desconoce la fiabilidad¹³ y la longitud de los registros, éstos han sido descartados para su utilización en esta tesis.

¹² Diaria o mensual.

¹³ Algunos de los datos de la Comisión Nacional de Energías Especiales fueron obtenidos con energímetros y anemocinemógrafos.

La segunda campaña, fruto de un convenio firmado en junio de 1981 entre la Dirección General de Innovación Industrial y Tecnológico, la Comisión de Energías Especiales, el Instituto Nacional de Meteorología y ASINEL, tenía como objetivo la realización del denominado "Mapa Eólico Nacional", consistente en valorar el potencial eólico español (Tapia y Miro-Granada, 1982). Para ello instalaron 9 estaciones anemométricas, distribuidas de la siguiente forma: 1 en Lanzarote, 1 en Fuerteventura, 2 en Gran Canaria, 2 en Tenerife, 1 en La Palma, 1 en La Gomera y 1 en El Hierro.

Los aparatos empleados disponían de un microprocesador alimentado por baterías, y efectuaban los registros en cintas magnéticas. En general presentaron múltiples averías (rotura de las cintas, descarga de las baterías, etc.) y algunas estaciones no entraron nunca en funcionamiento¹⁴. La escasa fiabilidad de los datos y las limitaciones de las longitudes de los registros fueron los factores que aconsejaron descartar la utilización de dichos datos en esta tesis.

Además de estas campañas existen múltiples mediciones llevadas a cabo por el Instituto Nacional de Meteorología y el Ministerio de Agricultura¹⁵, pero cuyos datos o carecen de fiabilidad¹⁶ o no son válidos para un análisis energético ya que las estaciones no fueron ubicadas con esta finalidad, sino con el objetivo de medir el tiempo en puertos y aeropuertos, o en zonas agrícolas.

Desde el año 1986¹⁷ y fundamentalmente a partir del año 1992¹⁸ se han llevado a cabo medidas del viento en determinadas zonas del Archipiélago Canario con la finalidad de estudiar la viabilidad técnica y económica de la instalación de parques eólicos conectados a las redes eléctricas insulares. Los registros más antiguos de datos eólicos presentan, en general, el problema de haber sido realizados con anemómetros de baja fiabilidad¹⁹. Los datos registrados previa a la instalación de los parques eólicos que se encuentran actualmente en funcionamiento han sido también descartados, bien porque normalmente han sido tomados en las propias turbinas eólicas²⁰, o bien porque no se ha podido tener acceso a los mismos.

¹⁴ Primera Fase del Mapa Eólico de Canarias. Informe Final presentado por el Departamento de Ingeniería Mecánica de La Universidad de Las Palmas de Gran Canaria. Informe presentado en el marco del contrato firmado en agosto de 1989 entre la Dirección General de la Energía de la Consejería de Industria del Gobierno de Canarias, y la Universidad de Las Palmas de Gran Canaria para la realización del Mapa Eólico de Canarias, según resolución de 6 de junio de 1989 de la Consejería de Industria. ¹⁵ Instituto Nacional de Investigaciones Agrarias (INIA), Instituto Canario de Investigaciones Agrarias (ICIA),

Servicio de Protección de los Vegetales, Instituto para la Conservación de la Naturaleza (ICONA), Instituto para la Reforma y Desarrollo Agrario (IRYDA).

¹⁶ Datos registrados en papel continuo difíciles de leer, datos leídos por un operario en anemómetros clase I, medidas diurnas exclusivamente, medidas puntuales del viento, etc.

¹⁷ Pueden señalarse las mediciones realizadas en la isla de El Hierro con el propósito de instalar un parque eólico de 4.2 MW.; los registros realizados entre los meses de marzo de 1987 y abril de 1988, en la zona de Granadilla (Tenerife) y en la zona comprendida entre Arinaga y Juan Grande (Gran Canaria), con el objeto de confeccionar un proyecto de instalación de un parque eólico de 20 MW en cada una de las dos islas. (Proyecto 20/20).

¹⁸ Medidas realizadas, normalmente por las empresas fabricantes de los aerogeneradores, en los terrenos donde actualmente están instalados los distintos parques eólicos.

¹⁹ El funcionamiento de los equipos EMA-2 y EMA-9 utilizados fue muy irregular; siendo escasos los meses en que se logró registrar todos los días. ²⁰ Por lo tanto, suelen ser vientos turbulentos.

Las primeras campañas de medida del viento más extensas, fiables y aceptadas^{21.22} llevadas a cabo con la finalidad seleccionar zonas de aprovechamiento energético eólico han sido realizadas por el Departamento de Ingeniería Mecánica (DIM) de La Universidad de Las Palmas de Gran Canaria (ULPGC) y financias por Organismos Canarios (Calero y Carta, 2004; Carta et. al., 1994).

• En el año 1987 se inició una campaña de medida del viento en la isla de Fuerteventura, financiada por el Cabildo de la isla y realizada por el DIM de la Universidad Politécnica de Las Palmas, con el objeto de estimar el potencial energético eólico de la misma²³.

Inicialmente se disponía de 4 equipos de registro. Posteriormente, la Consejería de Industria y Energía adquirió 6 equipos más.

La estrategia utilizada durante la campaña fue la de mantener un mínimo de estaciones fijas durante todo el periodo de medida y trasladar las restantes a diversas zonas de Fuerteventura, tras un cierto tiempo de toma de datos. Debido a ello no existen registros anuales completos de datos de las estaciones que en su momento se instalaron.

• En agosto de 1989 se firma un contrato entre la Dirección General de la Energía, de la Consejería de Industria del Gobierno de Canarias, y la Universidad Politécnica de Las Palmas para la realización del Mapa Eólico de Canarias²⁴.

Para este proyecto se cuenta con los equipos utilizados en la campaña de medida de la isla de Fuerteventura y con 11 equipos más adquiridos para este fin.

• En 1992, se firma un contrato entre la Dirección General de Política Energética del Gobierno de Canarias y el DIM de la ULPGC para la confección de la Segunda Fase del Mapa Eólico de Canarias²⁵.

En este proyecto se cuenta con 11 de los equipos utilizados en la Primera Fase del Mapa Eólico y con 8 equipos más adquiridos por el DIM de la ULPGC. La estrategia utilizada fue idéntica a la empleada en Fuerteventura. Por lo tanto, no se dispone de registros anuales completos de datos de todas las estaciones.

²¹ Guía de las Energías Renovables en Canarias/15. (1996) Cinco Días. División de Energías Renovables del Instituto para la Diversificación y Ahorro de la Energía (IDAE).

²² Las Energías Renovables en las Islas Canarias (1995). División de Energías Renovables del IDAE.

²³ Estimación del Potencial Energético Eólico de la Isla de Fuerteventura (1990). Informe final sobre los trabajos desarrollados, presentado por el Departamento de Ingeniería Mecánica de la Universidad de Las Palmas de Gran Canaria. Convenio de colaboración firmado entre el Excmo, Cabildo de Fuerteventura y la Universidad Politécnica de Canarias.

²⁴Mapa Eólico de Canarias (Abril-1991). Informe final sobre los trabajos desarrollados, presentado por el Departamento de Ingeniería Mecánica de la Universidad Politécnica de Las Palmas. Trabajo adjudicado por la Consejería de Industria y Energía del Gobierno de Canarias a la Universidad Politécnica de Las Palmas.

²⁵ Mapa Eólico de Canarias. Segunda Fase (1994). Informe final sobre los trabajos desarrollados, presentado por el Departamento de Ingeniería Mecánica de la Universidad de Las Palmas de Gran Canaria. Resolución de 30 de octubre de 1992 de la Consejería de Industria del Gobierno de Canarias.

• En abril de 1993 se firma un convenio de colaboración entre la compañía eléctrica UNELCO, La Universidad de Las Palmas de Gran Canaria y la Fundación Universitaria de Las Palmas para la realización de estudios complementarios en la confección del mapa eólico de Canarias.

En este proyecto se cuenta con 12 equipos, de dos marcas diferentes (Davis- modelo Weather Monitor II y NRG- modelo DL9200), propiedad de la empresa UNELCO.

• En 1992, el Gobierno de Canarias funda el Instituto Tecnológico de Canarias, SA (ITC), adscrito a la Consejería de Industria, Comercio y Nuevas Tecnologías del Gobierno de Canarias²⁶. Sus actividades se enmarcan dentro de los campos de Investigación, Desarrollo e Innovación. Entre estas actividades ha destacado desde el principio el objetivo fundamental de impulsar y promover el uso de las energías renovables en Canarias. Para ello, se creó dentro del ITC un Centro de Investigación en Energía y Agua (CIEA), cuya labor principal se centraba en trabajos de I+D en el ámbito de la energía eólica y solar y sus aplicaciones en Canarias, destacando los sistemas de desalinización en sistemas aislados con fuentes de energías renovables (Carta y González. 2001; Carta et al. 2003a; Carta et al. 2003b; Carta et al. 2004; Subiela et al., 2004).

El ITC ha desarrollado diversos estudios eólicos que complementan los realizados por el DIM de la ULPGC .Para determinar el potencial eólico en el Archipiélago se han realizado campañas de medida con objeto de analizar la viabilidad técnica y económica para la implantación de parques eólicos concretos, y se han realizado Planes para la Protección de Infraestructuras Eólicas en diversas Islas, en los que se regulan las zonas apropiadas para la implantación de este tipo de instalaciones atendiendo a criterios de potenciales eólicos, limitaciones territoriales, usos compatibles del suelo, etc.

Para la realización de todos estos proyectos, el ITC ha instalado a lo largo de sus años de funcionamiento numerosas estaciones anemométricas en las zonas susceptibles de aprovechamiento eólico.

8.4.1. Estaciones inicialmente consideradas en el estudio.

Tras establecer como criterio de preselección la fiabilidad de los datos registrados, que los mismos dispusiesen de una periodicidad mínima de registro de una hora y un periodo mínimo de almacenamiento continuo de un mes, se seleccionaron inicialmente las estaciones anemométricas cuyos nombres, ubicaciones geográficas, equipos de registro empleados y periodos de registro disponibles se indican en las tablas y figuras siguientes. (Tablas 8.4-8.10) (Figuras 8.5-8.11).

²⁶ El instituto Tecnológico de Canarias (ITC) es una empresa pública, creada por el Gobierno de Canarias mediante Decreto 130/1992 de 30 de julio.

Nombre estación	Número	
Mala	1	
La Santa	2	
Salinas	3	
Famara I	4	LANZAROTE
Famara II	5	
Famara III	6	Contraction of the second s
Famara IV	7	
Тао	8	
Femés	9	2
Montaña	10	
Mina	10	- 12
El Volcán	11	8
Los Valles	12	
		Arrecife

Figura 8.5. Ubicación de las estaciones instaladas en la isla de Lanzarote

Num. Estación	Equipo	Año				Mes	es de r	egistro	o sele	cciona	dos			
Estacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
1	AT 2000	1989							•	•	•	•	•	٠
1	AL2000	1990	•	•	•					•	•	•	•	
2	AL2000	1989								•	•			
2	AT 2000	1989								•	•	•	•	٠
5	AL2000	1990	•	•	•					•	•	•	•	
		1989	•	•	•	•	•					•	•	•
4	AL2000	1990				•	•	•	٠	•				
		1993					•	•	•	•	•	•	•	
5	AL2000	1993							•	•	•	•		
6	Nomad	1993						•	•	•			•	•
7	Nomad	1993							•	•	•	•		
8	W.M.II	1993	•	•	•			•	•			•		
9	W.M.II	1993	•			•	•	•		•				
10	DL9200	1993												•
11	Nomad	1998							•	•	•	•	•	•

Tabla 8.4. Datos preseleccionados de la isla de Lanzarote

Num. Estación	Equipo	Año				Mes	es de r	egistro	o sele	cciona	dos		DCT NOV DIC				
			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC			
		1997	•	٠	•	•	•	٠	٠	•	•	•	٠	•			
		1998	•	•	•	•	•	•	•	•	•	•	•	•			
10	0200	1999	•	٠	•	•	•	•	•	•	•	•	•	•			
12	DL9200	2000	•	٠	•	•	•	•	•	•	•	•	•	•			
		2001	•	•	•	•	•	•	•	•	•	•	•	•			
		2002	•	•	•	•	•	•	•	•	•	•	•	•			

Tabla 8.4. Datos preseleccionados de la isla de Lanzarote (Continuación)

Figura 8.6. Ubicación de las estaciones instaladas en la isla de Fuerteventura

Num.	Equipo	Año	Meses de registro seleccionados											
Estacion	• •		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
		1987			•	٠	•		٠	٠	٠	٠		
1	AL2000	1988	•	•	•	•	•	•	٠	•	٠	•	•	•
		1989	•	•	•	•								
	AT 2000	1987					٠	٠	٠	٠	٠	٠	٠	•
2	AL2000	1988	•			•								
2	AT 2000	1987						•	٠	•	•			
5	AL2000	1988	•	•	•	•	•	•	•					
		1987						•	٠	•	•			
		1988	•	•	•	•	•	•	•	•	•	•	•	•
4	AL2000	1989	•	•	•	•	•	•	•	•	•	•	•	•
		1990	•	•	•	•	•	•	•	•	•	•	•	•
		1991	•	•	•	•								•
5	AL2000	1988									•	•	•	•
	1122000	1989	•	•	•	•	•	•	•		•	•	•	•
6	AL2000	1988									•	•	•	
		1989			•	•					•	•	•	•
7	AL2000	1988									•	•	•	•
		1989	•	•	•	•	•	•	•	•	•	•	•	•
8	AL2000	1988									•	•	•	
		1989			•	•	•	•	•	•	•	•	•	•
9	AL2000	1988									•	•	•	•
		1989			•	•	•	•	•	•	•	•	•	•
10	AL2000	1988									•	•	•	•
	AT 2000	1989			•	•	•	•	•	•	•	•	•	•
10	AL2000	1989						•	•	•	•	•	•	•
12	AL2000	1989					•	•	•	•		•	•	
13	AL2000	1988				•	•	•	•					
14	AL2000	1988				•	•	•	•					
15	AL2000	1988	•	•	•	•	•	•	•					
16	AL2000	1988				•	•	•	•					
17	AL2000	1988				•	•	•	•					
18	AL2000	1988				•	•	•	٠					

Tabla 8.5. Datos preseleccionados de la isla de Fuerteventura

Τ

Nombre	Num	
estación	InuIII	GRAN CANARIA
Arinaga	1	<u>B</u> ²⁵ 22 m
Juncal	2	20
Castillo Romeral	3	
Montaña Diablo	4	de Gran Canaria
Hoya María	5	
El Goro	6	
La Florida	7	
Tafira	8	
San Nicolás	9	6 28
Pozo Izquierdo 0	10	9
Gando 1	11	
Gando 2	12	
Gando 3	13	
Gando 4	14	
Playa de Vargas	15	
Punta Gaviota	16	
Pozo Izquierdo 1	17	3 29
Amagro	18	50
Bahía de Formas I	19	100
Bahía de Formas II	20	
Roque Prieto I	21	1000
Roque Prieto II	22	
Faro Sardina	23	
Montaña Pelada	24	
Punta de Gáldar	25	
Punta de Mármol	26	
Montaña de Guía	27	
Salinetas	28	
Pozo Izquierdo 2	29	

Figura 8.7. Ubicación de las estaciones instaladas en la isla de Gran Canaria

Num. Estación	Equipo	Año		Meses de registro seleccionados									dos						
Estacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC					
1	AT 2000	1989									٠	•	•	٠					
	AL2000	1990		•	•	•													
	W.M.II	1993	•	•		٠	۲	٠	٠	٠									
		1989								٠	٠	•	•	٠					
2	AL2000	1990	•	•	•	•	۲	٠			٠	•	٠	•					
		1991	•	•	•														

Tabla 8.6. Datos preseleccionados de la isla de Gran Canaria

Num. Estación	Equipo	Año		Meses de registro seleccionados										
LStacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
		1989									•	•		•
3	AL 2000	1990	•	•	•	•	•							
5	71L2000	1991								•	•			
		1992	•	•	•		•	•	•	•				
		1991							•	•	•	•	•	•
4	AL2000	1992	•	•	•	•	•	•	•	•	•	•	•	•
		1993					•	•	•	•	•	•	•	•
5	AL2000	1990			•	•								
ć		1993					•	•	•	•	•	•	•	•
6	Nomad	1994	•	•	•	•	•	•	•					
		1995	•	•										
-		1993								•	•	•	•	•
1	Nomad	1994	•	•	•	•	•	•	•				•	•
		1995	•	•	•	•	•	•	•	•	•			
8	W.M.II	1993		•	•	•	•	•	•	•				•
9	Nomad	1993					•				•	•	•	•
		1994	•	•	•	•	•	•	•	•				
		1993					•	•	•	•	•	•	•	•
10	Nomad	1994	•	•	•	•	•		•					•
10		1995	•	•	•	•	•	•	•	•	•	•	•	•
		1990	•	•	•	•								
		2000		•	•	•	•	•	•	•	•	•	•	•
11	Nomed	2001	•	•	•	•	•	•	•	•	•	•	•	•
11	Inomau	2002	•	•	•	•		•	•		•	•		•
		2003	•			•		•	•		•	•		•
		2004	•	•	•	•	•	•	•	•	•	•	•	
12	Nomad	2000			•									
		2001	•	•	•	•	•	•	•	•	•	•	•	
13	Nomad	2000												
15	Tiomad	2001											•	•
		2002	•								•	•		
14	Nomad	2000								•				
		2001	•	•	•	•	•	•	•	•	•	•	•	•
		2002			•		•							
15	Nomad	2003												
		2004												
16	Nomad	1995	•	•	•	•	•	•		•		•	•	
10	Tiomad	2002												
29		2002												
		2005	▼	•	•	•	•	•	•	▼	•	•	•	•

Tabla 8.6. Datos preseleccionados de la isla de Gran Canaria (Continuación)
Estacion Image: height of the second se	Num.	Equipo	Año		Meses de registro seleccionados										
17 Nomad 1996 \bullet <t< td=""><td>Estacion</td><td>11</td><td></td><td>ENE</td><td>FEB</td><td>MAR</td><td>ABR</td><td>MAY</td><td>JUN</td><td>JUL</td><td>AGO</td><td>SEP</td><td>OCT</td><td>NOV</td><td>DIC</td></t<>	Estacion	11		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1996	•		٠				٠		٠	٠	•	٠
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1997	٠	•	٠	•	•			•	٠	•	•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	NT 1	1998	•	•	•		•	•	٠	•	٠	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 /	Nomad	1999	•	•	•	•	•	•	•		٠	•	•	•
2001 •			2000	٠	٠	•	•	•	٠	٠	•	٠	•	•	٠
18 Nomad			2001	٠	•	•	•	•	•						
18 Nomad 1998 \bullet <t< td=""><td></td><td></td><td>1997</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td></t<>			1997	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
18 Nomad 1999 \bullet <t< td=""><td></td><td></td><td>1998</td><td>٠</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>٠</td><td>•</td><td>•</td></t<>			1998	٠	•	•	•	•	•	٠	•	٠	٠	•	•
18 Noniad 2000 •	10	Nomed	1999	•	•	•	•	•	•	٠	•	٠	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	Nomau	2000	•	•	•	•	•	•	•	•	•	•	•	•
2002 \bullet			2001	•	•	•	•	•	•	•	•	•	•	•	•
19 Nomad 1996 1997 \bullet			2002	•	•	•	•	•	•	٠	•	٠	•	•	•
19 Nomad 1997 \bullet <t< td=""><td></td><td></td><td>1996</td><td></td><td></td><td></td><td></td><td></td><td></td><td>٠</td><td>٠</td><td>٠</td><td></td><td>٠</td><td>٠</td></t<>			1996							٠	٠	٠		٠	٠
20 Nomad 1996 •	19	Nomad	1997	٠	٠	•	•	•	٠			٠			
20 Nomad 1996 • • • • • • • • • • • • • • • • • • •			1998		•	•		•	•						
21 AL2000 1994 1995 •	20	Nomad	1996						•	٠	•				
21 AL2000 1995 • <td< td=""><td>21</td><td>AT 2000</td><td>1994</td><td></td><td>٠</td><td>٠</td><td></td><td>۲</td><td></td><td>٠</td><td>•</td><td></td><td>٠</td><td>٠</td><td></td></td<>	21	AT 2000	1994		٠	٠		۲		٠	•		٠	٠	
22Nomad	21	AL2000	1995	٠	•	•	•	•	•	٠	•			•	
22 Nomad 1997 \bullet <t< td=""><td></td><td></td><td>1996</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٠</td><td>٠</td></t<>			1996											٠	٠
22Nomad1998 \bullet <td< td=""><td></td><td></td><td>1997</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>•</td></td<>			1997	•	•	•	•	•	•	٠	•	٠	•	•	•
22 Nomad 1999 \bullet <t< td=""><td></td><td></td><td>1998</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>•</td></t<>			1998	•	•	•	•	•	•	٠	•	٠	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	Nomad	1999	•	•	•	•			•	•	•	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2000	•						•	•	•	•	•	•
2002 •			2001	•	•	•	•	•	•	•	•	•	•	•	•
23 Nomad 1997 1998 1999 2000 2001 • <t< td=""><td></td><td></td><td>2002</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td></td><td></td><td></td><td></td></t<>			2002	•	•	•	•	•	•	٠	•				
23Nomad1998 \bullet <td< td=""><td></td><td></td><td>1997</td><td></td><td></td><td>•</td><td></td><td></td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>•</td></td<>			1997			•			•	٠	•	٠	•	•	•
23Nomad1999 \bullet <td< td=""><td></td><td></td><td>1998</td><td>•</td><td>•</td><td>•</td><td></td><td></td><td></td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>•</td></td<>			1998	•	•	•				٠	•	٠	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	Nomad	1999	•	•	•	•	•	•	٠	•	٠	•	•	•
201 •			2000	•	•	•	•	•	•	٠	•	٠	•	•	•
24 Nomad 1997 1997 •			2001	•		•	•	•	•	•	•	٠	•	٠	•
24 Nomad 1997 •	24	Nomed	1997						•	٠	•		•	•	•
25 Nomad 1997 1998 •	24	nomau	1997		•		•	•	•	•	•	٠	•		
25 Nomad 1998 \bullet <t< td=""><td>25</td><td>Nomad</td><td>1997</td><td></td><td></td><td></td><td></td><td>•</td><td>٠</td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>•</td></t<>	25	Nomad	1997					•	٠	٠	•	٠	•	٠	•
26Nomad1997 1998 1999 \bullet </td <td>23</td> <td>Inomau</td> <td>1998</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>٠</td> <td>•</td> <td>•</td> <td>•</td>	23	Inomau	1998	•	•	•	•	•	•	•	•	٠	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1997				•	•	•	٠	•	•	•	•	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	Nomad	1998	•	•	•	•	•	•		•	•	•	•	•
27Nomad 1998 1999 \bullet <t< td=""><td></td><td></td><td>1999</td><td>•</td><td>•</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			1999	•	•	•									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	Nomad	1998		٠	•	٠	۲	٠				٠	٠	٠
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	nomau	1999	•				•							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1998							٠	٠	٠	٠	٠	٠
	28	Nomad	1999	•	•	•	•	•	•	•	•	•	•		•
			2000	•	•										

Tabla 8.6. Datos preseleccionados de la isla de Gran Canaria (Continuación)

Nombre estación	Núm	
Granadilla	1	TENERIFE
Punta Teno	2	2000 Autor Alla
Teno Alto	3	
Faro Abona 1	4	
Faro Abona 2	5	1000
P. Moriscos I	6	14 Sama Cróz de Tenerite
P. Moriscos II	7	
P. Gomeros	8	
P. Negra	9	The second se
Guama Arico	10	
Granadilla II	11	
Abades	12	
Icor	13	
Montaña Toriño	14	
Teno Bajo	15	
El Rayo	16	
Bernardino	17	
Hoyos Blancos	18	
		· · · ·
		0

Figura 8.8. Ubicación de las estaciones instaladas en la isla de Tenerife

Num.	Equipo	Año				Mes	es de r	egistro	o sele	cciona	dos			
Estacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
		1989								•	٠	•	•	٠
		1990	•	•	•	•	•	•						
1	AL2000	1991			•	•	•	•	•	•	•	•	•	•
		1992	•	•	•	•	•	•	•		•	•	•	•
		1993		•	•	•	•	•	•	•	•	٠	•	
2	AT 2000	1989								•	•	•	•	•
	AL2000	1990	•	•	•	•	•	•						
3	AT 2000	1989								•				
	AL2000	1990			•									
	AT 2000	1989								•	•	•	•	•
4	AL2000	1990	•	•	•	•	•	•						
	Nomad	1993					•	•	•	•	•			•
5	Nomad	1993					•	•	•	•	•	•	•	•
6	AL2000	1993						•	•	•	•	•	•	•
7	Nomad	1993						•	•	•	•	•	•	•

Num. Estación	Equipo	Año				Mes	es de r	egistro	o sele	cciona	dos			
Estacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
8	Nomad	1993										•	•	•
9	Nomad	1993						•	•	•	•	•	•	•
10		2000	•	•	•	•	•	•	•	•	•		•	•
		1997					•	•	•	•	٠	٠	•	•
		1998	•	•	•	•	•	•	٠	•	٠	•	•	•
		1999	•	•	•	•	•	•	٠	•	٠	•	•	•
11	Nomed	2000	•	•	۲	•	•	•	٠	•	٠	•	•	•
11	INOIIIau	2001	•	•	۲		•	•	٠	•	٠	•	•	•
		2002	•	•	۲	•	•	•	٠	•	٠	•	•	•
		2003	•	•	۲	•	•						•	•
		2004	•	•	•	•	•	•	•	•	٠	٠	٠	•
12	Nomad	2001	•	٠	•	•	•	٠	•	•				
13	Nomad	2001			•	•	•	•	•					
1.4	Namad	2001										٠	٠	•
14	Nomad	2002	•	•	٠	•	•	•	٠	•	٠	•	•	•
		1995							٠	•	٠	٠		
15	Nomad	1996				•	٠			•	٠	•		
		1997	•				•	•						
		1995							٠	•	٠	٠	•	
		1996				•	•	•	•	•	•	•	•	•
16	Nomad	1997	•	•	•	•	•	•	•	•	•	•	•	•
		1998	•		۲	•	•	•	•	•	•	•	•	•
		1999	•	•	•	•	•	•	•	•	•	٠		
17	Nomad	1996						•	•	•	•	•	•	•
18	Nomad	1996						•	•	•	•	٠	•	•

Tabla 8.7. Datos preseleccionados de la isla de Tenerife (Continuación)

Nombre estación	Núm	
Martín Luis	1	$\sim a \sim \zeta \circ L$
Salemera	2	
Punta Gorda	3	
Juan Aladid	4	4
P. la Manga	5	
Las Caletas	6	
Fuencaliente	7	
Mon. Azufre	8	3-2-
Manchas Blan. I	9	
Manchas Blan. II	10	
Las Cabras	11	
Manchas Blan. IV	12	Santa Cruz
		de La Palma

Figura 8.9. Ubicación de las estaciones instaladas en la isla de La Palma

			r											
Num. Estación	Equipo	Año				Mes	es de r	egistro	o sele	cciona	dos			
Lotueton			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
1	AL2000	1991		•	•	•	•	•	•				•	
		1991		•	•	•	•	•	٠	•	٠		•	٠
2	AL2000	1992	•									•	•	•
		1993		•	•	•	•	•	٠	٠	•			
3	AL2000	1991		•	٠	٠	٠	•	٠	٠	٠		٠	
4	Nomad	1993				٠	٠	•	٠		٠	٠	٠	٠
5	AL2000	1993						٠	٠	٠	٠	•		
6	DL9200	1993											٠	٠
7	DL9200	1993											٠	٠
8	Nomad	1994											٠	٠
0	NT 1	1994											•	٠
9	Inomad	1995	•	•	•	•								

Tabla 8.8. Datos preseleccionados de la isla de La Palma

Num. Estación	Equipo	Año		Meses de registro seleccionados										
LStacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
10	Nomad	1995		٠	•	•								
11	Nomad	1995		•	•	•								
10	Nomad	2000									٠	•	•	•
12	Nomad	2001	•	•	•	•	•	•	٠	•	•			

Tabla 6.6. Datos preseleccionados de la Isla de La Fanna (continuación	Tabla 8.8. Datos	preseleccionados de la isla de La Palma (continuación)
--	------------------	---	---------------

Nombre	Númoro
estación	numero
Alojera	1
San Sebastián	2
Vallehermoso	3

Figura 8.10. Ubicación de las estaciones instaladas en la isla de La Gomera

Num. Estación	Equipo	Año	Meses de registro seleccionados											
Estacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
		1989		•	•	•	•	•	•		٠	٠	•	•
1	AL2000	1990		•	•	•	•	•	٠	•	٠	•	•	•
		1991	•	•	•	•	•	•					٠	•
		1990								•	•	•		•
r	AT 2000	1991	•	•	•	•	•	•	٠	•	٠	•	•	•
2	AL2000	1992	•	•	•	•	•							
		1993						•	٠	•	٠			•
2	Namad	1999											٠	•
3	nomad	2000	•	•	•	•	•	٠	•					

Tabla 8.9. Datos preseleccionados de la isla de La Gomera

Nombre estación	Núm
P. la Sal	1
Valverde	2
La Dehesa	3
Valverde CHEH	4
La Restinga	5
La Caleta	6

Figura 8.11. Ubicación de las estaciones instaladas en la isla de El Hierro

Num. Estación Equipo		Año	Meses de registro seleccionados											
Estacion			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
1	DL9200	1993												٠
n	AT 2000	1993						٠	٠	•	٠			•
Z	AL2000	2001	•	•	•	•	•	•	٠	•	•	•	•	•
3	Al2000	1994			•	•	•	٠						
		2000	•	•	•	•	•	٠	٠	•	•	•	•	٠
4	Nomad	2001	•	•	•	•	•	•	٠	•	•	•	•	•
4	nomau	2002	•	•	•	•	•	•						
		2004	•	•	•	•	•	•	٠	•	•	•	•	•
		2000				•	•	•				•	•	•
	Nomad	2001	•	•	•	•						•	•	•
		2002	•	•	•	•	•	•	•	•				
6	Nomad	2001			•	•	•	•	٠	•	٠	٠	•	
0	inoillau	2002	•			•	•	•						

Tabla 8.10. Datos preseleccionados de la isla de El Hierro

8.4.2. Estaciones utilizadas en el estudio.

A la hora de seleccionar las estaciones objeto de estudio en esta tesis se han tenido en cuenta los siguientes requisitos:

- Sólo se consideran aquellas estaciones de las que se disponga de años completos de datos de velocidades medias horarias. Este requisito se ha establecido debido al comportamiento estacional del viento.
- Cuando existan estaciones en un entorno muy próximo, por ejemplo en un parque eólico, solamente se analizará una estación en representación del grupo, debido a que los coeficientes de correlación entre ellas son muy altos y las formas de los histogramas son muy similares, lo que hace sospechar que proceden de una misma población de datos²⁷.

En función de las anteriores restricciones se han seleccionado las estaciones cuyos nombres, referencias, periodos de medida, número de velocidades medias horarias utilizadas, altura sobre el nivel del suelo y equipo de medida y registro empleados se indican en la tabla 8.11.

	Ref.	Periodo	Número	Altura de	Equipo
			de horas	registro	
		Años		m	
Los Valles	LA-12	1997-2002	52.580	18	DL9200
Taca	FU-01	1988	8.784	10	AL2000
Antigua	FU-07	1989	8.760	10	AL2000
Punta Jandía	FU-04	1988-1990	26.304	10	AL2000
Amagro	GC-18	1997-2002	52.580	10	NOMAD
Roque Prieto II	GC-22	97,98,01	26.112	10	NOMAD
Punta de Gáldar	GC-25	1998	8.760	15	NOMAD
Faro Sardina	GC-23	1999-2000	17.544	10	NOMAD
Gando 1	GC-11	2001-2002	17.520	10	NOMAD
Montaña Diablo	GC-04	1992	8.784	10	AL2000
Playa de Vargas	GC-15	2002-2004	26.304	10	NOMAD
Pozo Izquierdo 1	GC-17	2000	8.784	10	NOMAD
Granadilla II	TF-11	98-2000,02,04	35.088	10	NOMAD
El Rayo	TF-16	1997	8.760	10	NOMAD
Valverde CHEH	HI-04	2000,01,04	26.328	10	NOMAD
San Sebastián	GO-02	1991	8.760	10	AL2000

Tabla 8.11. Estaciones seleccionadas en el Archipiélago Canario para su análisis

Todos los datos utilizados proceden de sensores instalados a 10 metros sobre el nivel del suelo, con excepción de las estaciones anemométricas LA-12, ubicada en los Valles (Lanzarote), y la estación GC-25, Ubicada en Punta de Gáldar (Gran Canaria), que registran a alturas de 18 y 15 metros sobre el nivel del suelo, respectivamente²⁸.

 $^{^{27}}$ Sin embargo, la estación GC-29 muestra diferencias respecto a la estación GC-17. GC-29 registra datos a tres alturas sobre el nivel del suelo (10 m., 20 m y 40 m.) y los mismos se utilizan en el análisis que se realiza en el apartado 8.7.11.

²⁸ El ITC dispone de estaciones que registran la velocidad del viento a dos alturas, tales como GC-18 y GC-29.

Algunas especificaciones de los tres equipos utilizados (Tabla 8.11), se muestran en las tablas siguientes (Tabla 8.12 a Tabla 8.14).

Cada equipo de registro muestrea las características del viento en intervalos de tiempo diferentes. Existen equipos que permiten integrar los datos muestreados y realizar el almacenamiento de los mismos en intervalos diferentes de tiempo. Sin embargo, el equipo AL-2000, aunque muestrea la velocidad del viento cada 2 segundos, sólo permite registrar intervalos de datos de 1 hora. Por ello, se ha establecido como intervalo de datos de viento mínimo de una hora.

Respecto a las direcciones de viento, la mayoría de los equipos permiten almacenar las direcciones de viento siguiendo el mismo procedimiento que las velocidades. Sin embargo, el equipo AL-2000 proporciona directamente la rosa de frecuencias del viento.

Descripción física		
Tamaño	200x250x100 mm	
Peso	Aproximadamente 4.5 kg.	~
Caja	Acero calibre 14, sellada contra	
	intemperie	C SEDWIND
Muestreo	Conteo integrado cada 2	
Almacenamiento	segundos	
Dispositivo	Chip Eprom	
Capacidad	4 meses de almacenaje de	G
	velocidades medias horarias	
Alimentación	1 batería de 9 V.	
Rango Velocidad	0 a 255 millas por hora	
Rango dirección	8 orientaciones: N,S,E,W, NE,	
	SE, NW ,SW.	

Tabla 8.12. Especificaciones generales del equipo AL-2000

Tabla 8.13. Especificaciones generales del equipo Nomad

Descripción física	
Tamaño	254x203x152 mm
Peso	Aproximadamente 2.5 kg.
Caja	Weatherproof fiberglass,
	integrated lock hasps
Muestreo	Muestreo 1 Hz
Almacenamiento	
Dispositivo	Tarjeta RAM
Capacidad	32 K a 512 K bytes.
Alimentación	1 ó 2 baterías de 9 V.
Rango Velocidad	0 a 255.9 millas por hora
Rango dirección	0° a 360°

Descripción			
física			and the second
Tamaño	200x170x110 mm		and the second second
Peso	Aproximadamente 4.5 kg.	March SPRINGE INC	NRG Logger 9200
Caja	Weatherproof fiberglass with stainless & polyester		
Muestreo	Conteo integrado cada		
Almacenamiento	1segundo		
Dispositivo	Chip Eprom		
Capacidad	64 K o 256 K		NRG Bystems
Alimentación	2 baterías de 9 V.		L BAR NUL
Rango Velocidad	0 a 60 m/s		and the set
Rango dirección	0° a 360°		

Tabla 8.14. Especificaciones generales del equipo DL 9200

8.5. Proceso de análisis inicial realizado. Recursos informáticos

Como se puede observar en el capítulo 3, la mayoría de las leyes de distribución analizadas en esta tesis cuentan con un parámetro de posición. Sin embargo, si las leyes de distribución se tratan de ajustar a las velocidades medias horarias del viento que describen el comportamiento anual del viento, los parámetros de posición serán nulos, ya que la probabilidad que en un año no exista una hora con velocidad cero es prácticamente nula. Por tanto, con el objetivo de estudiar la influencia de los parámetros de posición también se analizarán en esta tesis los ajustes de las distintas leyes de distribución, excepto las híbridas, a las velocidades medias mensuales, ya que existe una muy alta probabilidad que la velocidad media mensual de cualquier mes del año no sea nula. Es decir, a partir de las velocidades de viento registradas, el proceso de análisis presenta dos vías de estudio (Figura 8.12). Una vía donde se analizan los ajustes de todas las leyes de distribución, excepto las que tengan parámetro de posición, a las velocidades medias horarias del viento. Otra vía, donde se analizan los ajustes de todas las leyes de distribución, excepto las que tengan parámetro de posición, a las velocidades medias horarias del viento. Otra vía, donde se analizan los ajustes de todas las leyes de distribución, excepto las nue tengan parámetro de posición, a las velocidades medias horarias del viento. Otra vía, donde se analizan los ajustes de todas las leyes de distribución, excepto las nue tengan

En la realización de esta Tesis, se ha requerido el uso intensivo de herramientas informáticas. Inicialmente, se llevo a cabo la programación, en lenguaje *Intel® Fortran-90*, de un elevado número de las subrutinas necesarias pare efectuar los cálculos matemáticos indicados en los capítulos anteriores. Dichas subrutinas abarcaron desde la estadística descriptiva hasta la optimización de sistemas de ecuaciones mediante diversos métodos. Posteriormente, la programación se llevó a cabo mediante el uso del software MathCad-2001i de MathSoft Engineering & Education, Inc., el cual facilita enormemente la programación de los cálculos matemáticos.

Como puede observarse en la tabla 8.11, no todas las estaciones disponen de un número suficiente de registros de datos para poder efectuar un estudio de velocidades medias mensuales. Por tanto, para analizar la influencia de los parámetros de posición en el grado de

los ajustes, el número de estaciones involucradas se reducirá a 3. Es decir, sólo se considerarán aquellas estaciones que dispongan de más de tres años de registro de datos (Tabla 8.15).

Figura 8.12. Proceso de análisis

8.6. Estadística numérica descriptiva de los datos eólicos seleccionados.

En las tablas 8.16 a 8.18 se indican algunas características de las velocidades medias horarias del viento registradas en las estaciones seleccionadas. Así, en la tabla 8.17 se

muestra, para cada una de las estaciones, las velocidades mínimas v_{\min} y máximas v_{\max} registradas en el periodo de estudio analizado, la frecuencia relativa ϕ_0 de velocidades de viento nulas y el denominado número efectivo de observaciones n^* .

El número efectivo de observaciones ha sido determinado mediante el uso de la ecuación (2.4) que se muestra en el apartado 2.5.1 de esta tesis²⁹. Si bien, Ramírez y Carta (2005)³⁰, han demostrado que el número de observaciones independientes es incluso inferior al que se obtiene con la ecuación (2.4). Según concluyen Ramírez y Carta (2005), el número de observaciones afecta a la determinación de los errores estándar, sin embargo, no afecta de forma apreciable a la forma de la distribución si se utiliza el método de máxima verosimilitud en la determinación de los parámetros de las leyes de distribución.

	Ref.	$v_{ m min}$	$v_{\rm max}$	ϕ_{0}	n^*
		m/s	m/s		
Los Valles	LA-12	0	22.05	5.52 10 ⁻⁴	712
Taca	FU-01	0	18.25	$5.62 \ 10^{-3}$	258
Antigua	FU-07	0	19.14	$2.63 \ 10^{-3}$	410
Punta Jandía	FU-04	0	19.91	0.015	588
Amagro	GC-18	0	24.20	$4.15 \ 10^{-3}$	719
Roque Prieto	GC-22	0	18.80	7.66 10 ⁻⁵	930
Punta de Galdar	GC-25	0	17.70	$4.68 \ 10^{-3}$	481
Faro Sardina	GC-23	0	24.30	1.14 10 ⁻⁴	481
Gando	GC-11	0	18.10	1.14 10 ⁻⁴	172
Montaña Diablo	GC-04	0	18.13	$6.03 \ 10^{-3}$	72
Playa de Vargas	GC-15	0	15.40	3.92 10 ⁻³	590
Pozo Izquierdo	GC-17	0.5	18.65	0	72
Granadilla	TF-11	0	19.80	$2.85 \ 10^{-3}$	45
El Rayo	TF-16	0	13.57	9.93 10 ⁻³	154
Valverde	HI-04	0	24.60	1.41 10 ⁻³	190
San Sebastián	GO-02	0	18.80	6.74 10 ⁻³	89

Tabla 8.16. Velocidades mínimas y máximas, probabilidades de calmas y números efectivos de observaciones

En la tabla 8.17 se muestran los seis primeros momentos respecto del origen de los datos observados en el periodo de estudio. El primer momento representa la media de la población y el tercer momento permiten estimar la densidad de potencia media experimental, como se indicó en el capítulo 2 de esta tesis. Los restantes momentos serán utilizados en diversos cálculos realizados en esta tesis, fundamentalmente, en la estimación de las leyes de distribución derivadas de la aplicación del principio de máxima entropía descrito en el capítulo 5 de esta tesis.

²⁹ Usando datos consecutivos. En GC-22 (97 y 98); en TF-11 (98-00); en HI-04 (2000-2001).

³⁰ Dicho artículo se ha incluido en el apéndice G de esta tesis, ya que el mismo ha surgido como fruto de las investigaciones llevadas a cabo en la misma.

	Primeros momentos estadísticos respecto del origen							
Estación	т	m'_2	m'_3	m'_4	m'_5	m_6'		
	m/s	m^2/s^2	m^3/s^3	m^4/s^4	m^5/s^5	m^6/s^6		
Los Valles	7.94	75.63	816.58	$9.68 \ 10^3$	$1.24 \ 10^5$	$1.67 \ 10^6$		
Taca	5.39	36.14	278.59	$2.38\ 10^3$	$2.22 \ 10^4$	$2.22 \ 10^5$		
Antigua	6.28	48.03	419.57	$4.07\ 10^3$	$4.30\ 10^4$	$4.92\ 10^5$		
Punta Jandía	6.98	58.78	547.40	$5.49\ 10^3$	$5.86 \ 10^4$	$6.60\ 10^5$		
Amagro	7.70	74.30	815.50	$9.76\ 10^3$	$1.25 \ 10^5$	$1.69 \ 10^6$		
Roque Prieto	5.95	44.26	372.73	$3.43 \ 10^3$	$3.38 \ 10^4$	$3.56 \ 10^5$		
Punta de Galdar	5.86	41.42	327.75	$2.83 \ 10^3$	$2.63 1^4$	$2.60\ 10^5$		
Faro Sardina	8.78	90.80	$1.03 \ 10^3$	$1.25 \ 10^4$	$1.62 \ 10^5$	$2.24 \ 10^6$		
Gando	6.23	48.43	415.72	$3.81 \ 10^3$	$3.66 \ 10^4$	$3.66 \ 10^5$		
Montaña Diablo	7.95	80.68	919.46	$1.13 \ 10^4$	$1.45 \ 10^5$	$1.93 \ 10^6$		
Playa de Vargas	6.32	50.82	459.17	$4.46\ 10^3$	$4.55 \ 10^4$	$4.83 \ 10^5$		
Pozo Izquierdo	7.92	79.39	888.16	$1.07 \ 10^4$	$1.34 \ 10^5$	$1.76 \ 10^6$		
Granadilla	6.90	62.95	663.45	$7.63 \ 10^3$	9.34 10 ⁴	$1.20 \ 10^6$		
El Rayo	4.28	24.08	155.41	$1.10\ 10^3$	$8.36\ 10^3$	$6.78 \ 10^4$		
Valverde	9.70	121.9	1730	$2.67 \ 10^4$	$4.35 \ 10^5$	$7.44 \ 10^6$		
San Sebastián	5.55	40.08	332.45	$3.05 \ 10^3$	$3.05 \ 10^4$	3.29 10 ⁵		

Tabla 8.17. Seis primeros momentos estadísticos respecto del origen

Tabla 8.18. Otras medidas numéricas descriptivas.

	S	CV	g_1	g_2	Мо	Ме
	m/s				m/s	m/s
Los Valles	3.56	0.448	0.345	2.76	6.5	7.62
Taca	2.67	0.496	0.373	2.88	3.5	5.23
Antigua	2.94	0.468	0.378	3.08	5.5	6.12
Punta Jandía	3.17	0.453	-0.093	2.65	7.5	7.1
Amagro	3.93	0.512	0.140	2.45	8.5	7.7
Roque Prieto	2.98	0.502	0.138	2.53	6.5	6
Punta de Galdar	2.66	0.454	0.107	2.83	5.5	5.8
Faro Sardina	3.71	0.423	-0.208	3.06	10.5	9.2
Gando	3.10	0.497	-0.191	2.20	7.5	6.6
Montaña Diablo	4.18	0.525	7.17 10 ⁻³	2.03	9.5	8.01
Playa de Vargas	3.30	0.522	0.013	2.05	7.5	6.4
Pozo Izquierdo	4.08	0.515	-0.063	2.12	8.5	8.13
Granadilla	3.92	0.568	0.289	2.14	3.5/9.5	6.7
El Rayo	2.40	0.559	0.231	2.37	2.5	4.17
Valverde	5.29	0.546	0.06	2.20	2.5/9.5	9.8
San Sebastián	3.05	0.550	0.241	2.67	7.5	5.67

En la tabla 8.18 se muestran la desviación típica s, el coeficiente de variación cv, el coeficiente de asimetría g_1 , el coeficiente de curtosis g_2 , la moda Mo y la mediana Me de los datos registrados en las diversas estaciones seleccionadas. Los histogramas de velocidades medias horarias de las distintas estaciones se muestran en la figura 8.13 y la figura 8.14.

Figura 8.13. Histogramas de velocidades medias horarias

Figura 8.14. Histogramas de velocidades medias horarias

Del análisis de las tablas 8.16 a 8.18 y la observación de las figuras 8.13 y 8.14, se desprende la existencia "a grosso modo" de dos tipos de histogramas. Histogramas unimodales e histogramas bimodales. Por tanto, la ley de distribución de Weibull, ampliamente utilizada para describir los regímenes de viento en la literatura científica, se intuye que no describirá adecuadamente el comportamiento de muchos de los vientos que actúan en el Archipiélago Canario.

En las tablas 8.19 a 8.21 se indican algunas características de las velocidades medias mensuales del viento registradas en las estaciones seleccionadas.

elocidades med	lias mensuales nulas			
	Ref.	v_{\min}	$v_{\rm max}$	\$\$ _0
		m/s	m/s	
Los Valles	LA-12	4.89	12.05	0
Amagro	GC-18	4.88	9.71	0
Granadilla	TF-11	4.88	9.71	0

Tabla 8.19. Velocidades medias mensuales mínimas y máximas y probabilidades de velocidades medi

T 11 0 00 0 '	•		. 17 .	, 1	
Table X 70 Note	nrimarag	momontog	Actadictions	rachacta	al origan
1 a 0 a 0.20. SUB		momentos	Ustauisticus		
	0				

	Primeros momentos estadísticos respecto del origen								
Estación	т	m'_2	m'_3	m'_4	m'_5	m_6'			
	m/s	m^2/s^2	m^3/s^3	m^4/s^4	m^5/s^5	m^6/s^6			
Los Valles	7.94	65.69	566.45	$5.07 \ 10^3$	$4.70 \ 10^4$	4.49 10 ⁵			
Amagro	7.70	62.46	536.42	$4.83 \ 10^3$	$4.52 \ 10^4$	$4.58 \ 10^5$			
Granadilla	6.90	49.13	359.91	$2.71 \ 10^3$	$2.08 \ 10^4$	$1.64 \ 10^5$			

Tabla 8.21. Otras medidas numéricas descriptivas										
	S	CV	g_1	g_2	Мо	Me				
	m/s				m/s	m/s				
Los Valles	1.65	0.207	0.491	2.30	7.5	7.45				
Amagro	1.89	0.246	0.378	2.14	6.5	7.53				
Granadilla	1.22	0.176	0.165	2.11	6.5	6.67				

En la tabla 8.21 se muestran la desviación típica s, el coeficiente de variación cv, el coeficiente de asimetría g_1 , el coeficiente de curtosis g_2 , la moda Mo y la mediana Me de las velocidades medias mensuales registradas en las tres estaciones seleccionadas. Los histogramas de velocidades medias mensuales de las tres estaciones se muestran en la figura 8.15. Dichos diagramas corroboran la factibilidad del empleo de distribuciones continuas de probabilidad que posean parámetro de posición.

Figura 8.15. Histogramas de velocidades medias mensuales

8.7. Análisis de la bondad del ajuste de las leyes analizadas a las velocidades medias horarias.

En este apartado de la tesis se muestran y analizan los resultados obtenidos de la aplicación de los métodos recogidos en el capítulo 4 a las distintas leyes de distribución descritas en los capítulos 3 y 5.

Para comparar la bondad del ajuste de las distintas leyes de distribución a los datos de la muestra se utilizará una prueba de ajuste. Asimismo, se determinará la diferencia relativa entre las potencias eólicas medias disponibles por unidad de superficie (ecuación 2.31) obtenidas con los modelos y con los datos de la muestra.

Como se ha indicado en el capítulo 2 de esta tesis, han sido varios las pruebas de ajuste que se han sido empleadas en la literatura científica. Ramírez y Carta (2005) señalan que la mayoría de las pruebas empleadas se basan en la utilización de variables aleatorias. Sin embargo, Ramírez y Carta (2005) demuestran que las velocidades del viento registradas a intervalos horarios muestran dependencia (autocorrelación). Este hecho no suele ser contemplado en prácticamente ninguno de los artículos, ponencias o libros publicados sobre energía del viento. En esta tesis no se tendrá en cuenta la dependencia entre las velocidades horarias de viento. Ello permitirá comparar los resultados obtenidos con los disponibles en la literatura científica en los cuales la dependencia entre datos no es considerada.

Muchos de los trabajos sobre energía eólica que utilizan leyes de distribución continuas emplean como prueba de ajuste el denominado coeficiente R^2 (ecuación 2.29). Por idéntico motivo al expresado en los párrafos anteriores, esta prueba de ajuste será la utilizada en esta tesis.

Debido a que la mayoría de las distribuciones analizadas en esta tesis no pueden expresarse en forma cerrada, no es posible linealizarlas algebraicamente. Sin embargo, una vez el modelo ha sido estimado, éste puede linealizarse numéricamente entre dos valores elegidos. La posición de los datos representados puede entonces ajustarse para las mismas cantidades que el modelo estimado. El resultado es un gráfico lineal de comparación de datos y modelo estimado que proporciona información visual de cuánto se ajusta el modelo a los datos. Por supuesto, el rango de dibujo (v_{min} , v_{max}) es elegido para que incluya todos los datos de velocidades registradas.

Para las distribuciones que no pueden expresarse en forma cerrada las ordenadas Op_i de la línea recta para cada observación ordenada de menor a mayor viene dada por:

$$Op_{i} = F(v_{\min}) + \frac{F(v_{\max}) - F(v_{\min})}{v_{\max} - v_{\min}} (v_{i} - v_{\min})$$
(8.1)

El ajuste de las distribuciones acumuladas F a la relación lineal (8.1) es entonces:

$$\Delta_i = F(v_i) - Op_i \tag{8.2}$$

La posición media de los datos representados se ajusta mediante la ecuación propuesta por Bury (1999):

$$Od_i = \frac{i - 0.3}{n + 0.4} - \Delta_i$$
(8.3)

Los puntos representados de Od_i en función de v_i seguirán más o menos el modelo lineal (8.1), si v_i procede de la distribución que se analiza.

El valor que se considerará a la hora de decidir el grado de ajuste de una distribución será el coeficiente de correlación asociado con el ajuste de los datos R^2 . Tal parámetro se puede consultar en el apartado 2.7.4 de la tesis.

Para estimar las diferencias relativas entre las potencias eólicas medias disponibles por unidad de superficie obtenidas con los modelos (8.5) y con los datos de la muestra (8.6) utilizaremos la ecuación (8.4).

$$\varepsilon = \frac{\overline{P}_m - \overline{P}_M}{\overline{P}_m} 100 \tag{8.4}$$

$$\overline{P}_{M} = \frac{1}{2}\rho \overline{v^{3}}$$
(8.5)

$$\overline{P}_{m} = \frac{1}{2n} \rho \sum_{i=1}^{n} v_{i}^{3}$$
(8.6)

Las ecuaciones (8.5) y (8.6) suponen que la densidad del aire ρ es independiente de la velocidad del viento³¹. Como valor de la densidad se utilizará en esta tesis el valor típico de 1.225 kg m⁻³ utilizado en la mayoría de la bibliografía relacionada con este tema. En la estimación de la ecuación (8.4) el valor asignado a ρ no tiene ninguna influencia.

