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A mi esposa Emi y a mi hijo Julio.
Ellos han sido la fuente a la que he ido a beber
cuando he sentido que mis fuerzas flagueaban.

A Emi con todo mi amor

Si pudiera describir la belleza de tus ojos
Y enumerar con nimeros nuevos todas tus gracias,
El futuro diria: - Este poeta miente;

Tales rasgos celestiales nunca fueron de rostros terrenales.

William Shakespeare (1564-1616)
Escritor y poeta inglés.

A mi hijo Julio con todo mi corazon

Es tu risa la espada
mas victoriosa.
Vencedor de las flores
y las alondras.

Rival del sol,

porvenir de mis huesos
y de mi amor.

Desperté de ser nifio.
Nunca despiertes.
Triste llevo la boca.
Riete siempre.
Siempre en la cuna,
defendiendo la risa
pluma por pluma.

Miguel Hernandez (1910-1942)
“Nanas de la cebolla”. Poeta espariol.
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A mis directores Antonio y Rafa con mucho cario,

«Cantemos a los grandes hombres
- que no se envanecen-

por su trabajo seguido;

y su trabajo conseguido,

ancho y hondo proseguido,

jlos afios lo acrecen!

Alla estaban grandes hombres
para vigilarnos;

nos trataban a baqueta

- podéis creerlo, a baqueta-
maltratados a baqueta.
Decian amarnos.

Juntos cantemos los Grandes
SON nuestros mayores;

pues nos dieron buen juicio

- nos mostraron qué €s juicio -
pues de Dios viene el Juicio;
jvale mas que honores!

Y de ellos lo aprendimos,

no sé como se usa,

mostrando, con su trabajo,

que hay que acabar el trabajo

- bien o mal, cualquier trabajo -
sin ninguna excusa.

Y de ellos lo aprendimos,
casi sin saberlo.

Pero al transcurrir los afios

- s6lo al transcurrir los afios -
sin ayuda, al pasar los afios,
vino el comprenderlo.

Cantemos a los grandes hombres
- que no se envanecen-
por su trabajo seguido;
y su trabajo conseguido,
ancho y hondo proseguido,
jlos afios lo acrecen!»

Rudyard Kipling (1865-1936)
“Stalky & Cia”. Premio Nobel de Literatura en 1907.
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El viento azotaba la bandera del templo, y dos monjes
disputaban sobre la cuestion. Uno de ellos decia que la
bandera se movia, el otro que se movia el viento.
Argumentaban sin cesar. Eno el Patriarca dijo: «No es que €l
viento se mueva; no es que la bandera se mueva; es que
vuestras honorables mentes se mueven».

Doctrina Sutra.

No nos hace falta valor para emprender ciertas cosas
porque sean dificiles, sino que son dificiles porque nos falta
valor para emprenderlas

Lucio Anneo Séneca (4 a.C.- 65 d.C.)
Filésofo, orador, escritor y politico hispano-romano.
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Summary

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not 'Eureka!’ (I found it!) but "That's funny ..."

Isaac Asimov (1920 - 1992)

In the current telecommunication world it is clear the great importance that the
transmission, the processing and the multimedia storage data are getting. In this line, this
Ph.D thesis has focused in the enhancement of the image quality, taking advantage of the
information available in other images related among them, as it is the case of a video
sequence or the successive acquisition of several photographical pictures. In this way a
significant improvement in the resulting image quality is achieved, over the sensor resolution
used to acquire the images. The mathematical basics of these kind of algorithms is a
generalization of the sampling Nyquist criteria. This generalization establishes that it is
possible to reconstruct a signal from several sampling sets in presence of aliasing, if the
sampling periods prove to be different for every sampling set. In the scientific literature these

techniques are known as super-resolution techniques.

When dealing with real image sequences, it is not possible to assure that the shifts
among the low-resolution images will provide a sufficient number of samples that allow a
perfect reconstruction of the high-resolution image. For this reason, the final developed
algorithm has been incorporated with the possibility of performing an interpolation of the
missing data when the lack of new data precludes to improve the image quality. Therefore,
the developed algorithm exhibits a clear improvement on its robustness. In this case, the lower
limit in the quality will be the interpolation quality, that at the sane time is the quality usually
delivered by most of the available commercial systems in the video market to carry out a size
increase.

Although there are currently several algorithms capable of obtaining super-resolution
improvements, all of them present one or more of the following drawbacks:

e Are usually iterative algorithms, unable to work in real time with the present available
technology.

e The high memory requirements drastically put up the costs, sometimes precluding a
viable implementation.

itn realizada por ULPGC. Biblioteca Universitaria, 2008

los autores. Digitali

©Del



Summary

e With the aim of making the problem simpler, the key factor of the motion estimation
is separated from the rest of the algorithm, assuming a perfect knowledge of the
movement prior to start the process. This fact reflects neither a complete nor a realistic
solution to the established problem, although for sure, it will contribute with some

other very interesting information.

In this sense, a complete algorithm that offers real time and low cost performance has
been pursued. Therefore, the design has been carried out by restricting it to the resources
commonly presented in a hybrid video encoder, sometimes performing slight modifications.
By this way, not only the low cost objective has been reached, but also the possibility of
compressing the super-resolution output image has been added. The final implementation has
supposed a typical co-design case, where the more computing intensive processes have been
taken to hardware and the more control related processes have been taken to software.

Besides of the most immediate super-resolution application as it is the increase of the
image resolution, also some applications in the field of colour reconstruction from the raw
data provided by sensors that do not sample all the pixels in all the colour planes, have been
investigated. This situation is quite common in cameras that makes use of the Bayesian
pattern. Other application addressed is to perform a digital zoom over regions of interest using
super-resolution, thus avoiding the use of mechanical parts. Finally, a mixed application that
combines at the same time the colour reconstruction and the digital zoom is presented. The
achieved results show a clear improvement in the super-resolved images obtained by the use
and adaptation of generic hybrid video encoders.
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Resumen

En resumen, la luz es la forma mas refinada de la materia

Louis de De Broglie (1892-1987)
Fisico francés y premio Noébel de fisica en 1929.

En el presente mundo de las telecomunicaciones es patente la importancia que estan
cobrando la transmisidn, el procesamiento y el almacenamiento de datos multimedia. Dentro
de esta linea, esta Tesis Doctoral se ha centrado en la mejora de la calidad de imagenes,
aprovechando la informacién contenida en otras imagenes relacionadas entre si, como puede
ser el caso de una secuencia de video o la toma sucesiva de varias fotografias. De esta forma
se consigue un aumento significativo de la calidad de la imagen resultante por encima de la
resolucion del sensor con que dichas imagenes fueron muestreadas. El principio matematico
que sustenta este tipo de algoritmos es una generalizacion del teorema de muestro de Nyquist.
Esta generalizacion establece que es posible reconstruir una sefial a partir de varias series de
muestras en presencia de aliasing siempre y cuando se pueda asegurar que los periodos de
muestreo sean diferentes para cada serie de muestras. En la literatura cientifica este tipo de

técnicas son conocidas como técnicas de stper-resolucion.

Cuando se trata de secuencias de imagenes reales, no es posible asegurar que los
desplazamientos existentes entre las imagenes de baja resolucién ofrezcan un conjunto
suficiente de muestras que permitan la perfecta reconstruccion de la imagen de alta
resolucién. Por este motivo se ha dotado al algoritmo final desarrollado con la posibilidad de
realizar una interpolacién de los datos ausentes cuando la falta de nuevos datos impida
aumentar la calidad de la imagen resultante. De esta forma el algoritmo desarrollado ve
incrementada notablemente su robustez, estableciendo como limite inferior a la calidad
obtenida la calidad de interpolacidn, que es por otra parte la calidad que ofrecen normalmente
la mayoria de los sistemas usados para aumentar el tamafio de las imagenes.

Aunque existen actualmente diferentes algoritmos capaces de obtener mejoras de
super-resolucion, todos ellos presentan una o mas de las siguientes desventajas:
e Son algoritmos normalmente iterativos, incapaces de trabajar en tiempo real con la
tecnologia disponible actualmente e incluso dentro de algunos afios.

e Los altos requerimientos de memoria encarecen enormemente su coste, y en ocasiones
impiden una implementacidn viable.
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Resumen

e Con la intencién de simplificar, separan el factor clave de la estimacion del
movimiento del resto del algoritmo, asumiendo un perfecto conocimiento del
movimiento antes de iniciar el proceso. Esto no refleja una solucién completa ni

realista al problema planteado, aunque sin duda aporte otro tipo de informacién de
gran interés.

En este sentido se ha perseguido un algoritmo completo que ofrezca prestaciones de
tiempo real y de bajo coste. Para ello, se ha realizado el disefio restringiéndonos a los recursos
comunmente ofrecidos por un codificador de video hibrido, efectuando en algunos casos
algunas modificaciones minimas. De esta forma, no sélo se ha logrado el objetivo de bajo
coste, sino que ademas se ha incorporado la posibilidad de comprimir al mismo tiempo la
imagen de stper-resolucion resultante. La implementacion final ha supuesto un caso tipico de
codisefio, donde se han llevado a hardware aquellos procesos con un procesamiento intensivo
de datos, y que por lo tanto comprometen de forma importante su funcionamiento en tiempo
real, y se ha llevado a software todo lo correspondiente a la toma de decisiones y al control e
intercambio de datos entre los coprocesadores hardware.

Ademas de la aplicacién mas inmediata de sdper-resolucion como es el aumento de la
resolucion de una imagen o de una secuencia de iméagenes, también se han investigado nuevas
aplicaciones en el campo de la reconstruccién del color a partir de los datos en crudo
proporcionados por sensores que no muestrean todos los pixeles de todos los planos de color.
Esta situaciéon es muy comin en cdmaras que utilizan el llamado patrén Bayesiano. Otra
aplicacion ha sido la de realizar zoom digital sobre zonas de interés mediante stper-
resolucidon, evitando asi el uso de elementos mecanicos. Finalmente se ha estudiado una
aplicacién mixta que combina a un mismo tiempo la reconstruccién del color y €l zoom
digital. Los resultados alcanzados demuestran claras mejoras en la calidad de las imagenes de
stiper-resolucion mediante el uso y adaptacién de codificadores hibridos de video disponibles.
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IndeXx

Chaos is but unperceived order.

Sir Fred Hoyle (1915-2001)

Astronomer
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Chapter 1

Make everything as simple as possible, but not simpler.
Albert Einstein (1879-1955)

Introduction

1.1 Introduction

It is clear the great importance that the audiovisual means are getting day by day.
Since the first public projection of previously recorded moving images in 1885, the
acquisition, storage, transmission and reproduction of moving images and in general the
movie factory, has become in one of the most important nowadays businesses. The
application fields of the audiovisual technology are expected to be unlimited: video-
telephony, video-conference, storage of digital video, digital television, Video On Demand
(VOD), mobile multimedia, High Definition Television (HDTV), video cameras, multimedia
systems, etc. Most of these applications can benefit from the inclusion of mechanisms to
improve the quality of images and video. This Ph.D. thesis covers the theoretical and practical
aspects for the real-time, low-cost and low-power implementation of one of such mechanisms
called super-resolution, making use of the resources provided by a generic video encoder.

Super-resolution is the process of generating images with a higher resolution than the
resolution of the sensor used to acquire the images. Due to the fact that the majority of the
images contain abrupt edges, we can not consider that they are strictly band-limited.
Therefore, the sample process will unfailingly involve certain amount of aliasing that, in
general, will be manifested as distortions in the spatial domain, more concretely as the loss of

many details in the image and as a spectrum overlap in the frequency domain. Super-
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2 Introduction

resolution implies a conversion from a lower density sample grid to a higher density one

[Tek95] provided that some amount of aliasing exists in the low-resolution images.

If we want to increase the resolution of an image, the most immediate way would be to
use higher resolution sensors, i.e. sensors with a higher amount of photosensors. The problem
is that, for increasing the density (number of sensors by um?) it is necessary to decrease the
photosensor size and in consequence, the active pixel area, where the light integration is
performed. As less amount of light (photons) reaches the photosensor, this last will be much
more sensitive to the noise generated by the random fluctuations in the motion of charge
carriers (shot noise). It has been estimated [KIA93] that the minimum size of photodetectors
is approximately of 50pm?, limit that has been already reached by the Charged-Coupled
Devices (CCD) technology. One solution to this problem is to perform the resolution increase
by creating algorithms intended to this purpose, as it is the case of the super-resolution
algorithms. Moreover, the use of this kind of strategies allows obtaining images with a
resolution equivalent to the use of higher quality sensors, and that nonetheless have been
acquired using lower quality sensors at lower costs.

The problem that these algorithms have traditionally posed is that their high
complexity implies high computational load. Therefore, their real time implementation it is
only possible when using high-speed and massive-parallel computing hardware platforms. In
this case the savings in the sensor will be concealed by the higher costs of these kind of
systems.

On the other hand, the steady increasing density in the transistors integration provided
by the electronic industry over monolithic circuits, has open the research to new design
paradigms that allow a more efficient use of this higher densities. These paradigms include
the design of large application specific integrated circuits synthesized with modern design
tools, as could be: Hardware/Software (HW/SW) codesign, that starts from the breakdown of
the problem in simpler tasks that will be executed by specific circuits and tasks that will be
executed by programs running on dedicated processors; or the design based on programs
executed by specific instruction set processors. These large approaches are simplified by the
terms ASIC (Application Specific Integrated Circuits), HW/SW codesign, System on Chip
(SOC) and Application Specific Integrated Processor (ASIP) or Application Specific
Instruction-Set Processor (ASISP).

By means of these approaches larger embedded systems can be developed [Erm98§],
[Em97], [GVN+94], [LSV+96], [GZ97], than using the conventional technology developed
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1.2 Objective of the thesis 3

until now through the integration of the components on Printed Circuit Boards (PCB) level or
in Multi Chip Modules (MCM). Nevertheless, the approach that supposes the most direct
translation from the PCB integration to a chip is the previously mentioned SOC [Fos99].

The SOC technology it is only economically feasible for a high volume circuit
production, what means that it must be oriented to large consumer markets. In other cases it
must be arranged in such a way that their architectures can support several applications. The
modules that compose the architecture should be reusable in other products and applications,
either as synthesizable Intellectual Property (IP) models or as a certain re-configurability
capability. This strategy seeks to create multipurpose architectural platforms and the
integrated systems development that follows this strategy is denominated platform based
design.

This thesis pursues the implementation of super-resolution algorithms without having
to recourse to specific hardware, using (reusing) the previously existing resources available in
a SOC platform for hybrid video encoding. This video encoder platform has been developed
by Philips Research and has been named Picasso [PKL+99]. From this point of view, super-
resolution is an added value to the video encoding platform, where it can be used to increase
the resolution of the acquired images, to improve the quality of the decoded images, to
reconstruct the colour of images where not all the colour pixels have been sampled, or as a
way to perform digital zoom without the use of mechanical parts and with a higher quality
than the one obtained by interpolation.

1.2 Objective of the thesis

The objective of this thesis is the analysis, development and implementation of
different kind of super-resolution algorithms, trying to achieve real time and low-cost
performances. In this way the following tasks have been performed:

= To break the iterative nature of the algorithms existing in the literature, as it is
impossible that, with the available resources and with the high computation
load that implies every iteration step, the real time objectives could be met.

* To remove the restrictions those are traditionally imposed to the input images
as: smooth movement and small shifts compared with the image size, perfectly
known shifts, absence of noise and/or blur, etc. The algorithms must be robust
enough to face any kind of input image sequence, as it is the case when real
Image sequences are acquired.
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Introduction

To restrict the components used to only those ones available in the Picasso
hybrid video encoding platform. If the available resources evidenced to be
insufficient or inadequate, the objective will be to study the possibility of
adding new coprocessors or modify the existing ones, keeping always the
compatibility with the rest of the applications supported by Picasso.

These general objectives can be furthermore detailed in the following way:

1.

Analysis and adaptation of the iterative super-resolution algorithms to the
resources provided by the video encoder. Once adapted to the Picasso
platform, all the modifications and new generated versions must be supported
by the same platform.

Creation of new non-iterative super-resolution algorithms. The iterative
behavioural rupture is the first important step through the final objective of this
thesis, and it is probably one of the main contributions.

Adaptation of the non-iterative super-resolution algorithms. Until now, the
algorithms always generate only one super-resolution image per every N input
images, what implies that a sequence of size M frames is reduced to an output
size of M/N frames. It is necessary to face important changes in the algorithms
to switch from a static super-resolution scheme (generation of a single image)
to a dynamic super-resolution scheme (generation of video sequences).
Independence of the algorithm with respect to the input image. As it is usually
very difficult to know a priori the type of images that are going to be grabbed
by the acquisition system, and in consequence that are going to be treated to
increase their quality, the algorithm must be robust enough to dynamically
adapt to the particularities of the input images, seeking to increase the
resolution at the output whenever it is possible.

Imaging applications for super-resolution. Not only increasing the resolution of
images (and therefore their sizes) is a super-resolution application, but also
some other useful applications like image zooming without the use of
mechanical parts, or colour reconstruction when not all the colours samples are
present in the sensor (normally the case), are also possible and taken into
account in this research work.

Finally, the algorithm must be modified in order to avoid using more memory
than the physical amount available on the chip. In this manner we try to avoid
the inclusion of external memory, with the ensuing increase in the data access
delays, in the power dissipation and in the final circuit costs.
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1.3 Summary of results 5

1.3 Summary of results

This Ph.D. thesis has been focused at the improvement of the image resolution by
making use of the information contained in some other correlated images. Examples of such
cases can be found in a video sequence, in the successive taken of several photographs or the
acquisition of several scanned images, where the sensor or the image can be displaced in
every sweep. In this way a significant improvement in the image quality, above the sensor
resolution used to take the images, is achieved. The mathematical principle that sustains this
kind of algorithms is a generalization of the Nyquist criterion. This generalization establishes
that it is possible to reconstruct a signal from several samples in presence of aliasing if it is
possible to assure that the sampling periods are different for every sample set. In the
scientific literature these kinds of techniques are known as super-resolution techniques.

When facing real image sequences, it is not possible to assure that the shifts among the
low resolution images will provide a sufficient set of samples that allows the perfect
reconstruction of the high resolution image. For this reason, the final algorithm set (version 3)
includes the possibility of interpolating the missing data when the lack of new information
precludes the quality increase of the resulting image. By means of this, the developed
algorithm highly increases its robustness, while setting the interpolation quality as the lower
boundary that the algorithm can achieve. As most of the commercial image systems usually
employ interpolation to increase the size and/or resolution of the pictures, the lower quality

boundary of the super-resolution algorithms coincide with the quality that these systems
typically deliver.

Although currently different algorithms capable of obtaining super-resolution
improvements exist, all of them exhibit one or more of the following drawbacks:
o They are usually iterative algorithms, unable to work in real time neither with the
currently available technology, nor probably with the technology available in the next
coming years.

e The high memory requirements largely raise their costs, and sometimes preclude them
from a viable implementation.

e With the aim of simplification, many times the key factors of registration (computing
of the motion) and restoration (data integration) are separated and isolated, usually
assuming a perfect knowledge of the motion before starting the process. Although
such studies are very valuable from a theoretical point of view, they do not suppose a
realistic solution to the faced problem.
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6 Introduction

o For simplicity reasons, several restrictions are imposed to the type of images to be
processed, restricting their application only to a limited set. Once again, this does not

suppose a realistic solution to the wide range of image types that can be found in the
real world.

After studding several super-resolution algorithms (chapter 2) we have opted for
implementing the algorithm outlined in [BK99] by Philips researchers, adapting it to the
platform of a hybrid video encoder Picasso. The algorithms proposed in [BK99] are of
iterative nature, and versions v1.0, vi.1, v1.2 and v1.3 of the super-resolution algorithms
developed in this thesis are based on them, although adapted to be executed on Picasso. The
referred versions belong to the category of iterative algorithms for static super-resolution or
for still image, resulting in a single quality-improved image. The resulting average luminance
qualities, measured as the peak signal to noise ratio, for the used test sequences were of 23.19
dB for version v1.2 and of 28.24 dB for version v1.3, which are the most representative
versions for iterative static super-resolution.

Since the iterative algorithms are unable to reach real time performances with the
available resources, a new type of non-iterative algorithm has been developed. This algorithm
is based on the interpolation of the images into a higher resolution grid, but leaving empty the
pixels not covered by the low-resolution image. These empty pixels (holes) are later filled
with the successive motion-compensated input images data and combined using the concept
of weighted contributions created for that purpose. Additionally, the combination of weighted
images using the contributions concept solves the problems that appear in the image borders.
This first algorithm set is valid for static super-resolution, i.e. for the generation of a single
high-resolution image through the combination of several low-resolution images. Versions
v2.0 and v2.1 belong to this category of non-iterative algorithms for static super-resolution,
and the average measured qualities for both versions are 30.4701 dB and 34.6331 dB
respectively.

The next step was to undertake the problem of dynamic super-resolution, by
modifying version v2.1 and adapting it to a continuous input image flow in order to obtain an
output stream of the same size than the input stream. This has leaded us to version v3.0 and
v3.1. Nevertheless these versions present the problem of requiring large memory amounts,
what has been solved by feeding-back the super-resolution data obtained for the previous
image. Therefore, we have reduced the memory requirements in a factor of 50 when
comparing with versions v2.0 and v2.1, and in a factor of 35 when comparing with versions
v1.2 and v1.3. The reuse of the data from the previous image supposes a dilution of the value
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1.4 Thesis organization 7

of the pixels, although experimentally the quality loss with respect to the previous versions is
less than 2 dB. The average luminance quality for all the test sequence was of 28.6415 dB.

All the algorithms presented are implemented on the platform Picasso, modifying
some components but reusing most of them without performing any modification. By means
of this work, the capability of performing super-resolution improvements has been added at a
very low cost, while keeping the pre-existing codification capabilities.

The final implementation has supposed a typical codesign situation, where the most
compute intensive tasks have been placed in hardware, as they seriously compromise the real
time functioning, and the more related with control and data interchange among the hardware
coprocessors tasks have been placed in software.

We have, in summary, qualitatively and quantitatively demonstrated the quality
improvement for still image and video using super-resolution algorithms implemented over
hybrid video encoders with real time performance, low power dissipation and at very low
costs.

1.4 Thesis organization

This Thesis is organized in seven chapters that can be divided in the following four
thematic blocks: a first introduction block composed by chapters 1, 2, 3 and 4; a second block
that reflects the super-resolution algorithms description and how to map them in the video
encoder platform composed by chapter 5; a third block where some super-resolution
applications are evaluated together with the qualitative and quantitative results of the
experiments carried out, composed by chapter 6; and a fourth and last block with the

conclusions and further research work, composed by chapter 7. Hereafter every chapter is
commented in more detail.

Chapter. 1 Introduction. In this first chapter a general overview about the contents
of the thesis, the targeted objectives, and the motivation that sustains this research, are given.

Furthermore, a first summary of results are presented, that globally gather the thesis
milestones.

Chapter 2. State-of-the-Art. In this chapter is presented the current state of the art for
the scientific objectives of the thesis, focusing on the innovations in super-resolution
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8 Introduction

algorithms, on video encoder architectures based on SOC platforms composed by a processor
and heterogeneous coprocessors and on the algorithm and architectural transformation
methods for the mutual function mapping. A general classification in terms of dynamic and
static super-resolution algorithms is established, being both types covered in this thesis.

Chapter 3. Super-Resolution Techniques. This chapter exposes the theoretical
fundaments of the super-resolution algorithms that form the basis for the subsequent
modifications. At the same time, an initial iterative algorithm in pseudo code that only makes
use of the resources found in a generic hybrid video encoder is proposed. The super-resolution
quality that can be achieved is limited by several factors also studied in this chapter. Finally,
the experimental setup is described.

Chapter 4. The Video Encoder Platform. This last introduction chapter describes
the architecture Picasso for hybrid video encoding, developed by the Embedded System
Architectures on Silicon (ESAS) group included in the Information and Software
Technologies (IST) sector of the Philips Research Laboratories in Eindhoven (Nat. Lab.), in
The Netherlands [PKL+99]. This architecture is based in the CPU-controlled Heterogeneous
Embedded Architectures for signal Processing (C-HEAP) architecture [Lip97]. The super-
resolution algorithms are implemented using the resources available in this architecture.

Chapter 5. Mapping of Super-Resolution onto a Video Encoder. The methodology
followed in the elaboration of the experiments to obtain the quality metrics of the resulting
images and to assess the overall process is exposed in this chapter. The first iterative
algorithms for static super-resolution are shown together with the preliminary results and
some explanations about the super-resolved image quality decrease that takes place under
certain test conditions. With the aim of achieving real-time performances, a new type of non-
iterative super-resolution algorithm is proposed. In this sense, the modifications that drive us
towards this new algorithm are explained. Making use of the concepts of weighted
contributions and feedback of the previous image, a new non-iterative version of the
algorithm for dynamic super-resolution is created, achieving, thanks to the memory
contention, results that allow its on-chip implementation, with real-time performance and low-
cost restrictions. Jointly with the algorithm description and the charts for the memory use,
also the metrics for the image quality in every case are shown.

Chapter 6. Results. Super-resolution can find several applications into the image
processing chain. In this chapter, three main applications are addressed: resolution
enhancement with electronic zoom, colour reconstruction and colour reconstruction with
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1.4 Thesis organization 9

electronic zoom. The first application exhibits a small quality increase due to the lack of
aliasing in the images after the standard colour reconstruction algorithms. The second
application shows good results, but the large increase in the computing load preclude its use
in the sense that other interpolation algorithms can deliver similar qualities at much lower
computational loads, as it is the case of SmartGreen3 from Philips. The third application
modifies the pre-processing in order to keep some aliasing and combines the best of the

previous applications. In this last case, the results clearly overcome other interpolating
algorithms.

Chapter 7. Conclusions and Further Research. This final chapter provides the

conclusions of this research work and outlines some still open lines to be further studied and
developed.
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Chapter 2

All truly wise thoughts have been thought already thousands of
times; but to make them truly ours, we must think them over again
honestly, till they take root in our personal experience.

State-of-the-Art

2.1 Introduction

The possibility of reconstructing a super-resolved image from a set of images was
initially proposed by Huang and Tsay in 1984 [HT84], although the general sampling
theorems previously formulated by Yen in 1956 [Yen56] and Papoulis in 1977 [Pap77]
showed exactly the same concept (from a theoretical point of view). From the Huang and
Tsay proposal until the present days, several research groups have developed different
algorithms for this task of reconstruction, obtained from different strategies or analysis of the
problem.

The classical theory of image restoration from blurred images and with noise has
caught the attention of many researches over the last three decades. In the scientific literature,
several algorithms have been proposed for this classical problem and to the problems related
with it, contributing to the construction of a unified theory that comprises many of the
existing restorations methods [LB91]. In the image restoration theory, mainly three different
approaches exist that are widely used in order to obtain reliable restoration algorithms:
Maximum Likelihood Estimators (MLE) [GW87], [Jai89], [Pra91], [LB91], Maximum A-
Posteriori (MAP) probability [GW87], [Jai89], [Prad1], [LB91], [ZRPO1] and the Projection
Onto Convex Sets (POCS) [You78].

The great advances experimented by computer technology in the last years has led
onto a renewed and growing interest in the theory of image restoration. The main approaches

11
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12 State-of-the-Art

are based on non-traditional treatment of the classical restoration problem, oriented to new
restoration problems of second generation, and the use of algorithms that are more complex
and exhibit a higher computational cost. Based on the resulting image, these new second-
generation algorithms can be classified in: problems of an image restoration [Hua83],
[HK84], [HT84], [Sor93], [Zer92], [Kat90], restoration of an image sequence [KDE+89],
[KKE+91], [KL91], [PTS93], and reconstruction of an imaged improved with super-
resolution [PST94], [EF95], [SS95], [PST95], [SS96], [EF97a], [PRK98]. This thesis is
positioned on the last mentioned approach, both for the reconstruction of static image as for
the reconstruction of images sequences with super-resolution improvements [MPN+02],
[MPN+03a], [MPN+03b].

An alternative classification [ZSHS02] based on the processing approach can be made,
where the work on super-resolution can be divided into two main categories: reconstruction-
based methods [EF97a], [IP93] and learning-based methods [FP99], [BKO00], [CZ01],
[BKO02]. The theoretical foundations for reconstruction methods are non-uniform sampling
theorems, while learning-based methods employ generative models that are learned from
samples. The goal of the former is to reconstruct the original (super-sampled) signal while
that of the latter is to create the signal based on learned generative models. In contrast with
reconstruction methods, learning-based super-resolution methods assume that corresponding
low-resolution and high-resolution training image pairs are available. The majority of super-
resolution algorithms belong to the signal reconstruction paradigm that formulates the
problem as a signal reconstruction problem from multiple samples. Among this category are
frequency-based methods, Bayesian methods, Back-Projection (BP) methods, Projection Onto
Convex Set (POCS) methods, and hybrid methods. From this second classification, this thesis
is positioned in the reconstruction-based methods, as we seek to reconstruct the original
image without making any assumption about the generative models and assuming that only
the low-resolution images are available.

