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Chapter 1

Introduction

1.1 Description and motivation of the project

The topics of Big Data, distributed databases and Open Data were introduced to the

student while working on a grant for a research and development team of the University

of Las Palmas de Gran Canaria.

After collaborating on different projects related with these technologies, it became inter-

esting for the student to expand on some of the tasks worked to make a complete final

degree project and deepen on the concepts learned.

Therefore, the project is focused in researching and experimenting with Big Data han-

dling technologies and methodologies, with special interest on applications where geolo-

cated data is an important asset.

1.2 State of the art

From the first decade of the 2000s, a new trend has appeared in the field of data man-

agement and manipulation which has been named Big Data.

A common description of Big Data technologies is that they deal with the 3 Vs of

data[1]:

• Volume: Big Data technologies bring new solutions to the storage and manage-

ment of high volumes of data, usually composed of small registers, for example,

individual readings of a network of sensors.

1
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• Velocity: One of the reasons of the generation of Big Data is normally the high

rate at which it is generated. In this field it is important to process as fast as

possible the new data collected which can even be needed to take some reactive

actions in almost real time.

• Variety: This field also addresses the issue of managing different sources of data or

even providing better flexibility regarding structure changes on an already known

data source.

Another interesting point of view is to bring the focus on the different processing ap-

proachs in Big Data technologies compared with traditional relational databases [2].

Traditional databases use a Schema-on-Write (SOW) approach, where data struc-

ture must be clear before storing it. On the other hand, Big Data workflows provide a

Schema-on-Read (SOR) paradigm, where the data is stored in raw format (typically

text files) and the structure is applied at the moment it is read or processed(Figure 1.1).

Figure 1.1: Schema-on-Write and Schema-on-Read paradigms.

The following sections aim to give a general overview of the technologies that have been

used in this project, which are all free and open source software.

1.2.1 Relational databases

Relational Database Managements Systems (RDBMS) have been the base of

multiple businesses and applications since the 1970s. In a relational database the data is

structured in tables, where every table is defined by a set of columns and rows. Normally

a table is a representation of an entity of the domain being modelled, where each column
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represents different attributes of that entity. Finally, each row or record represents a

single instance of the modelled entity.

Relational databases are based on the set theory and the Standard Query Language

(SQL) defines the operations that can be made over their data structures.

A key point of the power of RDBMS is data integrity. In order to guarantee it, these

systems implement ACID (Atomicity, Consistency, Isolation and Durability) transac-

tions (sets of data instructions such as insert data, delete data and transform data). The

ACID characteristics can be described as:

• Atomicity: If any instruction of the database transaction fails, the whole trans-

action fails and nothing is changed.

• Consistency: The system has to be coherent with the rules defined over its model.

In this case, it is achieved by not allowing half-completed transactions.

• Isolation: Each transaction is independent from each other, avoiding interferences

between them.

• Durability: When a transaction is finished, it cannot be undone and it will survive

any system failure.

1.2.1.1 PostgreSQL

Figure 1.2: PostgreSQL logo.

PostgreSQL [3, 4] is an object oriented RDBMS widely used for resource management

software at enterprise level. Its main advantages are its stability, constant development,

features coverage and extensibility.

PostgreSQL provides the following abstractions to model the storage of our data models:

• Tables: The information stored is modelled and presented in tabular form where

each column represents an attribute of the entity it represents. Each row of

the table represents an instance stored of said entity and queries are executed by

referencing them.
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• Schemas: All tables are grouped in schemas, which can serve a functionality or

thematic purpose.

• Databases: Finally, schemas are contained within databases, which are normally

dedicated to a single application.

Since 2011, PostgreSQL also has support for the SQL/MED [5, 6] (Management of

External Data) which establishes a standard to access data stored in remote database

engines via foreign data wrappers (FDW). There are foreign data wrappers avail-

able to connect to other PostgreSQL instances (Postgres FDW [7]) and also to other

database management systems like MongoDB (MongoDB FDW [8]).

PostgreSQL also allows developers to extend their database implementations by defin-

ing custom types, custom procedural functions and even packaging new functionality

into extensions. To develop stored procedures, which can then be triggered to add extra

validations or data transformations, PostgreSQL offers several procedural languages syn-

taxes. PL/PgSQL [9] is the procedural language developed by PostgreSQL developers

but they also support other external languages such as Python with PL/Python [10].

1.2.2 Non relational databases

Non relational databases (also known as NoSQL, Not only SQL) have been recently

gaining popularity given the shift in computing and storing paradigms to distributed

environments and cloud platforms.

As explained in 1.2.1, relational databases rely in the set theory for their functioning;

however, non relational databases search for other underlying mathematical theories and

data structures (such as graphs, associative arrays and tuples) to provide different means

to tackle problems. Having the option to model on a system that takes advantage of

nature of the data to be stored helps speeding response times and can ease software

development.

Non relational databases focus on horizontal scalability (that is adding more nodes in

a distributed configuration) instead of vertical scalability (making the machine bigger

by adding more CPU, RAM and disk space). This feature makes it harder to guarantee

the ACID requirements for which relational databases are so important.

In distributed systems, it is important to take into account the CAP (Consistency,

Availability and Partition tolerance) theorem which consists of two parts. The first

part defines three requirements to make successful distributed systems:
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• Consistency: It is equivalent to the consistency presented in ACID systems. It

also covers the need of the data contained in each node to be aligned with the state

of the rest of the nodes.

• Availability: A system is available if it returns a response for all he requests that

it receives, whether it is a success or a failure.

• Partition tolerance: This requirement refers to the ability of the system to keep

working when a node fails and becomes unavailable.

The second part of the theorem states that distributed systems can only guarantee two

of the three requirements at the same time. Since those systems are distributed, the

weak link of the equation falls on the consistency of the system.

The CAP theorem them gives insight about the unsuitability of ACID characteristics on

distributed systems, such as the set-ups that non relational databases aim to cover. In

order to overcome this limitation, consistency needs to be postponed during the phase

of data storage.

Following these ideas, the BASE (Basically Available, Soft state and Eventual consis-

tency) characteristics were designed to achieve system reliability. Those requirements

can be defined as:

• Basically Available: Every request sent to the system will receive a reply. Some-

times a successful reply might return inconsistent data at that specific time.

• Soft state: The system has a soft state in the sense that, while it stabilizes, the

system can change its state without having received any input.

• Eventual consistency: While the system receives input, the consistency between

transactions is not checked. However, from the moment the system stops receiving

input data will start to propagate to all the nodes and the system will become

consistent.

It is important to note that not all distributed databases have to be designed around

BASE principles, but it is important to know this new paradigm and how it contrasts

with the classical ACID [11]. This aspect and many others have been noted on several

comparison tables in Appendix A.
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1.2.2.1 MongoDB

Figure 1.3: MongoDB logo.

MongoDB [12] is a non relational document database that aims to provide high per-

formance, high availability and automatic scaling storage solution.

In order to organize the data stored, MongoDB provides the following abstractions:

• Documents: A document is a recursive data structure of key-value pairs. Every

field can contain other single values, documents and arrays of different types. This

data structure is a text representation of objects from diverse language program-

ming and MongoDB represents them with JSON syntax. The storing format of

MongoDB documents is BSON (Binary JSON). Documents can be associated

with PostgreSQL rows.

• Collections: Every document is associated to a MongoDB collection. Since all

data queries are executed over collections, they could be associated with Post-

greSQL tables. The difference is that collections can have documents with different

structure, since the structure is stored in the same abstraction where data is stored,

while tables already define a static structure and rows must comply with it.

• Databases: Databases contain all the collections of the model. They do not

provide an equivalent alternative to PostgreSQL schemas.

1.2.3 Hadoop ecosystem

The Hadoop ecosystem is one the most extended and known Big Data ecosystems

at the present. Based on Apache Hadoop framework, we can find many projects in the

market that try to complement or improve it [13]. In the next sections a collection of

them will be presented, starting from Hadoop itself. All of them are licensed under the

Apache v2 license.



Introduction: State of the art 7

1.2.3.1 Hadoop

Figure 1.4: Hadoop logo.

Apache Hadoop [14] is a dedicated software for distributed data processing. Its ar-

chitecture was designed to offer horizontal scalability by using hardware without ad-

vanced features, cheap and easily interchangeable (usually referred as commodity hard-

ware).

Hadoop can be divided in three different modules [15], which leverage its distributed

computing and storage nature:

• Hadoop Distributed File System (HDFS), where data is stored across the

different nodes of a Hadoop cluster. HDFS follows a master-slave model where the

master node (NameNode) is responsible of tracking which data blocks are stored

in each slave node (DataNodes). This system achieves resilience to disk failure by

making redundant copies of blocks across different nodes. When a block is under

the desired level of replication, the NameNode schedules the creation of an extra

block copy inside the cluster.

• MapReduce [16], which serves as the processing framework for the Hadoop clus-

ter. It follows the divide and conquer paradigm, where computations are divided

in smaller sets of computations which results are later recombined. All the smaller

computations can them be sent to different DataNodes to process and combine the

result in parallel execution. The name of the framework comes from the two basic

phases to apply in this processing approach:

– The Map phase takes a data record in (key, value) format and produces a list

(key, value) pairs: map(k1,v1) -> list(k2,v2)

– The Reduce phase takes all the different lists from the Map output and

groups them to create a distinct list for each key: reduce(k2, list (v2)) ->

k3,list(v3)

• Yet Another Resource Negotiator (YARN), which is responsible for the al-

location of the MapReduce jobs computation into the DataNodes.
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Figure 1.5: General description of the components of a MapReduce job execution
flow.