³¹ Según estudios realizados por Carta y Mentado (Departamento de Ingeniería Mecánica de la ULPGC; Instituto Tecnológico de Canarias), existe relación entre la densidad del aire y la velocidad del viento. Carta y Mentado, en comunicación oral, me aconsejan la utilización de las ecuaciones (8.5) y (8.6), pero mediante el empleo de la densidad media del lugar. Según Carta y Mentado, un modelo desarrollado por ellos que tiene en cuenta la relación entre la densidad del viento se encuentra en proceso de revisión por los revisores de la distinguida revista internacional de energías renovables Energy Conversion and Management.

8.7.1. Método momentos: Distribuciones no híbridas.

En el apéndice A.1 se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los momentos, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

En la tabla 8.22 se muestra un resumen de los resultados obtenidos de R^2 con 9 leyes de distribución unimodales aplicadas a las distintas estaciones. La tabla 8.22 ordena las nueve leyes de mayor a menor magnitud del coeficiente R^2 obtenido en cada estación.

En la tabla 8.23 se muestra un resumen de los resultados obtenidos de ε con 9 leyes de distribución unimodales aplicadas a las distintas estaciones. La tabla 8.23 ordena las nueve leyes de menor a mayor magnitud del coeficiente ε obtenido en cada estación.

Del análisis de la tabla 8.22 se desprende que, con excepción de la estación de los Valles (LA12), la distribución de Weibull de dos parámetros no es la que mejor se ajusta a los datos de viento muestrales. Son las leyes Gamma Generalizada de tres parámetros, Normal-Truncada y Beta 3, las distribuciones que mejor se ajustan a los datos de viento registrados en las distintas estaciones. En estas tres leyes, como se puede observar en el apéndice A.1, las diferencias entre las magnitudes de los parámetros R^2 , obtenidos en una estación dada, se presentan en la tercera cifra decimal. En las figuras 8.16 a 8.21 se muestran, a título de ejemplo, las diferencias visuales entre estas tres densidades de probabilidad en las estaciones GC-18 y TF-11.

Las leyes de distribución que muestran peor representación de los datos muestrales son las distribuciones Beta Prima, Logaritmo Normal de 2 parámetros y Gaussiana Inversa de 2 parámetros.

Asimismo, se puede observar en la tabla 8.23 que también son las leyes Gamma Generalizada de tres parámetros, Beta 3 y Normal Truncada las que menores diferencias presentan con las potencias medias obtenidas con los datos muestrales. Ello se debe al hecho que los parámetros de las mismas fueron calculados involucrando los terceros momentos respecto del origen de la muestras, tal como puede observarse en las ecuaciones (4.21), (4.80) y (4.106).

Por tanto, se concluye que, cuando se utiliza el método de los momentos para estimar los parámetros de las nueve leyes unimodales señaladas en la tabla 8.22, las distribuciones Gamma Generalizada de tres parámetros, Beta 3 y Normal-Truncada representan mejor los datos de viento y describen mejor la densidad de potencia eólica en las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica. Tabla 8.22. Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud del coeficiente R² (Momentos)

0 0 10 10				Orden (le mayor a mo	enor R ²			
Estac.	1	2	3	4	5	9	L	8	6
LA-12	Weibull-2	GammaG-3	Beta-3	Normal-Tr	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
FU-01	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
FU-07	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
FU-04	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-18	GammaG-3	Normal-Tr	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-22	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-25	Normal-Tr	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-23	Normal-Tr	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-11	GammaG-3	Normal-Tr	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-04	Beta-3	GammaG-3	Weibull-2	Rayleigh-1	Normal-Tr	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-15	GammaG-3	Beta-3	Normal-Tr	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-17	GammaG-3	Beta-3	Normal-Tr	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-11	GammaG-3	Beta-3	Normal-Tr	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-16	GammaG-3	Beta-3	Normal-Tr	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
HI-04	GammaG-3	Beta-3	Normal-Tr	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GO-02	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima

Tabla 8.23. Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud del coeficiente ɛ (%) (Momentos)

	6	Rayleigh-1	BetaPrima	Rayleigh-1	Rayleigh-1	BetaPrima	BetaPrima	Rayleigh-1	Rayleigh-1	BetaPrima							
	8	BetaPrima	LogNorm-2	BetaPrima	BetaPrima	LogNorm-2	LogNorm-2	BetaPrima	BetaPrima	LogNorm-2							
	L	LogNorm-2	GaussInv-2	LogNorm-2	LogNorm-2	GaussInv-2	GaussInv-2	LogNorm-2	LogNorm-2	GaussInv-2							
ayor ɛ	9	GaussInv-2	Rayleigh-1	GaussInv-2	GaussInv-2	Gamma-2	Rayleigh-1	GaussInv-2	GaussInv-2	Rayleigh-1	Gamma-2						
de menor a m	5	Gamma-2	Gamma-2	Gamma-2	Gamma-2	Rayleigh-1	Gamma-2	Gamma-2	Gamma-2	Gamma-2	Weibull-2	Rayleigh-1	Rayleigh-1	Rayleigh-1	Weibull-2	Weibull-2	Weibull-2
Orden	4	Normal-Tr	Weibull-2	Normal-Tr	Weibull-2	Weibull-2	Weibull-2	Weibull-2	Weibull-2	Weibull-2	Rayleigh-1	Weibull-2	Weibull-2	Weibull-2	Rayleigh-1	Normal-Tr	Rayleigh-1
	3	Weibull-2	Normal-Tr	Weibull-2	Normal-Tr	GammaG-3	Normal-Tr										
	2	GammaG-3	Beta-3	Beta-3	Beta-3	Beta-3	Beta-3	Beta-3	GammaG-3	Beta-3	Beta-3	Beta-3	GammaG-3	Beta-3	Beta-3	Rayleigh-1	Beta-3
	1	Beta-3	GammaG-3	GammaG-3	GammaG-3	GammaG-3	GammaG-3	GammaG-3	Beta-3	GammaG-3	GammaG-3	GammaG-3	Beta-3	GammaG-3	GammaG-3	Beta-3	GammaG-3
Enters	Estac.	LA-12	FU-01	FU-07	FU-04	GC-18	GC-22	GC-25	GC-23	GC-11	GC-04	GC-15	GC-17	TF-11	TF-16	HI-04	GO-02

Las leyes Gamma Generalizada de tres parámetros, Normal-Truncada y Beta 3, son unimodales. Por tanto, a pesar de ser las distribuciones que mejor han representado los distintos regímenes de viento del Archipiélago Canario, no representan adecuadamente a estaciones tales como TF-11 (Figuras 8.19 a 8.21), la cual muestra bimodalidad.

Figura 8.16. Distribución Gamma Generalizada de tres parámetros (GC-18)

Figura 8.17. Distribución Normal truncada (GC-18)

Asimismo, puede observarse en las figura 8.17 y 8.20 que la ley Normal Truncada tiene en cuenta la frecuencia de vientos nulos, mientras las restantes leyes no-híbridas no.

Figura 8.18. Distribución Beta de tres parámetros (GC-18)

Figura 8.19. Distribución Gamma Generalizada de tres parámetros (TF-11)

Figura 8.20. Distribución Normal truncada (TF-11)

Figura 8.21. Distribución Beta de tres parámetros (TF-11)

8.7.2. Método momentos: Distribuciones híbridas.

En el apéndice A.2 se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los momentos, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

En la tabla 8.24 se muestra un resumen de los resultados obtenidos de R² con 8 leyes de distribución híbridas aplicadas a las distintas estaciones. La tabla 8.24 ordena las nueve leyes de mayor a menor magnitud del coeficiente R² obtenido en cada estación. En la tabla 8.25 se muestra un resumen de los resultados obtenidos de ε con 8 leyes de distribución unimodales aplicadas a las distintas estaciones. La tabla 8.25 ordena las nueve leyes de menor a mayor magnitud del coeficiente ε obtenido en cada estación.

Del análisis de la tabla 8.24 se desprende, que las leyes que mejor se ajustan a los datos de viento de la mayoría de las estaciones analizadas son las leyes Gamma Generalizada de tres parámetros y Beta 3. La distribución de Weibull de dos parámetros ocupa en las estaciones analizadas la tercera (50% de los casos) o cuarta (37.5% de los casos) posición. En las estaciones LA-12 y FU-07 la distribución de Weibull de dos parámetros ocupa la primera y segunda posición, respectivamente. Estas estaciones presentan asimetría positiva y son leptocúrticas (presentan un pico relativamente alto). Como se puede observar en el apéndice A.2, las diferencias entre las magnitudes de los parámetros R², obtenidos en las estaciones LA-12 y FU-07 con el empleo de la distribución Gamma Generalizada de tres parámetros y la distribución de Weibull de 2 parámetros, se presentan en la cuarta y tercera cifra decimal, respectivamente. En las figuras 8.22 a 8.25 se muestran, a título de ejemplo, las diferencias visuales entre estas dos densidades de probabilidad en las estaciones LA-12, y FU-07.

Las leyes de distribución que muestran peor representación de los datos muestrales son las distribuciones Beta Prima, Logaritmo Normal de 2 parámetros y Gaussiana Inversa de 2 parámetros.

Asimismo, se puede observar en la tabla 8.25 que también son las leyes Gamma Generalizada de tres parámetros y Beta 3 las que menores diferencias presentan con las potencias medias obtenidas con los datos muestrales. El motivo es que en la estimación de los parámetros se han involucrado los terceros momentos respecto del origen de las muestras, tal como se refleja en las ecuaciones (4.27) y (4.84).

Por tanto, se concluye que, cuando se utiliza el método de los momentos para estimar los parámetros de las ocho leyes híbridas señaladas en la tabla 8.24, las distribuciones Gamma Generalizada de tres parámetros y Beta 3 representan mejor los datos de viento y describen

Tabla 8.24. Leye	s de distribució	n estándar híbr.	idas, ordenada:	s en función de	e la magnitud d	el coeficiente F	R ² (Momentos	()
L				Orden de may	or a menor R ²			
Estaciones	-	2	3	4	5	6	L	8
LA-12	Weibull-2	GammaG-3	Beta-3	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
FU-01	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
FU-07	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
FU-04	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-18	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-22	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-25	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-23	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-11	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-04	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-15	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-17	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-11	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-16	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
HI-04	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GO-02	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima

mejor la densidad de potencia eólica en las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica.

$\widehat{\mathbf{s}}$
omentos
Ž
ω ω
coeficiente
del
p
ı magnitu
e 16
n de
nciór
n fur
as ei
ordenad
idas,
híbr
ar
estánd
ción
ribu
list
de (
es (
ey
5. I
25
a 8
abl
Ĥ

F			-	Orden de mer	ior a mayor ϵ			
Estaciones	1	2	3	4	5	9	L	8
LA-12	Beta-3	GammaG-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima	Rayleigh-1
FU-01	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	Rayleigh-1	BetaPrima
FU-07	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima	Rayleigh-1
FU-04	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima	Rayleigh-1
GC-18	GammaG-3	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
GC-22	GammaG-3	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
GC-25	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima	Rayleigh-1
GC-23	Beta-3	GammaG-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima	Rayleigh-1
GC-11	GammaG-3	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
GC-04	Beta-3	GammaG-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-15	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-17	Beta-3	GammaG-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-11	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-16	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
HI-04	Beta-3	GammaG-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GO-02	Rayleigh-1	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima

Figura 8.22. Distribución Gamma Generalizada híbrida de tres parámetros (LA-12)

Figura 8.23. Distribución Weibull híbrida de 2 parámetros (LA-12)

En esta estación la frecuencia de vientos nulos es muy baja (tabla 8.16), por lo cual, las distribuciones híbridas analizadas prácticamente no difieren de sus homólogas no híbridas.

Figura 8.24. Distribución Gamma Generalizada híbrida de tres parámetros (FU-07)

Figura 8.25. Distribución Weibull híbrida de 2 parámetros (FU-07)

En FU-07 la frecuencia relativa de vientos nulos de la muestra es de 2.63 10^{-3} . Dicha frecuencia apenas resulta perceptible en las figuras 8.24 y 8.25.

8.7.3. Método máxima verosimilitud: Distribuciones no híbridas.

En el apéndice B.1 se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de máxima verosimilitud, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

En la tabla 8.26 se muestra un resumen de los resultados obtenidos de R^2 con 9 leyes de distribución híbridas aplicadas a las distintas estaciones. La tabla 8.26 ordena las nueve leyes de mayor a menor magnitud del coeficiente R^2 obtenido en cada estación.

En la tabla 8.27 se muestra un resumen de los resultados obtenidos de ε con 9 leyes de distribución unimodales aplicadas a las distintas estaciones. La tabla 8.27 ordena las nueve leyes de menor a mayor magnitud del coeficiente ε obtenido en cada estación.

Del análisis de la tabla 8.26 se desprende que, con excepción de la estación de los Valles (LA12), la distribución de Weibull de dos parámetros no es la que mejor se ajusta a los datos de viento muestrales, cuando los parámetros son estimados mediante el método de Máxima Verosimilitud. Son las leyes Gamma Generalizada de tres parámetros, Normal-Truncada y Beta 3, las distribuciones que mejor se ajustan a los datos de viento registrados en las distintas estaciones.

Las leyes de distribución que muestran peor representación de los datos muestrales son las mismas que las obtenidas en el apartado 8.7.1. Es decir, las distribuciones híbridas BetaPrima, LogaritmoNormal de 2 parámetros y GaussianaInversa de 2 parámetros.

En las figuras 8.26 a 8.21 se muestran, a título de ejemplo, las diferencias visuales entre estas tres últimas densidades de probabilidad en las estaciones LA-12 y TF-11, las cuales presentan histogramas de frecuencia muy distintos. Asimismo, se puede observar en la tabla 8.27 que también son las leyes Gamma Generalizada de tres parámetros, Normal-Truncada y Beta 3 las que menores diferencias presentan con las potencias medias obtenidas con los datos muestrales, en la mayoría de las estaciones analizadas.

Por tanto, se concluye que, cuando se utiliza el método de la Máxima Verosimilitud para estimar los parámetros de las nueve leyes unimodales señaladas en la tabla 8.26, las distribuciones Gamma Generalizada de tres parámetros, Normal Truncada y Beta 3 representan mejor los datos de viento y describen mejor la densidad de potencia eólica en las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica.

Tabla 8.26. Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud del coeficiente R² (M.Veros.)

	9	GaussInv-2															
	8	BetaPrima															
	7	LogNorm-2															
enor R ²	6	Rayleigh-1	Gamma-2	Rayleigh-1	Rayleigh-1	Gamma-2	Gamma-2	Rayleigh-1	Gamma-2	Gamma-2	Gamma-2	Gamma-2	Gamma-2	Rayleigh-1	Rayleigh-1	Gamma-2	Gamma-2
le mayor a me	5	Gamma-2	Rayleigh-1	Gamma-2	Gamma-2	Rayleigh-1	Rayleigh-1	Gamma-2	Rayleigh-1	Rayleigh-1	Rayleigh-1	Rayleigh-1	Weibull-2	Gamma-2	Gamma-2	Weibull-2	Rayleigh-1
Orden d	4	Normal-Tr	Beta-3	Weibull-2	Weibull-2	Weibull-2	Rayleigh-1	Weibull-2	Weibull-2	Rayleigh-1	Weibull-2						
	3	Beta-3	Normal-Tr	Weibull-2	Weibull-2	Weibull-2	Weibull-2	Weibull-2	Weibull-2	Beta-3	Normal-Tr	Normal-Tr	Beta-3	Normal-Tr	Beta-3	Beta-3	Beta-3
	2	GammaG-3	Weibull-2	Normal-Tr	Normal-Tr	Normal-Tr	Normal-Tr	GammaG-3	GammaG-3	Normal-Tr	Beta-3	Beta-3	Normal-Tr	Beta-3	Normal-Tr	Normal-Tr	Normal-Tr
	1	Weibull-2	GammaG-3	GammaG-3	GammaG-3	GammaG-3	GammaG-3	Normal-Tr	Normal-Tr	GammaG-3							
Eator	Estac.	LA-12	FU-01	FU-07	FU-04	GC-18	GC-22	GC-25	GC-23	GC-11	GC-04	GC-15	GC-17	TF-11	TF-16	HI-04	GO-02

Tabla 8.27. Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud del coeficiente ϵ (%)(M. Veros.)

Π

				Orden	de menor a m	ayor e			
	1	2	3	4	5	6	7	8	6
Ğ	ammaG-3	Weibull-2	Normal-Tr	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
Z	lormal-Tr	GammaG-3	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
\cup	jammaG-3	Normal-Tr	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
_	Rayleigh-1	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
\sim	GammaG-3	Rayleigh-1	Normal-Tr	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
-	GammaG-3	Normal-Tr	Weibull-2	Rayleigh-1	Beta-3	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
-	GammaG-3	Normal-Tr	Weibull-2	Rayleigh-1	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
-	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
-	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
	Beta-3	GammaG-3	Rayleigh-1	Normal-Tr	Weibull-2	Gamma-2	BetaPrima	GaussInv-2	LogNorm-2
	GammaG-3	Beta-3	Rayleigh-1	Normal-Tr	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
	Beta-3	GammaG-3	Rayleigh-1	Normal-Tr	Weibull-2	Gamma-2	GaussInv-2	BetaPrima	LogNorm-2
	Beta-3	GammaG-3	Normal-Tr	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
-	GammaG-3	Normal-Tr	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
•	GammaG-3	Beta-3	Rayleigh-1	Normal-Tr	Weibull-2	BetaPrima	Gamma-2	GaussInv-2	LogNorm-2
•	GammaG-3	Normal-Tr	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima

Figura 8.26. Distribución Beta prima (LA-12)

Figura 8.27. Distribución Gausiana Inversa de dos parámetros (LA-12)

Puede observarse en las figuras 8.26 a 8.31 que las distribuciones unimodales Beta prima, Gausiana Inversa y Logaritmo Normal no se ajustan a los regimenes de viento de los Valles, a pesar de presentar los datos muestrales unimodalidad. En el caso de la estación

TF-11, que muestra bimodalidad, dicha discrepancia es aún más acusada.

Figura 8.28. Distribución Logaritmo Normal de dos parámetros (LA-12)

Figura 8.29. Distribución Beta prima (TF-11)

En las figuras 8.29 a 8.31 puede observarse que, el caso de la estación TF-11, la cual muestra bimodalidad, las distribuciones tienden a ajustarse a la moda más frecuente.

Figura 8.30. Distribución Gausiana Inversa de dos parámetros (TF-11)

Figura 8.31. Distribución Logaritmo Normal de dos parámetros (TF-11)

8.7.4. Método máxima verosimilitud: Distribuciones híbridas.

En el apéndice B.2 se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de máxima verosimilitud, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución.

En la tabla 8.28 se muestra un resumen de los resultados obtenidos de R^2 con 8 leyes de distribución híbridas aplicadas a las distintas estaciones. La tabla 8.28 ordena las nueve leyes de mayor a menor magnitud del coeficiente R^2 obtenido en cada estación.

En la tabla 8.29 se muestra un resumen de los resultados obtenidos de ε con 8 leyes de distribución aplicadas a las distintas estaciones. La tabla 8.29 ordena las nueve leyes de menor a mayor magnitud del coeficiente ε obtenido en cada estación.

Del análisis de la tabla 8.28 se desprende que, las leyes que mejor se ajustan a los datos de viento de la mayoría de las estaciones analizadas son las leyes Gamma Generalizada de tres parámetros y Beta 3. La distribución de Weibull de dos parámetros ocupa en las estaciones analizadas la segunda (37.5% de los casos) o cuarta (43.75% de los casos) posición. En la estación LA-12 la distribución de Weibull de dos parámetros ocupa la primera posición Esta estación presenta asimetría positiva y es leptocúrtica (presenta un pico relativamente alto).

Las leyes de distribución que muestran peor representación de los datos muestrales son las distribuciones Beta Prima, Logaritmo Normal de 2 parámetros y Gaussiana Inversa de 2 parámetros.

Asimismo, se puede observar en la tabla 8.29 que también son las leyes Gamma Generalizada de tres parámetros y Beta 3 las que menores diferencias presentan con las potencias medias obtenidas con los datos muestrales. Excepcionalmente, la distribución de Rayleigh encabeza la posición en la estación FU-04, con escasa diferencia respecto a la distribución Gamma Generalizada de tres parámetros.

Las distribuciones Gamma de dos parámetros, y Rayleigh de un parámetro suelen ocupar las posiciones centrales. En las figuras 8.32 a 8.35 se muestran, a título de ejemplo, las diferencias visuales entre estas dos últimas densidades de probabilidad en las estaciones FU-07 y HI-04, las cuales presentan histogramas de frecuencia muy distintos.

Por tanto, se concluye que, cuando se utiliza el método de máxima verosimilitud para estimar los parámetros de las ocho leyes híbridas señaladas en la tabla 8.28, las distribuciones Gamma Generalizada de tres parámetros y Beta 3 representan mejor los datos de viento y describen mejor la densidad de potencia eólica en las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica.
Tabla 8.28. Leyes de distribución estándar híbridas, ordenadas en función de la magnitud del coeficiente R² (M. Veros.)

				Orden de may	or a menor R ²	0		
nes	1	2	3	4	5	9	7	8
	Weibull-2	GammaG-3	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
8	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
2	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
5	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
3	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
1	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
4	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
5	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
7	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
	Beta-3	GammaG-3	Weibull-2	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
	GammaG-3	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	LogNorm-2	BetaPrima	GaussInv-2
	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2
2	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	BetaPrima	GaussInv-2

Tabla 8.29. Leyes de distribución estándar híbridas, ordenadas en función de la magnitud del coeficiente ε (M. Veros.)

)		/	~
			-	Orden de mer	ior a mayor ε			
Estaciones	1	2	3	4	5	9	L	8
LA-12	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
FU-01	GammaG-3	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
FU-07	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
FU-04	Rayleigh-1	GammaG-3	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-18	GammaG-3	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-22	GammaG-3	Weibull-2	Rayleigh-1	Beta-3	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-25	GammaG-3	Weibull-2	Rayleigh-1	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-23	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-11	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-04	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	BetaPrima	GaussInv-2	LogNorm-2
GC-15	Beta-3	GammaG-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-17	Beta-3	GammaG-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	BetaPrima	LogNorm-2
TF-11	Beta-3	GammaG-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-16	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GammaG-3	LogNorm-2	GaussInv-2	BetaPrima
HI-04	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	BetaPrima	Gamma-2	GaussInv-2	LogNorm-2
GO-02	GammaG-3	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima

Puede observarse que Gamma de 2 parámetros no se ajusta de forma aceptable a las distribuciones unimodales (FU-07) y mucho menos a las distribuciones bimodales (HI-04).

Figura 8.32. Distribución Gamma híbrida de dos parámetros (FU-07)

Figura 8.33. Distribución Rayleigh híbrida de un parámetro (FU-07)

Visualmente, la distribución de Rayleigh podría representar a algunas distribuciones unimodales (FU-07). Sin embargo, es incapaz de representar distribuciones que presentan bimodalidad (HI-04).

Figura 8.34. Distribución Gamma híbrida de dos parámetros (HI-04)

Figura 8.35. Distribución Rayleigh híbrida de un parámetro (HI-04)

8.7.5. Método mínimos cuadrados: Distribuciones no híbridas.

En el apéndice C.1 se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los mínimos cuadrados, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución.

En la tabla 8.30 se muestra un resumen de los resultados obtenidos de R^2 con 9 leyes de distribución híbridas aplicadas a las distintas estaciones. La tabla 8.30 ordena las nueve leyes de mayor a menor magnitud del coeficiente R^2 obtenido en cada estación.

En la tabla 8.31 se muestra un resumen de los resultados obtenidos de ε con 9 leyes de distribución unimodales aplicadas a las distintas estaciones. La tabla 8.31 ordena las nueve leyes de menor a mayor magnitud del coeficiente ε obtenido en cada estación.

Del análisis de la tabla 8.30 se desprende que la distribución de Weibull de dos parámetros no es la que mejor se ajusta a los datos de viento muestrales, cuando los parámetros son estimados mediante el método de Mínimos Cuadrados. Son las leyes Gamma Generalizada de tres parámetros (en un 93.75% de las estaciones ocupa la primera posición) y Normal-Truncada (en un 75% de las estaciones ocupa la segunda posición) que mejor se ajustan a los datos de viento registrados en las distintas estaciones. Asimismo, la distribución Beta de tres parámetros muestra un mejor ajuste a las velocidades medias horarias de las estaciones que presentan bimodalidad que la distribución de Weibull de dos parámetros, aunque ninguna representa adecuadamente los datos muestrales.

En las figuras 8.36 y 8.37 se muestran, a título de ejemplo, las diferencias visuales entre las distribuciones Beta de tres parámetros y Weibull de dos parámetros en las estaciones TF-11 y LA-12, las cuales presentan histogramas bimodales y unimodales de frecuencia, respectivamente.

Las leyes de distribución que muestran peor representación de los datos muestrales son: la Beta Prima (en el 100% de las estaciones ocupa la última posición), la Gaussiana Inversa de 2 parámetros y la Logaritmo Normal de 2 parámetros.

Igualmente, se puede observar en la tabla 8.31 que también son las leyes Gamma Generalizada de tres parámetros y Normal Truncada las que menores diferencias presentan con las potencias medias obtenidas con los datos muestrales, en la mayoría de las estaciones analizadas. Por tanto, se concluye que, cuando se utiliza el método de los Mínimos Cuadrados para estimar los parámetros de las nueve leyes unimodales señaladas en la tabla 8.30, las distribuciones Gamma Generalizada de tres parámetros y Normal-Truncada representan mejor los datos de viento y describen mejor la densidad de potencia eólica en las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica. Tabla 8.30. Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud del coeficiente R² (M. Cuadr.)

Ļ				Orden	de mayor a m	tenor R ²			
Estac.	1	2	3	4	5	9	7	8	6
LA-12	GammaG-3	Weibull-2	Beta-3	Normal-Tr	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
FU-01	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
FU-07	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
FU-04	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-18	GammaG-3	Normal-Tr	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-22	GammaG-3	Normal-Tr	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-25	Normal-Tr	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
GC-23	GammaG-3	Normal-Tr	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	Rayleigh-1	BetaPrima
GC-11	GammaG-3	Normal-Tr	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-04	GammaG-3	Beta-3	Normal-Tr	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-15	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-17	GammaG-3	Normal-Tr	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
TF-11	GammaG-3	Beta-3	Normal-Tr	Weibull-2	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
TF-16	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
HI-04	GammaG-3	Beta-3	Normal-Tr	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GO-02	GammaG-3	Normal-Tr	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima

Tabla 8.31. Leyes de distribución estándar no híbridas, ordenadas en función de la magnitud del coeficiente ϵ (%)(M. Cuadr.)

	9	BetaPrima															
	8	LogNorm-2	Rayleigh-1	LogNorm-2													
	7	GaussInv-2	LogNorm-2	GaussInv-2													
layor ɛ	6	Rayleigh-1	Gamma-2	Rayleigh-1	Rayleigh-1	Gamma-2	Gamma-2	Rayleigh-1	GaussInv-2	Gamma-2							
de menor a m	5	Gamma-2	Rayleigh-1	Gamma-2	Gamma-2	Rayleigh-1	Rayleigh-1	Gamma-2	Gamma-2	Beta-3	Weibull-2	Weibull-2	Rayleigh-1	Weibull-2	Beta-3	Weibull-2	Weibull-2
Orden	4	Normal-Tr	Beta-3	Normal-Tr	Beta-3	Weibull-2	Beta-3	Beta-3	Beta-3	Rayleigh-1	Rayleigh-1	Rayleigh-1	Weibull-2	Normal-Tr	Weibull-2	Beta-3	Beta-3
	3	GammaG-3	Normal-Tr	GammaG-3	Weibull-2	Beta-3	Weibull-2	Weibull-2	Normal-Tr	Weibull-2	Normal-Tr	Beta-3	Normal-Tr	Beta-3	Normal-Tr	Rayleigh-1	Rayleigh-1
	2	Weibull-2	GammaG-3	Weibull-2	GammaG-3	Normal-Tr	Normal-Tr	Normal-Tr	Weibull-2	Normal-Tr	Beta-3	Normal-Tr	Beta-3	Rayleigh-1	Rayleigh-1	Normal-Tr	GammaG-3
	1	Beta-3	Weibull-2	Beta-3	Normal-Tr	GammaG-3	Normal-Tr										
Eator	Estac.	LA-12	FU-01	FU-07	FU-04	GC-18	GC-22	GC-25	GC-23	GC-11	GC-04	GC-15	GC-17	TF-11	TF-16	HI-04	GO-02

Figura 8.36. Distribución Beta-3 y Weibull-2 (TF-11)

Figura 8.37 Distribución Beta-3 y Weibull-2 (LA-12)

Visualmente, los histogramas asimétricos positivos y leptocúrticos (presentan un pico relativamente alto), pueden ser representados indiferentemente por las distribuciones Beta-3 y Weibull-2.

8.7.6. Método mínimos cuadrados: Distribuciones híbridas.

En el apéndice C.2 se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los mínimos cuadrados, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución.

En la tabla 8.32 se muestra un resumen de los resultados obtenidos de R^2 con 8 leyes de distribución híbridas aplicadas a las distintas estaciones. La tabla 8.32 ordena las nueve leyes de mayor a menor magnitud del coeficiente R^2 obtenido en cada estación.

En la tabla 8.33 se muestra un resumen de los resultados obtenidos de ε con 8 leyes de distribución híbridas aplicadas a las distintas estaciones. La tabla 8.33 ordena las nueve leyes de menor a mayor magnitud del coeficiente ε obtenido en cada estación.

Del análisis de la tabla 8.32 se desprende que, la ley que mejor se ajusta a los datos de viento de la mayoría de las estaciones analizadas es la Gamma Generalizada de tres parámetros. La distribución de Weibull de dos parámetros ocupa la segunda posición en la representación de la mayoría de las estaciones de menor coeficiente de variación, mientras la distribución Beta-3 ocupa dicha posición en la mayoría de las estaciones de mayor coeficiente de variación ($cv \ge 0.515$).

Las leyes de distribución que muestran peor representación de los datos muestrales son las distribuciones Beta Prima, Logaritmo Normal de 2 parámetros y Gaussiana Inversa de 2 parámetros.

En la tabla 8.33 se observa que la ley Gamma Generalizada de tres parámetros, en la mayoría de las estaciones analizadas (68.75%), presenta menores diferencias con las potencias medias obtenidas con los datos muestrales que el resto de las leyes híbridas estudiadas.

Por tanto, se concluye que, cuando se utiliza el método de los Mínimos Cuadrados para estimar los parámetros de las ocho leyes híbridas señaladas en la tabla 8.32, la distribución Gamma Generalizada de tres parámetros representa mejor los datos de viento y describen mejor la densidad de potencia eólica en la mayoría de las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica.

/	
	ų.
	ਹੁ
	2
7	5
`	<u> </u>
1	\mathbf{z}
	ヒ
0	1
4	2
	പ
	Ĕ
	Ы.
•	Ĕ.
,	2
ç	5
	ŏ
	õ
-	
-	Here and the second sec
	<u> </u>
	2
	F .
•	Ξ
	бĎ
	E
	E.
	ц Б
-	
	<u>e</u>
	0
	Ξ
	2
	2
	Ħ
¢	F.
	Ц
	Ð
	Š
-	<u>p</u>
	ğ
	q
	<u>e</u>
	2
	0
	ŝ
	ъ
	D.
•	Ξ
5	<u>_</u>
-	
	Ч
	<u>a</u>
ſ	З
	aı
	St
	ö
	Ц
•	0
•	5
	⊒
5	<u>ם</u>
	E.
	$1\mathbf{S}$
-	d
	<u>o</u>
	o
	ŝ
	¥
	ب
F	
,	~i
è	5
c	ò.
	ā
-	E
7	ä
[-

Ĺ				Orden de may	or a menor R ²	2		
Estaciones	1	2	3	4	5	9	L	8
LA-12	GammaG-3	Weibull-2	Beta-3	Gamma-2	LogNorm-2	Rayleigh-1	GaussInv-2	BetaPrima
FU-01	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
FU-07	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
FU-04	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
GC-18	GammaG-3	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-22	GammaG-3	Rayleigh-1	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-25	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
GC-23	GammaG-3	Weibull-2	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	Rayleigh-1	BetaPrima
GC-11	GammaG-3	Weibull-2	Rayleigh-1	Beta-3	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-04	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-15	Beta-3	GammaG-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GC-17	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
TF-11	GammaG-3	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
TF-16	GammaG-3	Beta-3	Weibull-2	Gamma-2	Rayleigh-1	LogNorm-2	GaussInv-2	BetaPrima
HI-04	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima
GO-02	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	LogNorm-2	GaussInv-2	BetaPrima

dr.
ùa
1.C
5
ω
inte
cie.
efi
Ŝ
[e]
q c
itu
gu
ma
la 1
<u>e</u>
n (
ció
ùn
n f
s
da
sna
rde
õ
las
L
hít
ar
pu
stá
n e
iói
onc
tril
dis
le (
SS C
eye
Ľ
33.
8
ola
بکہ

Tabla 8.33. Ley	es de distribu	ción estándar	híbridas, orde	enadas en fun	ción de la ma _l	gnitud del coe	eficiente ε (M	.Cuadr.)
Ectorioune				Orden de mer	ior a mayor ϵ			
Estaciones	1	2	3	4	5	6	L	8
LA-12	Weibull-2	GammaG-3	Beta-3	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
FU-01	Weibull-2	Rayleigh-1	GammaG-3	Gamma-2	Beta-3	GaussInv-2	LogNorm-2	BetaPrima
FU-07	Weibull-2	Beta-3	GammaG-3	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
FU-04	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	Rayleigh-1	LogNorm-2	BetaPrima
GC-18	GammaG-3	Weibull-2	Rayleigh-1	Beta-3	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-22	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-25	GammaG-3	Weibull-2	Beta-3	Gamma-2	Rayleigh-1	GaussInv-2	LogNorm-2	BetaPrima
GC-23	GammaG-3	Weibull-2	Beta-3	Gamma-2	GaussInv-2	LogNorm-2	Rayleigh-1	BetaPrima
GC-11	GammaG-3	Weibull-2	Beta-3	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-04	Beta-3	GammaG-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-15	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GC-17	GammaG-3	Beta-3	Weibull-2	Rayleigh-1	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-11	GammaG-3	Rayleigh-1	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
TF-16	GammaG-3	Rayleigh-1	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
HI-04	GammaG-3	Beta-3	Rayleigh-1	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima
GO-02	Rayleigh-1	GammaG-3	Beta-3	Weibull-2	Gamma-2	GaussInv-2	LogNorm-2	BetaPrima

8.7.7. Comparación entre las distribuciones híbridas y no híbridas.

De un análisis detallado de los procedimientos de cálculo y de los resultados obtenidos se desprende que, en el caso de las estaciones consideradas, las cuales presentan bajas frecuencias de vientos nulos (tabla 8.16), no se puede afirmar que los modelos híbridos (H) representen mejor que los no híbridos (NH) a los datos muestrales. Las diferencias entre los coeficientes R^2 y entre los coeficientes ϵ de ambos tipos de distribuciones no son significativas en las leyes que mejor han descrito, en los apartados 8.7.1 a 8.7.6, los regimenes de viento analizados. Es decir, la distribución Gamma Generalizada de tres parámetros y la distribución Beta de tres parámetros. Asimismo, con las distribuciones Weibull de dos parámetros H y NH no se detectan diferencias significativas.

En las figuras 8.38 a 8.40 se comparan las distribuciones Gamma Generalizada de tres parámetros H y NH, cuando los parámetros han sido estimados por el método de los momentos, máxima verosimilitud y mínimos cuadrados. La comparación se lleva a cabo entre los coeficientes R^2 y entre las densidades de potencia media anual.

De la observación de las figuras indicadas se desprende la similitud entre ambos tipos de distribuciones (H y NH).

Figura 8.38. Comparación entre la distribución GG-3 y GG-3 híbrida (M. Momentos)

En las figuras 8.41 a 8.43 se comparan las distribuciones Beta de tres parámetros H y NH, cuando los parámetros han sido estimados por el método de los momentos, máxima

verosimilitud y mínimos cuadrados.

Figura 8.39. Comparación entre la distribución GG-3 y GG-3 híbrida (M. Verosimilitud)

Figura 8.40. Comparación entre la distribución GG-3 y GG-3 híbrida (M. Cuadrados)

De la observación de las figuras 8.41 a 8.43 se desprende la similitud entre ambos tipos de distribuciones (H y NH). En el caso de la figura 8.43 se observa un ligero mejor ajuste de la distribución H frente a la NH en la estación FU-04, la cual presenta la más alta probabilidad de velocidades del viento nulas (tabla 8.16). Este hecho puede observarse en la figura 8.44.

Figura 8.41. Comparación entre la distribución Beta-3 y Beta-3 híbrida (M. Momentos)

Figura 8.42. Comparación entre la distribución Beta-3 y Beta-3 híbrida (M. Verosimilitud)

Figura 8.43. Comparación entre la distribución Beta-3 y Beta-3 híbrida (M. Cuadrados)

Figura 8.44. Comparación entre la distribución Beta-3 y Beta-3 híbrida en FU-04 (M. C.uadr.) En las figuras 8.45 a 8.47 se comparan las distribuciones Weibull de dos parámetros H y

NH, cuando los parámetros han sido estimados por el método de los momentos, máxima verosimilitud y mínimos cuadrados.

Figura 8.45. Comparación entre la distribución Weibull y Weibull híbrida (M. Momentos)

Figura 8.46. Comparación entre la distribución Weibull y Weibull híbrida (M. Verosimilitud)

Figura 8.47. Comparación entre la distribución Weibull y Weibull híbrida (M. Cuadrados)

8.7.8. Comparación entre los métodos de estimación.

En las figuras 8.48 a 8.51 se representan los valores de R^2 obtenidos cuando los parámetros, de las leyes no híbridas que mejor han descrito los regimenes de viento de las distintas estaciones, han sido estimados mediante los métodos de los momentos, de máxima verosimilitud y de mínimos cuadrados.

De un análisis comparativo entre los coeficientes R^2 obtenidos con cada ley, en función del método de estimación de parámetros utilizado, se concluye que el método de los mínimos cuadrados proporciona los valores más altos de R^2 . Esta conclusión es lógica, ya que dicho método estima los parámetros de las leyes de distribución de tal manera que se minimicen los errores entre las distribuciones teóricas continuas y las distribuciones muestrales.

Las ventajas e inconvenientes de estos métodos aplicados a variables aleatorias han sido señalados en los apartados 4.2, 4.3 y 4.4. Como allí se indicó, el método de los mínimos cuadrados tiene menos propiedades óptimas deseables que el método de máxima verosimilitud, cuando analizamos variables aleatorias. Sin embargo, como se indicó en el apartado 8.7, en esta tesis no se ha tenido en cuenta la dependencia entre las velocidades horarias de viento. El motivo, además del señalado en el mencionado apartado, se debe al hecho que para tener en cuenta la independencia, con el método propuesto por la autora y director de esta tesis (Ramírez y Carta, 2005), se precisa disponer de series largas de viento, condición que no se cumple para la mayoría de las estaciones analizadas (Tabla 8.11).

Figura 8.48. Comparación entre los métodos de estimación (GammaG-3)

Figura 8.49. Comparación entre los métodos de estimación (Beta-3)

Figura 8.50. Comparación entre los métodos de estimación (Normal-Truncada)

Figura 8.51. Comparación entre los métodos de estimación (Weibull-2)

En las figuras 8.52 a 8.55 se representan los valores de las densidades de potencia medias anuales obtenidas cuando los parámetros, de las leyes no híbridas que mejor han

Figura 8.52. Comparación entre los métodos de estimación (GammaG-3)

Figura 8.53. Comparación entre los métodos de estimación (Beta-3)

De un análisis comparativo entre las densidades de potencia medias anuales obtenidas con cada una de las leyes antes mencionadas, en función del método de estimación de parámetros utilizado, se concluye que el método de los momentos proporciona las menores diferencias respecto a las densidades de potencias medias anuales obtenidas con los datos muestrales. Esta conclusión es lógica en el caso de las distribuciones Gamma generalizada de tres parámetros, Beta de tres parámetros y Normal-Truncada, ya que dicho método estima los parámetros de las leyes de distribución de tal manera que se minimicen los errores entre los terceros momentos respecto del origen de las distribuciones teóricas continuas y las distribuciones muestrales, tal como puede comprobarse en las ecuaciones (4.21), (4.80) y (4.106).

Figura 8.54. Comparación entre los métodos de estimación (Normal-Truncada)

Figura 8.55. Comparación entre los métodos de estimación (Weibull-2)

Asimismo, en las figuras 8.52 a 8.55 puede observarse que, en la mayoría de las estaciones, no existen diferencias significativas entre las densidades de potencia media anual derivadas de los datos muestrales y las obtenidas por los métodos de estimación de parámetros utilizados.

8.7.9. Distribuciones derivadas del principio de máxima entropía.

En el apéndice D se adjuntan las tablas donde se pueden observar los parámetros de las distribuciones derivadas de la aplicación del principio de máxima entropía restringido por los primeros momentos estadísticos aplicadas a las estaciones analizadas. El número de momentos estadísticos utilizados en esta tesis ha oscilado entre N=2 y N=6.

Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

La autora y director de esta tesis han divulgado en un artículo (Ramírez y Carta, 2006)³¹ que las distribuciones derivadas de la aplicación del principio de máxima entropía (PME), restringido por los primeros N momentos estadísticos de la muestra, presentan un mejor ajuste a los datos muestrales que la distribución de Weibull, ampliamente utilizada en la literatura científica. En dicho artículo la aplicación se centra en las estaciones LA-12, GC-18 e HI-04. En la figura 8.56 dicha comparación se extiende a todas las estaciones analizadas en esta tesis y se añade la distribución Gamma Generalizada de tres parámetros, estimados éstos haciendo uso del método de los mínimos cuadrados.

Se puede observar en la figura 8.56 que las distribuciones derivadas del PME restringido con solo N=2 proporcionan un mejor ajuste que la distribución de Weibull de dos parámetros. Además, se puede observar en dicha figura que las distribuciones obtenidas mediante el PME restringido por N=3 proporcionan mejor ajuste que las derivadas del PME restringido con N=2. Asimismo, que los coeficientes R² obtenidos mediante las distribuciones Gamma Generalizada de tres parámetros son similares a los obtenidos con las distribuciones derivadas del PME restringido con N=3, en la mayoría de las estaciones analizadas.

En la figura 8.57 se representan los valores de las densidades de potencia medias anuales obtenidas con las distribuciones derivadas del PME, restringido con N=3, y con las distribuciones Gamma Generalizada de tres parámetros. Se puede observar que las distribuciones derivadas del PME (N=3) proporcionan las menores diferencias respecto a las densidades de potencias medias anuales obtenidas con los datos muestrales. Esta conclusión

³¹ El artículo, publicado en la revista internacional Energy Conversion and Management, se incluye en el apéndice G de esta tesis, ya que surgió como fruto de la misma.

es lógica, pues las distribuciones derivadas del PME, restringido con N=3, estima los parámetros de tal manera que se minimicen los errores entre los terceros momentos respecto del origen de las distribuciones teóricas continuas y las distribuciones muestrales, tal como se puede ver en el capitulo 5 de esta tesis.

Figura 8.56. Comparación de R² entre las distribuciones de PME con GG-3 y Weibull-2

Figura 8.57. Comparación de potencias entre las distribuciones de PME y GG-3

En la referencia (Ramírez y Carta, 2006) se indica que el incremento en el número de momentos estadísticos utilizado en la estimación de las distribuciones derivadas del PME no presenta, a partir de N=3, una modificación substancial del coeficiente R². Ello puede ser observado en la figura 8.58.

Figura 8.58. Comparación de los R² de las distribuciones PME en función de N

8.7.10. Distribuciones mezcla.

La única referencia que hemos encontrado en las publicaciones de prestigio sobre energía del viento y otras fuentes renovables de energía, sobre la aplicación de este tipo de distribuciones al análisis de distribuciones de la frecuencia del viento es la divulgada por Jaramillo y Borja (2004a y 2004b). Estos autores han usado una distribución mezcla de Weibull de dos componentes para analizar la distribución de la frecuencia del viento en La Ventosa (Méjico), la cual presenta bimodalidad. Analizan detalladamente el histograma de frecuencias y su relación con las direcciones del viento e identifican dos distribuciones muestrales mezcladas. Partiendo del conocimiento de las características estadísticas de ambas distribución mezcla que proponen para su ajuste, mediante la aplicación del método de los momentos.

En esta tesis se han revisado tres de los métodos más frecuentemente empleados con el propósito de estimar los parámetros de las distribuciones mezcla. Dichos métodos han sido el

método de los momentos (M), el de la máxima verosimilitud (MV) y el de los mínimos cuadrados (MC). Sin embargo, en esta tesis, la aplicación de dichos métodos no precisa identificar las mezclas muestrales, como si ocurre en las referencias mencionadas (Jaramillo y borja, 2004ay 2004b). Por tanto, aquí las distribuciones mezcla pueden aplicarse a regimenes de viento donde hay evidencia de bimodalidad a aquellos donde sólo se observa bitangencialidad e, incluso, a aquellos que sólo manifiestan unimodalidad.

En el caso de las distribuciones mixtas, se necesitan cinco momentos estadísticos para poder estimar, mediante el uso del método de los momentos, los 5 parámetros de que dependen. Es decir, se han de resolver 5 ecuaciones no lineales con 5 incógnitas, las cuales no siempre tienen que tener solución. Además, debido a que las distribuciones mezcla contienen logaritmos de sumas no es posible encontrar una expresión analítica para la estimación de los parámetros mediante el método de la máxima verosimilitud. Por tanto, es necesario recurrir a técnicas más elaboradas, como por ejemplo el denominado algoritmo Expectation-Maximization (EM) (McLachlan y Peel, 2000; McLachlan y Krishnan, 1996).

Como resultado de la aplicación de los tres métodos de estimación a las dieciséis estaciones analizadas se obtuvo como conclusión que el método MC proporciona en todas las estaciones analizadas el mayor grado de ajuste, si bien, la diferencia respecto a los otros dos métodos de estimación no es significativa.³²

En la tabla 8.34 se muestran los parámetros de las dos distribuciones mezclas consideradas en esta tesis, los cuales han sido estimados mediante la utilización del método de los mínimos cuadrados³³. En la tabla 8.35 se recogen los valores numéricos del coeficiente R² y de las diferencias relativas con las densidades de potencia medias anuales de las muestras.

En la figura 8.59 se realiza un análisis comparativo entre estas distribuciones mezcla y las distribuciones Gamma generalizada de tres parámetros y la distribución de Weibull de 2 parámetros. En dicha figura puede observarse que ambas distribuciones mezcla proporcionan valores de R^2 muy similares, aunque la distribución mezcla de Weibull de dos componentes, desde el punto de vista del tiempo de cálculo requerido, resulta ventajosa.

Asimismo, se observa en la figura 8.59 que las distribuciones mezcla utilizadas proporcionan mejores resultados de ajuste que la distribución de Weibull de dos parámetros y que la distribución Gamma generalizada de tres parámetros. Dichas diferencias son significativas en el caso de los histogramas que evidencia bimodalidad.

En la figura 8.60 se lleva a cabo un análisis comparativo entre la distribución mezcla de Weibull de dos componentes y las distribuciones derivadas de la aplicación de PME, restringido por los tres primeros momentos estadísticos, así como la distribución Gamma generalizada de tres parámetros. En dicha figura puede observarse que la distribución mezcla proporciona valores de R^2 muy similares a los de las distribuciones PME en algunas

³² Los resultados del análisis comparativo efectuado están siendo evaluados por los revisores de la revista internacional Renewable Energy.

³³ Los resultados obtenidos en este estudio están siendo evaluados por los revisores de la revista internacional Energy Conversion and Management.

estaciones,	sin en	nbargo,	la distribución	mezcla	proporciona	valores	mas	altos	de	R^2	en	las
estaciones o	donde s	se observ	va una destacad	la bimoc	lalidad.							

Tabla 8.34	. Valores	numérico	s de los p	arámetro	s de las d	istribucic	ones mezc	a propue	estas	
Ref	Mezc	la de Noi	rmaltrunc	ada y We	eibull	Mezc	sla de We	sibull de 2	2 compon	entes
	ŝ	θ	α_0	β_0	З	α_1	β_1	α_2	β_2	н
	ms ⁻¹	ms ⁻¹		ms ⁻¹		·	ms ⁻¹		ms ⁻¹	ı
LA-12	12.952	2.335	2.447	8.477	0.078	2.464	7.667	3.815	12.044	0.721
FU-01	2.818	1.547	2.957	7.119	0.299	2.066	3.822	3.049	7.32	0.382
FU-07	1.161	5.769	2.551	7.262	0.165	1.169	4.654	2.538	7.285	0.12
FU-04	3.191	3.803	3.482	8.938	0.313	3.238	8.66	1.278	3.925	0.802
GC-18	2.429	2.714	2.995	10.156	0.237	3.107	10.317	1.424	5.374	0.652
GC-22	2.132	2.657	3.215	8.001	0.297	1.366	4.164	3.171	7.879	0.333
GC-25	-6.556	5.065	2.806	7.037	0.097	1.054	2.31	2.788	7.012	0.088
GC-23	-7.305	10.204	4.001	10.703	0.238	3.809	10.65	0.984	5.076	0.821
GC-11	-0.673	4.352	3.813	8.519	0.323	3.632	8.379	1.172	3.069	0.723
GC-04	4.169	3.658	4.623	12.16	0.528	1.59	5.877	4.295	11.865	0.52
GC-15	2.791	2.28	4.008	9.237	0.396	1.608	4.555	4.203	9.388	0.487
GC-17	2.726	4.762	3.824	11.319	0.437	3.456	10.899	1.312	4.562	0.669
TF-11	9.193	3.017	2.272	3.54	0.635	2.287	3.421	3.358	10.154	0.35
TF-16	6.632	1.03	1.685	4.082	0.225	1.658	4.098	6.972	6.947	0.77
FI-04	1.149	2.409	2.778	12.793	0.183	1.251	3.425	2.889	13.019	0.222
G02	1.262	1.396	2.965	7.366	0.226	3.997	7.717	1.287	4.547	0.466

En la figura 8.61 se representan los valores de las densidades de potencia medias anuales obtenidas con las distribuciones derivadas del PME (N=3), la distribución Gamma Generalizada de tres parámetros y la distribución mezcla de Weibull de dos componentes. Se puede observar que las diferencias respecto a las densidades de potencias medias anuales

obtenidas con los datos muestrales dependen de la estación particular que se trate, pero no existen diferencias significativas entre las diversas distribuciones teóricas utilizadas.

Ref	Normal Trunc	ada-Weibull	Weibull-	Weibull
	R^2	3	R^2	3
		(%)		(%)
LA-12	0.999784	0.415	0.999771	0.326
FU-01	0.996645	3.933	0.99587	3.692
FU-07	0.998003	2.096	0.998019	1.192
FU-04	0.998217	2.19	0.997883	1.391
GC-18	0.999429	0.622	0.999306	1.174
GC-22	0.998788	0.072	0.998635	1.208
GC-25	0.998497	0.724	0.998498	0.894
GC-23	0.997996	2.154	0.997766	4.045
GC-11	0.998399	2.139	0.998231	2.887
GC-04	0.999497	0.972	0.999325	0.012
GC-15	0.999434	1.684	0.999457	1.971
GC-17	0.999693	1.227	0.999548	2.105
TF-11	0.999547	1.339	0.999539	0.857
TF-16	0.997973	1.245	0.997841	1.638
HI-04	0.999489	2.634	0.999473	2.22
GO-02	0.998079	5.722	0.998436	1.066

Tabla 8.35. Valores numéricos del coeficiente R^2 y de ε de las leyes mezcla

Figura 8.59. Comparación de los R² de las distribuciones mezcla

Figura 8.60. Comparación de los R² de la distribución mezcla WW con PME y GammaG-3

Figura 8.61. Comparación de las potencias de la distribución WW con PME y GammaG-3

En la figura 8.62 y 8.63 se muestran los histogramas de las dieciséis estaciones analizadas (Tabla 8.16) y las distribuciones mezclas descritas en esta tesis, así como la distribución Weibull de dos parámetros, a efectos comparativos. En ellos puede comprobarse visualmente como las distribuciones mezcla propuestas en esta tesis son capaces de describir tanto los regímenes unimodales como los bimodales y bitangenciales.