2.2 Image reconstruction using super-resolution

The reconstruction problem using super-resolution can be defined as the objective of
reconstructing an image or video sequence with a higher quality or resolution from a finite set
of lower resolution images taken from the same scene [Ela96], [EF97b], as shown in Figure 1.
This set of low-resolution images must be obtained under different capturing conditions of the
image, from different spatial positions and/or from different cameras. This reconstruction

problem is an aspect of the most general problem of sensor fusion.
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Figure 1. Model of the reconstruction process using super-resolution.

Low-resolution

Among the multiple applications of reconstruction methods using super-resolution, the

following can be highlighted:

®

(i)

(iii)

(iv)

Remote acquisition [CKK+84], [Ghi84], [KIA+93], [KW93], where several
images from the same scene are obtained and a higher resolution image is seeked.
Video frame improvement [BBZ96], [HKK97a], [HKK97b], [AD97], [Egg00].
Due to the fact that analogical video frames are of low quality, they are not
normally suitable for performing directly a printed copy as in the digital
photography case. It is possible to increase the quality of the image using several
consecutive images combined in a higher resolution image by using a super-
resolution algorithm (SRA).

Surveillance systems [Sch02], where super-resolution can be used to increase the
quality in video surveillance systems, making it possible to use such recorded
sequences as forensic digital video, and even to be admitted as evidence in the
courts of law. Super-resolution can also improve night vision systems when
images have been acquired with infrared sensors [SSS00] and the face recognition
process for security purposes [GBA+02].

Text extraction process from image sequences [CZ00] is highly improved if the
Regions Of Interest (ROI) containing the text are first super-resolved.
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14 State-of-the-Art

(v)  Medical image acquisition [GLM+94]. Many medical equipments as the Computer
Aided Tomography (CAT), the Magnetic Resonance Images (MRI) or the
echography or ultra-sound images, allow the acquisition of several images, which
can be combined, thus obtaining a higher resolution image.

(vi)  Improvement of images from compressed video [KG98], [CS98], [ES00], [MF02].
In [APMO02] the image high frequency information recovery, lost in the
compression process, is addressed. These missing data is incorporated from
transform-domain quantization information obtained from the compressed video
bit stream.

(vii)  Improvement of radar images [Can98], [CP98], [CLLO2]. In this case super-
resolution will allow a more clear observation of details sometimes critical for air
or maritime security [PLF+01] or for land observations [WL00], [YYR+01],
[LTZ+01], [TLA+01].

(viii)  Quality improvement of images obtained from the outer space. An example of this
is the results exposed in [CKK+94] of images taken by the Viking satellite or the
resolution increase of the images transmitted from the Mars Pathfinder (Figure 2).

(ix)  Image Based Rendering (IBR) of 3D objects [FIJP02] use cameras to obtain rich
models directly from the real-world data. Super-resolution is used to produce high-

resolution scene texture from an omnidirectional image sequence [NYYO00],
[NYYO02].

(b)

Figure 2. Low-resolution images transmitted from the Mars Pathfinder (a) and the results obtained

by NASA after the super-resolution combination of 10 frames (images obtained from the
NASA website [NASA99]).
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2.2 Image reconstruction using super-resolution 15

Super-resolution techniques are not restricted only to the area of image enhancement.
These techniques can also be used in other application fields. In [TFN+00] a spatial-domain
path-diversity system using a multibean adaptive antenna to reduce frequency-selective fading
and to realize path-diversity is proposed. The authors take four samples per symbol, thus
increasing the accuracy in the estimation of the delays. In [Gin00] a locator with super-
scanned phase array is used to locate objects by emitting probing pulses and sensing the
reflected signals with super-resolution techniques. This technique ensured a substantial gain
in energy and information as compared to traditional radar systems. In [TNB02] a system to
perform a dynamic spatial-temporal measurement conducted at 5.2 GHz in a corridor is
presented. The measurement was performed with a moving transmitting antenna and a fixed
positioned receiving linear array. For the post-processing phase a 2-D Unitary ESPRIT super-
resolution algorithm was used to extract the direction-of-arrival and the time-delay-of-arrival
of the multi-path components. Super-resolution has also been used in [SAM+01] for
improving the resolution of Ground Penetrating Radars (GPR), in [SLJ+00] to better resolve
if the radar echoes contain single or multi-targets under certain conditions (SNR is above 10
dB), and in [XFH+01] to increase the precision in the estimation of the direction of arrival of
a radar signal, thus avoiding the use of larger antenna or operating at higher frequencies.

The problem of an specific image reconstruction from a set of lower quality images
with some relative movement among them is known as the static super-resolution problem.
On the other side, it is the dynamic super-resolution problem, where the objective is to obtain
a higher quality sequence from another lower resolution sequence, seeking that both
sequences have the same length. These two problems also can be denominated as the super-
resolution problem for static images and the super-resolution problem for video, respectively
[ChaO1].

2.2.1 Image reconstruction by static super-resolution

The idea of the super-resolution reconstruction was originally proposed by Huang and
Tsay [HT84] in 1985. They faced the problem from the frequency domain to demonstrate the
possibility of reconstructing an image with improved resolution from several low-resolution
undersampled images without noise and from the same scene, based on the spatial aliasing
effect. They assume a purely translational model and solve the dual problem of registration
and restoration (the registration implies estimating the relative shifts among the observations
and the restoration implies the estimation of samples on a uniform grid with a higher

sampling rate). The restoration stage is actually an interpolation problem dealing with non-
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16 State-of-the-Art

uniform sampling. Other results suggest a simple generalization of this idea to include noise
and blur in the low-resolution observations. Thus, in [KBV90], [BKV93], [Kim9%94] a
recursive algorithm in the frequency domain for the reconstruction of a super-resolution
image from noisy and blur samples based on a weighted recursive least square minimum
theory is proposed. This method is later refined by Kim and Su, who considered the case of
different blurs for every low-resolution observation, using the Tikhonov regularization to
determine the solution of an inconsistent set of lineal equations [KW93]. Also [NMGO1]
solve the Tikhonov-regularized super-resolution problem by the conjugate gradient method
using efficient block circular preconditioners. The authors extend to undetermined systems
the derivation of the generalized cross-validation method for automatic calculation or
regularization parameters.

Ur and Gross [UG92] propose an alternative in the spatial domain, based on the
generalized multi-channel sample theorems of Papoulis [Pap77], Yen [Yen56] and Brown
[Bro81] to perform a non-uniform interpolation of a spatially shifted low-resolution images
set. This step is followed by another one of deblurring. A precise knowledge of the relative
shifts among the input images is assumed. Other registration-interpolation method for super-
resolution starting from observations with sub-pixel shifts is described in [VH99]. Srinivas
and Srinath [SS90] propose a super-resolution reconstruction algorithm based in the
Minimum Mean Square Error (MMSE) approach for the multiple images problem and for the
interpolation of the restored images in one super-resolved image. All these restoration
methods based on the use of super-resolution are limited to global and uniform translations

shifts among the different samples of the same scene, to a Linear Space Invariant (LSI) blur

movement and to homogeneous additive noise.

Peleg [PKS87] and Irani [IP91] suggest a different approach to the super-resolution
reconstruction problem, based on the Iterative Back-Projection (IBP) method, adopted from
the Computer Aided Tomography (CAT). This method starts with an initial prediction of the
output image, projects the temporal result over the low-resolution samples (through
simulation) and updates the temporal prediction according to the simulation error. This
method is not limited, like the previous ones, to specific characteristics of the movement and
allows smooth and arbitrary movement flows. In this case, the registration process uses the
procedure described in [KPB88], followed by an iterative super-resolution algorithm that
minimizes the error between the observed low-resolution images set and the obtained through
the simulation of the low-resolution images from the high-resolution images. As the
registration is performed independently from the restoration, the precision of the method
mainly depends on the accuracy of the estimated shifts. The sub-pixel registration method
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2.2 Image reconstruction using super-resolution 17

described in [KPB88] considers two images as two functions related between them through
horizontal and vertical shifts and an angle of rotation. A serial Taylor expansion is performed
for the obtained image in terms of movement parameters and it seeks to minimize an error
function by the computation of their derivates with respect to their movement parameters.
Nevertheless, the convergence of the proposed algorithm only has been tested for the case of
correlated geometric warps among the taken images [IP93]. A recent application of this
approach is the combination of the information coming from different sensors, as it is the case

of colour RGB sensors using the Bayer pattern [ZP02].

Tom and Katsaggelos [TK95] have taken into account the interdependence of the
registration, interpolation and restoration stages, formulating the problem as a Maximum
Likelihood Estimation (MLE) that is solved with an algorithm for Expectation Maximization
(EM). The problem is considered in a multi-channel environment, where the equation that
describes the creation of the low-resolution images contains shift, blur and noisy variables.
The structure of the matrices implied in the goal function allows an efficiently computation in
the frequency domain. The MLE problem solves the computation of the sub-pixel shifts, of
the variations of noise for every image and of the high-resolution image. In [KIA+93] a non-
uniform sampling theorem proposed in [CPL85] to transform non-uniform distributed
samples, acquired by multiple cameras in a sole uniform sample grid is used. However, if the
cameras have the same aperture severe limitations both in the disposition and in the
configuration of the scene will arise. Using multiple cameras with different apertures solves
this difficulty. In [CBOO] is described a super-resolution method using image warping. The
warp characteristic of the real lenses is approximated by coupling the degradation model of
the acquisition system of the images with the integration stage of the new sampling [Fan86].

Another approach to the super-resolution reconstruction problem is the one proposed
by Schultz and Stevenson [SS95], [SS96]. Their approach uses the Maximum A-posteriori
Probability (MAP) estimator, previously used in the Huber-Markov Random Field (HMRF).
It is supposed that the distortion of the taken images is simply due to the average and that the
additive noise of the samples is an Independent and Identically Distributed (IID) Gaussian
vector. This choice yields to a non-quadratic algorithm complexity problem, with the

subsequent increase in the complexity of the resulting minimization problem.

[WDMO99] proposes a blind restoration algorithm of multi-channel high-resolution
images, using several Finite Impulse Response (FIR) filters. This process consist of two
stages, the first one where a blind deconvolution from Multiple Inputs and Multiple Outputs
(MIMO) using FIR filters is performed and a second one that consists of a blind separation of
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18 State-of-the-Art

the combined poly-phase components. Due to the sub-sample process, every low-resolution
image is a lineal combination of the high-resolution poly-phase components of the high-
resolution input image, weighted with the poly-phase components of the impulse response of
the individual channels. In consequence, the problem is presented as the blind two-
dimensional deconvolution of a MIMO system guided by the poly-phase components of band-
limited signal. Since the blind MIMO deconvolution based in second order statistical
parameters contains some coherent interdependency, the poly-phase components need to be
separated after the deconvolution.

Stark and Oskoui first suggested a set of theoretical estimations of high-resolution
images [SO89] using the formulation of Projection Onto Convex Sets (POCS). The method
was extended by Tekalp [TOS92] to include the observed noise. Moreover, they observed that
POCS formulation could also be used as a new method for the restoration of images with
space variable blur. It was shown that both the problem of reconstruction of high-resolution
images and the space variable restoration could be reduced to the problem of solve a set of
simultaneous lineal equations. Calle and Montanvert face the problem of increasing the
resolution of an image as an inverse problem of image reduction [CM98]. The high-resolution
image must belong to the image set that best fits the reduced estimation. The projection of an
image onto this set provides one of the possible enlarged images and it is called induction.
Therefore, the super-resolution problem is tackled by elaborating a regularized model that
restores data lost during the enlargement process. Other theoretical approaches related to the
POCS concept are exposed in [SO89], [TO92], [PST94], [PST95]. The main result obtained is
the possibility of defining convex sets that represent strong restrictions in the sought image.
The procedure of reconstruction based on POCS obtains the same benefits that the [BP
method previously described: smooth arbitrary movement, lineal distortion variable in space
and no-homogeneous additive noise. In fact, POCS can be better than IBP, as the non-linear
restrictions can be easily combined with the reconstruction process. Nevertheless, the
practical application of the projections that make use of the POCS method is computationally
intensive, limiting their application scope.

Schultz and Stevenson describe in [SS94] a method to increase the resolution of only
one observed image using super-resolution or interpolation. They propose a non-linear
expansion method of the image that preserves the discontinuity, where the MAP estimation
techniques optimize a convex function. Although they take into account both images with and
without noise, they exclude any kind of blur in their model. In [HBA97] an environment to
jointly estimate the registration parameters and the high-resolution image is presented. The
registration parameters, horizontal and vertical shifts in this case, are iteratively updated
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2.2 Image reconstruction using super-resolution 19

jointly with the high-resolution image through a cyclic optimization process. In [HBB+98] a
two stages process to estimate the register parameters followed by the high-resolution image
reconstruction from the knowledge of the optical system and the used matrix of sensors is
exposed. The high-resolution estimated image is obtained through the minimization of a
regularized cost function based in the observational model. Also it is shown as with the proper
choose of the fit parameters, the algorithm exhibits great robustness in presence of noise. To
minimize the cost function both the procedures of descendent gradient and the conjugated
descendent gradient are used. In [BK0O] Baker and Kanade propose an algorithm that learns
based on previous recognitions for some specific types of scenarios and they apply the
algorithm to face and text recognition. They also show that for large magnification factors, the
super-resolution reconstruction restrictions do not allow obtaining more useful information as
the enlargement increases.

Elad and Feuer [EF95], propose a unified methodology that combines the three main
estimation tools in the image restoration. MLE, MAP estimator and the theoretical
approximation using POCS. The proposed restoration method is quite general, but it assumes
an explicit knowledge of the blur and imposes restrictions of smooth movement. They also
propose a hybrid algorithm that combines the benefits of MLE simplicity and the ability of
POCS to incorporate non-ellipsoidal solutions. This hybrid algorithm solves a convex
minimization problem with restrictions, combining all the knowledge that a priori is obtained
from the result required in the restoration process. Cheeseman et al applies in [CKK+94],
[SCMMO00] Bayesian estimation with a Gaussian model previous to the problem of
integrating multiple images of satellites observed by the Viking spacecraft. In addition, some
extensions of this method including tree-dimensional images are presented.

Most of the super-resolution algorithms proposed in the literature are confined to two-
dimensional applications. In [SBZ+96] a three-dimensional version where the high-resolution
albedo of a Lambertian surface is estimated with the knowledge of the high-resolution height
and vice versa is proposed. The surfaces reconstruction problem has been formulated as that
of expectation maximisation and has been tackled in a probabilistic framework using a
Markov Random Field (MRF) model. The idea has been extended to the inverse problem of
simultaneous reconstruction of albedo and height in [SBZ95] using the extension of Papoulis’
generalized sampling theorem to N-dimensional cases.

Within the optical community, the resolution is described in terms of Optical Transfer
Function (OTF). This has lead to a slightly different super-resolution definition. In [Hun95]

super-resolution is defined as the image processing that allows recovering information from
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beyond the spatial frequency bandwidth of the optical system used to capture the image. The
physical size of the image remains unchanged. This can be seen as an equivalent method to
the extrapolation in the frequency domain (Jai98]. The Gerchberg algorithm is one of the first
super-resolution algorithms [Ger74). Here constrains that exist in the object are imposed for
the image in the spatial domain. The modified image is transformed to the Fourier domain
after which constrains are imposed in the Fourier domain on the Fourier data. These
constrains typically arise from the knowledge of the Fourier transform below the diffraction
limits. The modified Fourier transform is then inversely transformed to the spatial domain.
Walsh and Delaney present a modification to the Gerchberg algorithm that directly computes
the components of the spatial frequencies above the diffraction limits [WN94]. Shepp and
Vardi use an iterative technique based on a ML estimation of the Poisson statistics in the
emission of positrons for Positrons Emission Tomography (PET). Hunt and Seminelli
propose a similar algorithm where the Poisson statistics are assumed and a MAP estimation is
iteratively reconstructed. The performance of such super-resolution algorithms has been
studied in [SHN93]

In [Raj01], [RCO1a], [RCO1b] the authors expose an interesting application of the
super-resolution techniques. The defocus blur due to different objects depth in an image with
real aperture is used as a natural clue in the super-resolution process. The concept of depth
from defocus in [CR99] has been incorporated in this scheme to recover the unknown space-
varying defocus blur. As the depth is related with the relative blur in two or more
observations of the same scene, it is possible to recover a high-density depth map. The author

proposes a method for simultaneous super-resolution MAP estimations of both the image and
the depth fields.

Mosaicing and super resolution are two ways to combine information from multiple
frames in video sequences. Mosaicing displays the information of multiple frames in a single
panoramic image. Super-resolution uses regions that appear in multiple frames to improve
resolution and reduce noise. In [ZP00] a way for constructing a high-resolution mosaic from a
video sequence in an efficient way is presented. Simple combination of the two methods is
problematic since the alignment used in mosaicing may not be accurate enough for super
resolution. Another issue is the efficiency of the super-resolution algorithm, which requires
heavy computations, especially when applied to large images such as panoramic mosaics.
Video sequences of a scene can be compactly represented in a single image using panoramic
mosaicing by projecting the images to a common manifold [Sze96], [PH97], [RPF97],
[RPFR98], [PRRZ00]. The overlap between the input images can be used to increase the

resolution of the mosaic and reduce noise, by applying the super resolution described in
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2.2 Image reconstruction using super-resolution 21

[ZP98]. However, the proposed super-resolution algorithms solve a very large optimization
problem, and thus are computationally costly. They also require very accurate alignment over
the entire image. In [SWO01] a similar approach is presented but filtering the images prior the

motion estimation to avoid aliasing and based in a global movement model.

More recently, Kursun and Favorov [KF02] propose a biological inspired method,
based on a cortical model for perception, which takes advantage of the local dependences
among pixels inherent in natural images. The work is based in the detection of regularities in
the images that can be used to predict the interpolated pixels more accurately. The system is
implemented in the form of a neural network that is modelled after the cerebral cortical
network. One of the main problems of this method is how to train the sixteen neuronal cells to
properly identify regularities. Moreover, it is not clear if the neuronal network will reach the
same hits percentage in the regularities detection when the input images largely differ from
the ones used to train the neuronal network.

In the previously commented results, the super-resolution problem has been defined as
the objective to create a particular image of higher quality from a finite set of lower-quality
images. All these results are based on an estimation of the motion (registering) among the
initial images. Nevertheless, there exist several circumstances where the estimation of the
motion is very difficult to be performed (for instance, in case of brusque movements and
changes of the scene). In these cases, the obtained super-resolution reconstructed image is of
low quality when classical block-matching motion-estimation and has few practical utility. On
the other hand, most of the proposed methods lack feasible implementations, leaving aside the
more suitable process architectures and the required performances in terms of speed, precision
or costs.

2.2.2 Image reconstruction by means of dynamic super-
resolution

An important and direct generalization of the specific image restoration application is
the restoration of continuous image sequences [KDE+89], [KKE+91], [KL91], [PTS93]. The
“continuous” term is referred to the basic assumption that the image sequence contains a
filmed scene, with small motion vectors compared with size of the images. A standard video
camera is supposed to be the main signal source. The theoretical interest of this problem
resides in the fact that the required solution somehow implies a generalization of the known

results of the still image restoration theory. Moreover, from a practical point of view, the
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22 State-of-the-Art

dynamic super-resolution reconstruction allows to remove the additive noise in a continuous
image sequence, which is an important pre-processing procedure in several applications such
as video encoding and computer vision [Lee80], [KSS+85], [ML85]. Deblurring this kind of
images is not only an important technique to improve the visual data before showing them to
a human observer or to an automatic system but also is a key phase in pre-processing. In spite
of its importance, this problem of restoration of an image sequence has not been so widely
considered as image restoration. This can be due in part to the memory requirements and the
computation load required when even the simplest restoration algorithm is applied to such
images. The existing restoration methods for continuous image sequences [KDE+89],
[KKE+91], [KL91], [PTS93] are only those whose simplicity properly reduce the
computational requirements, however providing some compromising solution acceptable in
the results. The simplicity is typically accomplished by making assumptions in the models,

such as immobility, homogeneity, causality in the image surface and locality in the deblurring
filter.

As it was previously commented, most of the super-resolution algorithms applied to
video are really extensions of their counterparts for still images. Irani and Peleg minimizes the
average quadratic error between the observed and the simulated images using a retro-
projection method similar to the one used in the computer aided tomography [[P93]. This
method is the same as the one used by them in the still image super-resolution from observed
shifts. Nevertheless, here the key factor is the accurate computation of the image movement.
After computing the movement for different regions of the image, such regions are improved
by the fusion of several successive frames that converge in the same region. Possible upgrades
include an increase in the resolution, the filling of regions with occlusions and the
reconstruction of transparent objects. Previously, in [KPB88] the same difference was
minimized, but the minimization method was relatively simple: every pixel was examined and
its value was at the same time increased in one unity, leave unchanged or decreased in one
unity in such a way that a predefined cost function would decrease. In [BBZ96] a cost
function is optimized that, besides of the quadratic differences between the observed low-
resolution images and the simulated images, it contains continuity restrictions of second order
of the reconstructed image. Likewise, the simulated low-resolution image takes into account

the blur due to the movement, the optical blur and the average of the signal in every CCD cell
due to the spatial sampling.

Schultz and Stevenson {SS96] use the modified algorithm for the hierarchical blocks
adjustment to estimate the sub-pixel shift vectors and next solve the problem of estimate the
high-resolution frame given a low-resolution sequence, as formulated using the MAP
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2.2 Image reconstruction using super-resolution 23

estimation. This leads on to an optimization problem with constrains with a unique minimum.
This method is similar to theirs own static image expansion method described in [SS94]. In
[PST97] a complete method for video acquisition with arbitrary sampling grid and non-zero
aperture time is proposed, by using an algorithm based on this model, using the POCS theory
to reconstruct high-resolution video from low-resolution image sequences. However, the
performance of the POCS based super-resolution algorithm will be eventually limited by the
effectiveness of the motion estimation. Of course, this fact can be applied to any super-
resolution algorithm based on the motion estimation. In [EST97] the technique introduced in
[PST97] is extended to scenes with multiple movements objects, introducing the concepts of
validation maps and segmentation maps. The validation maps were introduced to allow robust
reconstruction in presence of errors in the estimation of the movement. The segmentation
maps allow objects based processing. Moreover, the proposed method is capable of handling
occlusions. The super-resolution algorithm for video improvement proposed by Shah and
Zakhor [SZ99] also takes into account the fact that the motion estimation used in the
reconstruction process can be inaccurate. With this aim, their algorithm searches a set of
candidate motion estimations instead of only one motion vector for every pixel, and then a
dense motion map with sub-pixel precision using both the chrominance and the luminance
values is computed. The high-resolution frame estimation is subsequently generated by means
of a method based on the Landweber algorithm. In [HKK97] a smooth convex function with
multiple inputs is defined in order to obtain a high-resolution video sequence globally
optimal. Baker and Kanade propose an algorithm for the simultaneous estimation of super-
resolution video and optical-flow [Sin92a], [BFB94], taking as inputs conventional video
sequences. This algorithm is especially useful when super-resolving sequences of human
faces.

2.2.3 Motion estimation

An important factor in the recursive process of super-resolution reconstruction is the
scene movement, which must be estimated from the captured images. There exist many
approaches and methods for the motion estimation task between two given images [LK81],
[Ter86], [Chi92], [CKM+93]. A group of these methods widely analyzed is the differential
frame, initially proposed by Hom and Schunck [HS81]. In their approach, the motion
estimation task is converted in a lineal estimation problem, where the movement is defined
through motion vectors for every pixel, called optical flow [BK99b]. The main drawback of
the Horn and Schunck approach is that their algorithm completely forgets the previous motion
estimation results available in the image sequence, besides being an iterative method not
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suitable for working with real time constrains. The method detaches the problem of plane
changes in the scene and assumes that the movement flow is smooth in the time.

Chin and Willsky [CKM+93], [Chi92] propose a generalization of the Horn and
Schunck algorithm, with the aim of overcome the inconvenient of not using the previous
estimation results. Their algorithm is a very complex approach to the well-known Kalman
Filter [CC90], applied to the optical flow recursive estimation task. Other authors had tried to

make use of the temporal smoothness of the optical flow, as it is presented in [Sin92b],
[FL95].

The motion estimation plays a crucial role in any super-resolution application
[SSO99], [Bov00]. In fact, it is not possible to do any super-resolution reconstruction without
appropriate motion estimation among images. This problem is the base of our interest in the
motion estimation field. Another important motivation to concentrate our attention in the
motion estimation is the fact that for the different approaches of the motion estimation, the
obtained representation model is closely related and is very similar to the model obtained for
the dynamic super-resolution reconstruction problem, which means that the solutions
proposed to solve one of the problems can equally be valid for the other one.

Although the previously exposed method for the motion estimation are very accurate,
and moreover the super-resolution algorithms are very sensible to the precision achieved by
the motion estimation, in this Thesis an alternative method has been adopted widely used in
the video coding systems: the block matching method [BK96], [HB98], [0198], [Bot00]. The
lower precision of this method is compensated with its high-speed computation time, reaching
real-time performance in the majority of the cases. The main drawback of the block matching
is that it delivers a motion vector that is shared by the whole block of pixels, in contrast to
other methods that are capable of estimating the individual movement of every pixel. On the
other hand, the block matching methods are less influenced by the noise, increasing the
convergence of the solutions. Additionally, the motion estimation resolution has been
incremented to sub-pixel values, so increasing the sensibility of the system to small shifts. In
[Tri01] the author takes an empirical approach, finding optimal sub-pixel interpolation filters
by direct numerical interpolation over a large set of training examples generated by sub-
sampling larger images at different translations. In addition, there exist block matching
motion estimators in the DCT domain [KC98] very suitable for being used in video codecs,

but their high complexity precludes them from the targeted performances of low-cost and
real-time.
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2.3 Image and video processing architectures 25

2.3 Image and video processing architectures

Once an algorithm has been developed and its functioning has been verified at the
behavioural level for image processing, especially if it is targeted to achieve real-time
performance, it will be necessary to implement it over some hardware/software platform. It is
difficult for the image processing algorithms to offer real time performance in a full software
implementation, as they usually include very intensive computing tasks. For instance, in
[DBP+00] to obtain a 512x512 image from a sequence of ten noisy 256x256 noisy images at
least 20 seconds are needed on a Sun Ultra 60 at 360 MHz, which is clearly far from real-time
processing, for which less that 33 milliseconds are available to process every incoming frame
at 30 frames per second. The usual way to solve this problem is through the partitioning of the
algorithm, splitting up the intensive computing tasks, that will be mapped in hardware
coprocessors and the intensive control tasks, which will be mapped in some more flexible
components like programmable processors. By this way, we reach a trade-off solution, where
the final system will increase its performance while keeping an acceptable degree of
flexibility. In the following sections, different possibilities will be shown to select the image
processing functional blocks.

2.3.1 Standard processors adapted to support video

The time employed to execute video processing applications in the conventional
processors largely overcomes the reasonable limits. That is why new approaches to the
construction of multimedia systems have started to grow.

The architecture designers have observed that the size of the data types provided by
most of the processors is excessive to store the structure and the dynamic range of the
multimedia information that it is going to be used. When an eight-bit data is stored in a 32 or
64 length word some space is wasted. Nevertheless, a 32-bits length word can simultaneously
stored four 8-bits data. In the 64-bits processors, this store capability can be increased to eight
8-bits data or four 16-bits data. Therefore, a lower amount of storage units can store more
information. If these data aggregations are treated as valid data formats and the data-path is
modified in order to allow the concurrent execution of every different data field, then the
execution time of the multimedia applications can be considerably speed up. These new
operations employ the same Single Instruction Multiple Data (SIMD) techniques as used by
some multiprocessors, where the same instruction is executed on different data. The achieved
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acceleration allows the encoding and decoding of video in applications of low bit rate and can
also achieve compressed video decoding for medium resolution in real time.

Based on that ideas and objectives, Hewlett-Packard designed the PA-7100LC, which
incorporates a small multimedia instruction set denominated MAX-1 [Lee95]. After this, Sun
Microsystems introduced these kind of extensions specially developed for multimedia
applications in their UltraSPARC processors. This instruction set extension was denominated
Visual Instruction Set or VIS [VIS], [KMT+95], [TONH96].