Figure 1.5 shows a simplified process flow for a MapReduce job from the point of view of

the classes normally involved. In order to make custom MapReduce jobs, the developer

needs to implement the map and reduce function defined on their respective classes to

process the desired files. If the computation has some more complex requirements, it

is also possible to override the rest of the classes to adapt its behaviour to the specific

problem. HDFS is used to read the input file and write the output file at the end.

Hadoop is implemented using Java and the MapReduce framework provide APIs for

Java, Python and R programming languages. Some recognised Hadoop commercial im-

plementations are Hortonworks [17], Cloudera [18] and MapR [19].

1.2.3.2 Hive

Figure 1.6: Hive logo.

Hive [20] is a data warehouse tool built on top of distributed storage systems like HDFS.

It provides a SQL-like interface called HiveQL and indexing features.
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Hive can be executed in console mode, whereHiveQL queries are interpreted, translated

to MapReduce jobs and sent for execution to the underlying Hadoop instance.

HiveQL is also a more suitable syntax for scripting and through the HiveServer it can

also serve as remote entry point to query a Hadoop cluster.

1.2.3.3 Spark

Figure 1.7: Spark logo.

Spark [21] is a distributed computing framework compatible with Apache Hadoop. It

can be used as a standalone library or in conjunction with different storage engines. Its

most famous set-up is substituting MapReduce in a Hadoop cluster.

Spark is implemented in Scala, an object oriented functional language for the Java

Virtual Machine (JVM), which makes it compatible with Java and the thousands of

libraries on the Java ecosystem.

The project claims to be from 10 to 100 times faster than MapReduce applications and

due to its Scala implementation it also offers a higher and more powerful abstraction

model by using the functional programming paradigm.

Although Scala offers parallel data structures, they are intended for multi-core CPUs

and cannot be remotely distributed. To cover multiple node clusters, Spark provides

a custom data type named Resilient Distributed Dataset (RDD) which has the

following properties [22]:

• Immutability: once an RDD is created, it cannot be changed. This property is

inspired by immutable objects in functional programming, which make this type

of data suitable for distributed computation as it guarantees that the underlying

data is not changed by side effects.

• Distributability: when run on a cluster of nodes, RDDs can be separated in

smaller chunks and sent to different contexts. The dataset also stores metadata

information that allows Spark to recover from system failures.
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• On memory storage: Spark tries to keep all the RDDs in memory as much as

possible and this optimisation is the reason of its performance improvement.

• Strong typing: like Scala types, RDDs are strongly typed, which minimizes the

number of runtime errors. It is also very valuable to receive data type issues on

compile time for processes that run on large datasets.

RDDs also implement most of the native higher order functions available in Scala,

which include map and reduce variations. The use of Scala higher order functions

in Spark leads to very expressive and concise code, in contrast to the verbose nature

of Java and MapReduce.

1.2.4 Open Data portals

In recent years there has been an increasing awareness to promote Open Data access.

In the Open Data movement, a work (e.g: a dataset) is defined [23] as open when it

complies with the following requirements:

• The work is distributed under an open license or under the public domain.

• It needs to be accessible and downloadable via the Internet.

• It is able to be processed, accessed and modified by a computer

• It is provided in an open format, without limiting on the number of times to be

retrieved, no extra monetary costs and it needs to be able to be processed by at

least one free/open source software tool.

Open Data access is, therefore, of key importance for fair collaborations, equality of

opportunities and increase of transparency between organisations, institutions, govern-

ments and individuals.

1.2.4.1 CKAN

Figure 1.8: CKAN open data portal logo.
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CKAN[24] is the most extended open source Open Data Portal at the time. It is being

developed by the non-for-profit organisation Open Knowledge Foundation [25].

The advantages provided by CKAN can be summed up in the following list:

• It is highly customisable, allowing each organisation to develop their own visual

identity.

• It is compatible with well established Content Management Systems (CMS)

like Wordpress and Drupal.

• It provides many extensions for file uploads, data conversions, visualisations and

many more. It also provides and extensive API to develop custom extensions if

needed.

• Its design revolves around the easy of access both for human interaction and ma-

chine communication trough REST APIs.

CKAN is being used to serve open data collections by several governments like the

European Union, USA and Australia [26].

1.2.5 FIWARE platform

Figure 1.9: FIWARE platform logo.

The FIWARE platform [27] is a collection of APIs, namedGeneric Enablers (GEs),

aiming to facilitate the development of Smart Applications. The platform defines in open

specifications how these GEs should behave and work between them and also provides

publicly available reference implementations, named Generic Enabler Reference Im-

plementation (GEris).

The project allows developers to also use private testing virtual machines in order to test

new application concepts based on the technology provided by the own platform. This

way, the project aims to promote the tools and lower the requirements from developers

to develop their initial concept of application.
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In the next sections, some deeper insight on the most meaningful GEris for the project

is provided. However, the platform hosts dozens of varying tools for different needs.

1.2.5.1 Orion Context Broker

Figure 1.10: Orion Context Broker logo.

Orion Context Broker [28] is the GEri oriented on data context management built

on top of MongoDB. The project implements the NGSI9 and NGSI10 standards [29] to

provide an API that allows creation, editing and deleting entities and subscriptions to

changes on those entities.

Among its features, it also provides means to store geolocated data and implements some

basic geoquery operators, although work is still in progress in this aspect.

Orion Context data can be persisted to a Hadoop instance thanks to the FIWARE related

project Cygnus [30], which was designed to work as a data stream processor.

1.2.6 Docker

Figure 1.11: Docker logo.

Docker ([31, 32]) is an open source engine aimed to the virtualisation of software. Docker

provides containers as virtualisation tools instead of virtual machines.
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Both containers and virtual machines pack next to the target software all its binary

dependencies and libraries, but the main difference between them is that virtual machines

also include a complete guest operating system while containers share the base kernels

and run on separate user spaces, which make them considerably more lightweight.

Docker containers are configured by writing the necessary installation instructions on

special configuration files called Dockerfiles. Once the user is satisfied with the config-

uration the Dockerfile can be run to create a static image which can be afterwards used

to spawn several containers without having to compile all the necessary dependencies

form scratch. Both Dockerfiles and Docker images can be published in the Docker Hub

[33] repository, from which other users can reuse already working configurations.

These features make Docker a very useful tool for tasks like deploying cloud applica-

tions, continuous integration (allowing to use containers as development and production

machines) and creating microservices.

1.2.7 Geospatial tools

Figure 1.12: OSGeo and OGC logo.

In the field of geospatial tools and solutions, the Open Source Geospatial Founda-

tion (OSGeo [34]) and the Open Geospatial Consortium (OGC [35]) non-for-profit

organisations play an important role on the open geospatial software scene. OSGeo pro-

motes free and open geospatial software, the open publication of data managed by gov-

ernments and the open education on geospatial technology. On the other hand, OGC

works on designing open standards [36] to facilitate the sharing of geospatial data.

As the focus of the project is to work with Big Data technologies in use cases with

georeferenced data, it is important to describe the main geospatial technologies used in

the following subsections.
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1.2.7.1 PostGIS

Figure 1.13: PostGIS logo.

PostGIS [37] is an extension developed for PostgreSQL databases included in the OSGeo

geographic projects. It provides to a PostgreSQL instance with geographic objects,

functions and predicates implementations, making it a very powerful tool for geographic

data analysis.

1.2.7.2 Java Topology Suite

The Java Topology Suite [38] (JTS) is a Java library which provides an extensive

collection of spatial functions, algorithms and utilities.

The library implements the standard Simple Features Specification for SQL [36]

for the representation of geometric entities. Given its varied and completed API, it is

used by numerous GIS software in the Java ecosystem.

1.2.7.3 OpenStreetMap

Figure 1.14: OpenStreetMap logo.

OpenStreetMap [39] (OSM) is an Open Data collaborative project to create free and

editable maps. OSM map layers are edited by volunteers around the world and its vision
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is to provide free and open georeferenced data in contrast to other services like Google

Maps, where data is distributed under proprietary license.

The maps and metadata hosted in OSM servers can be used to provide a background

map representation for applications with geolocated data.

1.2.7.4 QGIS

Figure 1.15: QGIS logo.

QGIS [40] is a multiplatform Geographic Information System (GIS), that is a set

of tools with means for the organisation, storage, analysis and editing of geographic data.

QGIS is able to manage geographic raster data (which are bitmaps and images like

TIFF, JPG or GeoTIFF), vector data (e.g.: Shapefiles) and connections to PostGIS-

enabled PostgreSQL databases.

Besides providing a wide variety of utilities in its core implementation, QGIS is also easily

extended by developing and installing custom Python plugins to solve domain specific

problems. The development of said plugins are possible thanks to the PyQGIS [41] and

PyQT [42] APIs available in the system.





Chapter 2

Objectives

2.1 Direct objectives of the project

Since geodata handling libraries for with Big Data technologies have not been as devel-

oped as in other fields, the project aims to show some of their current possibilities and

limitations.