Figura 8.62. Distribuciones mezcla

Figura 8.63. Distribuciones mezcla (continuación)

8.7.11. Influencia de la variación en altura en el grado de ajuste.

En este apartado de la tesis doctoral se pretende averiguar si el tipo de distribución que mejor se ajusta a los vientos registrados a una determinada altura sobre el nivel del suelo sigue siendo el mismo cuando se aplica a vientos registrados, en la misma estación, pero a otras alturas sobre el nivel del suelo.

Algunas de las estaciones recogidas en el apartado 8.4.1 registran a dos alturas. Sin embargo, no disponemos de series anuales completas y fiables.

El Instituto Tecnológico de Canarias (ITC) cuenta, en las instalaciones ubicadas en Pozo Izquierdo (Gran Canaria) (Figura 8.64), con una estación anemométrica (Figura 8.65) que registra, entre otras variables meteorológicas, la velocidad del viento a tres alturas sobre el nivel del suelo. Estas son 10 m., 20 m. y 40 m.

Figura 8.64. Instalaciones del ITC en Pozo Izquierdo (Gran Canaria)

De dicha estación, que hemos denominado GC-29 en la tabla 8.6, disponemos de datos completos de velocidades medias horarias durante el año 2003, los cuales se emplean en este análisis.

La estación GC-29 se encuentra abierta a los vientos provenientes desde el noreste hasta el sur en el sentido de rotación de las agujas del reloj. Sin embargo, por el oeste existe un macizo central, aunque alejado, como puede observarse en la figura 8.65.

Del análisis realizado a los datos de viento disponibles se concluye que los registros realizados a 40 metros sobre el nivel del suelo no son válidos para su utilización en esta tesis, debido a la insuficiente fiabilidad detectada en los mismos tras su chequeo. Por tanto, para cubrir el objetivo propuesto hemos utilizado los datos registrados a 10 m y 20 m sobre el nivel del suelo y hemos utilizado un modelo de variación de los vientos en altura para simular la variación del viento a 40 m. sobre el nivel del suelo.

Figura 8.65. Torre anemométrica utilizada en el estudio

El modelo de variación de los vientos en altura utilizado para estimar las velocidades a 40 metros sobre el nivel del suelo ha sido el modelo potencial (véase apartado 6.3). Sin embargo, para estimar los valores del exponente α de la ecuación (6.12), hemos utilizado los datos de viento registrados 10 m y 20 m. sobre el nivel del suelo (8.7).

$$\frac{v(h=20)_i}{v(h=10)_i} = \left(\frac{20}{10}\right)^{\alpha_i}$$
(8.7)

Tomando ogaritmos en ambos lados de la igualad de la ecuación (8.7) y despejando α , se tiene:

$$\alpha_{i} = \frac{\ln[v(h=20)_{i}] - \ln[v(h=10)_{i}]}{\ln[20] - \ln[10]}$$
(8.8)

La ecuación (8.8) se aplica a cada par de valores de velocidades medias horarias para

estimar el parámetro α que permite, mediante el uso de la ecuación (8.9), evaluar la velocidad media horaria correspondiente a la altura de 40 metros.

$$v(h = 40)_i = v(h = 10)_i \left(\frac{40}{10}\right)^{\alpha_i}$$
(8.9)

Los motivos por los cuales se ha seleccionado el modelo potencial frente a los otros modelos señalados en el capítulo 6 han sido los siguientes:

• Modelo logarítmico. No se disponía de pirorradiómetro diferencial para medir la radiación neta y poder utilizar las tablas propuestas por Mikhail y Justus (1981).

• Distribuciones híbridas. Para emplear la familia Farlie-Gumbel-Morgenstern de distribuciones bivariables se requiere, como señala Pelosi (1985), que el coeficiente de correlación entre las velocidades de viento medidas a dos alturas sea inferior a 0.31. Sin embargo, como queda patente en la Figura 8.66, el coeficiente de correlación entre las velocidades a 10 m y 20 m de alturas es de 0.998.

Figura 8.66. Correlación entre velocidades registradas a 10 m y 20 m

En las tablas 8.36 a 8.38 se indican algunas características de las velocidades medias

Tabla 8.30	6. Velocidades	medias hora	rias mínimas	y máximas
	Altura	$v_{ m min}$	$v_{ m max}$	
	m	m/s	m/s	_
	10	0	18.11	_
	20	0	19.45	
	40	0	20.89	_

horarias de viento registradas a 10 m y 20 m y estimadas a 40 m.

Tabla 8.37. Seis primeros momentos estadísticos respecto del origen										
Altura (m)	Primeros momentos estadísticos respecto del origen									
	т	m'_2	m'_3	m'_4	m'_5	m_6'				
	m/s	m^2/s^2	m^3/s^3	m^4/s^4	m^5/s^5	m^6/s^6				
10	7.39	71.71	793.73	$9.47 \ 10^3$	1.19 10 ⁵	$1.55 \ 10^{6}$				
20	7.90	82.31	977.89	$1.25 \ 10^4$	1.69 10 ⁵	$2.36\ 10^6$				
40	8 54	95 35	$1.22.10^{3}$	$1.67.10^4$	$2.42.10^{5}$	$3.64.10^{6}$				

Tabla 8.38. Otras medidas numéricas descriptivas

Altura	S	CV	g_1	g_{2}	Мо	Me
(m)	m/s				m/s	m/s
10	4.14	0.561	0.150	1.926	2.5/8.5	7.37
20	4.45	0.563	0.157	1.912	2.5/9.5	7.9
40	4.73	0.554	0.171	1.929	3.5/9.5	8.5

En la tabla 8.38 se muestran la desviación típica s, el coeficiente de variación cv, el coeficiente de asimetría g_1 , el coeficiente de curtosis g_2 , la moda Mo y la mediana Me de las velocidades medias horarias registradas o estimadas en las tres alturas.

Los histogramas de velocidades medias horarias de las tres alturas se muestran en la figura 8.67. En la misma puede observarse la presencia de dos modas en las tres alturas.

En la figura 8.68 se muestra la evolución media diaria de la velocidad del viento en las tres alturas consideradas. Debido a la alta correlación, las evoluciones siguen una forma similar, aunque con distinta escala.

En la figura 8.69 se representa la evolución media diaria del exponente α del modelo potencial, pudiéndose observar que no es un valor constante, sino variable, como se indica en el modelo potencial equivalente (apartado 6.3.1). Su valor medio es de 0.112, que corresponde a un tipo de terreno liso (mar, arena, nieve). Dicho resultado es lógico, ya que la dirección predominante del viento (80% del tiempo) en la zona es Noreste, la cual está abierta al mar.

Figura 8.67. Histogramas de velocidad a tres alturas

Figura 8.68. Evolución media diaria del viento en las tres alturas

Figura 8.69. Evolución media diaria del exponente α del modelo potencial
En la Tabla 8.39 se recogen los valores de R^2 y ϵ en las tres alturas analizadas. Estos han sido obtenidos con las diversas leyes de distribución utilizadas en esta tesis y mediante el uso del método de los momentos (M), el de los mínimos cuadrados (MC) y el de máxima verosimilitud (MV).

		h=10 m		h=20 m		h=40 m	
Estación	Método	\mathbb{R}^2	ε	R^2	ε	R^2	Е
			%		%		%
GammaG-3	М	0.993248	0.0229	0.990763	0.2853	0.993361	0.2226
GammaG-3	MC	0.997037	1.053	0.99641	1.034	0.99652	0.538
GammaG-3	MV	0.991694	1.438	0.990724	1.61	0.989554	1.915
Gamma-2	Μ	0.908427	8.68	0.906847	8.76	0.916329	8.188
Gamma-2	MC	0.960631	45.548	0.961089	47.18	0.966746	44.687
Gamma-2	MV	0.946701	33.075	0.947565	33.803	0.952753	30.221
Weibull-2	Μ	0.956423	5.256	0.95497	5.324	0.96137	4.801
Weibull-2	MC	0.975227	23.79	0.974736	24.739	0.979298	22.904
Weibull-2	MV	0.959747	7.226	0.958903	7.516	0.964042	6.2
Rayleigh-1	Μ	0.933331	3.003	0.92833	3.561	0.942288	2.104
Rayleigh-1	MC	0.945077	7.78	0.940059	7.31	0.95122	7.424
Rayleigh-1	MV	0.940371	1.63	0.935564	1.266	0.94743	1.766
Beta-3	Μ	0.989311	0.153	0.988576	0.154	0.991012	0.121
Beta-3	MC	0.990963	3.355	0.991354	3.909	0.993148	3.101
Beta-3	MV	0.987755	1.688	0.986974	1.794	0.988887	1.864
BetaPrima	Μ	0.685318	24.723	0.673667	25.331	0.694151	23.812
BetaPrima	MC	0.874894	620.352	0.876214	868.95	0.890384	771.4
BetaPrima	MV	0.879332	2500	0.882082	4600	0.887574	1715
NormalTrunc.	Μ	0.959059	2.39	0.956598	2.396	0.961724	2.062
NormalTrunc.	MC	0.98878	14.371	0.98795	14.77	0.989934	13.415
NormalTrunc.	MV	0.978982	2.672	0.977583	2.705	0.980104	2.299
LogNormal-2	Μ	0.798953	15.267	0.794351	15.464	0.811812	14.514
LogNormal-2	MC	0.916878	114.203	0.91857	122.125	0.929181	115.771
LogNormal-2	MV	0.915651	247.114	0.919135	272.565	0.924398	213.869
G.Inversa-2	Μ	0.807977	13.692	0.804077	13.848	0.821473	13.027
G.Inversa-2	MC	0.906778	86.73	0.908375	92.146	0.92045	88.256
G.Inversa-2	MV	0.860792	176.503	0.836835	270.009	0.87288	159.14
Mezcla W-W	Μ	0.998572	1.213 10 ⁻⁷	0.998592	$1.232 \ 10^{-7}$	0.998956	$3.02 \ 10^{-8}$
Mezcla W-W	MC	0.999358	1.869	0.999404	1.909	0.999556	1.158
Mezcla W-W	MV	0.998788	0.058	0.99895	0.029	0.999224	0.052
MME-6	Μ	0.997199	0.026	0.996761	0.036	0.997211	0.023
MME-5	Μ	0.997023	0.040	0.996698	0.041	0.995426	0.017
MME-4	М	0.994388	0.127	0.993425	0.136	0.991818	0.152
MME-3	М	0.992852	7.622 10 ⁻⁵	0.991851	7.594 10 ⁻⁶	0.989886	6.07 10 ⁻⁵
MME-2	М	0.986955	1.387	0.985893	1.401	0.983319	1.494

Tabla 8.39. Valores de R^2 y ϵ en tres alturas

Del análisis de la Tabla 8.39 se deducen las conclusiones ya expuestas en los apartados anteriores. Es decir, que el método que proporciona el mejor ajuste (más alto R^2) es el de los

mínimos cuadros y que el método que proporciona un menor valor de ε es el de los momentos.

En la figura 8.70 se muestran los valores de R^2 obtenidos en las tres alturas, para todas las leyes de distribución recogidas en la tabla 8.39, cuando se ha utilizado el método de los mínimos cuadrados en la estimación de sus parámetros. Las leyes de distribución se han ordenado en el eje de abscisas, de mayor a menor valor del coeficiente R^2 , para la altura de 10 metros sobre el nivel del suelo.

Figura 8.70. Análisis de la permanencia de las leyes de distribución al variar la altura

De la observación de la figura 8.70 se concluye que:

- La distribución que mejor se ajusta a los datos de viento en la estación analizada, independientemente de la altura sobre el nivel del suelo, es la distribución mezcla de Weibull de dos componentes.
- Existe un grupo de leyes que se ajustan a los vientos de un lugar de forma similar. Debido a ello, las variaciones del viento con la altura pueden originar que el orden de dichas leyes, de acuerdo con el grado de ajuste, varíe, si bien las diferencias entre los

valores de R^2 son pequeñas. En la estación analizada, las distribuciones derivadas del principio de máxima entropía, restringidas con un número de momentos superior a tres y la distribución Gamma generalizada de tres parámetros proporcionan resultados similares.

- Existe un grupo de leyes que han sido propuestas por diversos autores para representar regímenes de viento, las cuales no se ajustan a los vientos de la estación analizada, independientemente de la altura considerada. En este grupo pueden señalarse las distribuciones Gausiana inversa de 2 parámetros (Bardsley, 1980), Logaritmo normal de dos parámetros (García et al., 1998; Luna y Church, 1974; Kaminsky, 1976), Rayleigh de un parámetro (Kaminsky, 1977; Haslett y Kelledy, 1981; Sharif-Eldeen et al, 1988), Gamma de dos parámetros (Ossenbrugen et al, 1979); y Weibull de dos parámetros (Hennessey, 1977; Stevens y Smulders, 1979; Jamil, 1994; Dorvlo, 2002). La distribución Beta prima considerada por primera vez en esta tesis es la que peor ajuste presenta en todas los casos analizados.
- En esta estación la posición número 10 de la distribución de Weibull de dos parámetros se mantuvo en las tres alturas analizadas. Por tanto, no se evidencian motivos para rechazar la hipótesis que considera que si la distribución de Weibull representa los datos a una determinada altura los representa también a alturas diferentes. Hipótesis utilizadas en los modelos considerados en los apartados 6.3.3 y 6.4.

8.8. Análisis de la bondad del ajuste de las leyes analizadas a las velocidades medias mensuales.

En este apartado de la tesis se muestran y analizan los resultados obtenidos de la aplicación de los métodos recogidos en el capítulo 4 a las distintas leyes de distribución no híbridas descritas en lo capítulos 3 y 5.

En el apéndice E se adjuntan las tablas donde se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se han aplicado los diversos métodos, descritos en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Del análisis del limitado número de estaciones (3) y de datos (72 y 48) que se dispone en esta tesis para extraer conclusiones respecto al tipo de distribución que mejor se ajusta a las velocidades medias mensuales del viento, así como de la influencia del parámetro de posición y del número de parámetros en el nivel de ajuste de las leyes consideradas a los datos muestrales, se deduce que el método que proporciona el mejor ajuste (más alto R²) es el de los mínimos cuadros y el método que proporciona un menor valor de ε es el de los momentos. Esta conclusión ha sido ya señalada en los apartados anteriores.

Figura 8.71. Influencia del parámetro de posición en el grado de ajuste de leyes estándar

En la figura 8.71 se muestran los valores de R^2 obtenidos con las distintas leyes de distribución estándar recogidas en esta tesis, cuando se ha utilizado el método de los mínimos cuadrados en la estimación de sus parámetros. Las leyes de distribución se han ordenado en el eje de abscisas de mayor a menor valor del coeficiente R^2 , para las tres estaciones consideradas. En la figura 8.71 no se ha incluido la distribución de Rayleigh de un parámetro ya que, como puede comprobarse en el apéndice E, proporciona valores de R^2 tan bajos que, como puede observarse en el grafico de probabilidad, que a título de ejemplo se representa en la figura 8.72, no representa a los datos de la muestra.

Figura 8.72. Gráfico de probabilidad de los datos de LA-12 y la distribución de Rayleigh-1

- En las tres estaciones analizadas se observa que la distribución de Weibull de dos parámetros ocupa la penúltima posición, después de la distribución de Rayleigh de un parámetro.
- Para cada tipo de distribución, aquella que dispone de parámetro de posición presenta mejor nivel de ajuste (más alto valor del coeficiente R²) que la que carece del mismo. La influencia del parámetro de posición es significativa en el caso de la distribución de Weibull. En la figura 8.73, se muestra, a titulo de ejemplo, el gráfico de probabilidad de la distribución de Weibull de tres parámetros y de Weibull de dos parámetros. Puede observarse, fundamentalmente en las zonas señaladas con círculo y rectángulo, el efecto del parámetro de posición.
- Existe un grupo de leyes que se ajustan de forma similar a las velocidades medias mensuales de cada lugar.

• Con las limitaciones que en las conclusiones supone el limitado número de estaciones analizadas, puede indicarse que el mayor número de parámetros de una ley respecto a otra no tiene porqué conducir a un mayor nivel de ajuste.

Figura. 8.73. Gráfico de probabilidad de Weibull-2 y de Weibull-3 en la estación GC-18

En la figura 8.74 se muestran los valores de R^2 obtenidos con las leyes de distribución derivadas de la aplicación del principio de máxima entropía, restringido por los primeros

momentos estadísticos de la muestra. Con el propósito de analizar el efecto del parámetro de posición, dichas leyes se han estimado de dos formas: a) Asumiendo como límites de integración en la ecuación (5.31) los valores $v_{min}=0$ y $v_{max}=\infty$, tal como se llevó a cabo en (Ramírez y Carta, 2006; b) Restringiendo los límites de integración a los valores mínimo y máximo de la muestra.

Figura 8.75. Comparación de densidades de probabilidad de ME con y sin restricciones

Figura 8.76. Gráficos de probabilidad de distribuciones de ME, con y sin restricciones

Puede observarse en la figura 8.74 que las leyes que se han obtenido restringiendo el intervalo de velocidades³³ presentan más altos niveles de ajuste (más alto valor del coeficiente R^2) que aquellas en las que la velocidad puede varia entre 0 e ∞ . Asimismo, puede observarse en la figura 8.74 que en las estaciones Amagro (GC-18) y Granadilla (TF-11) el nivel de

³³ Se le ha añadido la letra R a las leyes con restricción de intervalo en la figura 8.74.

ajuste de cada tipo de distribución (es decir, restringida o no restringida), no se ve muy influenciado por el número de momentos estadísticos usados para su derivación.

A título de ejemplo se muestra en la figura 8.75 los histogramas de frecuencia y las densidades de probabilidad ME6-R y ME6 en la estación LA-12. En esta figura se muestra el cambio en la forma de la distribución de máxima entropía al restringir el intervalo de velocidades.

En la figura 8.76 se muestran los gráficos de probabilidad de las dos densidades de probabilidad de la velocidad media mensual del viento mostradas en la figura 8.75. Puede observarse como la muestra se aleja del modelo (señalada con dos círculos de trazos) cuando se eliminan las restricciones al intervalo de velocidades.

Partiendo de las limitaciones que supone el reducido número de estaciones analizadas (3), se observa que las distribuciones mezcla (sin parámetro de posición) propuestas en esta tesis no han proporcionado valores de los coeficientes R² tan destacados como los mostrados en el apartado 8.7.10 para el caso de velocidades medias horarias.

En el caso de las distribuciones mezcla se obtienen las mismas conclusiones, en cuanto al método de estimación de parámetros, que las ya indicadas en líneas anteriores de este apartado y en apartados anteriores (8.7.8; 8.7.10; 8.7.11). Es decir, que el método de mínimos cuadrados proporciona los valores más altos de R^2 y el método de los momentos los valores más bajos de ϵ .

En el caso de la estación de Los Valles (LA-12), la estimación de los parámetros de la distribución mezcla de Weibull (sin parámetro de posición) de dos componentes utilizando el método de los momentos condujo a la obtención de un modelo que tenía los cinco primeros momentos estadísticos iguales a los de la muestra (Tabla 8.20), pero con una forma que se aleja notoriamente de la forma del histograma muestral (Figura 8.77 a y Figura 8.78 a). Sin embargo, los modelos estimados utilizando los datos de la misma estación y el método de mínimos cuadrados y máxima verosimilitud no presentó diferencias tan notorias (Figura 8.77 b y Figura 8.78 b y c).

En el caso de las distribuciones mezcla de Weibull (con parámetro de posición) se obtiene la misma conclusión que la ya señalada para las distribuciones anteriormente mencionadas. Es decir, que las distribuciones mezcla con parámetro de posición presenta mejor nivel de ajuste (más alto valor del coeficiente R^2) que la que carece del mismo.

Teniendo en cuenta la limitación que supone el número de estaciones analizadas podemos indicar que la distribución mezcla de Weibull (con parámetro de posición) de dos componentes es la que mejores valores del parámetro R^2 ha proporcionado entre todas las distribuciones analizadas.

En la figura 8.79, se muestra, a título de ejemplo, el ajuste del histograma muestral de LA-12 y de las distribuciones mezcla de Weibull (con parámetro de posición) estimadas mediante el método de mínimos cuadrados y de máxima verosimilitud.

Figura 8.77. Distribuciones de mezcla de Weibull-2 estimadas mediante tres métodos

Figura 8.78. Gráficos de probabilidad de Mezcla de Weibull-2 y datos de LA-12

Figura 8.79. Distribuciones de mezcla de Weibull-3 estimadas mediante dos métodos

Figura 8.80. Probabilidad acumulada y gráfico de probabilidad de mezcla de W-3 (M. C.)

Figura 8.81. Probabilidad acumulada y gráfico de probabilidad de mezcla de W-3 (M.V.)

En las figura 8.80 y 8.81 se muestran, a titulo de ejemplo, las probabilidades acumuladas y los gráficos de probabilidad de la distribución mezcla de Weibull (con parámetro de posición) de dos componentes. En la figura 8.80 el modelo ha sido estimado mediante el método de los mínimos cuadrados y el la figura 8.81 mediante el método de máxima verosimilitud. Puede observase en dichas figuras un mejor ajuste, si se compara con los resultados de la figura 8.78.

8.9. Estimación de las energías producidas y de los tiempos equivalentes de funcionamiento de los aerogeneradores.

En este apartado se pretende analizar la influencia del grado de ajuste R^2 de las distribuciones analizadas en esta tesis en la estimación de la potencia media producida por un aerogenerador, mediante el método estático descrito en el apartado 7.41.

Con el propósito de analizar la influencia de la potencia nominal de los aerogeneradores se han seleccionado tres máquinas comerciales con potencias nominales de 330 kW, 800 kW y 2000 kW.

8.9.1. Características de los aerogeneradores utilizados.

En las tablas 8.40 a 8.42 se muestran algunas características de los tres aerogeneradores

utilizados.

Tabla 8.40. Algunas características del aerogenerador E-33

Potencia nominal	330 kW		
Diámetro del rotor	33.4 m.		
Altura del buje	50 m.		
Tipo de aerogenerador	Sin multiplicador, velocidad variable, sistema de control del ángulo de paso (pitch)	[m]	43 3
Rotor tipo	Rotor de eje horizontal con control del ángulo de paso activo		
Sentido de rotación	Agujas del reloj		
Número de palas	3		
Área barrida	876 m^2		
Composición de las	Resina epoxi reforzada con fibra de vidrio		
palas			
Velocidad en punta	31-79 m/s		
Control ángulo de paso	Sistema independiente de control de paso en cada una de las palas		
Buje	Rígido		
Generador	Síncrono en anillo con acoplamiento directo		
Orientación	Activo		
Velocidad de arranque	2.5 m/s		ENERGY FOR THE WORLD
Velocidad nominal	12 m/s		
Velocidad de parada	29-34 m/s		

Tabla 8.41. Algunas características del aerogenerador E-48

Potencia nominal	800 kW		
Diámetro del rotor	49 m.		
Altura del buje	50 m.		
Tipo de aerogenerador	Sin multiplicador, velocidad variable,		
	sistema de control del ángulo de paso		
	(pitch)		
Rotor tipo	Rotor de eje horizontal con control del		
1	ángulo de paso activo		
Sentido de rotación	Agujas del reloj		
Número de palas	3		
Área barrida	1810 m^2		
Composición de las	Resina epoxi reforzada con fibra de vidrio		
palas	·····		
Velocidad en punta	40-90 m/s		
Control ángulo de paso	Sistema independiente de control de paso		
9 1	en cada una de las palas		
Buie	Rígido		
Generador	Síncrono en anillo con acoplamiento		
	directo		
Orientación	Activo		
Velocidad de arranque	3 m/s		
Velocidad nominal	13 m/s		
Velocidad de parada	20.34 m/s		
v ciociuau uc paraŭa	2)-JT III/3		

Tuolu o. 12. Tiiguilus e	and terristicus der der ogenerador 12 /	0
Potencia nominal	2000 kW	
Diámetro del rotor	71 m.	
Altura del buje	113 m.	
Tipo de aerogenerador	Sin multiplicador, velocidad variable, sistema de control del ángulo de paso (pitch)	50
Rotor tipo	Rotor de eje horizontal con control del ángulo de paso activo	
Sentido de rotación Agujas del reloj		
Número de palas	3	
Área barrida	3959 m ²	
Composición de las palas	Resina epoxi reforzada con fibra de vidrio	
Velocidad en punta	22-80 m/s	
Control ángulo de paso	Sistema independiente de control de paso en cada una de las palas	
Buje	Rígido	States and a state of the state
Generador	Síncrono en anillo con acoplamiento directo	
Orientación	Activo	M ENERCON
Velocidad de arranque	2.5 m/s	
Velocidad nominal	13.5 m/s	
Velocidad de parada	29-34 m/s	

Tabla 8. 42.	Algunas	características	del ad	erogenerador E-70)
	0			0	

En la figura 8.82 se muestran las curvas de potencias, para una densidad del aire de 1.225 kg/m^3 , de los tres aerogeneradores utilizados.

Figura 8.82. Curvas de potencia-velocidad de los aerogeneradores utilizados

8.9.2. Influencia del grado de ajuste de la distribución en la estimación de la energía producida.

Con el propósito de analizar la influencia del grado de ajuste de la distribución a los datos muestrales en el error producido en la estimación de la energía producida por un aerogenerador, se ha utilizado la siguiente metodología:

- Extrapolación de las velocidades horarias del viento de cada estación hasta las alturas de los bujes de los tres aerogeneradores seleccionados. Para ello se ha utilizado el modelo logarítmico de la ecuación (6.11) y se ha usado una longitud de rugosidad de 0.017 m. en todas las estaciones.
- Se han estimado los parámetros de las distintas leyes analizadas en esta tesis utilizando los valores de las velocidades del viento calculadas en el punto anterior. Como método de estimación se ha empleado el de máxima verosimilitud, ya que podemos incluir las distribuciones de máxima entropía.
- Estimación de los coeficientes de ajuste R² y de diferencias relativas, tal como se indicó en el apartado 8.7.
- Estimación de la potencia producida por los aerogeneradores en cada una de las estaciones utilizando las diversas leyes y el método estático descrito en el apartado 7.4.1. Determinación de los tiempos equivalentes.
- Estimación de la potencia producida por los aerogeneradores en cada una de las estaciones utilizando los datos de viento extrapolados a las alturas de los bujes de los aerogeneradores y el método cuasidinámico descrito en el apartado 7.4.2. Determinación de los tiempos equivalentes.
- Estimación de las diferencias relativas ε_e entre las potencias eléctricas medias obtenidas con los métodos estático y cuasidinámico.
- Análisis de resultados.

Utilizando el procedimiento anteriormente descrito se han elaborado las tablas que se incluyen en el apéndice F de esta tesis.

En la figura 8.83 se muestran las diferencias relativas (entre las potencias eléctricas medias obtenidas con los métodos estático y cuasidinámico) en función de los coeficientes R^2 , cuando se utiliza el aerogenerador E-33. Para elaborar dicha gráfica se han utilizado todas las estaciones y leyes analizadas. De similar manera, se han dibujado las figuras 8.85 y 8.86, las cuales se han trazado utilizando los aerogeneradores E-48 y E-70, respectivamente. En las figuras 8.83 a 8.85 puede observarse la tendencia a disminuir que presenta la diferencia relativa ε_e cuando aumenta el coeficiente R^2 . Asimismo, se observa en las mencionadas figuras que la dispersión de los resultados respecto de la línea de tendencia disminuye al incrementarse R^2 .

De acuerdo con la línea de tendencia de la figura 8.83, que presenta un coeficiente de ajuste a los datos de $R^2=0.85$, para valores de R^2 menores o iguales a 0.7 las diferencias relativas medias son superiores al 37%.

Coeficiente R²

Figura 8.84. Diferencia relativa en función del coeficiente R². Aerogenerador E-48 de 800 kW

Figura 8.85. Diferencia relativa en función del coeficiente R². Turbina E-70 de 2000kW

Asimismo, de acuerdo con la línea de tendencia de la figura 8.83, para valores de R^2 menores o iguales a 0.8 y valores menores o iguales a 0.9, las diferencias relativas medias son superiores al 30% y 17%, respectivamente. Para valores de R^2 superiores o igual a 0.99 las diferencias relativas son inferiores al 3%. En el caso de los aerogeneradores E-48 y E-70, las conclusiones son similares, ya que lo son sus curvas de tendencia (Figura 8.86).

En las figuras 8.87 a 8.89 se muestran las diferencias relativas (entre las potencias eléctricas medias obtenidas con los métodos estático y cuasidinámico) en función de los coeficientes R^2 (en el intervalo 0.99 a 1), cuando se utilizan los aerogeneradores E-33, E.48 y E-70, respectivamente.

Puede observarse en las mencionadas figuras que valores de R^2 iguales o superiores a 0.999 proporcionan diferencias relativas inferiores al 1%; en la mayoría de los casos inferiores al 0.5%.

Asimismo, puede observarse en las figuras 8.87 a 8.89 que algunos valores de R^2 inferiores a 0.999 también proporcionan diferencias relativas inferiores al 0.5%. Ello se debe al hecho que algunas distribuciones utilizadas se ajustan bien a los datos muestrales en el intervalo de operación del aerogenerador (especialmente en el tramo en que éste trabaja a potencia nominal) y con peor ajuste para los restantes rangos de velocidad del viento.

Figura 8.86. Comparativa de curvas de tendencia

Figura 8.87. Diferencia relativa en función del coeficiente R² (intervalo 0.99-1). Turbina E-33

Figura 8.88. Diferencia relativa en función del coeficiente R² (intervalo 0.99-1). Turbina E-48

Figura 8.89. Diferencia relativa en función del coeficiente R² (intervalo 0.99-1). Turbina E-70

Figura 8.90. Comparación de cuatro distribuciones en base a la diferencia relativa. (E-33)

Figura 8.91. Comparación de cuatro distribuciones en base a la diferencia relativa. (E-48)

Figura 8.92. Comparación de cuatro distribuciones en base a la diferencia relativa. (E-70)

En las figuras 8.90 a 8.92 se comparan cuatro distribuciones en base a las diferencias relativas ε_e obtenidas en las distintas estaciones analizadas.

Puede observarse que, independientemente de la potencia nominal del aerogenerador utilizado, la distribución de Weibull de dos parámetros, generalmente recomendada en la literatura científica (Ramírez y Carta, 2005; Ramírez y Carta, 2006), proporciona mayores diferencias relativas, en la mayoría de las estaciones analizadas, que la distribución Gamma Generalizada de tres parámetros y que dos de las distribuciones propuestas en esta tesis: la distribución mezcla de Weibull-2 de dos componentes y la distribución de máxima entropía, restringida por seis momentos estadísticos.

Asimismo, puede observarse en las mencionadas gráficas que la distribución mezcla de Weibull-2 de dos componentes y la distribución de máxima entropía (restringida por los primeros seis momentos estadísticos de la muestra) presentan menores diferencias relativas que la distribución Gamma Generalizada de tres parámetros en muchas de las estaciones analizadas. En el caso del aerogenerador E-33 en el 68.75% y 81.25%, respectivamente, de las estaciones. En el caso del aerogenerador E-48, en el 62.50% y 75.00%, respectivamente, de las estaciones. En el caso del aerogenerador E-70, en el 62.50% y 68.75%, respectivamente, de las estaciones. La distribución de máxima entropía (6 momentos) proporcionó, en todas las estaciones, diferencias relativas inferiores al 1%, independientemente del aerogenerador utilizado.

En las figuras 8.93 a 8.108 se muestran las diferencias relativas obtenidas en cada una de las dieciséis estaciones analizadas en función de las leyes de distribución empleadas. Puede observarse que las distribuciones Logaritmo Normal de dos parámetros y Gausiana Inversa de dos parámetros, sugeridas por diversos autores como apropiadas para el análisis de la energía eólica (Luna y Church, 1974; Kaminsky, 1976; Bardsley, 1980), proporcionan en todas las estaciones analizadas las más altas diferencias relativas ϵ_e . Asimismo, puede observarse en las mencionadas figuras que la distribución Beta prima de dos parámetros, analizada por primera vez en esta tesis, proporciona también altas diferencias relativas. Sin embargo, la distribución Normal-Truncada, utilizada por primera vez en esta tesis, ha proporcionado en 15 de las 16 estaciones analizadas menores diferencias relativas que la distribución de Weibull de dos parámetros.

Observando las figuras 8.93 a 8.108 se concluye que la distribución Gamma Generalizada de tres parámetros proporciona reducidas diferencias relativas ε_e . Asimismo, se concluye que la distribuciones de máxima entropía, principalmente las que utilizan más de dos primeros momentos estadísticos de la muestra, y la distribución mezcla de Weibull de dos componentes, proporcionan las más bajas diferencias relativas.

Como se pudo observar en las figuras 8.83 a 8.89 las diferencias relativas ε_e disminuyen al aumentar los coeficientes R². En el apartado 8.7.8 se demostró que el método de los mínimos cuadrados proporciona más altos valores de R² que los restantes métodos utilizados, por tanto, las diferencias relativas ε_e serán inferiores a las mostradas en las figuras 8.93 a 8.108, con excepción de las distribuciones de máxima entropía, si se utiliza el método de los mínimos cuadrados para estimar sus parámetros.

Figura 8.93. Comparación entre las distintas leyes en base a la diferencia relativa. (LA-12)

Figura 8.94. Comparación entre las distintas leyes en base a la diferencia relativa. (FU-01)

Figura 8.95. Comparación entre las distintas leyes en base a la diferencia relativa. (FU-07)

Figura 8.96. Comparación entre las distintas leyes en base a la diferencia relativa. (FU-04)

Figura 8.97. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-18)

Figura 8.98. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-22)

Figura 8.99. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-25)

Figura 8.100. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-23)

Figura 8.101. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-11)

Figura 8.102. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-04)

Figura 8.103. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-15)

Figura 8.104. Comparación entre las distintas leyes en base a la diferencia relativa. (GC-17)

Figura 8.105. Comparación entre las distintas leyes en base a la diferencia relativa. (TF-11)

Figura 8.106. Comparación entre las distintas leyes en base a la diferencia relativa. (TF-16)

Figura 8.107. Comparación entre las distintas leyes en base a la diferencia relativa. (HI-04)

Figura 8.108. Comparación entre las distintas leyes en base a la diferencia relativa. (GO-02)

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

CAPÍTULO 9

Conclusiones.

9.1. Introducción.

El contenido de este último capítulo de la Tesis Doctoral lo constituye la recopilación de aportaciones, conclusiones y líneas futuras de actuación que han surgido como fruto de la labor desarrollada.

En este contexto se expone a continuación, en forma concreta y sinóptica, lo que a juicio de la doctoranda constituyen:

- Las aportaciones de la tesis doctoral, tanto a nivel general como en su aplicación específica.
- Las conclusiones finales, tanto generales como específicas.
- Las ideas y trabajos que han surgido de la presente tesis doctoral y que quedan abiertas para continuar investigando sobre ellas.

De la lectura de estas conclusiones se deducen dos aspectos relativos a la propia elección del trabajo, que la doctoranda cree interesantes. En primer lugar, el desarrollo de la Tesis se justifica por la necesidad de aportar modelos más precisos para describir el comportamiento estadístico del viento en aras de una mejor estimación de los recursos energéticos eólicos en regiones, como la Canaria, donde coinciden circunstancias tales como: alto potencial eólico, limitaciones de espacio energéticamente aprovechable y restricciones en la inyección de la energía eléctrica generada en las redes eléctricas insulares (Medina, 1997).

Por otra parte, la originalidad de la tesis reside en el hecho de ser la primera vez que se enfoca, en forma global y sistematizada, el análisis de modelos estadísticos paramétricos y no paramétricos con el propósito de determinar aquellos que mejor describen los regímenes de viento del Archipiélago Canario.

9.2. Aportaciones de la Tesis Doctoral.

A continuación se expone un listado sucinto de las distintas aportaciones al modelado estadístico de las características del viento para su evaluación energética que han surgido en el curso de este trabajo de investigación, tanto a nivel general como específico.

Aportaciones generales.

- Utilización de funciones de densidad de probabilidades univariantes, continuas y estándar, no utilizadas hasta ahora en el análisis de la energía del viento.
- Utilización de funciones de densidad de probabilidad derivadas de la aplicación del Principio de Máxima Entropía en el análisis de la energía eólica. Estimación de los errores estándar de los parámetros.
- Utilización de distribuciones mezcla de dos componentes de distribuciones de Weibull, de dos y tres parámetros, en el análisis de la energía del viento. Estimación de los parámetros mediante métodos no utilizados hasta ahora en el análisis del viento.
- Utilización de la mezcla de distribución Weibull y distribución Normal truncada no utilizada hasta ahora en el modelado estadístico del viento.
- Ampliación de la distribución híbrida, propuesta por Takle y Brown (1978) para el caso de la ley de Weibull de 2 parámetros, a todas las leyes usadas en esta tesis que no tienen en cuenta las velocidades de viento nulas.
- Análisis de la influencia del número de parámetros de las diversas leyes de distribución consideradas en la bondad del ajuste a los histogramas de frecuencia de las muestras de la velocidad del viento.
- Análisis de la influencia del grado de ajuste de las distribuciones consideradas en la estimación de la potencia media producida por un aerogenerador, en función de su potencia nominal.
- Propuesta de un método para la estimación de la independencia de una muestra de velocidades horarias de viento.

Aportaciones específicas.

• Recopilación, filtración, según criterios de fiabilidad y longitud de registro, e
indicación gráfica de las ubicaciones de las estaciones anemométricas que han registrado datos de viento en el Archipiélago.

- Determinación de las distribuciones de probabilidad univariantes y continuas analizadas que mejor describen los histogramas de frecuencias de velocidades medias horarias del viento del Archipiélago Canario.
- Determinación de las distribuciones de probabilidad univariantes y continuas que mejor describen los histogramas de frecuencias de velocidades medias mensuales del viento del Archipiélago Canario.
- Comparación entre las distribuciones híbridas y no híbridas desde el punto de vista del grado de ajuste a los histogramas de frecuencia de velocidades medias horarias del viento en el Archipiélago Canario.
- Comparación entre tres métodos de estimación de los parámetros de las leyes de distribución analizadas, desde el punto de vista del grado de ajuste a los histogramas de frecuencia de velocidades medias horarias y velocidades medias mensuales del viento en el Archipiélago Canario.
- Estudio de la influencia de la variación en altura en el grado de ajuste de las distribuciones analizadas.
- Estudio del grado de ajuste de las distribuciones analizadas en la estimación de la energía producida por un aerogenerador, en función de la potencia nominal del mismo.

9.3. Conclusiones.

En este apartado del capítulo se exponen las conclusiones más sobresalientes que se han obtenido.

- De un análisis detallado de los procedimientos de cálculo y de los resultados obtenidos se desprende que, en el caso de las estaciones consideradas, las cuales presentan bajas frecuencias de vientos nulos (tabla 8.16), no se puede afirmar que los modelos híbridos (H) representen mejor que los no híbridos (NH) a los datos muestrales. Las diferencias entre los coeficientes R² y entre los coeficientes ε de ambos tipos de distribuciones no son significativas en las leyes que mejor han descrito, en los apartados 8.7.1 a 8.7.6, los regimenes de viento analizados, es decir, la distribución Gamma Generalizada de tres parámetros y la distribución Beta de tres parámetros. Asimismo, con las distribuciones Weibull de dos parámetros H y NH no se detectan diferencias significativas.
- De la observación de las figuras 8.41 a 8.43 se desprende la similitud entre ambos tipos de distribuciones (H y NH). En el caso de la figura 8.43 se observa un ligero mejor ajuste de la distribución H frente a la NH en la estación FU-04, la cual presenta la más alta probabilidad de velocidades del viento nulas (tabla 8.16). Este hecho puede observarse en la figura 8.44.

- Cuando se utiliza el método de los momentos para estimar los parámetros de las nueve leyes unimodales señaladas en la tabla 8.22, las distribuciones Gamma Generalizada de tres parámetros, Beta 3 y Normal-Truncada representan mejor los datos de viento y describen mejor la densidad de potencia eólica en las estaciones analizadas que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica.
- Del análisis de la tabla 8.26 se desprende que, con excepción de la estación de los Valles (LA12), la distribución de Weibull de dos parámetros no es la que mejor se ajusta a los datos de viento muestrales, cuando los parámetros son estimados mediante el método de Máxima Verosimilitud. Son las leyes Gamma Generalizada de tres parámetros, Normal-Truncada y Beta 3, las distribuciones que mejor se ajustan a los datos de viento registrados en las distintas estaciones.
- Del análisis de la tabla 8.30 se desprende que la distribución de Weibull de dos parámetros no es la que mejor se ajusta a los datos de viento muestrales, cuando los parámetros son estimados mediante el método de Mínimos Cuadrados. Son las leyes Gamma Generalizada de tres parámetros (en un 93.75% de las estaciones ocupa la primera posición) y Normal-Truncada (en un 75% de las estaciones ocupa la segunda posición) las que mejor se ajustan a los datos de viento registrados en las distintas estaciones. Asimismo, la distribución Beta de tres parámetros muestra un mejor ajuste a las velocidades medias horarias de las estaciones que presentan bimodalidad que la distribución de Weibull de dos parámetros, aunque ninguna representa adecuadamente los datos muestrales.
- De las leyes continuas, univariantes y estándar utilizadas en esta tesis, la distribución Gamma Generalizada de tres parámetros y la distribución Beta de tres parámetros, utilizadas en otros estudios, junto con la distribución Normal truncada, utilizada por primera vez en esta tesis, proporcionan mejores ajustes a los datos de viento del Archipiélago Canario que la distribución de Weibull de dos parámetros, normalmente recomendada en la literatura científica. Una ventaja adicional de la distribución Normal truncada es que tiene en cuenta las velocidades de viento nulas.
- Existe un grupo de leyes que han sido propuestas por diversos autores para representar regímenes de viento, las cuales no se ajustan a los vientos del Archipiélago Canario. En este grupo pueden señalarse las distribuciones Gausiana Inversa de 2 parámetros (Bardsley, 1980), Logaritmo Normal de dos parámetros (García et al., 1998; Luna y Church, 1974; Kaminsky, 1976), Rayleigh de un parámetro (Kaminsky, 1977; Haslett y Kelledy, 1981; Sharif-Eldeen et al, 1988), Gamma de dos parámetros (Ossenbrugen et al, 1979); y Weibull de dos parámetros (Hennessey, 1977; Stevens y Smulders, 1979; Jamil, 1994; Dorvlo, 2002). La distribución Beta prima considerada por primera vez en esta tesis es la que peor ajuste presenta en la mayoría de los casos analizados.
- De un análisis comparativo entre los coeficientes R² obtenidos con cada ley, en función del método de estimación de parámetros utilizado, se concluye que el método de los mínimos cuadrados proporciona los valores más altos de R². Esta conclusión es lógica, ya que dicho método estima los parámetros de las leyes de distribución de tal manera que se minimicen los errores entre las distribuciones teóricas continuas y las distribuciones muestrales. El método de los mínimos cuadrados tiene menos propiedades óptimas deseables que el método de máxima verosimilitud, cuando analizamos variables aleatorias. Sin embargo, como se indicó en el apartado 8.7, en esta tesis no se ha tenido en cuenta la dependencia entre las velocidades horarias de viento. El motivo, además del señalado en el mencionado

apartado, se debe al hecho que para tener en cuenta la independencia, con el método propuesto por la autora y director de esta tesis (Ramírez y Carta, 2005), se precisa disponer de series largas de viento, condición que no se cumple para la mayoría de las estaciones analizadas (Tabla 8.11).

- Las distribuciones derivadas del Principio de Máxima Entropía (PME) restringido con sólo N=2 proporcionan un mejor ajuste que la distribución de Weibull de dos parámetros. Además, las distribuciones obtenidas mediante el PME restringido por N=3 proporcionan mejor ajuste que las derivadas del PME restringido con N=2. Asimismo, se concluye que los coeficientes R² obtenidos mediante las distribuciones Gamma Generalizada de tres parámetros son similares a los obtenidos con las distribuciones derivadas del PME restringido con N=3, en la mayoría de las estaciones analizadas.
- Las distribuciones mezcla propuestas en esta tesis son capaces de describir tanto los regímenes unimodales como los bimodales y bitangenciales presentes en las distintas zonas de aprovechamiento eólico analizadas. La distribución mezcla de dos componentes de Weibull-2 proporciona valores de R² muy similares a los de las distribuciones derivadas de la aplicación del PME, sin embargo, son más adecuadas cuando los vientos presentan bimodalidad.
- Sólo ha sido posible utilizar una estación para analizar la influencia de la variación en altura en el grado de ajuste de las distribuciones. Es decir, sólo se ha utilizado una estación para averiguar si el tipo de distribución que mejor se ajusta a los vientos registrados a una altura determinada sobre el nivel del suelo sigue siendo el mismo cuando se aplica a vientos registrados, en la misma estación, pero a otras alturas. En esta estación, se concluye que las variaciones del viento con la altura pueden originar que la ley que mejor se ajusta a una altura no lo haga para otra, si bien las diferencias entre los valores de R² son pequeñas.
- Del análisis del limitado número de estaciones (3) y de datos (72 y 48) que se dispone en esta tesis para extraer conclusiones respecto al tipo de distribución que mejor se ajusta a las velocidades medias mensuales del viento, así como de la influencia del parámetro de posición y del número de parámetros en el nivel de ajuste de las leyes consideradas a los datos muestrales, se deduce que el método que proporciona el mejor ajuste (más alto R^2) es el de los mínimos cuadros y el método que proporciona un menor valor de ϵ es el de los momentos.
- Para cada tipo de distribución utilizada para describir las frecuencias de las velocidades medias mensuales, aquella que dispone de parámetro de posición presenta mejor nivel de ajuste (más alto valor del coeficiente R²) que la que carece del mismo. La influencia del parámetro de posición es significativa en el caso de la distribución de Weibull.
- Con respecto a la influencia del grado de ajuste de las distribuciones a los datos muestrales en el error producido en la estimación de la energía producida por un aerogenerador se concluye que, para valores de R² menores o iguales a 0.7, las diferencias relativas medias son superiores al 37% y para valores de R² menores o iguales a 0.9, las diferencias relativas medias son superiores al 17%. Para valores de R² superiores o iguales o superiores a diferencias relativas son inferiores al 3%. Sin embargo, valores de R² iguales o superiores a 0.999 proporcionan diferencias relativas inferiores al 1%; en la mayoría de los casos inferiores al 0.5%.
- La distribución de Weibull-2 ha proporcionado, en la mayoría de las estaciones, diferencias relativas energéticas superiores al 4%, frente a las del 1% máximas obtenidas utilizando el

Principio de Máxima Entropía o las del 2.8% máximas obtenidas con la distribución mezcla de dos componentes de Weibull-2.

9.4. Líneas futuras de actuación propuestas.

Como consecuencia del trabajo desarrollado y de la imposibilidad material de recorrer todos sus senderos, han surgido una serie de cuestiones que han quedado sin respuesta y sobre las que debería actuarse.

En este contexto, entre los temas sobre los que la doctoranda propone que se profundice caben mencionar los siguientes:

- El análisis de la influencia de la variación en altura en el grado de ajuste sólo ha podido realizarse en esta tesis haciendo uso de los datos de una única estación anemométrica. Se propone que el análisis se amplíe a estaciones influenciadas por rugosidades, topografías, etc., diferentes.
- El número de estaciones y datos utilizados para extraer conclusiones respecto al tipo de distribución que mejor se ajusta a las velocidades medias mensuales del viento ha estado limitado en esta tesis. Se propone que las conclusiones aquí extraídas se validen en el futuro mediante el empleo de un mayor número de estaciones y de datos.
- Se propone que los estudios realizados para determinar la influencia del grado de ajuste de la distribuciones en la estimación de la energía producida por un aerogenerador se realicen utilizando la energía real obtenida por el mismo en lugar de la estimada haciendo uso de la curva de potencia proporcionada por el fabricante.
- Los estudios energéticos llevados a cabo en esta tesis se han basado en el empleo de un valor de la densidad del aire estándar e independiente de la velocidad del viento. Se propone analizar la influencia de la variación temporal y espacial de la densidad del aire y su relación con la velocidad del viento.
- El análisis de la independencia de los datos de viento sólo se ha realizado empleando la distribución de Weibull de dos parámetros. Se propone que dicho estudio se extienda a las restantes leyes analizadas en esta tesis.

Bibliografía

- [001] Abramowitz M; Stegun IA (1972). *Handbook of Mathematical Functions*. Dover Publications, Inc, New York.
- [002] Akai TJ (1999). *Métodos Numéricos Aplicados a la Ingeniería*. Limusa Wiley.
- **[003]** Amos DE (1983). A portable fortran subroutine for derivatives of the Psi function. Transactions on Mathematical Software. Vol.9.No.4. pp.494-502.
- [004] Anderson OD (1979). *Time Series Analysis and Forecasting*. Butterworths. London.
- [005] Auwera VL; F De Meyer; Malet LM (1980). *The use of the Weibull three parameter for estimating mean wind power densities*. Journal Applied Meteorology. Vol. 19, July, pp. 819-825.
- [006] Auwera VL; Malet LM (1982). *State of the art of research work on wind power potential in Belgium*. Vol.1, series G, Proceeding of the EC Contractors' held in Brussels,23-24 november. pp. 104-108.
- [007] Baker RW; Hennessey JP (1977). *Estimating wind power potential*. Power Engineering. March. pp. 56-57.
- **[008]** Bardsley WE (1980). *Note on the use of the inverse gaussian distribution for wind energy applications*. Journal Applied Meteorology. Vol. 19, September, pp. 1126-1130.
- [009] Barry RG; Chorley RJ (1999). Atmósfera, tiempo y clima. Omega, S.A.
- [010] Bates DM; Watts DG (1988). Nonlinear Regression Analysis. Its Applications. John Wiley & Sons.
- **[011]** Bayley GV; Hammersly JM (1946). *The 'effective' number of independent observations in an autocorrelated time series.* J Roy Stat Soc. B8. pp. 184-197

- [012] Baynes CG (1974). *The Statistics of Strong Winds for Engineering Applications*. University of Western Ontario report, BLWT-4-1974, September.
- [013] Bechrakis DA; Sparis PD (2000) Simulation of the wind speed at different heights using artificial neural networks. Wind Engineering. Vol 24, No. 2. pp.127-136
- [014] Belegundu AD; Chandrupatla TR (1999). Optimization Concepts and Applications in Engineering. Prentice Hall.
- [015] Bergström H; Smedman Ann-Sofi (1999). *Wind climatology for a well-exposed site in the Baltic Sea.* Wind Engineering. Vol 23 No. 3 pp. 133-143
- [016] Biswas S; Sraedhar BN; Singh YP (1995). A simplified statistical technique for wind turbine energy output estimation. Wind Engineering. Vol. 19, No. 3 pp. 147-155.
- **[017]** Box GEP; Pierce DA (1970). *Distribution of residual autocorrelations in autoregressive-integrated moving average time series models*. Journal of the American Statistical Association. Vol. 65. pp.1509-1526.
- [018] Box GEP; Cox DR (1964). An analysis of transformations. J. R. Statist. Soc. Vol. 26. pp.211.
- [019] Brett AC; Tuller SE; (1991). *The autocorrelation of hourly wind speed observations*. Journal of Climate and Applied Meteorology. Vol. 30, pp. 823-833
- [020] Bueno C; Carta JA (2005a). *Technical–economic analysis of wind-powered pumped hydrostorage systems*. *Part I: model development*. Solar Energy. Vol.78, pp.382-395.
- [021] Bueno C; Carta JA (2006). *Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands*. Renewable & Sustainable Energy Reviews. Vol. 10, pp.312-340.
- [022] Bueno C; Carta JA. (2005b). *Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro.* Solar Energy. Vol. 78, pp.396-405.
- **[023]** Burton T; Sharpe D; Jenkins N; Bossanyi E (2001). Wind Energy Handbook. John Wiley & Sons, ltd. pp.617.
- [024] Bury Karl (1999). Statistical Distributions in Engineering. Cambridge.
- [025] Businger JA (1973). *Turbulent transfer in the atmospheric surface layer*.. In Workshop on Micrometeorology. American Meteorological Society, Boston, Massachusetts. pp. 67-100.