Some time later Hewlett-Packard developed the MAX-2 [Lee96], which consisted of
the MAX-1 with some incorporated new instruction for data alignment and greater sub-words
parallelism. Likewise, Intel incorporated the MMX instruction set in their Pentium processors

[PW96]. These extensions were very similar to the previous ones, additionally incorporating
instructions for the parallel multiplication of sub-words.

Other foundries that have used similar techniques are Silicon Graphics, that introduced
MDMX [MIP97], and Compaq with its MVI instruction set for the Alpha processor 21264
specially thought to speed up the MPEG-2 algorithm.

In this sense the author developed a SPARC v.8 in VHDL [Mar95] which was
extended with VIS based instructions of the UltraSPARC processors [BMC+96].
Furthermore, this work allowed establishing a methodology for fast prototyping of High
performance RISC processing cores oriented to multimedia using VHDL [BMC+97].

Practically all the new standard processors are being developed with some real-time
video processing capabilities. As the 600 MHz clock frequency has been widely exceeded,
many standard processors are able to process low-resolution video. These processors with

extensions in their instruction sets are sometimes call Native Signal Processors (NSP)
[LBSL97], [Lap95].

2.3.2 DSPs and Application Specific Signal Processors
(ASSPs)

In many circumstances and due to the application characteristics, the nature of the
tasks that are going to co-exist and be interconnected is diverse. For a great amount of tasks it

could be of interest that the processor, even having a general purpose instruction set,
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2.3 Image and video processing architectures 27

comprises certain kind of specialized structures that eases the execution of specific processing
methods. In this sense it is said that the processor is oriented to a specific application domain
[BCF+97]. Typical examples of specific domains are the ones oriented to signal processing,
both for audio and video data streams. This supposes a further step in the way of the
specialised architectures with respect to the category exposed in section 2.3.1 based in

extensions to the instruction set.

In this kind of processors, the architecture can incorporate certain structures that allow
speeding up the execution of specific operations needed in such domain related applications.
This choice has leaded to, among others, the Digital Signal Processors or DSPs. As an
example, the DSPs usually include a multiplier to speed up the multiplications and, in some
cases, specific hardware to support the consecutive data indexing. The consecutive data
arrangement is an organization typically used to store tables of data (that normally come from
signals that continuously evolve in the time). In such way, the execution of these sub-tasks is
carried out in a shorter time, and additionally, in some particular cases, it is not necessary to
include specific external circuitry to perform them, therefore avoiding an increase in the
' system costs, achieving a better global performance.

Inside the IUMA research group the TMS320 family from Texas Instruments [DSP]
has been widely used, starting with the design of a standard-cell version of the TMS320C10
in 1992 [BNCS92]. Concretely, the author developed a parallel algorithm for the MPEG
encoding loop capable of dynamically distributing the computation load among the four
VLIW processors available in the TMS320C80 [GMC+98].

An important problem in this is the decision about the processor word length. There
exist some tools [fro] and methods [SK95], [SVR+97], [CRS+98] to obtain and refine fixed
point implementations from a high level analysis in MATLAB or C++ in floating point.

A wide documentation about DSP cores available for the integration of systems on a
chip can be consulted in [Bie95]. It is highly suggested to consult guides of DSP core sellers,
as for instance could be [ISD]. Examples of incorporation of modified DSP cores for
Application Specific Signal Processor (ASSP) architectures can be found in [SM95],
[Mad95]. The program RASSP from ARPA keeps information of their results in [RAS].
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2.4 Video specific processors

The computational load of multimedia processing is dominated by the video
processing tasks [Pir98], [Ack93], [Ack94], [Ack95], [Nun95]. These tasks require
performing complex operations over great amounts of data at high sample rates. Real time
requirements appear in order to accomplish with the requirements of the Human Vision
System (HVS). Moreover, it is necessary to manage different data type flows (more
frequently denominated streams, and stream processors to the processors that cope with
them). The viability of many multimedia applications depends on compression schemes that
ease the transmission and storage of multimedia data. Among the existing compression
standards the following can be highlighted: H.261 [H261}, H.263 [H263], H263+ [H263+],
H.263++ [H263++] and H.264 [H264] of ITU-T, which cover communications applications
such as video-phone; MPEG-1 of ISO[MPEG1], employed in the storage and CD-ROM
reproduction; and the more generic MPEG-2 standard {H262], oriented to applications such as
TV broadcasting or video under request. The MPEG-4 standard of ISO [MPEG4], uses a
more efficient encoding approach, offering greater functionality like integration of synthetic

and natural sources, use of independent video objects and user interaction based (or guided)
. on the contents.

The scientific literature about video specific processor architectures is very wide. In

this brief summary we will follow the classification of [Fer98], [SPM98] for the most relevant
VLIW issues.

As the multimedia algorithms are considerably sophisticated, the commercial success
of the applications relies on their efficient execution on standard high-performance processor
or on their VLSI implementation. The present standard processors (RISCs, super-scalars, etc.)
cannot execute generic multimedia applications without performing previous adaptations.
These processors are neither adapted to the signal processing nor to the stream processing.
Moreover are too expensive and the power consumption is too high for portable multimedia
applications, the field that expects a high growth for the next years. At the same time,
although the standard DSPs are oriented and optimised for the speech an audio processing,
they cannot reach the high performance demanded by the video applications. In consequence,
new architectures specifically adapted to video processing, derived from standard processors
and DSPs are being developed, always targeting low-cost restrictions. Currently there exists a
convergence process among them. The first ones used to be oriented to low-binary rate
applications or to real-time decoding. The second ones used to challenge the real-time MPEG-
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2 encoding, as well as the higher levels and profiles of the standards. The monolithic
integration of a MP@ML MPEG-2 decoder dates from 1994 [Tho94]. Nowadays many
companies as Thomson, ST Microelectronics, Intel, LSI Logic, C-Cube, IIT, Amphion or
IBM comprise these decoders, where the main market is the user set-top boxes of equipments
connected to TVs. There are also available MP@ML MPEG-2 encoders on a chip, as the
ones from DV*5110 and DV*6210 [Ccu97], but the problem of designing integrated encoders
on a single chip for higher levels and profiles is still a challenge much more complex than
decoding. Afterwards, we will review the evolution of these kinds of architectures in the last
decade.

The specific architectures can be classified into fixed and programmable. The fixed
ones used to be composed by a control unit and several specific units dedicated to different
parts of the algorithm adopting an ASIP or ASSP architecture type. The programmable
specific ones, denominated VDSP or VP, are composed by one or several programmable data-
paths with less specific structures programmable, configurable or parameterizable. They offer
higher flexibility and usability as the standards evolve. The standards evolve in terms of
image resolution, output binary rate, syntax of the binary steam, variation margins of different
parameters, interpretation algorithms, error resilience and concealment, temporal and spatial
SNR scalability, etc., but many computing structures are commons. The progressive
transparency in the visibility of the computing structures at the instruction format level has
lead to a programmable specific architecture variant denominated Very Long Instruction
Word or VLIW.

a) Fixed ASIP architectures

The Video RISC Processor (VRP) CL4000 [Bur93] is a scalable ASIP. With two
VRPs it is possible to code MPEG-1 in SIF format. With 10 VRPs MPEG-2 MP@ML is
coded [BK96]. A sole VRP2 CL4100 can code MPEG-1 in real-time.

The VideoFlow [Lee94] can code with two chips H.261 in CIF (Common Intermediate
Format) or MPEG in SIF. The Enc-C and Enc-M of NTT [Kon96, Ike96] can code MPEG-2
SP@ML. All these architectures are ASIPs.

b) Programmable V-DSP architectures

Among the V-DSP specific heterogeneous the following architectures can be found
the Vision Controller (VC), the Video Processor (VP) [Bai92] and the VCP [IIT93] from IIT,
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the AVP1300E for H.261 or the AVP1400E and the AVP4310E [Ack93] for higher levels,
both from Lucent Technologies, the VDSP [Aon92] and VDSP2 [Ara%94], [Toy94], [Aki94]
from Matsushita, for MPEG or the chip-set VISC from LSI Logic [LSI96] for MPEG-2.

Among the V-DSP homogeneous programmable specific architectures, the VSP3
[Ino93], [Eno93] from NEC can be found, that can code H.261 in CIF, or the HiPAR-USP
[RK96] that can code MP@ML MPEG-2 without motion estimation. These architectures are
homogeneous; the coprocessors work on different parts of the entire image.

¢) Programmable VLIW architectures

The architectural trend of tight coupling the coprocessors or functional units with the
same control unit has lead to the mono-processor architectures of Long Instruction Word
(LIW) or Very Long Instruction Word (VLIW) [NC89], [FDF98]. These processors are very
suitable for multimedia applications, specifically for image and graphics processing, and, in a
lower amount, for video [DWW+96], [ MT97].

The three most significant VLIW architectures are probably the VelociTI architecture
from Texas Instrument [Ses98], the Mpact2 architecture from Chromatic Research [Pur98]
and the Trimedia architecture from Philips Semiconductors [RS98]. Trimedia has been
specially thought for the MPEG-2 real-time decoding and probably offers a better
performance.

d) Programmable architectures for SOC platforms

The increasing importance in the design based on SOC platforms leads to the pre-
eminence of an heterogeneous architectural scheme that comes from the combination of the
previous b) and c) categories. The C-HEAP Philips architecture [Lip97] and Picasso
[PKL+99] belong to this last category. The author has published some research about the
design and reuse methodology for IP soft-cores with built-in performance metrics [MCE+02],
[MCM+02a], including a quantitative approach to analyze and bound the synthesis-to-layout
performance-spread of soft-IP cores [MCM+02b].

The present research work is centred in the study of iterative super-resolution
algorithms and their modification to achieve real-time performance. These algorithms have
been developed in such way that their execution is performed using the resources provided by
the hybrid video encoder of the Picasso architectural platform, therefore assuring a low-cost

implementation. The problem of mutual and adapted transformation between algorithm and
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2.5 Conclusions 31

architecture is usually known as the mapping problem. The contributions to this problem from

a base algorithm and an established architecture are a central part of this thesis.

2.5 Conclusions

The richness of the signals we are dealing —image sequences— offers a new possibility:
to reconstruct the images of the sequence with an improved quality. This idea is based on the
fact that the recorded data are taken for every image from a slightly different position (due
both to the movement of the camera and to the movement of the objects inside the scene), in
such a way that they can be combined to create a higher resolution output image. While in the
static super-resolution approach a new image was created from a given image set, in the
dynamic super-resolution approach we create an image sequence with the same length as the
lower quality image sequence from where the process starts. Therefore, the application is a
combination of two ideas: the restoration of a single image from an image sequence (static
super-resolution) and the restoration of an image sequence (dynamic super-resolution). Each
one of these problems is treated in chapter 5 of this thesis. The combination of both
applications using almost the same algorithm is a novel contribution of this work. In fact, as it
has been exposed, there are several known methods to address the super-resolution
reconstruction, but none of them gives a solution to the problem of progressive real-time and
low-cost reconstruction for video sequences. The existing methods for the restoration of
continuous image sequences are still far from real-time performance for real video sequences.
The reasons are that they use complex iterative methods such as POCS, or they need a
perfectly prior knowledge of the movement and the blur, or they perform a set of
presumptions as could be the smoothness of the movement, no occlusions, or global
movement. The application faced in this thesis takes a low-resolution input sequence with no
restrictions at all and tries to reconstruct its quality using super-resolution techniques,
accomplishing real-time and low-cost performances. This application will not be possible
without the computational resources existing nowadays. The basic challenge is to obtain new
algorithms and to optimize them for their implementation on low-cost computation
architectures. Therefore, it is necessary to address the solution of the problem by means of the
use of powerful computational video cores oriented to the consumer markets, likewise to

introduce new flexible computational cores that can support these new algorithms such super-
resolution.
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Chapter 3

It is a good morning exercise for a research scientist to discard a
pet hypothesis every day before breakfast. It keeps him young.

Konrad Lorenz {1903 - 1989)
Nobel Prize in Physiology or Medicine 1973

Super-Resolution
Techniques

3.1 Introduction

In this chapter, we will show the used approach to super-resolution. This work is
initially based in the iterative super-resolution algorithm proposed by Marc op de Beeck and
Richard Kleihorst [Bee97], [BK99] at the Philips Research Laboratories in Eindhoven. This
algorithm neither uses the resources available in a real hybrid video encoder (although it is
suggested a way to do it) nor is capable to work in real time, but it has supposed the started
point to be implemented in the Picasso encoder. Based in this implementation, we been able
to study its properties and perform the appropriate modifications to obtain a final
implementation capable to process video sequences in real time. Although the iterative
algorithms are not very suitable to work in real time (in general), they have the advantage of
robustness in presence of noise and provide very good results even when the shifts among the
images are inaccurately knew. As the number of frames to be combined can be modified, the
non-iterative algorithms suppose an interesting approach to increase the quality of still

pictures. Instead of taking only one picture (normal photograph function) we could take

33
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34 Super-Resolution Techniques

several pictures (may be configurable) assuring some movement among the images and
combine then in a higher resolution one.

3.2 Theoretical basics

We will start exposing an analytic approach to the super-resolution process, using the
following terminology:

e x,y: low resolution coordinates.

X, b : high resolution coordinates.

e p:number of low resolution images to be combined.

o AS(xy) gaep : Horizontal shifts of pixel x,y of frame 7’ with respect to the
reference.

o  Ad(%Y) ey - Horizontal shift of pixel x,y of the reference with respect to the
frame 7.

o AXl(xy) p2rep - Vertical shift of pixel x,y of frame 7’ with respect to the reference.

o AL(xY) prepapy : Vertical shift of pixel x,y of the reference with respect to the frame

1.

e We will use the superscript ™ /ne N to indicate n™ iteration data.

Calling f{x,y,t) to the low resolution input image, all the input sub-system effects
(lenses filtering, chromatic irregularities, sample distortions, information loss due to format
conversions, system blur, etc.) will be included in A(x,y). So, assuming linear effects in lens,
sensors, and colour processing, the input to the algorithm will be the two dimensional
convolution expressed in (1).

glx,y,0)=f(x,y,8) **h(x, y) (1)

Calling S(}, $,¢)to the image obtained after applying the SR algorithm, and SR(}, $) to
the SR algorithm itself, they are related as indicated in (2).

Sk, $,0) = g(x,y,0) **SR(%, $) @)

These relationships are summarized in Figure 3-(a) concerning to the real system and
are simplified in Figure 3-(b).
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3.2 Theoretical basics 35

The algorithm starts supposing that a number ‘p’ of low resolution images of size
NxM is available as g(x,y,ti), where ‘ti’ denotes the sample time of the image. As the
algorithm only refers the last ‘p’ images, from now on the index ‘I’ will be used, defined as

=i mod p, to refer the images inside the algorithm. For clearness, the memory image g;(x,y)
will be used to store the input image that the algorithm is going to use, and it is linked to

g(x,y,t;) through (3) as can be seen in Figure 4. If we call g} (x, y) to the average input image,

as given in (4), the average error for the first iteration is obtained by computing the

differences between this average image and every input image, as show in (5).

g(x,y)=g(x,y,t;) / I=imodp (3)

1 p-1 1 N-1M-1
g,(x,y)zgg(mgggl’(l’.])] H Vx,y (4)
e(x, )" =g/(x,»)-g'(xy) , I=0.(p-1) )

This error must be transformed to high-resolution coordinates through, by example, a
nearest neighbour replication interpolator (6). As the missing pixels are going to be recovered
by the SR algorithm, it is not worth to use a higher quality interpolator, which will be slower
and more expensive.

h(xy) SRk, §)
Lenses Sensor DSP Picasso
~
Wy o BB & | |gero
RGB B EE 3 3
foop0— EECEEl o 2 — 7§ 0 ey SCh 5
¥ & & <—> <—>
YCbCr
P BE FIRIE] | yeo A
Input Subsystem Hybrid video
compressor
(@
g(xy,t) (
fey) —  h(xy) o SREH) — s 50
(b)

Figure 3. Scheme of the real system (a) and the simplified model (b).
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F—t
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gyt | | glxyt) | | gyt) || geyty | | vty | | gty

i=0 i=1 i=2 i=3 i=4 i=5
- AN

gy |g(xy.0)| |gxy.0)]| |80y, |gxy.1)]| | g, y,t)

=0 1=1 1=2 1=3 1=0 1=1

Figure 4. Nomenclature and numeration used for refer the input images.

&/, )" =upsample (¢,(x,)”) , 1=0..(p-1) 6

Once in high resolution the error must be adjusted to the reference frame, shifting the
image AJ,(x, y)f}),mf) and A4, (x, y)é?,mf) amounts in the horizontal and vertical coordinates

respectively. In principle, these displacements are applied to every pixel individually, but this
will depend upon the motion estimation technique employed. When all the errors have been

adjusted to the reference, they are averaged and this average will be taken as the first update
of the SR image, as shown in (7).

1 -1
So (£’§,)(1) = ; : Zez (£ + A (x, y)gf)rZref),,g' + A4 (x, y)?f)rzref) Y @)

Equation (7) reflects the result of the first iteration. For instance, S, (¥, $)®is the first

version of the SR image, corresponding to t=tj, and it will be upgraded in every iteration. The
nth iteration starts from that image and begins obtaining by decimation a low resolution
version followed by the computation of the displacements between every one of these inputs
images and this decimated image and vice versa, i.e. between the decimated image and the
input images. In that manner the displacements of the nth iteration will be

available: AS, (%, )22y » Ay (5, ) parery s A8 (5, ) 0oy @D AZ (X, )05, The  low-

resolution version of the image obtained in high resolution is given by (8).
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3.2 Theoretical basics 37

Sy (x, )" = downsample (SO &, o ) (8)

The next step is to compensate the motion of the high resolution image towards the

input frames using the displacements AS,(x,¥){rys,.r, and A4, (x, y)iy, > converting then to

low resolution and getting the error respecting to every input image, as shown in (9).

n ’ n n (n)
e, (x, W =g/ (x,y) - So (x +A9, (x, y)gre)for) , Y+A4(x, y)ief)Zfr )
)
1=0.(p-1)
This low-resolution error must be taken again to high resolution through interpolation
and compensate it motion again towards the reference. The average of these ‘p’ errors
constitutes the nth incremental update of the high-resolution image, as shown in (10).

n n— 1 p_I n n ’l)
S0tk H® = SE HT + 1. 3 e (6426, ), 5 + 84N T (10)
1=0

The convergence is reached when the changes in the average error are negligible, i.e.

when the variance of the average error is below of a certain threshold determined in an
empirical way.

Once the SR image is obtained for time 70 with the first ‘p’ images, the process must
be repeated with the next ‘p’ images to obtain the next SR image using a previously
established number of iterations or iterating up to convergence. Acquire a SR image implies
the use of ‘p’ low resolution images, and so, at the instant ¢, the SR image k=integer(i/p) will
be generated. In such case, equation (10) must be generalized in (11).

n - 1 p-l n n)
Sk H™ = Sk &5 4 o 2 (’Q + A8 (%, ) Parery » $+ Mz(x,y)&?zref))( (11)
1=0

This last and more general equation (11) reflects the SR image at instant %’ as a
combination of P’ low resolution images after ‘n’ iterations.
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38 Super-Resolution Techniques

3.2.1 Static versus dynamic super resolution

The problem of reconstructing an image from a set of low-resolution images with
some relative movement among them is known as the static super-resolution problem. In
contraposition, it is the dynamic super-resolution problem, where it is tried to obtain a higher
quality sequence from another sequence of low-resolution images, seeking equal length in
both sequences. These two problems can also be denominated static-image and video super-
resolution problems, respectively [Cha01]. These two ideas can be graphically summarized in
Figure 5 for static (a) and dynamic (b) super-resolution.

Static super-resolution is mainly intended to photographic applications, although, if
the system is fast enough, it can be used for video applications, repeating the same process for
several overlapped or not overlapped images sets. This work starts in static super-resolution
but always with the aim of migrating to dynamic applications.

3.3 Initial algorithm

As depicted in section 3.2 the initial algorithm was an iterative one intended for static
super-resolution. The first super-resolution algorithm follows as close as possible the initial
version, based on the principle that the only available data are several sets of the sub-sample
image sequences. In the first iteration, the sample positions of the image sets are undefined.
Moreover, due to the existing aliasing in the low-resolution image sets, it is foreseeable to
commit errors in the motion estimation among images, as the block correlation techniques do
not work properly in presence of aliasing. Setting out from noisy data sequences, the method
is able to iterate until obtain an interpolated higher resolution result that optimally fulfil all
and every low resolution input image.

The iterative process is composed by the following steps:

1. Determine the relative shifts of the image set with respect to a reference image. Due to
aliasing, these results may not be accurate and must be refined in the following steps.

2. Perform a nearest neighbour interpolation of the aliased images separately, creating a
new image set over a high-resolution grid. Large deviations are to be expected from
the exact interpolation curve. This procedure assures that the first iteration result will
be of low resolution, but largely free of noise. High-resolution information will be
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3.3 Initial algorithm 39

added in further iterations.

Sum all the interpolated images. This summation assures further noise reduction,
while the first iteration result deviates from the original data set in almost all sampling
positions.

Realign the low-resolution images with the newly created interpolation. Since this
high-resolution image contains much less aliasing, standard techniques can be applied
to generate sub-pixels displacement vectors.

Determine by sub-sampling the difference between the high-resolution estimation and
different low-resolution image set. Sum all the differences and feedback them as an
update to the high-resolution approximation.

Iterate steps 4 and 5 until convergence.

If redundant data sets are available, this iterative scheme is very well suited for noise

reduction techniques as statistical information can easily be incorporated into the feedback

loop. In the case that insufficient data was available, the iteration process can be stopped

LR images Set
t 0
SR image
t, 1
t, 2
L n
(a)
LR sequence SR sequence
Y 0 0 b

t, 1 >[:> R :>< 1 3

(b)

Figure 5. Static (a) and dynamic (b) super-resolution schemes.
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40 Super-Resolution Techniques

before full convergence, yielding a low pass version, which is optimally compatible with the
given data sets.

3.3.1 Pseudo-code of the basic iterative algorithm

The next step has been to write a description of the algorithm in pseudo-code, with the
objective of making its implementation easier. This first version is shown in Figure 6. This
version uses three high-resolution memories (with HR prefix) and a variable amount of low-
resolution memories (with LR prefix) equal to the number of stored input images for the

algorithm to start, plus one additional memory for storage of the intermediate low-resolution
data (LR_B).

Performing a conceptual analysis of the algorithm, we can see that the process starts
with the calculus of differences between every input image (only luminance) and one image
with an average value of its high-resolution equivalent. Every error image is shifted to be
adjusted to the reference image and the average error is calculated. This shifted and averaged
error constitutes the first update of the super-resolution image that has been previously
initialized to a zero value. The next iterations basically follow the same process, but starting
always from the last super-resolution image obtained, and thereby, the movement has to be
calculated again, i.e. first the displacements between the input and the high-resolution
(decimated to low-resolution) images are calculated and vice versa. Later on, the super-
resolution image is shifted again to the input image. This shifted image is decimated to low-
resolution to calculate the error with respect to the input image. The error is taken again to
high-resolution and it is shifted to the reference. This procedure must be repeated, inside
every iteration, for every input image. The resulting errors are averaged and this average
constitutes the update of the super-resolution image. The quality of the super-resolution image
will increase with the iterations, although this improvement will be lower as the super-

resolution image will fit all the available input images.

3.4 Limitations

The super-resolution process has in fact several limitations. In our approach, we have
found the following described main limitations concerning to aliasing, the motion estimation
and the image borders. Nevertheless, in [LSO1], [BKOO] it can be found some fundamental
limits and how to address them from a theoretical point of view.
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3.4 Limitations 41

Create HR image HR_B, HR_B_Shift, HR_B_Average
Create LR image LR_B
Create series of LR images LR_I[#images]

Read an aligned non-interlaced series to LR_I[]
Pixel align LR_I[] with LR_I[0], remember sub-pix shift

Fill HR_B with zero
Fill LR_B with average

First Iteration
LR B=LR_IJ-LR_B
Upsample LR_B to HR_B_Shift
Back shift HR_B_Shift and average in HR_B_Average
HR_B = HR_B + HR_B_Average
Next Iterations
Shift HR_B to HR_B_Shift
Downsample HR_B_Shift to LR_B
LR B=LR_I]-LR_B
Upsample LR_B to HR_B_Shift
Back shift HR_B_Shift and average in HR_B_Average
HR_B = HR_B + HR_B_Average

Figure 6. Pseudo-code of the first version of the iterative algorithm.

3.41 Aliasing

In opposition to usual image operations as could be compression, super-resolution
requires some amount of aliasing in the low-resolution images. This requirement can be seen
from the following point of view: super-resolution tries to recover mainly the high-frequency
information, but, if such information has been removed by a low-pass filter, then, there is no
high-resolution information to recover. Of course, from a mathematical point of view, it must
be expressed in a more formal way.

In Figure 7 it can be graphically seen the conditions that the magnitude of the Fourier
transform of the image must accomplish to avoid aliasing (a) and to have aliasing (b). Calling

G(u,v) to the Fourier transform of the image as a function of the spatial frequencies ‘u’ and

< b

v’, if the band-with in the horizontal direction is lower than the inverse of twice the
horizontal sampled period X and the band-with in the vertical direction is lower than the
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42 Super-Resolution Techniques

inverse of twice the vertical sampled period Y, then there will be not aliasing in the sampled
image. In this case, the original image g(x,y) can be reconstructed as establish the Whitaker-
Kotelnikov-Shannon sampling expansion (2-D sampling reconstruction theorem), reflected in
equation (12), where the two-dimensional sinc(x,y) function is given by (13).

g(x,y)=Zm:zn:g(mX,nY)-sinc(x—mX,y—nY) 12)
sin(z x) - sin(z y)

D= Gy () 13)

Nowadays, most of the acquisition systems incorporate some kind of anti-aliasing
filters, such as lenses with Optical Low-Pass (OLP) filter, micro-lenses with OLP filters or
any kind of additional low-pass filters. The micro-lenses not only avoid the aliasing but also
they increase the fill-factor of the sensors, at the cost of increasing the image blur. If the low-
pass filter can be separated from the rest of the system, keeping the aliasing, then there will be
no problem for super-resolution, but if the sensor itself incorporates built-in micro-lenses,
then the problem becomes much more complex. Although a raw sensor without micro-lenses
should be cheaper (in comparison with another sensor with micro-lenses) the problem is that
such a technological process is now well established in the manufacture process and removing
it is not so easy. Moreover, only the super-resolution process requires aliasing, in
contraposition of several other applications that need aliasing to be removed.

The solution could be using an acquisition system without micro-lenses and a
configurable external low-pass filter that will be active for all applications except for super-
resolution. When used in super-resolution mode, it would be able to deliver images with a
higher resolution than the one the sensor is able to deliver. Nevertheless, even in the case that
the anti-aliasing lenses could not be removed, from a strategic point of view, it is advisable to
have a system capable of removing aliasing (and so increasing the resolution) for any imaging
application that can arise in the close future.

3.4.2 Motion estimation

One key aspect in the super-resolution process is the correct computation of the
movement among images [Bov00]. In subsequent sections, it will be shown how sensitive the
super-resolution results are to an accurate knowledge of the motion.
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Bwlé(u,v)| < 51} o BW\'é(u,v)‘ > ‘21}
= No aliasing

= Aliasing

BW|G(u,) <% BW|G(u,v) >%

(a) (b)

Figure 7. Spectral conditions of no aliasing (a) and of aliasing (b).

Several ways to compute the motion have been proposed in the specialized literature.
One approach is the differential framework, initially proposed by Horn and Schunck [HS81].
In their approach, it is shown that the motion estimation task becomes a linear estimation
problem, where the motion is defined by vectors of motion per each pixel, called optical flow.
The main drawback in the Horn and Schunck approach is that their algorithm totally
disregards prior estimation results on the image sequence. Assuming that the motion flow is
temporally smooth, one can benefit from using previous results, both from the computation
load and from the estimation quality points of view. Moreover the method is iterative and

hardly suitable to work in real time.

Chin and Willsky, in [CKM+93], [Chi92], have proposed a generalization of the Horn
and Schunck algorithm to overcome the above drawback. Their algorithm is a very complex
approximation of the well known Kalman Filter [CC90], applied to the recursive optical flow
estimation task. Other attempts to use the temporal smoothness of the optical flow are shown
in [Sin92b], [FLI95].