Another important objective is showing publication processes to automatically make

data of interest accessible to the citizenship via integration with Open Data portals.

These objectives will be implemented focusing in three different scenarios where different

combinations of technologies will be put into practice. The next sections of this chapter

will provide the initial analysis and requisites of every scenario.

The fist case to tackle is the parsing of GPS logs collected from the cars of the private

transportation service named Uber. The main idea is to upload the logs into a Hadoop

cluster and analyse the data using MapReduce jobs. Afterwards the same solution will

be provided but making use of the Spark framework in order to provide a comparison

between both workflows.

For the second case, the focus will be on collecting AIS messages and parsing them to be

inserted into an Orion Context Broker instance. For persistence storage, the data will

be then connected to a Hadoop instance and after some simple transformations it will

be accessible through a CKAN Open Data Portal

The last case consists on providing a water management system with higher scalability

by storing the history of its changes over time in MongoDB, a non relational database.

In order to reach the highest audience possible for this project document, English was

chosen as the language to be used.

17
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2.2 Indirect objectives of the project

As Big Data analysis and technologies have become a trend, this project aims to introduce

the student in the topic as a possibility for specialisation, which is of high personal interest

given their relationship with distributed systems and distributed programming.

The project will also allow the opportunity to practice server administration skills in-

cluding management of dependencies, compilation of source code as the requirements

arise and managing services.

On the side of the software used, the project provides a perfect environment to analyse,

adapt and implement different software architectures tailored to the use case in sight.

Finally, the student wanted to study and put in practice LATEX. Thus, the current

document has been written using it.



Chapter 3

Requirements

3.1 Hardware requirements of the project

This project has been developed using a personal laptop and a server provided by the

faculty for the student to configure. The majority of the development and testing was

done on the laptop while the server has been used to run the software developed unin-

teruptedly during several days.

In both cases the hardware used was very modest, which makes the project easy to be

replicated for educational purposes:

• Latop hardware description:

– CPU: 64 bits, Intel Core i7-4500, 1.8 GHz.

– RAM: 8 GB DDR3, 1600 MHz .

– Disk: 500 GB hard drive.

• Server hardware description:

– CPU: 64 bits, Intel Xeon L5320, 1.86 GHz.

– RAM: 4 x 2 GB DDR2, 667 MHz .

– Disk: 126 GB hard drive.

3.2 Software requirements of the project

The software requirements to be installed in the machines has been kept at minimum

thanks to the use of virtualisation.

19
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Therefore, to run this project the bare minimum software required in the working ma-

chines was:

• Ubuntu Desktop 14.04 for the laptop and Ubuntu server 14.04 for the server

machine.

• Docker engine to virtualise through containers the three use cases to develop.

• QGIS Desktop to be used as a client program to explore geolocated data.

All the databases and frameworks used in the project have been presented and described

in the state of the art. Given those technologies, the solutions have been implemented

using the programming languages Python, Java, Scala and PHP.

On the side of the software used to develop the project document, the tools used have

been:

• LATEX and Overleaf to write this document.

• Dia, KolourPaint and Inkscape to create the figures and prepare pictures.

• Microsoft Excel to create graphs.

From all the previous software, Microsoft Excel is the only proprietary software used in

the development of this project and associated memory.
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Case 1: Parsing and processing GPS

data.

Figure 4.1: Uber logo.

This first use case is inspired by the on-demand car service company Uber [43]. Through

their user and driver apps, Uber connects users which the need of moving around a city

and private drivers willing to provide such service. The advantages that the application

provides are:

• It allows the users to request for a driver from a simple tap on their smartphones.

• Once an available driver is located, the user is able to see in their smartphone the

location of the driver and how much time is left to be picked up.

• In many cities, the total expense is much cheaper than the local cab service.

• Both driver and user can check on real time the route to follow to the destination.

• The payment process is handled by the application, which transfer the money from

the user to the driver once the trip is confirmed to have finished. This brings the

advantage for the users to avoid carrying cash to pay for such services.

The objective of this use case is to deploy a Hadoop-based architecture to store, process

and visualise GPS data.

21
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Figure 4.2: Driver using the Uber app as a GPS navigator.

4.1 Analysis

The dataset used is an anonymised collection of 1128663 GPS data entries from trips

registered by the Uber application in the city of San Francisco, California [44]. Each entry

of the dataset gives information about the position of an Uber car and it is formatted

as a tab-separated line indicating the ID of the trip, the time at which the position was

read, the latitude and the longitude of the car (see Figure 4.3). The default GPS data

reading update refresh is 4 seconds, but it can register higher intervals, specially if the

car has stopped for a long period of time. The dataset has also protected when the

trips were really registered by translating all the dates to the first week of January 2007,

keeping untouched both the time and the day of the week.
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trip_id iso_timestamp latitude longitude

[...]

00008 2007-01-03T01:00:56+00:00 37.750103 -122.443784

00008 2007-01-03T01:01:02+00:00 37.750390 -122.444010

00008 2007-01-03T01:01:08+00:00 37.750448 -122.444013

00008 2007-01-03T01:01:14+00:00 37.750536 -122.444040

00008 2007-01-03T01:01:20+00:00 37.750493 -122.444141

00009 2007-01-07T05:05:40+00:00 37.790859 -122.402808

00009 2007-01-07T05:05:46+00:00 37.790864 -122.402768

00009 2007-01-07T05:06:22+00:00 37.790995 -122.402539

00009 2007-01-07T05:06:28+00:00 37.791148 -122.402172

00009 2007-01-07T05:06:34+00:00 37.791385 -122.401312

00009 2007-01-07T05:06:40+00:00 37.791405 -122.400776

[...]

Figure 4.3: Fragment of the Uber dataset used.

Given the manageable size of the complete dataset, it is interesting to start working

with it using a sequential approach in order to get familiar with its results and have

a reference implementation. In this way, it is easier to validate and compare future

distributed solutions. The programming language chosen to implement the sequential

solution is Python because it is an already familiar language for the student, which makes

it a perfect candidate for prototyping. The distributed solutions will be developed using

the MapReduce and Spark frameworks, where both will read the input and write the

output using HDFS.

Taken all the previous considerations into account, the tasks to be worked in this use

case are:

1. Configure Docker files to create a Hadoop and Spark container.

2. Clean-up unwanted entries from the dataset.

3. Develop Python script (sequential solution).

4. Develop MapReduce program (distributed solution).

5. Develop Spark program (distributed solution).

6. Develop a Web API service to work with data stored in HDFS.

7. Develop a simple QGIS plug-in to allow the interaction with the previously develop

Web API and the visualisation of results.
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4.2 Design and development

4.2.1 Configuring and installing server side technologies using Docker

All the back-end configuration and installation has been prepared using a CentOS based

Docker container. In order to allow this case to be executed in a general computer instead

of a dedicated and expensive cluster of servers, we only use a single machine acting as a

master and slave in pseudo-distributed mode, which simulates a cluster by allowing

to execute more than one MapReduce jobs in the same machine.

Therefore, as can be seen in Figure 4.4, the software installed in this single container is

Hadoop (which deploys an instance of HDFS and YARN), Spark (which is configured

to make use of HDFS), Hive for basic querying and Apache Web Server for the minimal

web service. The rest of the software is loaded to accessible locations and executed on

top of the previous basic software.

Figure 4.4: Diagram of the docker container configuration for case 1.

4.2.2 Dataset clean-up

Once all the needed software is configured and ready to be used, the first important step

taken was cleaning up the dataset to avoid undesired behaviour. Since all the dates were

transformed into the equivalent day of the week of the first week of January 2007, the raw
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dataset presented undesired jumps "back in time" when a trip took place on the night

from a Sunday to a Monday. The following IDs presented that kind of exceptions and

have been cleaned since they were a source of inconsistency: 7444, 12446, 7048, 13869,

272, 15901, 15710, 5743, 15566, 17577, 24593, and 1381. The data/all.tsv file provided

in the Docker repository for this test case is already cleaned up and in Figure 4.5 we can

see the visualisation of the dataset using QGIS and OpenStreetMap as a source for the

reference map.

Figure 4.5: Coordinates of Uber car trips displayed using QGIS.

4.2.3 Implementing sequential solution in Python

The sequential solution takes a very straightforward approach. The Python script de-

veloped simply takes the file containing the dataset and loops over every line . When

reading every line in order, the program can safely construct the geometry representation

by concatenating the coordinates in every step. Since every GPS reading was sent every

4 seconds on average, the script estimates the total time by adding 4 seconds in every

iteration. This calculation was simplified because the total trip time is not interesting

for the geometric analysis we want to make on the dataset, but it is useful to keep the
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field as a counter for later checks. The distance is calculated by aggregating the direct

distance between each pair of contiguous coordinates by using simple mathematical con-

versions taking into account an average earth radius and later converting into meters .

Every time the IDs of two consecutive entries are different, we can save all previously

collected data in a list and start the data composition for the new trip.

trip_id time distance geom

[...]

00008 312 3940.672 EPSG:4326;LINESTRING(37.773043 -122.422118, ...)

00009 176 1857.461 EPSG:4326;LINESTRING(37.790864 -122.4027688, ...)