- [026] Cádiz Deleito JC (1984) La energía eólica, tecnología e historia. Hermann Blume.
- [027] Calder KL (1966). Concerning the similarity of A.S. Monin and A.M. Obukhov for the turbulent structure of the thermally stratified surface layer of the atmosphere. Quart. J. Roy. Meteorol. Soc. Vol. 92. pp. 141-146.
- **[028]** Calero R; Carta JA (2004). Action Plan for wind energy development in the Canary Islands. *Energy Policy*, 32, 10, pp. 1185-1197.
- [029] Canavos George C (1988). Probabilidad y estadística. Aplicaciones y Métodos. McGraw-Hill.
- **[030]** Carlin John; Haslett John (1982). *The probability distribution of wind power from a dispersed array of wind turbine generators*. Journal of Applied Meteorology. Vol.21. March, pp. 303-313.
- **[031]** Carta J A; González J; Gómez C (2003a). *O perating results of a wind–diesel system which supplies the full energy needs of an isolated village community in the Canary Islands*. Solar Energy. Vol.74, pp.53-63.
- [032] Carta JA (1991). Optimización técnico-económica de sistemas de desalación accionados por energía eólica. Aplicación a las Islas Canarias. Tesis Doctoral. Universidad de Las Palmas de Gran Canaria. Departamento de Ingeniería Mecánica.
- **[033]** Carta JA; Calero R; Padrón J; García J (1994) *Wind potential in the Canarian Archipelago*. Proceedings 5t^h European Wind Energy Association Conference and Exhibition. Thessaloniki-Macedonia-Greece. Vol. 3, pp.35-41.
- [034] Carta JA; González J (2001). Self-sufficient energy supply for isolated communities: wind diesel system in the Canary Islands. The Energy Journal. Vol. 3, pp.115-145.
- [035] Carta JA; González J; Subiela V (2003b). Operational analysis of an innovative wind powered reverse osmosis system installed in the Canary Islands. Solar Energy. Vol.75, pp.153-168
- [036] Carta JA; González J; Subiela V (2004). *The SDAWES project: an ambitious R&D prototype for windpowered desalination*. Desalination. Vol.161, pp.33-48.
- **[037]** Carta JA; Calero R (1990). Technical-economic optimisation of a desalination system powered by wind energy. In *Proceedings of the European Community Wind Energy Conference*, pp. 596-600, Madrid, Spain.
- [038] Carta JA; Calero R (1994) *Aplicación de la energía eólica a la desalación de agua de mar a gran escala.* In *Proceedings of VII Congreso Ibérico de Energía Solar,* pp. 509-514, Vigo, Spain.

- [039] Chadee JC; Sharma C (2001). *Wind speed distributions: a new catalogue of defined models*. Wind Engineering. Vol. 25. pp. 319-337
- [040] Chan MY; Cohen AC; Whitten BJ (1984). Modified maximum likelihood and modified moment estimators for the three-parameter inverse gaussian distribution. Communications in Statistics. Vol.13, No.3. pp.47-68.
- [041] Cheng SW; Fu JC(1982). Esmination of mixed Weibull parameters in life testing. IEEE Transactions on Reliability. Vol.31. pp. 377-381.
- [042] Cheng RCH; Amin NAK (1981). Maximum likelihood estimation of parameters in the inverse gaussian distribution with unkonown origin. Technometrics. Vol. 23. pp.257-263.
- [043] Cieslikiewicz W (1998). *Maximum entropy probability distribution of wind wave free-surface elevation*. Oceanologia. Vol.40, No. 3.pp. 205-229.
- **[044]** Cohen AC (1950). On estimation the mean and variance of singly truncated normal frequency distributions from the first three samples moments. Annals of the Institute of Statistical Mathematics. Vol. 3. pp. 37-44.
- [045] Conradsen K; Nielsen LB; Prahm LP (1984). *Review of Weibull statistics for estimation of wind speed distributions*. Journal of Climate and Applied Meteorology. Vol. 23, August, pp. 1173-1183.
- [046] Cook NJ (2001). Discussion on modern estimation of the parameters of the Weibull wind speed distribution for wind speed energy analysis by J.V. Seguro, T.W. Lambert. Journal of Wind Engineering and Industrial Aerodynamics. Vol. 89. pp. 867-869.
- [047] Corotis RB (1974). *Statistical analysis of continuous data records*. Journal of the Transportation Engineering Division. American Society of Civil Engineers. Vol. 100. pp. 195-206.
- [048] Corotis RB; Sigl AB; Cohen P (1977). Variance analysis wind characteristics for energy conversion. Journal of Applied Meteorology. Vol. 16. pp. 1149-1157.
- [049] Corotis RB; Sigl AB; Klein J (1978). *Probability models of wind velocity magnitude and persistence*. Solar Energy. Vol. 20. pp. 483-493.
- [050] Counihan J (1975). Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972. Atmospheric Environment. Vol. 9. pp. 871-905.
- [051] Court A (1974). *Wind Shear Extremes*. Proceeding of the Initial Wind Energy Data Assessment Study, Asheville, North Carolina, July 29-31, M.J. Changery, Ed., published as report NSF-RA-N-75-020.

- **[052]** Crowe PR (1949). *The trade wind circulation of the world*. Trans. Inst. Brit Geog. Vol.15. pp. 38-56.
- **[053]** Crowe PR (1950). *The seasonal variation in the strength of the trades*. Trans. Inst. Brit Geog. Vol.16. pp. 23-47.
- [054] D'Agostino RB; Stephens MA (1986). Goodness-of-fit techbiques. Dekker.
- [055] Dabbert WF (1968). *Tower indiced errors in wind profile measurements*. Journal Applied Meteorology. Vol. 7. pp. 359-359.
- [056] Dixon JC; Swift RH (1984). *The dependence of wind speed and Weibull characteristic on height for offshore winds*. Wind Engineering. Vol.8, No.2.pp.87-98.
- [057] Dorvlo ASS (2002). *Estimating wind speed distribution*. Energy Conversion and Management. Vol. 43. pp. 2311-2318.
- [058] Downey WT; Little Arthur D (1980). On the costs and benefits of siting a wind turbine in the mountains of New Hampshire. Third International Symposium on Wind Energy Systems. Ausgust 26-29, Denmark, B4/1-B4/14.
- **[059]** Draper NR; Smith H (1998). Applied regression analysis. John Wiley & Sons, Inc.
- **[060] Eggleston DM; Stoddard F S** (1987). *Wind turbine engineering design.* Van Nostrand Reinhold.
- [061] Engeln-Müllges Gisela; Uhlig Frank (1996). Numerical Algoritms With Fortran. Springer.
- [062] Evans M; Hastings N; Peacock B (1993). *Statistical Distributions*. John Wiley & Sons, Inc.
- [063] Faires VM (1978). Termodinámica. U.T.E.H.A.
- [064] Feijóo AE (1998). Influencia de los parques eólicos en la seguridad estacionaria y calidad de onda de redes eléctricas de gran dimensión. Tesis Doctoral. Universidad de Vigo. Departamento de Enxeñería Eléctrica..
- [065] Folks JL; Chhikara RS (1978). *The Inverse Gaussian distribution and its statistical application-A review*. Journal of the Royal Statistical Society. Vol.40, No.3. pp. 263-289.
- [066] Font Tullot I (1956). *El tiempo atmosférico en las Islas Canarias*. Servicio Meteorológico Nacional. Publicaciones. Serie A (Memorias). Num. 26.
- [067] Forte B; Hughes N; Pales Z (1989). Maximum entropy and the problem of moments. Rendiconti di Matematica. Vol. 9, pp. 689-699

- [068] Francis Scheid (1972). Análisis Numérico. McGraw-Hill.
- [069] Freris LL (1990). Wind Energy Conversion Systems. Prentice Hall.
- **[070]** Frost W; Long BH; Turner RE (1978). Engineering handbook on the atmospheric environment guidelines for use in wind turbine generator development. NASA TP-1359, Cleveland, Ohio; NASA Lewis Research Center.
- **[071]** Frost W; Shieh CF (1981). *Wind turbine generator sitting guidelines relative to terrain features.* Final Report, DOE Contract AC06076ET20242, Tullahoma, Tennessee: FWG Associates, Inc.
- [072] García A; Torres, JL; Prieto E; De Francisco A (1998). *Fitting wind speed distributions: A case study.* Solar Energy. 1998. Vol. 62. pp. 139-144
- [073] Gil Alvarez Pedro (1981). *Teoría matemática de la información*. Ediciones ICE. España.
- **[074]** Gil P; Pardo L; Gil MA (1993). *Matemáticas de la incertidumbre y la información y sus aplicaciones estadísticas*. Publicaciones de la Universidad de Oviedo.
- [075] Gill GL, Olsson LE; Sela J; Suda M (1967). Accuracy of wind measurements on towers or stacks. Bull. Amer. Meteorol. Soc.. Vol. 48. pp. 665-674.
- [076] Gipe Paul (1995) *Wind Energy Comes of Age.* John Wiley & Sons.
- [077] Golding E.W. (1980). *The Generation Of Electricity By Wind Power*. E.& F.N. Spon Ltd.
- [078] Gray, H.B.; Haight, G.P.(1975). Principios Básicos de Química. Editorial Reverté, S.A.
- **[079]** Guzzi Rodolfo; Justus Carl Gerald (1986). Physical Climatology for solar and wind energy. World Scientific.
- **[080]** Gzyl Henryk (1994). *The Method of Maximum Entropy*. Series on Advances in Mathematics for Applied Sciences. World Scientific.
- [081] Haslett, J; Kelledy E (1981). A Note on the Use of the Models in the Estimation of Wind Power Avalability. Wind Engineering.Vol. 5, pp. 6-11
- [082] Hau E (2000). Wind Turbines. Fundamentals, Technologies, Applications, Economics. Springer-Verlag. Berlin.
- [083] Heier Siegfried (1998). Grid integration of wind energy conversion systems. John Wiley & Sons, Inc.

- [084] Hennessey Joseph P. (1977). Some aspects of wind power statistics. Journal of Applied Meteorology. Vol. 16,No. 2, pp.119-128
- [085] Hennessey Joseph P. (1978). A comparison of the Weibull and Rayleigh distributions for estimating wind power potential. Wind Engineering. Vol. 2, pp.156-164
- **[086]** Hernández H Pedro (2003). Natura y Cultura de Las Islas Canarias. Tafor Publicaciones.
- [087] Hidy George M (1968). Los vientos. Reveté, S.A.
- **[088]** Hiester TR; Pennell WT (1981). *The siting Handbook for large wind energy systems*. WindBooks
- [089] Hladik Jean (1984). Énergétique éolienne. Masson.
- **[090]** Hussain M; Alam S; Reza KA; Sarkar M (1986). *A study of the wind speed and wind energy availability in Bangladesh*. Energy Conversion and Management; 26:321-7.
- [091] IEC 61400 1 (1994). Wind turbine generator systems. Part1: Safety requirements.
- [092] Jamil M. (1994). *Wind power statistics and evaluation of wind energy density*. Wind Engineering. 1994. Vol. 18, No. 5 pp. 227-240
- [093] Jarabo Friedrich F; Sanz Martinez de la Peña M; Pérez Dominguez C (1987). *Energías renovables.* Centro de Cultura Popular Canaria. Conserjería de Industria y Energía,
- [094] Jaramillo OA; Borja, MA (2004a). Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renewable Energy. Vol. 29. pp. 1613-1630
- [095] Jaramillo OA; Borja MA (2004b). Bimodal versus Weibull Wind Speed Distributions: an Analysis of Wind Energy Potential in La Ventosa, Mexico. Wind Engineering. Vol.28. pp.225-2234.
- [096] Jaynes ET (1957-a). Information theory and statistical mechanics I. Physical Review. Vol. 106. pp. 620-630.
- [097] Jaynes ET (1957-b). *Information theory and statistical mechanics II*. Physical Review. Vol. 108. pp. 171-190.
- [098] Johnson N L; Kotz S; Balakrishnan N (1994). Continuous Univariate Distributions. Volume 1. John Wiley & Sons,Inc.

- [099] Johnson N L; Kotz S; Balakrishnan N (1995). Continuous Univariate Distributions. Volume 2. John Wiley & Sons,Inc.
- [100] Jones CN (1986). Notes on the effect of site wind-speed frequency distribution and machine performance characteristics on the annual energy output of a WECS. Wind Engineering. Vol. 10, No.1 pp. 31-46
- [101] Jones CN. (1988). *The prediction of wind turbine energy output; a brief survey*. Wind Engineering. Vol.12, No.1, pp. 76-87.
- [102] Jones G; Cheng RCH (1984). On the asymptotic efficiency of moment and maximum likelihood estimators in the three-parameter inverse gaussian distribution. Communications in Statistics-Theory and Methods. Vol. 13. pp.2307-2314
- [103] Justus CG; Hargraves WR; Mikhail A; Graber D (1978). *Methods for estimating wind speed frequency distributions*. Journal of Applied Meteorology. Vol.17. pp. 350-353.
- [104] Justus CG (1980) Vent et performances des éoliennes. Ediciones SCM.
- [105] Justus CG; Mikhail A (1976). *Height variation of wind and wind distribution statistics*. Geophys. Res. Lett. Vol. 3. pp. 261.
- [106] Kaminsky FC (1976). Four probability densities (Log-normal, gamma, Weibull, and Rayleigh) and their application to modeling average hourly wind speed. ERDA Contract No. ERDA(49-18) 2365. University of Massachusetts.
- [107] Kapur JN (1989). Maximum entropy models in science and engineering. Wiley.
- [108] Kaylan AR; Harris CM (1981). Efficient algorithms to derive maximum-likelihood estimates for finite exponential and Weibull mixtures. Computers and Operations Research. Vol. 8. pp. 97-104.
- [109] Kirch Allan M (1975). Estadística con Fortran. Interamericana.
- [110] Koeppl Gerald W (1982). *Putnam's Power From The Wind*. Van Nostrand Rewinhold Company.
- [111] Landau HJ (1987). *Maximum entropy and the moment problem*. Bull. Am. Math. Soc. Vol. 16, No.2. pp: 47-77.
- [112] Lavagnini A; Stellato G; Tosato GC (1982). *Climatological Analysis of Italian data for wind energy applications*. Vol.1, series G, Proceeding of the EC Contractors' held in Brussels, 23-24 November. pp. 97-103.

- [113] Lazo AG; Rathie PN (1978). On the entropy of continuous destributions. IEEE transactions on Information Theory. IT-24(1). pp. 120-121.
- [114] Le Gouriérès Désiré (1983). Energía eólica. Teoría, concepción y cálculo práctico de las instalaciones. Masson., S.A. .
- [115] Ledesma M; Baleriola G (1991). *Meteorología aplicada a la aviación*. Paraninfo.
- [116] Lettau H (1969). Note on aerodynamic roughness-parameter estimation on the basis of roughness-element distribution. Journal Applied Meteorology. Vol. 8. pp. 828-832.
- [117] Lilliefors HW (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Amer. Statist. Ass.. Vol. 62. pp. 399.
- [118] Lindley D (1975). *The design and performance for a 6-cup anemometer*. Journal of Applied Meteorology. Vol. 5. pp. 219-225.
- [119] Ljung G; Box GEP (1978). On a measure of lack of fit in time series models. Biométrica. Vol. 65. pp. 297-303.
- [120] Lobato I.; Nankervis JC; Savin NE (2001). *Testing for autocorrelation using a modified Box-Pierce Q test.* International Economic Review. Vol.42. pp. 187-205
- [121] Lou Jiann-Jong (1982). Stochastic Analysis of Wind Characteristics At Wind Energy Conversion System Sites. Tesis Doctoral. Universidad Northwestern. Evanston, Illinois.
- [122] Lubosny Z (2003). Wind turbine operation in electric power systems. Springer.
- [123] Lun IYF; Lam JC (1999). A study of Weibull parameters using long-term wind observations. Renewable Energy. Vol. 20. pp. 145-153.
- [124] Luna RE; Church HW (1974). Estimation of Long-term concentrations using a "Universal" wind speed distribution. Journal of Applied Meteorology. Vol.13. pp. 910-916.
- [125] Lysen EH (1981). Output prediction for wind turbines in Weibull distributed wind regimes. Wind Energy Group. Department of Physics. University Technology Eindhoven. R475D.
- [126] Lysen EH (1983). *Introduction to Wind Energy*. Consultancy Services Wind Energy Developing Countries.
- [127] Mann HB; Wald A (1942). On the choice of the number of intervals in the application of the chi-square test.Ann. Math. Statist. Vol.13, pp. 306-310.

- [128] Manwell JF; McGowan JG; Rogers AL (2002). Wind Energy Explained. Theory, Design and Application. Wiley.
- [129] Marchante M; Martí I; Navarro J; García C (2000). Estimating the Weibull parameters using two different methodologies. Wind Power for the 21st Century. Proceeding of the International Conference held at Kassel, Germany, 25-27 September. pp. 408-409.
- [130] McLachlan G; Krishnan T (1996). The EM algorithm and extensions. 1st ed. UK: John Wiley & Sons Ltd.
- [131] McLachlan G; Peel D (2000). Finite mixture models. 1st ed. UK: John Wiley & Sons Ltd.
- [132] Mead LR; Papanicolau N (1984). Maximum entropy in the problem of moments. Jour. Math. Phys. Vol. 25. pp. 2404-2417
- [133] Medina JF (1997). *Análisis de sistemas eléctricos ante la integración de parques eólicos. Aplicación al caso de las Islas Canarias.* Tesis Doctoral. Universidad de Las Palmas de Gran Canaria. Departamento de Ingeniería Eléctrica.
- **[134]** Menéndez Pérez E (1998). *Las energías renovables. Un enfoque político-ecológico.* Los libros de Catarata.
- [135] Mikhail AS; Justus CG (1981). Comparison of height extrapolation models and sensitivity analysis. Wind Engineering. Vol. 5, No. 2. pp. 91-107.
- [136] Mikhail AS (1977). *Atmospheric boundary layer similarity theory for application in wind energy fields*. Tesis Doctoral. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.
- [137] Monchy F (1990). Teoría y práctica del mantenimiento industrial Masson.
- [138] Monin AS; Obukhov MA (1954). Dimensionless characteristics of turbulence in the surface layer. Akad. Nauk. SSSR, Geofiz., Inst. Tr. No. 24. pp. 163-187.
- [139] Moses H; Danbek HG (1961). *Errors in wind measurements associated with towermounted anemometers*. Bull. Amer. Meteorol. Soc. Vol. 42. pp.190-194.
- [140] Nakamura Shoichiro (1992). *Métodos Numéricos Aplicados Con Software*. Prentice Hall.
- [141] Oliva RB (1997). Result after first year of automated wind measurements in Santa Cruz, Southern Patagonia. Wind Engineering. Vol 21 No. 2 pp. 113-124.

- [142] ORDEN 1319 (2004). Orden por la que se regulan las condiciones técicoadministrativas de las instalaciones eólicas ubicadas en Canarias. BOCA nº. 178. 16334-16340.
- [143] Ossenbrugen Paul J; Pregent Gerard P; Meeker L David (1979). Offshore wind power potential. Journal of The Energy Division, Proceeding of the American Society of Civil Engineers, Vol. 105,No.EY1, January, pp. 81-92.
- [144] Öztürk A.; Dale R. (1982). A study of fitting the Generalized Lambda Distribution to solar radiation data. Journal of Applied Meteorology. Vol. 21. pp.995-1004
- [145] Padgett WJ; Wei LJ (1979). *Estimation for the three-parameter inverse Gaussian distribution*. Communications in Statistics. Vol.8. pp. 129-137
- [146] Pang Wan-Kai; Forster JJ; Troutt, MD (2001). Estimation of wind speed distribution using Markov Chain Monte Carlo Techniques. Journal of Applied Meteorology. Vol. 40. pp. 1476-1484
- [147] Panofsky HA (1964). *The structure of atmospheric turbulence*. Interscience Publishers, N.Y.
- [148] Panofsky HA (1977). *Wind structure in strong winds below 150 m*. Wind Engineering, Vol. 1. pp. 91-103.
- [149] Panofsky HA; Dutton JA (1984). Atmospheric turbulence. John Wiley & Sons. N.Y.
- [150] Pardo llorente L (1997). *Teoría de la Información Estadística*. Hespérides.
- [151] Paulson CA (1970). The mathematical representation of wind speed and temperature profiles in unstable atmospheric surface layer. Quart J. Roy. Meteorol. Soc. Vol. 97. pp. 168-180.
- [152] Pavia E G; O'Brien JJ (1986). *Weibull Statistics of Wind Speed over the Ocean*. Journal of Applied Meteorology. Vol. 25, October. pp. 1324-1332
- [153] Pelosi MK (1985). *Statistical Modeling of Wind Characteristics*. Tesis Doctoral. Universidad Massachusetts. Department of Industrial Engineering and Operations Research.
- [154] Peña Sánchez de Rivera D (1995). *Estadística. Modelos y Métodos.* 1. Fundamentos. Alianza Universidad Textos
- [155] Peterson EW; JP Hennessey (1978). On the use of power laws for estimates of wind power potential. Journal of Applied Meteorology . Vol.17. pp.390-394.

- [156] Press WH; Teukolsky S A; Vetterling WT; Flannery BP (1996) *Numerical recipes in fortran* 77. Cambridge University Press
- [157] Puig J; Meseguer C; Cabre M (1982). El poder del viento. Ecotopia.
- [158] Putnam PC (1948). Power From the Wind. VanNostrand Reinhold, New York.
- **[159]** Ramírez P; Carta JA (2005). *Influence of the data sampling interval in the estimation of the Weibull wind speed probability density distribution. A case study.* Energy Conversion and Management. Vol. 46, pp. 2419-2438
- [160] Ramírez P; Carta JA (2006). *The use of wind probability distributions derived from the maximum entropy principle in the analysis of wind energy: A case study*. Energy Conversion and Management. (En prensa)
- [161] Reed JW (1975). *Wind power climatology of the United States*. Sandia Laboratories, Albuquerque, New México. SANDA 74-0348, July.
- [162] Rider P R (1961). Estimating the parameters of mixed Poisson, binomial, and *Weibull distributions by the method of moments*.Bulletin de l'Institut International de Statistique. Vol. 39. pp. 225-232.
- [163] Rittenhouse Inglis David (1981) La energía eólica. Editorial Fraterna.
- [164] Romero J; Thornbs L (1996). *Inference for autocorretions under weak assumptions*. Journal of The American Statistical Association. Vol. 91. pp. 590-600
- [165] Rosenblueth E Karmesh; Hong HP (1987). Maximum entropy and discretization of probability distributions. Probab. Engin. Mech.Vol. 2. pp. 58-63
- [166] Salva Monfort JJ (1982). Energía eólica para las Islas Canarias. Primeras Jornadas sobre Energía Eólica. Marzo, 1992, Tenerife.
- [167] Sasi KK; Sujay Basu (1997). On the prediction of capacity factor and selection of size of wind electric generators-a study based on Indian sites. Wind Engineering. Vol. 21, No. 2 pp. 73-88
- [168] Schorr B (1974). On the choice of the class intervals in the application of the chisquare test. Math. Operations Forsch. Statist. Vol. 5. pp. 357-377.
- [169] Seber G A F; Wild CJ (1989). Nonlinear Regression. John Wiley & Sons, Inc.
- [170] Seguro JV; Lambert TW (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics. Vol. 85. pp. 75-84.

- [171] Sen Zekai (2000) A short note on wind speed with height exponent estimation by considering time series variations. Wind Engineering. Vol. 24, No. 1 pp. 53-57
- [172] Shannon CE (1948). A mathematical theory of communication. Bell Syst J.Vol. 27. pp. 379-423
- [173] Shapiro SS; Wilk MB (1965). *An analysis of variance test for normality (complete samples)*. Biometrika. Vol. 52. pp. 591.
- [174] Sharaf-Eldeen YI; Moretti PM; Parker JD; Ramakumar RG (1988). Evaluation of wecs performance and economics in utility interconnected applications. American Society of Mechanical Engineers. Conference, Seventh Wind Energy Symposium, New Orleans, LA. pp. 189-193
- [175] Sherlock RH (1951). Analizing Winds for frequency and duration. Meteorological Monographs. Vol.1. No. 4. pp. 42-49.
- [176] Siddall James N (1982). Optimal Engineering Design. Marcel Dekker, Inc.
- [177] Siddall James N (1983). Probabilistic Engineering Design. Marcel Dekker, Inc.
- [178] Siddall JN; Diab Y (1975). *The use in probabilistic design of probability curves generadted by maximizing the Shannon Entropy Function constrained by moments.* ASME Trans. J. Eng. Ind. Vol. 97. pp. 843-852
- [179] Sigl Arden Burdet (1978). *Stochastic Analysis of Wind Characteristics for Energy Conversion*. Tesis Doctoral. Northwestern University. Evanston, Illinois..
- [180] Smith Douglas Alexander (1993). Stochastic Analysis of Wind Data. Tesis Doctoral. Universidad Tech. de Texas.
- [181] Spera DA; Richards TR (1979). *Modified power law equations for vertical wind profiles*. NASA TM-79275, DOE/NASA/1059-79/4, Cleveland, Ohio; NASA Lewis Research Center.
- [182] Spera David A (1995). Wind Turbine Technology. Asme Press.
- **[183]** Stevens MJM; Smulders PT (1979). *The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes*. Wind Engineering. Vol. 3, No. 2, pp. 132-145.
- [184] Stewart Dorathy A; Essenwanger Oskar M (1978). Frequency distribution of wind speed near the surface. Journal of Applied Meterorology. Vol. 17, November. pp. 1633-1642

- [185] Stuart A ; Ord K; Arnold S (1999). Kendall's Advanced Theory of Statistics. Volume 2A. Arnold.
- [186] Stuart A; Ord K (2000). Kendall's Advanced Theory of Statistics. Volume I. Arnold.
- [187] Subiela V; Carta JA; González J (2004). *The SDAWES project: lessons learnt from an innovative project* Desalination. Vol.168, pp.39-47
- [188] Takle ES; Brown JM (1978). Note on the use of weibull to characterize wind speed data. Journal of Applied Meteorology, Vol. 17, pp. 556-559
- [189] Tapia Contreras J; Miro-Granada J (1992). Plan de medidas eólicas nacionales y su conexión con la energía eólica. Primeras Jornadas sobre Energía Eólica. Marzo, 1992, Tenerife.
- [190] Thompson W (1997). *Atlas For Computing Mathematical Functions*. John Wiley & Sons, Inc.
- [191] Titterington DM; Smith AFM; Makov UE (1995). Statistical Analysis of finite mixture distributions. 2nd ed. New York: John Wiley & Sons, Inc.
- [192] Torres JL; García A; Prieto E; De Francisco A (1999). *Characterization of wind speed data according to wind direction*. Solar Energy. Vol. 66. pp. 57-64
- [193] Troen Ib; Petersen Erik Lundtang (1989). *European Wind Atlas*. Department of Meteorology and Wind Energy. Riso National Laboratory. P.O. Box 49. Dk-4000 Roskilde, Denmark.
- [194] Tuller SE; Brett Arthur C (1984). *The characteristics of wind velocity that the fitting of a Weibull distribution in wind speed analysis*. Journal of Climate and Applied Meteorology. Vol. 23, January, pp. 124-134
- [195] Turner DB (1964). *A diffusion model for an urban area*. J.Appl. Meteorol. Vol. 3. pp. 83-91.
- [196] Tweedie MCK (1957a). *Statistical properties of inverse Gaussian distributions.I.* Annals of Mathematical Statistics. Vol. 28. pp. 362-377.
- [197] Tweedie MCK (1957b). *Statistical properties of inverse Gaussian distributions.II*. Annals of Mathematical Statistics. Vol. 28. pp. 696-705.
- [198] Widger William K (1977). Estimations of wind speed frequency distributions using only the monthly average and fastest mile data. Journal of Applied Meteorology. Vol. 16,March. pp. 244-247

- [199] Wingo Dallas R (1987). Computing maximum likelihood parameter estimates of the Generalized Gamma distribution by numerical Root Isolation. IEEE Transactions Realiability. Vol. R-36, No. 5, pp. 586-590
- [200] Woodward WA; Gunst RF (1987). Using mixtures of Weibull distributions to estimate mixing proportions. Computational Statistics & Data Analysis. Vol.5. pp.163-176.
- [201] Wu Nailong (1997). *Maximum entropy method*. Springer Series in Information Sciences.
- [202] Zanakis Stelios H; Kyparisis Jerzy (1986). A review of maximum likelihood estimation methods for the three parameter Weibull distribution. Journal Statist. Comut. Simul., Vol. 25, pp. 53-73.
- [203] Zhang S; Jin J (1996). Computation Of Special Functions. John Wiley & Sons, Inc.

Modelado Estadístico de las Características del Viento para su Evaluación Energética. Aplicación a Las Islas Canarias.

Apéndice A.

A.1 Método momentos: Distribuciones no híbridas.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los momentos, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución Gamma Generalizada de 3 parámetros

distribución ga	distribución gamma generalizada de 3 parametros.											
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е					
					W/m^2	W/m^2	%					
Los Valles	2.4705	4.091 10 ⁻³	2.3082	0.999267	500.16	500.4094	0.0507					
Taca	2.857	3.010 10 ⁻³	1.777	0.996096	170.63	170.634	7.65310 ⁻⁵					
Antigua	2.653	3.948 10 ⁻³	2.047	0.998330	256.99	256.985	6.84210 ⁻⁵					
P. Jandía	4.823	9.014 10 ⁻⁶	1.682	0.992926	335.29	335.2813	6.458410 ⁻⁴					
Amagro	4.5	9.158 10 ⁻⁶	1.424	0.998509	499.50	499.49	3.78710^{-4}					
R. Prieto	4.593	2.4246 10 ⁻⁵	1.4559	0.997466	228.30	228.2908	3.463810 ⁻³					
P.de Galdar	4.1874	9.937 10 ⁻⁵	1.7595	0.995400	200.75	200.7484	1.717810^{-5}					
Faro Sardina	3.9792	4.1634 10 ⁻⁵	2.0009	0.962299	629.69	631.2738	0.2508					
Gando	4.6348	1.8186 10 ⁻⁵	1.4372	0.967237	254.63	254.6242	4.854710 ⁻⁴					
M. Diablo	4.3351	1.1465 10 ⁻⁵	1.3652	0.994019	563.17	563.159	1.273810 ⁻³					
P. de Vargas	4.335	3.122110 ⁻⁵	1.3631	0.992606	281.24	281.2413	4.947410 ⁻⁵					
P. Izquierdo	4.414	9.91210 ⁻⁶	1.397	0.991280	544.00	546.111	0.388					
Granadilla	4.485	1.0410^{-5}	1.198	0.991230	406.36	406.194	0.041					
El Rayo	5.444	1.08310 ⁻⁵	1.179	0.994603	95.19	95.101	0.089					
Valverde	4.043	1.03310 ⁻⁵	1.3	0.990928	1061.77	1066.00	0.356					
S. Sebastián	4.919	1.0510^{-5}	1.236	0.992907	203.62	203.484	0.069					

Tabla A.1. Resultados de la aplicación del método de los momentos en el análisis de la distribución gamma generalizada de 3 parámetros.

Distribución Gamma de dos parámetros

Estación	$\hat{\eta}$	β	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
				W/m^2	W/m^2	%
Los Valles	4.973	1.596	0.981760	500.16	515.39	3.046
Taca	4.065	1.325	0.957926	170.63	177.856	4.232
Antigua	4.556	1.377	0.964295	256.99	265.69	3.388
P. Jandía	4.867	1.435	0.900152	335.29	354.698	5.791
Amagro	3.819	2.009	0.909813	499.50	532.27	6.563
R. Prieto	3.969	1.498	0.902299	228.30	242.396	6.175
P.de Galdar	4.842	1.210	0.932441	200.75	210.025	4.621
Faro Sardina	5.589	1.570	0.861859	629.69	662.724	5.245
Gando	4.045	1.540	0.828382	254.63	276.215	8.479
M. Diablo	3.628	2.192	0.925324	563.17	609.661	8.256
P. de Vargas	3.669	1.723	0.911303	281.24	303.931	8.068
P. Izquierdo	3.772	2.100	0.912119	544.00	589.417	8.349
Granadilla	3.102	2.224	0.913418	406.36	437.517	7.667
El Rayo	3.201	1.338	0.911628	95.19	102.636	7.828
Valverde	3.352	2.891	0.913709	1061.77	1156.000	8.831
S. Sebastián	3.306	1.678	0.869799	203.62	218.565	7.338

Tabla A.2. Resultados de la aplicación del método de los momentos en el análisis de la distribución gamma de 2 parámetros.

Distribución Weibull de dos parámetros

Tabla A.3. Resultados de la aplicación del método de los momentos en el análisis de la distribución Weibull de 2 parámetros.

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
		m/s		W/m^2	W/m^2	%
Los Valles	2.372	8.953	0.999391	500.16	502.18	0.405
Taca	2.120	6.081	0.992731	170.63	172.755	1.243
Antigua	2.259	7.085	0.996468	256.99	258.515	0.596
P. Jandía	2.344	7.880	0.966078	335.29	345.487	3.043
Amagro	2.048	8.663	0.96983	499.50	516.560	3.417
R. Prieto	2.092	6.713	0.966387	228.30	235.363	3.094
P.de Galdar	2.337	6.612	0.984158	200.75	204.553	1.895
Faro Sardina	2.532	9.888	0.938923	629.69	647.004	2.749
Gando	2.114	7.036	0.912503	254.63	268.273	5.360
M. Diablo	1.990	8.973	0.967375	563.17	591.274	4.991
P. de Vargas	2.003	7.131	0.961389	281.24	294.805	4.823
P. Izquierdo	2.034	8.941	0.960266	544.00	571.922	5.133
Granadilla	1.825	7.763	0.96082	406.36	423.642	4.252

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
El Rayo	1.857	4.823	0.961038	95.19	99.408	4.436
Valverde	1.905	10.922	0.960054	1061.77	1120.000	5.455
S. Sebastián	1.890	6.250	0.942184	203.62	211.755	3.993

Tabla A.3. Resultados de la aplicación del método de los momentos en el análisis de la distribución Weibull de 2 parámetros (Continuación).

Distribución Rayleigh de un parámetro

Tabla A.4. Resultados de la aplicación del método de los momentos en el análisis de la distribución Rayleigh de 1 parámetro.

Estación	$\hat{\theta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			W/m^2	W/m^2	%
Los Valles	6.331	0.973391	500.16	584.443	16.852
Taca	4.297	0.990128	170.63	182.723	7.085
Antigua	5.007	0.976178	256.99	289.166	12.523
P. Jandía	5.572	0.939079	335.29	398.294	18.793
Amagro	6.123	0.970488	499.50	528.759	5.859
R. Prieto	4.744	0.966384	228.30	245.874	7.698
P.de Galdar	4.675	0.951400	200.75	235.274	17.199
Faro Sardina	7.002	0.878852	629.69	790.652	25.561
Gando	4.972	0.915389	254.63	283.025	11.153
M. Diablo	6.345	0.966797	563.17	588.403	4.481
P. de Vargas	5.042	0.961574	281.24	295.202	4.964
P. Izquierdo	6.320	0.961188	544.00	581.462	6.887
Granadilla	5.505	0.922941	406.36	384.209	5.452
El Rayo	3.418	0.936337	95.19	91.924	3.426
Valverde	7.732	0.955386	1061.77	1065.000	0.268
S. Sebastián	4.426	0.930740	203.62	199.689	1.932

Distribución Beta de tres parámetros

Tabla A.5. Resultados de la aplicación del método de los momentos en el análisis de la distribución Beta de 3 parámetros.

Estación	â	β	î	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	2.828	5.030	22.050	0.999152	500.16	500.176	4.145 10 ⁻³
Taca	2.657	6.329	18.245	0.993103	170.63	170.800	0.097
Antigua	2.767	5.664	19.135	0.995059	256.99	257.066	0.032

Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	î	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s		W/m^2	W/m^2	%
P. Jandía	3.119	5.733	19.914	0.968403	335.29	336.112	0.247
Amagro	2.491	5.328	24.2	0.973731	499.50	500.759	0.254
R. Prieto	2.600	5.586	18.800	0.968559	228.30	228.840	0.237
P.de Galdar	3.110	6.255	17.700	0.983322	200.75	201.073	0.162
Faro Sardina	3.598	6.317	24.300	0.940059	629.69	631.169	0.234
Gando	2.682	5.049	18.100	0.919309	254.63	255.686	0.417
M. Diablo	1.683	2.144	18.134	0.994166	563.17	564.157	0.176
P. de Vargas	1.878	2.683	15.400	0.986594	281.24	281.883	0.228
P. Izquierdo	1.888	2.540	18.650	0.986386	544.00	545.380	0.254
Granadilla	1.747	3.254	19.800	0.982253	406.36	407.047	0.168
El Rayo	2.024	4.358	13.570	0.972613	95.19	95.449	0.277
Valverde	1.761	2.692	24.600	0.984564	1061.77	1065.000	0.261
S. Sebastián	2.209	5.240	18.801	0.949574	203.62	204.201	0.283

Tabla A.5. Resultados de la aplicación del método de los momentos en el análisis de la distribución Beta de 3 parámetros (Continuación).

Distribución Beta prima

Tabla A.6. Resultados de la aplicación del método de los momentos en el análisis de la distribución beta prima de 2 parámetros.

Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	52.364	7.599	0.863833	500.16	547.532	9.472
Taca	31.344	6.820	0.763036	170.63	193.209	13.230
Antigua	39.426	7.282	0.813478	256.99	284.618	10.753
P. Jandía	45.836	7.564	0.722919	335.29	377.332	12.541
Amagro	40.806	6.317	0.679664	499.50	587.421	17.604
R. Prieto	33.512	6.636	0.682391	228.30	264.731	15.958
P.de Galdar	39.070	7.668	0.773646	200.75	223.176	11.172
Faro Sardina	63.410	8.225	0.700252	629.69	696.150	10.554
Gando	35.481	6.694	0.612004	254.63	300.953	18.195
M. Diablo	40.433	6.084	0.761602	563.17	679.908	20.730
P. de Vargas	33.172	6.249	0.728429	281.24	336.933	19.802
P. Izquierdo	41.571	6.248	0.753827	544.00	652.303	19.909
Granadilla	31.406	5.552	0.637471	406.36	504.721	24.205
El Rayo	21.195	5.948	0.674366	95.19	116.023	21.892
Valverde	45.527	5.698	0.738545	1061.77	1316.000	23.905
S. Sebastián	27.193	5.902	0.590907	203.62	246.953	21.279

Distribución Normal truncada

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
Los Valles	7.626	3.888	0.995343	500.16	496.004	0.830
Taca	5.060	2.981	0.993759	170.63	169.824	0.475
Antigua	5.964	3.257	0.996584	256.99	254.863	0.826
P. Jandía	7.059	3.080	0.984087	335.29	342.281	2.087
Amagro	7.480	4.112	0.987606	499.50	506.674	1.438
R. Prieto	5.807	3.120	0.987199	228.30	231.180	1.262
P.de Galdar	5.785	2.743	0.997856	200.75	202.131	0.689
Faro Sardina	8.944	3.508	0.979442	629.69	643.972	2.267
Gando	6.425	2.896	0.931463	254.63	265.085	4.108
M. Diablo	7.941	4.186	0.966748	563.17	579.575	2.914
P. de Vargas	6.304	3.314	0.963340	281.24	289.078	2.786
P. Izquierdo	8.014	3.988	0.968628	544.00	562.151	3.337
Granadilla	6.360	4.366	0.966047	406.36	411.704	1.314
El Rayo	4.032	2.609	0.967792	95.19	96.732	1.625
Valverde	9.556	5.415	0.976897	1061.77	1093.00	2.930
S. Sebastián	5.229	3.328	0.978775	203.62	206.400	1.363

Tabla A.7. Resultados de la aplicación del método de los momentos en el análisis de la distribución Normal truncada de 2 parámetros.

Distribución Lognormal de dos parámetros

Tabla A.8. Resultados de la aplicación del método de los momentos en el análisis de la distribución Lognormal de 2 parámetros

Estación	$\hat{\alpha}$	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
Los Valles	1.980	0.428	0.931237	500.16	543.239	6.018
Taca	1.574	0.469	0.868017	170.63	189.602	8.460
Antigua	1.738	0.445	0.892524	256.99	281.309	6.849
P. Jandía	1.850	0.432	0.795761	335.29	374.257	8.956
Amagro	1.922	0.482	0.797327	499.50	569.842	11.357
R. Prieto	1.670	0.474	0.790566	228.30	258.815	10.657
P.de Galdar	1.674	0.433	0.848185	200.75	221.663	7.779
Faro Sardina	2.090	0.406	0.778930	629.69	694.964	7.727
Gando	1.719	0.470	0.711930	254.63	287.511	12.915
M. Diablo	1.952	0.493	0.845287	563.166	639.519	13.558
P. de Vargas	1.723	0.491	0.818252	281.24	318.545	13.264
P. Izquierdo	1.952	0.485	0.832393	544.00	616.493	13.326
Granadilla	1.792	0.529	0.787413	406.36	465.158	14.469

LIDUCION LOGIO	mar ue z	parametros.	Continuación	<i>.</i>		
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
El Rayo	1.319	0.521	0.794084	95.19	108.802	14.305
Valverde	2.141	0.511	0.826164	1061.77	1220.00	14.898
S. Sebastián	1.581	0.514	0.724232	203.62	231.025	13.456

Tabla A.8. Resultados de la aplicación del método de los momentos en el análisis de la distribución Lognormal de 2 parámetros. (Continuación).

Distribución Gausiana Inversa de dos parámetros

Tabla A.9. Resultados de la aplicación del método de los momentos en el análisis de la distribución Gaussiana inversa de 2 parámetros

Estación	$\hat{\alpha}$	β	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
		-		W/m^2	W/m^2	%
Los Valles	7.935	39.457	0.934165	500.16	527.765	5.520
Taca	5.386	21.893	0.876182	170.63	183.646	7.625
Antigua	6.276	28.594	0.895250	256.99	272.984	6.226
P. Jandía	6.983	33.986	0.799636	335.29	363.502	8.416
Amagro	7.675	29.312	0.804685	499.50	551.252	10.362
R. Prieto	5.946	23.598	0.798388	228.30	250.569	9.755
P.de Galdar	5.859	28.369	0.850735	200.75	215.279	7.238
Faro Sardina	8.776	49.045	0.781500	629.69	675.979	7.350
Gando	6.231	25.205	0.720242	254.63	285.272	12.036
M. Diablo	7.953	28.853	0.851533	563.17	633.068	12.412
P. de Vargas	6.319	23.184	0.825262	281.24	315.415	12.151
P. Izquierdo	7.921	29.877	0.837209	544.00	610.818	12.283
Granadilla	6.900	21.404	0.802384	406.36	458.420	12.811
El Rayo	4.283	13.710	0.808628	95.19	107.334	12.763
Valverde	9.691	32.484	0.830239	1061.77	1205.00	13.504
S. Sebastián	5.547	18.340	0.734538	203.62	228.131	12.035

A.2 Método momentos: Distribuciones híbridas.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los momentos, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución híbridas. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales

estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución híbrida Gamma Generalizada de 3 parámetros

distribución híbri	distribución hibrida gamma generalizada de 3 parametros										
Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е				
					W/m^2	W/m^2	%				
Los Valles	2.4496	4.371 10 ⁻³	2.3276	0.999308	500.16	500.4186	0.0526				
Taca	2.695	4.697 10 ⁻³	1.88	0.995568	170.63	170.632	1.313 10 ⁻³				
Antigua	2.619	4.39 10 ⁻³	2.091	0.998568	256.99	256.936	0.019				
P. Jandía	4.81	1.012 10 ⁻⁵	1.826	0.995071	335.29	335.379	0.028				
Amagro	4.468	1.011 10 ⁻⁵	1.443	0.998562	499.50	499.581	0.018				
R. Prieto	4.593	2.4246 10 ⁻⁵	1.455	0.997481	228.30	228.3329	0.015				
P. de Galdar	3.9265	1.95 10 ⁻⁴	1.8416	0.996065	200.75	200.7459	1.225 10 ⁻³				
Faro Sardina	3.8708	5.6911 10 ⁻⁵	2.023	0.960798	629.69	631.3373	0.2609				
Gando	4.8186	1.1515 10 ⁻⁵	1.4446	0.972616	254.63	255.4527	0.3249				
M. Diablo	4.335	1.163410 ⁻⁵	1.3946	0.995727	563.17	564.568	0.2489				
Playa Vargas	4.3349	3.1816 10 ⁻⁵	1.3912	0.994131	281.24	281.4913	0.0889				
P. Izquierdo	4.414	9.91210 ⁻⁶	1.397	0.991280	544.00	546.111	0.388				
Granadilla	4.488	1.04 10 ⁻⁵	1.21	0.990809	406.36	406.117	0.06				
El Rayo	5.46	1.083 10 ⁻⁵	1.222	0.992003	95.19	95.087	0.104				
Valverde	4.045	1.033 10 ⁻⁵	1.307	0.99156	1061.77	1065.00	0.346				
San Sebastián	4.929	1.05 10-5	1.266	0.992493	203.62	203.396	0.112				

Tabla A.10. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida gamma generalizada de 3 parámetros

Distribución Gamma de dos parámetros

Tabla A.11. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida gamma de 2 parámetros

Estación	$\hat{\eta}$	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
Los Valles	4.989	1.591	0.982335	500.16	515.185	3.005
Taca	4.184	1.294	0.965158	170.63	177.183	3.838
Antigua	4.624	1.361	0.968193	256.99	265.204	3.198
P. Jandía	5.352	1.325	0.934013	335.283	350.756	4.615
Amagro	3.897	1.977	0.918658	499.50	530.819	6.272
R. Prieto	3.970	1.498	0.902483	228.30	242.384	6.170
P.de Galdar	4.798	1.182	0.942989	200.75	209.326	4.273

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Faro Sardina	5.593	1.569	0.862215	629.69	662.669	5.237
Gando	4.047	1.540	0.828738	254.63	276.194	8.471
M. Diablo	3.732	2.144	0.932659	563.17	607.275	7.832
P. de Vargas	3.737	1.698	0.917008	281.24	303.157	7.793
P. Izquierdo	3.772	2.100	0.912119	544.00	589.417	8.349
Granadilla	3.139	2.204	0.916415	406.36	436.757	7.480
El Rayo	3.340	1.295	0.925755	95.19	102.003	7.162
Valverde	3.373	2.877	0.916123	1061.77	1155.000	8.735
S. Sebastián	3.405	1.640	0.885518	203.62	217.642	6.884

Tabla A.11. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida gamma de 2 parámetros (Continuación).

Distribución Weibull de dos parámetros

Tabla A.12. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida Weibull de 2 parámetros.

Estación	$\hat{\alpha}$	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
		m/s		W/m^2	W/m^2	%
Los Valles	2.372	8.953	0.999375	500.16	501.903	0.349
Taca	2.12	6.081	0.991895	170.63	171.784	0.674
Antigua	2.259	7.085	0.996008	256.99	257.836	0.331
P. Jandía	2.344	7.880	0.957825	335.29	340.152	1.452
Amagro	2.048	8.663	0.969330	499.50	514.419	2.988
R. Prieto	2.092	6.713	0.966382	228.30	235.345	3.087
P.de Galdar	2.337	6.612	0.982393	200.75	203.595	1.418
Faro Sardina	2.532	9.888	0.93886	629.69	646.930	2.737
Gando	2.114	7.036	0.912496	254.63	268.242	5.348
M. Diablo	1.99	8.973	0.967485	563.17	587.706	4.357
P. de Vargas	2.003	7.131	0.961583	281.24	293.651	4.412
P. Izquierdo	2.034	8.941	0.960266	544.00	571.922	5.133
Granadilla	1.825	7.763	0.961651	406.36	422.434	3.955
El Rayo	1.857	4.823	0.961593	95.19	98.421	3.399
Valverde	1.905	10.922	0.960091	1061.77	1118.000	5.306
S. Sebastián	1.890	6.250	0.942227	203.62	210.329	3.292

Distribución Rayleigh de un parámetro

Estación	$\hat{ heta}$	R^2	\overline{P}_m	$\overline{P}_{\!M}$	ε
			W/m^2	W/m^2	%
Los Valles	6.335	0.973192	500.16	585.411	17.046
Taca	4.321	0.989971	170.63	185.838	8.910
Antigua	5.021	0.975576	256.99	291.456	13.414
P. Jandía	5.659	0.939441	335.29	417.329	24.470
Amagro	6.149	0.973005	499.50	535.391	7.187
R. Prieto	4.744	0.966429	228.30	245.931	7.723
P.de Galdar	4.697	0.950954	200.75	238.609	18.860
Faro Sardina	7.003	0.878861	629.69	790.923	25.604
Gando	4.972	0.915509	254.63	283.122	11.192
M. Diablo	6.384	0.970499	563.17	599.183	6.395
P. de Vargas	5.062	0.964367	281.24	298.697	6.207
P. Izquierdo	6.320	0.961188	544.00	581.462	6.887
Granadilla	5.521	0.926805	406.36	387.513	4.639
El Rayo	3.452	0.948960	95.19	94.718	0.491
Valverde	7.743	0.956670	1061.77	1069.000	0.693
S. Sebastián	4.456	0.940319	203.62	203.779	0.076

Tabla A.13. Resultados de la aplicación del método de los momentos en el análisis de la distribució<u>n híbrida Rayleigh de 1 parámetro.</u>

Distribución Beta de tres parámetros

Tabla A.14. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida Beta de 3 parámetros

Estación	\hat{lpha}	\hat{eta}	în	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	2.834	5.037	22.05	0.999154	500.16	500.164	1.681 10 ⁻³
Taca	2.713	6.414	18.245	0.994531	170.63	170.757	0.072
Antigua	2.796	5.702	19.135	0.995772	256.99	257.036	0.020
P. Jandía	3.345	6.015	19.914	0.981841	335.29	335.866	0.174
Amagro	2.530	5.380	24.200	0.977435	499.50	500.666	0.235
R. Prieto	2.601	5.587	18.800	0.968645	228.30	228.839	0.237
P.de Galdar	3.173	6.341	17.700	0.987224	200.75	201.030	0.140
Faro Sardina	3.600	6.319	24.300	0.940256	629.69	631.165	0.234
Gando	2.683	5.051	18.100	0.919529	254.63	255.685	0.416
M. Diablo	1.721	2.171	18.134	0.995117	563.17	564.028	0.153
P. de Vargas	1.906	2.705	15.400	0.987904	281.24	281.839	0.213
P. Izquierdo	1.888	2.540	18.650	0.986386	544.00	545.380	0.254

distribution in	instituteion mortaa Dea de 5 parametros (continuacion).										
Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	ĵ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е				
			m/s		W/m^2	W/m^2	%				
Granadilla	1.764	3.271	19.800	0.982754	406.36	407.001	0.157				
El Rayo	2.092	4.444	13.57	0.977179	95.19	95.409	0.234				
Valverde	1.770	2.699	24.600	0.985206	1061.77	1064.00	0.255				
S. Sebastián	2.260	5.313	18.801	0.956777	203.62	204.141	0.254				

Tabla A.14. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida Beta de 3 parámetros (Continuación).

Distribución Beta prima

Tabla A. 15. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida beta prima de 2 parámetros.