Although the above mentioned methods are very accurate, and in addition the super-
resolution algorithms are very sensitive to the precision of the motion estimation, in this work
we have opted for an alternative method widely used in video compression: the block
matching method [BK96], [HB95], [O198], [Bot00] among others widely used in most hybrid
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44 Super-Resolution Techniques

video encoders. The lowest precision that this method offers is compensated by its fast
execution, reaching without major problems real-time performance for the majority of the
cases. The main drawback of the block matching is that it obtains a motion vector that is
shared by all the pixels in the macro-block, in contrast with other methods capable of compute
the mdividual movement of every pixel. In contrast, the block matching methods are less
sensitive to the environment noise, increasing the convergence of the solutions. Additionally,
the resolution of the motion estimator has been incremented to sub-pixel values, thus
increasing the sensitivity of the system. There also exist block-matching motion estimators in
the DCT domain [KC98] very suitable to be used in video coders, but their high complexity
move them away from low-cost and real-time performance.

3.4.3 Borders

Image borders are often a problem in most of the image processing applications. In
super-resolution, borders are especially complicated because when getting new information
from several images, it easier to get it from the central body of the image, but borders are
usually different from image to image. For instance, if the scene ‘cameraman’ is recorded,
taking four shifted pictures in consecutive instants of time (see Figure 8), consequently having
a high time redundancy, when trying to merge the overall information in a new higher
resolution image, we realize that we have four times information about the body center of the
image, but few less information about borders. In this example, the right corner of the curve
roof of the building (similar to a dome) in the background on the right side of the image is
only present in the fourth frame, what makes impossible to improve the resolution of that
detail of the image. Moreover, depending on the super-resolution algorithm, due to the non-

redundant information on borders, it is possible to loose quality in such zones.

At the same time, it is important to keep in mind that a video compressor architecture
is going to be used, which follows an specific strategy about borders. For example, when the
motion estimation is allowed to be performed out of the borders, a virtual border replication is
made, delivering motion vectors which are suitable for compression, but not for super-
resolution applications. The same occurs with the motion compensation, which replicates the

last borderline if the motion vector points out of the image.
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3.5 Experimental setup 45

3.5 Experimental setup

With the objective of being able to assess the quality of the obtained images
continuously, an experimental test system has been developed based on the generation of low-
resolution images to feed the super-resolution algorithms. These low-resolution images are
obtained from high-resolution test images either by the application of controlled shifts
followed by a sub-sampling stage or by merely sub-sampling a video sequence in order to
incorporate aliasing. In a first stage, the objective was to perfectly control as much parameters
as possible and to evaluate the impact of each one in the super-resolution process (aliasing,
motion vectors accuracy and precision, type of movement in the scene, etc.). In this way, the
shifts are intended to simulate the movement that the acquisition system will notice under real
conditions, and the sub-sampling tries to emulate the image acquisition using sensors and
lenses without anti-aliasing filters. The induced shifts can be done with % or Y4 pixel

precision, depending on the precision that the motion estimation can reach. In that sense, the

3 4

Figure 8. Four frames of the scene ‘cameraman’ sampled from different positions.
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46 Super-Resolution Techniques

former versions used Y2 pixel shifts and the last ones % pixel shifts.

Another important issue has been to obtain an artificial motion model. In such way,
the following possibilities have been enabled:

a. Manually established shifts by the experimenter. This is a way to meticulously analyse
the correct behavioural of the motion estimation and to control how shifts affect to the
obtained image quality.

b. Random shifts. These kinds of shifts aim to determine the behavioural of the system to
cope with unknown shifts, uncorrelated among them and erratic. This is not the kind

of shifts normally found in real acquisition systems, but it reflects an extreme case of
system working.

c. Bounded random shifts with zero average. This method pretends to model the kind of
movement that a domestic video camera will generate when it is manually hold by an
operator. Normally, a human been will try to keep the video camera centred over the
target regardless of the involuntary movement produced trying to hold the camera
without using a tripod or another fastening technique. This attempt to keep the
objective centred will generate relative shifts with zero average.

3.5.1 Artificial motion and aliasing

For the generation of the test image sequences with motion and aliasing we can follow
any of the schemes proposed in the Figure 9. The scheme of Figure 9 (a) places firstly the
shifter and secondly the decimator, while the scheme of Figure 9 (b) makes the opposite. In
our case, the first scheme has been chosen because it easies the generation of sub-pixel shifts.
In that sense, in the first scheme shifts dx, dy are introduced in pixels units and fractions of
pixels are obtained thanks to the decimator.

Initially the scheme of Figure 9 (a) has been followed, with K=2 and manually
generated shifts to cover the four pixels position, in order to facilitate as much as possible the
super-resolution image reconstruction, as all the input data are present. This also means that
the motion vectors precision will be of half-pixel; with K=4 a quarter-pixel precision will be
achieved. The generated shift values (in pixels) are shown in Table 1, referred as shown in
Figure 10. This vector set, which covers the four pixel positions in a base cell, will be called
canonical vectors.
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3.5 Experimental setup 47

The shift of a pixel in the high-resolution image implies the shift of half-pixel in the

low resolution image after decimation, which was the initial precision of the motion

estimator.
dx dy Positions related to a base cell
0 0 Upper-left pixel
1 0 Upper right pixel
0 1 Lower left pixel
1 1 Lower right pixel

Table 1. Shifts generated at pixel level to cover all pixels in a base cell of size 2x2 pixels or
canonical vectors.

The decimation process initially consisted in the alternative selection of one pixel out
of every four pixels block, generating a low-resolution output image containing spatial
aliasing. This process was repeated for every pixel of the base cell thus generating four low-
resolution output images for every high-resolution input image what were used to reconstruct
the super-resolution image in the iterative stage. For the non-iterative algorithms just the (0,0)

pixel is picked in order to generate aliasing in the low-resolution sequence.

The iterative algorithms initially designed uses the more detailed scheme shown in
Figure 11 for the test images generation. Every high-resolution image of size MxN was
shifted as depicted by the canonical vector set and every shifted image was decimated to
obtain a set of four low-resolution images with aliasing and quarter size than the original (half
the size in each direction, i.e. M+2xN+2). These low resolution images set is introduced in the
super-resolution algorithm that must obtain a high-resolution output image of double size than
the input images in the horizontal and vertical directions, i.e. MXN.
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Figure 9. Two schemes for the generation of test images sequences: (a) placing the shifter first
and (b) placing the decimator first.
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Figure 11. Scheme followed for the generation of test images.
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3.5 Experimental setup 49

3.5.2 Borders handling in the experimental setup

The method above mentioned for the generation of test images exhibits a serious
problem in the image borders, which causes an important drop in the quality metrics.
Depending on the generated vector, is almost impossible to avoid a loss of data in the image
borders when shifting the reference image. A shift using the (-2,5) vector of high resolution
pixels produces a data loss in the upper and right borders, as it can be seen in Figure 12,
where this effect has been overstated for clearness. When shifting left and down the Picasso
self-portrait, the only solution to avoid discontinuities is to replicate the image borders. These
replicated data are going to hinder the reconstruction process of the borders of the original

image.

The first solution is not to take into account the borders when computing the quality
metrics of the images. The size of the borders excluded from the merit figure computation is

of one macro-block, as the generated motion vectors are bounded to a lower value.

Nevertheless, another solution for the borders problem is to alter the process for the
test images generation. Obviously, the borders replication solution does not model at all the
real image acquisition process. As a matter of fact, if a real image acquisition system is
moving, this will acquire new information for the real world that, at this level, is continuous.
So, what we have done is to start from bigger images, shift them as previously seem and then
crop them to keep the central part. With this method we avoid the undesired border effect. In
Figure 13 is shown the modified diagram for the test images generation. In contrast to the
previous system, which lumps together all the process in a single program, the new system is
entirely modular and is formed by five modules for the images transformation. Theses are:

make_sequence, move, crop, subsample and downsample and are shown as

Replicated
borders

Reference Image

Shifted Image

Figure 12. Borders replication when the image is shifted out of the boundaries.
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50 Super-Resolution Techniques

shadowed rectangles. The make_sequence module selects the frames from the input
sequence that are going to be incorporated in the test sequence. It is necessary to include such
a module as some images are obtained using a Philips Vesta video camera and no tool was
available to cope with raw images in the YCbCr format that allows the selection of the
appropriate frames to carry out the experiments. Moreover, when recording images in a big
format, sometimes the system suffers from saturation (specially the bus) giving as a result

‘frame_skips’ that must be removed later with this utility.

The move module shifts every input frame, using the vectors provided in the text file
shifts or generating itself the shifts randomly (with or without zero mean). At the same

time, it generates a log file with the shifts finally applied.

As previously mentioned, it is desirable to use an image format big enough to be
cropped later, thus avoiding the border effect. In Table 2 are shown the most image sizes and
its macro-block equivalence. Among these, the Video Gate Array (VGA) format has been
adopted, as it is big enough for our purposes and it is the biggest format that the camera can

deliver.
SQCIF | QCIF CIF VGA ACIF 16CIF
b 128x96 | 176x144 | 352x288 | 640x480 | 704x576 | 1408x1152
Xe
RS (212288) | (=25344) | (=101376) | (=307200) | (=405504) | (=1622016)
Macro 8x6 11x9 22x18 40x30 44%36 88x72
Blocks | (=48) | (=99) | (=396) | (=1200) | (=1584) | (=6336)

Table 2. The most frequent image sizes and its macro-block equivalence.

Nevertheless, the VGA format has an important drawback: as it can be divided by two,
maintaining an integer amount of macro-blocks (640+2=320 pixels, i.e. 20 macro-blocks and
480+2=204 pixels, i.e. 15 macro-blocks) , it can not be divided by four, maintaining an
integer number of macro-blocks (640+4=160 pixels, i.e. 10 macro-blocks and 480+4=102

pixels, i.e. 7.5 macro-blocks).

This problem has been solved defining a new image format named Adapted VGA
(AVGA) of size (576x448). This new format can be divided by two and four, maintaining an

integer number of macro-blocks, as shown in Table 3. So, the followed procedure consists in
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first to shift the VGA image, no matter what can occur in the image borders, and subsequently
to crop the borders to obtain an AVGA size. This new image is not affected by the border
effect and besides it can be divided by two and four. The requirement of being able to divide
the image by four is imposed by the necessity of obtain images with shifts of % pixel in low
resolution. Le., shifting the image an integer pixel amount in VGA will result in a quarter-

pixel shift in Quarter Adapted VGA (QAVGA.).

video_move.vga

shifts

*.vga ﬂ -vga crop_VGA .avga
VGA '—_—>' move m— VGAShiﬁ = I crop = AVGA
640x480 (40x30) ! 640x480 (40x30) ZMBrightleft 1576, 448 (36x28)
history.log 1 MB top-down
i
{ make_sequence '
ﬁ Ref_*.havga
* V2 pixel
*.vga -havga pixe %= l subsample

VGA HAVGA | l downsample ﬂ

640480 (40x30) 288x224 (18x14) U *_qavga
1
Reference % % pixel QAVGA
144x112 (9%7)
SR_disk.out ﬂ
Time domain v, piXel . havaa
SNR
Signal to Noise Ratio HAVGA T
Match ||¢——— <=3 SRA G
Freauency domin 288x224 (18x14 — ‘
SCC ( ) s

Spectral Correlation Coefficient

video_crop.avga

Figure 13. Modified diagram for the test images generation.

VGA AVGA | HAVGA | QAVGA
bl 640x480 | 576x448 | 288x224 | 144x112
Xcls
(=307200) | (=258048) | (=64512) | (=16128)
Macro- 40x30 36x28 18x14 9x7
blocks (=1200) | (=1008) | (=252) (=63)

Table 3. New image sizes based in the VGA format.
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52 Super-Resolution Techniques

The module in charge of cropping the image borders, adapting its size to AVGA is
crop. This module removes two macro-blocks from the left and right borders of the image
(passing from 40 to 36 macro-blocks wide) and one macro-block from the upper and bottom
borders (passing from 30 to 28 macro-blocks height).

From the shifted and size-adapted video sequence is performed a decimation of factor
4 with a sample frequency below the Nyquist frequency in order to produce a new video
sequence with aliasing and QAVGA size. This sequence is the input to the super-resolution
algorithm and it is generated from the subsample module.

Also from the AVGA sequence is performed a decimation of factor two, but this time
using a low-pass filter to accomplish the Nyquist sample principle and thus avoiding image
aliasing. This new video sequence of Half AVGA (HAVGA) size is the reference sequence
because the super-resolution algorithm generates images of double size respect to the input
size —i.e. from QAVGA it will generate HAVGA- that cannot be compared against the
original AVGA sequence. The decimation process of factor two to obtain the reference
sequence is performed by the downsample module.

The super-resolution algorithm delivers as a result a reconstructed sequence of size
HAVGA, that must be compared with the reference sequence in order to obtain different
quality parameters that allow us to evaluate the algorithm performance.

3.5.3 Quality metrics

We need metrics that allow us to measure the functioning of the algorithm in terms of
the higher or lower similitude between the resulting image and the original image, here
referred as the real image. This is depicted in Figure 14 at the pixel level. To better illustrate
the measurement procedure we will start with the simple case of artificial motion and aliasing.
The real image or reference is shifted and decimated as it has been previously shown,
producing four low resolution images when the canonical vector set is applied. For instance,
when the shift vector (0,0) is applied, and subsequently decimated, the corresponding low
resolution image contains all the pixels represented in the Figure 14 as diamonds. The (1,0)
vector gives as a result a low resolution image formed by the triangle-shaped pixels, the (0,1)
vector gives as a result the low resolution image formed by the hexagonal-shaped pixels and
finally, the vector (1,1) gives the low resolution image formed by the cross-shaped pixels.
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3.5 Experimental setup 53

As it can be seen in Figure 14 (a) the super-resolution algorithm provides a high
resolution image formed by pixels X534 of the basic cell, that ideally and in the best case
they must be the same as the ones in the basic cell of the real image. Figure 14 (b) shows the
location process of the pixels from a basic cell in an image using the described vector set. The
quality of the super-resolution process will be given by the similitude degree between the

super-resolution image and the real or reference image.

For the quality analysis, both in the space and in the frequency domain, we have opted
for using the mathematical package MATLAB. In that sense, a set of functions have been
developed to obtain different figures of merit in an automatic way once the super-resolved
images have been processed. These two figures of merit are the peak signal to noise ratio and
the spectral cross-correlation coefficient.

In order to avoid the dependences of the metric figure with the image variations,

Shift and
Real Image decimation /() 5 \
Hol=|5¢
o A A A SRA
O Q Lb@ A A \ X, X,
> « x| SRImage
O ) %,
, @ = | | g / -
(ORO, ° 4 Real I
> cal Image
(a)
. Shift and Decimation
Real Image ﬁ%(} O DO|D |
//‘7020 O Do . Lc1>w'
. 1 : : esolution
A A ><></ %00 Coe Images
O ool | |t g
0 A“*@Z:‘?“-i ________ "::.>A">A A 00lo : dx | dy
O ©]0 DO gy [ A 00/0 i ol
0|1
OAOAWO AANA 00|0 % (1>
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Figure 14. Scheme followed for the generation of test images at the pixel level.
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54 Super-Resolution Techniques

instead of using the signal to noise ratio, in image processing applications is more typical to
use the Peak Signal to Noise Ratio (PSNR) for comparisons between images. The PSNR is
given in equation (14), assuming images of size MxN, where R(3,j) is the reference image and
S(i,j) is the super-resolution image.

2552
1 M-1N-1 (14)

—— 2 2 (RGN =5G, )Y

° N = j:O

PSNR =10-log,,

The 255 value comes from the maximum value that a pixel can reach when it is stored
in an eight-bit word, i.e. (25-1). The signal to noise ratio is one of the preferred metrics when

measuring the quality of a signal and that is why it has been the metric adopted for images in
the spatial domain.

When a big image is obtained from a smaller one, as we are doing in the super-
resolution process, it can be objected that the same objective could be reached by
interpolation. Among the different existing interpolation methods [PKT83], [Jai89], [PRA91]
we have opted for the nearest neighbour interpolation, as it is the easiest an faster way in real
time applications, and the bilinear interpolation because with relative additional complexity a
substantial improvement in the interpolated image is achieved. During all the work the super-
resolution results will be always compared against the interpolated images obtained with both
methods. A quality above the interpolation level means a super-resolution improvement.

The next metric figure used has been the spectral cross-correlation coefficient, which
will be applied in the frequency domain instead of in the time domain. Thereby, as the Fourier
transform is a complex magnitude, there will be a cross-correlation for the magnitude and
another one for the phase. The first step is to obtain the two-dimensional Fourier transform of

both images: R(z,v) and S(x,v), as indicated in equation (15).

R(u,v)=F {R(xy)}

~ (15)
S(u,v)=F {Sky)}
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3.5 Experimental setup 55

Then, the spectral cross-correlation coefficient for the magnitude (sccm) will be given
as expressed in equation (16). Previous to the calculus of the sccm it is necessary to compute

the mean value of the magnitude of both images as can be seen in (17) and (18).

5 2. (([Few ) (St l-f5)

u=0 v=

seem = M-1N-1 —~\2 M-1N=l/, —\ 2 (16)
\/ (’R(u v)HRD (|S(u,v)|—\SD
u=0 y= u=0 v=0
— 1 Min-t
3] “MoN S () 17)
— 1 M=INa
Rl = 5 2 2Ry (18)

The same formula is used for the spectral cross-correlation coefficient in phase (sccp),
using equations (19), (20) and (21).

MZ_:]NE((AR(u V) — AE) (AS(u V) - LSD
scep = M_]";°]V=° T <. (19)
\/ 2,2 (AR(u v)- AR) : (AS(u V) - 45)
K=y L3[R 20)
B~y 5w @

Values close to unity in both cases (magnitude and phase) will denote a high
similitude of the spectrums. Although close-to-one values are desirable, for visual human
perception are more important higher values in the magnitude than in the phase. Moreover,
the magnitude Fourier transform is insensitive to image shifts which is also in correspondence
with human perception and enables more reliable measures. The shifts between the image

reference and the super-resolution image will have more impact in the phase.
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3.5.4 Picture repetition

The signal to noise ratio has the important drawback of being image dependent, i.e. its
value depends on the image entropy. Images with lower entropy will exhibit higher PSNR and
vice versa. This fact can be a problem when assessing the super-resolution algorithm because
in a video sequence every frame is different, what precludes a reliable PSNR comparison
among frames. As too many factors have influence on the image quality, it is necessary to
apply the usual method of divide and conquer. Keeping the same image all across the video

sequence, although with different shifts and aliasing degrees will enable the comparison of the
PSNR among frames.

3.6 Conclusions

In this chapter, the basis of the super-resolution theory for iterative algorithms has
been established. This first algorithm constitutes a starting point for our super-resolution
approaches as far as it can be adapted to be executed onto a hybrid video encoder.

From the study of the super-resolution basis and taking into account some practical
aspects, three main limitations have been found: 1) the amount of aliasing in the input image
drastically limits the maximum quality that the algorithm can deliver. If most of the high
frequencies are suppressed by means of any low-pass anti-aliasing filter, it will be impossible
to incorporate that missing information in the super-resolved image; ii) the precision of the
motion estimation has also important effects on the final image quality. As we are limited to
use the classical block-matching motion-estimator used for image compression, some adjusts
must be made in the estimated motion vectors to better match the real motion of the scene; iii)
as it is usual in many areas of image processing, borders suppose a discontinuity in the image
process. In this case, it is more difficult to find pixel related information from other pictures in

the time if the pixel is at a border instead of in the central region of the image.

Finally, the experimental setup is described, starting with an artificial procedure to
generate motion and aliasing. If those two crucial parameters known a priori (which is almost
impossible for real sequences), then it will be easier to understand their exact influence on the
results. The use of replicated images isolates the quality metrics among frames from the
specific characteristics of specific images, enabling a reliable comparison of the image

qualities. Finally, some figures of merit are proposed, among the more usual found in the
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3.6 Conclusions 57

specialised scientific literature: the peak signal to noise ratio and the spectral correlation in
magnitude and phase.
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Chapter 4

Each problem that I solved became a rule which served afterwards
to solve other problems.

René Descartes (1596-1650), "Discours de la Méthode"

The Video Encoder
Platform

4.1 Introduction

Philips is an important player in the market of Personal Computers (PC) cameras. The
increasing demand for performance for PC cameras (VGA at 30 frames per second), and the
apparition of new camera applications (such as wireless and detachable cameras), requires the
use of video encoding (also called compression) inside the camera. Furthermore, the existence
of several different encoding standards (such as JPEG, H.261, H.263, H.264, MPEG]I,
MPEG2 and MPEG4) requires a multi-standard approach.

The main objective of the Picasso project [PKL+99], where the super-resolution
algorithm is intended to be executed on, is to apply research results in order to provide Philips
with a state of the art video encoder Integrated Circuits (IC) for consumer (low cost and low
power) camera applications.

Research results in the field of embedded compression allow a DCT domain video
encoder [KVL99], leading to a considerable reduction of the image memory. Due to this
reduction, it will be possible to place the image memory on-chip. This results in a significant

59
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60 The Video Encoder Platform

reduction in both system cost (less components), and in power dissipation (less memory
bandwidth and only on-chip connections to the image memory).

The flexibility will be achieved by applying the results of the CPU-controlled
Heterogeneous Embedded Architectures for signal Processing (C-HEAP) research project
[LN97]. C-HEAP enables the system architect to make hardware and software trade-offs. It
provides functionality to partition the design into hardware and software at different levels of
abstraction, and to determine the impact of this partitioning on the performance. By mapping
the compute intensive and inflexible parts of video encoding onto hardware, while keeping
the flexible and encoding-standard-related parts in software, we address the multi-standard
aspect.

Super-resolution is made on top of the Picasso platform, and it is intended to be an
added-value to the compression features (for instance, performing digital zooming without
mechanical-optical parts). A big effort has been made mapping every super-resolution
algorithm in the existing Picasso architecture. Every time a new operation has been necessary
to be incorporated, it has been carefully done to minimize its cost in the overall system,
especially in terms of delays, memory requirements, minimize changes in the original
architecture, impact in the compression working, etc.

4.2 Applications

There are two more potential application domains for the Picasso project:

e Hand-held multimedia terminals are expected to incorporate videophone functionality
in the near future. Super-resolution can improve the quality of the decoded image with
no band-wide penalty.

e Surveillance cameras could be based on a number of detachable cameras connected to
an existing low bandwidth network. Each camera records a video sequence onto its
local storage medium. The security operator then connects to the required camera, and
downloads its recorded video sequence. Super-resolution could be of interest in this

area, improving the quality of the regions of interest.
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4.3 Video Encoding 61

4.3 Video Encoding

Several video encoding standards have been (and are being) defined, like MPEGI,
MPEG2, MPEG4, H.261, H.263, H.264, MPEG-4 part 10, MPEG-4-AVC and JPEG. All
these encoding standards are based on the discrete cosine transform (the JPEG2000 standard
is based on a different transform, and is not targeted by the Picasso project), and all but the
JPEG standard, are based on motion compensated prediction. Therefore, all these standards

can be implemented on a hybrid encoder.

The Picasso design is a hybrid encoder that can be programmed for several encoding
standards, namely: MPEG4 SP@L3, JPEG and H.263.

4.3.1 Hybrid Encoder

A hybrid encoder combines compression in the spatial domain with compression in
the temporal domain. Spatial domain compression is achieved by means of a decorrelating
transform (a two-dimensional discrete cosine transform), and temporal domain compression

by using motion compensated prediction.

< LOOP MEMORY >

A

ME
|
» MC mMC
| i
DCT — Q-IQ IDCT
l DCT-domain
ZZ » RLE — VLE ——

Figure 15. A typical hybrid encoder scheme.

Figure 15 shows an overview of a conventional hybrid encoder. It contains the
following blocks: Motion Estimator (ME), Motion Compensator (MC), Inverse Motion
Compensator (IMC), Discrete Cosine Transform (DCT), Inverse Discrete Cosine Transform
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62 The Video Encoder Platform

(IDCT), Quantizer (Q), Inverse Quantizer (IQ), Zig-Zag transform (ZZ), Run length Encoder
(RLE), Variable Length Encoder (VLE), and a loop memory. The ME, MC and IMC blocks
are responsible, together with the loop memory, for the temporal domain compression.

The ME block determines the best match of the current luminance macro block (16 by
16 pixels) in the reconstructed image stored in the loop memory. This is done by evaluating
several candidate vectors in order to determine the vector with the smallest cost function (e.g.
the sum of absolute difference, or the sum of squared difference). The difference between the
current macro block and the best match in the reconstructed image is computed (MC),
transformed (DCT), quantized (Q), coded (ZZ, RLE, and VLE), and transmitted to the
decoder. The transmitted data is inverse quantized (IQ), inverse transformed (IDCT),
reconstructed (IMC), and stored in the loop memory to encode the next picture.

The ME block is the most compute intensive part. In the case of the Picasso design, 23
candidate vectors are evaluated. This means that the loop memory is accessed 23 times,
followed by a single execution of the remaining loop. From a power point of view it is
therefore essential to concentrate on the power dissipation of the ME part.

A disadvantage of a conventional hybrid encoder is that the size of the loop memory is
large, usually resulting in a two-chip solution: the encoder IC and the loop memory
[WWV+97]. In the Picasso design this disadvantage is addressed by compressing the loop
memory in order to embed it on the encoder IC, leading to a single-chip solution. The size of
the loop memory has to be large enough to store the largest image to be encoded with motion

compensation.

In case of intra coding, only the DCT, Q, ZZ, RLE, and VLE blocks are used. No
other blocks are used, and no image is stored in the loop memory.

4.4 Video compression algorithms

The main disadvantage of a hybrid encoder in terms of implementation is that it
requires a two-chip solution: one encoder chip for the core, and a memory chip. This is due to
the large size of the loop memory (3.5 Mbit for a VGA stream). However, recent research
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4.4 Video compression algorithms 63

results [KVL99] have shown that it is possible to compress the picture stored in the loop
memory by a factor of four. This has the following advantages:
e The resulting memory size allows a single-chip solution containing an embedded
memory for the loop memory.
e The memory bandwidth is reduced considerably.

This technique is called embedded compression [KVL99], and is based on two
principles:
e The loop memory is in the DCT domain. This implies that a larger part of the
encoder is in the DCT domain.
e The DCT coefficients are compressed using a scalable coding approach in order to

fit in the reduced loop memory.

441 DCT domain memory

Since the loop memory is organized in 8x8 blocks, reading a 8x8 block from memory
at a displaced position becomes more complex. This is graphically explained in Figure 16.

X0 X1

X2 X3

Figure 16. Reading an 8x8 block from pixel and 8%8 block oriented memories.

A conventional encoder has a pixel oriented loop memory. Reading a displaced block
from memory is carried out by doing the read actions at displaced addresses. However, for a
8x8 block oriented memory four 8x8 blocks (X, to X,) have to be read from memory. The
displaced 8x8 block has to be computed from these four 8x8 blocks. Reading the luminance

part of a macro block (16 by 16 pixels) from memory (four 8x8 blocks) requires nine 8x8
blocks to be read, as shown in Figure 17.
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64 The Video Encoder Platform

4.4.2 Scalable coding

A conventional encoder set-up is based on storing the reconstructed image in the
spatial domain. This requires exactly 8 bits per pixel. In the DCT domain a coefficient
consists of 12 bits. Therefore, reducing the memory size by a factor of four in comparison
with a conventional encoder requires a compression of a factor of six for coefficient data. This
leads to an (average) size of 2 bits per coefficient.

The objective of the scalable coding is to compress the 8x8 blocks before writing them
into the loop memory. Due to the fixed size of the loop memory, two cases can arise:
e The first case is that the coefficients fit in the loop memory. In this case the
compression is lossless, and no information is lost.
e The second case is that the coefficients do not fit in the loop memory. The encoded
coefficients have to be reduced even further in order to adapt them to the available
memory size. This implies a lossy compression, resulting in a loss of information.

From these two cases the following requirements for the scalable coding can be

extracted:

e High compression ratio: The higher the compression ratio of the scalable coding
is, the better, since the encoded coefficients are more likely to fit into the loop
memory. This will lead to a more lossy compression.

e Good scalability: Due to the fixed size of the loop memory, it is very likely that
the encoded coefficients do not fit in the loop memory. The size of the encoded
coefficients is then further reduced by truncating the information to be stored. In

X0 X1 X2

X6 X7 X8

Figure 17. Reading a macro block from 8x8 block oriented memories.
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4.4 Video compression algorithms 65

this case it is important that the least important information of the encoded DCT
coefficients is truncated.

e Ease of implementation: Due to the fact that the scalable coding is going to be
implemented in hardware, it is very important to look at the ease of
implementation. Unfortunately, lossless coding techniques with the highest

compression ratios are often very hard to implement on silicon.