00010 96 483.242 EPSG:4326;LINESTRING(37.782616 -122.400599, ...)

[...]

Figure 4.6: Fragment of processed output.

In Figure 4.6 we can observe a tab formatted fragment of the output of the reference

implementation. Every entry of the output file represents each Uber car trip in the

dataset with its ID, the estimation of the trip duration in seconds, the distance covered

in meters and its geometry in Extended Well Known Format (EWKT [45]). In

Figure 4.7 we can see a visualisation of the linear geometries calculated using this process

in QGIS.

Figure 4.7: Reconstructed Uber car trips displayed as line geometries using QGIS.

Now we are ready to proceed with the MapReduce and Spark distributed solutions and

to compare their results from those generated by the sequential Python script.
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4.2.4 Implementing distributed solutions using MapReduce and Spark
framework

The distributed solution follows the same implementation logic as the Python solution

already described. In this case, the raw file is directly read from HDFS and the processing

power is distributed among the simulated Hadoop workers.

When using the MapReduce framework, the program needs to be configured to specify

where data will be read from, which map and reduce processes will be used and to where

the output will be saved. All this set-up is specified in the main method of the program.

The execution of this solution is completed in 4 main steps:

1. The input file is splitted and distributed across the different workers.

2. Every worker maps each line of the partition they receive into a key-value pair. In

this case the key is the trip ID and the value are the timestamp value, the latitude

and the longitude.

3. All the key-value pairs are then sent to a grouping phase where they separated into

groups by key. The value of each key will now consist of a list of values. In this

step there is also a sorting made based on the key of each pair.

4. Finally, the list of values for each group is reduced by calculating the estimated

trip time, the distance travelled and the geometry of the trip. After this step all

the key-value pairs are written to an output file as tab-separated lines.

These steps are the same used when developing in the Spark framework. The main

difference is found in the flexibility of coding thanks to Scala, which is the language

in which Spark is implemented and the native language to execute Spark programs.

One of the advantages of Scala is the ability to code mixing imperative and functional

programming. This feature makes it easier to transition to Scala from Java environments,

adding also the compatibility with existing Java libraries.

The biggest change is in the way the computation is initiated and the syntax of the

implementations. Since Scala is a functional object oriented programming language, it

allows the developer to use higher order functions to achieve the same map and reduce

procedures provided as classes in the MapReduce framework.
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Figure 4.8: Distributed implementation using simple sorting execution overview. T
represents time, D represents distance and C represents coordinate.

Figure 4.8 shows a graphical representation of the process in which we can detect an

undesired effect of this implementation: the grouping stage can provide an unordered

list of values to the reduce stage. This unordered list leads to incorrect results as the

change of the order in which the coordinates are traversed change the geometry of the trip

and also the distance covered. We can visually see the problem with incorrect coordinates

order in Figure 4.9.
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Figure 4.9: Ordering problem when calculating the geometry and total distance cov-
ered by a set of coordinates.

4.2.5 Fixing the incorrect ordering problem in the distributed imple-
mentations

The ordering problem detected in the previous implementation has a simple and efficient

solution by changing the map and grouping stages:

• First, the map stage needs to be updated to produce a composite key which first

part is the trip ID and its second part is the timestamp. The value part of the key

is again the timestamp value, the latitude and the longitude.

• Finally, in the grouping phase, the new implementation indicates the framework

to use a secondary sorting approach. In this case all the mapped values are first

ordered by the first part of the key (the trip ID) to form the groups but then the

groups are grouped in order by the second part of the key (the timestamp value).

This way all the value lists are already in the correct order in an efficient manner,

instead of delegating the reordering task to the reduce phase.

Both solutions for each framework have been kept in the project in order to allow later

reproductions of the simple sorting problem.

4.2.6 Comparing implementations

Before implementing the web service, it is needed to decide which technology will be

used for the back-end processing.
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To visualise the errors made by the implementations without secondary sorting, a set

of Hive tables have been created to read the results from HDFS. Figure 4.10 shows the

SQL statements that let us know the number of trips with the same ID but different

geometry. In the comment after each statement, the actual count calculated can be seen.

We can check the fact that the simple sorting implementations have errors while the

implementations with secondary sorting give the same results as the Python solution.

1 SELECT count(*) FROM python_output py, mapreduce_unordered_output muo

2 WHERE py.id = muo.id AND py.geom <> muo.geom; -- Count: 18540

3

4 SELECT count(*) FROM python_output py, scala_unordered_output suo

5 WHERE py.id = suo.id AND py.geom <> suo.geom; -- Count: 10519

6

7 SELECT count(*) FROM python_output py, mapreduce_ordered_output moo

8 WHERE py.id = moo.id AND py.geom <> moo.geom; -- Count: 0

9

10 SELECT count(*) FROM python_output py, scala_ordered_output soo

11 WHERE py.id = soo.id AND py.geom <> soo.geom; -- Count: 0

Figure 4.10: SQL statements to compute errors between distributed and sequential
implementations.

In Figure 4.11 we can see the comparison of execution time for all the implementations.

As expected, for this small dataset the sequential implementation using Python is the

fastest. It can also be seen that Scala solutions have worst performance for this specific

case, probably because the set-up overhead for the Spark programs was considerably

slower (around 25 seconds).
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Despite its worse performance, Spark is the framework chosen to implement the last task

of this use case because it offers an improvement in development comfort thanks to the

Scala functional programming paradigm.

4.2.7 Developing a simple web service

In order to develop a web service to allow interactive processing of the parsed dataset,

it was needed to find geoprocessing libraries that were compatible with Spark and with

the Java Topology Suite (JTS, [38]), which provides a vast library of transformations

and operations for georeferenced geometries. The most interesting libraries found were

GeoTrellis [46], Magellan [47], GeoSpark [48] and SpatialSpark [49]. After reading

the documentation available and trying the libraries, SpatialSpark was the chosen library

to develop the service example:

1. GeoTrellis functionality was focused on working with raster data instead of vector

data.

2. Magellan does not offer compatibility with JTS objects or EWKT format, but it

only interfaces with GeoJSON format [50]. Since no libraries to convert from

EWKT format to GeoJSON were found, that would have meant an important

extra development.

3. GeoSpark offers compatibility with JTS objects but the library is limited to distance

calculation and inclusion operations (i.e. the geometrical contains operation).

4. SpatialSpark offers compatibility with JTS objects and slightly bigger variety of

operations such as distance calculation, closest neighbours, intersections and inclu-

sions.

Using JTS and SpatialSpark as program dependencies now it was possible to develop

a simple example to be executed remotely. In this case, the data to be processed by

service is the reconstructed geometries of the Uber car trips. Therefore, the program

was designed to accept as input two trip IDs, fetch them from HDFS and calculate the

intersection from both trips using spatial operators implemented in SpatialSpark. In

order to trigger a more complex execution, the service also allows only one trip ID to be

specified. In that case, the program will calculate the intersection of the specified trip

with the rest of the dataset.

It is important to note how JTS and SpatialSpark complement each other in the solution

implemented. Using the function BroadcastSpatialJoin from SpatialSpark library, the
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program is able to compute the trips that intersect with the target trip. However, the

previous function does not provide the value of the intersection (either a point or multi-

point geometry) for which we use the intersection function from JTS library between

each pair of intersected trips calculated by BroadcastSpatialJoin.

From the web service point of view, the only piece missing is the HTTP entry point.

After searching for remote Spark execution, the Livy project [51] was found. However,

the project appeared to be unreliable and with little support because it is in its early

stages of development and is constantly being updated.

Given the lack of options found inside the Hadoop/Spark ecosystem, the entry point was

developed using Apache server and PHP with the Slim framework [52]. With the

Slim framework and PHP, it was straightforward to implement a very minimal REST-like

API to allow the execution the previously compiled Spark programs. The API provides

two entry points, /uber/trips and /uber/intersections, which return the complete

reconstructed trips dataset and the result of the requested trip intersections respectively.

4.2.8 Developing a QGIS plug-in to interact with the web service

Finally, a QGIS plug-in is developed to serve as a user interface in order to command the

execution of the example service, retrieve data and load the results in the QGIS Desktop

application.

For this purpose, a QGIS project configuration is provided where a layer with the base

OpenStreetMaps map is already set.

In Figure 4.12 can be seen the result of the intersection between the trips with ID 15297

and 11862. In the right corner can also be seen the plug-in minimalistic interface: at

the very top the user can introduce the server IP to where the requests will be sent,

below there are buttons to trigger the retrieval of both the point dataset and the linear

reconstruction, and finally the user can specify two IDs and trigger the intersection

calculation.
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Figure 4.12: Result of the intersection between trips 15297 and 11862.

As it was explained in the previous section, it is also possible to efficiently compute the

intersections between a specific trip and the rest of the dataset. In Figure 4.13 can be

seen the result of the intersections with the trip with ID 15297.

Figure 4.13: Result of the intersection between trip 15297 and the rest of the trips
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4.3 Results analysis

In this use case, a complete stack for processing and serving data stored in HDFS has

been developed. The processing has being iteratively improved from a sequential solution

to a distributed solution, taking into account issues appearing when data is processed in

a concurrent fashion.

By developing a REST-like interface to run the processes the result of the computations

can be easily consumed in a user friendly interface and used by GIS technicians.