Estación	$\hat{\alpha}$	β	R^2	\overline{P}_m	\overline{P}_{M}	Е
		-		W/m^2	W/m^2	%
Los Valles	52.516	7.615	0.864523	500.16	547.266	9.419
Taca	32.135	6.933	0.771127	170.63	192.270	12.679
Antigua	39.933	7.346	0.818106	256.99	283.967	10.500
P. Jandía	49.816	8.024	0.756769	335.29	372.120	10.987
Amagro	41.514	6.387	0.688926	499.50	585.270	17.173
R. Prieto	33.523	6.638	0.682561	228.30	264.714	15.950
P.de Galdar	40.031	7.800	0.783966	200.75	222.264	10.718
Faro Sardina	63.452	8.229	0.700537	629.69	696.080	10.543
Gando	35.499	6.696	0.612294	254.63	300.924	18.183
M. Diablo	41.415	6.176	0.769771	563.17	676.258	20.081
P. de Vargas	33.696	6.311	0.734684	281.24	335.781	19.392
P. Izquierdo	41.571	6.248	0.753827	544.00	652.303	19.909
Granadilla	31.716	5.584	0.642129	406.36	503.438	23.889
El Rayo	21.974	6.079	0.690142	95.19	115.036	20.854
Valverde	45.762	5.716	0.741254	1061.77	1314.000	23.748
S. Sebastián	27.878	5.992	0.608347	203.62	245.500	20.565

Distribución Lognormal de dos parámetros

Tabla A.16. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida Lognormal de 2 parámetros

Estación	â	Â	R^2	\overline{P}_m	$\overline{P}_{\!M}$	ε
				W/m^2	W/m^2	%
Los Valles	1.980	0.427	0.931758	500.16	542.940	5.959
Taca	1.582	0.463	0.874375	170.63	188.537	7.850

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Antigua	1.741	0.442	0.896339	256.99	280.571	6.568
P. Jandía	1.873	0.414	0.826458	335.29	368.478	7.273
Amagro	1.928	0.478	0.804991	499.50	567.480	10.896
R. Prieto	1.670	0.474	0.790716	228.30	258.795	10.648
P.de Galdar	1.681	0.428	0.857517	200.75	220.626	7.274
Faro Sardina	2.090	0.406	0.779211	629.69	694.885	7.715
Gando	1.719	0.470	0.712211	254.63	287.478	12.902
M. Diablo	1.961	0.487	0.844834	563.17	635.661	12.873
P. de Vargas	1.729	0.487	0.817974	281.24	317.298	12.821
P. Izquierdo	1.952	0.485	0.832393	544.00	616.493	13.326
Granadilla	1.796	0.526	0.787305	406.36	463.832	14.142
El Rayo	1.334	0.512	0.793734	95.19	107.721	13.169
Valverde	2.143	0.510	0.826084	1061.77	1218.00	14.736
S. Sebastián	1.591	0.507	0.724041	203.62	229.469	12.692

Tabla A.16. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida Lognormal de 2 parámetros (Continuación).

Distribución Gausiana Inversa de dos parámetros

Tabla A.17. Resultados de la aplicación del método de los momentos en el análisis de la distribución híbrida Gaussiana inversa de 2 parámetros.

Estación	$\hat{\alpha}$	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{\!_M}$	Е
				W/m^2	W/m^2	%
Los Valles	7.939	39.609	0.934700	500.16	527.494	5.466
Taca	5.416	22.662	0.882450	170.63	182.709	7.076
Antigua	6.292	29.094	0.899062	256.99	272.324	5.969
P. Jandía	7.092	37.958	0.829705	335.29	358.267	6.855
Amagro	7.706	30.034	0.812041	499.50	549.199	9.951
R. Prieto	5.946	23.609	0.798532	228.30	250.552	9.747
P.de Galdar	5.887	29.304	0.859993	200.75	214.344	6.772
Faro Sardina	8.777	49.088	0.781776	629.69	675.907	7.339
Gando	6.232	25.222	0.720512	254.63	285.243	12.024
M. Diablo	8.001	29.862	0.857859	563.166	629.662	11.808
P. de Vargas	6.344	23.708	0.830192	281.24	314.313	11.759
P. Izquierdo	7.921	29.877	0.837209	544.00	610.818	12.283
Granadilla	6.919	21.719	0.805065	406.36	457.290	12.533
El Rayo	4.326	14.451	0.808628	95.19	106.404	11.785
Valverde	9.705	32.731	0.832499	1061.77	1204.00	13.363
S. Sebastián	5.585	19.016	0.748438	203.62	226.784	11.374

Apéndice B.

B.1 Método máxima verosimilitud: Distribuciones no híbridas.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de la máxima verosimilitud, descrito en el capítulo 4 de esta tesis, para estimar los parámetros y errores estándar de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución Gamma Generalizada de 3 parámetros

<u>Б</u> (â	$\hat{\beta}$	$\hat{\eta}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$	$SE(\hat{\eta})$				
					W/m^2	W/m^2	%
Los Valles	2.756	1.725 10 ⁻³	2.154	0.998399	500.16	500.42	0.053
Los vanes	0.037	1.88 10-4	0.018	0.7700777	000110	000.12	0.000
Таса	2.828	3.263 10-3	1.805	0.005012	170.63	171 50	0 561
Iaca	0.089	7.527 10 ⁻⁴	0.034	0.993912	170.05	1/1.39	0.301
Antique	2.707	3.389 10 ⁻³	2.020	0.009270	256.00	257 (1	0.242
Antigua	0.081	7.562 10 ⁻⁴	0.039	0.998570	250.98	257.01	0.242
Dunto Iondía	4.594	1.713 10 ⁻⁵	1.779	0 996658	225 28	228 52	0.068
r unta Januta	0.073	3.315 10 ⁻⁶	0.015	0.990038	555.28	558.55	0.908
A	4.378	1.269 10 ⁻⁵	1.416	0.007(04	400.40	100.07	0.004
Amagro	0.054	1.959 10 ⁻⁶	8.343 10 ⁻³	0.997684	499.49	499.96	0.094
D Driata	4.082	8.876 10 ⁻⁵	1.495	0.005201	228.20	227 74	0.244
R. Pheto	0.086	$1.566 \ 10^{-5}$	0.013	0.993391	228.30	227.74	0.244
D de Gelder	3.816	$2.451 \ 10^{-4}$	1.778	0.003185	200 75	201 239	0.244
r. ut Galuai	0.102	6.362 10 ⁻⁵	0.028	0.995165	200.75	201.239	0.244
Foro Sordino	4.741	$4.48 \ 10^{-6}$	1.763	0.048366	620.60	610 73	1 5 8 3
Fait Satulla	0.074	9.521 10 ⁻⁷	0.017	0.948300	029.09	019.75	1.365
Cando	7.019	4.837 10 ⁻⁸	1.346	0.020120	254 (2	247.26	2 804
Ganuo	0.134	1.643 10 ⁻⁸	0.012	0.960189	254.05	247.20	2.094

Tabla B.1. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución gamma generalizada de 3 parámetros

Estación	â	β	η	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
	$SE(\hat{\alpha})$	$SE(\hat{\beta})$	$SE(\hat{\eta})$				
					W/m^2	W/m^2	%
M Diablo	8.361	1.54 10 ⁻¹⁰	1.255	0.008883	563 17	560 37	1 102
M. Diabio	0.363	$1.565 \ 10^{-10}$	0.016	0.998885	505.17	509.57	1.102
D de Verges	7.287	$1.655 \ 10^{-8}$	1.28	0 008072	281.24	282.00	0.301
P. de Vargas	0.159	$6.797 \ 10^{-9}$	9.566 10 ⁻³	0.998972	201.24	282.09	0.301
P. Izquierdo	7.589	1.492 10 ⁻⁹	1.269	0 997854	544.00	538 61	0.986
	0.281	1.168 10 ⁻⁹	0.016	0.997034	544.00	558.04	
Granadilla	4.384	1.461 10 ⁻⁵	1.274	0.08/182	106.36	400.42	0 752
Granauma	0.091	3.704 10 ⁻⁶	9.90 10 ⁻³	0.964162	400.50	409.42	0.732
El Rayo	4.194	1.866 10 ⁻⁴	1.282	0.001060	05 10	05.05	0.807
	0.13	5.607 10 ⁻⁵	0.018	0.991909	93.19	95.95	0.807
Valverde	5.964	2.993 10 ⁻⁸	1.198	0.006051	1061 77	1055 16	0.625
	0.132	1.209 10 ⁻⁸	9.934 10 ⁻³	0.996031	1061.//	1055.10	0.035
S. Sebastián	3.682	$2.441 \ 10^{-4}$	1.351	0.007025	202 (2	204 (2	0.490
	0.102	6.436 10 ⁻⁵	0.02	0.98/825	203.62	204.62	0.489

Tabla B.1. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución gamma generalizada de 3 parámetros (Continuación)

Distribución Gamma de dos parámetros

Tabla B.2. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución gamma de 2 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
Estacion	$SE(\hat{\eta})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	
Los Valles	4.028	1.971	0 977794	500 16	586 601	14 48
	0.024	0.012	0.977791	200.10	200.001	11.10
Таса	3.226	1.679	0 965939	170.63	206 510	21.025
1 404	0.047	0.027	0.905959	170.05	200.010	
Antiqua	3.657	1.721	0 060600	256.98	300 620	16.980
mingua	0.053	0.027	0.900099	250.70	500.020	
Punta Iandía	3.527	2.011	0.917148	335.28	439.495	31.082
i unta Januta	0.03	0.018				
Amagro	2.588	2.977	0.919021	499.49	705.805	37.927
Allagio	0.015	0.019				
R Prieto	2.789	2.132	0.010290	228 20	300 424	31.592
K. 11100	0.023	0.019	0.910389	228.30	500.424	
P. de Galdar	3.372	1.746	0.01(00)	200 75	258 056	28.547
	0.049	0.027	0.910992	200.75	238.030	
Foro Sording	3.274	2.681	0 824742	(20 (0	070 000	28 202
Faro Sardina	0.033	0.029	0.824742	029.09	0/0.000	38.303

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\eta})$	$SE(\hat{\beta})$				
_				W/m^2	W/m^2	%
Gando	2.474	2.519	0 949259	254 63	276 412	17 820
Galluo	0.025	0.028	0.040230	234.03	570.412	47.050
M Diablo	2.463	3.248	0 947227	563 17	799 197	41.911
	0.035	0.051	0.777227	505.17	///.1//	
P de Vargas	2.487	2.551	0.937722	281.24	395.614	40.667
1. de vargas	0.020	0.023				
P Izquierdo	2.392	3.312	0.91903	544 00	792 699	45 717
1. IZquicido	0.034	0.052		544.00	1)2.0))	ч <i>J</i> ./1/
Granadilla	2.423	2.856	0.955511	406.36	523 307	28 778
Oranauma	0.017	0.023	0.955511	400.30	525.507	20.770
El Davo	2.271	1.905	0.046526	05 10	124 229	41.133
LI Kayu	0.032	0.030	0.940320	95.19	134.330	
Valverde	2.145	4.524	0.021425	1061 77	1596 00	49.373
	0.019	0.045	0.921455	1001.77	1380.00	
S. Sebastián	2.352	2.375	0.004576	202 (2	201 400	20 100
	0.033	0.038	0.904576	203.62	281.406	38.199

Tabla B.2. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución gamma de 2 parámetros (Continuación)

Distribución Weibull de dos parámetros

Tabla B.3. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Weibullde 2 parámetros

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
		m/s		W/m^2	W/m^2	%
Los Valles	2.363	8.945	0 999353	500 16	502 328	0.434
	8.106 10-3	0.017	0.7775555	200.10	502.520	
Таса	2.124	6.097	0 993477	170.63	173 844	1.881
Tucu	0.018	0.033	0.995111	170.05	175.011	
Antiqua	2.256	7.088	0 996488	256.98	259 169	0.850
miigua	0.019	0.035	0.770100	250.70	209.109	0.020
Punta Iandía	2.413	7.944	0 975084	335 28	346.515	3.350
i unta Janaia	0.012	0.022	0.975001	555.20		
Amagro	1.986	8.627	0 967277	499.49	526.818	5.471
magro	7.132 10-3	0.020	0.907277			
R Prieto	2.041	6.678	0.062202	228 30	227 400	3.991
K. I IICto	0.010	0.021	0.702203	220.30	237.407	
P. de Galdar	2.307	6.599	0.081171	200 75	205 204	2.314
	0.020	0.032	0.981171	200.75	203.394	
Faro Sardina	2.435	9.789	0.016095	(20, 0)	644 261	2.329
	0.015	0.032	0.910085	029.09	044.301	

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
		m/s		W/m^2	W/m^2	%
Gando	2.015	6.968	0.002286	254 63	272 281	7 367
Ganuo	0.013	0.027	0.902280	254.05	275.504	7.507
M Diablo	1.938	8.957	0 969226	563 17	605 403	7 500
	0.017	0.052	0.707220	505.17	005.405	7.500
D de Vargas	1.945	7.105	0.962731	281 24	301 108	7.064
1. ue vargas	0.010	0.024	0.702751	201.24	501.100	
D Izquiordo	1.936	8.857	0 955574	544 00	586 318	7.779
1. Izquicituo	0.017	0.051	0.755574	544.00	500.510	
Granadilla	1.805	7.767	0 964046	406 36	430 281	5 886
Orallacilla	7.864 10 ⁻³	0.024	0.704040	+00.J0	+J0.201	5.000
El Davo	1.812	4.831	0.066822	05 10	103 027	8.238
LI Kayo	0.016	0.030	0.700022	<i>JJ.</i> 1 <i>J</i>	105.027	
Valverde	1.795	10.814	0 955989	1061 77	1169.00	10 146
	0.010	0.042	0.755767	1001.77	1109.00	10.140
S. Sebastián	1.844	6.248	0 044866	202.62	217 016	7.018
5. Sevastian	0.016	0.038	0.944800	203.02	217.910	/.018

Tabla B.3. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Weibullde 2 parámetros (Continuación)

Distribución Rayleigh de un parámetro

Tabla B.4. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Rayleigh de 1 parámetro.

Ectorión	$\hat{ heta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε	
Estacion	$SE(\hat{\theta})$					
			W/m^2	W/m^2	%	
Los Valles	6.140 0.013	0.954423	500.16	533.126	6.592	
Taca	4.184 0.023	0.969076	170.63	168.698	1.135	
Antigua	4.861 0.026	0.953439	256.98	264.481	2.917	
Punta Jandía	5.270 0.016	0.859960	335.28	336.981	0.506	
Amagro	6.034 0.013	0.955714	499.49	506.022	1.307	
R. Prieto	4.703 0.015	0.957781	228.30	239.516	4.913	
P. de Galdar	4.497 0.024	0.906480	200.75	209.505	4.362	
Estación	$\hat{ heta}$	R^2	\overline{P}_m	\overline{P}_{M}	Е	
--------------	--------------------	----------	------------------	--------------------	--------	--
Estacion	$SE(\hat{\theta})$					
			W/m^2	W/m^2	%	
Faro Sardina	6.735	0 828597	629 69	703 682	11 750	
	0.025	0.020037	0_).0)	, 00.002	11.,00	
Gando	4.919	0.900218	254.63	274.089	7.644	
	0.019					
M. Diablo	0.285	0.960505	563.17	571.125	1.413	
	5.001	0.055745	201.24	200 120	2.449	
P. de Vargas	0.015	0.955/45	281.24	288.128		
P Izquierdo	6.300	0 958809	544 00	575 918	5 867	
1. Izquierdo	0.034	0.950009	511.00	575.710	5.007	
Granadilla	5.570	0.927361	406.36	397.912	2.079	
	0.015					
El Rayo	0.018	0.928687	95.19	89.318	6.164	
	7.783			100600		
Valverde	0.026	0.959779	1061.77	1086.00	2.242	
	4.391	0 021282	202.62	104 029	4 071	
5. Sebastian	0.023	0.921382	203.02	194.928	4.2/1	

Tabla B.4. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Rayleigh de 1 parámetro (Continuación).

Distribución Beta de tres parámetros

Tabla B.5. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Beta de 3 parámetros.

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	Ê	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$	$SE(\hat{\xi})$				
			m/s		W/m^2	W/m^2	%
Los Valles	2.740	4.969	22.289	0 997724	500.16	505 / 98	1.068
LUS Valles	0.018	0.058	0.099).099	500.10	505.498	1.008
Таса	2.446	5.999	18.604	0 992030	170.63	177 366	3 0/15
Taca	0.037	0.136	0.164	0.992030	170.05	177.500	5.945
Antique	2.684	6.061	20.432	0 000162	256.08	264 217	2 8 1 4
Antigua	0.044	0.216	0.336	0.990102	230.98	204.217	2.014
Dunta Iandía	2.601	4.817	19.965	0.966202	335 78	357 231	6 5 1 7
i unta Januta	0.022	0.045	0.026	0.900202	555.20	557.254	0.547
Amagra	1.994	4.367	24.221	0.066207	400 40	530.081	6 1 2 4
Allagio	0.012	0.027	0.011	0.900297	477.47	550.081	0.124
D Driata	2.123	4.705	18.91	0.060270	228 20	220 045	5 101
K. F1100	0.018	0.046	0.039	0.900379	228.30	239.943	5.101

de la distribueit	JII Deta de J	Purumetros	Continuation	11 <i>)</i>			
Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	ŝ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$	$SE(\hat{\xi})$				
			m/s		W/m^2	W/m^2	%
P. do Coldor	2.531	5.229	17.853	0.064320	200 75	212 688	5 047
r. ut Galual	0.037	0.091	0.075	0.904329	200.75	212.088	5.947
Earo Sardina	2.482	4.535	24.361	0 887413	620.60	675 057	7 2 4 7
Falo Saluilla	0.025	0.050	0.032	0.887413	029.09	075.957	1.347
Gando	1.917	3.785	18.122	0 008300	254 63	271 105	6 508
Galluo	0.019	0.041	0.041 0.013 0.908309	234.03	2/1.195	0.308	
M Diablo	1.595	2.072	18.147	0 993352	563 17	561 375	0.318
	0.023	0.031	0.013	0.995552	505.17	501.575	0.510
D de Verges	1.695	2.488	15.412	0.085857	281 241	282 152	0 431
1. uc valgas	0.014	0.021	7.127 10 ⁻³	0.985857	201.241	202.432	0.431
P. Izquierdo	1.627	2.283	18.674	0 070005	544.00	515 257	0.231
r. izquieiuo	0.023	0.034	0.019	0.979003	544.00	545.257	0.231
Granadilla	1.707	3.215	19.852	0.98/061	106 36	407 009	0 1 5 9
Oranauma	0.012	0.026	0.025	0.904001	+00.50	+07.007	0.157
F1 Ravo	1.734	3.837	13.72	0 980732	95 19	101 007	6 1 1 5
Li Kayo	0.025	0.07	0.066	0.980752	95.19	101.007	0.115
Valvarda	1.509	2.387	24.615	0 078638	1061 77	1079.00	1 50
valverde	0.013	0.023	0.012	0.978038	1001.77	1079.00	1.39
S Sabastián	1.833	4.463	18.958	0 053080	203.62	217 022	7 022
5. Sevastiall	0.026	0.078	0.085	0.755707	203.02	211.723	1.022

Tabla B.5. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Beta de 3 parámetros (Continuación)

🔶 Distribución Beta prima

Tabla B.6. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución beta prima de 2 parámetros

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	%
Los Valles	19.489 0.122	3.207 0.019	0.870256	500.16	9.538 10 ³	1.807 10 ³
Taca	10.749 0.167	2.710 0.039	0.846378	170.63	∞	x
Antigua	14.431 0.222	3.039 0.044	0.843868	256.98	2.741 10 ⁴	1.057 10 ⁴
Punta Jandía	11.998 0.109	2.360 0.020	0.777547	335.28	x	x
Amagro	8.721 0.056	1.781 0.010	0.773631	499.49	2.667 10 ³	434.009

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε	
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$					
				W/m^2	W/m^2	%	
R Prieto	9.456	2.300	0 783446	228 30	00	~	
R. I IICO	0.084	0.019	0.705110	220.50	~	~	
P. de Galdar	10.359	2.437	0 771706	200 75	252010^3	$1.355.10^{3}$	
	0.160	0.035	0.771700	200.75	2.520 10	1.555 10	
Faro Sardina	11.673	1.968	0.670548	629 69	$3,920,10^4$	$6\ 124\ 10^3$	
1 aro Saranna	0.129	0.020	0.070510	029.09	5.920 10	0.124 10	
Gando	7.670	1.901	1 9 0.722493	254 63	$4.002.10^{3}$	$1\ 472\ 10^3$	
Guildo	0.084	0.019		251.05	1.002 10		
M Diablo	8.763	1.752	0 851289	563 17	242610^{3}	330 789	
	0.137	0.024	0.051207	202.17	2.120 10	220.707	
P de Vargas	7.899	1.919	0 844112	281 24	$5\ 272\ 10^3$	$1.774.10^{3}$	
1. de Valgas	0.071	0.016	0.011112	201.21	5.272 10	1.77410	
P Izavierdo	8.545	1.740	0 807264	544 00	$2\ 170\ 10^3$	298 927	
1. Izquierdo	0.133	0.024	0.007201	211.00	2.170 10	270.721	
Granadilla	9.556	2.108	0 888479	406 36	ŝ	00	
Orunadina	0.074	0.015	0.000179	100.50			
El Ravo	5.630	1.977	0 842614	95 19	764110^3	792710^3	
Li Kuyo	0.086	0.028	0.012011	<i>yy</i> .1 <i>y</i>	7.011 10	1.921 10	
Valverde	8.164	1.478	0 799784	1061 77	$1.226.10^{3}$	15 498	
varverae	0.081	0.013	0./22/04	1001.77	1.220 10	15.170	
S. Sebastián	7.060	1.949	0 784729	203 62	$6.196.10^3$	294310^{3}	
5. Sebastian	0.109	0.027	0.704727	205.02	0.170 10	2.775 10	

Tabla B.6. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución beta prima de 2 parámetros (Continuación)

Distribución Normal truncada

Tabla B.7. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Normal Truncada de 2 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	%
Los Valles	7.754	3.755	0 993080	500.16	496.219	0.787
	0.018	0.014	0.775000	500.10		
Таса	5.125	2.922	0 002571	170.63	160 772	0 505
Taca	0.037	0.029	0.772571	170.05	107.772	0.303
Antique	6.076	3.146	0 008333	256.08	254 864	0.825
Antigua	0.037	0.030	0.998555	230.98	234.804	0.823
Dunta Iandía	6.810	3.351	0 087302	335 78	3/1 200	1 765
i unta Januta	0.023	0.018	0.90/392	555.20	541.200	1.705

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	%
Amagro	7.209	4.358	0 992939	499 49	506 711	1 445
7 mugro	0.023	0.018	0.772757	199.19	200.711	1.110
R Prieto	5.632	3.282	0 990847	228 30	231 138	1 244
K. I IICO	0.024	0.019	0.770047	220.50	251.150	1.277
P. de Galdar	5.711	2.821	0 997/18	200 75	201 988	0.617
	0.033	0.026	0.777410	200.75	201.700	0.017
Faro Sardina	8.649	3.859	0.964661	620.60	641 111	1 8 1 3
Falo Saluma	0.031	0.024	0.904001	029.09	041.111	1.015
Cando	5.924	3.393	0.055534	254 625	262 602	2 5 2 6
Galluo	0.030	0.024	0.9555554	234.023	203.003	5.520
M Diabla	7.374	4.695	0.085400	562 17	570 100	2 820
M. Diabio	0.063	0.049	0.963490	303.17	379.100	2.829
D. do Vorgos	5.877	3.699	0 002020	201 24	100 022	2 700
r. ue valgas	0.013	9.923 10 ⁻³	0.962626	201.24	200.033	2.700
D. Izquiarda	7.419	4.541	0.082620	544.00	560 805	2 0 8 0
r. izquieido	0.059	0.047	0.985020	344.00	500.805	5.069
Cronadilla	6.029	4.621	0.070008	106.26	412 000	1 6 1 1
Granadina	0.036	0.027	0.979008	400.30	412.909	1.011
El Davia	3.799	2.794	0.001040	05 10	06 094	1 200
El Kayo	0.042	0.032	0.981940	93.19	90.984	1.890
Walmanda	8.758	6.087	0.096254	1061 77	1004 00	2 0 2 2
valverde	0.055	0.042	0.986234	1001.77	1094.00	5.052
C. Cabaatián	4.987	3.524	0.000474	202 (2	206 001	15(0
5. Sebastian	0.051	0.038	0.9804/4	203.62	206.801	1.360

Tabla B.7. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Normal Truncada de 2 parámetros (Continuación)

Distribución Lognormal de dos parámetros

Tabla B.8. Resultados de la aplicad	ción del método de la	a máxima verosim	nilitud en el análisis
de la distribución Lognormal de 2	parámetros		

	0	1					
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε	
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$					
				W/m^2	W/m^2	%	
Los Valles	1.943	0.571	0 929964	500 16	903 518	80 647	
Los vanes	$2.492\ 10^{-3}$	1.762 10-3	0.929901	200.10	202.210	00.017	
Таса	1.526	0.662	0 900128	170.63	428 407	151 067	
1 404	7.180 10-3	5.077 10-3	0.900120	1,0.05	120.107	121.007	
Antiona	1.696	0.608	0 900260	256 98	523 411	103 674	
7 milguu	6.5E-3	4.596 10-3	0.900200	250.70	525.111	105.071	

	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	%
Punta Jandía	1.811 4.165 10 ⁻³	0.664 2.945 10 ⁻³	0.831618	335.28	1.015 10 ³	202.756
Amagro	1.837 3.422 10 ⁻³	0.783 2.420 10 ⁻³	0.846768	499.49	2.390e3	378.501
R. Prieto	1.593 4.434 10 ⁻³	0.716 3.135 10 ⁻³	0.845323	228.30	733.650	221.355
P. de Galdar	1.617 7.261 10 ⁻³	0.678 5.135 10 ⁻³	0.835687	200.75	620.126	208.907
Faro Sardina	2.012 5.301 10 ⁻³	0.702 3.749 10 ⁻³	0.752111	629.69	2.353 10 ³	273.638
Gando	1.614 5.954 10 ⁻³	0.788 4.21 10 ⁻³	0.784732	254.63	1.270 10 ³	398.694
M. Diablo	1.863 8.493 10 ⁻³	0.794 6.006 10 ⁻³	0.900930	563.17	2.789 10 ³	395.155
P. de Vargas	1.633 $4.853 \ 10^{-3}$	0.785 3.431 10 ⁻³	0.890935	281.24	1.320 10 ³	369.520
P. Izquierdo	1.846 8.546 10 ⁻³	0.801 6.043 10 ⁻³	0.866225	544.00	2.794 10 ³	413.563
Granadilla	1.714 4.033 10 ⁻³	0.754 2.852 10 ⁻³	0.926473	406.36	1.357 10 ³	233.943
El Rayo	1.229 9.011 10 ⁻³	0.839 6.372 10 ⁻³	0.882414	95.19	581.242	510.640
Valverde	2.022 5.794 10 ⁻³	0.858 $4.097 \ 10^{-3}$	0.864731	1061.77	7268.0	584.565
S. Sebastián	1.493 8.585 10 ⁻³	0.801 6.071 10 ⁻³	0.837463	203.62	966.329	374.565

Tabla B.8. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Lognormal de 2 parámetros (Continuación).

✤ Distribución Gausiana Inversa de dos parámetros

Tabla B.9. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Gaussiana inversa de 2 parámetros.

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{\!_M}$	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	%
Los Valles	7.939 2.991 10 ⁻³	17.883 0.110	0.849265	500.16	895.996	79.143
Таса	5.416 9.788 10 ⁻³	7.654 0.117	0.753398	170.63	450.038	163.744

	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е	
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$					
				W/m^2	W/m^2	%	
Antiqua	6.292	11.681	0 795476	256.98	532 071	107 044	
milgua	8.211 10 ⁻³	0.177	0.755470	230.70	552.071	107.044	
Punta Iandía	7.092	8.659	0.661913	335 28	1195.00	256 486	
i unta sanata	6.041 10-3	0.077	0.001715	555.20	11)0.00	230.100	
Amagro	7.706	6.293	0.656145	499 49	2571.00	414 813	
Amagio	5.273 10-3	0.039	0.050145	т <i>))</i> .т <i>)</i>	2371.00	11.015	
R Prieto	5.946	8.246	0 738646	228 30	608 244	166 474	
K. 111010	$5.606 \ 10^{-3}$	0.072	0.750040	220.50	000.244	100.424	
P. de Galdar	5.887	6.771	0 654168	200 75	734 100	265.682	
	0.011	0.103	0.05 1100	200.75	/54.100		
Faro Sardina	8.777	11.059	0 600764	629.69	2183.00	246 609	
Tato Satuna	$7.053 \ 10^{-3}$	0.118	0.007704	027.07	2105.00	-10.007	
Gando	6.232	6.760	0.663287	254 63	936.175	267.668	
Ganuo	7.859 10 ⁻³	0.072		234.03			
M Diablo	8.001	6.910	0 773126	563.17	2665.00	373.306	
M. Diauto	0.012	0.105	0.775120		2005.00		
D do Vorgos	6.344	5.750	0 764050	281.24	1245.00	242 722	
r. ut valgas	7.139 10 ⁻³	0.050	0.704030	201.24	1245.00	342.722	
D Izquierdo	7.921	8.033	0 761071	544.00	2003.00	284 807	
1. Izquicido	0.011	0.121	0.701071	544.00	2095.00	204.007	
Granadilla	6.919	7.927	0 847657	406.36	1108.00	104 817	
Utallaullia	5.343 10 ⁻³	0.060	0.847037	400.30	1196.00	194.01/	
El Davo	4.326	2.819	0 674840	05 10	628 116	560 200	
LI Kayu	0.017	0.043	0.074840	95.19	020.410	300.200	
Valuarda	9.705	7.516	0 72 41 (9	1061 77	5527.00	420 502	
valvelue	8.236 10 ⁻³	0.072	0.754108	1001.//	5527.00	420.592	
S. Sabaatián	5.585	5.244	0.606212	202.62	810 640	208 110	
S. Sebastian	0.012	0.080	0.090212	203.62	810.649	298.110	

Tabla B.9. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Gaussiana inversa de 2 parámetros (Continuación).

B.2 Método máxima verosimilitud: Distribuciones híbridas.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de la máxima verosimilitud, descrito en el capítulo 4 de esta tesis, para estimar los parámetros y errores estándar de las diferentes leyes de distribución híbridas. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de

potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución híbrida Gamma Generalizada de 3 parámetros

				parametros	_	_		
Estación	α	β	η	R^2	P_m	P_{M}	Е	
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$	$SE(\hat{\eta})$					
					W/m^2	W/m^2	%	
Los Valles	2.756	$1.725 \ 10^{-3}$	2.154	0 998361	500.16	500 145	$2 \ 1 \ 10^{-3}$	
Los vanes	0.037	1.88 10-4	0.018	0.990501	500.10	500.115	2.1 10	
Таса	2.828	3.263 10-3	1.805	0 995602	170.63	170 626	4510^{-3}	
Tava	0.089	$7.527 \ 10^{-4}$	0.034	0.775002	170.05	170.020	1.0 10	
Antiqua	2.707	3.389 10-3	2.020	0 997958	256.98	256 929	0.021	
Antigua	0.081	$7.562\ 10^{-4}$	0.039	0.777750	230.70	250.727	0.021	
Punta Iandía	4.594	1.713 10-5	1.779	0 993264	335 28	333 301	0 591	
i unta Januta	0.073	3.315 10-6	0.015	0.775204	555.20	555.501	0.571	
Amagro	4.378	1.269 10-5	1.416	0 997183	499 49	497 890	0.321	
7 mag10	0.054	$1.959 \ 10^{-6}$	8.343 0-3	0.777105	т)),т)	+77.070	0.521	
R Prieto	4.082	8.876 10-5	1.495	0 995391	228 30	227 724	0 252	
R. I IICIO	0.086	$1.566 \ 10^{-5}$	0.013	0.775571	220.50	221.124	0.232	
P. de Galdar	3.816	$2.451 \ 10^{-4}$	1.778	0 991748	200 748	200 297	0 225	
	0.102	$6.362 \ 10^{-5}$	0.028	0.771740	200.740	200.277	0.220	
Faro Sardina	4.741	4.48 10-6	1.763	0.9/8330	629 69	619 657	1 594	
1 aro Sarama	0.074	9.521 10-7	0.017	0.940330	027.07	017.057	1.574	
Gando	7.019	4.837 10-8	1.346	0 980209	254 63	247 229	2 905	
Gando	0.134	1.643 10 ⁻⁸	0.012	0.980209	234.03	247.229	2.705	
M Diablo	8.361	$1.54 \ 10^{-10}$	1.255	0 998954	563 17	565 938	0 492	
	0.363	$1.565 \ 10^{-10}$	0.016	0.770754	505.17	505.750	0.472	
P de Vargas	7.287	1.655 10-8	1.28	0 999152	281.24	280 983	0.092	
1. uc vargas	0.159	$6.797 \ 10^{-9}$	9.576 10 ⁻³	0.777132	201.24	200.705	0.072	
P Izquierdo	7.589	$1.492\ 10^{-9}$	1.269	0 997854	544.00	538 64	0.986	
I. IZquicido	0.281	$1.168 \ 10^{-9}$	0.016	0.777034	J++.00	550.04	0.700	
Granadilla	4.384	1.461 10 ⁻⁵	1.274	0.085017	106 36	106 362	0.465	
Oranauma	0.091	$3.704\ 10^{-6}$	9.90 10 ⁻³	0.985017	400.50	400.302	0.403	
El Pavo	4.194	$1.866 \ 10^{-4}$	1.282	0 002820	05 10	05 186	07 3 28	
LI Kayo	0.13	$5.607 \ 10^{-5}$	0.018	0.992829	95.19	95.180	91.520	
Valvarda	5.964	2.993 10-8	1.198	0.006061	1061 77	1053 207	0 775	
Valverde	0.132	$1.209\ 10^{-8}$	9.934 10 ⁻³	0.330001	1001.//	1033.207	0.775	
S. Sebastián	3.682	$2.441 \ 10^{-4}$	1.351	0 088130	203 62	203 243	0 1 8 7	
	0.102	6.436 10 ⁻⁵	0.02	0.700139	203.02	203.243	0.10/	

Tabla B.10. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución híbrida gamma generalizada de 3 parámetros.

Distribución Gamma de dos parámetros

Γ-4	â	$\hat{\beta}$	R^2	\overline{P}_m	\overline{P}_{M}	Е	
Estacion	$SE(\hat{\alpha})$	$SE(\hat{B})$					
				W/m ²	W/m ²	%	
Los Valles	4.028	1.971	0 977721	500 16	572,262	14 417	
Los vanes	0.024	0.012	0.5777_1	000110	0,1202	1	
Таса	3.226	1.679	0 965372	170.63	205 350	20 345	
1 404	0.047	0.027	0.900072	170.05	200.500	20.510	
Antigua	3.657	1.721	0 960442	256 98	299 831	16 673	
1 mingua	0.053	0.027	0.900112	200.90	277.031	10.075	
Punta Jandía	3.527	2.011	0 91434	335 28	432 709	29 058	
i unu bunuu	0.03	0.018	0.91.0	000.20		_,	
Amagro	2.588	2.977	0 919176	499 49	686 077	37 355	
1 Illiugi o	0.015	0.019	0.919170	177.17	000.077	51.555	
R Prieto	2.789	2.132	0 910406	228 30	300 401	31.582	
1. 111010	0.023	0.019	0.910100	220.50	500.101		
P. de Galdar	3.372	1.746	0.915901	200 75	256 848	27 945	
	0.049	0.027	0.913901	200.75	250.010		
Faro Sardina	3.274	2.681	0 824725	629 69	870 789	38 288	
1 alo Saluna	0.033	0.029	0.024723	027.07	070.707	50.200	
Gando	2.474	2.519	0 8/8302	254 63	376 369	17 813	
Gando	0.025	0.028	0.040302	254.05	570.507	+/.01J	
M Diablo	2.463	3.248	0 047082	563 17	70/ 375	41.055	
M. Diauto	0.035	0.051	0.947982	505.17	194.313	41.055	
D do Vorgos	2.487	2.551	0.038450	281.24	204 065	40 116	
1. uc vargas	0.020	0.023	0.930439	201.24	394.003	40.110	
D. Izquiardo	2.392	3.312	0.01003	544.00	702 600	15 717	
r. izquieido	0.034	0.052	0.91905	344.00	192.099	43./1/	
Cronadilla	2.423	2.856	0.056000	106.26	501 016	20 /11	
Granadina	0.017	0.023	0.930909	400.30	321.810	28.411	
El Davia	2.271	1.905	0.047605	05 10	122 004	20 721	
El Kayo	0.032	0.030	0.947003	93.19	155.004	39.731	
Walwarda	2.145	4.524	0.021699	1061 77	1594 00	40.162	
valvelde	0.019	0.045	0.921088	1001.//	1384.00	49.102	
S. Sebastián	2.352	2.375	0.007	202 (2	270 511	27 260	
	0.033	0.038	0.907	203.62	219.311	37.208	

Tabla B.11. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución híbrida gamma de 2 parámetros.

Distribución Weibull de dos parámetros

Estación	â	Â	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
Estacion	$SE(\hat{\eta})$	$SE(\hat{\beta})$				
		m/s		W/m ²	W/m ²	%
Los Valles	2.363	8.945	0.999316	500.16	502.051	0.379
	8.106 10	0.017				
Taca	0.018	0.033	0.992995	170.63	172.867	1.309
	2.256	7.088				
Antıgua	0.019	0.035	0.996025	256.984	258.488	0.585
Dunto Iondía	2.413	7.944	0.070502	225.20	241 165	1 754
Punta Jandia	0.012	0.022	0.970503	335.28	341.105	1./54
Amagro	1.986	8.627	0 965974	100 10	524 634	5 033
Allagio	$7.132\ 10^{-3}$	0.020	0.703774	т <i>))</i> ,т)	527.057	5.055
R. Prieto	2.041	6.678	0 962182	228 30	237 391	3 983
10.111000	0.010	0.021	0.902102		2011091	01900
P. de Galdar	2.307	6.599	0.978956	200.75	204.433	1.835
Surau	0.020	0.032				
Faro Sardina	2.433	9.789	0.915996	629.69	644.288	2.318
	2 015	6.968				
Gando	0.013	0.027	0.90225	254.63	273.353	7.355
	1 938	8 957				
M. Diablo	0.017	0.052	0.968818	563.17	601.750	6.851
	1.945	7.105	0.0(245	201.24	200.020	6.645
P. de Vargas	0.010	0.024	0.96245	281.24	299.929	6.645
D Izquiardo	1.936	8.857	0.055574	544.00	586 218	7 770
r. izquieido	0.017	0.051	0.933374	544.00	560.516	1.113
Granadilla	1.805	7.767	0 964729	406 36	429 054	5 584
Oranadina	7.864 10-3	0.024	0.901729	100.50	129.031	5.501
El Ravo	1.812	4.831	0.966344	95.19	102.004	7.163
	0.016	0.030				
Valverde	1.795	10.814	0.955717	1061.77	1168.00	9.991
	0.010	0.042				
S. Sebastián	1.044	0.248	0.944072	203.62	216.448	6.298
	0.010	0.038				

Tabla B.12. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Weibull híbrida de 2 parámetros

Distribución Rayleigh de un parámetro

	$\hat{ heta}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
Estacion	$SE(\hat{\theta})$				
	52(0)		W/m^2	W/m ²	%
Los Valles	6.140 0.013	0.953852	500.16	533.126	6.592
Taca	4.184 0.023	0.963987	170.63	168.698	1.135
Antigua	4.861 0.026	0.950702	256.98	264.481	2.917
Punta Jandía	5.270 0.016	0.841164	335.28	336.981	0.506
Amagro	6.034 0.013	0.953984	499.49	506.022	1.307
R. Prieto	4.703 0.015	0.957750	228.30	239.516	4.913
P. de Galdar	4.497 0.024	0.900775	200.75	209.505	4.362
Faro Sardina	6.735 0.025	0.828469	629.69	703.682	11.750
Gando	4.919 0.019	0.900178	254.63	274.089	7.644
M. Diablo	6.283 0.034	0.960288	563.17	571.125	1.413
P. de Vargas	5.001 0.015	0.955675	281.24	288.128	2.449
P. Izquierdo	6.300 0.034	0.958809	544.00	575.918	5.867
Granadilla	5.570 0.015	0.930207	406.36	397.912	2.079
El Rayo	3.385 0.018	0.932963	95.19	89.318	6.164
Valverde	7.783 0.026	0.960234	1061.77	1086.00	2.242
S. Sebastián	4.391 0.023	0.923087	203.62	194.928	4.271

Tabla B.13. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Rayleigh híbrida de 1 parámetro.

Distribución Beta de tres parámetros

	$\hat{\alpha}$	$\hat{\beta}$	<u> </u>	R^2	\overline{P}_m	\overline{P}_{M}	Е
Estación	$SE(\hat{\alpha})$	$SE(\hat{B})$	$SE(\hat{\mathcal{E}})$		m	171	
		SL(p)	m/s		W/m ²	W/m ²	%
Los Valles	2.740	4.969	22.289	0 997605	500 16	505 219	1.012
Los vanes	0.018	0.058	0.099	0.777000	200.10	000.219	1.012
Таса	2.446	5.999	18.604	0 990933	170.63	176 370	3 361
1 404	0.037	0.136	0.164	0.770755	170.05	170.570	5.501
Antiona	2.684	6.061	20.432	0 989504	256.98	263 523	2 544
7 milgua	0.044	0.216	0.336	0.909304	230.70	205.525	2.344
Punta Iandía	2.601	4.817	19.965	0.962317	335 28	351 718	4 902
i unta Janaia	0.022	0.045	0.026	0.902317	555.20	551.710	7.702
Amagro	1.994	4.367	24.221	0 966079	100 10	527 884	5 684
Allagio	0.012	0.027	0.011	0.900079	477.47	527.884	5.004
P Drieto	2.123	4.705	18.91	0.060386	228 30	230 027	5 003
K. I IICIO	0.018	0.046	0.039	0.900380	220.30	239.921	5.095
P. de Galdar 2.531 0.037 5.229 0.091 17.	2.531	5.229	17.853	0.062713	200 75	211 602	5 452
	0.075	0.902715	200.75	211.092	5.452		
Foro Sording	2.482	4.535	24.361	0 887284	620.60	675 970	7 2 2 5
Falo Salulla	0.025	0.050	0.032	0.00/304	029.09	0/3.8/9	1.555
Canda	1.917	3.785	18.122	0.009240	25162	271 164	6 105
Gando	0.019	0.041	0.013	0.908349	234.03	2/1.104	0.493
M Diahla	1.595	2.072	18.147	0.002720	5(2.17	557 000	0.010
M. Diabio	0.023	0.031	0.013	0.993729	303.17	557.988	0.919
D de Veneer	1.695	2.488	15.412	0.00(221	201.24	201 246	0.027
P. de Vargas	0.014	0.021	7.127E-3	0.986331	281.24	281.346	0.037
D I	1.627	2.283	18.674	0.070004	544.00	545 257	0.221
P. Izquierdo	0.023	0.034	0.019	0.9/9004	544.00	545.257	0.231
0 1.11	1.707	3.215	19.852	0.005070	106.26	405.040	0.100
Granadilla	0.012	0.026	0.025	0.9850/8	406.36	405.849	0.126
F1 D	1.734	3.837	13.72	0.001200	05 10	100.004	5.0(2
El Rayo	0.025	0.07	0.066	0.981209	95.19	100.004	5.062
X 7 1 1	1.509	2.387	24.615	0.070701	10(1 77	1077 000	1 4 4 7
valverde	0.013	0.023	0.012	0.9/8/01	1061.//	1077.000	1.44/
	1.833	4.463	18.958	0.055025	202 (2	016 456	(202
S. Sebastián	0.026	0.078	0.085	0.955035	203.62	216.456	6.302

Tabla B.14. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Beta híbrida de 3 parámetros.

Distribución Beta prima

	â	β	R^2	\overline{P}_m	\overline{P}_{M}	ε
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m ²	W/m^2	%
Los Valles	19.489	3.207	0.870015	500 16	953310^3	$1.806.10^{3}$
Los vanes	0.122	0.019	0.070012	200.10	9.000 10	1.000 10
Таса	10.749	2.710	0 843905	170.63	\sim	\sim
I ded	0.167	0.039	0.045705	170.05	~	\sim
Antiqua	14.431	3.039	0 842990	256.98	273410^4	$1.054.10^4$
minguu	0.222	0.044	0.042770	230.70	2.75410	1.054 10
Punta Iandía	11.998	2.360	0 770721	335 28	\sim	2 C
i unta sanaia	0.109	0.020	0.770721	555.20		
Amagro	8.721	1.781	0 772415	499 49	$2.656.10^3$	431 795
Amagio	0.056	0.010	0.772415		2.030 10	431.775
R Prieto	9.456	2.300	0 783443	228 30	\sim	\sim
K. I IICIO	0.084	0.019	0.765445	220.50	\sim	\sim
D de Gelder	Galdar 10.359 2.437 0.769670	200 75	~	~		
I. UC Galuai	0.160	0.035	0.709070	200.75	∞	∞
Faro Sardina	11.673	1.968	0.670514	620.60	$3,010,10^4$	612410^3
	0.129	0.020	0.070314	029.09	5.919 10	0.124 10
Cando	7.670	1.901	0 722507	254 63	$4.001.10^{3}$	$1.471.10^{3}$
Galluo	0.084	0.019	0.722307	234.03	4.001 10	1.4/1 10
M Diable	8.763	1.752	0.840074	562 17	$2,411,10^3$	220 100
M. Diabio	0.137	0.024	0.8499/4	303.17	2.411 10	528.190
D. do Wargan	7.899	1.919	0 942500	201 24	$5.251.10^{3}$	$1.767.10^{3}$
P. de Vargas	0.071	0.016	0.843309	201.24	5.251 10	1.707 10
D. Imaurianda	8.545	1.740	0.007764	544.00	$2 170 10^3$	208 027
P. Izquierdo	0.133	0.024	0.80/264	544.00	2.170 10	298.927
Cronodillo	9.556	2.108	0 000545	106.26		- 0
Granadilla	0.074	0.015	0.888545	406.36	œ	x
El Davia	5.630	1.977	0.940105	05 10	$7 = (5 = 10^3)$	$7.947.10^{3}$
El Kayo	0.086	0.028	0.840103	93.19	7.303 10	/.84/10
Walwanda	8.164	1.478	0.700660	1061 77	$1.225.10^{3}$	15 225
valverue	0.081	0.013	0./99009	1001.//	1.225 10	15.555
C. Calcatión	7.060 1.949	202 (2	(15110^3)	$2.022.10^{3}$		
5. Sebastian	0.109	0.027	0./84840	203.02	0.134 10	2.922 10

Tabla B.15. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución beta prima híbrida de 2 parámetros

Distribución Lognormal de dos parámetros

Estación	â	β	R^2	\overline{P}_m	\overline{P}_{M}	Е
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$				
				W/m^2	W/m^2	%
Los Valles	1.943 2.492 10 ⁻³	0.571 1.762 10 ⁻³	0.929822	500.16	903.020	80.548
Taca	1.526 7.180 10 ⁻³	0.662 5.077 10 ⁻³	0.898328	170.63	426.000	149.657
Antigua	1.696 6.5 10 ⁻³	0.608 4.596 10 ⁻³	0.899810	256.98	522.037	103.139
Punta Jandía	1.811 4.165 10 ⁻³	0.664 2.945 10 ⁻³	0.827251	335.28	999.417	198.081
Amagro	1.837 3.422 10 ⁻³	0.783 2.420 10 ⁻³	0.846366	499.49	2380.00	376.517
R. Prieto	1.593 4.434 10 ⁻³	0.716 3.135 10 ⁻³	0.845339	228.30	733.594	221.331
P. de Galdar	1.617 7.261 10 ⁻³	0.678 5.135 10 ⁻³	0.834362	200.75	617.223	207.461
Faro Sardina	2.012 5.301 10 ⁻³	0.702 3.749 10 ⁻³	0.752107	629.69	$2.353\ 10^3$	273.596
Gando	1.614 5.954 10 ⁻³	0.788 4.21 10 ⁻³	0.784781	254.63	1.270 10 ³	398.637
M. Diablo	1.863 8.493 10 ⁻³	0.794 6.006 10 ⁻³	0.900874	563.17	2.772 10 ³	392.168
P. de Vargas	1.633 4.853 10 ⁻³	0.785 3.431 10 ⁻³	0.891144	281.24	1.315 10 ³	367.682
P. Izquierdo	1.846 8.546 10 ⁻³	0.801 6.043 10 ⁻³	0.866225	544.00	2.794 10 ³	413.563
Granadilla	1.714 4.033 10 ⁻³	0.754 2.852 10 ⁻³	0.927231	406.36	$1.353 \ 10^3$	232.992
El Rayo	1.229 9.011 10 ⁻³	0.839 6.372 10 ⁻³	0.880772	95.19	575.469	504.575
Valverde	2.022 5.794 10 ⁻³	0.858 4.097 10 ⁻³	0.864978	1061.77	7258.0	583.600
S. Sebastián	1.493 8.585 10 ⁻³	0.801 6.071 10 ⁻³	0.838974	203.62	959.821	371.369

Tabla B.16. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Lognormal híbrida de 2 parámetros

Distribución Gausiana Inversa de dos parámetros

Estación	â	β	R^2	\overline{P}_m	\overline{P}_{M}	ε	
Estacion	$SE(\hat{\alpha})$	$SE(\hat{\beta})$					
	. ,			W/m^2	W/m ²	%	
Los Valles	7.939	17.883	0 849253	500 16	895 502	79 045	
	$2.991 \ 10^{-3}$	0.110	0.017255	200.10	070.002	19.015	
Таса	5.416	7.654	0 754165	170.63	447 509	162 262	
1 404	9.788 10-3	0.117	01701100	1,0100		102.202	
Antigua	6.292	11.681	0 795821	256 98	530 674	106 501	
1 11118444	8.211 10-3	0.177	0.,,,00_1		000.071	100.001	
Punta Jandía	7.092	8.659	0.665396	335.28	1177.00	250.982	
	6.041 10-3	0.077					
Amagro	7.706	6.293	0.658005	499.49	2561.00	412.679	
	5.273 10-5	0.039					
R. Prieto	5.946	8.246	0.738694	228.30	608.197	166.404	
	5.606 10-5	0.072					
P de Galdar	5.887	6.771	0.655453	200.75	730.665	263.970	
	0.011	0.103					
Faro Sardina	8.777	11.059	0.609818	629.69	2182.00	246.570	
	7.053 10-5	0.118					
Gando	6.232	6.760	0.663388	254.63	936.068	267.626	
	7.859 10-5	0.072			220.000	201.020	
M Diablo	8.001	6.910	0.775194	563.17	2649.00	370.450	
1.1. 2.1.010	0.012	0.105			,		
P de Vargas	6.344	5.750	0.765593	281.24	1240.00	340.988	
1	7.139 10-5	0.050					
P Izquierdo	7.921	8.033	0 761071	544 00	2093 00	284 807	
1. Izquieruo	0.011	0.121	01101011	0	-0,0.00	201.007	
Granadilla	6.919	7.927	0 848772	406 36	1195.00	193 977	
Grundunia	5.343 10-3	0.060	0.0.0772	100120	1190100	1,0.,1,	
El Ravo	4.326	2.819	0 678936	95 19	622 174	553 643	
Li itayo	0.017	0.043	0.0707000	,,	0221171	000.0.0	
Valverde	9.705	7.516	0 735010	1061 77	5520.00	419 858	
	8.236 10-3	0.072	3.,22010		2020.000		
S Sebastián	5.585	5.244	0 700571	203 62	805 190	295 429	
S. Sebastian	0.012	0.080	0.700071	203.02	005.170	2)J.T2)	

Tabla B.17. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución Gaussiana inversa híbrida de 2 parámetros.

Apéndice C.