These constraints have resulted in a bitplane-based zonal coding of the DCT
coefficients. The code converts the 8x8 block coefficients into a single bit string. A high
compression ratio is obtained by reducing the information to be coded. In order to obtain
scalability, the bitplanes are encoded from the highest to the lowest bitplanes. In case of
truncation, only information of the lowest bitplanes is lost. Ease of implementation is
achieved by not applying difficult to implement techniques, such as variable length encoding.
Figure 18 shows how the scalable coding works.

repeat over all bitplanes

to s1gned »| DC value 1> &gmﬁf:ant
magnitude coefficients

position and sign of newly

1 >RMAX CMAX significant coefficients 1

repeat over all bitplanes

Figure 18. Scalable coding scheme.

The proposed encoding scheme provides a lossless compression resulting in on
average 4 bits per coefficient. This is a reduction of 2x and 3x in comparison with
uncompressed pixel (8 bits) and coefficient data (12 bits), respectively. An additional
reduction of ‘2%’ is obtained by truncating the bit-string, resulting in an average of 2 bits per
coefficient. Note that part of the lower bitplanes is deleted when truncating a bit-string. Since
most noise is contained in the lower bitplanes, truncating a string means that noise is

removed.

The decoding scheme is simply the inverse of the coding scheme. The only
complication arises when decoding a truncated bit-string. Several strategies can be followed
when decoding a truncated string: adding zeros or adding random bits for the missing end of
the known coefficients. Recall that the effect of truncation is that the noisy lower bitplanes are
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66 The Video Encoder Platform

removed. Under the assumption that this noise is randomly distributed it is clear that adding
random bits at the end of the bit-string is the way to go. However, since the hardware to
generate random bits for the missing ends of the known coefficients is much more complex
than that to add zeros, we will follow the zero approach.

4.4.3 Motion estimation

The motion estimator is responsible for determining the best match of the current
macro block in the picture stored in the loop memory. Instead of applying the brute-force
approach of evaluating all possible vectors, a simpler approach is followed. This approach is
based on a modified 3-Dimensional Recursive Search (3DRS) algorithm [O1i98].

The 3DRS algorithm as used in the IL.McIC ([HBH+93], [WWV+97], [HB95]) is
based on a set of 5 candidate vectors, carefully chosen in the neighbourhood of the current
macro block, as shown in Figure 19. Let (x,y) be the coordinates of the current macro block.
The following motion vectors are used as candidate vectors:

1. Motion vector of the macro block at (x-1,y-1).

2.Motion vector of the macro block at (x+1,y-1).

3. Motion vector of the macro block at (x-1,y) with a random update in the range (-1,1).
4.Motion vector of the macro block at (x-1,y) with a random update in the range (-6,6).
5.Motion vector of the macro block at (x+1, y+2).

The first four candidates are from the current image, whereas the last candidate is from

the previous image.
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Figure 19. Candidate vectors of 3DRS.
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Figure 20. Organization of the motion estimator.

Figure 20 shows the resulting motion estimation set-up. Note that the refinement of
the four (8x8) vectors is for the Advanced Prediction Motion (APM) option only.

4.5 Video encoding architecture

In this section, the architecture of the Picasso design will be described. Section 4.5.1
gives some background information about C-HEAP. Section 4.5.2 describes the resulting
Picasso architecture in terms of hardware and software tasks.

451 C-HEAP

The following sections describe the C-HEAP architecture, communication protocol,
and design flow, as used in the Picasso project.

4.5.1.1 C-HEAP architecture

C-HEAP advocates a multi-processor architecture where the processors run the tasks
of the application independently and in parallel. The tasks synchronize on data- and buffer-
space availability and may use on-chip memory to implement communication buffers to
reduce the bandwidth requirements to off-chip memory. The individual processors should be
chosen in such a way that a good trade-off between flexibility and efficiency is made.
Functions that are well known and will not change, e.g. because they are standardized, can be
implemented in a very efficient (but less flexible) way. Other functions require flexibility, e.g.
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68 The Video Encoder Platform

because uncertainties still exist or because the chip should adapt to the context in which it will
operate. In fact, a gradual scale of very flexible cores (CPUs) to very rigid cores (dedicated
hardware) exists. In order to facilitate a good trade-off between flexibility and efficiency, C-
HEAP supports the application of all these cores. Figure 21 shows an example of such
architecture. It consists of an ARM, a TriMedia, a R.E.A.L., and some dedicated hardware
units. Due to the high level of parallelism in this architecture, it is very well suited for

application with high computational demands.

CPU
(MIPS, ARM)
f $
Instr Data MEMORY Peripheral
Cache | |Cache (interface)
Plbus f ) { Iy
3 3
DSP wates| DSP + | ASIP | ASIC
+ (TriMedia) _dec 1™ (REAL) ’f,‘i‘c’f'" (Mistral-2) i‘,‘;‘if'" (VHDL, Phideo)
[ioce] —F— 33 |4 f F 4 !
Instr. || Data Local Instr. Local Local
Cache||Cache Mem. Cache Mem. Mem.
3 1 3 3 3 [ MEMORY
k J ] y Y (interface)

DSPbus
Figure 21. An example of an architecture used by C-HEAP.

4.51.2 C-HEAP protocol

The C-HEAP protocol is intended for signal processing applications where infinite
streams of data have to be processed. It is based on a model that is often referred to as process
networks. In this model, the overall function is decomposed in a number of parallel processes
communicating via point-to-point channels with First-In-First-Out (FIFO) behaviour. No data
can be lost on these channels. When a process wants to read from a channel, and there is no
data available, the process will block. Within C-HEAP, bounded FIFOs are assumed since we
are addressing efficient implementation of the function and not only the specification. This
means that a process will also block when it wants to write to a channel if the associated FIFO
is full. Synchronization between processes is derived from the status of the FIFOs: a blocked
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4.5 Video encoding architecture 69

reading process is resumed when the writing process writes on the channel. Likewise, a
blocked writing process is resumed when the reading process reads from the channel. This
synchronization takes place on a per token basis. While a token is the unit of synchronization,
the amount of data associated with a token can vary. It can be very large (e.g. video frames) or
even zero (empty tokens). In the later case, the channel is only used for synchronization and
not for communication. In order to implement the protocol efficiently on shared memory
architectures, we have chosen to clearly separate synchronization from communication where,
in this context, communication is the set of activities required to transport the data from one
process to another. For instance, in a message passing implementation, synchronization and
communication are combined in the primitives message send and message receive. In an
implementation based on shared memory, no physical transport or copying of data is required,
so only synchronization primitives are needed. Another requirement is that no dynamic
memory allocation is required during operation. This means that during setup, all
(communication) memory is allocated once, and reused during operation. This has to do with
the fact that we are aiming at low cost, high performance solutions where we cannot afford
the cost- and performance penalty of dynamic memory allocation for multi-processors.

The synchronization primitives are used to notify other processes of the input/output
activity of the calling process. Concisely, a process has to perform the following
synchronization actions to get input and to produce output. To get input data from an input
channel, a process has to synchronize with the producing process on the input channel. This is
done using the primitive CHP_get data on the input channel. This primitive will return a
reference (pointer) to the oldest not yet consumed token send by the producer. Note that this
primitive will block when the FIFO on the channel is empty. When CHP get data “falls
through”, the reference to the data can be used to process the data. When the data is
completely used, the process has to notify that the producing process can again use the data
space (buffer). This is done by the primitive CHP put space on the input channel. Note that
CHP _put space does not block. On an output channel similar primitives exist:
CHP _get space to acquire a reference to a buffer that can be filled and CHP put data to
notify the consumer at the other side of the channel that data has been produced. The
primitive CHP_get_space blocks when the FIFO is full, the primitive CHP put_data will not
block.

Figure 22 illustrates the use of these four primitives. Here the buffers are visualized as
train wagons and channels as railroads. A process first has to acquire a full wagon at its input
channel and an empty wagon at its output channel. After the processing, an empty wagon is
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70 The Video Encoder Platform

pushed on the input channel and a full one on the output channel. The number of wagons
initially put on the railroads determines how strongly processes are coupled. Only one wagon

means that the processes have to be executed alternately, more than one wagon allows
pipelining (parallel execution) of the processes.

Pipelining

No Pipelining

Data *f, *e;

while (1) {
f = CHP_get_data(ch_in);
e = CHP_get_space(ch_out);
process(f,e);
CHP_put_space(ch_in);
CHP_put_data(ch_out);

}

Figure 22. The four C-HEAP synchronization primitives.

4.5.2 Picasso implementation

One of the most important implementation issues is the trade-off between hardware
and software. Doing everything in software it results in a maximum of flexibility, but at the
expense of a high power dissipation and low performance. On the other hand, implementing
everything in hardware leads to a low power and high performance architecture, but with
almost no flexibility. In other words, a good balance between hardware and software leads to
an optimal architecture in terms of power dissipation, performance, and flexibility.

4.5.3 Hardware-software partitioning

The hardware-software partitioning was done in several steps:

o The first step taken was to determine the parts of the encoding algorithm suited to be

implemented in hardware. The combination of high performance requirements and no (or
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few) flexibility constraints characterize these parts. This resulted in the (I)DCT, ()MC,
(DQ, DISP3, ZZ, RLE, DEC, and ENC blocks.

The ME block was divided into two parts: vector selection and vector evaluation.
Vector evaluation is also a candidate to be implemented in hardware, whereas the vector
selection requires flexibility and is more likely to be done in software.

Besides of these, two additional hardware blocks were identified: the border
generation, and the stream processor. The border generation block is responsible for
generating an artificial border around the image by simply copying the edge pixels. This
block is needed to support two options of the H.263 standard: the Unrestricted Motion
Vectors (UMV) and the Advanced Prediction Mode (APM). The stream processor is
responsible for concatenating the output bits of the VLE, since this functionality is very
nasty to implement in software.

Then, any flexibility (e.g. encoding standard dependent parameters) in these hardware
blocks was moved to software. A good example is vector clipping. Since the maximum
size of the motion vectors is encoding standard dependent, the maximum vector size is
determined by sofiware and passed to hardware as a parameter. The vectors are then
clipped in hardware, based on this parameter.
The next step was to group these blocks by combining neighbouring blocks into larger
coprocessors. This has lead to three coprocessors:
1. The motion estimator (DEC, DISP, and ME vector evaluation).
2. The texture processor (DEC, ENC, DISP, (DMC, (DDCT, ()Q, ZZ, RLE, and border
generation).
3. The stream processor.
Then the C-description was divided into processes, one process per coprocessor, and one
process for the software running on the ARM.
The resulting model was extensively simulated in order to see if the performance
requirements are met. These simulations showed that implementing the VLE of the
coefficients in software (which is good from a flexibility point of view, since each
encoding standard has different VLE tables) resulted in a poor performance (VGA at less
than 30 frames per second). Therefore, the following approach was chosen. The VLE of
the coefficients has to be done in hardware, and has been incorporated in the texture
processor, resulting in meeting the performance constraint of 30 frames per second. The
set-up of the hardware VLE has to be as flexible as possible (downloading of VLE tables
in a content addressable memory [KWS+99]). However, as a fall back scenario, the
hardware VLE of the coefficients can be switched off, to be able to do it in software. In
this way, it is possible to support a completely different VLE, at the expense of lower
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performance.

This has lead to the partitioning shown in Figure 23. In this figure the hardware blocks
are represented as rectangles, and the software tasks as circles.

< loop memory >
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evaluate refine select MC O Memory
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P input TT 1 | vectors vector mode Loop Fiter IMC
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vectors ~
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Figure 23. Result of hardware-software partitioning.

Figure 24 shows the final architecture. Besides the previously mentioned
coprocessors, a pixel processor has been added. An ARM (Advance RISC Machine) has been
used as microprocessor. Due to the large bandwidth to the loop memory, it was necessary to
use two memories. One memory is used for the microprocessor (code, data, etc.), while the
other is dedicated for pixel data exclusively. A double bus architecture has been used. Both
busses are based on the PI bus protocol, and two Bus Control Units (BCU) are needed to
control them. The upper bus (will be called the PI-bus) is used for the communication from
and to the ARM (program data, variables, motion vectors, and handshake with coprocessors).
The ARM is defined as the default master on that bus. The lower bus (will be called the DSP-
bus) is used for the communication from and to the image memory (input buffer, loop
memory, output buffer). Due to the large bandwidth requirements of the motion estimator,
that coprocessor is defined as the default master on that bus. Furthermore, a bridge has been
added between both busses in order to enable the ARM to access the image data.
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4.5 Video encoding architecture 73

The connection to the outside world of the memories is made through the buses. A
single clock is used for the complete architecture. The following sections describe the

architecture in more detail.

Outside ARM ARM
world memory
A
ﬂ ctrl-bus
y Y y Y Ar y ¥ y Y BCU
v
A 4
Pixel brid Motion Texture Stream
processor rage estimator processor processor
] I ] ] ]
A y BCU
data-bus
Image
memory

Figure 24. The resulting hardware architecture.

4.5.4 Pixel processor

The pixel processor is responsible for the communication with the front-end (the
image sensor part), by doing the line to stripe conversion. Lines of pixels are read and written
into a small buffer memory. After reading 16 lines, a pointer is passed to software indicating
where the stripe can be found. This pointer is used to start processing the macro blocks in that
stripe.

While processing the current stripe, the next stripe can be read. This requires a buffer
size equal to 4 stripes: 2 for input data and 2 for output data. Note that since the input data is
progressive, and since the Picasso encoder stops during line and field blanking, no additional
buffer size is needed at the input part.
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74 The Video Encoder Platform

4.5.5 Motion estimator

The motion estimator receives a set of candidate vectors from the software. Each
candidate vector consists of the vector coordinates, a penalty value, and the size of a random
update. These vectors are evaluated, and the best vector in terms of lower sum of absolute
differences (SAD) is selected and refined (full- half- and quarter-pixel).

The motion estimator is also responsible for generating a metrics representing the cost
of coding of a macro block in intra mode.

The output of the motion estimator consists of the motion vector(s), and the intra
metrics. This information is used in software to determine the encoding approach for the
current macro block (skipped, intra coded, inter coded with zero vector, inter coded with
vector, or inter coded with four 8x8 vectors). The main benefits of the 3DRS implementations
are the following:

1. Busload: Using a refinement memory reduces the DSP-bus load considerably, resulting in
more headroom for further improvements and modifications on the encoder algorithm.

2. Performance: Since less scalable decode actions are carried out, it is possible to design a
slower scalable decoder.

3. Low power: As stated before, the number of scalable decode actions is reduced

considerable by using a refinement memory inside the motion estimator.

4.5.6 Texture processor

The texture processor is responsible for using the results of the motion estimator
(encoding mode and vectors) to encode and decode the macro blocks, and to store the

decoded macro block in the loop memory.

The output of the texture processor consists of a list of VLE codes for the DCT
coefficients of the current macro block (if the VLE of the coefficients is done in software,
then the output consists of a list of RLE values). A content addressable memory is used to
transform the RLE values into VLE values [KWS+99].
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4.5 Video encoding architecture 75

Since the texture processor needs (for the APM) the motion vectors of macro blocks
(x-1,y), (x,¥), (x*+1,y), and (X, y-1) in order to encode macro block (x,y), the motion estimator

is always two macro blocks ahead of the texture processor.

On the other hand, since the software needs the results of the texture processor in
order to generate the VLE headers, to encode the motion vectors, and (eventually) to do the
VLE of the coefficients in software, the texture processor must be one macro block ahead of

the software.

The texture processor requires also some additional functionality to enable the UMV
and APM options, since both options allow vectors pointing out of the image. The texture
processor generates a border of non-existing pixels by simply copying the edge pixels.

4.5.7 Stream processor

The stream processor is responsible for collecting the VLE codes generated by the
texture processor and software, to concatenate them, and to transfer them on the output of the
Picasso design (storage or connection to PC). Due to the parallelism of the texture processor
and the software task, multiplexing is needed in order to interleave the VLE codes of the
headers and motion vectors with the VLE codes of the coefficients.

458 Software

The previous sections describe the hardware coprocessors of the Picasso design.

However, several tasks are to be done in software.

As was explained in Section 4.2, Picasso addresses two scenarios: one based on full
compression functionality up to CIF 30 frames per second (small scenario), and the other for
VGA 30 frames per second (large scenario).

The following tasks are still done on the ARM:
e Initialization.

e Candidate vector generation for motion estimation.
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e VLE of headers and motions vectors (and optionally also of coefficients).
. Bit rate control (quantizer value control).
o All standard dependent actions (e.g. motion vector clipping).

e Handshaking with hardware blocks.

The most important task of the ARM is to do the handshaking with the hardware
coprocessors. The most important aspect of this handshaking is that it should be designed in
such a way that as many as possible hardware and software is running in parallel. Figure 25
shows how this is achieved for the case of a SQCIF video stream (8 by 6 macro blocks per

picture).
I process stripe 0 i process stripes 1-4 % process stripe 5 i
N " . | " V
. . ] I : 3
Pixel processor  Garige OXarine D> — e e ——

Motion estimator ~ ——XPOREO—0XRNE ——DOD——

-

Texture processor — COOREERO-——00E  EEO——E0RRERED——

]
H I
H ]
[

VLE SW N 0,06, 00,060 SO M 06 0.0 S0 10 0.0 6.6.0 S

I

]

t
L

other SW -< vector and quantizer selection >< vector ani tizer selection X vector and quantizer selection >"—‘—

: : 1 1
- : 1 !
: e =
Stream processor . fetripe 0F fstripe 4— Astripe 5

~———

————

Figure 25. Pipelining of hardware and software.

The pixel processor is always one stripe in advance. The motion estimator, the texture
processor, and the software VLE are done in parallel. As stated before, the motion estimator is
two macro blocks ahead of the texture processor, which on its turn is one macro block ahead
of the software VLE. As can be seen in the figure, the pipeline of these three blocks is filled
and emptied at the beginning and at the end of each stripe, respectively. This allows to do bit
rate control computations before starting a new stripe. Furthermore, the stream processor
collects the VLE codes of several macro blocks in a buffer, and writes them to the output each
time this buffer is full, or at the end of a macro block stripe. In the case of this example
(SQCIF), the end of the macro block stripe is reached before this buffer is full.

This example shows that for some period the motion estimator, the texture processor,
and the software VLE are running in parallel. During this period the pipeline is full, and the
hardware and software blocks are used very efficiently. Outside this period the computations
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4.5 Video encoding architecture 77

are done less efficiently, since all three blocks are not running in parallel. However, for larger
image sizes (e.g. VGA) the total number of macro-blocks per macro-block stripe increases,
resulting in an increase of this efficient period. Since the length of the inefficient period stays

the same, the overall efficiency increases.

4.5.9 Embedded memories

The Picasso design contains two important embedded memories, the ARM memory,

and the image memory. The following two sections describe these memories in more detail.

4.5.9.1 CPU memory

The ARM memory is connected to the ARM through the ctrl-bus (an AMBA-bus),
and is used to store all ARM related data. The following data is stored in this memory:

e Operating system and program of ARM.

e Variables of ARM, including the motion vectors.

e Communication data for C-HEAP communication with coprocessors.

The actual size of this memory depends on several application choices, such as if the
code going to be stored in flash, embedded or external ROM (Read Only Memory). For
standard applications the memory size is estimated to be around 500 Kbits.

4.5.9.2 Image memory

The image memory is connected through the data-bus to all coprocessors, and through
a bridge indirectly to the ctrl-bus. The following data are stored in this memory:

e Input buffer consisting of four stripes. Since the memory size to store these stripes
is rather large (4:16-3/2-640-8 = 480 Kbits for VGA and 4-16-3/2-352-8 = 264
Kbits for CIF).

e Loop memory containing the previous and current reconstructed images. The size
of a single compressed (2 bits per pixel) reconstructed image is 1008 Kbits and
360 Kbits for VGA and CIF, respectively. Two images have to be stored: the

previous for motion estimation, and the current image being encoded. However,
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since the images are encoded in a progressive way, it is possible to merge both
images, as shown in Figure 26. As soon as a part of the previous reconstructed
image is not needed any more, it is overwritten by the current image. This requires
an overlap of 2 stripes. However, in order to support the UMV option an overlap
of 3 stripes is required. As stated before, this memory is organized in two parts, a
pointer part and a data part. This results in a data memory of 40-(30+3)-384:2 =
990 Kbits and 22-(18+3)-384-2 = 346.5 Kbits for VGA and CIF, respectively, and
a pointer memory of 40-(30+3)6-8=61.875 Kbits for VGA and
22-(18+3)-6:8=21.656 Kbits for CIF. Both parts are organized in 8x8 blocks. This
is done to average out size differences of 8x8 blocks (chrominance blocks are
smaller than luminance blocks).

Note that no output buffer is part of the Picasso design. An output buffer is
normally used to accommodate changes in bit-rate. However, the size of this
buffer is related to the application, more concrete, to the bandwidth of the channel
used to transmit the compressed video stream. Therefore, this buffer will be part of
the platform in which the Picasso design will be embedded.

4.6 Picasso performance

The complete architecture has been modelled in the C-language, and simulated in TSS
(Tool for System Simulation). The hardware blocks have been modelled as a UNIX process,
whereas the software part is running inside the context of TSS on a (near) cycle-true
Instruction Set Simulator (ISS). The delay of the hardware blocks is assumed to be zero.
However, since these hardware blocks are connected to a ctrl-bus, and the delay of this bus is

macro block being encoded

4 current image

overlap
search area motion estimation

previous image

Figure 26. Merging the previous and current reconstructed images.
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4.6 Picasso performance 79

modelled correctly, some timing is taken into account for these blocks. This is not a serious
modelling limitation, since pipelining can increase the speed of these blocks. Fast embedded
memories (zero wait cycles) have been assumed for these simulations. The simulations have
been done based on the DCT/spatial domain architecture, using lossless embedded
compression. The latter is clearly a worst-case situation, since lossy embedded compression

will reduce the memory bandwidth by an additional factor of two.
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Figure 27. Rate distortion curve for ‘SUZIE’ video sequence (QCIF size) with and without embedded

compression.

The use of embedded compression has enabled a single-chip and low-cost solution.
The performance of embedded compression has been evaluated for ‘SUZIE’ and "CARPHONE’
video sequences (CIF @ 10 frames per second) and are shown in Figure 27 and Figure 28
respectively. The rate distortion curves for these sequences indicate a marginal degradation in
PSNR values even though there seems to be no perceptual degradation. Further, the embedded

compression factor is 2.7 and the encoder compression factor range from 15 to 50.

Table 4 provides the details of the low-end CPU. The CPU utilization factor estimates
are derived from processing CIF video sequences at 30 frames per second (fps). Table 5
provides the area and power dissipation estimates for the various components of the H.263
encoder implementation in 0.18um CMOS technology. The worst-case estimation indicates a
H263 implementation with 100mW of power dissipation and 15 mm® of area. These
indicative numbers are some of the best reported in literature (see Figure 29), thus powering
future mobile multimedia systems with low-cost and low-power video encoding. These

numbers are obtained from estimations done at various levels of implementation abstraction.
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Figure 28. Rate Distortion Curve for ‘CARPHONE’ Video Sequence with and without embedded

compression
CPU ARM7 TDMI-S
Clock Frequency 110 MHz
Area 0.62 mm?
Power 0.39mW/MHz
Utilization Factor 54 %

Table 4. CPU Features.

Without embedded compression

With embedded compression

Instance

Area (mm?) Power (mW) Area (mmz) Power (mW)
ARM7 TDMI-S 0.62 3.93 0.62 5.15
Memory (CPU+Loop) 13.39 2.95 7.64 2.65
Motion estimator 1.62 6.03 2.74 8.70
Texture codec 4.24 4.30 5.39 6.21
Packer co-processor 0.50 0.08 0.50 0.08
Shells & busses 3.07 5.50 2.77 7.55
Total 265 299 382 262

Table 5. Area and Power Estimates for Encoder.
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4.7 Conclusions

The architecture of the Picasso design has been overviewed. This architecture is based
on a careful selection of the encoder domain, and on a careful hardware-software partitioning

in order to obtain low power, low cost, and high performance in combination with flexibility.

Low power and low cost has been achieved by applying embedded compression, and
by making a careful choice between the DCT and the spatial domains. Furthermore, a

refinement memory is used in order to reduce the power dissipation even further.

Energy per MB in uJ

[3] 2] This Work

Figure 29. Comparison of energy dissipated per MB w.r.t references [Ta+98], [Ha+99]. The top part
of the bar chart for [Ta+98], [Ha+99] correspond to off-chip power dissipation due to
external loop memory. Further, all implementations are normalized to the same
technology (0.18u CMOS). Furthermore, the 60-mW power dissipation reported in

[Ta+98] excludes the power due to off-chip loop memory.

High performance has been obtained by implementing the compute intensive parts in
dedicated hardware, using a 0.18um CMOS library. A high degree of flexibility for multi
standard purposes is offered by implementing the control and encoding-standard-related parts
in software. The communication between hardware and software is based on the C-HEAP

protocol.
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Chapter 5

Every sentence that I utter must be understood not as an
affirmation, but as a question.

Niels Bohr (1885 - 1962)
Physics Nobel Prize in 1922

Mapping of the Super-
Resolution Algorithm
onto a Video Encoder

5.1 Introduction

In order to meet low-cost features, a big effort has been made adapting the super-
resolution algorithm to the existing video encoding platform. As only limited hardware is
needed to achieve super-resolution improvements, we can see super-resolution as an added
value feature to video encoding at low cost (except engineering design costs and slight
modifications of the platform).

5.2 Iterative super resolution

The first approach to super-resolution is made through the adaptation of the algorithm
described in section 3.3 to be executed on the hybrid video encoder.
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84 Mapping of the Super-Resolution Algorithm onto a Video Encoder

5.2.1 Algorithm description. Version v1.0

The initially proposed iterative algorithm shown in Figure 6 can be written again, but
restricting the resources to those ones that can be found in the “Picasso” hybrid video-
encoding platform. This new algorithm is exposed in Figure 30. This first version, labeled as
v1.1, supposes the first real implementation of the super-resolution algorithm. The algorithm
is structured in three parts: initialization, first iteration, and loop for the remaining iterations.
The algorithm finishes when it reaches the number of iterations previously established, or
when it converges, i.e. the error variance is lower than a 0.5. The initialization sets off from a
value call ‘scale’ (two in our case) that will be the size increase in the horizontal and vertical
directions. From the ‘scale’ value is established the ‘nr_frames’ value (number of incoming
frames) as scale” (4 in our case), since this will be the area increase. Next, the memories that

are going to be used are declared and some values are initialized. Concretely:

e HR B: high-resolution accumulative memory (buffer) where the result of the super-
resolution process will be stored.

e HR A: high-resolution memory (average) where the computation of the high-resolution
average value is carried out.

e HR S: high-resolution memory (skif?) to store the shifted results.
e HR T: high-resolution temporal memory.
e LR _B: low-resolution version of HR_B, is obtained by decimation.

e LR I[]: low-resolution memory vector to store the incoming images. Its indexes go
from O to nr_frames-1.

e MV _fr2ref[] and MV _ref2fr[]: memory vectors intended to store the estimated motion
vectors. These memory vectors are in low-resolution.

One of the main problems to solve was the motion estimation, needed to compensate
the movement in the consecutive incremental improvements. This is a key factor in the super-
resolution algorithms and its influence on the resulting image quality is decisive, as it will be
seen later. In the literature about this topic [EF97], [HKK97a] is usual to make a separation
between this problem and the super-resolution one, usually limiting to suppose the
displacements perfectly known when applying the algorithm. Even in the case that the
movement estimation is included, the authors commonly use pixel level procedures, very

accurate, but very expensive in computational terms, and of course, most of them with few or
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5.2 Iterative super resolution 85

none possibilities of been implemented in real time with the nowadays available technology,

and even with the estimated technology available in the following years.

The objective of this work is to find a comprehensive and viable solution with real
time restrictions. In this sense, it is necessary to incorporate the motion estimation inside the
super-resolution algorithm. The chosen way, in order to minimize the implementation costs,
has been to reuse the architecture for the Picasso hybrid video encoder, as it can also offer a
solution to the real time super-resolution problem, if an appropriate mapping of the algorithm

into the architecture can be set.

Under the light of the available resources and the real time and low-cost desired
performances, the best way to perform the motion estimation is using the ‘motion estimator’
included in the magnitude video compression of Picasso. This supposes the review of the
following matters:

e The motion estimation must be carried out, not at a pixel level, as would be desirable
from an algorithm point of view, but at a block level, i.e. in groups of 8x8 pixels, as it
is imposed by the video compression magnitude.

e The influence of the estimation method (full-search, modified three-dimensional
recursive search 3DRS, etc.) and its parameters (search area, motion vectors length,
accuracy, etc.) in the motion vectors quality, and especially in the quality of the final
image, must be carefully analyzed.

e The optimal size of the block for the posed problem the must be established. A small
size would approach us to the ideal pixel shift, but it will be strongly affected by the
noise, whereas a big size block would offer, in general, a better global motion vector,
but of poor quality when trying to determine small local movements.

e The influence of aliasing presence in the motion estimation must be studied, as the

motion estimation is intended to compress video sequences without aliasing.