However, the response time of the REST service and plugin is quite high (from 30 seconds

to 1 minute, depending on the amount of data to be represented on the map). While

part of the issue is due to the amount of data that can be printed at the same time

in the QGIS application, it is an interesting point to take into account to improve the

architecture developed.
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Case 2: Handling data from

acquisition to publication in an

Open Data portal.

Figure 5.1: Port Authority of Las Palmas de Fran Canaria logo.

The Automatic Identification System (AIS) is a maritime communication system

based on VHF radio signal broadcast. It was designed to serve as a complementary

navigation system to avoid vessel collisions [53].

The objective of this use case is to develop a collecting, processing and publication chain

for AIS related data. The dataset used is a fragment from an AIS data stream facilitated

by the Port Authority of Las Palmas de Gran Canaria [54] saved during 2 weeks.

35
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5.1 Analysis

AIVDM/AIVDO is the communication protocol for AIS and all its messages can be

divided between class A and class B systems. Class A systems are compulsory and

reserved for big international vessels, cargo ships and passenger ships with more than 12

passengers. On the other hand, class B systems are meant for recreational ships, other

small vessels and inland stations. An example of a codified AIS message can be seen in

Figure 5.2

!AIVDM,1,1,,A,33Emhr?P2cNqMQD@6<CVGgw@01h1,0*5D

Figure 5.2: AIS message codified.

Although it is hard to obtain information about the protocol, there are different pages

that provide a decoding service to test small streams of codified AIS messages ([55]). Be-

sides, a good resource of AIS protocol documentation and implementation is the AIVDM

page under the GPSD open source project ([56]).

Using the AIVDM/AIVDO specification we can analyse the different AIS messages avail-

able. In the specification there are 27 different types of messages described from which

this simulation only treats the following:

• Types 1 and 3, which report the position of class A vessels.

• Type 5, which reports static and voyage related data (e.g.: ship name and desti-

nation) for class A vessels.

• Type 8, which is binary encoded and also reports static and voyage data but for

inland vessels.

• Type 18, which reports the position of class B vessels.

• Type 24, which reports static and voyage related data for class B vessels
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Figure 5.3: AIS portable receiver.

Given the high frequency nature of the AIS messages (specially when vessels are moving

[57]), it is interesting to provide a complete storage pipeline from which data could be

accessed as soon as possible but also some processed data could be published to be used

in third party applications and analysis. With that objective in mind, the tasks defined

for this use case are the following:

1. Configure Docker files to create and link the system using containers(Orion, Cygnus,

Hadoop, CKAN).

2. Integrate different technologies to capture AIS data and store it into HDFS.

3. Develop a Spark program to process the stored AIS data.

4. Publish the processed data to a CKAN Open Data portal.

5. Create a heat map program and visualise data using QGIS

5.2 Design and development

5.2.1 Configuring and installing server side technologies using Docker

This use case requires the combination of a slightly more complex stack of technologies.

In this case, the back-end configuration (see Figure 5.4) consists on 5 Docker containers:

• AMongoDB Docker container to store context data. This container uses the official

MongoDB version 3.2 image from Docker Hub.
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• An Ubuntu based Docker container with the CKAN open data portal. This con-

tainer will serve to publish data to be consumed by interested users and access to

the portal through HTTP.

• A CentOS based container where the Hadoop platform is installed. In this container

the data processed from the AIS stream will be stored using HDFS. A Spark and

Apache service, similar to one deployed in the Uber use case, is provided to make

remote processing requests. Finally, a data publishing process is also configured

and executed in this container, which will manage and publish data to the CKAN

container.

• A CentOS base container with the Cygnus data connector configured for this use

case. This container is connected to both the Orion container and the Hadoop

container as it is responsible to receive data form Orion and store it into HDFS.

• An Orion Context Broker container to manage context data and serve as the the

entry point to the AIS stream storage processing. This container uses the official

Orion version 1.1 image from Docker Hub. This container is connected the Cygnus

container to persist data to the Hadoop container.

Figure 5.4: Diagram of the docker container configuration for case 2.
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5.2.2 Capturing and storing AIS messages

The original AIS data stream shared by the Port Authority is a text stream sent over

HTTP. However, for this project a portion of the stream was saved to a text file during

2 weeks and said file will be the data source.

The AIS decoding process [58] has been taken from the GPSD open source project

and used as an external library. Two other small utility libraries have been developed

to further process the AIS messages (aisUtils.py) and manage connections to Orion

Context Broker (orionUtils.py).

The AIS decoder used does not provide support for Type 8 AIS messages, which can be

used to broadcast environmental status such as weather metrics or sea level [59]. Since the

stream captures some Type 8 messages, the AIS utilities library provides with a Type 8

decoder function which translates the decoded character string into the different message

bit fields taking as a reference the Type 8 message specification in the AIVDM/AIVDO

documentation.

Using these three utility libraries, the workflow for the data acquisition is very straight-

forward:

1. The script subscribe_ais_entities.py is run to register the subscriptions to the

different messages that will be stored in Orion. The subscriptions are defined in

a way that the state of the different type of messages is notified to the Cygnus

deployed in another container whenever the data changes.

2. Once the subscriptions are created, the utility parse_push_ais_local.py is run.

This script takes every line from the raw data file, convert them into JSON format

and push them to the Orion Context Broker to make it available for real time

applications. Every change in the notifications generates a notification that is sent

to the Cygnus service.

3. The Cygnus service, which was already configured when deploying the container,

receives the Orion notifications, converts them to a one line JSON string and saves

them into the HDFS deployed via its web API. At that point, the messages can be

processed inside the Hadoop platform to inspect them more deely.

At normal speed, that is without forcing delays between the messages read, the complete

file is processed in about 60 hours. Although the Dockerfiles provided allow to repeat

the process from scratch, it has been decided to also provide the processed data exported

from HDFS to the compressed file /data/ais.tar.gz to give the opportunity to skip this

time consuming step.
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5.2.3 Merging AIS messages and publishing to CKAN Open Data por-
tal

The previous set-up takes charge of the persistence of AIS data stream inside the Hadoop

instance. While having the data stored and accessible through HDFS is convenient to

perform batch processing on the dataset, it is interesting to bring access to third parties

in a common format like CVS.

In order to provide this interface, a script is run at consistent intervals of time (every 5

minutes) to join the different types of messages and publish the combined records to the

CKAN instance. Below are described the steps taken to achieve it:

1. Data is originally stored in a folder called input.

2. Every time the scripted program is launched, the current messages stored message

are moved to a working folder named processing.

3. The script then iterates over different partitions of the documents read and pairs

them. In this case, the messages merged are those indicating position information

and the vessel static description by searching by its ID.

4. Two special datasets are created with the IDs 1111111 and 999999 as they are

the result of corrupted IDs and non identified ships (since it is not compulsory to

broadcast the ID for small vessels).

5. With both pieces of information being merged, we can publish the resulting JSON

document to the Demo dataset created during the machine compilation. Each

resource is actually uploaded as a CSV file for the current day of the year.

6. If it is the first time data is being pushed in a given day then a new resource is

made with the current day of the year. The identification is stored in a metadata

folder inside HDFS to know to which resource the data must be updated.

7. After the messages are processed, they are moved to a processed, where they will

remain archived for future batch processing.

Figure 5.5 shows a daily published dataset being accessible through the Open Data

Portal, ready to be consumed by third party software and users interested in the data.
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Figure 5.5: Vessel information served using CKAN Open Data.

5.2.4 Visualising common vessel positions displaying a heatmap in
QGIS

It is also important to validate the data registered by visualising most of the positions

at which the messages are registered. For this purpose the AIS messages are analysed

by observing a heatmap of the surroundings of the Port of Las Palmas de Gran Canaria.

In order to achieve this result, a grid of 10x10 rectangles was created and uploaded into

HDFS to serve as input for the the heatmap calculation. Once the grid is accessible as

an HDFS file, it can be crossed with the position messages for type A and B vessels using

the SpatialSpark contains spatial operator. This operator returns all the ships that are

contained in each grid cell, which allows us to return a matrix of cell and ship count.This

matrix is afterwards loaded using QGIS and a base map to have a visual representation

of the distribution of AIS location messages.

In Figure 5.6 can be seen the heatmap obtained for the processed AIS messages in this

use case. It can be clearly seen that the highest number of messages are registered in the

shore and inside the dams of the port (red and orange tones), which is expected as those
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are the places where many vessels stay docked for long periods of time. The heatmap also

shows that the following highest count cells (light green coloured) are spread downwards,

towards the south of the island which indicates that the vessels registered during that

period of time were mostly traversing that route.

Figure 5.6: Heat map representing the number of vessels inside the area near the
port.

5.3 Results analysis

In the presented use case, a single sensor pusher has been simulated. However, the

system could be later extended by feeding the system with sensors pushing directly AIS

information from different listening stations instead of having a centralized structure.

Such a set-up would be closer to the concept of Internet of Things (IoT), since it can

be quite complicated to have the vessels themselves sending the information directly to

the processing system.

The Data Portal adds an important publication interface to make accessible data valuable

for research and also to increase the transparency of the management of the port.