C.1 Método mínimos cuadrados: Distribuciones no híbridas.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los mínimos cuadrados, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución Gamma Generalizada de 3 parámetros

la distribución	a distribución gamma generalizada de 5 parametros										
Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е				
					W/m^2	W/m^2	%				
Los Valles	2.344	5.943 10 ⁻³	2.377	0.999474	500.16	506.416	1.252				
Taca	2.874	$2.921 \ 10^{-3}$	1.758	0.996097	170.63	166.809	2.242				
Antigua	2.957	$1.820 \ 10^{-3}$	1.968	0.998371	256.99	246.121	4.227				
P. Jandía	5.912	6.195 10 ⁻⁷	1.695	0.997043	335.29	323.052	3.648				
Amagro	4.870	$3.408 \ 10^{-6}$	1.433	0.998942	499.50	496.710	0.557				
R. Prieto	4.524	$2.987 \ 10^{-5}$	1.508	0.997837	228.30	228.951	0.286				
P.de Galdar	4.014	1.664 10 ⁻⁴	1.898	0.997459	200.75	199.279	0.732				
Faro Sardina	5.096	2.138 10 ⁻⁶	2.120	0.988687	629.69	624.105	0.888				
Gando	8.755	6.588E-10	1.385	0.99244	254.63	257.857	1.269				
M. Diablo	8.357	1.54 10 ⁻¹⁰	1.210	0.999415	563.17	555.797	1.309				
P. de Vargas	7.287	1.655 10 ⁻⁸	1.28	0.998973	281.24	282.250	0.359				
P. Izquierdo	7.594	1.492 10 ⁻⁹	1.30	0.998687	544.00	545.696	0.312				
Granadilla	4.338	1.435 10 ⁻⁵	1.172	0.992660	406.36	419.561	3.248				
El Rayo	4.355	1.252 10 ⁻⁴	1.252	0.994605	95.19	96.753	1.646				
Valverde	5.964	2.993 10 ⁻⁸	1.198	0.996053	1061.77	1054.183	0.669				
S. Sebastián	4.334	4.967 10 ⁻⁵	1.307	0.995100	203.62	196.957	3.274				

Tabla C.1. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución gamma generalizada de 3 parámetros

Distribución Gamma de dos parámetros

Estación	$\hat{\eta}$	$\hat{\beta}$	R^2	\overline{P}_m	\overline{P}_{M}	ε
				W/m^2	W/m^2	%
Los Valles	4.697	1.723	0.993429	500.16	574.551	12.128
Taca	3.727	1.470	0.978630	170.63	196.237	15.004
Antigua	4.348	1.465	0.978824	256.99	284.631	10.758
P. Jandía	4.911	1.472	0.947974	335.29	391.654	16.813
Amagro	3.6	2.229	0.956397	499.50	629.148	25.958
R. Prieto	3.775	1.648	0.951857	228.30	285.261	24.951
P.de Galdar	4.936	1.233	0.970325	200.75	233.261	16.196
Faro Sardina	6.462	1.423	0.934386	629.69	720.322	14.392
Gando	4.001	1.655	0.912601	254.63	333.464	30.963
M. Diablo	3.110	2.672	0.963828	563.17	763.265	35.531
P. de Vargas	3.244	2.056	0.957471	281.24	384.160	36.595
P. Izquierdo	3.468	2.410	0.955976	544.00	726.464	33.541
Granadilla	2.567	2.809	0.965054	406.36	568.129	39.809
El Rayo	2.837	1.581	0.958611	95.19	127.604	34.058
Valverde	3.074	3.334	0.955496	1061.77	1443.00	35.872
S. Sebastián	3.011	1.912	0.923805	203.62	259.089	27.239

Tabla C.2. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución gamma de 2 parámetros.

Distribución Weibull de dos parámetros

Tabla C.3. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Weibull de 2 parámetros.

Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
		m/s		W/m^2	W/m^2	%
Los Valles	2.365	8.968	0.999449	500.16	505.905	1.149
Taca	2.096	6.079	0.993478	170.63	174.433	2.226
Antigua	2.278	7.063	0.996489	256.99	254.387	1.011
P. Jandía	2.442	8.002	0.980457	335.29	351.325	4.784
Amagro	2.071	8.902	0.982797	499.50	554.291	10.971
R. Prieto	2.125	6.899	0.980182	228.30	251.711	10.255
P.de Galdar	2.438	6.738	0.99297	200.75	209.962	4.590
Faro Sardina	2.822	10.129	0.972524	629.69	654.516	3.942
Gando	2.202	7.344	0.950262	254.63	294.197	15.541
M. Diablo	1.940	9.206	0.980223	563.17	656.937	16.651
P. de Vargas	1.979	7.395	0.977349	281.24	333.008	18.407
P. Izquierdo	2.052	9.263	0.976852	544.00	630.428	15.888
Granadilla	1.734	7.971	0.978173	406.36	490.674	20.748

	$\frac{100011}{100}$ uc 2	Jarametros.	(Continuacion)			
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
		m/s		W/m^2	W/m^2	%
El Rayo	1.826	4.970	0.975701	95.19	111.095	16.714
Valverde	1.920	11.346	0.975762	1061.77	1.244e3	17.143
S. Sebastián	1.894	6.375	0.956721	203.62	224.079	10.045

Tabla C.3. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Weibull de 2 parámetros. (Continuación)

Distribución Rayleigh de un parámetro

Tabla C.4. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Rayleigh de 1 parámetro.

Estación	$\hat{ heta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			W/m^2	W/m^2	%
Los Valles	6.340	0.973834	500.16	586.978	17.359
Taca	4.295	0.990129	170.634	182.523	6.967
Antigua	4.991	0.976179	256.99	286.255	11.390
P. Jandía	5.638	0.948249	335.29	412.783	23.115
Amagro	6.288	0.984144	499.50	572.627	14.642
R. Prieto	4.870	0.980929	228.30	266.039	16.531
P.de Galdar	4.755	0.960711	200.75	247.623	23.350
Faro Sardina	7.141	0.893823	629.69	838.603	33.176
Gando	5.173	0.950266	254.63	318.749	25.184
M. Diablo	6.519	0.977673	563.17	637.944	13.278
P. de Vargas	5.232	0.976259	281.24	329.777	17.258
P. Izquierdo	6.544	0.977757	544.00	645.286	18.619
Granadilla	5.675	0.930144	406.36	420.994	3.601
El Rayo	3.528	0.948390	95.186	101.161	6.277
Valverde	8.037	0.972322	1061.77	1195.00	12.581
S. Sebastián	4.518	0.947272	203.62	212.359	4.290

Distribución Beta de tres parámetros

Tabla C.5. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Beta de 3 parámetros.

Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	ŝ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	2.828	5.031	22.05	0.999152	500.16	500.176	4.145 10 ⁻³
Taca	2.480	6.008	18.424	0.993104	170.63	175.337	2.756
Antigua	2.983	6.973	20.935	0.995060	256.99	255.122	0.725
P. Jandía	3.232	7.436	23.505	0.973613	335.29	360.984	7.665

Estación	\hat{lpha}	β	, m	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Amagro	2.316	4.818	24.2	0.985546	499.50	542.955	8.701
R. Prieto	2.498	5.963	20.713	0.979868	228.30	255.441	11.889
P.de Galdar	3.029	6.417	18.669	0.988860	200.75	216.559	7.876
Faro Sardina	3.721	6.295	24.34	0.96427	629.69	669.572	6.333
Gando	2.75	9.544	29.499	0.943888	254.63	329.689	29.48
M. Diablo	1.96	3.07	20.587	0.994167	563.17	575.652	2.217
P. de Vargas	2.263	5.187	21.472	0.986596	281.24	320.852	14.084
P. Izquierdo	1.892	2.531	18.835	0.989293	544.00	565.681	3.986
Granadilla	1.646	3.387	21.467	0.98937	406.36	450.419	10.842
El Rayo	1.896	5.519	17.307	0.983605	95.19	115.595	21.441
Valverde	1.677	2.495	24.6	0.988865	1061.77	1130.00	6.431
S. Sebastián	2.144	5.913	21.216	0.958467	203.62	222.627	9.332

Tabla C.5. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Beta de 3 parámetros (Continuación)

Distribución Beta prima

Tabla C.6. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución beta prima de 2 parámetros.

Estación	$\hat{\alpha}$	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
		·		W/m^2	W/m^2	%
Los Valles	43.588	6.221	0.947259	500.156	764.435	52.839
Taca	24.587	5.322	0.904321	170.63	307.350	80.122
Antigua	33.064	6.017	0.912762	256.99	397.792	54.792
P. Jandía	42.738	6.736	0.865559	335.29	504.600	50.500
Amagro	34.093	5.074	0.851305	499.50	$1.018 \ 10^3$	103.900
R. Prieto	28.632	5.427	0.852061	228.30	432.226	89.325
P.de Galdar	36.673	6.854	0.900735	200.75	298.903	48.895
Faro Sardina	70.666	8.500	0.860661	629.69	840.750	33.517
Gando	33.413	5.862	0.811075	254.63	464.167	82.294
M. Diablo	28.071	4.177	0.898395	563.17	$1.845 \ 10^3$	227.661
P. de Vargas	24.779	4.525	0.879433	281.24	771.825	174.435
P. Izquierdo	32.986	4.749	0.888691	544.00	$1.333 \ 10^3$	145.121
Granadilla	20.007	3.588	0.888480	406.36	$2.345 \ 10^3$	477.178
El Rayo	15.801	4.351	0.864586	95.19	272.122	185.885
Valverde	35.354	4.250	0.879094	1061.77	$3.218\ 10^3$	203.055
S. Sebastián	21.336	4.526	0.790987	203.62	501.397	146.237

Distribución Normal truncada

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	\overline{P}_{M}	ε
				W/m^2	W/m^2	%
Los Valles	7.673	3.790	0.995535	500.16	489.876	2.055
Taca	5.025	2.961	0.993760	170.63	166.323	2.526
Antigua	5.987	3.120	0.998334	256.99	245.427	4.497
P. Jandía	6.869	3.333	0.991271	335.29	345.612	3.081
Amagro	7.304	4.436	0.996088	499.50	530.150	6.138
R. Prieto	5.713	3.338	0.994455	228.30	241.994	5.999
P.de Galdar	5.789	2.790	0.998205	200.75	205.575	2.404
Faro Sardina	8.887	3.679	0.981317	629.69	656.175	4.205
Gando	6.127	3.459	0.975547	254.63	286.828	12.647
M. Diablo	7.321	4.995	0.991911	563.166	622.413	10.520
P. de Vargas	5.942	3.915	0.991120	281.24	317.126	12.759
P. Izquierdo	7.553	4.702	0.991168	544.00	604.642	11.148
Granadilla	5.827	5.032	0.987909	406.36	453.038	11.486
El Rayo	3.802	2.919	0.987909	95.19	103.846	9.099
Valverde	8.958	6.239	0.991840	1061.77	1174.00	10.560
S. Sebastián	5.003	3.552	0.982747	203.62	210.239	3.248

Tabla C.7. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Normal truncada de 2 parámetros.

Distribución Lognormal de dos parámetros

Tabla C.8. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Lognormal de 2 parámetros.

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	2.003	0.457	0.973557	500.16	637.380	27.436
Taca	1.591	0.512	0.943591	170.63	235.363	37.934
Antigua	1.759	0.473	0.946863	256.99	328.114	27.679
P. Jandía	1.897	0.442	0.904943	335.29	437.216	30.402
Amagro	1.971	0.517	0.906919	499.50	753.477	50.849
R. Prieto	1.722	0.504	0.900344	228.30	337.209	47.705
P.de Galdar	1.725	0.442	0.937143	200.748	260.739	29.884
Faro Sardina	2.158	0.385	0.897500	629.69	773.213	22.792
Gando	1.794	0.484	0.857869	254.63	382.429	50.193
M. Diablo	1.987	0.565	0.931232	563.17	1002.00	77.995
P. de Vargas	1.773	0.550	0.917444	281.24	488.399	73.659
P. Izquierdo	2.009	0.530	0.920624	544.00	897.300	64.945
Granadilla	1.814	0.624	0.926474	406.36	816.471	100.922

distribución Eognormal de 2 parametros (Continuación).									
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е			
				W/m^2	W/m^2	%			
El Rayo	1.358	0.584	0.913128	95.19	167.347	75.811			
Valverde	2.199	0.561	0.916360	1061.77	$1.854 \ 10^3$	74.628			
S. Sebastián	1.619	0.564	0.855003	203.62	329.212	61.676			

Tabla C.8. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Lognormal de 2 parámetros (Continuación).

Distribución Gausiana Inversa de dos parámetros

Tabla C.9. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Gaussiana inversa de 2 parámetros.

Estación	â	β	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	8.216	36.750	0.971467	500.16	618.358	23.633
Taca	5.581	19.539	0.940082	170.63	223.83	31.175
Antigua	6.481	26.907	0.943113	256.99	316.325	23.091
P. Jandía	7.339	35.324	0.900886	335.29	424.322	26.556
Amagro	8.184	28.251	0.900212	499.50	711.974	42.540
R. Prieto	6.340	23.063	0.893985	228.30	320.216	40.262
P.de Galdar	6.178	29.682	0.933389	200.75	253.399	26.227
Faro Sardina	9.312	60.107	0.894318	629.69	760.059	20.703
Gando	6.746	26.945	0.851729	254.63	364.714	43.235
M. Diablo	8.519	24.388	0.925393	563.17	914.283	62.347
P. de Vargas	6.822	20.669	0.910570	281.24	450.623	60.227
P. Izquierdo	8.548	28.253	0.915035	544.00	834.826	53.461
Granadilla	7.408	16.895	0.912205	406.36	720.240	77.241
El Rayo	4.592	12.162	0.906222	95.19	151.899	59.582
Valverde	10.508	30.642	0.909245	1061.77	1693.00	59.422
S. Sebastián	5.893	16.865	0.844371	203.62	302.687	48.650

C.2 Método mínimos cuadrados: Distribuciones híbridas.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los mínimos cuadrados, escrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución híbridas. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales

estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución híbrida Gamma Generalizada de 3 parámetros

de la distribución gamma generalizada monda de 5 parametros									
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е		
					W/m^2	W/m^2	%		
Los Valles	2.333	6.155 10 ⁻³	2.389	0.999481	500.16	506.565	1.2181		
Taca	7.585	$4.400\ 10^{-8}$	1.387	0.995603	170.63	151.003	11.505		
Antigua	2.899	$2.136\ 10^{-3}$	2.003	0.998569	256.99	246.421	4.11		
Punta Jandía	4.337	3.740 10 ⁻⁵	1.938	0.997170	335.29	329.341	1.772		
Amagro	4.747	4.824 10 ⁻⁶	1.459	0.998563	499.50	497.270	0.445		
Roque Prieto	4.496	3.218 10 ⁻⁵	1.512	0.997789	228.30	228.976	0.297		
Punta de Galdar	3.996	1.764 10 ⁻⁴	1.93	0.996753	200.75	198.975	0.883		
Faro Sardina	5.096	2.138 10-6	2.212	0.988697	629.69	624.034	0.899		
Gando	8.83	5.523 10 ⁻¹⁰	1.385	0.992521	254.63	257.41	1.094		
Montaña Diablo	8.338	1.653 10 ⁻¹⁰	1.228	0.999536	563.17	555.179	1.418		
Playa de Vargas	7.287	1.655 10 ⁻⁸	1.28	0.999153	281.24	281.145	0.034		
Pozo Izquierdo	7.594	1.492 10 ⁻⁹	1.30	0.998686	544.00	545.696	0.312		
Granadilla	4.332	1.469 10 ⁻⁵	1.181	0.992249	406.36	419.143	3.145		
El Rayo	4.342	1.311 10 ⁻⁴	1.281	0.994500	95.19	96.660	1.549		
Valverde	5.964	2.993 10 ⁻⁸	1.198	0.996065	1061.77	1053.207	0.809		
San Sebastián	5.595	2.355 10 ⁻⁶	1.269	0.995304	203.62	190.459	6.465		

Tabla C.10. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución gamma generalizada híbrida de 3 parámetros

Distribución Gamma de dos parámetros

Tabla C.11. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución gamma híbrida de 2 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
Los Valles	4.706	1.720	0.993567	500.16	560.540	12.073
Taca	3.800	1.447	0.981693	170.63	195.119	14.349
Antigua	4.391	1.454	0.980549	256.99	283.880	10.466
P. Jandía	5.231	1.395	0.959548	335.29	385.640	15.019
Amagro	3.657	2.200	0.958820	499.50	626.118	25.351
R. Prieto	3.776	1.647	0.951910	228.30	285.235	24.939
P.de Galdar	5.027	1.214	0.972482	200.75	232.198	15.666
Faro Sardina	6.465	1.422	0.934495	629.69	720.244	14.380

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Gando	4.003	1.654	0.912731	254.63	333.416	30.944
M. Diablo	3.183	2.621	0.966227	563.17	757.015	34.421
P. de Vargas	3.293	2.031	0.958944	281.24	382.227	35.907
P. Izquierdo	3.468	2.410	0.955976	544.00	726.464	33.541
Granadilla	2.592	2.789	0.965629	406.36	566.178	39.328
El Rayo	2.937	1.539	0.961637	95.19	126.099	32.477
Valverde	3.091	3.319	0.956289	1061.77	1440.00	35.586
S. Sebastián	3.091	1.872	0.930449	203.62	256.709	26.070

Tabla C.11. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución gamma híbrida de 2 parámetros (Continuación)

Distribución Weibull de dos parámetros

Tabla C.12. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Weibull híbrida de 2 parámetros

Estación	$\hat{\alpha}$	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
		-		W/m^2	W/m^2	%
Los Valles	2.367	8.970	0.999438	500.156	505.709	1.110
Taca	2.119	6.101	0.993317	170.63	173.631	1.756
Antigua	2.290	7.074	0.996149	256.99	253.859	1.216
P. Jandía	2.525	8.073	0.98604	335.29	347.356	3.601
Amagro	2.088	8.927	0.984195	499.50	552.219	10.556
R. Prieto	2.126	6.899	0.980211	228.30	251.694	10.248
P.de Galdar	2.462	6.756	0.994113	200.75	209.244	4.232
Faro Sardina	2.823	10.130	0.972589	629.69	654.464	3.934
Gando	2.203	7.345	0.95034	254.63	294.166	15.529
M. Diablo	1.963	9.248	0.981445	563.17	652.965	15.945
P. de Vargas	1.995	7.417	0.978293	281.24	331.770	17.966
P. Izquierdo	2.052	9.263	0.976852	544.00	630.428	15.888
Granadilla	1.743	7.989	0.978439	406.36	489.248	20.397
El Rayo	1.859	5.008	0.977682	95.19	110.041	15.607
Valverde	1.926	11.358	0.976272	1061.77	1242.00	16.961
S. Sebastián	1.921	6.408	0.960012	203.62	222.427	9.234

Distribución Rayleigh de un parámetro

Estación	$\hat{ heta}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
			W/m^2	W/m^2	%
Los Valles	6.342	0.973567	500.16	587.577	17.479
Taca	4.311	0.988982	170.634	184.520	8.138
Antigua	4.999	0.975577	256.99	287.667	11.940
P. Jandía	5.691	0.943309	335.29	424.448	26.594
Amagro	6.305	0.985353	499.50	577.201	15.558
R. Prieto	4.871	0.980947	228.30	266.078	16.548
P.de Galdar	4.769	0.958908	200.75	249.735	24.402
Faro Sardina	7.141	0.893782	629.69	838.768	33.202
Gando	5.173	0.950315	254.63	318.816	25.210
M. Diablo	6.544	0.980112	563.17	645.513	14.622
P. de Vargas	5.245	0.978048	281.24	332.283	18.149
P. Izquierdo	6.544	0.977757	544.00	645.286	18.619
Granadilla	5.687	0.933576	406.362	423.506	4.219
El Rayo	3.552	0.958652	95.186	103.222	8.443
Valverde	8.044	0.973191	1061.77	1199.00	12.894
S. Sebastián	4.538	0.954119	203.62	215.214	5.692

Tabla C.13. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Rayleigh híbrida de 1 parámetro.

Distribución Beta de tres parámetros

Tabla C.14. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Beta híbrida de 3 parámetros.

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\xi} R^2$		\overline{P}_m	$\overline{P}_{_M}$	ε
			m/s		W/m^2	W/m^2	%
Los Valles	3.823	18.066	46.004	0.999155	500.16	534.751	6.917
Taca	2.253	8.064	24.874	0.994532	170.63	203.237	19.107
Antigua	3.018	7.658	22.314	0.995774	256.99	261.352	1.7
P. Jandía	4.236	8.512	21.69	0.981842	335.29	329.259	1.797
Amagro	3.019	28.333	81.922	0.977440	499.50	603.665	20.856
R. Prieto	2.789	6.459	20.278	0.971861	228.30	242.522	6.23
P.de Galdar	3.103	6.085	17.768	0.990626	200.75	212.091	5.65
Faro Sardina	3.522	6.538	25.92	0.959583	629.69	699.057	11.015
Gando	2.750	9.544	29.50	0.943926	254.63	329.635	29.459
M. Diablo	1.915	2.73	19.493	0.995118	563.17	565.501	0.415
P. de Vargas	2.435	6.641	24.515	0.98790.6	281.24	329.073	17.007
P. Izquierdo	1.892	2.531	18.835	0.989293	544.00	565.681	3.986
Granadilla	1.763	3.564	21.211	0.985193	406.36	432.609	6.459

de la distribuc	ion Beta h	ibrida de 3	parametros	6 (Continuaci	on).		
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	ŝ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s		W/m^2	W/m^2	%
El Rayo	2.111	5.662	16.317	0.981210	95.19	106.724	12.122
Valverde	1.686	2.503	24.6	0.989037	1061.77	1129.00	6.354
S. Sebastián	2.054	4.773	18.801	0.967804	203.62	217.972	7.046

Tabla C.14. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Beta híbrida de 3 parámetros (Continuación).

🔶 Distribución Beta prima

Tabla C.15. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución beta prima híbrida de 2 parámetros.

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	43.673	6.230	0.947815	500.16	763.406	52.634
Taca	25.084	5.397	0.912901	170.634	301.554	76.725
Antigua	33.387	6.060	0.916951	256.99	394.897	53.666
P. Jandía	45.572	7.071	0.892056	335.29	485.775	44.885
Amagro	34.665	5.134	0.858998	499.50	1000.00	100.285
R. Prieto	28.641	5.428	0.852208	228.30	432.099	89.269
P.de Galdar	37.346	6.948	0.907607	200.748	295.700	47.299
Faro Sardina	70.702	8.503	0.860880	629.694	840.573	33.489
Gando	33.430	5.864	0.811347	254.63	463.971	82.217
M. Diablo	28.851	4.258	0.904045	563.17	1.748e3	210.396
P. de Vargas	25.217	4.581	0.883784	281.24	751.099	167.066
P. Izquierdo	32.986	4.749	0.888691	543.999	1.333e3	145.121
Granadilla	20.232	3.614	0.888546	406.36	2.254e3	454.621
El Rayo	16.388	4.457	0.877168	95.19	256.765	169.752
Valverde	35.590	4.270	0.881054	1061.77	3.177e3	199.239
S. Sebastián	21.961	4.617	0.807209	203.62	480.467	135.958

Distribución Lognormal de dos parámetros

Tabla C.16. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Lognormal híbrida de 2 parámetros.

	0					
Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
				W/m^2	W/m^2	%
Los Valles	2.004	0.456	0.973935	500.16	636.890	27.338
Taca	1.596	0.507	0.950443	170.63	233.094	36.604
Antigua	1.761	0.471	0.950205	256.99	326.742	27.145

	0		1		/	
Estación	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
P. Jandía	1.911	0.430	0.928785	335.283	427.063	27.374
Amagro	1.976	0.513	0.912905	499.50	747.170	49.586
R. Prieto	1.722	0.504	0.900464	228.30	337.158	47.683
P.de Galdar	1.729	0.439	0.942577	200.75	258.958	28.996
Faro Sardina	2.158	0.385	0.897689	629.69	773.098	22.774
Gando	1.794	0.484	0.858111	254.63	382.339	50.157
M. Diablo	1.994	0.559	0.936368	563.17	984.941	74.893
P. de Vargas	1.777	0.546	0.921223	281.24	483.368	71.870
P. Izquierdo	2.009	0.530	0.920624	544.00	897.300	64.945
Granadilla	1.817	0.621	0.927232	406.36	809.832	99.288
El Rayo	1.369	0.575	0.923544	95.19	163.430	71.696
Valverde	2.201	0.560	0.918033	1061.77	1846.00	73.879
S. Sebastián	1.627	0.557	0.868984	203.62	323.519	58.881

Tabla C.16. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución Lognormal híbrida de 2 parámetros (Continuación).

Distribución Gausiana Inversa de dos parámetros

Tabla C.17. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de l<u>a distribución Gaussiana inversa híbrida de 2 parámetros.</u>

Estación	â	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	З
				W/m^2	W/m^2	%
Los Valles	8.218	36.828	0.971872	500.16	617.970	23.556
Taca	5.6	19.967	0.947341	170.63	222.144	30.187
Antigua	6.491	27.192	0.946637	256.99	315.255	22.675
P. Jandía	7.401	37.826	0.925712	335.29	416.128	24.112
Amagro	8.204	28.755	0.906665	499.50	707.382	41.620
R. Prieto	6.340	23.070	0.894113	228.30	320.177	40.245
P.de Galdar	6.194	30.272	0.939162	200.75	251.962	25.511
Faro Sardina	9.313	60.140	0.894513	629.69	759.961	20.687
Gando	6.747	26.959	0.851983	254.63	364.646	43.209
M. Diablo	8.550	25.070	0.931077	563.17	902.555	60.264
P. de Vargas	6.838	21.040	0.914776	281.24	447.158	58.994
P. Izquierdo	8.548	28.253	0.915035	544.00	834.826	53.461
Granadilla	7.422	17.089	0.914860	406.36	716.209	76.249
El Rayo	4.621	12.645	0.917868	95.19	149.454	57.013
Valverde	10.517	30.848	0.911092	1061.77	1687.00	58.921
S. Sebastián	5.918	17.382	0.859412	203.62	298.787	46.735

Apéndice D.

D.1 Método momentos: Distribuciones de Máxima Entropía.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los momentos, descrito en el capítulo 5 de esta tesis, para estimar los parámetros de las leyes de distribución generadas aplicando el principio de Máxima Entropía. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

Distribución Máxima Entropía N=6

]	Parámetros			
Estación	$\hat{\lambda_1}$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_{_{4}}$	$\hat{\lambda}_5$	$\hat{\lambda}_6$	$\hat{\lambda_0}$
Los Valles	0.554	-0.037	4.815 10 ⁻⁵	2.429 10 ⁻⁶	6.275 10 ⁻⁸	-1.314 10 ⁻¹⁰	-4.327
Taca	0.646	-0.065	5.995 10 ⁻⁵	7.161 10 ⁻⁶	4.961 10 ⁻⁷	2.835 10-8	-3.557
Antigua	0.719	-0.063	9.78 10 ⁻⁵	9.376 10 ⁻⁶	6.163 10 ⁻⁷	3.491 10-8	-4.099
P. Jandía	0.441	-0.022	- 4.641 10 ⁻⁴	- 2.464 10 ⁻⁵	-7.352 10 ⁻⁷	- 8.19 10 ⁻⁹	-3.915
Amagro	0.209	-4.752 10 ⁻³	-5.137 10-4	- 1.765 10 ⁻⁵	- 1.685 10 ⁻⁷	1.515 10-8	-3.409
R. Prieto	0.195	0.014	-2.456 10 ⁻³	- 9.936 10 ⁻⁵	1.936 10 ⁻⁷	3.039 10-7	-3.128
P. Galdar	0.692	-0.053	-6.147 10 ⁻⁴	- 2.469 10 ⁻⁵	3.048 10-7	1.146 10 ⁻⁷	-3.999
F. Sardina	0.065	0.038	- 2.196 10 ⁻³	- 7.39 10 ⁻⁵	3.764 10 ⁻⁸	1.433 10-7	-3.887
Gando	5.229 10-3	0.025	- 7.776 10 ⁻⁴	-7.345 10 ⁻⁵	-4.666 10 ⁻⁶	-2 .541 10 ⁻⁷	-2.875
M. Diablo	0.269	-0.035	1.319 10 ⁻³	6.173 10 ⁻⁵	-4.82 10-7	- 3.033 10 ⁻⁷	-3.323
P. Vargas	0.203	-0.025	1.342 10 ⁻³	5.408 10-5	- 2.906 10 ⁻⁶	-6.569 10 ⁻⁷	-2.973
P. Izquierdo	-0.208	0.037	-8.958 10 ⁻⁴	-5.509 10 ⁻⁵	- 1.636 10 ⁻⁶	4.861 10 ⁻⁸	-2.534
Granadilla	0.283	-0.039	1.315 10-3	4.364 10 ⁻⁵	-9.929 10 ⁻⁷	-2 .161 10 ⁻⁷	-3.079
El Rayo	-0.028	0.061	-6.171 10 ⁻³	- 3.719 10 ⁻⁴	- 1.641 10 ⁻⁶	1.933 10 ⁻⁶	-2.317
Valverde	-0.028	0.012	-3.686 10 ⁻⁴	-1.54 10 ⁻⁵	-2.42 10-7	1.097 10 ⁻⁸	-3.11
S. Sebastián	0.095	0.022	-2.753 10 ⁻³	-1.126 10-4	4.022 10-7	3.847 10-7	-2.77

Tabla D.1. Parámetros obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 6 primeros momentos estadísticos.

Estación	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
Estacion		W/m^2	W/m^2	%
Los Valles	0.999472	500.16	500.139	0.0042
Taca	0.992571	170.63	170.595	0.023
Antigua	0.999019	256.99	256.902	0.032
P. Jandía	0.997549	335.29	334.858	0.127
Amagro	0.999427	499.50	499.446	0.0088
R. Prieto	0.998410	228.30	228.192	0.047
P.de Galdar	0.99816	200.75	200.481	0.133
Faro Sardina	0.995496	629.69	629.202	0.078
Gando	0.998192	254.63	254.449	0.069
M. Diablo	0.999691	563.17	563.185	3.302 10 ⁻³
P. de Vargas	0.999273	281.24	281.262	7.34 10 ⁻³
P. Izquierdo	0.998935	544.00	544.078	0.014
Granadilla	0.992468	406.36	406.17	0.047
El Rayo	0.989164	95.19	95.133	0.056
Valverde	0.999012	1061.77	1061.80	3.371 10 ⁻³
S. Sebastián	0.99482	203.62	203.434	0.094

Tabla D.2. Parámetros de ajuste obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 6 primeros momentos estadísticos.

✤ Distribución Máxima Entropía N=5

Tabla	D.3	. Parámetr	os ob	tenidos	en	el	análisis	de	la	distribución	generada	aplicando	el
Princip	pio c	le Máxima	Entro	pía restr	ingi	do	por 5 pr	imer	ros	momentos es	tadísticos.		

	Parámetros							
Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_{_4}$	$\hat{\lambda}_5$	$\hat{\lambda}_{\mathrm{o}}$		
Los Valles	0.604	-0.043	1.784 10 ⁻⁴	6.403 10 ⁻⁶	-2.777 10 ⁻⁸	-4.445		
Taca	0.651	-0.066	1.229 10 ⁻⁴	1.091 10 ⁻⁵	6.733 10 ⁻⁷	-3.561		
Antigua	0.73	-0.065	1.369 10 ⁻⁴	1.49 10 ⁻⁵	1.009 10 ⁻⁶	-4.113		
Punta Jandía	0.4	-0.018	- 3.387 10 ⁻⁴	- 2.789 10 ⁻⁵	-1.578 10 ⁻⁶	-3.82		
Amagro	0.242	-0.011	-2.235 10 ⁻⁴	-1.128 10 ⁻⁵	- 3.89 10 ⁻⁷	-3.448		
R. Prieto	0.392	-0.027	-4.026 1 ⁰⁻⁴	- 2.436 10 ⁻⁵	-9 .6 10 ⁻⁷	-3.348		
P. de Galdar	0.57	-0.029	- 2.13 10 ⁻³	- 4.79 10 ⁻⁵	5.174 10 ⁻⁶	-3.828		
Faro Sardina	0.369	-3.251 10 ⁻³	-1.086 10 ⁻³	-2.195 10 ⁻⁵	9.729 10 ⁻⁷	-4.418		
Gando	-0.075	0.04	-1.22 10 ⁻³	-1.094 10 ⁻⁴	-6.725 10 ⁻⁶	-2.779		
M. Diablo	0.093	- 7.046 10 ⁻³	6.848 10 ⁻⁴	4.603 10-6	-3.683 10 ⁻⁶	-3.093		
P. de Vargas	0.166	-0.021	$2.024 \ 10^{-3}$	1.986 10 ⁻⁵	-1.329 10 ⁻⁵	-2.928		
P. Izquierdo	-0.116	0.021	- 2.404 10 ⁻⁴	- 2.744 10 ⁻⁵	- 2.484 10 ⁻⁶	-2.657		
Granadilla	0.188	-0.024	1.127 10 ⁻³	1.016 10 ⁻⁵	-3.839 10 ⁻⁶	-2.952		
El Rayo	0.255	-0.021	-7.875 10 ⁻⁴	- 9.261 10 ⁻⁵	-7.625 10 ⁻⁶	-2.534		
Valverde	0.021	5.053 10 ⁻³	- 1.66 10 ⁻⁴	- 8.746 10 ⁻⁶	- 2.888 10 ⁻⁷	-3.185		
S. Sebastián	0.227	- 1.98 10 ⁻³	-2.159 10 ⁻³	- 4.74 10 ⁻⁵	4.122 10 ⁻⁶	-2.923		

Estación	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
		W/m^2	W/m^2	%
Los Valles	0.999650	500.16	500.153	0.0014
Taca	0.992761	170.63	170.621	8.015 10 ⁻³
Antigua	0.999055	256.99	256.958	0.01
P. Jandía	0.998309	335.29	335.265	5.424 10 ⁻³
Amagro	0.999334	499.50	499.47	4.97 10 ⁻³
R. Prieto	0.997221	228.30	228.241	0.025
P.de Galdar	0.998786	200.75	200.718	0.015
Faro Sardina	0.984685	629.69	629.417	0.044
Gando	0.998654	254.63	254.607	7.299 10 ⁻³
M. Diablo	0.998942	563.17	563.108	0.01
P. de Vargas	0.999032	281.24	281.205	0.013
P. Izquierdo	0.998863	544.00	544.083	0.015
Granadilla	0.991951	406.36	406.189	0.043
El Rayo	0.99115	95.19	95.154	0.033
Valverde	0.998889	1061.77	1061.80	0.018
S. Sebastián	0.990098	203.62	203.527	0.048

Tabla D.4. Parámetros de ajuste obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 5 primeros momentos estadísticos.

✤ Distribución Máxima Entropía N=4

Tabla D.5. Parámetros obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 4 primeros momentos estadísticos.

	Parametros							
Estación	$\hat{\lambda_1}$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_{_4}$	$\hat{\lambda}_{_0}$			
Los Valles	1.002	-0.12	5.873 10 ⁻³	-1.347 10 ⁻⁴	-5.049			
Taca	0.667	-0.069	2.537 10-4	2.166 10-5	-3.581			
Antigua	0.685	-0.062	2.298 10-4	2.147 10-5	-3.996			
Punta Jandía	0.298	- 2.744 10 ⁻³	-8.329 10 ⁻⁴	-6.332 10 ⁻⁵	-3.658			
Amagro	0.215	- 7.2 10 ⁻³	-3.131 10 ⁻⁴	- 2.09 10 ⁻⁵	-3.404			
R. Prieto	0.341	-0.019	- 5.963 10 ⁻⁴	-4.999 10 ⁻⁵	-3.272			
P. de Galdar	0.64	-0.05	-2.951 10 ⁻⁴	-2.527 10 ⁻⁵	-3.874			
Faro Sardina	0.307	-2.215 10 ⁻³	-6.58 10 ⁻⁴	-2.515 10 ⁻⁵	-4.202			
Gando	-0.165	0.061	-2.266 10 ⁻³	- 2.012 10 ⁻⁴	-2.694			
M. Diablo	-4.089 10 ⁻³	0.014	- 3.844 10 ⁻⁴	- 4.812 10 ⁻⁵	-3.006			
P. de Vargas	0.029	0.013	$3.582 \ 10^{-4}$	- 1.694 10 ⁻⁴	-2.817			
P. Izquierdo	-0.203	0.035	-5.917 10 ⁻⁴	-8.076 10 ⁻⁵	-2.534			
Granadilla	0.079	9.857 10 ⁻⁴	-3.37 10 ⁻⁴	-3.269 10 ⁻⁵	-2.856			
El Rayo	0.186	-3.725 10 ⁻³	- 1.601 10 ⁻³	- 1.984 10 ⁻⁴	-2.471			
Valverde	-6.539 10 ⁻³	8.451 10 ⁻³	-2.195 10 ⁻⁴	- 1.73 10 ⁻⁵	-3.138			
S. Sebastián	0.245	-0.012	-1.247 10 ⁻³	- 1.28 10 ⁻⁵	-2.904			

Estación	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
		W/m^2	W/m^2	%
Los Valles	0.999487	500.16	500.129	0.0062
Taca	0.992800	170.63	170.61	0.014
Antigua	0.999192	256.99	257.511	0.205
P. Jandía	0.998899	335.29	335.478	0.058
Amagro	0.999422	499.50	499.53	0.008
R. Prieto	0.998103	228.30	228.353	0.024
P.de Galdar	0.998605	200.75	200.848	0.05
Faro Sardina	0.98752	629.69	630.407	0.113
Gando	0.998782	254.63	254.624	5.16 10 ⁻⁴
M. Diablo	0.998039	563.17	562.838	0.058
P. de Vargas	0.997966	281.24	281.072	0.06
P. Izquierdo	0.998852	544.00	544.152	0.028
Granadilla	0.989239	406.36	405.869	0.122
El Rayo	0.991516	95.19	95.188	2.396 10 ⁻³
Valverde	0.999052	1061.77	1061.81	3.559 10 ⁻³
S. Sebastián	0.990952	203.62	203.81	0.091

Tabla D.6. Parámetros de ajuste obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 4 primeros momentos estadísticos.

Distribución Máxima Entropía N=3

Tabla D.7. Parámetros obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 3 primeros momentos estadísticos.

	Parámetros							
Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_{\mathrm{o}}$				
Los Valles	0.71	-0.057	7.877 10 ⁻⁴	-4.667				
Taca	0.698	-0.077	9.791 10 ⁻⁴	-3.616				
Antigua	0.786	-0.079	1.297 10 ⁻³	-4.169				
Punta Jandía	0.16	0.027	-3.25 10 ⁻³	-3.487				
Amagro	0.169	2.872 10 ⁻³	- 1.114 10 ⁻³	-3.35				
R. Prieto	0.276	- 2.109 10 ⁻³	-2.195 10 ⁻³	-3.206				
P. de Galdar	0.548	-0.031	-1.633 10 ⁻³	-3.751				
Faro Sardina	0.11	0.028	-2.291 10 ⁻³	-3.861				
Gando	-0.291	0.104	-7.437 10 ⁻³	-2.613				
M. Diablo	-0.025	0.025	-1.748 10 ⁻³	-3.021				
P. de Vargas	-0.041	0.044	-3.779 10 ⁻³	-2.8				
P. Izquierdo	-0.359	0.071	-3.523 10 ⁻³	-2.351				
Granadilla	0.111	1.592 10 ⁻³	-9.838 10 ⁻⁴	-2.934				
El Rayo	0.129	0.022	-5.628 10 ⁻³	-2.443				
Valverde	-0.066	0.02	- 9.971 10 ⁻⁴	-3.066				
S. Sebastián	0.159	4.986 10 ⁻³	- 2.285 10 ⁻³	-2.798				

Estación	R^2	\overline{P}_m	\overline{P}_{M}	ε
		W/m^2	W/m^2	%
Los Valles	0.996923	500.16	500.156	0.0008
Taca	0.992905	170.63	170.633	5.507 10 ⁻⁴
Antigua	0.999147	256.99	256.984	3.46 10 ⁻⁵
P. Jandía	0.998985	335.29	335.285	5.407 10 ⁻⁴
Amagro	0.999439	499.5	499.5	1.123 10 ⁻⁴
R. Prieto	0.998448	228.30	228.299	3.934 10 ⁻⁶
P.de Galdar	0.998667	200.75	200.749	9.491 10 ⁻⁵
Faro Sardina	0.991903	629.69	629.696	$2.136 \ 10^{-4}$
Gando	0.998581	254.63	254.626	3.116 10 ⁻⁴
M. Diablo	0.997567	563.17	563.166	5.982 10 ⁻⁵
P. de Vargas	0.996903	281.24	281.241	5.308 10 ⁻⁵
P. Izquierdo	0.998785	544.00	543.999	5.658 10 ⁻⁶
Granadilla	0.986884	406.36	406.362	6.161 10 ⁻⁶
El Rayo	0.990663	95.19	95.19	4.801 10 ⁻³
Valverde	0.999096	1061.77	1061.77	1.825 10-5
S. Sebastián	0.993662	203.62	203.624	9.819 10 ⁻⁵

Tabla D.8. Parámetros de ajuste obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 3 primeros momentos estadísticos.

Distribución Máxima Entropía N=2

Tabla D.9. Parámetros obtenidos en el análisis de la distribución generada aplicando el Principio de Máxima Entropía restringido por 2 primeros momentos estadísticos.

Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_0$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
Estacion					W/m^2	W/m^2	%
Los Valles	0.549	-0.035	-4.352	0.993074	500.16	496.11	0.81
Taca	0.6	-0.059	-3.488	0.992573	170.63	169.768	0.508
Antigua	0.614	-0.05	-3.902	0.998326	256.99	254.846	0.832
Punta Jandía	0.606	-0.044	-4.17	0.987444	335.29	341.147	1.749
Amagro	0.379	-0.026	-3.707	0.992997	499.5	506.6	1.423
R. Prieto	0.522	-0.046	-3.534	0.990888	228.30	231.105	1.229
P. de Galdar	0.717	-0.063	-3.983	0.99742	200.75	201.978	0.613
Faro Sardina	0.581	-0.034	-4.768	0.964686	629.69	641.06	1.805
Gando	0.513	-0.043	-3.619	0.955959	254.63	263.462	3.47
M. Diablo	0.281	-0.019	-3.499	0.992934	563.17	571.738	1.522
P. de Vargas	0.396	-0.034	-3.359	0.987626	281.24	286.718	1.947
P. Izquierdo	0.281	-0.02	-3.43	0.985457	544.00	558.785	2.718
Granadilla	0.272	-0.023	-3.175	0.981119	406.36	411.335	1.224
El Rayo	0.483	-0.064	-2.774	0.982382	95.19	96.891	1.791
Valverde	0.216	-0.012	-3.616	0.989269	1061.77	1085.47	2.211
S. Sebastián	0.401	-0.04	-3.097	0.980545	203.62	206.749	1.535

Apéndice E.

E.1 Método momentos.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de los momentos, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales \overline{P}_m y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas \overline{P}_M .

🔶 Distribución Gamma Generalizada de 4 parámetros

distribuc	ion gamma	i generanza	iua ue 4 p	arametro	15			
Estac.	$\hat{\alpha}$	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				m/s		W/m^2	W/m^2	%
LA12	2.479	0.027	1.843	4.694	0.965327	346.95	346.943	1.941 10 ⁻³
GC18	2.565	0.016	1.664	4.12	0.987144	328.556	328.746	0.058
TF11	2.91	0.026	1.484	4.675	0.975879	220.443	220.557	0.052

Tabla E.1. Resultados de la aplicación del método de los momentos en el análisis de la distribución gamma generalizada de 4 parámetros

Distribución Gamma Generalizada de 3 parámetros

Tabla E.2. Resultados de la aplicación del método de los momentos en el análisis de la distribución gamma generalizada de 3 parámetros

Estación	â	Â	$\hat{\eta}$	R^2	\overline{P}_m	\overline{P}_{M}	Е
					W/m^2	W/m^2	%
Los Valles	0.636	15.562	36.73	0.956502	346.95	346.978	8.08 10 ⁻³
Amagro	1.475	0.371	11.292	0.971474	328.556	328.588	9.865 10 ⁻³
Granadilla	2.1	0.124	15.606	0.955443	220.443	220.449	$2.606 \ 10^{-3}$

Distribución Gamma de tres parámetros

Tabla E.3. Resultados de la aplicación del método de los momentos en el análisis de la distribución gamma generalizada de 3 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	$\hat{\gamma}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	13.895	0.441	1.804	0.918299	346.95	346.968	5.036 10 ⁻³
Amagro	13.474	0.514	0.744	0.972335	328.556	328.659	0.031
Granadilla	32.173	0.214	0	0.956856	220.443	220.461	8.31 10 ⁻³

Distribución Gamma de dos parámetros

Tabla E.4. Resultados de la aplicación del método de los momentos en el análisis de la distribución gamma de 2 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
				W/m^2	W/m^2	%
Los Valles	23.283	0.341	0.953884	346.95	346.769	0.052
Amagro	16.545	0.464	0.972062	328.556	329.055	0.152
Granadilla	32.194	0.214	0.957732	220.443	220.655	0.096

Distribución Weibull de tres parámetros

Tabla E.5. Resultados de	la aplicación	del método	de los	momentos	en el	análisis	de	la
distribución Weibull de 3	parámetros							

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	2.232	3.92	4.464	0.966024	346.95	346.978	8.085 10 ⁻³
Amagro	2.457	4.894	3.333	0.979351	328.556	328.588	9.923 10 ⁻³
Granadilla	3.009	3.758	3.547	0.962418	220.443	220.449	2.598 10 ⁻³

Distribución Weibull de dos parámetros

Tabla E.6. Resultados de la aplicación del método de los momentos en el análisis de la distribución Weibull de 2 parámetros

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	5.577	8.59	0.884605	346.95	344.748	0.635
Amagro	4.627	8.396	0.952875	328.556	326.215	0.713
Granadilla	6.649	7.4	0.927851	220.443	219.788	0.297

Distribución Rayleigh de dos parámetros

Tabla E.7. Resultados de	la aplicación	del método	de los	momentos	en el	análisis	de	la
distribución Rayleigh de 2	parámetros							

Estación	$\hat{ heta}$	Ŷ	R^2	\overline{P}_m	\overline{P}_{M}	Е
		m/s		W/m^2	W/m^2	%
Los Valles	2.511	4.79	0.972815	346.95	347.36	0.118
Amagro	2.88	4.065	0.982260	328.556	329.629	0.327
Granadilla	1.857	4.576	0.963991	220.443	220.963	0.236

Distribución Rayleigh de un parámetro

Tabla E.8. Resultados de la aplicación del método de los momentos en el análisis de la distribución Rayleigh de 1 parámetro

Estación	$\hat{ heta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			W/m^2	W/m^2	%
Los Valles	6.332	0.692541	346.95	584.774	68.547
Amagro	6.123	0.790456	328.556	528.719	60.922
Granadilla	5.508	0.633154	220.443	384.819	74.566

Distribución Beta de cuatro parámetros

Tabla E.9. Resultados de la aplicación del método de los momentos en el análisis de la distribución Beta de 4 parámetros

Estac.	â	\hat{eta}	$\hat{\delta}$	ry,	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s	m/s		W/m^2	W/m^2	%
LA12	2.239	9.167	4.894	21.886	0.949283	346.95	346.5515	0.115
GC18	2.193	18.453	4.32	38.258	0.984787	328.556	328.392	0.05
TF11	1.78	17.626	4.875	27.766	0.96186	220.443	220.338	0.048

+ Distribución Beta de tres parámetros

Tabla E.10. Resultados de la aplicación del método de los momentos en el análisis de la distribución Beta de 3 parámetros

Estación	â	\hat{eta} $\hat{\xi}$		R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
			m/s		W/m^2	W/m^2	%
Los Valles	6.784	3.615	12.15	0.748486	346.95	346.8	0.043
Amagro	7.757	8.336	15.91	0.928883	328.556	328.461	0.029
Granadilla	8.101	3.295	9.706	0.77578	220.443	220.388	0.025

Distribución Beta prima

Tabla E.11. Resultados de la aplicación del método de los momentos en el análisis de la distribución beta prima de 2 parámetros

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
				W/m^2	W/m^2	%
Los Valles	216.001	28.216	0.960061	346.95	347.857	0.261
Amagro	151.193	20.701	0.957222	328.556	331.06	0.762
Granadilla	261.338	38.858	0.943867	220.443	221.015	0.26

Distribución Normal truncada

Tabla E.12. Resultados de la aplicación del método de los momentos en el análisis de la distribución Normal truncada de 2 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
				W/m^2	W/m^2	%
Los Valles	7.901	1.728	0.940869	346.95	345.464	0.428
Amagro	7.629	1.976	0.972517	328.556	326.757	0.547
Granadilla	6.897	1.234	0.955115	220.443	220.25	0.088

Distribución Lognormal de tres parámetros

Tabla E.13. Resultados d	de la	aplicación	del	método	de	los	momentos	en	el	análisis	de	la
distribución Lognormal d	le 3 pa	arámetros										

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	1.968	0.222	0.598	0.963083	346.95	355.513	0.019
Amagro	1.912	0.264	0.65	0.966910	328.556	336.838	0.07
Granadilla	1.824	0.191	0.59	0.954118	220.443	225.895	0.024

Distribución Lognormal de dos parámetros

Tabla E.14. Resultados de la aplicación del método de los momentos en el análisis de la distribución Lognormal de 2 parámetros

Estación	â	Â	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е	
				W/m^2	W/m^2	%	
Los Valles	2.05	0.205	0.961469	346.95	355.865	0.118	
Amagro	0.242	2.009	0.968306	328.556	338.212	0.478	
Granadilla	1.917	0.175	0.955905	220.443	226.265	0.187	
uistiibueion	Juusiana m	iversa de 5	Jarametros				
--------------	------------	-------------	------------	----------	------------------	---	-------
Estación	â	\hat{eta}	Ŷ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	3.27	12.926	4.646	0.955318	346.95	347.275	0.094
Amagro	3.55	12.568	4.086	0.918151	328.556	329.161	0.184
Granadilla	2.522	10.831	4.368	0.906381	220.443	220.602	0.072

Distribución Gausiana Inversa de tres parámetros

Tabla E.15. Resultados de la aplicación del método de los momentos en el análisis de la distribución Gausiana inversa de 3 parámetros

Distribución Gausiana Inversa de dos parámetros

Tabla E.16. Resultados de la aplicación del método de los momentos en el análisis de la distribución Gaussiana inversa de 2 parámetros

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	7.936	184.782	0.962437	346.95	347.334	0.111
Amagro	7.674	126.974	0.969831	328.556	330.066	0.46
Granadilla	6.903	222.241	0.956684	220.443	220.85	0.185

Distribución Máxima Entropía N=6 (Con restricciones)

Tabla E.17. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-6 (restricciones)

Estac.	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_4$	$\hat{\lambda}_5$	$\hat{\lambda}_6$	$\hat{\lambda}_{0}$	va	vb
								m/s	m/s
LA12	12.335	-1.758	0.251	-0.042	3.801E-3	-1.235E-4	-35.775	4.89	12.05
GC	2.064	-0.14	-5.91E-3	1.171E-3	-1.292E-4	6.679E-6	-8.634	4.32	11.71
TF	-5.36	1.553	-0.364	0.058	-4.804E-3	1.479E-4	8.423	4.88	9.71

Tabla E.18.	Resultados	de la	aplicación	del	método	de	los	momentos	en	el	análisis	de	la
distribución	derivada del	PME	-6 (restricci	one	s)								

Estación	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
		W/m^2	W/m^2	%
Los Valles	0.985677	346.95	346.956	1.784 10 ⁻³
Amagro	0.990824	328.556	328.625	0.021
Granadilla	0.976652	220.443	220.455	5.596 10 ⁻³

Distribución Máxima Entropía N=5 (Con restricciones)

distribución derivada del PME-5 (restricciones)										
Estación	$\hat{\lambda_1}$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_{_4}$	$\hat{\lambda}_5$	$\hat{\lambda_0}$	va	vb		
							m/s	m/s		
Los Valles	5.565	-0.038	-0.118	0.012	-3.912 10 ⁻⁴	-21.421	4.89	12.05		
Amagro	4.729	-0.23	-0.062	7.482 10 ⁻³	-2.336 10 ⁻⁴	-16.262	4.32	11.71		
Granadilla	-1.947	0.591	-0.12	0.014	-6.631 10 ⁻⁴	1.847	4.88	9.71		

Tabla E.19. Resultados de la aplicación del método de los momentos en el análisis de la

Tabla E.20. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-5 (restricciones)

	(/		
Estación	R^2	\overline{P}_m	P_m	Е
		W/m^2	W/m^2	%
Los Valles	0.977903	346.95	347.004	0.016
Amagro	0.991975	328.556	328.576	$6.243 \ 10^{-3}$
Granadilla	0.97871	220.443	220.442	5.385 10-4

Distribución Máxima Entropía N=4 (Con restricciones)

Tabla E.21. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-4 (restricciones)

distribución den			Jilesj				
Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_4$	$\hat{\lambda}_{0}$	va	vb
						m/s	m/s
Los Valles	3.381	-0.122	-0.023	1.386 10 ⁻³	-14.474	4.89	12.05
Amagro	3.249	-0.226	-0.012	$1.128 \ 10^{-3}$	-12.001	4.32	11.71
Granadilla	0.036	-0.498	0.103	- 5.98 10 ⁻³	1.77	4.88	9.71

Tabla E.22. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-4 (restricciones)

Estación	R^2	R^2 \overline{P}_m		Е
		W/m^2	W/m^2	%
Los Valles	0.97508	346.95	346.974	6.877 10 ⁻³
Amagro	0.990971	328.556	328.566	3.082 10 ⁻³
Granadilla	0.978766	220.443	220.442	$6.688 \ 10^{-4}$

Máxima Entropía N=3 (Con restricciones)

ribución derivad	la del PME	-3 (restriccio	ones)			
Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda_0}$	va	vb
					m/s	m/s
Los Valles	8.333	-0.925	0.032	-25.471	4.89	12.05
Amagro	5.966	-0.725	0.028	-17.359	4.32	11.71
Granadilla	-9.112	1.422	-0.073	17.846	4.88	9.71

Tabla E.23. Resultados de la aplicación del método de los momentos en el análisis de la dis

Tabla E.24. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-3 (restricciones)

Estación	R^2	\overline{P}_m	P_m	Е
		W/m^2	W/m^2	%
Los Valles	0.978978	346.95	346.95	1.613 10 ⁻⁶
Amagro	0.99106	328.556	328.556	1.039 10 ⁻⁶
Granadilla	0.978563	220.443	220.443	3.357 10 ⁻⁷

Distribución Máxima Entropía N=2 (Con restricciones)

Tabla E.25. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-2 (restricciones)

Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_{0}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е	va	vb
					W/m^2	W/m^2	%	m/s	m/s
Los Valles	1.825	-0.119	-8.516	0.961997	346.95	346.31	0.184	4.89	12.05
Amagro	0.897	-0.062	-4.981	0.988134	328.556	327.741	0.248	4.32	11.71
Granadilla	1.815	-0.142	-7.071	0.979238	220.443	220.6	0.071	4.88	9.71

✤ Distribución Máxima Entropía N=6

Tabla E.26. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-6 (restricciones)

Estación	$\hat{\lambda}_{_{1}}$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_4$	$\hat{\lambda}_5$	$\hat{\lambda}_6$	$\hat{\lambda}_0$
Los Valles	3.247	-0.219	2.737 10-4	3.078 10-5	2.247 10-6	1.359 10 ⁻⁷	-13.801
Amagro	2.094	-0.141	2.135 10 ⁻⁴	1.465 10 ⁻⁵	$2.888 \ 10^{-7}$	-3.963 10 ⁻⁸	-9.495
Granadilla	4.076	-0.28	- 2.995 10 ⁻⁴	-4.477 10 ⁻⁵	-4.284 10 ⁻⁶	-3.359 10 ⁻⁷	-15.611

u	11 v u u u u u u u u u u u u u u u u u u	LU			
	Estación	Estación R^2		$\overline{P}_{\!\scriptscriptstyle M}$	Е
			W/m^2	W/m^2	%
	Los Valles	0.936185	346.95	347.238	0.083
	Amagro	0.966281	328.556	328.959	0.123
	Granadilla	0.948631	220.443	220.514	0.032

Tabla E.27. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-6

Distribución Máxima Entropía N=5

Tabla E.28. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-5

Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_4$	$\hat{\lambda}_5$	$\hat{\lambda_0}$
Los Valles	3.718	-0.263	6.585 10 ⁻⁴	7.697 10-5	5.86 10-6	-15.183
Amagro	2.377	-0.166	$2.315 \ 10^{-4}$	2.905 10 ⁻⁵	$2.401 \ 10^{-6}$	-10.319
Granadilla	4.587	-0.332	$2.085 \ 10^{-7}$	1.75 10 ⁻⁸	1.186 10 ⁻⁹	-16.952

Tabla E.29. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-5

Estación	R^2	\overline{P}_m	$\overline{P}_{\!M}$	ε
		W/m^2	W/m^2	%
Los Valles	0.938346	346.95	347.049	0.029
Amagro	0.965591	328.556	328.669	0.034
Granadilla	0.949716	220.443	220.465	9.746 10 ⁻³

Distribución Máxima Entropía N=4

Tabla E.30. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-4

Estación	$\hat{\lambda}_1$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda}_4$	$\hat{\lambda_0}$
Los Valles	4.41	-0.34	2.125 10-3	2.491 10-4	-17.046
Amagro	2.856	-0.219	$1.088 \ 10^{-3}$	1.37 10 ⁻⁴	-11.562
Granadilla	4.579	-0.332	2.274 10 ⁻⁷	1.889 10 ⁻⁸	-16.924

Estación	R^2	\overline{P}_m	\overline{P}_{M}	Е
		W/m^2	W/m^2	%
Los Valles	0.941233	346.95	346.925	7.349 10 ⁻³
Amagro	0.96524	328.556	328.476	0.024
Granadilla	0.951163	220.443	220.467	0.011

Tabla E.31. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-4

✤ Máxima Entropía N=3

Tabla E.32 Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-3

Estación	$\hat{\lambda_1}$	$\hat{\lambda}_2$	$\hat{\lambda}_3$	$\hat{\lambda_0}$
Los Valles	4.914	-0.44	0.01	-17.939
Amagro	3.518	-0.323	7.658 10 ⁻³	-12.996
Granadilla	4.602	-0.333	1.624 10 ⁻⁷	-17.005

Tabla E.33 Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-3

Estación	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
		W/m^2	W/m^2	%
Los Valles	0.944172	346.95	346.924	7.474 10 ⁻³
Amagro	0.966219	328.556	328.544	3.442 10 ⁻³
Granadilla	0.951507	220.443	220.432	4.988 10 ⁻³

Distribución Máxima Entropía N=2

Tabla E.34. Resultados de la aplicación del método de los momentos en el análisis de la distribución derivada del PME-5

Estación	$\hat{\lambda_1}$	$\hat{\lambda}_2$	$\hat{\lambda_0}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
					W/m^2	W/m^2	%
Los Valles	2.934	-0.185	-13.058	0.92299	346.95	345.64	0.378
Amagro	2.155	-0.14	-9.822	0.960109	328.556	327.037	0.462
Granadilla	4.664	-0.338	-17.212	0.950651	220.443	220.267	0.08

Distribución Mezcla de Weibull-2 de dos componentes

Estac.	α_{1}	α_{2}	eta_{1}	eta_2	π	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
								m/s	m/s
LA12	99.54	6.491	6.581	9.392	0.369	0.906802	346.95	346.95	4.083 10-7
GC-18	13.471	6.146	6.229	9.391	0.384	0.987984	328.556	328.556	1.441 10 ⁻⁶
TF-11	20.672	10.35	8.623	6.512	0.318	0.976934	220.443	220.443	3.236 10-6

Tabla E.35. Resultados de la aplicación del método de los momentos en el análisis de la distribución mezcla de Weibull de dos componentes

E.2 Método de máxima verosimilitud.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de máxima verosimilitud, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas.