The motion estimator of the video compressor used in Picasso initially had half-pixel
accuracy, so, the first modification has been to introduce an additional refine stage in the
vectors computation to enable a quarter-pixel accuracy. Nevertheless, this feature has been let
as a configurable parameter, with the aim of enable an experimental comparison of how the
vector accuracy affects to the final image quality.
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Mapping of the Super-Resolution Algorithm onto a Video Encoder

* Block-align super-resolution algorithm v1.0

Set the value of the improvement: scale

nr_frames = scale*scale

IfLR_If] is a MxN matrix, then LR B is the same size: LR_B[M][N]
HR_B[scale*M][scale*N], HR_S[scale*M][scale*N], HR A[scale*M][scale*N]

Read a set of aliased Low-Resolution images in LR_I[#nr_frames]

Set the value of the maximum number of iterations: nr_iterations

The size of motion vector matrixes depends on the block size of the Motion Estimation

MV_fr2ref[0]1 = 0
FOR fr= 1 .. nr_frames-1
MV_fr2ref[fr] = Calc_Motion_Estimation (LR_I[fr], LR_I[0])
MV_fr2refffr] = 2 .* MV_fr2ref]fi]
END FOR
HR_A=0
HR B=0
// First Iteration
FORfr=0 .. nr_frames-1
LR_B =128
LR _ B=LR_I[f] -LR_B
HR_S = Upsample (LR_B, scale)
HR_T = Motion_Compensation (HR_S, MV_f{r2ref{fr])
HR S=HR_T
HR_A=HR_A+HR_S
END FOR
HR_A = HR_A ./ nr_frames
HR_B=HR_B +HR_A
Contrast_Clip (HR_B, 0, 255)
/f Next Iterations
FOR it = 1 .. nr_iterations
LR_B = Downsample(HR_B, scale)
FORfr=0 .. nr_frames-1
MV_fr2ref[fr] = Calc_Motion_Estimation (LR_I[fr], LR_B)
MV_ref2fr[fr] = Calc_Motion_Estimation (LR_B, LR_I[fr])
MV_fr2refffr] = scale * MV_fr2refffr]
MV _ref2frlfr] = scale * MV_ref2fr{fr]
END FOR
HR_A=0
FOR fr=0 .. nr_frames-1
HR_S = Motion_Compensation (HR_B, MV_ref2fr{fr])
LR_B = Downsample(HR_S, scale)
LR_B=LR_Ifff] - LR_B
HR_S = Upsample (LR_B, scale)
HR_T = Motion_Compensation (HR_S, MV_fr2ref]fr])
HR_S=HR_T
HR_ A=HR_A+HR_S
END FOR
HR_A=HR_A ./ nr_frames
variance = Variance(HR_A)
HR_B=HR B+HR_A
Contrast_Clip (HR_B, 0, 255)
{F (variance < 0.5) break;
END FOR

Figure 30. Pseudo-code of the first iterative algorithm using the resources of a hybrid video encoder.
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5.2 Iterative super resolution 87

When performing the motion estimation in low resolution, the resulting motion
vectors are also low-resolution, and thereby, to perform the motion compensation in high

resolution the vectors must me conveniently scaled, multiplying them by the used scale factor.

In principle, the super-resolution algorithm is intended for short image sequences
(nr_frames), where each image supposes a shifted version of the previous one. We will call
to this kind of sequences “global shift images”, because the entire image is affected by the
same motion vector, which is unique and global for every image of the sequence. As the
motion estimator is prepared to calculate the motion vector for every luminance macro-block
(four 8x8 blocks, i.e. one motion vector every 16x16 pixels) we will calculate from that
vector set the global vector. For this purpose, we can follow three approaches:

1. Calculate the average of all the motion vectors, in the horizontal and vertical
directions, (mv.x and mv.y) and assign this value to the global vector (MV.x and MV.y).

This operation is shown in ((22) for an MxN luminance block

1 M-1N-1
MV .x= mv(i, j).x
ey, Z;,jZ(:) @i, 1)
1 M-1N-1 L.
MV.y=——Zva(z,j).y (22)
M-N 3%

Find the most frequent vector and assign this vector to the global one.
3. Find the most frequent vector component in the horizontal and vertical directions and

assign these two components to the global vector.

The tests performed in that direction show a great convergence among the tree
options, seldom showing small deviations, normally below one quarter of pixel. For instance,
the vectors set calculated following the three procedures and the error for each case are
presented in Table 6. The selected motion estimation has been the modified three-dimensional
recursive search (3DRS), with Y4-pixel precision, and the test sequence was composed of 12
frames, artificially shifted, of the K4NTOOR sequence, where the frame zero was used as the
reference.

Instead of computing directly the average image g'(x,y) as expressed in (4), it is

faster and the accurate is the same, to start from the average value among all the possible
pixel values. As every pixel is stored as an eight-bit number, and in the luminance case its
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88 Mapping of the Super-Resolution Algorithm onto a Video Encoder

vales are always positive [0..255], the average value is 128. Although starting from the real
average value convergence is reached faster, the algorithm however remains very far from
real time operation, thereby it makes no sense to increase the computational load of the
algorithm in the initial stage what, in any case, will save no more than one iteration. Although
the computational load of that extra iteration will be certainty bigger than the one of
computing the average value, its effect is negligible compared to the aim of reach the desired

performances and thus the algorithm results in a more simplified style.

Real Average vector Most frequent vector | Most frequent component
vector Values Error Values Error Values Error
2] 2 2| -2 0 0 2| 2 0 0 2 -2 0 0
3 -1 3 0 0| -1 3 -1 0 0 3 -1 0 0
3 -3 313 0 0 313 0 0 3 -3 0 0
2 0 2 0 0 0 2 0 0 0 2 0 0 0
0] -3 0| -3 0 0 0 -3 0 0 0 -3 0 0
0| -1 0| -1 0 0 0| -1 0 0 0 -1 0 0

2| -1 -2 0 O|-17}-21]-41 0 0 -2 -1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0
0| -2 0| -2 0 0 0| -2 0 0 0 -2 0 0
2 0 2 0 0 0 2 0 0 0 2 0 0 0
0 2 0 2 0 0 0 2 0 0 0 2 0 0

Table 6. Errors in the estimation of the global vector for the KANTOOR sequence composed
of 12 frames. Frame zero is the reference.

Another important problem is the fact that the Picasso architecture is not intended to
simultaneously support two different memory sizes. In this case we have opted for the
solution of assuming that the sensor only delivers the Region Of Interest (ROI) to improve,
which is equivalent to use only high-resolution images.

This solution based in the use of only high-resolution images supposes the additional
advantage of avoiding the interpolation and decimation operations for increase and reduce the
size of the memories, avoiding the errors produced by these operations. Likewise, as far as the

motion estimation is also performed in high resolution, the scaled vector is again unnecessary.
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5.2 Tterative super resolution 89

In Figure 31 (a) it can be seen the variance value of HR_A for the test image KANTOOR
of original size QCIF as the iteration number increases until 65. In Figure 31(b) it can be seen
this same value from iteration number six, with the intention of highlight the variance trend
towards the value 0.439. For that reason, it is empirically selected the value 0.5 for the
variance as threshold to stop the iterative process. In this case, the cut value was reached at

iteration 21.

5.2.2 Overflows and code redistribution

After computing the average value for the first super-resolution proposal, we must
take into account that no memory intended to store an image can include values that do not fit
in eight bits, before storing the result of an arithmetic operation, a clip of the image values to
8 bits must be performed. This is reflected in the algorithm as ‘Contrast_clip’. In fact, this is
one of the first problems founded when trying to map image-processing applications reusing
an architecture conceived for image compression: the arithmetical problems.

Variance of HR_A with 65 iterations. "Kantoor.cif” Variance of HR_A with 65 iterations. "Kantoor.cif”
5
45
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4
2500 15 \
2000 3
g ? .l
5 2 25
s 1500 s \
> > 2 \
1000 16
— Variance of HR_A ; \ [—Variance of HR_A |
500
L 05
0 +erer s v v 0 errr
1 s 9 1 17 21 25 29 33 37 41 45 49 53 57 61 65 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 S1 S4 57 60 63
iteratlons (1..65) iterations (6..65)
(@ (b)

Figure 31. Variance behaviour of HR_A during 65 iterations (a) and detailed view that shows the

variance from iteration number 6 (b).

It i1s a basic principle of the binary arithmetic that the addition of two N-bits nhumbers
produces an N+1 bits number. This so basic principle has supposed a very important problem
source in the algorithm develop. The Picasso architecture reads images in macro-blocks
stripes inside the coprocessors. In that moment, every pixel is represented with an eight-bit
number. Once in the coprocessor, the image values are processed in a sixteen-bit word-wide
architecture (block level processing), but the result must be stored again in an eight-bit image
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90 Mapping of the Super-Resolution Algorithm onto a Video Encoder

memory, which has been schematized in Figure 32. For image compression, this is not a major
problem, but when reusing the same architecture for arithmetic image processing, we face the
limitation that any intermediate result must be stored in 8 bits. Because of this problem, we
have adopted the following solutions:
e Try to perform all the arithmetic operations at block-level.
* Rearrange the arithmetic operations in such a way that, when storing the intermediate
results, these are limited, as far as possible, to eight bits.

Related with the arithmetic operations rearrange matters, the straightforward change is
to distribute the division implied for the average value computation in divisions inside the
main loop of Figure 30. For that purpose, two choices are presented, as shown in Figure 33:

o The first one is to divide every image by the total (4 in our case) before the addition,
but this implies an important dynamic range reduction that negative impacts on the
image quality.

e The second one is to distribute the division between the subtraction operation and the
accumulator that supports the overall error summation. In that way, the dynamic range
clip is split between the memory that stores the subtraction and the memory that stores

the accumulated summation.

8 bits
i L 9 bits 8 bits Memory
@ —> l —>
8 bits
rﬁ 1 bit
N -

v

Block level processing

Figure 32. Effects of precision loose when performing arithmetic operations on 8-bit images.
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5.2 Tterative super resolution 91

This second option offers the best results and hence it has been the selected one.
Although with this arrangement a satisfactory solution is achieved, for simulation we have
opted for increase the accumulator memory size to 16 bits, with the intention of being able

quantify overflows in a more accurate way.

5.2.2.1 Optimizations to the iterative super-resolution algorithm
version v1.0 for being mapped in the original Picasso
hybrid coder. Version v1.1

Under all that premises, the second version of the iterative super-resolution algorithm
has been developed. It is shown in Figure 35 and labeled as v1.1. The algorithm has been
substantially simplified due to removing the operations of resizing between high and low
resolution. HR_A memory appears in boldface because it is a special nine-bits memory. The
labels at the right side between brackets are the actions issued to the coprocessors and reflect
the operation set performed by the coprocessor at the block-level, i.e. with an internal 16 bits

precision.

FOR fr=0 .. nr_frames-1 FORfr=0 .. nr_frames-1

HR_B =HR I -HR_B : > HR_B = HR_I[fr}/4 - HR_B/4
HR_A=HR_A+HR_S HR_A=HR_A + HR_S

END FOR N

HR_A=HR A /4

FOR fr =0 .. nr_frames-1 FORfr=0.. nr_frames-1

HR_B =HR_I[f]-HR_B HR_B = HR_I[fr})/2 - HR_B/2
HR A=HR A +HR_S

END FOR ENSF;_(;\R= HR_A + HR_S/Z
HR_A=HR_A ./4

(b)

Figure 33. Code distribution strategies for the average value computation. (a) Grouping the
division in a single operation. (b) Distributing the division.
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92 Mapping of the Super-Resolution Algorithm onto a Video Encoder

The arithmetic operations redistribution drastically reduces the number of overflows
produced during the code execution. Figure 34 (a) shows the number of overflows produced in
version v1.0 without operations redistribution and in version v1.1, Figure 34 (b), with code
redistribution. It must be taken into account that the maximum number of overflows per
iteration will be the size of the high resolution image (352x288) multiplied by the three
components (luminance, red chrominance and blue chrominance) and by the number of
operations that may produce overflow, three in our case (SR_ACT1 o SR_ACT3, SR_ACT2
and SR_UPDATE), that is, 352x288x3x3=912384. It can be appreciated that without
operation redistribution the number of overflows reaches 298196 in the 6™ iteration, i.e. a
32.68% of the arithmetical operations produces overflows. With redistribution, for the same
iteration number, the overflows are equal to 424 that represent the 0.046% of the performed
operations. In Table 7 the exact number of overflow produced in both versions and the

percentage that it represents over the total arithmetic operations performed are shown.

Overflows with and without operations re-ordering. " Kantoor.cif" Overtlows with operations re-ordering. "Kantoor.cif"
600 s s
00000 /._a—*—*—*—'ﬁ 0 . il
250000 R — 0 /\
. P . VY
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* T %0 Y - . —
2 150000 . SR N— —_— S
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—a— Overflows without operations re-orderin, a9
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—a— Overtlows with operations re-ordering ;
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Figure 34. Arithmetic overflows produced during 20 iterations with and without reordering
operations (a) and detail that shows only the overflows with arithmetic operations
reordering (b).

The overflows produce image saturation. If the overflow is produced by an operation
which its result is higher than 255, this will be clipped to 255 (overflow) and if the result is
lower than zero, it will be clipped to zero (underflow). If the overflow number is high, a
significant degradation of the image quality will be appreciated. Nevertheless, a small
overflow number is acceptable as it only supposes a small quantification effect, imperceptible
in most of the cases. However, although this effect will be inappreciable, it will be reflected as

a drastically drop in the signal to noise ratio and in the spectral correlation coefficient.
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5.2 Iterative super resolution 93

; Version v1.0 Version 1.1
hteration total % total %
1 50688 5.56 0 0.000
2 202960 22.25 0 0.000
3 255064 27.96 380 0.042
4 277290 30.39 289 0.032
5 290483 31.84 413 0.045
6 298196 32.68 424 0.046
7 303131 33.22 440 0.048
8 306110 33.55 372 0.041
9 308189 33.78 499 0.055
10 309610 33.93 370 0.041
11 310888 34.07 533 0.058
12 311791 3417 444 0.049
13 312464 34.25 484 0.053
14 313181 34.33 456 0.050
15 313600 34.37 529 0.058
16 314040 34.42 515 0.056
17 314402 34.46 543 0.060
18 314683 34.49 556 0.061
19 315017 3453 530 0.058
20 315118 34.54 561 0.061

Table 7. Arithmetic overflows produced in versions v1.0 and v1.1 and the percentage over the total
arithmetic operations performed at block level.

5.2.3 Transformations of the iterative algorithm with
reference to the average image. Version v1.2

With the aim of decreasing the operations amount a new version of the super-
resolution algorithm, labelled as v1.2, has been developed. We use again two different image
sizes (and so two different memory sizes) simultaneously. The new version of the algorithm,
shown in Figure 36, moreover reflects some additional modifications for being properly
mapped in the new architecture.

We have decided to homogenize the iterative loop, removing the first and irregular
iteration. We have opted for using as the first super-resolution image proposal the average of
all the input images, therefore decreasing the average noise in the resultant image. The
SR_AVERAGE action reads four low-resolution input images, taking them to high resolution
thought closed neighbour interpolation and obtain the average, that will be taking as the first
high-resolution image proposal.
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Mapping of the Super-Resolution Algorithm onto a Video Encoder

* Jterative super-resolution algorithm v1.1

Set the value of the improvement: scale
nr_frames = scale*scale, M’= scale*M, N’= scale*N

HR_B[M’][N’], HR_S[M’][N’], HR_T[M’][N’] all of 8 bits. HR_A[M’][N"] is 9 bits,

Read a set of aliased Low-Resolution images in LR_I[#nr_frames][M][N]
Set the value of the maximum number of iterations: nr_iterations

The size of motion vector matrixes depends on the block size of the Motion Estimation

MV_fr2ref[0] =

FOR fr=1 .. nr_frames-1

HR_I[fr] = Upsample (LR_I[fr], scale)

MV_fr2ref[fr] = Calc_Motion_Estimation (HR_I[fr], HR_I[0])
END FOR

HR_A
HR_B

0
0

// First Iteration

FORfr =0 .. nr_frames-1

HR_S =128

HR_S =HR _I[ff})2—-HR _§/2

HR_T = Motion_Compensation (HR_S, MV_f{r2refifr])
HR_ S=HR T

HR_A=HR_A +HR_S/2

END FOR
HR_B = HR_B + (HR_A)

// Next Iterations
FOR it =1 .. nr_iterations
FORfr=0 .. nr_frames-1
MV_fr2ref[fr] = Calc_Motion_Estimation (HR_I[fr], HR_B)
MV _ref2fr[fr] = Calc_Motion_Estimation (HR_B, HR_I[fr])
END FOR

HR A=0

FOR fr =0 .. nr_frames-1
HR_S = Motion_Compensation (HR_B, MV_ref2fr[fr])
HR_S = HR_l[fr}/2 - HR_S/2
HR_T = Motion_Compensation (HR_S, MV_fr2refifr])
HR S=HR T
HR_A=HR_A +HR_S/2
END FOR
HR_B =HR_B + (HR_A)
variance = variance(HR_A)
If (variance < 0.5) break
END FOR

[SR_STORE]

[SR_INIT_A_B]

[SR_ACTI]

[SR_ACT?]

[SR_UPDATE]

[SR_INIT_A]

[SR_ACT3]

[SR_ACT?]

[SR_UPDATE]
[SR_STAT]

Figure 35. Pseudo-code of the modified iterative algorithm v1.1.
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5.2 Iterative super resolution 95

As in version v1.1, the temporal high-resolution memory HR_T has been introduced
in order to avoid data overlapping, at the same time that the image HR S is ready to be
shifted, this one would be overwritten with new data. At the implementation stage, this
memory will not be necessary, due to the overlap existing in the Picasso architecture between
the present memory and the reconstructed one of two macro-blocks rows, this data hazard

problem will be automatically solved by the hybrid coder structure.

The LR B memory will always contain a low-resolution version of the super-
resolution image, obtained by decimation (down-sample) and its use is restricted to the
computation of the low-resolution motion vectors. It must be taking into account that the
motion estimation is one of the most computational intensive tasks, and therefore performing
it in low-resolution implies an important time and power consumption save. Another way to

reduce the algorithm requirements is obtained by removing the second motion estimation.

Until now, we always have performed two motion estimations per iteration and input
frame: one of the super-resolution images with respect to the input frame and other of the
input frame with respect to the super-resolution image. Nevertheless, due to the used motion
estimator, with vectors in Cartesian form, it supposes a good approximation to consider that
the second motion vectors can be derived from the first ones through a simple inversion of the
direction. Although from a conceptual point of view this is right, in the practice the same
inverted motion vectors are not obtained if both motion estimation are performed and
compared, because the motion estimation process is really a simple block matching, i.e. a
comparison of the accumulated absolute difference summations (SAD, Sum of Absolute
Differences) obtained when comparing every 8x8 block with other 8x8 blocks of the other
image inside a certain search area. In consequence it is possible that, as the search areas are
different it can exist another 8x8 block in the second image with a lower SAD, thus altering
the homologue motion vector, although normally slightly. In the algorithm proposed in the
version v1.2, this is reflected as an instruction that it is really a function (that it is why it is not
enclosed between brackets) named INVERT MV().

5.2.3.1 Memory requirements for version v1.2

In Figure 37 the block diagram of the algorithm is shown. The functional blocks have
been shadowed to distinguish them from memories. All the used image memories are eight
bits per component, except HR_A that is nine bits, and for that reasons it has been
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96 Mapping of the Super-Resolution Algorithm onto a Video Encoder

distinguished using double line in the borders. The functional blocks motion estimation and
motion compensation are already included in the hybrid video encoder. The remaining blocks
have to be added over some of the existing co-processor and we finally opted for the
compressor block.

The diagram block of Figure 37 also supposes an important aid in the evaluation of the
necessary resources for a sequential execution of the algorithm over the pixel flow in a macro-

* Jterative super-resolution algorithm v1.2

Set the value of the improvement: scale

nr_frames = scale*scale, M’= scale*M, N’= scale*N

HR_B[M’][N’], HR_S[M’]J[N’], HR_T[M’][N’] all of 8 bits. HR_A[M’][N’] is 9 bits
LR_B[M][N] for the motion estimation

Read a set of aliased Low-Resolution images in LR _If#nr frames]{M][N]

Set the value of the maximum number of iterations: nr_iterations

// Starting with the Average Image
IF(frame_no==3)

HR_B = Upsample(LR_I[0]+LR_I[1]+LR_I[2])}+LR_I[3])
HR_B = HR_B/4

[SR_AVERAGE]

END IF
// Tterations
FOR it =1 .. nr_iterations
LR_B = Downsample(HR_B) [SR_DOWNSAMPLE]
FORfr=0 .. nr_frames-1
MV_fr2ref[fr} = Calc_Motion_Estimation (LR_lI[fr], LR_B)
Select_global_motion_vector()
MV _ref2frifr] = - MV _fr2ref{fr] INVERT MV()
MV _fr2ref[fr] = 2 .* MV_fr2ref[fr]
MV_ref2fr[fr] = 2 .* MV_ref2fr[fr]

END FOR
HR_A=0 [SR_INIT_A]
FORfr=0 .. nr_frames-1
HR_S = Motion_Compensation (HR_B, MV_ref2fr]fr]) [SR_MOT_COMP1]
HR_S = Upsample(LR _[fr]))2—HR_S/2 [SR_UPSAMPLE]
HR_T = Motion_Compensation (HR_S, MV _fr2ref]fr])
SRS=HR T [SR_MOT_COMP2]
HR_A=HR_A + HR_S/2 (SR_ADD]
END FOR
HR_B=HR B+ HR_A {SR_UPDATE]
variance = variance(HR_A) {SR_STAT]
If (variance < 0.5) break
END FOR

Figure 36. Pseudo-code of the iterative algorithm v1.2, modified using two memory sizes
simultaneously
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5.2 Iterative super resolution 97

block format. Table 8 summarizes the memory requirements that an implementation of that
version would demand as a function of the number of input macro-blocks. These data can be
obtained from Table 2 and Table 3. The number of column macro-blocks has been labeled as
mb_x, and the number of row macro-block has been labeled as mb_y. For instance, the HR_A
memory would have a number of macro-block (2- mb_x) -(2- mb_y), because as it is a high-
resolution image, its size is double in both directions. As every macro-block has 16x16-
luminance pixels and 8x8-chrominance pixels and furthermore there exists two chrominance
components, the blue and the red one, this will suppose that the overall pixel number is
(2:mb_x-2-mb_y-16-16) for the luminance and (2:mb _x-2-mb_y-882) for the chrominance
components. Nevertheless, it must be taken into account that the HR A memory is 9 bits
wide, so, to obtain the total number of bits we have to multiply for the 9 bits of each pixel.

For the remaining memories 8 bits per pixel must multiply every memory pixel size.

Low - Res
Input “0” roposal
InPIpr:vemlem
» L HR A >
v v v
LR I[0]| |LR_I[1]| [LR_I[2]| |LR_I[3]
v v | ' ’
: 12 Il/z
<+«— HR S B &
A
» Upsample e
A

A

Motion MV MV Motion

s »

Estimation AN memn (i3] Compensation
:
MV

LR B 4—'I Downsample )
v A
l Upsample I

High-Res Y
Output

A

Figure 37. Block diagram of the data-flow for the super-resolution algorithm v1.2

ion realizada por ULPGC. Biblioteca Universitaria, 2006

los autores. Digital;

© Del



98 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Label Memory
Luminance (bits) Chrominance (bits) Total (bits)
HR_A (22’mb_x-22mb_y-16-16-9)| (2:mb_x-22mb_y-8-8-2-9) 13,824:-mb_x-mb_y
HR_B (2mb_x-2:mb_y-16-16-8)| (2:mb_x-2:mb_y-8-8-2-8) 12,288-mb_x-mb_y
HR_S (22mb_x-22mb_y-16-16-8)| (2:mb_x-2:mb_y-8:8-2-8) 12,288‘mb_x-mb_y
3 Stripes HR (2:3-22mb_y-16-16-8) (2-3:22mb_y-8-8-2-8) 36,864-mb y
LR B (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072-mb_x-mb_y
LR_I[0] (mb_x-mb_y-16-16-8) {(mb_x'mb_y-8-8-2-8) 3,072:mb_x-mb_y
LR_I[1] (mb_xmb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072:mb_x-mb_y
LR_I[2] (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072:-mb_x-mb_y
LR_I{3] (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072-mb_x-mb_y
MV_mem([0] (mb_x-mb_y-8) 0 8- mb_x-mb_y
MV_memI[1] (mb_x-mb_y-8) 0 8- mb_xmb_y
MV_mem|[2] (mb_x-mb_y-8) 0 8- mb_x:mb_y
MV_mem|3] (mb_x-mb_y-8) 0 8- mb_x-mb_y
Total (its) | ™Y’ mb_y- mb_y-
(35,872'mb_x + 24,576) |(17,920- mb_x + 12288) (53,792 mb_x + 36,864)

Table 8. Summary of the memory used in version v1.2 of the super-resolution algorithm in
function of the number of macro-blocks.

Table 9 shows the memory requirements of the algorithm for the memory sizes
previously commented in Kbytes and Mbytes, while in Figure 38 these data are shown in a
graphical way, expressed in Kbytes. In the chart can be appreciated the considerable increase
in the memory requirements, due to the non-lineal behaviour of equations in Table 8. The
memory HR_T has not been included in the list for the previously exposed reason, and instead
of it, we have included the size if three additional macro-block slices, included in the Picasso

architecture to avoid the data overlap when performing the motion compensation.

Nevertheless, it must be taken into account that the size in the abscissas axe is the
input image size in low-resolution and that the output is double size.
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5.2 Iterative super resolution 99

. Memory Memory
Size mb X |mb y (Kbytes) (Mbytes)
SQCIF 8 6 342.19 0.33
QAVGA 9 7 445.18 0.43
QCIF 11 9 690.57 0.67
HAVGA 18 14 1,717.73 1.68
CIF 22 18 2,681.30 2.62
AVGA 36 28 6,744.94 6.59
VGA 40 30 8,014.69 7.83
4CIF 44 36 10,563.19 10.32
16CIF 88 72 41,928.75 40.95

Table 9. Memory used in version v1.2 of the super-resolution algorithm for
different image sizes.

5.2.4 Experimental set-up adjusts to enable reliable
measures of version v1.2

Even though version v1.2 of the algorithm offers very good perceptual quality image,
it presents an important problem related to the signal to noise computation. Concretely, the
method of obtaining the first super-resolution image proposal as the average among the input
images produces a shift of this first image with respect to the reference, as it is depicted in
Figure 39. The sub-sample process picks up different image pixels from the real image to
generate new low-resolution images with aliasing. The problem is that when the average of
these low-resolution images is carried out, the pixels are shifted ¥; pixel (in the example) with
respect to the real or reference image. This shift is kept through the overall reconstruction
process producing a drastically drop of the signal to noise ratio, because the reference image

and the super-resolution image are on different grids.

The adopted solution, in order to enable the measures between the super-resolution
image and the reference, has been to assure that the generated vector-set has zero mean. In
that sense, the resulting super-resolution image is adjusted to position (0,0) that matches with
the pixel position for the reference image. Moreover, this solution offers the advantage of

modelling the movement produced during manual recording without subjection or supporting
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100 Mapping of the Super-Resolution Algorithm onto a Video Encoder

system of a video sequence using a domestic video camera. Normally, the human being will
try to keep the video-camera centred over the target, in spite of the involuntary movement
produced while trying to hold the camera by hand. This attempt to keep the target centred will
produce relative shifts with a close-to-zero mean, if the interval between frames is not too
short. To obtain that kind of simulated motion vectors, it has been developed a program that
generates series of random vectors with zero-mean. An example of that kind of series is the
one shown in Table 10, where a sequence of 40 motion vectors has been generated, giving as a
result of its application 10 super-resolution output images.

Memory requirements for version v1.2 of the SRA
45,000.00

p
40,000.00 ]

35,000.00

30,000.00 /

@ 25,000.00 /
5, —— Memory in Kbytes ] /
€ 20,000.00

15,000.00

10,000.00 ’/

0.00 3 T T T T T T
SQCIF QAVGA QCIF HAVGA CIF AVGA VGA 4CIF 16CIF

Size of the input image

Figure 38. Memory used by the super-resolution algorithm v1.2 for the most common memory sizes.