The biggest advantage of the architecture deployed is that it is now trivial to keep

adding different data stream pushers, data generators or sensors to enrich the data being

collected. When the system stores a higher variety of related data types (like weather

and traffic measures around the port, to name a few) it can be updated by developing

more useful and elaborate analysis processes which generating valuable information for

the Port Authorities.
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Case 3: Integration of a water

management system with MongoDB

This third and final use case is based on a real request from a local water management

company for a history management subsystem in its custom water management GIS.

Therefore, the objective in this project section is to experiment with the generation and

storage of said history database and the implementation of a Point-In-Time Recovery

(PITR) functionality to allow the system to be recovered to a previous valid state.

6.1 Analysis

One of the most important requisites in this system is to provide to the company digitizers

the ability to work on an editing workspace database while all the changes get tracked

on a history database. This set-up allows to implement a procedure to recover the

digitised network to any valid previous state (the PITR process) .

In order to simplify the test case development and the comparison between technologies

and implementations, the code developed for this document is based on a simplified

entity with linear geometry, which represents a network pipe. In the complete system,

there exists many other entities based on the company customised model with different

geometries (points, lines and polygons representing nodes, pipes and working places,

for example) and spatial relationships between them (Figure 6.1). However, all their

relationships with the history database are reduced to the same table to table operations

presented in this simplified case study.
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Figure 6.1: Visualising the water management network in QGIS.

The technologies chosen to implement the proposed history management are Post-

greSQL with its geographic extension PostGIS, and MongoDB. The reason to directly

compare the performance of both databases is because MongoDB is a common choice

for distributed and redundant databases, due to its built-in partitioning and balancing

solutions; and PostgreSQL paired with PostGIS is a very useful and powerful technology

to develop a GIS.

To successfully cover this case, the following steps were followed:

1. Design different solutions for the history management and PITR functionality.

2. Configure Docker files to create containers for the different solutions proposed.

3. Implement the solutions designed.

4. Compare results given by each implementation.

The solutions designed for the described system are implemented using two Docker

containers to keep separated the editing workspace and history space. The technologies

to be used for the three solutions thought are:

1. The first solution uses PostgreSQL for both the editing workspace and the history

database using the PostgreSQL Foreign Data Wrapper (FDW).

2. The second solution uses MongoDB for the history database, connecting the

PostgreSQL database to the MongoDB one using the MongoDB FDW.



Case 3: Integration of a water management system with MongoDB 45

3. The last solution also uses MongoDB to store the history database, but in this

case the connection is done via direct connection made in a custom database

function.

In order to perform the comparison between all three solutions, two different measures

will be collected when executing them. The first measure to compare is the time taken to

insert different network sizes. The second measure is the total time required to recover

a past state of the network.

6.2 Design and development

First of all, the implementation started by defining the sample entity to be used. This

entity will represent a water pipe since it is one of the most important elements of a

water network. The fields of the entity table would then be:

• id: An auto incremented integer value to reference the register.

• geom: The geometry field indicating the type of geometry and its shape. In this

case the type of geometry is linear.

• digitization_date: The date at which the register was first introduced.

• update_date: The date at which the registry was last updated.

• comments: A text type field to allow the user to introduce general comments

about the register.

In the following sections the different implemented cases and the process of automating

and executing the comparison experiments are explained.

6.2.1 History management and recovery mechanism

In the previous section we could see the structure of the entity table. In order to keep

track of changes and start managing the history of the registers of the entity table, the

system needs a history table. In this history table we have the same fields of the

original entity table and the following extra fields:

• register_date: The date at which the action was registered.
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• operation_type: The type of change made to the register. The possible values

correspond with the common SQL operations INSERT, UPDATE and DELETE.

• validation_range: This field indicates the date range where the data for the

current register is valid.

Once the fields of both tables were decided, the process to log the changes in the entity

was defined as the following steps:

1. A digitizer makes a change in the editing workspace database.

2. The change triggers an INSERT operation in the history database where the entity

field values are copied and the extra fields are filled accordingly:

• The register_date is set to the current time of the operation.

• The operation_type is set to the INSERT, UPDATE or DELETE, depend-

ing on which was the original operation on the editing table.

• The validation_range is set to start at register_date and end on infinity.

3. If the operation on the original table was an UPDATE or a DELETE, the his-

tory process searches for the previous history entry of the register and updates its

validation_range field to set the upper bound to the new register_date.

The third step of the log process is needed to clearly specify the date range when the

history entry is relevant. This field is then used in the recovery process, which can be

summed up in the following steps:

1. The user starts the PITR process by providing the date at which the system should

recover.

2. The recovery process searches for all the history entries which validation_range

contains the input date.

3. For every entry recovered from the history table, the process searches for it in the

editing table by its id. From this search there are 2 possible recovery actions to

perform on the editing table:

• If the recovered register is not found, it means that the register was deleted

at some point and the process triggers an INSERT operation.

• If the recovered register is found, then the operation triggered is an UPDATE

with the values provided
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4. Finally, for all the registers in the editing table whose id has not been found in

the recovered entities, the recovery process triggers a DELETE operation, because

they were created after the point in time to be recovered.

It is important to take into account that the PITR process triggers ordinary INSERT,

UPDATE and DELETE operations. Therefore, all recovery operations get registered in

the history table, which allows the user to easily restore the state previous to the recovery

action by executing the recovery process again with the desired date.

6.2.2 PostgreSQL editing workspace with PostgreSQL history database

Figure 6.2: Implementation diagram using PostgreSQL for both editing workspace
and history database using a foreign table as interface.

Figure 6.2 shows the representation of the history management using separate Docker

containers for editing and history databases, both using PostgreSQL as the database

engine.

In order to allow the communicating between both databases, the editing workspace

database has installed a PostgreSQL FDW. With this FDW we can create a foreign

table (named history_entity) pointing to the log table in the history database. This

way all the SQL operations made on the foreign table get transmitted and executed in

the history database remotely and synchronously.

The logging process described in Section 6.2.1 is implemented by defining a trigger func-

tion over the editing entity table written using PL/pgSQL. The recovery process is also

implemented by a PL/pgSQL function named recover_entity which accepts as input
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the date to recover the entity table to. With this approach, the logic for logging and

recovering past states is contained within the system.

6.2.3 PostgreSQL editing workspace with MongoDB history database
via FDW

Figure 6.3: Implementation diagram using PostgreSQL for editing workspace and
MongoDB for history database using a foreign table as interface.

In Figure 6.2 can be seen the implementation of the history system but now using

MongoDB for the history database. In this approach, the approach of using the FDW

techonology was also chosen by installing in the editing workspace the MongoDB FDW

provided by EnterpriseDB.

The most important change compared to the PostgreSQL to PostgreSQL implementation

is that MongoDB does not provide the option to write triggers for changes in collections.

In the PostgreSQL to PostgreSQL, the responsibility to update the validation range for

every register changed relied on the history database by triggering the update function

after each operation on the history table. This is worked around in this implementation

by registering the range update trigger function directly on the foreign table.

Another important change is the addition of the extra _id column in the foreign table.

This change is a compulsory requisite by the MongoDB FDW as the fields in the foreign

table must match the keys of the target MongoDB document and the _id attribute,

which is automatically generated in MongoDB documents in order to make them uniquely

identifiable.
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The implementation of the rest of the functions and triggers is almost identical to the

implementation used in the PostgreSQL to PostgreSQL system, only adding trivial adap-

tations to take into account the compulsory _id field.

6.2.4 PostgreSQL editing workspace with MongoDB history database
via direct connection

Figure 6.4: Implementation diagram using PostgreSQL for editing workspace and
MongoDB for history database using a stored procedure as interface.

The third and last implementation made builds the history system using again Post-

greSQL for the editing database and MongoDB for the history database, as can be seen

in Figure 6.4.

However, this time the connection is managed using only stored procedures instead of

interfacing via FDW and foreign tables. In order to achieve these direct connections

through code, the technologies used were the PL/Python language and the PyMongo

Python module [60].

The PL/Python functions implemented are responsible for inserting the changes made

in the history document inside MongoDB (history_entity_trigger function) and to

retrieve all the document entries valid at the given point in time (get_history_entities

function).

If we compare the documents stored in Figure 6.3 and Figure 6.4 we can notice that

the FDW implementation stores the validation range as a single string while the direct

connection approach stores the lower bound and the upper bound in separated strings.

The reason for the separation is to allow the use of the native filtering functions provided
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by MongoDB, which could not be made over the complete range expression due to its

lack of range operations unlike PostgreSQL [61].

Finally, an extra PL/Python function is needed to set-up the connection to MongoDB

and to load all the necessary Python modules, the _meta function. The reason to

use this approach is that, by default, PL/Python functions do not share any resources

and it heavily punishes the performance of the load of libraries and connection set-ups,

which has to be done for all the function calls. By executing the _meta function at the

beginning of the PostgreSQL session, we can simulate the well-known sharing of loaded

libraries in a normal program execution.

6.2.5 Comparison experiments

In order to make the tests isolated and easily reproducible, Docker containers were

extensively used. For this purpose, a simple Python module to manage the creation and

deletion of testing Docker containers was made.

For each system implementation the script creates an output file where the total number

number of history registers, the total time to generate the whole history load and the

time to recover the first network introduced is saved as a tab separated file.