Distribución Gamma Generalizada de 4 parámetros

Tabla E.36. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución gamma generalizada de 4 parámetros

Estac.	\hat{lpha}	\hat{eta}	$\hat{\eta}$	$\hat{\gamma}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
				m/s		W/m^2	W/m^2	%
LA12	0.784	3.283	7.72	3.81	0.973527	346.95	350.04	0.891
GC18	0.699	4.237	8.737	2.864	0.974631	328.556	335.123	1.999
TF11	1.165	1.811	13.247	2.086	0.958759	220.443	221.102	0.299

Distribución Gamma Generalizada de 3 parámetros

Tabla E.37. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución gamma generalizada de 3 parámetros

	0 0						
Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
					W/m^2	W/m^2	%
Los Valles	0.95	3.683	25.016	0.951066	346.95	345.941	0.291
Amagro	0.982	2.336	16.946	0.970973	328.556	328.781	0.068
Granadilla	1.38	1.168	23.36	0.956829	220.443	220.606	0.074

Distribución Gamma de tres parámetros

Tabla E.38. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución gamma de 3 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	5.093	0.745	4.142	0.975131	346.95	350.003	0.88
Amagro	4.312	0.949	3.584	0.977986	328.556	336.062	2.285
Granadilla	11.931	0.36	2.613	0.961451	220.443	221.737	0.587

Distribución Gamma de dos parámetros

Tabla E.39. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución gamma de 2 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	23.974	0.331	0.950107	346.95	345.568	0.398
Amagro	16.726	0.459	0.970731	328.556	328.468	0.027
Granadilla	31.942	0.216	0.958764	220.443	220.81	0.166

Distribución Weibull de tres parámetros

Tabla E.40. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Weibull de 3 parámetros

Estación	\hat{lpha}	Â	Ŷ	R^2	\overline{P}_m	\overline{P}_{M}	ε
			m/s		W/m^2	W/m^2	%
Los Valles	2.078	3.661	4.697	0.969444	346.95	347.301	0.101
Amagro	4.232	8.08	0.338	0.961407	328.556	331.622	0.933
Granadilla	5.872	6.975	0.442	0.946123	220.443	221.95	0.684

Distribución Weibull de dos parámetros

Tabla E.41. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Weibull de 2 parámetros

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
		m/s		W/m^2	W/m^2	%
Los Valles	5.388	8.78	0.918857	346.95	369.131	0.823
Amagro	4.335	8.419	0.965489	328.556	331.586	0.922
Granadilla	6.074	7.419	0.954646	220.443	221.599	0.524

Distribución Rayleigh de dos parámetros

Tabla E.42. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Rayleigh de 2 parámetros

Estación	$\hat{ heta}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
		m/s		W/m^2	W/m^2	%
Los Valles	2.543	4.739	0.975046	346.95	347.126	0.051
Amagro	2.863	4.091	0.980989	328.556	329.662	0.337
Granadilla	1.875	4.547	0.965643	220.443	220.796	0.16

Distribución Rayleigh de un parámetro

Tabla E.43. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Rayleigh de 1 parámetro

Estación	$\hat{ heta}$	R^2	\overline{P}_m	P_m	Е
			W/m^2	W/m^2	%
Los Valles	5.731	0.626347	346.95	433.529	24.954
Amagro	5.588	0.731821	328.556	401.873	22.315
Granadilla	4.957	0.562224	220.443	280.426	27.21

Distribución Beta de cuatro parámetros

Tabla E.44. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Beta de 4 parámetros

Estac.	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\delta}$	Ê	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
			m/s	m/s		W/m^2	W/m^2	%
LA12	4.785	135.566	4.193	113.959	0.97457	346.95	325.253	6.254
GC18	4.09	136.586	3.632	136.586	0.978017	328.556	299.669	8.792
TF11	9.503	130.225	2.932	61.299	0.960810	220.443	207.508	5.868

Distribución Beta de tres parámetros

Tabla E.45. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Beta de 3 parámetros

Estación	â	\hat{eta}	în	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	20.584	131.74	58.743	0.946256	346.95	345.632	0.38
Amagro	14.936	125.543	72.186	0.969943	328.556	327.981	0.175
Granadilla	24.276	75.606	28.402	0.956249	220.443	220.402	0.019

Distribución Beta prima

Tabla E.46. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Beta prima de 2 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
				W/m^2	W/m^2	%
Los Valles	210.966	27.58	0.967031	346.95	349.019	0.596
Amagro	138.427	19.021	0.972605	328.556	337.794	2.812
Granadilla	243.484	36.256	0.961196	220.443	222.852	1.093

Distribución Normal truncada

Tabla E.47. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Normal truncada de 2 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	7.936	1.645	0.922991	346.95	345.64	0.378
Amagro	7.674	1.887	0.960103	328.556	327.039	0.462
Granadilla	6.903	1.217	0.950654	220.443	220.267	0.08

Distribución Lognormal de tres parámetros

Tabla E.48. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Logaritmo Normal de 3 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\delta}$	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	ε
			m/s		W/m^2	W/m^2	%
Los Valles	1.611	0.315	2.677	0.97356	346.95	337.526	2.716
Amagro	1.781	0.309	1.455	0.973406	328.556	326.206	0.715
Granadilla	-	-	-	-	220.443	-	-

Distribución Lognormal de dos parámetros

Tabla E.49. Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Logaritmo Normal de 2 parámetros

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	2.05	0.204	0.960567	346.95	346.841	0.031
Amagro	2.008	0.246	0.972559	328.556	332.218	1.115
Granadilla	1.916	0.178	0.960679	220.443	221.732	0.585

Distribución Gausiana Inversa de tres parámetros

Tabla E.50 Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Gausiana Inversa de 3 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	5.288	51.606	2.649	0.974725	346.95	350.822	1.116
Amagro	6.037	56.862	1.637	0.974734	328.556	335.964	2.255
Granadilla	6.902	214.457	1.45E-4	0.960145	220.443	221.507	0.483

Distribución Gausiana Inversa de dos parámetros

Tabla E.51 Resultados de la aplicación del método de máxima verosimilitud en el análisis de la distribución Gausiana Inversa de 2 parámetros

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
				W/m^2	W/m^2	%
Los Valles	7.936	186.901	0.961035	346.95	346.848	0.029
Amagro	7.674	123.353	0.973408	328.556	331.721	0.963
Granadilla	6.903	214.462	0.961067	220.443	221.574	0.513

Distribución Mezcla de Weibull-2 de dos componentes

Tabla E.52. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución mezcla de Weibull-2 de dos componentes

Estac.	$\alpha_{_1}$	α_{2}	$eta_{\scriptscriptstyle 1}$	eta_2	π	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
								m/s	m/s
LA12	9.348	9.995	7.29	10.177	0.633	0.98833	346.95	346.93	5.806 10 ⁻³
GC-18	12.622	5.589	6.053	9.132	0.291	0.992443	328.556	329.541	0.3
TF-11	10.651	11.166	8.258	6.268	0.482	0.983669	220.443	220.266	0.08

Distribución Mezcla de Weibull-3 de dos componentes

Tabla E.53. Resultados de la aplicación del método de la máxima verosimilitud en el análisis de la distribución mezcla de Weibull-3 de dos componentes

Estac.	α_1	α_2	eta_1	β_{2}	γ_1	γ_2	π	R^2	$\overline{P}_{_M}$	ε
									m/s	m/s
LA12	2.14	50.447	3.123	10.571	4.717	0	0.848	0.987916	346.562	0.112
GC-18	5.91	3.382	3.147	5.613	2.864	3.453	0.301	0.994505	328.631	0.023
TF-11	5.212	4.712	3.514	2.806	4.775	3.455	0.442	0.981876	219.439	0.456

E.3 Método de mínimos cuadrados.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se ha aplicado el método de mínimos cuadrados, descrito en el capítulo 4 de esta tesis, para estimar los parámetros de las diferentes leyes de distribución. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y la diferencia relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas.

Distribución Gamma Generalizada de 4 parámetros

distribuc	ion Gamr	na Generaliza	ada de 4	parametr	OS			
Estac.	\hat{lpha}	\hat{eta}	$\hat{\eta}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	Е
				m/s		W/m^2	W/m^2	%
LA12	0.67	3.092	4.397	4.747	0.983897	346.95	371.461	7.065
GC18	0.72	2.929	6.468	2.907	0.989293	328.556	370.397	12.735
TF11	3.615	$6.284 \ 10^{-3}$	1.219	4.695	0.980549	220 443	226 614	2.799

Tabla E.54 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Gamma Generalizada de 4 parámetros

✤ Distribución Gamma Generalizada de 3 parámetros

Tabla E.55 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Gamma Generalizada de 3 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	$\hat{\eta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
					W/m^2	W/m^2	%
Los Valles	0.353	78.706	57.159	0.972683	346.95	341.701	1.513
Amagro	0.511	17.391	24.949	0.987102	328.556	344.445	4.836
Granadilla	0.553	27.809	44.422	0.974846	220.443	225.752	2.408

Distribución Gamma de tres parámetros

Tabla E.56 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Gamma de 3 parámetros

Estación	$\hat{\eta}$	Â	$\hat{\gamma}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	ε
			m/s		W/m^2	W/m^2	%
Los Valles	2.773	1.107	4.894	0.983815	346.95	363.843	4.869
Amagro	3.484	1.191	3.588	0.988996	328.556	360.902	9.845
Granadilla	7.746	0.515	2.979	0.977584	220.443	234.732	6.482

Distribución Gamma de dos parámetros

Tabla E.57 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Gamma de 2 parámetros

Estación	$\hat{\eta}$	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	20.348	0.384	0.969088	346.95	336.856	2.909
Amagro	12.961	0.589	0.986483	328.556	337.997	2.873
Granadilla	25.237	0.272	0.974158	220.443	222.965	1.144

Distribución Weibull de tres parámetros

Tabla E.58 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Weibull de 3 parámetros

Estación	\hat{lpha}	\hat{eta}	$\hat{\gamma}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	1.785	3.44	4.884	0.981022	346.95	355.729	2.53
Amagro	1.646	3.871	4.31	0.991658	328.556	359.715	9.484
Granadilla	2.133	3.141	4.17	0.978926	220.443	230.718	4.661

Distribución Weibull de dos parámetros

Tabla E.59 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Weibull de 2 parámetros

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	4.917	8.378	0.938095	346.95	322.274	7.112
Amagro	4.053	8.255	0.97595	328.556	315.902	3.851
Granadilla	5.534	7.335	0.964931	220.443	214.746	2.585

Distribución Rayleigh de dos parámetros

Tabla E.60 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Rayleigh de 2 parámetros

Estación	$\hat{ heta}$	Ŷ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	2.562	4.652	0.976077	346.95	340.225	1.938
Amagro	3.13	3.732	0.989529	328.556	337.161	2.619
Granadilla	2.075	4.316	0.977306	220.443	227.188	3.06

Distribución Rayleigh de un parámetro

Tabla E.61 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Rayleigh de 1 parámetro

Estación	$\hat{ heta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			W/m^2	W/m^2	%
Los Valles	6.472	0.695779	346.95	624.264	79.929
Amagro	6.229	0.792923	328.556	556.54	69.39
Granadilla	5.618	0.636472	220.443	408.364	85.247

Distribución Beta de cuatro parámetros

Tabla E.62 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Beta de 4 parámetros

Estac.	\hat{lpha}	\hat{eta}	$\hat{\delta}$, ^w S	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s	m/s		W/m^2	W/m^2	%
LA12	4.891	88.811	3.875	81.561	0.979533	346.95	323.659	6.713
GC18	3.993	55.293	3.187	70.953	0.989813	328.556	305.686	6.961
TF11	1.521	1.999	4.586	9.971	0.982036	220.443	177.395	19.528

Distribución Beta de tres parámetros

Tabla E.63 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Beta de 3 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	ŝ	R^2	\overline{P}_m	$\overline{P}_{\!\scriptscriptstyle M}$	ε
			m/s		W/m^2	W/m^2	%
Los Valles	12.487	22.58	21.846	0.961165	346.95	265.223	23.556
Amagro	9.777	29.319	30.349	0.984847	328.556	248.398	24.397
Granadilla	14.951	23.577	17.637	0.972991	220.443	181.937	17.467

Distribución Beta prima

Tabla E.64 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Beta prima de 2 parámetros

Estación	â	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
Los Valles	151.539	20.085	0.977249	346.95	368.63	6.249
Amagro	106.601	14.767	0.987685	328.556	368.875	12.272
Granadilla	149.223	22.401	0.969403	220.443	245.109	11.189

✤ Distribución Normal truncada

Tabla E.65 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Normal truncada de 2 parámetros

Estación	\hat{lpha}	$\hat{oldsymbol{eta}}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	7.731	1.727	0.952470	346.95	325.428	6.203
Amagro	7.512	2.09	0.978762	328.556	319.967	2.614
Granadilla	6.823	1.386	0.971047	220.443	218.643	0.816

Distribución Lognormal de tres parámetros

Tabla E.66 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Logaritmo Normal de 3 parámetros

Estación	\hat{lpha}	\hat{eta}	$\hat{\delta}$	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	1.271	0.469	4.027	0.984041	346.95	378.918	9.214
Amagro	1.887	0.314	0.779	0.987843	328.556	358.195	9.021
Granadilla	1.869	0.215	0.329	0.977229	220.443	234.14	6.214

Distribución Lognormal de dos parámetros

Tabla E.67 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Logaritmo Normal de 2 parámetros

Estación	\hat{lpha}	\hat{eta}	R^2	\overline{P}_m	\overline{P}_{M}	Е
				W/m^2	W/m^2	%
Los Valles	2.037	0.222	0.974915	346.95	344.331	0.755
Amagro	2	0.281	0.987765	328.556	352.581	7.312
Granadilla	1.912	0.202	0.975567	220.443	227.905	3.385

Distribución Gausiana Inversa de tres parámetros

Tabla E.68 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la distribución Gausiana Inversa de 3 parámetros

Estación	â	\hat{eta}	Ŷ	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
			m/s		W/m^2	W/m^2	%
Los Valles	4.076	18.364	3.916	0.984188	346.95	373.009	7.511
Amagro	6.809	64.204	0.904	0.988243	328.556	357.271	8.74
Granadilla	6.357	124.033	0.606	0.977409	220.443	234.521	6.386

Distribución Gausiana Inversa de dos parámetros

Tabla E.69 Resultados de la aplicación del método de mínimos cuadrados en el análisis de la dist<u>ribución Gausiana Inversa de 2 parámetros</u>

Estación	â	\hat{eta}	R^2	\overline{P}_m	$\overline{P}_{_M}$	Е
				W/m^2	W/m^2	%
Los Valles	7.856	156.488	0.975103	346.95	343.964	0.861
Amagro	7.688	95.139	0.988077	328.556	351.182	6.886
Granadilla	6.906	167.45	0.975705	220.443	227.676	3.281

✤ Distribución Mezcla de Weibull-2 de dos componentes

Tabla E.70. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución mezcla de Weibull de dos componentes

Estac.	$lpha_{_{1}}$	α_{2}	eta_{1}	eta_2	π	R^2	\overline{P}_m	$\overline{P}_{\!M}$	Е
								m/s	m/s
LA12	8.533	17.216	7.379	10.427	0.702	0.990975	346.95	345.505	0.416
GC-18	18.351	4.538	6.14	8.823	0.201	0.995201	328.556	329.702	0.349
TF-11	21.971	9.368	8.36	6.409	0.377	0.990946	220.443	216.461	1.806

✤ Distribución Mezcla de Weibull-3 de dos componentes

Tabla E.71. Resultados de la aplicación del método de los mínimos cuadrados en el análisis de la distribución mezcla de Weibull-3 de dos componentes

Estac.	α_{1}	α_{2}	β_1	β_2	γ_1	γ_2	π	R^2	$\overline{P}_{_M}$	Е
									m/s	m/s
LA12	2.696	32.538	2.983	10.567	4.572	0	0.779	0.99272	344.292	0.766
GC-18	13.947	2.91	6.038	5.785	0	3.014	0.204	0.995966	336.38	2.382
TF-11	9.609	9.335	3.592	6.423	4.775	0	0.369	0.986091	221.152	0.322

Apéndice F.

F.1 Resultados energéticos obtenidos con la turbina E-33.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se han estimado la potencia y tiempo equivalente de funcionamiento del aerogenerador E-33 aplicando el método estático (\overline{PE}_M, Te_M) y cuasidinámico (\overline{PE}_m, Te_m) , descritos en el capítulo 7 de esta tesis. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y las diferencias: a) relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales y las densidades de potencias medias eléctricas medias anuales estimadas haciendo uso del método cuasidinamico y las potencias eléctricas medias anuales estimadas mediante las mediante el método estático.

Distribución Gamma Generalizada de 3 parámetros

Estación	\mathbf{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.998399	0.053	181.348	182.388	0.573	4813.959	4841.563
Taca	0.995912	0.561	113.693	113.913	0.194	3018.02	3023.869
Antigua	0.99837	0.242	147.681	147.408	0.185	3920.266	3913.012
P. Jandía	0.996658	0.968	181.116	179,485	0,901	4807.819	4764.499
Amagro	0.997684	0.094	194.628	191.976	1.363	5166.487	5096.086
R. Prieto	0.995391	0.244	140.579	138.131	1.741	3731.727	3666.75
P.de Galdar	0.993185	0.244	118.369	117.974	0.334	3142.163	3131.674
Faro Sardina	0.948366	1.583	236.893	222.41	6.114	6288.429	5903.984
Gando	0.980189	2.894	157.882	150.102	4.928	4191.041	3984.522
M. Diablo	0.998883	1.102	199.883	202.755	1.437	5305.978	5382.229
P. de Vargas	0.998972	0.301	157.467	157.925	0.291	4180.033	4192.189
P. Izquierdo	0.997906	0.986	203.44	199.405	1.983	5400.406	5293.293
Granadilla	0.986303	0.639	170.508	174.535	2.362	4526.206	4633.122
El Rayo	0.991969	0.807	74.521	74.603	0.11	1978.195	1980.379
Valverde	0.996051	0.635	223.916	218.509	2.415	5943.945	5800.425
S. Sebastián	0.987825	0.489	126.703	124.267	1.922	3363.376	3298.723

Tabla F.1. Gamma Generalizada y aerogenerador E-33

Distribución Gamma de dos parámetros

Estación	R^2	ε	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.977794	14.480	181.348	170.568	5.944	4.742E3	4.460E3
Taca	0.965939	21.025	113.693	107.519	5.430	2.973E3	2.812E3
Antigua	0.960699	16.980	147.681	138.033	6.533	3.862E3	3.609E3
P. Jandía	0.917148	31.082	181.116	162.220	10.433	4.736E3	4.242E3
Amagro	0.919021	37.927	194.628	166.354	14.527	5.089E3	4.350E3
R. Prieto	0.910389	31.592	140.579	124.072	11.742	3.676E3	3.244E3
P.de Galdar	0.916992	28.547	118.369	110.851	6.351	3.095E3	2.899E3
Faro Sardina	0.824742	38.303	236.893	196.113	17.214	6.195E3	5.128E3
Gando	0.848258	47.830	157.882	129.352	18.070	4.128E3	3.382E3
M. Diablo	0.947227	41.911	199.883	163.789	18.058	5.227E3	4.283E3
P. de Vargas	0.937722	40.667	157.467	125.872	20.064	4.118E3	3.291E3
P. Izquierdo	0.919030	45.717	203.440	162.963	19.896	5.320E3	4.261E3
Granadilla	0.955511	28.778	167.942	147.537	12.150	4.392E3	3.858E3
El Rayo	0.946526	41.133	74.521	70.117	5.910	1.949E3	1.833E3
Valverde	0.921435	49.373	223.916	179.975	19.624	5.855E3	4.706E3
S. Sebastián	0.904576	38.199	126.703	111.917	11.669	3.313E3	2.927E3

Tabla F.2. Gamma de dos parámetros y aerogenerador E-33

Distribución Weibull de dos parámetros

1 uolu 1.5. Weloull de dos pululleuos delogenerador E.5.	Tabla F.3.	Weibull	de dos	parámetros	aerogenera	dor	E-3	33
--	------------	---------	--------	------------	------------	-----	-----	----

Estación	R^2	ε	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.999353	0.434	181.348	180.905	0.244	4.742E3	4.731E3
Taca	0.993477	1.881	113.693	111.462	1.962	2.973E3	2.915E3
Antigua	0.996488	0.850	147.681	145.612	1.401	3.862E3	3.808E3
P. Jandía	0.975084	3.350	181.116	174.444	3.684	4.736E3	4.562E3
Amagro	0.967277	5.471	194.628	183.252	5.845	5.089E3	4.792E3
R. Prieto	0.962203	3.991	140.579	131.258	6.630	3.676E3	3.432E3
P.de Galdar	0.981171	2.314	118.369	114.566	3.213	3.095E3	2.996E3
Faro Sardina	0.916085	2.329	236.893	220.919	6.743	6.195E3	5.777E3
Gando	0.902286	7.367	157.882	140.076	11.278	4.128E3	3.663E3
M. Diablo	0.969226	7.500	199.883	184.544	7.674	5.227E3	4.826E3
P. de Vargas	0.962731	7.064	157.467	140.442	10.812	4.118E3	3.672E3
P. Izquierdo	0.955574	7.779	203.440	184.025	9.543	5.320E3	4.812E3
Granadilla	0.964046	5.886	167.942	159.132	5.245	4.392E3	4.161E3
El Rayo	0.966822	8.238	74.521	71.027	4.688	1.949E3	1.857E3
Valverde	0.955989	10.146	223.916	203.035	9.325	5.855E3	5.309E3
S. Sebastián	0.944866	7.018	126.703	117.570	7.208	3.313E3	3.074E3

Estación	\mathbb{R}^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.954423	6.592	181.348	167.828	7.455	4.742E3	4.389E3
Taca	0.969076	1.135	113.693	105.961	6.800	2.973E3	2.771E3
Antigua	0.953439	2.917	147.681	137.313	7.020	3.862E3	3.591E3
P. Jandía	0.859960	0.506	181.116	154.474	14.710	4.736E3	4.039E3
Amagro	0.955714	1.307	194.628	181.647	6.670	5.089E3	4.750E3
R. Prieto	0.957781	4.913	140.579	130.285	7.323	3.676E3	3.407E3
P.de Galdar	0.90648	4.362	118.369	107.996	8.763	3.095E3	2.824E3
Faro Sardina	0.828597	11.750	236.893	200.453	15.383	6.195E3	5.242E3
Gando	0.900218	7.644	157.882	139.620	11.567	4.128E3	3.651E3
M. Diablo	0.960505	1.413	199.883	185.946	6.972	5.227E3	4.862E3
P. de Vargas	0.955745	2.449	157.467	140.646	10.682	4.118E3	3.678E3
P. Izquierdo	0.958809	5.867	203.440	187.508	7.831	5.320E3	4.903E3
Granadilla	0.927361	2.079	167.942	165.877	1.230	4.392E3	4.338E3
El Rayo	0.928687	6.164	74.521	66.624	10.597	1.949E3	1.742E3
Valverde	0.959779	2.242	223.916	217.631	2.807	5.855E3	5.691E3
S. Sebastián	0.921382	4.271	126.703	115.873	8.547	3.313E3	3.030E3

Distribución Rayleigh de un parámetro

Tabla F.4. Rayleigh de un parámetro y aerogenerador E-33

Distribución Beta de tres parámetros

Estación	\mathbb{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.997724	1.068	181.348	180.261	0.599	4.742E3	4.714E3
Taca	0.99203	3.945	113.693	111.896	1.580	2.973E3	2.926E3
Antigua	0.990162	2.814	147.681	144.935	1.859	3.862E3	3.790E3
P. Jandía	0.966202	6.547	181.116	171.351	5.392	4.736E3	4.481E3
Amagro	0.966297	6.124	194.628	181.454	6.769	5.089E3	4.745E3
R. Prieto	0.960379	5.101	140.579	131.354	6.562	3.676E3	3.435E3
P.de Galdar	0.964329	5.947	118.369	115.348	2.552	3.095E3	3.016E3
Faro Sardina	0.887413	7.347	236.893	213.216	9.995	6.195E3	5.575E3
Gando	0.84996	45.309	157.882	129.760	17.812	4.128E3	3.393E3
M. Diablo	0.948296	39.534	199.883	164.470	17.717	5.227E3	3.393E3
P. de Vargas	0.938905	38.310	157.467	126.425	19.713	4.118E3	3.306E3
P. Izquierdo	0.920315	43.322	203.440	163.582	19.592	5.320E3	4.278E3
Granadilla	0.956527	26.585	167.942	148.128	11.798	4.392E3	3.873E3
El Rayo	0.947609	38.800	74.521	70.240	5.745	1.949E3	1.837E3
Valverde	0.922793	46.716	223.916	180.717	19.293	5.855E3	4.726E3
S. Sebastián	0.953989	7.022	126.703	118.982	6.094	3.313E3	3.111E3

Tabla F.5. Beta de tres parámetros y aerogenerador E-33

✤ Distribución Beta prima

Estación	R^2	ε	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.866446	3.639e3	181.348	140.903	22.302	4.742E3	3.685E3
Taca	0.837224	1.220e3	113.693	92.317	18.801	2.973E3	2.414E3
Antigua	0.836875	3.122e3	147.681	115.564	21.747	3.862E3	3.022E3
P. Jandía	0.768693	1.655e3	181.116	123.164	31.997	4.736E3	3.221E3
Amagro	0.765213	168.478	194.628	114.242	41.302	5.089E3	2.987E3
R. Prieto	0.776756	1.509e3	140.579	97.988	30.297	3.676E3	2.562E3
P.de Galdar	0.764552	1.366e3	118.369	90.616	23.446	3.095E3	2.370E3
Faro Sardina	0.663558	935.296	236.893	134.685	43.145	6.195E3	3.522E3
Gando	0.716423	465.819	157.882	93.886	40.534	4.128E3	2.455E3
M. Diablo	0.845470	137.296	199.883	110.328	44.804	5.227E3	2.885E3
P. de Vargas	0.838193	452.948	157.467	87.136	44.664	4.118E3	2.279E3
P. Izquierdo	0.801978	136.020	203.440	110.763	45.555	5.320E3	2.896E3
Granadilla	0.884567	3.565e4	167.942	109.838	34.597	4.392E3	2.872E3
El Rayo	0.833287	601.406	74.521	55.744	25.196	1.949E3	1.458E3
Valverde	0.794658	14.618	223.916	118.934	46.884	5.855E3	3.110E3
S. Sebastián	0.778013	543.225	126.703	86.067	32.072	3.313E3	2.251E3

Tabla F.6. Beta prima y aerogenerador E-33

Distribución Normal truncada

Estación	\mathbb{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.993080	0.787	181.348	185.168	2.106	4.742E3	4.842E3
Taca	0.992571	0.505	113.693	113.931	0.210	2.973E3	2.979E3
Antigua	0.998333	0.825	147.681	149.242	1.057	3.862E3	3.903E3
P. Jandía	0.987392	1.765	181.116	175.451	3.128	4.736E3	4.588E3
Amagro	0.992939	1.445	194.628	191.256	1.732	5.089E3	5.001E3
R. Prieto	0.990847	1.244	140.579	136.602	2.829	3.676E3	3.572E3
P.de Galdar	0.997418	0.617	118.369	117.160	1.022	3.095E3	3.064E3
Faro Sardina	0.964661	1.813	236.893	229.167	3.261	6.195E3	5.993E3
Gando	0.955534	3.526	157.882	147.319	6.690	4.128E3	3.852E3
M. Diablo	0.98549	2.829	199.883	193.489	3.199	5.227E3	5.060E3
P. de Vargas	0.982828	2.700	157.467	148.338	5.797	4.118E3	3.879E3
P. Izquierdo	0.98362	3.089	203.440	195.392	3.956	5.320E3	5.109E3
Granadilla	0.979008	1.611	167.942	165.619	1.383	4.392E3	4.331E3
El Rayo	0.98194	1.890	74.521	72.175	3.148	1.949E3	1.887E3
Valverde	0.986254	3.032	223.916	215.781	3.633	5.855E3	5.643E3
S. Sebastián	0.980474	1.560	126.703	122.012	3.702	3.313E3	3.191E3

Estación	R^2	ε	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.929964	80.647	181.348	157.618	13.085	4.742E3	4.122E3
Taca	0.900128	151.067	113.693	102.514	9.833	2.973E3	2.681E3
Antigua	0.90026	103.674	147.681	128.748	12.821	3.862E3	3.367E3
P. Jandía	0.831618	202.756	181.116	145.612	19.603	4.736E3	3.808E3
Amagro	0.846768	378.501	194.628	140.623	27.748	5.089E3	3.677E3
R. Prieto	0.845323	221.355	140.579	112.633	19.879	3.676E3	2.945E3
P.de Galdar	0.835687	208.907	118.369	103.900	12.224	3.095E3	2.717E3
Faro Sardina	0.752111	273.638	236.893	166.525	29.705	6.195E3	4.354E3
Gando	0.784732	398.694	157.882	112.258	28.897	4.128E3	2.935E3
M. Diablo	0.90093	395.155	199.883	135.984	31.968	5.227E3	3.556E3
P. de Vargas	0.890935	369.520	157.467	105.455	33.030	4.118E3	2.758E3
P. Izquierdo	0.866225	413.563	203.440	135.836	33.230	5.320E3	3.552E3
Granadilla	0.926473	233.943	167.942	128.507	23.481	4.392E3	3.360E3
El Rayo	0.882414	510.640	74.521	64.642	13.257	1.949E3	1.690E3
Valverde	0.864731	584.565	223.916	148.266	33.785	5.855E3	3.877E3
S. Sebastián	0.837463	374.565	126.703	100.575	20.621	3.313E3	2.630E3

Distribución Lognormal de dos parámetros

Tabla F.8. Lognormal de dos parámetros y aerogenerador E-33

Distribución Gausiana Inversa de dos parámetros

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.849265	79.143	181.348	145.158	19.956	4.742E3	3.796E3
Taca	0.753398	163.744	113.693	90.215	20.650	2.973E3	2.359E3
Antigua	0.795476	107.044	147.681	116.419	21.169	3.862E3	3.044E3
P. Jandía	0.661913	256.486	181.116	117.574	35.084	4.736E3	3.074E3
Amagro	0.656145	414.813	194.628	107.947	44.536	5.089E3	2.823E3
R. Prieto	0.738646	166.424	140.579	100.898	28.227	3.676E3	2.638E3
P.de Galdar	0.654168	265.682	118.369	84.657	28.481	3.095E3	2.214E3
Faro Sardina	0.609764	246.609	236.893	139.964	40.917	6.195E3	3.660E3
Gando	0.663287	267.668	157.882	96.849	38.657	4.128E3	2.533E3
M. Diablo	0.773126	373.306	199.883	107.817	46.060	5.227E3	2.819E3
P. de Vargas	0.764050	342.722	157.467	84.404	46.399	4.118E3	2.207E3
P. Izquierdo	0.761071	284.807	203.440	116.115	42.924	5.320E3	3.036E3
Granadilla	0.847657	194.817	167.942	112.352	33.101	4.392E3	2.938E3
El Rayo	0.674840	560.200	74.521	49.167	34.023	1.949E3	1.286E3
Valverde	0.734168	420.592	223.916	121.380	45.792	5.855E3	3.174E3
S. Sebastián	0.696212	298.110	126.703	84.575	33.249	3.313E3	2.212E3

Tabla F.9. Gausiana Inversa de dos parámetros y aerogenerador E-33

Tubla 1.10. Maxima entropia de seis momentos y aerogenerador E 55									
Estación	\mathbb{R}^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M		
		%	kW	kW	%	Horas	Horas		
Los Valles	0.998149	0.059	181.348	182.811	0.807	4742.108	4780.372		
Taca	0.992571	0.023	113.693	113.161	0.468	2972.975	2959.068		
Antigua	0.999018	0.031	147.681	147.468	0.144	3861.754	3856.177		
P. Jandía	0.998945	0.069	181.116	180.638	0.264	4736.060	4723.539		
Amagro	0.999427	8.904E-3	194.628	194.913	0.147	5089.375	5096.838		
R. Prieto	0.998488	0.034	140.579	140.166	0.294	3676.029	3665.233		
P.de Galdar	0.998509	8.01E-3	118.369	118.316	0.045	3095.265	3093.877		
Faro Sardina	0.997113	0.016	236.893	235.688	0.509	6194.572	6163.057		
Gando	0.998199	0.067	157.882	156.998	0.559	4128.488	4105.391		
M. Diablo	0.999563	0.018	199.883	200.577	0.347	5226.785	5244.940		
P. de Vargas	0.999374	4.25E-3	157.467	157.346	0.077	4117.645	4114.476		
P. Izquierdo	0.998962	7.567E-3	203.440	202.955	0.238	5319.803	5307.134		
Granadilla	0.992473	0.049	167.942	167.889	0.031	4391.546	4390.163		
El Rayo	0.989137	0.053	74.521	73.878	0.864	1948.670	1931.842		
Valverde	0.998987	4.327E-4	223.916	221.820	0.936	5855.229	5800.418		
S. Sebastián	0.996733	9.067E-4	126.703	125.943	0.599	3313.176	3293.320		

Tabla F.10. Máxima entropía de seis momentos y aerogenerador E-33

✤ Distribución Máxima Entropía N=5

Tabla F.11. Máxima entro	pía de cinc	o momentos y	aerogenerador E-33
--------------------------	-------------	--------------	--------------------

Estación	\mathbf{R}^2	ε	\overline{PE}_{m}	\overline{PE}_M	${\cal E}_e$	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996170	0.018	181.348	183.739	1.318	4742.108	4804.627
Taca	0.992761	8.143E-3	113.693	113.138	0.488	2972.975	2958.479
Antigua	0.999051	0.012	147.681	147.343	0.229	3861.754	3852.919
P. Jandía	0.998321	1.481E-3	181.116	179.489	0.899	4736.060	4693.497
Amagro	0.999333	3.491E-3	194.628	194.377	0.129	5089.375	5082.807
R. Prieto	0.997115	0.030	140.579	138.981	1.136	3676.029	3634.258
P.de Galdar	0.998487	0.018	118.369	117.573	0.673	3095.265	3074.446
Faro Sardina	0.990947	0.029	236.893	234.333	1.080	6194.572	6127.643
Gando	0.998677	2.158E-4	157.882	157.490	0.248	4128.488	4118.245
M. Diablo	0.998509	0.013	199.883	202.266	1.193	5226.785	5289.117
P. de Vargas	0.998953	0.013	157.467	157.928	0.292	4117.645	4129.688
P. Izquierdo	0.998863	0.015	203.440	202.488	0.468	5319.803	5294.911
Granadilla	0.992256	0.041	167.942	168.762	0.488	4391.546	4412.990
El Rayo	0.991159	0.033	74.521	73.907	0.824	1948.670	1932.607
Valverde	0.998675	4.261E-3	223.916	221.469	1.093	5855.229	5791.250
S. Sebastián	0.986623	0.047	126.703	123.593	2.454	3313.176	3231.864

Estación	R^2	ε	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996173	0.105	181.348	183.356	1.107	4742.108	4794.617
Taca	0.992799	0.014	113.693	113.069	0.549	2972.975	2956.664
Antigua	0.999192	0.205	147.681	147.291	0.264	3861.754	3851.554
P. Jandía	0.998895	0.058	181.116	180.195	0.509	4736.06	4711.958
Amagro	0.999406	0.013	194.628	194.38	0.127	5089.375	5082.895
R. Prieto	0.998103	0.024	140.579	139.455	0.799	3676.029	3646.652
P.de Galdar	0.998743	0.045	118.369	117.995	0.316	3095.265	3085.492
Faro Sardina	0.987605	0.113	236.893	232.806	1.725	6194.572	6087.699
Gando	0.998783	3.09E-4	157.882	157.746	0.086	4128.488	4124.951
M. Diablo	0.998040	0.060	199.883	202.578	1.348	5226.785	5297.266
P. de Vargas	0.997712	0.065	157.467	158.037	0.362	4117.645	4132.555
P. Izquierdo	0.998857	0.027	203.44	203.098	0.168	5319.803	5310.853
Granadilla	0.989433	0.119	167.942	169.816	1.116	4391.546	4440.559
El Rayo	0.991516	2.412E-3	74.521	74.063	0.614	1948.670	1936.696
Valverde	0.998841	0.014	223.916	221.639	1.017	5855.229	5795.695
S. Sebastián	0.990587	0.095	126.703	124.446	1.781	3313.176	3254.178

Tabla F.12. Máxima entropía de cuatro momentos y aerogenerador E-33

✤ Distribución Máxima Entropía N=3

Tauta F.15. Waxima enuopia de des momentos y aerogenerador E-55

Estación	\mathbb{R}^2	ε	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996923	1.558E-4	181.348	183.143	0.990	4742.108	4789.057
Taca	0.992902	4.237E-4	113.693	112.934	0.667	2972.975	2953.132
Antigua	0.999150	1.837E-4	147.681	147.182	0.338	3861.754	3848.688
P. Jandía	0.998978	9.048E-5	181.116	181.079	0.021	4736.060	4735.085
Amagro	0.999438	6.784E-5	194.628	194.699	0.036	5089.375	5091.221
R. Prieto	0.998448	2.208E-6	140.579	139.732	0.603	3676.029	3653.878
P.de Galdar	0.998667	1.094E-4	118.369	118.499	0.110	3095.265	3098.664
Faro Sardina	0.991903	2.135E-4	236.893	233.962	1.237	6194.572	6117.933
Gando	0.998581	3.054E-4	157.882	157.629	0.160	4128.488	4121.891
M. Diablo	0.997567	7.219E-5	199.883	202.406	1.262	5226.785	5292.764
P. de Vargas	0.996902	8.265E-5	157.467	157.268	0.126	4117.645	4112.452
P. Izquierdo	0.998786	3.611E-5	203.440	203.925	0.239	5319.803	5332.493
Granadilla	0.986884	7.032E-6	167.942	169.138	0.712	4391.546	4422.825
El Rayo	0.990777	1.999E-5	74.521	73.966	0.744	1948.670	1934.167
Valverde	0.999096	1.555E-5	223.916	222.011	0.850	5855.229	5805.433
S. Sebastián	0.993662	1.075E-4	126.703	125.383	1.041	3313.176	3278.681

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.993074	0.808	181.348	185.199	2.124	4742.108	4842.820
Taca	0.992573	0.508	113.693	113.935	0.213	2972.975	2979.308
Antigua	0.998326	0.832	147.681	149.253	1.064	3861.754	3902.853
P. Jandía	0.987444	1.749	181.116	175.474	3.115	4736.06	4588.521
Amagro	0.992997	1.423	194.628	191.267	1.727	5089.375	5001.495
R. Prieto	0.990888	1.229	140.579	136.623	2.814	3676.029	3572.601
P.de Galdar	0.997420	0.613	118.369	117.169	1.014	3095.265	3063.870
Faro Sardina	0.964686	1.805	236.893	229.169	3.260	6194.572	5992.609
Gando	0.955959	3.470	157.882	147.422	6.625	4128.488	3854.971
M. Diablo	0.992934	1.522	199.883	197.684	1.100	5226.785	5169.293
P. de Vargas	0.987626	1.947	157.467	151.059	4.069	4117.645	3950.092
P. Izquierdo	0.985457	2.718	203.440	196.006	3.654	5319.803	5125.420
Granadilla	0.981119	1.224	167.942	166.282	0.988	4391.546	4348.154
El Rayo	0.982382	1.791	74.521	72.362	2.897	1948.670	1892.214
Valverde	0.989269	2.232	223.916	215.079	3.946	5855.229	5624.165
S. Sebastián	0.980545	1.535	126.703	122.046	3.675	3313.176	3191.423

Tabla F.14. Máxima entropía de dos momentos y aerogenerador E-33

Distribución Mezcla de Weibull-2 de dos componentes

|--|

1 4014 1 .13. 191	Tubla 1.15. Wezela de Welburi 2 de dos componentes y delogenerador 1.55								
Estación	R^2	Е	$P\overline{E}_{m}$	$P\overline{E}_M$	\mathcal{E}_{e}	Te_m	Te_M		
		%	kW	kW	%	Horas	Horas		
Los Valles	0.999274	0.234	181.348	181.748	0.221	4813.959	4824.586		
Taca	0.992309	0.598	113.693	113.417	0.243	3018.02	3010.695		
Antigua	0.999334	0.499	147.681	148.013	0.225	3920.266	3929.085		
P. Jandía	0.993941	1.718	181.116	183.737	1.447	4807.819	4877.386		
Amagro	0.998847	0.605	194.628	195.809	0.607	5166.487	5197.85		
R. Prieto	0.998984	0.016	140.579	140.51	0.049	3731.727	3729.9		
P.de Galdar	0.998396	0.743	118.369	118.607	0.201	3142.163	3148.465		
Faro Sardina	0.99783	1.482	236.893	236.246	0.273	6288.429	6271.256		
Gando	0.991933	0.049	157.882	156.118	1.117	4191.041	4144.233		
M. Diablo	0.999243	1.035	199.883	201.147	0.632	5305.978	5339.533		
P. de Vargas	0.999435	0.649	157.467	156.400	0.68	4180.033	4208.451		
P. Izquierdo	0.99905	0.044	203.44	204.53	0.536	5400.406	5429.348		
Granadilla	0.999558	0.168	170.508	170.514	3.814E-3	4526.206	4526.379		
El Rayo	0.997366	2.269	74.521	75.333	1.089	1978.195	1999.743		
Valverde	0.999068	0.147	223.916	223.549	0.164	5943.945	5934.215		
S. Sebastián	0.998311	1.683	126.703	127.013	0.245	3363.376	3371.626		

F.2 Resultados energéticos obtenidos con la turbina E-48.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se han estimado la potencia y tiempo equivalente de funcionamiento del aerogenerador E-48 aplicando el método estático (\overline{PE}_M, Te_M) y cuasidinámico (\overline{PE}_m, Te_m) , descritos en el capítulo 7 de esta tesis, Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y las diferencias: a) relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas; b) relativa ε_e entre las potencias eléctricas medias anuales estimadas mediante las mediante el método cuasidinamico y las potencias eléctricas medias anuales estimadas mediante el método estático,

Estación	R ²	Е	PE_m	PE_M	${\cal E}_e$	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.998399	0.053	413.346	415.911	0.621	4526.134	4554.228
Taca	0.995912	0.561	251.653	252.37	0.285	2755.6	2763.453
Antigua	0.99837	0.242	331.331	331.276	0.017	3627.47	3628.08
P. Jandía	0.996658	0.968	411.763	408.572	0.775	4508.8	4473.868
Amagro	0.997684	0.094	450.118	443.995	1.36	4928.788	4861.741
R. Prieto	0.995391	0.244	314.897	310.083	1.529	3448.126	3395.41
P.de Galdar	0.993185	0.244	260.237	260.117	0.046	2849.596	2848.28
Faro Sardina	0.948366	1.583	552.076	517.364	6.287	6045.232	5665.141
Gando	0.980189	2.894	355.844	338.75	4.804	3896.492	3709.312
M. Diablo	0.998883	1.102	465.933	472.594	1.43	5101.966	5174.902
P. de Vargas	0.998972	0.301	358.2	359.014	0.227	3922.294	3931.198
P. Izquierdo	0.997906	0.986	473.133	463.795	1.974	5180.802	5078.555
Granadilla	0.986303	0.639	394.373	401.706	1.859	4318.388	4398.682
El Rayo	0.991969	0.807	160.667	161.892	0.763	1759.307	1772.723
Valverde	0.996051	0.635	527.862	514.215	2.585	5780.093	5630.655
S. Sebastián	0.987825	0.489	282.179	278.475	1.313	3089.858	3049.299

Distribución Gamma Generalizada de 3 parámetros

Tabla F.16. Gamma Generalizada de 3 parámetros y aerogenerador E-48

			J				
Estación	R^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.977794	14.480	413.346	388.339	6.050	4.470E3	4.200E3
Taca	0.965939	21.025	251.653	240.461	4.447	2.722E3	2.601E3
Antigua	0.960699	16.980	331.276	311.224	6.053	3.583E3	3.366E3
P. Jandía	0.917148	31.082	411.763	369.514	10.260	4.453E3	3.996E3
Amagro	0.919021	37.927	450.118	382.678	14.983	4.868E3	4.139E3
R. Prieto	0.910389	31.592	314.897	280.443	10.941	3.406E3	3.033E3
P.de Galdar	0.916992	28.547	260.237	247.838	4.764	2.814E3	2.680E3
Faro Sardina	0.824742	38.303	552.076	453.459	17.863	5.971E3	4.904E3
Gando	0.848258	47.830	355.844	293.892	17.410	3.848E3	3.178E3
M. Diablo	0.947227	41.911	465.933	377.074	19.071	5.039E3	4.078E3
P. de Vargas	0.937722	40.667	358.200	285.332	20.343	3.874E3	3.086E3
P. Izquierdo	0.919030	45.717	473.133	375.294	20.679	5.117E3	4.059E3
Granadilla	0.955511	28.778	388.546	337.680	13.091	4.202E3	3.652E3
El Rayo	0.946526	41.133	160.667	155.748	3.062	1.738E3	1.684E3
Valverde	0.921435	49.373	527.862	418.661	20.687	5.709E3	4.528E3
S. Sebastián	0.904576	38.199	282.179	253.031	10.330	3.052E3	2.736E3

Distribución Gamma de dos parámetros

Tabla F.17. Gamma de 2 parámetros y aerogenerador E-48

Distribución Weibull de dos parámetros

Estación	\mathbb{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.999353	0.434	413.346	412.125	0.295	4.470E3	4.457E3
Taca	0.993477	1.881	251.653	247.205	1.768	2.722E3	2.673E3
Antigua	0.996488	0.850	331.276	327.133	1.251	3.583E3	3.538E3
P. Jandía	0.975084	3.350	411.763	395.780	3.881	4.453E3	4.280E3
Amagro	0.967277	5.471	450.118	421.556	6.345	4.868E3	4.559E3
R. Prieto	0.962203	3.991	314.897	294.654	6.429	3.406E3	3.187E3
P.de Galdar	0.981171	2.314	260.237	253.104	2.741	2.814E3	2.737E3
Faro Sardina	0.916085	2.329	552.076	511.674	7.318	5.971E3	5.534E3
Gando	0.902286	7.367	355.844	315.992	11.199	3.848E3	3.417E3
M. Diablo	0.969226	7.500	465.933	425.505	8.677	5.039E3	4.602E3
P. de Vargas	0.962731	7.064	358.200	317.487	11.366	3.874E3	3.434E3
P. Izquierdo	0.955574	7.779	473.133	424.143	10.354	5.117E3	4.587E3
Granadilla	0.964046	5.886	388.546	364.162	6.276	4.202E3	3.938E3
El Rayo	0.966822	8.238	160.667	155.994	2.909	1.738E3	1.687E3
Valverde	0.955989	10.146	527.862	473.802	10.241	5.709E3	5.124E3
S Sebastián	0.96553	7.925	167.330	151.947	9.193	1.810E3	1.643E3