Figure 40(a) shows the reference image of CIF format (342x288) labelled as
KANTOOR. It is of great interest that there exists a foreground without too many details and a
background plenty of details that will be loose in the sub-sample process for being recovered
thanks to the super-resolution process. The first experiment has consisted in the generation of
a sequence of random moving vectors with distances of two pixels in the same reference
image repeated ten times, so that after decimation these distances will be reduced to a pixel.
From each shifted reference image, four QCIF size (176x144) low-resolution images are
obtained by decimation. For the first-image case the sequence (b), (c), (d) and (e) of Figure 40
has been generated. These images have been down sampled below the Nyquist frequency, and

because of that, they will contain some amount of aliasing manifested in the time domain as
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5.2 Iterative super resolution 101

an information loss, especially in the edges (high frequency zones). For example, in the low-
resolution images (b) and (c) the lower inner rectangle of the computer monitor has disappear
and in all of them, the details of the objects on the table are unrecognisable. Also, it is
appreciated that the quality of the straight lines has been degraded verifying a strong pixel-
blocking effect in almost all the edges of the objects that appears in the scene.

In the first column of Table 10 the frame number generated in the super-resolution
process is shown. The second column shows the vectors set that, applied to the reference
frame, has been used for the output image reconstruction. The third column shows the low-
resolution vectors, i.e. dividing by two theirs ‘x” and ‘y’ components, while the fourth column
shows the reduction of the vectors to its canonical form previously defined. The meaning of

this reduction will be explained later on, with the PSNR results analysis.
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Figure 39. Sub-pixel shift effect when using as first proposal for super-resolution the average of
the input images.
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102 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Figure 40. Used images for the iterative algorithm. The image (a) of CIF size is the reference.
From it are obtained by decimation the images (b)-(e) of low-resolution and QCIF
size, which constitute the first input set to the super-resolution algorithm.

5.2.4.1 Quality analysis in the spatial domain

In Figure 41, Figure 42 and Figure 43 the result of executing the version v1.2 of the
super-resolution algorithm on the input data previously commented (40 low-resolution
images) after performing only two iterations of the algorithm are shown. The outputs are ten
super-resolution images of double size that the input images. Likewise, next to the images
their related error-images in the spatial domain are shown. This error is obtained as the
subtraction between the reference image (before sub-sampling) and every super-resolution
output image. The zero level has been shift to grey in order to accommodate positive and
negative differences, which means that the great amount of grey colour is in the image, the
better the super-resolution image will be, in the sense that both, the reference and the super-

resolution images, will be more similar.

At a first glance it can be appreciated an important degradation of the output image (h)
corresponding to the frame number seven. The signal to noise ratio is one of the preferred

metrics when measuring the quality of a signal and that is why it has been the metric adopted
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for images in the spatial domain. As a reference, the interpolated images using each one of the

previously mentioned methods are shown in Figure 44.

High- Low- Canonical High- Low- Canonical
Frame | resolution | resolution vectors Frame| resolution | resolution vectors
vectors vectors reduction vectors vectors reduction
0 -2 0 -1 0 1 -2 -4 -1 -2 1 0
0 -2 0 -1 0 1 0 5 0 2 0 1 0 1
2 0 i 0 1 0 4 0 2 0 0 0
0 2 0 1 0 1 -2 2 -1 1 1 1
-2 0 -1 0 1 0 2 0 1 0 1 0
! 0 2 0 1 0 1 6 0 -4 0 2 0 0
-2 -4 -1 -2 1 0 -2 2 -1 1 1 1
4 2 2 1 0 1 0 2 0 1 0 1
-2 0 -1 0 1 0 0 2 0 1 0 1
2 -2 -2 -1 -1 1 1 7 -2 -2 -1 -1 1 1
0 -2 0 -1 0 1 2 2 1 1 1 1
4 4 2 2 0 0 -2 0 -1 0 1
2 2 1 I i 1 2 2 1 I [ [
3 2 0 1 0 1 0 g -2 -2 -1 -1 1 1
0 -2 0 -1 0 1 0 0 0 0 0 0
-4 0 -2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 -2 1 -1 1 1
4 2 2 1 1 1 1 9 2 2 1 1 1 1
0 -2 0 -1 0 1 -2 0 -1 0 1 0
-2 0 -1 0 1 0 -2 0 -1 0 1 0

Table 10. Moving vectors randomly generated with zero mean, with two pixels distances for high-
resolution, of one pixel to low-resolution and its reduction to canonical vectors.

In Figure 45 the PSNR of every image of the output sequence together wit the PSNR of
the interpolated images are presented. We will call ‘interpolated level’ to the PSNR of the
image obtained through bilinear interpolation. It is very helpful in the sense that it establishes
the level above that super-resolution it is really useful. If the quality of the output image was
below the interpolation level, it means that with interpolation we would reach better quality
than with super-resolution, and this last method is not worthwhile. Anyway, obtaining PSNR
below the interpolation level uses to be symptomatic of any kind of errors, either in the
reconstruction or in the result analysis processes. The difference between the super-resolution
PSNR and the bilinear interpolated PSNR shows the quality super-resolution gain versus the
interpolation techniques.
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104 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Super-Resolution image. SR frame 0

«

Error image Reference-SuperResolution 0

—
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c.1) (c.2)
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(d.1) (d.2)

Figure 41. CIF images obtained with the super-resolution algorithm version v1.2. The (a)-(d)
sequence correspond to frames O to 3 respectively.
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Super-Resolution image. SR frame 4
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Figure 42. CIF images obtained with the super-resolution algorithm version v1.2. The (e)-

(h) sequences correspond to frames 4 to 7 respectively.
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Super-Resolution image. SR frame 0
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Figure 56. Super-resolution images (1) and them associated errors (2) for frames O (a) and 4 (b)

after 80 iterations per frame.
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Figure 57. Super-resolution images (1) and them associated errors (2) for frames 7 (a) and 9 (b)

after 80 iterations per frame.
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Figure 45. PSNR of the super-resolution output sequence (version v1.2) versus the interpolated
images using nearest neighbour replication and bilinear interpolation.

5.2.4.2 Quality analysis in the spatial frequency domain

The first metric used to quantify the similitude degree between the reference image
and the one generated through the super-resolution process is the peak signal to noise ratio,
figure obtained in the signal spatial domain. However, the likeness degree in the frequency
domain (spatial frequency) also adds valuable information. So, with the objective of measure
the likeness degree between the image spectrums, we compute the bidimensional correlation
coefficient between the reference and the super-resolution images. Due to the fact that the
Fourier bidimensional transforms are complex values, this will give a magnitude and a phase
correlation. In Figure 45 the values of the bidimensional Spectral Correlation Coefficient

(SCC) of the magnitude and the phase for the referred output sequence are shown.

As it is seen in the chart, the magnitude spectral correlation is substantially greater
than the phase one, mainly because the phase gather more information about the relative shifts
among the images, and as the super-resolution image is a composition of several shifted
images, the final resulting image is slightly shift with respect to the reference. For the same
reason, the magnitude spectral correlation coefficient of the bilinear interpolation is greater

than the correlation of the nearest neighbour interpolation. Nevertheless, it is just the opposite
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108 Mapping of the Super-Resolution Algorithm onto a Video Encoder

situation with the phase spectral correlation. Filling the intermediate values of the image
obtained by bilinear interpolation with average values is equivalent to fill them with shifted
versions of the image, which is reflected in a lower phase spectral correlation. In spite of this,
the magnitude spectral correlation, much more sensitive for the human eye as it is more
related to luminosity variations, reaps very high correlation figures, in all the cases above

0.996, reaching 0.998 occasionally.

Another aspect that is worldwide to be pointed out is the similar behavioural of the
metric figures employed: notice that the first two frames (0 and 1) exhibit similar qualities in
the three metrics (PSNR, phase SCC and magnitude SCC), always below to the subsequent
five frames (2, 3, 4, 5 and 6). Frame 8 shows a quality similar to the initial frames and in

frames 7 and 9 the qualities significantly fall.

Although the information contributed by the bi-dimensional Fourier transforms in
magnitude and phase about the quality of the resulting images is difficult to visually evaluate,
it is much richer in the observation of the error images between the reference image spectrum
and the spectrums of the interpolated and super-resolution images. In Figure 47 the bi-
dimensional Fourier transforms in magnitude (a) and phase (b) of the reference image are

shown.

These images are the ones that serve as reference to show the error in magnitude and
phase in the interpolated and super-resolution images. Figure 48 shows the magnitude and the
magnitude error of the interpolated images and Figure 49 shows the phase and phase error of

the same interpolated images.

In the case of Figure 48 it can be appreciated as in both cases the error is lower in the
low frequencies zone, where it can be seen a high homogeneous central zone of low error. In
the case of the phases represented in Figure 49 is clear that the homogeneous zone is of low
extension, which is coherent with the low correlation exhibit. As it is usual in the image
Fourier transforms, the phase contributes with low visual information, and although normally
they are not taken into account, we have decided to kept them for two main raisons: firstly for
completeness, and secondly because evaluating the error we can obtain additional information
about the similitude degree between the image phases, which is crucial in this kind of

applications.
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Figure 46. Spectral correlation coefficients in magnitude (a) and phase (b).
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Figure 47. Bidimensional Fourier transforms in magnitude (a) and phase (b) of the reference

image.
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110 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Figure 50 shows the bi-dimensional phase Fourier transforms and its associated error
for same frames of the super-resolution sequence. Specifically, frames 0, 2, 7 and 9 are shown
because they have the most abrupt variations both in the PSNR and in the spectral
correlations. It is shown that in the low frequency zones the frame number 2 has an error
lower than the rest of frames, which is coherent with all the obtained metrics. It is quite
peculiar to see that frame 7 has less error in the horizontal frequencies zone, while frame 9
has exhibits a similar behaviour but in the vertical frequencies zone. The phase analysis of
these same images, shown in Figure 51 offers the same behaviour that the magnitude. This
phenomenon has supposed an important clue for the considerations reached in the following

sections about the quality variations of the super-resolution images.

Interpolated nearest Low-Resolution module 0 error Module Reference-ntemolated nearest 0

50 100 180 20 250 30 330 58 100 150 200 290 300 330

(a.1) (b.1)
Interpolated bilinear Low-Resolution modufe 0 emor Module Reference-Interpolated bilinear 0

g m

501!1]15]2[1]250311]ﬂ 5.'1,1011532!1]250311]350

(a.2) (b.2)

Figure 48. Bi-dimensional Fourier transforms in magnitude (a) and their associated error (b) for
the interpolated images.
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5.2.4.3 Borders effect

As previously shown, the frame number seven experiments a drastically drop of its
quality, falling even down the interpolation level. Another important fact is that, being always
the same reference picture, the qualities are all very diverse, against the expected. As the input
frame is always the same, we expected a similar output quality, but as it is not the case, this
fact indicates that the motion of the frame has an important effect on the final image quality.
As previously established, the border effect could drastically drop the PSNR. A simple way to
remove this problem of the measure procedure consists of redefining the computation of the
PSNR, excluding the image borders in a certain number of pixels ‘g’. Initially this clip factor
‘q’ is made equal to 16 pixels, i.e. one macro-block. The new peak signal to noise ratio, call

from now on PSNR’ or PSNR without borders, is given by equation (23).

2552

PSNR’ =10-log,, 7
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(M-2-q9)-(N-2-q)
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Figure 49. Bi-dimensional Fourier transforms in phase (a) and theirs associated error (b) for the

interpolated images.
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Figure 50. Bi-dimensional Fourier transforms in magnitude and theirs associated errors for the super-
resolution images 0 (a), 2 (b), 7 (c) and 9 (d).
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Figure 51. Bi-dimensional Fourier transforms in phase and theirs associated errors for the super-
resolution images 0 (a), 2 (b), 7 (¢) and 9 (d).
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114 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Figure 52 shows the PSNR’ for the same sequence, where it can be seen a lower
variation of the signal to noise ratio. Nonetheless, we can also appreciate how several frames
share the same PSNR’, as it is the case of frames O, 1, and frames 2, 3, 4, 5 and 6. The
explanation of this phenomenon will result in one of the main physic limitations in the images

quality improvements using super-resolution techniques.
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Figure 52. PSNR’ of the output super-resolution sequence jointly with the PSNR’ of the

interpolated images using nearest neighbour and bilinear interpolation.

5.2.5 Sampling issues: an image classification

Obviously, the quality differences must rely on the shift differences among the input
images, as the remainder factors remains unalterable. If we analyse in detail the sub-sample
process, it can be observed, as shown in Figure 53 that motion vectors completely different in
appearance can generate equivalent samples in the main body of the image, i.e. excluding the
borders effect.

In this chart the same picture is shifted using the motion vectors (0,1) and (2,-3) and
they are subsequently sub-sampled. The sub-sampling consists in select the pixels

(represented as crosses) enclosed in a circle. It has been signalled with dot lines what would
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5.2 Iterative super resolution 115

suppose the new borders of the sub-sampled image. As it is noticed, the selected pixels
(except for the borders) are exactly the same, and therefore the second shift will not add new
information with respect to the first one. Even if we always start from four displacements,
apparently different, it is obvious that if there exist equivalent shifts among them, the image
quality will result degraded compared with another displacement set where every one will
contribute with new information that enables the quality improvement of the details of the

original image.

Since the used sub-sampling system resides in taken alternatively pixels from the
original image, beginning from the generated shift, it is clear that any shift can be reduced to
the base cell described in Figure 10, or in the same way, every motion vector can be reduced
to its canonical vector. If two displacement vectors can be reduced to the same canonical
vector, then, the supplied information is the same. The canonical vector(x,y), of the

displacement vectors with (X,Y) coordinates is obtained as indicated in equation (24).

X = kX mod 2|
7 = |V mod2 @9
shift =0,1 B{ shift = 2,-3
BT
e b
S+D+D
Yty M TrATT
D+D+O TTOTY 1,
f++++ HEENHPA
+4O+0
R ++++F
0
2

Figure 53. Effects of the equivalent sampling using equivalent displacement vectors.
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Mapping of the Super-Resolution Algorithm onto a Video Encoder
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Figure 54. Classification of the super-resolution images as a function of canonical vectors from
which they were reconstructed.

In Table 10 the generated displacement vectors are shown, where it is also included
the reduction to canonical vectors. It can be realized that frames 0 and 1 have the same
canonical vectors [(0,0),(1,1)] and therefore the same PSNR without borders: 22.78 dB. The
same happens with frames 2, 3, 4, 5 and 6, which share the same canonical vectors

[(0,0),(0,1),(1,0),(1,1)], which fill all the positions in the base cell, therefore giving the
maximum PSNR’, i.e. 23.13 dB.

Depending upon the number and position of the pixels of the base cell present after the
sub-sampling process, or what it is the same, depending on the canonical vectors from what
the image was reconstructed, we establish a classification shown in Figure 54. The first-level
classification, labelled with a lowercase letter, attends to the number of different pixels that
were sampled from the original image, and the second-level classification attends to the
position of these pixels in the base cell. For instance, a type ‘a’ image is composed by the
four original pixels, and so, it always will have the greater PSNR’. In the opposite case,
images of type ‘d’ have been reconstructed using solely a pixel from the original image, and
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5.2 Tterative super resolution 117

its quality, of course, will be obviously lower. Retaking again the problem of frame 7 and
according to this classification, it will be a ‘c.6’ image, i.e., it has been generated using only
two pixels of the original image, but the two lower pixels, therefore loosing all the horizontal
information of same rows, giving a lower quality than type ‘c.1’ images (frame 8) or ‘c.2’
images (frames 0 and 1). Although these later images have also been generated using only
two pixels from the original image, the pixels correspond to alternate positions in the borders
of the base cell, which allows recovering more information from the original image. The case
for frame 9, of type ‘c.5’ is similar to the frame 7 case, but in that case pixels are in vertical
position, producing a new drop of the PSNR’. In Figure 52 every frame has been marked with
the corresponding label to the established classification.

5.2.6 Quality behavioural with respect to the number of
iterations of version v1.2

The PSNR reached by the frame number 7 is practically the same as the bilinear
interpolation level because of the reduced number of iterations. If the number of iterations
were raised up, the algorithm would try to match the result to the available set of samples,
and, as some samples are not available, these data will progressively miss the alignment. This
fact is qualitative reflected as distorted lines or points in the super-resolution image, and
quantitative manifested as a drastically drop of the PSNR.

In Figure 55 the evolution of the PSNR for the same set of displacement vectors
during 80 iterations per output image is presented. Until now only the super-resolution image
PSNR after 8 iterations has been shown, but in this chart the PSNR reached in every iteration
is represented. The frame number is placed in boldface near every evolution curve. The
obtained results perfectly fit the expected ones, in the sense that the images of type ‘a’ tend to
increase their quality with the number of iterations, while the remainder images will decrease
their quality with the iterations because of the previously established principle of adjust to the
missing data. Also was expected a lower PSNR for the images of type ‘c.5” and ‘c.6’
compared to the images of type ‘c.1’ and °‘c.2’ because of irregular distribution of the
sampling process.
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118 Mapping of the Super-Resolution Algorithm onto a Video Encoder
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Figure 55. PSNR evolution during 80 iterations per frame of the SRA versus the interpolated
images.

In Figure 56 and Figure 57 the super-resolution images after 80 iterations per frame
are displayed. As we did previously, only the frames of interest will be displayed, i.e. the
frames number 0 (type ‘c.2’), 4 (type “a’) 7 (type ‘c.6’) and 9 (type ‘c.5’).

It must be noticed, especially in the error images, that the error is lower in the images
of type ‘a’, because the entire original samples from the original high-resolution image are
present in the reconstruction process. Even in absence of half of the original samples, as it is
the case of the frame number 1 of type ‘c’, the reconstruction process offers good results if, at
least one sample per line is available. However, if both samples belong to the same line, the
quality of the image will be seriously decreased, appearing, as it can be appreciated in Figure
57 horizontal and vertical lines depending on the missing data.

It is interesting to point out that the quality of the images could be better if the
iterative process would be interrupted in the first stages, as it can be appreciated in the Figure
55. Except for images of type ‘a’, the rest of them reach a maximum PSNR in the first
iterations and then, start to drop down.
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Figure 56. Super-resolution images (1) and them associated errors (2) for frames 0 (a) and 4 (b)

after 80 iterations per frame.
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Figure 57. Super-resolution images (1) and them associated errors (2) for frames 7 (a) and 9 (b)

after 80 iterations per frame.
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120 Mapping of the Super-Resolution Algorithm onto a Video Encoder

The PSNR decrease is produced because in the first iterations the missing high-
resolution values are filled with average values, what act as an interpolation, rising the PSNR,
but while the number of iterations is increased, and with the aim of minimizing the error
among between the super-resolution image and the set of available input images, the missing
samples gradually loose weight in the super-resolution process, resulting in a bad alignment
of the samples. In Figure 58 and Figure 59 are shown the magnitude and phase as well as the

associated error with respect to the reference.

In Figure 58 it is verified that in the case of images of type ‘a’ (Figure 58 b.2), the
spectral error in magnitude is very low for almost all the frequency range, especially for the
low frequencies. For images of type ‘c.1’ and ‘c.2’ (Figure 58 a.2) the error is also very low,
although it does not penetrate so much in the high frequencies as in the previous situation. As
it was expected, the magnitudes of the images of type ‘c.5’ and ‘c.6” are worst than the
previous cases, and the minimum error is clearly oriented in the horizontal (Figure 58 ¢.2) and
vertical (Figure 58 d.2) directions, depending on the absent samples. The same conclusions

are applicable to the phases of Figure 59, although with a lower similitude degree.

5.2.6.1 Connotations in the real sampling process

The first simulations carried out using the iterative super-resolution algorithm
previously described did not exhibit the problem of quality loose with the iteration number
increase, because always were used image sets where all the original samples were presented.
This problem arises when we started to use random shifts, in an attempt to model the real
acquisition imaging system and thanks we are using an experimental setup where all the
parameters are perfectly under control. Now the question is if that problem could be possible

in a real system or if it is merely an experimental artefact.

itn realizada por ULPGEC. Biblioteca Universitaria, 2008

los autores. Digitali

©Del



5.2 Iterative super resolution

121

T amor Moduld Reference-SuperResohtion 8 T T T}

SuperHosplution moddle, SR frame U

150 2(0250317350

'(a.l)

7T B REsolition modie, SR fame 4

‘t 50 100 150 A0 B0 W0 30

(a.Zj R

T eiter Module Reference-SuperResolition 4

P

0 1000 1800 20 280 300 380

61 5400 180 XD 250300350

(b.1) (.2)

T BuperResalution madule. SR Fame 7

srror Madule Reference-SuparResoilion 7

100 10 20 %0 W 30

(c.]) (c.2)

Super-Resolttion moduls. SR Trame J sifor Modile Referenco-BupeiResalidibn e

0 1% om 20 0

100 150 20 250 300 30

0B 20 220 30 =0

d.1) d.2)

Figure 58. Magnitudes of the bi-dimensional Fourier transform (1) and the associated errors (2)
for the frames 0 (a), 4 (b), 7 (c) and 9 (d) after 80 iterations per frame.
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Figure 59. Phases of the bi-dimensional Fourier transform (1) and the associated errors (2) for the
frames 0 (a), 4 (b), 7 (c) and 9 (d) after 80 iterations.
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Figure 60. Base-cell using a motion estimator of %4 pixel accuracy in low-resolution (unities in %2
pixel).

Reflecting on the sampling system, we must take into account that it is impossible to
assure that four images, consecutively sampled in the time, will contain all the necessary
information to increase significantly the quality of the output image. It is also impossible to
assure that the sampling process will not deliver the same data (slow movement or high frame
rate) either that the sampled image will not have redundant information (equivalent shifts). If
that were the case, we have seen the impact in the final image quality, but statistically, it is of
low probability that, among a random set of random shifts, repetitively images that will not
supply new information to increase the resolution of the final image were obtained, provided
that some confidence about the random distribution of the sensor movement is guarantee. If
the acquisition system were limited by some subjection structure over physic guides that will
not allow all the movements (tripods, subjection trolleys, etc.) the freedom degrees would be
limited with the consequent repercussion in the final quality. Nevertheless, only the
improvements of the image due to camera movements will be limited, but not the

improvements due to movements inside the scene.

Another way to minimize the influence of this over-sampled effect is to increase the
number of frames to be combined or increasing the accuracy of the motion estimator, in order
to increase the number of pixels in the base cell. The drawback of increasing the number of
frames is that it will also increase the memory requirements. In the other hand, the base-cell
studied until now is based in the use of a motion estimator of half pixel in low-resolution,
what will represent one pixel accuracy in high-resolution. If we increase the resolution of the
motion estimator to quarter pixel in low-resolution then, in high resolution, we will have a
discrimination capability of half pixel, what will modify the base-cell as shown in Figure 60.

In this case, the positions are in unities of half pixel. For instance, the vector (2,2)
means a shift of 2 half-pixels (i.e. 1 pixel) in both directions. We have highlighted in boldface
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124 Mapping of the Super-Resolution Algorithm onto a Video Encoder

the pixel positions, as a sampling of those positions will suppose an important quality increase
of the final super-resolution image. That is because in fact the sub-pixel positions contribute
with information that is share by the surrounding pixels in pixel positions. With this new
base-cell the probability of equivalent sampling (same canonical vectors) is reduced from
25% to 6.25% in four consecutive frames.

Nevertheless, when assessing a real super-resolution system, which does not have the
possibility of measure the real shift vectors, it must be taken into account a certain reduction

factor in the expected quality due to possible equivalent sampling.

5.2.6.2 Super-resolution improvements in the chrominance

Until now, we have only coped with luminance improvements in the super-resolution
images. In fact, very few super-resolution systems take into account the chrominance values.
Since the low sensibility of the human eye to the chrominance and the computation increase
that their inclusion will imply, typically the super-resolution systems improve the quality of
the luminance but use a simple interpolated version of the chrominances. We have opted for
including the chrominance in the super-resolution process, taking into account that, due to the
sample process YCbCr 4:2:0, the two chrominances have half the size of the luminance in
every direction, as every chrominance pixel influences on four luminance pixels. This kind of
format is widely used in the image compression systems [BK96] because the format itself
saves 50% of space in the memory storing. Although the chrominances have been included in
the super-resolution process, the motion estimation still works with the luminance and so the
motion vectors will be better fitted to the luminance than to the chrominances.

In Figure 61 the PSNR of the chrominances together with the luminance for the super-
resolution sequence shown in Figure 42, Figure 43 and Figure 44 is shown. As it is clearly
seen, the chrominances have higher PSNR than the luminance because they have much lower
entropy, what produces lower average errors between the reference chrominances and the
super-resolution references, increasing considerably the PSNR. This lower entropy of the

chrominances is shown in Figure 63.
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PSNR. Kantoor 10 frames. Super-resolution results. 8 iterations.
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Figure 61. PSNR of the chrominances blue and red (Cb and Cr) of the super-resolution sequence
compared with the PSNR of the luminance (see Figure 45).

Nevertheless, although the PSNR of the chrominances is much higher than the
luminance one, it is outstanding that it is usually below the interpolation levels, as it is shown
in Figure 62. That it is because we are applying image compression principles in image
processing applications. When the motion estimation is performed on a video compressor,
only the luminance motion vectors are calculated, and at the time of performing the motion
compensation, the same motion vectors (conveniently scaled by a factor of two) are applied
both to the luminance and the chrominances, in an attempt of saving computing time and
under the assumption that the three images are very similar. Even in the case that the vectors
of the chrominances largely differ from the luminance ones, this will have no impact in the
final quality, because together with the motion vector are sent the image errors. Indeed it will
negatively affect to the compression ratio, because with better vectors it could be possible to
obtain images with lower entropy that will be more efficiently compressed by the discrete
cosine transform (DCT) and the quantizer. But, since the chrominance images have low
entropy in themselves, this effect is hardly manifested. Nevertheless, a glance to the
chrominance and luminance images separately, as shown in Figure 63, manifest that, at effects
of restoration and taking into account how sensible the SRA are to the motion vectors, the
application of a set of motion vectors that are not specific for those images, barely improve
the quality over the interpolation levels. The only solution will consist in performing one
additional motion-estimation for each of the two chrominance images, what will largely

increase the time required for computation, jeopardizing seriously it execution in real time.

i6n realizada por ULPGC. Biblioteca Universitaria, 2006

los autores. Digitali

© Del



126 Mapping of the Super-Resolution Algorithm onto a Video Encoder

PSNR Cb. Kantoor 10 frames. SR vs Interpolation. 8 iterations.
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Figure 62. PSNR of the chrominances blue (a) and red (b) compared with the PSNR of the
interpolated chrominances.

At the spectral level, the conclusions are very similar: the spectral correlation
coefficients of the chrominances are higher than the coefficient of the luminance, and the
correlation coefficients in phase seldom overcome the interpolation levels, although the
correlation coefficient in magnitude is often above the interpolation levels, as it can be seen in
Figure 64.

From these results, we can conclude that performing two additional motion
estimations over the chrominances was not possible, as it would jeopardize the restrictions to
work in real time. It is not worthwhile to apply the super-resolution algorithm over the

chrominances, as a similar result can be obtained from the interpolation of the chrominances.
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(b)

(a)

Figure 63. Reference image in format YCbCr 4:2:0 and CIF size, decomposed in luminance (a),
blue chrominance (b) and red chrominance (c).

5.2.7 Iterative algorithm with reference to the first image.
Version v1.3

The solution adopted in version v1.2 of performing the different quality metrics
measures has the drawback that the vector set used for the super-resolution image generation
must has zero mean. If the vector generation process is really random, this condition is
impossible to achieve, especially if the number of frames to be combined is not a fixed
number. This is why a new version of the algorithm has been developed, where the first
interpolated frame is used as the first proposal of the super-resolution image, instead of the
average image. In this way it is assured that the pixels of the final image will occupy the same
positions as the reference pixels, enabling the direct computation of the peak signal to noise
ratio, provided that the first image generated by sub-sampling uses the displacement vector
(0,0). From the point of view of static images reconstruction this fact does not imposes any
limitation to the process, but rather in the opposite, it supposes an improve in the model of
static images acquisition. When we take a picture, usually the first image serves as the
reference one in the improvement process. This is the meaning of the (0,0) vector: that the
first taken image will be used as the reference and the next images will be used to increase the
quality of the first image, aligning them to the reference. From the point of view of video

reconstruction, it only supposes to make easier the measurement process. If the first vector
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128 Mapping of the Super-Resolution Algorithm onto a Video Encoder

was not forced to be (0,0), then it would be necessary to shift the resulting image prior to
compute the PSNR, either to the first image or to the average image if the previous strategy
was followed. The new version (and the last iterative one) has been labelled as v1.3 and is

shown in Figure 67.
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Figure 64. SCC in magnitude (1) and phase (2) of the chrominances. In (a) is compared the
chrominances with the luminance, in (b) is shown the blue chrominance versus its
interpolation levels and in (c) is shown the red chrominance versus its interpolation levels.
Notice that the scale of the ordinate axis for the magnitude has been widely enlarged. All
these figures are for a number of iterations equal to 8.