Each implementation inserts the same n registers, makes a total of Xmaximum updates

and increments the number of updates to be made on each iteration by d. At each

iteration, a new container is created, after the operations described are made and their

execution time is correctly stored in the output file. Once the statistics are saved, the

container is destroyed to leave the same amount of resources for the containers created

in future iterations.

The test script described was run twice to compare between lower and higher loads in

the three different implementations:

• The lower loads graphs were generated by inserting 100 original entities and then

incrementing the number of updates done by 10 during 10 iterations. The small-

est history database generated stored 1100 registers and the biggest stored 10100

registers.

• The higher load graphs were generated by inserting the same 100 original entities

but incrementing the number of updates by 100 during 10 iterations. The smallest

history database generated stored 10100 registers and the biggest stored 100100

registers.
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6.3 Results analysis

First of all, we analyse the insert performance based on the number of entities stored

in the history database. Figure 6.5 shows that when the test generates from 1000 to

10000 updated entities in the history database, the implementation using MongoDB

FDW quickly diverges. In the other two implementations we can observe a more

controlled growth and, also, that up to 10000 history entities the PostgreSQL FDW

implementation is faster than the direct MongoDB connection implementation. What

is more, we can start distinguishing a linear growth for the implementation using the

MongoDB direct connection and a exponential growth for the implementation using

PostgreSQL FDW.
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Figure 6.5: Execution time to generate a lower load on the history subsystem of the
water management GIS.

On the other hand, Figure 6.6 shows that when the test generates from 10000 to 100000

updated entities in the history database, the implementation using the direct MongoDB

connection displays a very slow growth while the other implementations are very no-

ticeably less efficient.

If we now focus on the performance results for past states recovery, we can see in Fig-

ure 6.7 and Figure 6.8 that the MongoDB FDW implementation diverges very quickly

again and that the MongoDB direct implementation has a very slow growth, which com-

pared with the other graphs almost appears like a constant line. In the case of the

PostgreSQL FDW, it is only more efficient than the direct MongoDB implementation for

loads lower than 8000 history entities.
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Figure 6.6: Execution time to generate a higher load on the history subsystem of the
water management GIS.
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Figure 6.7: Execution time to recover the first insert from a lower load on the history
subsystem of the water management GIS.
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Figure 6.8: Execution time to recover the first insert from a higher load on the history
subsystem of the water management GIS.

The reason to this noticeable difference relies on the way FDW are implemented. When

a query is made over a foreign table, data must be sent from origin to the destination

database, and then the query is executed locally. However, in the customised direct

connections made, the queries are executed remotely and then their results are brought

to the destination database.

Despite providing a much higher efficiency both in terms of history entries generation

and point-in-time recovery, the direct MongoDB connection implementation does not

include control over the database transaction. This means that if the update operation

fails in the middle of a network change, the history database does not revert the inter-

mediate changes to the correct state. This feature is provided by the PostgreSQL FDW

implementation and is also missing from the MongoDB FDW implementation given the

different approaches taken by the PostgreSQL and MongoDB engines regarding data

transactions.

Finally, it is interesting to note the usefulness of using Docker containers to develop

and execute the presented tests. This tool has simplified the process for collecting the

relevant information and guaranteeing the same starting conditions for each separate

test.
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Future work

Although during the development of this project many different technologies and ap-

proaches have been used, there are still many lines of work that could be worked in the

future.

The market of Big Data technologies is dominated by the Hadoop ecosystem. It can be

interesting to research about Hadoop alternatives and perform a comparative between

them. This could not only bring insight about different distributed models, but also put

on the spotlight potential new tools to combine with data processing architectures like

the ones worked on this project.

Regarding the first use case (Uber cars GPS processing), the architecture developed is

insufficient for real world application since its response time is too high to be accepted

as it is. This brings the opportunity to work on new approaches to decrease user waiting

time, probably by adding intermediate services to cache results. It can also be interesting

to expand on geoprocessing libraries compatible with MapReduce, as Spark was focused

in order to not broaden the topic too much.

The second use case (AIS data stream processing and publication) already presents a

very flexible architecture. An interesting point of improvement could be adding more

data streams, specially from sensors, which would present different challenges to the

simulated data pusher created. It can be also worth trying other means and alternatives

to CKAN for data publishing.

Finally, for the third case (history management for a water management GIS) the most

interesting path to follow would be to find a development mechanism to be able to revert

unfinished operations in a direct MongoDB connection, and analyses the trade off with

the functions implemented currently.
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Conclusions

The presented project has served as a valuable introduction to many new topics. The

most difficult aspect to tackle has been dealing with a huge field like Big Data, which is

in constant and active development.

However, the selection of tools and different use cases to cover the field has helped on

studying and comprehend a varied set of related skills, which are now a solid basis to

keep on specialising.

It is also worth noting that the concepts and methodologies described have been success-

fully applied to research and development projects of the University of Las Palmas de

Gran Canaria [62–64]. The new paths explored can feedback the original projects, which

inspired the present one, to add further value.
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Appendix A

Comparing non relational databases

In this appendix, a collection of tables comparing several non relational databases is

presented to be used as a concise reference. The content of this comparison tables was

chosen by examining the most common attributes provided by the content curation site

DB-Engines [65]. The information was double checked with the respective databases

official documentation.

The criteria used to compare the databases is detailed in the following subsection. The

concepts described will serve to have a general idea on the different possibilities that non

relational databases provide.

The databases to be compared are: MongoDB[12], CouchDB[66], DynamoDB[67],

HBase[68],Cassandra[69],Accumulo[70],Redis[71],Riak[72],Neo4j[73],OrientDB[74],

Aerospike[75] and Hypertable[76].

A.1 Comparison criteria

A.1.1 Model

Document store

The document stores or document-oriented database management systems organize

data in a schema-free fashion. The records stored are named documents and they

compile a set of attributes or columns. Every attribute can have a variable number

of values (the case of an array). What is important is that documents of the

same category might have a different number of attributes, attributes can be of

different types and values are allowed to be documents themselves, in the case of

nested documents. All these features compose the definition of a schema-free data

management.
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Key-Value store

The key-value stores database management systems only store tuples with two

fields named key and value. In these systems, a value can only be retrieved when

the related key is known.

Wide Column store

The wide column or extensible record stores database management systems also

organize data in a schema-free fashion. In this case, their implementation consists

on records, the columns, with variable number of entries, normally being a very

large set. They can be seen as a two dimensional key-value stores for this reason.

Graph Oriented

The graph-oriented stores database management systems hold data as nodes and

edges, being the edges the relationships between the nodes. This structure make

easier the calculation of properties of the graph like the number of hops between

nodes.

A.1.2 Features

Data Storage

Volatile memory: The database is optimised to make use of RAM memory for

storage.

File system: The database persists data to the operating system file system.

SSD: The database is optimised to work Solid States Disks instead of spinning

disk.

HDFS: The database is built on top of the Hadoop Distributed File System and

persists the data on it.

Bitcask: An Erlang application for key/value storage on disk. It is based on

log-structured file systems.

LevelDB: A Google project for key/value storage on disk. It is based on log files

and sorted by key tables.

Query language

JavaScript: The database employs a query language which syntax is based on

JavaScript expressions.

API Calls: The database does not provide a concrete syntax to query data. In-

stead it provides a query API which is implemented in several programming

languages.
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HBase Shell commands: The shell program for HBase provides with custom

commands to do basic queries.

CQL: The Cassandra Query Language is an inspired SQL variation for the Apache

Cassandra project.

Lucene: The database employs a query language which syntax is based on Lucene

expressions.

Cypher: The database provides Cypher Query Language to make data queries.

It is inspired in the SQL syntax but is oriented towards graph representation.

Gremlin: The database provides Gremlin Query language to make data queries.

It is oriented towards graph representation.

SQL: The database implements a variant of SQL for its implementation language.

Lua UDF: The database provides querying by User Defined Function coded in

the Lua programming language.

HQL: The Hypertable Query Language is an inspired SQL variation for the Hy-

pertable project.

Protocol

Which communication protocols does the database system use?

Conditional entry updates

Does the database allow natively to update data based on conditional queries? (i.e:

set column a to true when column b is greater than 10)

Implementation language

Programming language in which the database is implemented.

A.1.3 Integrity

Integrity model

ACID: It stands for the following set of properties; Atomicity (failed transactions

are undone safely), Consistency (transactions take the database from a valid

state to another valid state), Isolation (concurrent transactions provide the

same result as if they were run sequentially) and Durability (once a transaction

is finished, its result will be permanent no matter what happens afterwards).

BASE: It stands for the following set of properties; Basically Available (the system

always replies, even if the reply indicates data could not be retrieved due

to issues or updates), Soft-state ( the system might be changing even if no

commands are being issued, as it might be converging into a consistent state
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) and Eventual consistency ( the system will converge to a consistent state

some time after the last input received ).

MVCC: It stands for Multiversion Concurrency Control. In general, readers of

the database are able to see snapshots of the data while it is being read. When

a writer finishes updating data, the previous state is marked as obsolete and

the writers are able to know it is not current data, but are still able to access

it.

Transactions

Does the database provide transaction mode commands?

Referential integrity

Does the database provide mechanisms to reference values from the fields of another

entity (document, row, key-value pair)?

Revision control

Does the database provide features to deal with data versioning on every record?