Tabla F.18. Weibull de 2 parámetros y aerogenerador E-48

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.954423	6.592	413.346	383.434	7.236	4.470E3	4.147E3
Taca	0.969076	1.135	251.653	235.287	6.503	2.722E3	2.545E3
Antigua	0.953439	2.917	331.276	309.501	6.573	3.583E3	3.347E3
P. Jandía	0.859960	0.506	411.763	350.885	14.785	4.453E3	3.795E3
Amagro	0.955714	1.307	450.118	417.437	7.260	4.868E3	4.515E3
R. Prieto	0.957781	4.913	314.897	292.701	7.049	3.406E3	3.166E3
P.de Galdar	0.906480	4.362	260.237	240.035	7.763	2.814E3	2.596E3
Faro Sardina	0.828597	11.750	552.076	464.335	15.893	5.971E3	5.022E3
Gando	0.900218	7.644	355.844	315.030	11.470	3.848E3	3.407E3
M. Diablo	0.960505	1.413	465.933	428.294	8.078	5.039E3	4.632E3
P. de Vargas	0.955745	2.449	358.200	317.462	11.373	3.874E3	3.433E3
P. Izquierdo	0.958809	5.867	473.133	432.105	8.671	5.117E3	4.673E3
Granadilla	0.927361	2.079	388.546	378.659	2.545	4.202E3	4.095E3
El Rayo	0.928687	6.164	160.667	145.169	9.646	1.738E3	1.570E3
Valverde	0.959779	2.242	527.862	508.349	3.697	5.709E3	5.498E3
S. Sebastián	0.921382	4.271	282.179	258.543	8.376	3.052E3	2.796E3

Distribución Rayleigh de un parámetro

Tabla F.19. Rayleigh de 1 parámetro y aerogenerador E-48

Distribución Beta de tres parámetros

Estación	R^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.997724	1.068	413.346	411.338	0.486	4.470E3	4.449E3
Taca	0.992030	3.945	251.653	248.998	1.055	2.722E3	2.693E3
Antigua	0.990162	2.814	331.276	326.298	1.503	3.583E3	3.529E3
P. Jandía	0.966202	6.547	411.763	390.279	5.218	4.453E3	4.221E3
Amagro	0.966297	6.124	450.118	418.338	7.060	4.868E3	4.524E3
R. Prieto	0.960379	5.101	314.897	296.096	5.971	3.406E3	3.202E3
P.de Galdar	0.964329	5.947	260.237	256.053	1.608	2.814E3	2.769E3
Faro Sardina	0.887413	7.347	552.076	494.364	10.454	5.971E3	5.346E3
Gando	0.849960	45.309	355.844	294.781	17.160	3.848E3	3.188E3
M. Diablo	0.948296	39.534	465.933	378.669	18.729	5.039E3	4.095E3
P. de Vargas	0.938905	38.310	358.200	286.765	19.943	3.874E3	3.101E3
P. Izquierdo	0.920315	43.322	473.133	376.739	20.374	5.117E3	4.074E3
Granadilla	0.956527	26.585	388.546	339.099	12.726	4.202E3	3.667E3
El Rayo	0.947609	38.800	160.667	155.979	2.918	1.738E3	1.687E3
Valverde	0.922793	46.716	527.862	419.164	20.592	5.709E3	4.533E3
S. Sebastián	0.953989	7.022	282.179	268.094	4.991	3.052E3	2.899E3

Tabla F.20. Beta de tres parámetros y aerogenerador E-48

Distribución Beta prima

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.866446	3.639e3	413.346	321.498	22.221	4.470E3	3.477E3
Taca	0.837224	1.220e3	251.653	209.605	16.709	2.722E3	2.267E3
Antigua	0.836875	3.122e3	331.276	262.768	20.680	3.583E3	2.842E3
P. Jandía	0.768693	1.655e3	411.763	282.136	31.481	4.453E3	3.051E3
Amagro	0.765213	168.478	450.118	262.668	41.645	4.868E3	2.841E3
R. Prieto	0.776756	1.509e3	314.897	223.472	29.033	3.406E3	2.417E3
P.de Galdar	0.764552	1.366e3	260.237	205.685	20.962	2.814E3	2.224E3
Faro Sardina	0.663558	935.296	552.076	310.197	43.813	5.971E3	3.355E3
Gando	0.716423	465.819	355.844	214.605	39.691	3.848E3	2.321E3
M. Diablo	0.845470	137.296	465.933	253.120	45.675	5.039E3	2.737E3
P. de Vargas	0.838193	452.948	358.200	198.105	44.694	3.874E3	2.142E3
P. Izquierdo	0.801978	136.020	473.133	254.271	46.258	5.117E3	2.750E3
Granadilla	0.884567	3.565e4	388.546	251.524	35.265	4.202E3	2.720E3
El Rayo	0.829282	356.792	457.151	339.346	25.769	1.953E3	1.450E3
Valverde	0.792592	23.347	1.307e3	683.980	47.667	5.585E3	2.923E3
S. Sebastián	0.778013	543.225	282.179	196.671	30.303	3.052E3	2.127E3

Tabla F.21. Beta prima y aerogenerador E-48

Distribución Normal truncada

Tabla F.22. Normal truncada y aerogenerador E-48
--

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.993080	0.787	413.346	422.068	2.110	4.470E3	4.565E3
Taca	0.992571	0.505	251.653	251.936	0.113	2.722E3	2.725E3
Antigua	0.998333	0.825	331.276	334.963	1.113	3.583E3	3.623E3
P. Jandía	0.987392	1.765	411.763	398.251	3.281	4.453E3	4.307E3
Amagro	0.992939	1.445	450.118	440.802	2.070	4.868E3	4.767E3
R. Prieto	0.990847	1.244	314.897	306.043	2.812	3.406E3	3.310E3
P.de Galdar	0.997418	0.617	260.237	257.938	0.884	2.814E3	2.790E3
Faro Sardina	0.964661	1.813	552.076	531.861	3.662	5.971E3	5.752E3
Gando	0.955534	3.526	355.844	331.687	6.789	3.848E3	3.587E3
M. Diablo	0.985490	2.829	465.933	447.378	3.982	5.039E3	4.838E3
P. de Vargas	0.982828	2.700	972.767	915.215	5.916	4.157E3	3.911E3
P. Izquierdo	0.983620	3.089	473.133	451.505	4.571	5.117E3	4.883E3
Granadilla	0.979008	1.611	388.546	379.714	2.273	4.202E3	4.107E3
El Rayo	0.98194	1.890	160.667	157.372	2.051	1.738E3	1.702E3
Valverde	0.986254	3.032	527.862	505.684	4.202	5.709E3	5.469E3
S. Sebastián	0.980474	1.560	282.179	273.073	3.227	3.052E3	2.953E3

Estación	R^2	E	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.929964	80.647	413.346	359.432	13.043	4.470E3	3.887E3
Taca	0.900128	151.067	251.653	231.729	7.917	2.722E3	2.506E3
Antigua	0.900260	103.674	331.276	291.960	11.868	3.583E3	3.157E3
P. Jandía	0.831618	202.756	411.763	333.213	19.076	4.453E3	3.604E3
Amagro	0.846768	378.501	450.118	323.662	28.094	4.868E3	3.500E3
R. Prieto	0.845323	221.355	314.897	256.265	18.620	3.406E3	2.771E3
P.de Galdar	0.835687	208.907	260.237	234.948	9.718	2.814E3	2.541E3
Faro Sardina	0.752111	273.638	552.076	384.499	30.354	5.971E3	4.158E3
Gando	0.784732	398.694	355.844	256.306	27.972	3.848E3	2.772E3
M. Diablo	0.900930	395.155	465.933	312.588	32.911	5.039E3	3.381E3
P. de Vargas	0.890935	369.520	358.200	239.678	33.088	3.874E3	2.592E3
P. Izquierdo	0.866225	413.563	473.133	312.402	33.972	5.117E3	3.379E3
Granadilla	0.926473	233.943	388.546	294.348	24.244	4.202E3	3.183E3
El Rayo	0.882414	510.640	160.667	145.346	9.536	1.738E3	1.572E3
Valverde	0.864731	584.565	527.862	343.432	34.939	5.709E3	3.714E3
S. Sebastián	0.837463	374.565	282.179	229.248	18.758	3.052E3	2.479E3

Distribución Lognormal de dos parámetros

Tabla F.23. Lognormal de 2 parámetros y aerogenerador E-48

Distribución Gausiana Inversa de dos parámetros

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.849265	79.143	413.346	331.400	19.825	4.470E3	3.584E3
Taca	0.753398	163.744	251.653	204.949	18.559	2.722E3	2.216E3
Antigua	0.795476	107.044	331.276	264.805	20.065	3.583E3	2.864E3
P. Jandía	0.661913	256.486	411.763	269.685	34.505	4.453E3	2.917E3
Amagro	0.656145	414.813	450.118	248.559	44.779	4.868E3	2.688E3
R. Prieto	0.738646	166.424	314.897	229.933	26.981	3.406E3	2.487E3
P.de Galdar	0.654168	265.682	260.237	192.496	26.031	2.814E3	2.082E3
Faro Sardina	0.609764	246.609	552.076	322.541	41.577	5.971E3	3.488E3
Gando	0.663287	267.668	355.844	221.315	37.806	3.848E3	2.393E3
M. Diablo	0.773126	373.306	465.933	247.706	46.837	5.039E3	2.679E3
P. de Vargas	0.764050	342.722	358.200	192.180	46.348	3.874E3	2.078E3
P. Izquierdo	0.761071	284.807	473.133	266.784	43.613	5.117E3	2.885E3
Granadilla	0.847657	194.817	388.546	257.665	33.685	4.202E3	2.787E3
El Rayo	0.674840	560.200	457.151	302.067	33.924	1.953E3	1.291E3
Valverde	0.734168	420.592	527.862	280.399	46.880	5.709E3	3.032E3
S. Sebastián	0.696212	298.110	282.179	193.345	31.481	3.052E3	2.091E3

Tabla F.24. Gausiana Inversa de 2 parámetros y aerogenerador E-48

1 4014 1 .20. 1114		ia ac beib in	jeiniemees j	uerogeneru			
Estación	\mathbb{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.998149	0.059	413.346	416.559	0.777	4470.256	4505.004
Taca	0.992571	0.023	251.653	250.230	0.565	2721.580	2706.196
Antigua	0.999018	0.031	331.276	330.543	0.221	3582.686	3574.764
P. Jandía	0.998945	0.069	411.763	410.352	0.343	4453.136	4437.881
Amagro	0.999427	8.904E-3	450.118	450.449	0.074	4867.939	4871.518
R. Prieto	0.998488	0.034	314.897	313.731	0.370	3405.556	3392.945
P.de Galdar	0.998509	8.01E-3	260.237	259.798	0.169	2814.416	2809.665
Faro Sardina	0.997113	0.016	552.076	549.080	0.543	5970.599	5938.201
Gando	0.998199	0.067	355.844	353.948	0.533	3848.387	3827.887
M. Diablo	0.999563	0.0176	465.932	467.325	0.299	5038.979	5054.038
P. de Vargas	0.999374	0.004	358.200	357.812	0.108	3873.870	3869.675
P. Izquierdo	0.998962	0.008	473.133	472.702	0.091	5116.842	5112.182
Granadilla	0.992473	0.049	388.546	386.788	0.453	4202.054	4183.040
El Rayo	0.989137	0.053	160.667	159.943	0.451	1737.587	1729.750
Valverde	0.998987	4.327E-4	527.862	522.759	0.967	5708.734	5653.547
S. Sebastián	0.996733	9.067E-4	282.179	281.171	0.357	3051.712	3040.810

Tabla F.25. Máxima entropía de seis momentos y aerogenerador E-48

✤ Distribución Máxima Entropía N=5

Tabla F.26. Máx	ima entropía de	cinco momentos	y aerogenerador E-48
			<i>.</i>

Estación	\mathbf{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996170	0.018	413.346	418.633	1.279	4470.256	4527.436
Taca	0.992761	8.143E-3	251.653	250.211	0.573	2721.580	2705.982
Antigua	0.999051	0.012	331.276	330.301	0.294	3582.686	3572.140
P. Jandía	0.998321	1.481E-3	411.763	408.086	0.893	4453.136	4413.371
Amagro	0.999333	3.491E-3	450.118	449.145	0.216	4867.939	4857.421
R. Prieto	0.997115	0.030	314.897	311.453	1.094	3405.556	3368.307
P.de Galdar	0.998487	0.018	260.237	258.594	0.631	2814.416	2796.651
Faro Sardina	0.990947	0.029	552.076	545.126	1.259	5970.599	5895.435
Gando	0.998677	2.158E-4	355.844	355.001	0.237	3848.387	3839.273
M. Diablo	0.998509	0.0133	465.933	471.145	1.119	5038.979	5095.347
P. de Vargas	0.998953	0.013	358.200	358.801	0.168	3873.870	3880.361
P. Izquierdo	0.998863	0.015	473.133	471.641	0.315	5116.842	5100.711
Granadilla	0.992256	0.041	388.546	388.795	0.064	4202.054	4204.748
El Rayo	0.991159	0.033	160.667	160.353	0.195	1737.587	1734.191
Valverde	0.998675	0.004	527.862	521.750	1.158	5708.734	5642.631
S. Sebastián	0.986623	0.047	282.179	276.415	2.043	3051.712	2989.376

Estación	\mathbb{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996173	0.105	413.346	417.937	1.111	4470.256	4519.908
Taca	0.992799	0.014	251.653	250.070	0.629	2721.580	2704.464
Antigua	0.999192	0.205	331.276	330.557	0.217	3582.686	3574.918
P. Jandía	0.998895	0.058	411.763	409.869	0.460	4453.136	4432.657
Amagro	0.999406	0.013	450.118	449.226	0.198	4867.939	4858.298
R. Prieto	0.998103	0.024	314.897	312.567	0.740	3405.556	3380.350
P.de Galdar	0.998743	0.045	260.237	259.551	0.264	2814.416	2806.991
Faro Sardina	0.987605	0.113	552.076	541.993	1.826	5970.599	5861.558
Gando	0.998783	3.09E-4	355.844	355.429	0.117	3848.387	3843.899
M. Diablo	0.998040	0.0596	465.933	471.575	1.211	5038.979	5100.002
P. de Vargas	0.997712	0.065	358.200	358.536	0.094	3873.870	3877.500
P. Izquierdo	0.998857	0.027	473.133	473.118	0.003	5116.842	5116.687
Granadilla	0.989433	0.119	388.546	390.822	0.586	4202.054	4226.673
El Rayo	0.991516	0.002	160.667	160.610	0.036	1737.587	1736.964
Valverde	0.998841	0.014	527.862	522.288	1.056	5708.734	5648.452
S. Sebastián	0.990587	0.095	282.179	278.528	1.294	3051.712	3012.229

Tabla F.27. Máxima entropía de cuatro momentos y aerogenerador E-48

✤ Distribución Máxima Entropía N=3

.

1 abia 1.20. Maxima chilopia de tres momentos y acrogenerador L-40
--

Estación	\mathbf{R}^2	ε	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996923	1.558E-4	413.346	416.829	0.843	4470.256	4507.926
Taca	0.992902	4.237E-4	251.653	249.797	0.737	2721.580	2701.512
Antigua	0.999150	1.837E-4	331.276	330.090	0.358	3582.686	3569.859
P. Jandía	0.998978	9.048E-5	411.763	411.902	0.034	4453.136	4454.649
Amagro	0.999438	6.784E-5	450.118	449.960	0.035	4867.939	4866.238
R. Prieto	0.998448	2.208E-6	314.897	313.120	0.564	3405.556	3386.335
P.de Galdar	0.998667	1.094E-4	260.237	260.651	0.159	2814.416	2818.894
Faro Sardina	0.991903	2.135E-4	552.076	545.368	1.215	5970.599	5898.055
Gando	0.998581	3.054E-4	355.844	354.920	0.260	3848.387	3838.397
M. Diablo	0.997567	7.219E-5	465.933	470.797	1.044	5038.979	5091.587
P. de Vargas	0.996902	8.265E-5	358.200	356.514	0.471	3873.870	3855.629
P. Izquierdo	0.998786	3.611E-5	473.133	475.003	0.395	5116.842	5137.064
Granadilla	0.986884	7.032E-6	388.546	388.772	0.058	4202.054	4204.494
El Rayo	0.990777	1.999E-5	160.667	160.382	0.177	1737.587	1734.507
Valverde	0.999096	1.555E-5	527.862	523.244	0.875	5708.734	5658.784
S. Sebastián	0.993662	1.075E-4	282.179	280.608	0.557	3051.712	3034.725

14014 1.29.1016			jementes j				
Estación	\mathbf{R}^2	ε	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.993074	0.808	413.346	422.156	2.132	4470.256	4565.544
Taca	0.992573	0.508	251.653	251.945	0.116	2721.580	2724.734
Antigua	0.998326	0.832	331.276	334.993	1.122	3582.686	3622.886
P. Jandía	0.987444	1.749	411.763	398.315	3.266	4453.136	4307.708
Amagro	0.992997	1.423	450.118	440.837	2.062	4867.939	4767.573
R. Prieto	0.990888	1.229	314.897	306.100	2.794	3405.556	3310.410
P.de Galdar	0.997420	0.613	260.237	257.960	0.875	2814.416	2789.794
Faro Sardina	0.964686	1.805	552.076	531.871	3.660	5970.599	5752.084
Gando	0.955959	3.470	355.844	331.957	6.713	3848.387	3590.055
M. Diablo	0.992934	1.522	465.933	458.396	1.618	5038.979	4957.464
P. de Vargas	0.987626	1.947	358.200	342.257	4.451	3873.870	3701.446
P. Izquierdo	0.985457	2.718	473.133	453.769	4.093	5116.842	4907.424
Granadilla	0.981119	1.224	388.546	381.486	1.817	4202.054	4125.695
El Rayo	0.982382	1.791	160.667	157.809	1.779	1737.587	1706.676
Valverde	0.989269	2.232	527.862	504.313	4.461	5708.734	5454.048
S. Sebastián	0.980545	1.535	282.179	273.163	3.195	3051.712	2954.205

Tabla F.29. Máxima entropía de dos momentos y aerogenerador E-48

Distribución Mezcla de Weibull-2 de dos componentes

Estación	R^2	ε	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.999274	0.234	413.346	414.022	0.164	4526.134	4533.545
Taca	0.991909	0.659	251.653	250.337	0.523	2755.6	2741.19
Antigua	0.999334	0.499	331.276	332.012	0.222	3627.47	3635.53
P. Jandía	0.99394	1.718	411.763	417.001	1.272	4508.8	4566.164
Amagro	0.998847	0.605	450.118	452.339	0.493	4928.788	4953.107
R. Prieto	0.998984	0.016	314.897	314.737	0.051	3448.126	3446.366
P.de Galdar	0.998396	0.743	260.237	260.519	0.108	2849.596	2852.685
Faro Sardina	0.99783	1.482	552.076	550.259	0.329	6045.232	6025.337
Gando	0.991933	0.049	355.844	350.405	1.528	3896.492	3836.94
M. Diablo	0.999242	1.035	465.933	469.363	0.736	5101.966	5139.529
P. de Vargas	0.999435	0.649	358.2	360.622	0.676	3922.294	3948.813
P. Izquierdo	0.99905	0.044	473.133	476.046	0.616	5180.802	5212.701
Granadilla	0.999558	0.168	394.373	394.419	0.012	4318.388	4318.889
El Rayo	0.997366	2.269	160.667	162.457	1.114	1759.307	1778.905
Valverde	0.999068	0.147	527.862	527.387	0.09	5780.093	5774.89
S. Sebastián	0.998311	1.683	282.179	283.156	0.346	3089.858	3100.56

Tabla F.30. Mezcla de Weibull-2 de dos componentes y aerogenerador E-48

F.3 Resultados energéticos obtenidos con la turbina E-70.

En las tablas que se incluyen en este apartado se pueden observar los resultados obtenidos en todas las estaciones analizadas cuando se han estimado la potencia y tiempo equivalente de funcionamiento del aerogenerador E-70 aplicando el método estático (\overline{PE}_M, Te_M) y cuasidinámico (\overline{PE}_m, Te_m) , descritos en el capítulo 7 de esta tesis. Asimismo, se indica en las mencionadas tablas el grado de ajuste R^2 y las diferencias: a) relativa ε entre las densidades de potencias medias anuales estimadas haciendo uso de los datos muestrales y las densidades de potencias medias anuales estimadas mediante las distribuciones teóricas; b) relativa ε_e entre las potencias eléctricas medias anuales estimadas mediante las mediante el método cuasidinamico y las potencias eléctricas medias anuales estimadas mediante el método estático.

Distribución Gamma Generalizada de 3 parámetros

Estación	R ²	Е	PE_m	PE_M	${\cal E}_e$	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.998399	0.053	1.118E+3	1.124E+3	0.573	4894.69	4922.738
Taca	0.995912	0.561	700.622	701.984	0.194	3068.726	3074.689
Antigua	0.99837	0.242	910.432	909.406	0.113	3987.691	3983.199
P. Jandía	0.996658	0.968	1.118E+3	1.109E+3	0.854	4897.325	4855.506
Amagro	0.997684	0.094	1.196E+3	1.179E+3	1.421	5238.687	5164.238
R. Prieto	0.995391	0.244	868.48	852.854	1.799	3803.943	3735.498
P.de Galdar	0.993185	0.244	730.12	727.804	0.317	3197.924	3187.782
Faro Sardina	0.948366	1.583	1.451E+3	1.366E+3	5.918	6357.192	5980.955
Gando	0.980189	2.894	977.321	927.795	5.067	4280.665	4063.743
M. Diablo	0.998883	1.102	1.23E+3	1.248E+3	1.455	5388.604	5467.009
P. de Vargas	0.998972	0.301	972.767	975.452	0.276	4260.719	4272.478
P. Izquierdo	0.997906	0.986	1.252E+3	1.228E+3	1.971	5484.958	5376.871
Granadilla	0.986303	0.639	1.05E+3	1.075E+3	2.388	4598.316	4708.139
El Rayo	0.991969	0.807	457.151	458.124	0.213	2002.32	2006.584
Valverde	0.996051	0.635	1.307E+3	1.267E+3	3.094	5724.563	5547.461
S. Sebastián	0.987825	0.489	782.605	766.68	2.035	3427.809	3358.059

Tabla F.31. Gamma Generalizada y aerogenerador E-70

Distribución Gamma de dos parámetros

Estación \mathbb{R}^2 ε \overline{PE}_m \overline{PE}_M ε_e Te_m Te_M \mathbb{V} kWkWkW \mathbb{V} HorasHorasLos Valles0.97779414.4801.118e31.040e36.9694.775E34.443E3Taca0.96593921.025700.622660.7465.6922.994E32.823E3Antigua0.96069916.980910.432846.3667.0373.890E33.617E3P. Jandía0.91714831.0821.118e3986.67211.7554.778E34.216E3Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Ra	Tuolu 1.52. Ou		paramen	ies j'actege		8		
%kWkW%HorasHorasLos Valles0.97779414.4801.118e31.040e36.9694.775E34.443E3Taca0.96593921.025700.622660.7465.6922.994E32.823E3Antigua0.96069916.980910.432846.3667.0373.890E33.617E3P. Jandía0.91714831.0821.118e3986.67211.7554.778E34.216E3Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.9103045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.921435 <td>Estación</td> <td>R^2</td> <td>Е</td> <td>\overline{PE}_m</td> <td>\overline{PE}_M</td> <td>\mathcal{E}_{e}</td> <td>Te_m</td> <td>Te_M</td>	Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
Los Valles0.97779414.4801.118e31.040e36.9694.775E34.443E3Taca0.96593921.025700.622660.7465.6922.994E32.823E3Antigua0.96069916.980910.432846.3667.0373.890E33.617E3P. Jandía0.91714831.0821.118e3986.67211.7554.778E34.216E3Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E3 <td></td> <td></td> <td>%</td> <td>kW</td> <td>kW</td> <td>%</td> <td>Horas</td> <td>Horas</td>			%	kW	kW	%	Horas	Horas
Taca0.96593921.025700.622660.7465.6922.994E32.823E3Antigua0.96069916.980910.432846.3667.0373.890E33.617E3P. Jandía0.91714831.0821.118e3986.67211.7554.778E34.216E3Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.03ae3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E3	Los Valles	0.977794	14.480	1.118e3	1.040e3	6.969	4.775E3	4.443E3
Antigua0.96069916.980910.432846.3667.0373.890E33.617E3P. Jandía0.91714831.0821.118e3986.67211.7554.778E34.216E3Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	Taca	0.965939	21.025	700.622	660.746	5.692	2.994E3	2.823E3
P. Jandía0.91714831.0821.118e3986.67211.7554.778E34.216E3Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	Antigua	0.960699	16.980	910.432	846.366	7.037	3.890E3	3.617E3
Amagro0.91902137.9271.196e3995.05116.8055.111E34.252E3R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	P. Jandía	0.917148	31.082	1.118e3	986.672	11.755	4.778E3	4.216E3
R. Prieto0.91038931.592868.480760.06012.4843.711E33.248E3P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	Amagro	0.919021	37.927	1.196e3	995.051	16.805	5.111E3	4.252E3
P.de Galdar0.91699228.547730.120681.6606.6373.120E32.913E3Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	R. Prieto	0.910389	31.592	868.480	760.060	12.484	3.711E3	3.248E3
Faro Sardina0.82474238.3031.451e31.169e319.4796.202E34.994E3Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	P.de Galdar	0.916992	28.547	730.120	681.660	6.637	3.120E3	2.913E3
Gando0.84825847.830977.321795.94318.5594.176E33.401E3M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	Faro Sardina	0.824742	38.303	1.451e3	1.169e3	19.479	6.202E3	4.994E3
M. Diablo0.94722741.9111.230e31.008e318.0925.257E34.306E3P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	Gando	0.848258	47.830	977.321	795.943	18.559	4.176E3	3.401E3
P. de Vargas0.93772240.667972.767774.81020.3504.157E33.311E3P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	M. Diablo	0.947227	41.911	1.230e3	1.008e3	18.092	5.257E3	4.306E3
P. Izquierdo0.91903045.7171.252e3991.60520.8165.351E34.237E3Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	P. de Vargas	0.937722	40.667	972.767	774.810	20.350	4.157E3	3.311E3
Granadilla0.95551128.7781.033e3889.18713.9544.416E33.800E3El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	P. Izquierdo	0.919030	45.717	1.252e3	991.605	20.816	5.351E3	4.237E3
El Rayo0.94652641.133457.151430.2335.8881.953E31.838E3Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	Granadilla	0.955511	28.778	1.033e3	889.187	13.954	4.416E3	3.800E3
Valverde0.92143549.3731.307e31.046e319.9325.585E34.472E3S. Sebastián0.90457638.199782.605684.93012.4813.344E32.927E3	El Rayo	0.946526	41.133	457.151	430.233	5.888	1.953E3	1.838E3
S. Sebastián 0.904576 38.199 782.605 684.930 12.481 3.344E3 2.927E3	Valverde	0.921435	49.373	1.307e3	1.046e3	19.932	5.585E3	4.472E3
	S. Sebastián	0.904576	38.199	782.605	684.930	12.481	3.344E3	2.927E3

Tabla F.32. Gamma de dos parámetros y aerogenerador E-70

Distribución Weibull de dos parámetros

Tabla F.33. Weibull de dos p	parámetros y aerogenerador E-70
2	

Estación	\mathbb{R}^2	ε	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.999353	0.434	1.118e3	1.114e3	0.343	4.775E3	4.759E3
Taca	0.993477	1.881	700.622	686.225	2.055	2.994E3	2.932E3
Antigua	0.996488	0.850	910.432	897.718	1.396	3.890E3	3.836E3
P. Jandía	0.975084	3.350	1.118e3	1.075e3	3.822	4.778E3	4.595E3
Amagro	0.967277	5.471	1.196e3	1.113e3	6.928	5.111E3	4.757E3
R. Prieto	0.962203	3.991	868.480	808.402	6.918	3.711E3	3.454E3
P.de Galdar	0.981171	2.314	730.120	705.539	3.367	3.120E3	3.015E3
Faro Sardina	0.916085	2.329	1.451e3	1.345e3	7.310	6.202E3	5.749E3
Gando	0.902286	7.367	977.321	863.307	11.666	4.176E3	3.689E3
M. Diablo	0.969226	7.500	1.230e3	1.136e3	7.629	5.257E3	4.856E3
P. de Vargas	0.962731	7.064	972.767	865.575	11.019	4.157E3	3.699E3
P. Izquierdo	0.955574	7.779	1.252e3	1.126e3	10.105	5.351E3	4.810E3
Granadilla	0.964046	5.886	1.033e3	968.891	6.241	4.416E3	4.140E3
El Rayo	0.966822	8.238	457.151	435.564	4.722	1.953E3	1.861E3
Valverde	0.955989	10.146	1.307e3	1.186e3	9.228	5.585E3	5.070E3
S. Sebastián	0.96553	7.925	475.227	426.867	10.176	2.031E3	1.824E3

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	${\cal E}_e$	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.954423	6.592	1.118e3	1.027e3	8.131	4.775E3	4.387E3
Taca	0.969076	1.135	700.622	652.068	6.930	2.994E3	2.786E3
Antigua	0.953439	2.917	910.432	845.102	7.176	3.890E3	3.611E3
P. Jandía	0.859960	0.506	1.118e3	948.140	15.202	4.778E3	4.052E3
Amagro	0.955714	1.307	1.196e3	1.105e3	7.598	5.111E3	4.723E3
R. Prieto	0.957781	4.913	868.480	802.215	7.630	3.711E3	3.428E3
P.de Galdar	0.906480	4.362	730.120	664.721	8.957	3.120E3	2.840E3
Faro Sardina	0.828597	11.750	1.451e3	1.205e3	16.999	6.202E3	5.148E3
Gando	0.900218	7.644	977.321	860.460	11.957	4.176E3	3.677E3
M. Diablo	0.960505	1.413	1.230e3	1.145e3	6.905	5.257E3	4.894E3
P. de Vargas	0.955745	2.449	972.767	866.931	10.880	4.157E3	3.705E3
P. Izquierdo	0.958809	5.867	1.252e3	1.148e3	8.331	5.351E3	4.905E3
Granadilla	0.927361	2.079	1.033e3	1.016e3	1.717	4.416E3	4.340E3
El Rayo	0.928687	6.164	457.151	407.781	10.800	1.953E3	1.743E3
Valverde	0.959779	2.242	1.307e3	1.279e3	2.145	5.585E3	5.465E3
S. Sebastián	0.921382	4.271	782.605	713.341	8.850	3.344E3	3.048E3

Distribución Rayleigh de un parámetro

Tabla F.34. Rayleigh de un parámetro y aerogenerador E-70

Distribución Beta de tres parámetros

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.997724	1.068	1.118e3	1.109e3	0.729	4.775E3	4.741E3
Taca	0.992030	3.945	700.622	688.996	1.659	2.994E3	2.944E3
Antigua	0.990162	2.814	910.432	892.992	1.916	3.890E3	3.816E3
P. Jandía	0.966202	6.547	1.118e3	1.055e3	5.603	4.778E3	4.510E3
Amagro	0.966297	6.124	1.196e3	1.101e3	7.985	5.111E3	4.703E3
R. Prieto	0.960379	5.101	868.480	809.646	6.774	3.711E3	3.460E3
P.de Galdar	0.964329	5.947	730.120	710.103	2.742	3.120E3	3.034E3
Faro Sardina	0.887413	7.347	1.451e3	1.287e3	11.309	6.202E3	5.501E3
Gando	0.849870	45.478	977.321	798.277	18.320	4.176E3	3.411E3
M. Diablo	0.948281	39.572	1.230e3	1.012e3	17.753	5.257E3	4.324E3
P. de Vargas	0.938882	38.385	972.767	778.034	20.018	4.157E3	3.325E3
P. Izquierdo	0.920448	43.116	1.252e3	993.974	20.626	5.351E3	4.247E3
Granadilla	0.956592	26.481	1.033e3	892.998	13.585	4.416E3	3.816E3
El Rayo	0.947662	38.738	457.151	431.127	5.693	1.953E3	1.842E3
Valverde	0.922804	46.700	1.307e3	1.047e3	19.868	5.585E3	4.475E3
S. Sebastián	0.953989	7.022	782.605	733.077	6.329	3.344E3	3.133E3

Tabla F.35. Beta de tres parámetros y aerogenerador E-70

Distribución Beta prima

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.863845	9.825e3	1.118e3	834.243	25.348	4.775E3	3.565E3
Taca	0.833365	1.142e3	700.622	562.170	19.761	2.994E3	2.402E3
Antigua	0.833991	2.164e3	910.432	693.481	23.829	3.890E3	2.963E3
P. Jandía	0.764989	2.088e3	1.118e3	719.918	35.613	4.778E3	3.076E3
Amagro	0.761707	114.362	1.196e3	660.807	44.751	5.111E3	2.824E3
R. Prieto	0.774058	1.868e3	868.480	588.992	32.181	3.711E3	2.517E3
P.de Galdar	0.760394	1.493e3	730.120	552.011	24.394	3.120E3	2.359E3
Faro Sardina	0.660758	623.841	1.451e3	779.354	46.304	6.202E3	3.330E3
Gando	0.713991	326.035	977.321	572.013	41.471	4.176E3	2.444E3
M. Diablo	0.843042	94.101	1.230e3	670.626	45.490	5.257E3	2.866E3
P. de Vargas	0.835717	301.363	972.767	530.072	45.509	4.157E3	2.265E3
P. Izquierdo	0.799855	97.488	1.252e3	664.219	46.959	5.351E3	2.838E3
Granadilla	0.882938	2.495e3	1.033e3	644.613	37.621	4.416E3	2.755E3
El Rayo	0.833287	601.406	160.667	125.734	21.743	1.738E3	1.360E3
Valverde	0.794658	14.618	527.862	274.441	48.009	5.709E3	2.968E3
S. Sebastián	0.775250	350.178	782.605	515.757	34.097	3.344E3	2.204E3

Tabla F.36. Beta prima y aerogenerador E-70

Distribución Normal truncada

Tabla F.37. Normal truncada y ae	rogenerador E-70
----------------------------------	------------------

Estación	\mathbb{R}^2	ε	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.993080	0.787	1.118E3	1.142E3	2.189	4.775E3	4.880E3
Taca	0.992571	0.505	700.622	702.106	0.212	2.994E3	3.000E3
Antigua	0.998333	0.825	910.432	921.219	1.185	3.890E3	3.937E3
P. Jandía	0.987392	1.765	1.118E3	1.083E3	3.171	4.778E3	4.626E3
Amagro	0.992939	1.445	1.196E3	1.169E3	2.231	5.111E3	4.997E3
R. Prieto	0.990847	1.244	868.480	842.700	2.968	3.711E3	3.601E3
P.de Galdar	0.997418	0.617	730.120	722.062	1.104	3.120E3	3.085E3
Faro Sardina	0.964661	1.813	1.451E3	1.402E3	3.427	6.202E3	5.990E3
Gando	0.955534	3.526	977.321	909.124	6.978	4.176E3	3.885E3
M. Diablo	0.985490	2.829	1.230E3	1.192E3	3.111	5.257E3	5.094E3
P. de Vargas	0.982828	2.700	358.200	335.336	6.383	3.874E3	3.627E3
P. Izquierdo	0.983620	3.089	1.252E3	1.199E3	4.285	5.351E3	5.122E3
Granadilla	0.979008	1.611	1.033E3	1.014E3	1.883	4.416E3	4.333E3
El Rayo	0.98194	1.890	457.151	442.634	3.175	1.953E3	1.891E3
Valverde	0.986254	3.032	1.307E3	1.262E3	3.417	5.585E3	5.394E3
S. Sebastián	0.980474	1.560	782.605	752.077	3.901	3.344E3	3.214E3
Estación	R^2	Ē	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
--------------	----------	---------	-------------------	-------------------	-------------------	----------	----------
		%	kW	kW	%	Horas	Horas
Los Valles	0.929964	80.647	1.118E3	947.328	15.229	4.775E3	4.048E3
Taca	0.900128	151.067	700.622	628.505	10.293	2.994E3	2.686E3
Antigua	0.900260	103.674	910.432	781.868	14.121	3.890E3	3.341E3
P. Jandía	0.831618	202.756	1.118E3	868.261	22.346	4.778E3	3.710E3
Amagro	0.846768	378.501	1.196E3	827.229	30.836	5.111E3	3.535E3
R. Prieto	0.845323	221.355	868.480	684.302	21.207	3.711E3	2.924E3
P.de Galdar	0.835687	208.907	730.120	638.292	12.577	3.120E3	2.728E3
Faro Sardina	0.752111	273.638	1.451E3	977.505	32.652	6.202E3	4.177E3
Gando	0.784732	398.694	977.321	689.867	29.412	4.176E3	2.948E3
M. Diablo	0.900930	395.155	1.230E3	835.693	32.073	5.257E3	3.571E3
P. de Vargas	0.890935	369.520	972.767	648.333	33.352	4.157E3	2.770E3
P. Izquierdo	0.871533	413.563	1.252E+3	822.867	34.29	5484.958	3604.156
Granadilla	0.926473	233.943	1.033E3	764.129	26.056	4.416E3	3.265E3
El Rayo	0.882414	510.640	457.151	396.878	13.184	1.953E3	1.696E3
Valverde	0.864731	584.565	1.307E3	859.603	34.230	5.585E3	3.673E3
S. Sebastián	0.837463	374.565	782.605	609.912	22.066	3.344E3	2.606E3

Distribución Lognormal de dos parámetros

Tabla F.38. Lognormal de dos parámetros y aerogenerador E-70

Distribución Gausiana Inversa de dos parámetros

Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.849265	79.143	1.118E3	868.538	22.279	4.775E3	3.711E3
Taca	0.753398	163.744	700.622	552.673	21.117	2.994E3	2.362E3
Antigua	0.795476	107.044	910.432	704.547	22.614	3.890E3	3.011E3
P. Jandía	0.661913	256.486	1.118E3	694.734	37.865	4.778E3	2.969E3
Amagro	0.656145	414.813	1.196E3	631.036	47.240	5.111E3	2.697E3
R. Prieto	0.738646	166.424	868.480	612.074	29.524	3.711E3	2.615E3
P.de Galdar	0.654168	265.682	730.120	519.885	28.795	3.120E3	2.222E3
Faro Sardina	0.609764	246.609	1.451E3	819.399	43.545	6.202E3	3.501E3
Gando	0.663287	267.668	977.321	594.864	39.133	4.176E3	2.542E3
M. Diablo	0.773126	373.306	1.230E3	662.013	46.190	5.257E3	2.829E3
P. de Vargas	0.764050	342.722	972.767	518.605	46.688	4.157E3	2.216E3
P. Izquierdo	0.761071	284.807	1.252E3	702.662	43.889	5.351E3	3.003E3
Granadilla	0.847657	194.817	1.033E3	665.084	35.640	4.416E3	2.842E3
El Rayo	0.674840	560.200	160.667	111.169	30.808	1.738E3	1.202E3
Valverde	0.734168	420.592	1.307E3	704.054	46.131	5.585E3	3.009E3
S. Sebastián	0.696212	298.110	782.605	511.685	34.618	3.344E3	2.187E3

Tabla F.39. Gausiana Inversa de dos parámetros y aerogenerador E-70

1 4014 1 . 10. 1014	anna entrop		momentos y	uerogeneru			
Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.997426	0.081	1117.509	1128.788	1.009	4775.308	4823.503
Taca	0.992570	0.023	700.622	697.123	0.500	2993.879	2978.924
Antigua	0.999030	0.029	910.432	909.326	0.122	3890.430	3885.703
P. Jandía	0.998769	0.091	1118.111	1113.817	0.384	4777.879	4759.531
Amagro	0.999228	0.044	1196.047	1193.576	0.207	5110.914	5100.354
R. Prieto	0.998527	0.026	868.480	866.276	0.254	3711.164	3701.744
P.de Galdar	0.997981	0.133	730.120	722.406	1.056	3119.926	3086.965
Faro Sardina	0.996175	0.056	1451.414	1447.13	0.295	6202.138	6183.833
Gando	0.998186	0.071	977.321	971.452	0.601	4176.259	4151.179
M. Diablo	0.999697	0.001	1230.275	1230.054	0.018	5257.175	5256.231
P. de Vargas	0.999394	0.003	972.767	971.254	0.156	4156.799	4150.334
P. Izquierdo	0.998962	0.008	1252.274	1249.373	0.232	5351.179	5338.785
Granadilla	0.992465	0.047	1033.385	1034.141	0.073	4415.829	4419.059
El Rayo	0.989340	0.077	457.151	452.807	0.950	1953.483	1934.923
Valverde	0.999000	0.001	1306.978	1293.944	0.997	5584.940	5529.244
S. Sebastián	0.996677	0.018	782.605	776.415	0.791	3344.204	3317.755

✤ Distribución Máxima Entropía N=6

Tabla F.40. Máxima entropía de seis momentos y aerogenerador E-70

✤ Distribución Máxima Entropía N=5

Tabla F.41.	Máxima	entropía o	de cinco	momentos	y aerogenera	dor E-70
					5 0	

Estación	R^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996074	0.018	1117.509	1132.188	1.314	4775.308	4838.032
Taca	0.992760	0.008	700.622	696.978	0.520	2993.879	2978.307
Antigua	0.999053	0.011	910.432	908.488	0.213	3890.430	3882.126
P. Jandía	0.998317	0.002	1118.111	1108.923	0.822	4777.879	4738.618
Amagro	0.999333	0.006	1196.047	1193.513	0.212	5110.914	5100.085
R. Prieto	0.997155	0.025	868.480	858.113	1.194	3711.164	3666.864
P.de Galdar	0.998656	0.016	730.120	725.220	0.671	3119.926	3098.991
Faro Sardina	0.987657	0.028	1451.414	1434.409	1.172	6202.138	6129.475
Gando	0.998654	0.008	977.321	974.503	0.288	4176.259	4164.218
M. Diablo	0.998602	0.013	1230.275	1244.933	1.191	5257.175	5319.811
P. de Vargas	0.998471	0.014	972.767	978.149	0.553	4156.799	4179.796
P. Izquierdo	0.998861	0.015	1252.274	1246.473	0.463	5351.179	5326.390
Granadilla	0.992009	0.042	1033.385	1040.252	0.665	4415.829	4445.176
El Rayo	0.991171	0.031	457.151	453.708	0.753	1953.483	1938.773
Valverde	0.998672	0.004	1306.978	1288.975	1.377	5584.940	5508.011
S. Sebastián	0.989642	0.044	782.605	765.137	2.232	3344.204	3269.561

Estación	R^2	ε	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996172	0.105	1117.509	1129.676	1.089	4775.308	4827.296
Taca	0.992802	0.014	700.622	696.535	0.583	2993.879	2976.411
Antigua	0.999192	0.205	910.432	908.492	0.213	3890.430	3882.140
P. Jandía	0.998904	0.058	1118.111	1113.536	0.409	4777.879	4758.328
Amagro	0.999406	0.013	1196.047	1193.569	0.207	5110.914	5100.324
R. Prieto	0.998102	0.024	868.480	861.131	0.846	3711.164	3679.758
P.de Galdar	0.998605	0.050	730.120	727.430	0.368	3119.926	3108.431
Faro Sardina	0.987415	0.114	1451.414	1430.708	1.427	6202.138	6113.658
Gando	0.998781	0.002	977.321	976.340	0.100	4176.259	4172.068
M. Diablo	0.998039	0.058	1230.275	1247.681	1.415	5257.175	5331.554
P. de Vargas	0.997719	0.065	972.767	976.617	0.396	4156.799	4173.253
P. Izquierdo	0.998852	0.028	1252.274	1250.221	0.164	5351.179	5342.408
Granadilla	0.989238	0.122	1033.385	1045.106	1.134	4415.829	4465.916
El Rayo	0.991516	0.002	457.151	454.648	0.548	1953.483	1942.787
Valverde	0.998840	0.014	1306.978	1291.036	1.220	5584.940	5516.816
S. Sebastián	0.990581	0.095	782.605	767.798	1.892	3344.204	3280.932

✤ Distribución Máxima Entropía N=4

Tabla F.42. Máxima entropía de cuatro momentos y aerogenerador E-70

Distribución Máxima Entropía N=3

Tabla F.43.	Máxima entro	pía de tres moi	mentos v aeroge	nerador E-70
1 00 100 1 0 100	1.1		J were Be	

Estación	\mathbb{R}^2	Е	\overline{PE}_{m}	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.996923	1.086E-4	1117.509	1127.395	0.885	4775.308	4817.55
Taca	0.992917	0.001	700.622	695.723	0.699	2993.879	2972.941
Antigua	0.999259	0.041	910.432	912.670	0.246	3890.430	3899.995
P. Jandía	0.998979	1.69E - 4	1118.111	1119.192	0.097	4777.879	4782.497
Amagro	0.999439	8.167E-6	1196.047	1195.438	0.051	5110.914	5108.312
R. Prieto	0.998443	1.853E-4	868.480	862.900	0.643	3711.164	3687.319
P.de Galdar	0.998667	9.691E-5	730.120	730.784	0.091	3119.926	3122.766
Faro Sardina	0.991903	1.859E-4	1451.414	1439.257	0.838	6202.138	6150.193
Gando	0.998581	2.573E-4	977.321	975.668	0.169	4176.259	4169.194
M. Diablo	0.997567	1.616E-5	1230.275	1246.704	1.335	5257.175	5327.377
P. de Vargas	0.996903	4.504E-5	972.767	971.726	0.107	4156.799	4152.351
P. Izquierdo	0.998787	9.657E-5	1252.274	1255.366	0.247	5351.179	5364.395
Granadilla	0.986884	3.665E-6	1033.385	1039.076	0.551	4415.829	4440.148
El Rayo	0.990774	7.891E-5	457.151	453.959	0.698	1953.483	1939.845
Valverde	0.999096	3.082E-6	1306.978	1294.973	0.919	5584.940	5533.640
S. Sebastián	0.993670	7.295E-5	782.605	773.862	1.117	3344.204	3306.844

Estación	R^2	Е	\overline{PE}_{m}	$\frac{\overline{PE}_M}{\overline{PE}_M}$	ε,	Te _m	Тем
		%	kW	kW	%	Horas	Horas
Los Valles	0.993074	0.808	1117.509	1142.151	2.205	4775.308	4880.607
Taca	0.992573	0.508	700.622	702.127	0.215	2993.879	3000.307
Antigua	0.998326	0.832	910.432	921.287	1.192	3890.430	3936.816
P. Jandía	0.987444	1.749	1118.111	1082.793	3.159	4777.879	4626.960
Amagro	0.992997	1.423	1196.047	1169.385	2.229	5110.914	4996.980
R. Prieto	0.990888	1.229	868.480	842.834	2.953	3711.164	3601.572
P.de Galdar	0.997420	0.613	730.120	722.118	1.096	3119.926	3085.734
Faro Sardina	0.964686	1.805	1451.414	1401.655	3.428	6202.138	5989.510
Gando	0.955959	3.470	977.321	909.755	6.913	4176.259	3887.538
M. Diablo	0.992934	1.522	1230.275	1217.167	1.065	5257.175	5201.164
P. de Vargas	0.987626	1.947	972.767	931.888	4.202	4156.799	3982.118
P. Izquierdo	0.985457	2.718	1252.274	1199.244	4.235	5351.179	5124.574
Granadilla	0.981119	1.224	1033.385	1017.204	1.566	4415.829	4346.687
El Rayo	0.982382	1.791	457.151	443.804	2.920	1953.483	1896.450
Valverde	0.989269	2.232	1306.978	1252.223	4.189	5584.940	5350.961
S. Sebastián	0.980545	1.535	782.605	752.290	3.874	3344.204	3214.662

✤ Distribución Máxima Entropía N=2

Tabla F.44. Máxima entropía de dos momentos y aerogenerador E-70

Distribución Mezcla de Weibull-2 de dos componentes

1 abia 1.45. Miczela de Welbull-2 de dos componentes y actogenerador E-70

			uos compon	entes y acro	generauor	L-70	
Estación	R^2	Е	\overline{PE}_m	\overline{PE}_M	\mathcal{E}_{e}	Te_m	Te_M
		%	kW	kW	%	Horas	Horas
Los Valles	0.999294	0.251	1.118E+3	1.119E+3	0.118	4894.69	4900.45
Taca	0.991908	0.659	700.622	696.528	0.584	3068.726	3050.793
Antigua	0.999334	0.499	910.432	912.517	0.229	3987.691	3996.825
P. Jandía	0.993939	1.718	1.118E+3	1.135E+3	1.533	4897.325	4972.401
Amagro	0.998847	0.605	1.196E+3	1.202E+3	0.467	5238.687	5263.152
R. Prieto	0.989985	0.619	868.48	844.686	2.74	3803.943	3699.724
P.de Galdar	0.998396	0.742	730.12	731.028	0.124	3197.924	3201.904
Faro Sardina	0.997830	1.482	1.451E+3	1.453E+3	0.105	6357.192	6363.875
Gando	0.991933	0.048	977.321	965.667	1.192	4280.665	4229.621
M. Diablo	0.999243	1.035	1.23E+3	1.235E+3	0.414	5388.604	5410.893
P. de Vargas	0.999435	0.648	972.767	979.885	0.732	4260.719	4291.897
P. Izquierdo	0.999050	0.044	1.252E+3	1.258E+3	0.43	5484.958	5508.551
Granadilla	0.999558	0.168	1.05E+3	1.05E+3	3.331E-4	4598.316	4598.3
El Rayo	0.997366	2.269	457.151	462.187	1.102	2002.32	2024.377
Valverde	0.999068	0.147	1.307E+3	1.31E+3	0.24	5724.563	5738.282
S. Sebastián	0.998311	1.683	782.605	783.842	0.158	3427.809	3433.227

Apéndice G.

G.1. Trabajos publicados como resultado de esta tesis.

Como fruto del proceso de investigación realizado en esta tesis se han elaborado diversos trabajos. El primero de ellos fue el documento defendido ante tribunal, en noviembre de 2001, por la autora de esta tesis para obtener la Suficiencia Investigadora dentro del programa de doctorado Tecnología Industrial (Bienio: 1998-2000) de la Universidad de Las Palmas de Gran Canaria. Dicho documento, tutelado por el Dr. José Antonio Carta, lleva por titulo "Comparación de la distribución de Weibull de dos parámetros y las distribuciones generadas utilizando el Principio de Máxima Entropía, restringido con momentos, cuando se aplican al análisis de la energía eólica". La maduración de este trabajo ha permitido elaborar el capítulo 5 de esta tesis y obtener los resultados que se muestran en los apartados 8.7.9, 8.7.11, 8.8 y 8.9.2.

Asimismo, se citan al final de esta página dos artículos, elaborados a partir de las invetigaciones efectuadas en esta tesis, que han sido publicados en la revista internacional Energy Conversión & Management (ISSN: 0196-8904). Dicha revista se incluye, según la revista Journal Citation Reports® -Science Edition- (JCR) en las categorías: Energy & Fuels; Thermodynamics; Mechanics; Physics, Nuclear. No disponemos a la hora de elaborar este documento de tesis del número de la revista JCR correpondiente al año 2005. Sin embargo, en el año 2004 la revista Energy Conversión & Management alcanzó un índice de impacto de 0.794, ocupando las posiciones siguientes, en cuanto a índice de impacto se refiere, respecto del total de revistas de cada una de las categoría antes mencionadas: 22/61, 14/39, 44/107 y 15/21, respectivamente. En la categoría Energy & Fuels se encuentran la mayoría de las revistas que publican temas relacionados con las energías renovables. Entre las que admiten la publicación de artículos relacionados con la energía eólica en el campo investigado en esta tesis, Energy Conversión & Management ocupa una de las primeras posiciones.

El primer artículo fue publicado en el año 2005 y el segundo se encuentra disponible online en la dirección www.sciencedirect.com.

- Penélope Ramírez, José Antonio Carta, 2005 Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Conversion & Management, 46; 2419-2438
- Penélope Ramírez, José Antonio Carta The use of wind probability distributions derived from the maximum entropy principle in the analysis of wind energy. A case study. Energy Conversion & Management, (En prensa).