A.1.4 Indexing

Secondary indexes

Can we define several indexes in the entities, besides the primary keys, in order to

optimize searches?

Composite indexes

Are we able to use several columns, pairs or fields to define an index?

Geospatial indexes

Does the database allow for the definition and use of geospatial indexes?

Graph support

Is the database able to provide graph oriented queries?

A.1.5 Distribution

Horizontal scalable

Is the database system able to provide scalability by adding more nodes to the

architecture?

Replication
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Master-Slave: In master to slave replication set ups, the replication of data hap-

pens from a main server/node called the master to every established slave.

Data cannot be synced in the other way around. Some systems define two

modes for this replication to happen:

• Continuous: Whenever a change happens in a master, it is replicated

to the slaves as soon as possible.

• One-shot: The replication is triggered by sending a replication command

to the system.

Horizontal scalable

Replica sets are groups of nodes that keep the same data set. The replication

of data inside the set happens in a master-slave fashion but when the master

is unavailable a new master is chosen via a voting system.

Master-Master

In master to master replication set ups, the replication of data happens from

a master to a slave node. The difference is that now the slave can behave as

a master to a third now and so on.

Cyclic

In cyclic replication set ups, the master and the slave nodes can change roles

and the data flows in both ways.

Multi master

In a multi master or master-less replication set up, any node of the system

is able to receive write commands and propagate the changes to the rest of

nodes.

Synchronous

In synchronous replication set up replication happens to any node of the

defined replication cluster. The main difference here is that a write command

is not acknowledged to be successful until all the replicas confirm that the

data has been propagated.

Sharding

The concept of sharding refers to horizontal partitioning of a database storage.

Therefore, a shard is defined as a horizontal partition of data that is stored on a

particular node of the database. The concept of horizontal partitioning refers to

splitting the dataset by rows instead of by columns or attributes.

Shared nothing architecture

A shared nothing architecture is type of distributed architecture in which each node

is independent and self-sufficient. Therefore, the system does not store any type of

centralized state information in order to coordinate its nodes. The advantages of
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such systems are avoiding single points of failures, the possibility to add self-healing

capabilities and the possibility of making non-disruptive upgrades.

A.2 Comparison tables

Table A.1: Features comparison for non relational databases

DB Model
Implementation

Language
Data storage

MongoDB Document C++
Volatile memory

File System

CouchDB Document Erlang
Volatile memory

File System

DynamoDB
Document

Key-Value
Java File System (SSD)

HBase Column Java HDFS

Cassandra Column Java File System

Accumulo Column Java HDFS

Redis Key-Value
C

C++

Volatile memory

File System

Riak Key-Value Erlang
Volatile memory

Bitcask

LevelDB

Neo4j Graph oriented Java
Volatile memory

File System

OrientDB
Document

Key-Value

Graph oriented

Java
Volatile memory

File System

Aerospike Key-Value C
Volatile memory

File system (SSD)

Hypertable Column C++ HDFS
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Table A.1: (Continued) Features comparison for non relational databases

DB Query
language Protocol

Conditional
entry
updates

MapReduce

MongoDB Javascript Binary Yes Yes

CouchDB Javascript HTTP/REST Yes Yes

DynamoDB API calls HTTP/REST Yes Yes

HBase API calls
HBase shell

HTTP/REST
Thrift Yes Yes

Cassandra API calls
CQL

Binary CQL
Thrift No Yes

Accumulo API calls Thrift Yes Yes

Redis API calls Telnet-like
Binary No No

Riak Lucene HTTP/REST
Binary No Yes

Neo4j CypherQL
Gremlin HTTP/REST No No

OrientDB API Calls
SQL

HTTP/REST
Binary Yes Yes

Aerospike Lua UDF Propietary Yes Yes

Hypertable API calls
HQL Thrift Yes Yes

Table A.2: Integrity comparison for non relational databases

DB Integrity
model Atomicity Consistency Isolation Durability

MongoDB BASE Conditional Yes No Yes

CouchDB MVCC Yes Yes Yes Yes

DynamoDB ACID Yes Yes Yes Yes

HBase ACID
MVCC Yes Yes No Yes

Cassandra BASE Yes Yes No Yes

Accumulo MVCC Conditional Yes Yes Yes

Redis BASE Yes Yes Yes Yes

Riak BASE No No Yes Yes

Neo4j ACID Yes Yes Yes Yes

OrientDB
ACID
BASE
MVCC

Yes Yes Yes Yes

Aerospike ACID Yes Yes Yes Yes

Hypertable MVCC Conditional Yes Yes Yes
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Table A.2: (Continued) Integrity comparison for non relational databases

DB Transactions Referential
integrity

Revision
control

MongoDB No No No

CouchDB No No Yes

DynamoDB No No Yes

HBase Yes No Yes

Cassandra No No No

Accumulo Yes No Yes

Redis Yes No No

Riak No No Yes

Neo4j Yes Yes No

OrientDB Yes Yes Yes

Aerospike Yes No No

Hypertable No No Yes

Table A.3: Indexing comparison for non relational databases

DB Secondary
indexes

Composite
keys

Geospatial
indexes

Graph
support

MongoDB Yes Yes Yes No

CouchDB Yes Yes No No

DynamoDB No Yes No No

HBase Yes Yes No No

Cassandra Yes Yes No No

Accumulo Yes Yes Yes Yes

Redis No No No No

Riak Yes Yes No Yes

Neo4j Yes No Yes Yes

OrientDB Yes Yes Yes Yes

Aerospike Yes No No No

Hypertable Yes Yes No No
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Table A.4: Distribution comparison for non relational databases

DB Horizontal
scalable Replication Sharding

Shared
nothing
Architecture

MongoDB Yes Master-Slave
Replica sets Yes Yes

CouchDB Yes
Master-Slave
(Continuous
and one-shot)

Yes Yes

DynamoDB Yes Master-Slave Yes Yes

HBase Yes
Master-Slave
Master-Master
Cyclic

Yes Yes

Cassandra Yes Master-Master Yes Yes

Accumulo Yes
Master-Slave
Master-Master
Cyclic

Yes Yes

Redis Yes Master-Slave No Yes

Riak Yes Multi master Yes Yes

Neo4j No* Master-Slave Yes No*

OrientDB Yes Multi master Yes Yes

Aerospike Yes Synchronous Yes Yes

Hypertable Yes Master-Slave Yes Yes





Glossary

ACID Atomicity, Consistency, Isolation and Durability. These are normally the char-

acteristics of relational databases like PostgreSQL.

AIS Automatic Identification System.

API Application Protocol Interface.

BASE Basically Available, Soft state and Eventual consistency. These are normally the

characteristics of non relational databases like MongoDB.

BJSON Binary JavaScript Object Notation. Binary format for data storage in Mon-

goDB based on JSON.

CAP Consistency, Availability and Partition tolerance. The CAP theorem states that

only two of those three characteristics can be achieved at the same time in a

distributed system.

CMS Content Management System.

DataNode Slave node in a Hadoop instance.

Dockerfile Configuration file with instructions to create a Docker container.

EWKT Extended Well Known Text. OGC standard format for the exchange of geo-

graphic data.

FDW Foreign Data Wrapper. It is a software extension that allows a database to

connect with and interact with remote data sources..

GE Generic Enabler. It is an free and open API and design description of a FIWARE

solution to a specific problem, for example, the Context Broker GE to manage

context information.

GeoJSON Geospatial data interchange format based on JSON.
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GEri Generic Enabler Reference Implementation. It is a specific example implementa-

tion of a GE, FIWARE Orion is a reference implementation of the Context Broker

GE.

GIS Geographic Information System.

GPS Global Positioning System.

GPSD Open source project to monitor GPS and AIS data streams and receivers.

HDFS Hadoop Distributed File System.

Image (Docker) A Docker image is a snapshot of the state of a container, used to

create quickly create new containers.

IoT Internet of Things. It is a concept representing the ability of a different variety of

devices to communicate and exchange data through the internet.

Job (MapReduce or Spark) A distributable program.

JSON JavaScript Object Notation. A text based format for data exchange.

JTS Java Topology Suite.

JVM Java Virtual Machine.

NameNode Master node in a Hadoop instance.

NoSQL Not only SQL. Another common name for non relational databases.

OGC Open Geospatial Consortium.

OSGeo Open Source Geospatial Foundation.

OSM OpenStreetMap.

PITR Point-In-Time Recovery.

Raster data Image or bitmap encoded geographic data.

RDBMS Relational Database Managements Systems.

RDD Resilient Distributed Dataset. A custom Spark datatype.

REST Representational State Transfer. A distributed software architecture.

SOW Schema-On-Read. It is a processing paradigm where data is normally stored in

raw format and the structure is applied when it is read or precessed.
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SOW Schema-On-Write. It is a processing paradigm where data structure must be

decided before storing the data.

SQL Standard Query Language. The standard programming language to interact with

relational databases.

SQL/MED Extension to the SQL protocol for the Management of External Data.

Transaction Unitary block of actions executed in a database. When an error is raised

during a database transaction, all the operations of the block are undone.

Vector data Object representation of geographic collection of points.

WKT Well Known Text. OGC standard format for the exchange of geographic data.

YARN Yet Another Resource Negotiator. The software responsible to allocate jobs in

a Hadoop instance.
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