This version adds on some new aspects with respect to the previous ones. As it has
been previously mentioned, in this case the first super-resolution image is obtained through a
nearest neighbour interpolation from the first low-resolution image of the input sequence. As

in previous versions, this image is stored in the HR_B memory, which will contain all the
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5.2 Iterative super resolution 129

time the super-resolution image. If it is not the first iteration, LR_B will be obtained through
the decimation of HR_B, in the opposite case (it was the first iteration) LR_B is the first input
low-resolution image. The next step inside the iterative loop is the computation of the motion
vectors. If we are dealing with the first frame, it is not necessary to compute the first motion
vectors, as they all will be the zero vector. For the remaining cases, the motions vectors are
calculated between the input images and the low-resolution version of the super-resolution

image, i.e. LR_B.

The novelty is that prior to perform the motion estimation, the image LR_B is filtered
with a low-pass filter of order three, using the normalized transfer function shown in Figure
65. This filtering, previous to the motion estimation, seeks to reduce the initial amount of
aliasing, therefore improving the quality of the motion vectors. The next section will deeply
address this important issue in the proposed super-resolution algorithm.
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Figure 65. Normalized impulse response of the low-pass filter of order three used for filtering the
images. I(x,y) is the input image and O(x,y) is the output-filtered image.

5.2.7.1 Pixel filtering to increase motion vectors accuracy

The motion estimator is intended to work with images that, in principle, do not contain
aliasing. The presence of aliasing can substantially alter the results of the expected motion
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130 Mapping of the Super-Resolution Algorithm onto a Video Encoder

vectors. When performing the motion estimation, we have two choices: performing it in low-
resolution or in high-resolution. Doing it in high resolution has the advantage of using images
with have been largely aliasing removed, but it has the drawback of requiring much more
computation. Performing the motion-estimation in low-resolution requires less computation

but have the drawback of using sequences with aliasing.

As our super-resolution algorithm is intended to work in real time, we first start the
motion estimation in low-resolution, thus reducing computing and memory requirements. In
order to cope with the input aliasing, more accurate motion vectors can be obtained removing
aliasing previous the motion estimation. A large aliasing removing is achieved by simply

filtering the input images before performing the motion estimation.

To evaluate the influence of aliasing on the motion-vectors accuracy we have
performed the simple experiment of filtering the low-resolution images prior the motion
estimation and compare the obtained motion vectors with those obtained from the motion
estimation of the non-filtered low-resolution images. It has been used two copies of the first
frame of the test sequence ‘KRANT’ of size 144x112 pixels, with global sub-pixel shifts
artificially introduced to better control the results of the motion estimator.

The second frame has been shifted using a motion vector of value (-1,2), in units of
quarter pixels. As all the objects of the scene are in the same depth plane, the correct result
would consist in that same vector for all the macro-blocks of the frame. For the unfiltered
images, we can obtain the average motion vectors absolute error, computed as the average of
the absolute difference between the real and the computed vectors in both image directions. If
the image is of size MxN pixels, then we will have one motion vector for every macro-block
of size 16x16 pixels, i.e. MBXxMBY macro-blocks, where MBX and MBY are obtained
dividing M and N by sixteen. Equation (25) shows the absolute error in the horizontal

direction and (26) shows the absolute error in the vertical direction.

MBX -1 MBY~1

error.x = Z Z lm%xm; (G J) =MV pitea (s J )l (25)
=0 j=0
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Iterative super-resolution algorithm v1.3

Set the value of the improvement: scale

nr_frames = scale*scale, M’= scale*M, N’= scale*N

HR_B[M’][N’], HR_S[M’][N’], HR_T[M’][N’] all of 8 bits. HR_A[M’][N’] is 9 bits
LR _B[M][N] for the motion estimation

Read a set of aliased Low-Resolution images in LR_I[#nr_frames][M][N]

Set the value of the maximum number of iterations: nr_iterations

/I Starting with the First Image

LR_B = LR_I[0]
HR_B = Upsample(LR_I[0])

// Iterations
FORit =0 .. nr_iterations-1
IF (it+0) LR_B=Downsample(HR_B)
FORfr=0.. nr_frames-1
IF (fr==0)
MV_fr2reffr] = 0
ELSE
IF(t=0) LR_B=Low_Pass_Filter(LR_B)
MV_fr2reflfr] = Calc_Motion_Estimation (LR_I[fr], LR_B)
END IF
Select_global_motion_vector()
MV _ref2frifr] = -MV_fr2ref{fr]
MV_fr2ref]fr] = 2 .* MV_fr2ref[fr]
MV_ref2fr[fr] = 2 .* MV_ref2fr{fr]
END FOR
HR_A=0
FOR fr=0 .. nr_frames-1
HR_S = Motion_Compensation (HR_B, MV _ref2fr{fr])
HR_S = Upsample(LR_I[f])/2 — HR_S/2
HR_T = Motion_Compensation (HR_S, MV_fr2ref[fr])
HR_A=HR_A+HR_T/2
END FOR
HR_B=HR_B+HR_A
variance = variance(HR_A)
If (variance < 0.5) break
END FOR

[SR_INIT_B]

[SR_DOWNSAMPLE]

[SR_FILTER]

INVERT_MV()

[SR_INIT_A]

[SR_MOT_COMP1]
[SR_UPSAMPLE]
[SR_MOT_COMP2)

[SR_ADD]

[SR_UPDATE]
[SR_STAT]

Figure 66. Pseudo-code of the iterative algorithm v1.3, modified to use the first low-resolution

image as the reference.

MBX -1 MBY -1

error.y = Z z lmv. Yreat & 1) = MV.Y poirea (85 j)’

=0 j=0

(26)

The average error is given as the medium value in each direction, as indicated in (27).

ian realizada por ULPGC. Biblioleca Universitaria, 2008

. los autores. Digitali

&



132 Mapping of the Super-Resolution Algorithm onto a Video Encoder

error.xX +error.y

error =
5 27)

In Table 11 are summarized the resulting error for this test. It is clear that errors are
lower when the images are filtered prior performing the motion estimation. Taking into
account that we are using 63 macro-blocks, the average motion vector error per macro-block
is of 1.13 quarters pixels for the unfiltered images and 0.8015 quarters pixels for the filtered

images.
MV Errors Unfiltered images Filtered Images
Horizontal 65 38
Vertical 78 63
Average 71.5 50.5

Table 11. Motion vectors errors with and without pixel filtering of the low-resolution input images.

It is necessary to point out that the images are filtered only for performing the motion
estimation, but for the remaining part of the super-resolution process the images are left
unfiltered. In Figure 67 can be seen the huge influence of an accurate estimation of the
displacements between images in the final super-resolution quality. It is clear that pre-filtering
images before performing the motion estimation has a direct and important impact on the final
super-resolution sequence. In this case, pre-filtering images supposes an average increase of

1.33 dB on the sequence quality.

5.2.7.2 Block diagram and memory requirements for version v1.3

The data-flow block-diagram of this version of the super-resolution algorithm is
shown in Figure 68. Comparing it with version v1.2, it can be appreciated that the average
operation has been removed, and have appear the operation of filtering and some

modifications in the data-flow and the memories.

The memory requirements are the same as in the previous version v1.2, and so the
results exhibit in Table 8 and Table 9 as well as in Figure 38 are also applicable here. The
memory HR_A has been highlighted by using double line to point out that it is nine bit and
the operators have been shadowed. The remaining memories have been drawn using single

lines.
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PSNR

Figure 67. Influence of pre-filtering the input images before the motion estimation in the quality
of the super-resolution images using 8 iterations.
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In Table 13 the global shift vector applied to the first input frame in order to obtain the

test video sequence are shown. The first column shows the order number of the output frame,

the second and third columns show the shift vectors of high-resolution and low-resolution

respectively, in units of ¥2 pixel. The last column shows the reduction to canonical vectors.

Based on the canonical vectors, we can perform the same image classification shown in

Figure 54. This classification is shown in Table 12 and supposes itself an anticipation of the

quality that it will be obtained at the end of the super-resolution process. Due to the fact that

the zero vector is always present, types b.4, c.2, c.5, ¢.6, d.2, d.3 and d.4 are not possible in

this version of the algorithm.

Sframe Type of output image frame Type of output image
0 c.1 5 a
1 Cal 6 a
2 a 7 c.3
3 a 8 c.1
4 a 9 c4

Table 12. Types of output images as a function of the samples present in the base cell of 4x4 pixels.
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134 Mapping of the Super-Resolution Algorithm onto a Video Encoder

High- Low- Reduction to High- Low- Reduction to
frame | resolution | resolution canonical Jrame| resolution resolution canonical
vectors vectors vectors vectors vectors vectors
0 0 0 0 0 0 0 0 0 0 0 0
-2 2 -1 1 1 1 2 6 1 3 1 |
0 5
2 2 1 1 1 1 6 4 3 2 1 0
0 4 0 2 0 0 0 6 0 3 0 1
0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 1 1 -2 -4 -1 -2 1 0
1 6
0 -4 0 -2 0 0 -4 2 -2 1 0 1
6 2 3 1 1 I -2 2 -1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 -2 0 -1 0 1 -2 -4 -1 -2 1 0
2 7
2 -2 | -1 i 1 2 0 1 0 1 0
6 4 3 2 1 0 0 -4 0 -2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
3 0 -2 0 -1 0 1 -4 -4 -2 -2 0 0
8
-2 -4 -1 -2 1 0 -2 -2 -1 -1 1 1
-6 -2 -3 -1 1 1 -2 -2 -1 -1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 1 1 0 4 0 2 0 0
4 9
0 -2 0 -1 0 1 -4 2 -2 1 0 1
-2 0 -1 0 1 0 -4 2 -2 1 0 1

Table 13. Shift vectors randomly generated in distances of two pixels for high-resolution, of one

pixel for low-resolution and it reduction to canonical vectors.

5.2.7.3 Simulation results and quality and behavioural analysis of
version v1.3 of the iterative algorithm

In Figure 69 is shown the PSNR obtained after the super-resolution process of the first
frame of the KANTOOR sequence. This sequence has CIF (352x288) format, and has been sub-
sampled and shifted the amounts reflected in Table 13. As in the previous case, also the PSNR

of the interpolated images have been included in order to settle the interpolation levels.
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Figure 68. Data-flow block-diagram of version v1.3 of the super-resolution algorithm.
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Figure 69. PSNR of the output sequence using version v1.3 of the SRA versus the interpolated

images.
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136 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Similarly to the previous case, great variations in the quality of the image can be
appreciated, basically due to well-known border effect. To subtract this effect from the PSNR,
in Figure 70 is shown the PSNR of the same sequence or PSNR’, removing a border of 16

pixels all around the images.

In the chart can be appreciated again a distribution of the PSNR that strongly depends
on the type of sampling. In order to reduce the freedom degrees, making easy at the same time
the analysis of the results, we have kept unalterable the seed for the generation of the random
numbers which are used for the displacements. That is why the kind of output images is
almost the same that the ones obtained in the previous version of the super-resolution
algorithm. The differences rely on the aim of assuring zero median. In that sense, the last
displacement vector of each set of four vectors has been adjusted in consequence. This adjust
seeks to establish a common base (or at least more similar) to compare the algorithms, but

obviously this does not affect in the behavioural of the real system.

PSNR’ Luminance without borders. Kantoor 10 frames. SR vs Interpolation (8 iterations)
235
a
. _.- ......... . .......... . .......... ‘ .......... .
23 s e
e c.3
@ - - *
c.3 .
225 < T d |
N 22
o
o :
C. p
& 215 : f
c2 o
B = meomammininis A = iz R & - o e R A A pmonsne = 5 e dpicinie = o oo A
21
---e-- PSNR’ Luminance without borders SR
205 ---m--- PSNR’ Luminance without borders nearest neighbour interpolation
' ---a--- PSNR’ Luminance without borders bilinear interpolation
[ EEEEERTEE L R W [ R [ EEEETRRRE L R L R -, L -
20 T 3 T T T T T T ’
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Figure 70. PSNR’ of the output sequence using version v1.3 of the SRA removing a 16 pixels border
all around the image.

The results obtained for this algorithm are very similar in quality and behavioural in
both versions of the iterative algorithm. In Figure 71 is shown a comparison of the PSNR
between version v1.2 and version v1.3 using the full image (a) and without borders (b), where

can be verified that in the last case the obtained qualities are almost the same. However, when
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5.2 Iterative super resolution 137

the full image is taken into consideration, it seems that the version that uses the frame zero as
a reference punctually obtains better results (frames 3, 6 and 8) although in the rest of the
cases the qualities are slightly lower. In any case, this chart provides indications that the
improvements obtained through variations in the super-resolution algorithm seems to reach a
limit. In the next section, transformations of the algorithm toward non-iterative schemes and
new problems that arise in when mapping the new algorithms in the Picasso architecture are

analyzed.

PSNR Luminance. Kantoor 10 frames. SR vs Interpolation (8 iterations)

PSNR

—e— PSNR v1.2 Luminance

—a— PSNR v1.3 Luminance

21

trame
(@)
235 PSNR’ Luminance without borders. Kantoor 10 frames. SR vs Interp. (8 iterations)
23 / —— \
1———/
2251 —
i
22
215 13— — —_— ———
—e— PSNR'’ v1.2 Luminance without borders
—a— PSNR' v1.3 Luminance without borders
21 .
0 1 2 3 4 5 6 ié 8 9

frame

(b)
Figure 71. PSNR comparison between versions v1.2 and v1.3 of the SRA, using the full image (a)

and removing the borders (b).
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138 Mapping of the Super-Resolution Algorithm onto a Video Encoder

5.2.8 Motion estimation search strategy

The quality of the images obtained by the super-resolution algorithms strongly
depends on the precision of the motion vectors. The motion estimation is the most expensive
function in terms of computing and time processing. With the aim of keeping the application
under conditions of low-cost and real-time restrictions, we have used the ‘motion-estimator’
provided by the Picasso architecture. In chapter 3 a brief description of the Picasso
architecture was developed and the two types of search strategies implemented were
described: the full-search and the three dimensional recursive search (3DRS). As the first
strategy has the advantage of search completeness and the drawback of high computational
cost, the second strategy has the advantage of rapidness and the drawback of evaluate only
some specific vectors, although the results appears to be accurate enough [LKL+01].

The search strategy selected seriously compromises the quality of the resulting
images. In Figure 72 is shown the PSNR of the output sequence KANTOOR, using version v1.2
(a) and version v1.3 (b) for both motion vectors search strategies.

A very interesting aspect to point out in this results is that clearly version v1.3 exhibit
better results than version v1.2, being all the PSNR figures above the interpolation level
(except for frame number 2). That is because of the low-pass filter prior performing the
motion estimation. In fact, removing the image aliasing before the motion estimation
supposes an important improvement in the quality of the motion vectors and this
improvement directly bounce back on quality of the final image. This difference is more
patent when removing the image borders, as shown in Figure 73. In this case, all the output
frames of version v1.3 present qualities above the interpolation level.

Moreover, version v1.3 exhibits a higher stability on the image quality, what will
suppose a better view of the final sequence. A video sequence with abrupt jumps of the
quality is more annoying to watch than another sequence of lower quality but more stable.

Even when the analysis of the search strategy has driven us to clearly realise about the
superiority of the version v1.3 over version v1.2, we can still not conclude anything about the
better search strategy for the motion estimation, as it is detached from the observation of the
qualities obtained in Figure 73, where the border effect has already been removed. It can be
verified that the full-search, that ‘a priori’ is the best candidate to obtain the motion vectors,
does not prevail over the other strategies. That is because in fact, the search strategy does not

reflect the real movement of the image, but it rather tries to minimize a block-level cost
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function, in our case the average absolute error, and so, the quality of the image will vary

depending on the similitude between the real movement and the vector which minimizes the

cost, i.e. the motion vector.

PSNR Kantoor 10 frames. Search strategies v1.2.
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Figure 72. PSNR of versions v1.2 (a) and v1.3 (b) of the SRA using different strategies for

(b)

searching the motion vectors using 8 iterations.
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PSNR’ Kantoor 10 frames. Search strategies. Without borders. V1.2.
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Figure 73. PSNR’ of versions v1.2 (a) and v1.3 (b) of the SRA using different strategies for

searching the motion vectors with the image borders removed and using 8

iterations.
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5.3 Non-iterative super resolution 141

5.3 Non-iterative super resolution

Although the iterative versions offer very good image quality mapped onto a hybrid

video encoder, it is patent the necessity of create a new type of algorithm that, using the same

resources, can operate in a single step, i.e. a non-iterative algorithm. The main idea is based in

the following considerations:

Every new image adds new information that must be combined in a new high-
resolution grid in the proper way.

It is impossible to know ‘a priori’ (for the super-resolution algorithm scope) the
position of the new data and if they are going or not to contribute with new
information

In the case of having new information from several images it will be desirable to have
a quantitative knowledge of how much every new pixel will contribute to the
resolution of the super-resolved image. As a new pixel could fit in the super-resolved
image in a half-pixel position, its contribution to the final image will not be the same
that those of another pixel that fits in a full-pixel position. The former pixel will have
half the contribution of the last.

5.3.1 Algorithm description

Based on the previous considerations, the following algorithm has been developed:
Initially, the first low-resolution image is taken and its pixels are placed in a high-
resolution grid, leaving the uncovered pixels to a zero value. From now on, this
process will be denominated ‘up-sample holes’. As the size increase is a factor of two
in both directions, in Figure 74 can be seen the location and relationship among the
pixels of high and low resolution.

Latter on, the contributions of the pixels are generated. The contributions are the
weights assigned to each pixel to denote the amount of information provided to that
pixel position. As we are initially combining four low-resolution images in a grid 2-
by-2 times bigger, an initial contribution of 4, for half pixel precision in low-resolution
will be enough. If the resolution of the motion estimator was increased or the motion-
estimation was performed in high-resolution, higher values would be necessary. These
contributions are expressed over the high-resolution grid. Thereby, the contributions of
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Figure 74. Mapping of the low-resolution pixels in the high-resolution grid, leaving holes in
the missing pixels.

the image in Figure 74 are shown in Figure 75, pointing out that the pixels supplied
have maximum contribution and the rest have zero value.

4 04040
0000O00O0
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000O0O0O
4 04040
0000O0O

Figure 75. Contributions of the initial image.

Now, the relative displacements between the next input image and the first image, that
will be the reference, are estimated. These displacements are stored in memory, as
they will be lately used.

Steps 1 and 2 are applied to the new input image, i.e. it is adapted to the high-

resolution grid, leaving the missing pixels to zero and generating the initial

contributions.

In this step, both the new image over the high-resolution grid and its associated
contributions are motion compensated toward the reference image. In the compensated
contributions will be reflected the real contributions of the new pixels to the high-
resolution reference image.

Now is performed the lineal summation of the initial image and contributions with the
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5.3 Non-iterative super resolution 143

compensated image and contributions. This summation assures further noise reduction
in the resulting image.

Steps 3 to 6 are applied to the next incoming images.

Once finished step 7, we will have a high-resolution image with the summation of all
the compensated pixels and a memory with the summation of all the compensated
contributions. Then the high-resolution image is adjusted depending on the
contributions, as it is indicated in equation (28).

i Motion _ Compesate(Upsample _ Holes(LR I [fr]))

SR(, j) = 4-I=— 28)
Z Motion _ Compesate(contributions[fr])
frel

9. After the adjustment, it is possible that some pixel positions remain empty, i.e., from
the input image set those certain positions do not have new information. This case will
be denoted with a zero, both in the high-resolution image position and in the
contribution and the only solution is to interpolate the zeroes with the surrounding
information. However, we cannot conclude that a zero in the image implies that the
value must be interpolated, because a zero is a possible and valid value in an image. A
pixel will be interpolated only if its final contribution is zero.

In Figure 76 is shown this algorithm in pseudo-code, using the memories and the
resources of the Picasso video hybrid encoder.

Note that, with respect to the iterative versions of the previous section, not only the
iterative feature has been removed, but also one of the motion estimations has been removed.
As the motion estimation is performed in low-resolution and the motion compensation in
high-resolution, it is necessary to multiply by two all the motion vectors to properly scale
them. Initially, the number of frames has been set to four, following the philosophy of the
iterative algorithms.

For a better understanding of the algorithm, we will show how it works step by step,
using the macro-block (0,2) of frame 0 in luminance of the test sequence KRANT. Moreover,
with the aim of cover all the possibilities, a set of motion vectors that leaves holes in the
super-resolution image has been selected, although it is necessary to point out that it is not the

usual case. Figure 77 shows initialization stage of the super-resolution image and the
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144 Mapping of the Super-Resolution Algorithm onto a Video Encoder

contributions memory. In the left side, left for block diagrams, memories are shown as boxes
with double-line borders to easily discern them from the operators, shown in single-line. The
first low-resolution image LR _I[0] will be the movement reference and will be store in the

memory HR_A. At the same time, the contributions will be stored in HR_C.

nr_frames = scale*scale, M'= scale*M, N’= scale*N

HR_B, HR_S, HR_T, HR_T2, HR_C and HR_S2 all of 8 bits and size [M'}[N’].
HR_A is 10 bits and size [M’][N’].

LR_I[M][N] for the motion estimation

Read a set of aliased Low-Resolution images in LR_I[#nr_frames][M][N]

MV _ref2fr[0] = 0,0

FORfr=1 .. nr_frames-1
MV_ref2fr[fr] = Motion_Estimation( LR_I[fr], LR_I[0])
MV _ref2ft[fr] = 2 .* MV_ref2fr{fr]

END FOR

HR_A = Upsample_Holes(LR _I[0])
HR_C = Create_image_contributions()

FORfr=1 .. nr_frames-1
HR_S = Upsample_Holes(LR_I[fr])
HR_S2 = Create_image_contributions()

HR T = Motion_Compensation(HR_S, MV_ref2fr{fr])
HR_T2= Motion_Compensation(HR_S2, MV_ref2fr[fr])
HR_A =HR_A+HR_T
HR_C =HR_C +HR_T2

END FOR

HR_A = 4*HR_A/HR_C

IF (HR_C(i)==0) THEN
HR_B.lum = Interpolate(HR_A.lum)
ELSE
HR_B.lum = HR_A.lum
END IF
HR_B.chrom = HR_A.chrom

Clip(HR_B, 0, 255)

Figure 76. Kernel pseudo-code of the non-iterative versions of the super-resolution algorithm.
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Figure 77. Initialization of the super-resolution image and the contributions.

Once the memories have been initialized, we go into the loop to treat the three
remaining memories, starting with the motion estimation, as it is shown in Figure 78, where
also the motion vectors used in high and low resolution are shown. These vectors are stored in
the memory MV _ref2{1[0..3] for been subsequently been used.

The next step (Figure 79) is to initialize the remaining memories with the input images
taking to high-resolution and their corresponding contributions. As the real interest relays on
the summation of all the images, in fact the used memories (HR_S for images and HR_S2 for
contributions) are reused for every new input image. In Figure 79 are also shown the values
that HR_S will take for every input image, indexed as [1], [2], [3]. Notice that however the
initial contributions are the same for all the four images.

Once the high-resolution images have been created, we must compensate their
movement with respect to the reference image, and the same must be done with the
contributions, but with a different objective: to determine the contribution of each pixel to the
super-resolution image. Results are stored in HR_T and HR_T2 (Figure 80).
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146 Mapping of the Super-Resolution Algorithm onto a Video Encoder

@ Loop Begin: fr = 1..nr_frames-1

Memories
SRA: MV_ref2fr{1] = -2,-2
LR_I{0}
SRA: MV_ref2fr[2] = 0,-1
reference
SRA: MV_ref2frf3) = -1,-2
h A l
Motion
Estimation %2
'y %2
MV_mem[4] l
LR_I{fr]
SRA: MV_ref2fr{1] = -4 -4

SRA: MV_ref2fr[2] = 0,-2
Motion estimation referenced to

SRA: MV_ref2fr[3] =-2,-4
Jframe 0 (first one)

Figure 78. Motion estimation of the remaining images respect to the first one.

@ Inside Loop: fr = 1..nr_frames-1 Memories

(1

134 0118 0122 0122 ©
00 00 00 0O

138 0118 0122 0124 0

0 00 00 00

. 137 0119 0122 0123 0

LR_I{fr] Upsample HR S HR S —b 00 00 00 0O
! 41 012t 0123 012t @

00 00 OO0 0O
) i \ (33

77 0116 0121 6121 0 137 0118 0122 0122 0
00000000 000 0 00 00
79 0118 0121 0123 0 141 0119 0121 0123 0
Cr‘eatcz » HR S2 00000000 GQC0 ¢ G0 00
Contributions - 85 0120 0121 0123 0 141 0120 0121 0123 0
000000 00 000 0 00 00
85 0118 0123 0125 0 145 0121 0122 0122 0
DD 00 OCDDD 000 0 0D 00O
HR _S2:(1..3]
4D404040
g . 00000000
Initialise new memory frames 40404040
00000000
4 0404040
00660060600
40404040
00000000

Figure 79. Initialization of the high-resolution images and their contributions inside the main
processing loop.
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5.3 Non-iterative super resolution 147

@ Inside Loop: fr=1l..nr_frames-1 Memories
HR_T
{1] [2] (3]
HR S Motion HR T 0000000 O 39 058 061 061 0 0000 )
—> —> 0134 0118 0122 0122 33 058 061 061 0 69 69 59 59 81 81 61 61
- Compensation - 0000000 O 40 059 061 062 0 00000000
0138 0118 0122 0124 40 069 061 062 0 71 71 60 60 61 61 62 62
0000000 0 43 060 061 062 0 00000000
0137 0119 0122 0123 43 060 061 062 0 71 71 60 60 61 61 62 62
0000000 0 43 058 062 063 0 00000000
0145 0121 0123 0121 43 059 062 063 0 73 73 61 61 61 61 61 61
MV_mem[4] T T T
l MV_ref2fr{1] = -2,-2 MV_refefr{1} = 0,-1 MV_reffr{1] =-1,-2
Motion (1] [2] [3]
HR—Sz_’Cumpensation » HR_T2 00000000 20202020 006000000
04040404 20202020 22222222
000000GDO 20202020 00000000
04040404 20202020 22222222
00000000 20202020 00000000
04040404 20202020 22222222
. . 00000000 20202020 00000000
Mot]oncompensatlon 04040404 20202020 22222222
HR T2

Figure 80. Motion compensation of the input images in high-resolution and their contributions
inside the main processing loop.

Once the images and their contributions have been compensated, the summation of all
of them is performed. From the image point of view, it supposes the superposition of the new
data and the average of those that are repeated. From the point of view of the contribution, it
supposes to add up the weight of each pixel over the final image. In Figure 81 is shown how
the images are accumulated in HR A and the contributions in HR _C. In the last step of the
loop, in HR_A and HR_C will be accumulated the final values, where it is interesting to
highlight the zero value in the right-upper pixel of the base cell. This means that the input
images have not been capable of supply new information that fits in those positions.

Once the loop is over, it is necessary to adjust the accumulated values relying on the
weights of every pixel. That is carried out applying equation (28) to the accumulative memory
HR_A using HR_C as contributions, as depicted in Figure 82. If the summation of the
contributions is zero, it can not be divided by its value, and the zero value of the image will be
kept.
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148 Mapping of the Super-Resolution Algorithm onto a Video Encoder

@ Inside Loop: fr = 1..nr_frames-1

Memories
(03+{1] (03+{11+{2] [OT+{1]+{2]+(3]
. e ,_N 63 0116 01219 Q122 0O 102 0174 0182 0183 o0 102 0174 0182 Q0183 0O
HR—~T @ HR——A 0134 0118 0122 0122 39134 58118 61122 61122 108 203 117 177 122 183 122 183
64 0116 0119 0122 O 104 0175 0180 0184 0 104 0175 G180 0184 O
0138 0118 0122 0124 40138 53 118 61122 62 124 111209 119 178 122 183 124 186
68 0113 0t2t 0122 O 111 0179 0182 018 O 1M1 0179 0182 0184 0
o137 0119 0122 0123 43137 6D 119 61122 62123 114 208 120 179122 183 124 185
€67 0448 D127 0123 © 110 0178 0183 0186 O 110 04178 0183 0188 ©
0141 0121 0123 0121 43141 59121 62123 63121 116214 120 182 123 184 124 182
HR_A
HR_T2 —-———>@-~> HR_C

[01+{1} {OF+{11+{2) [O+{13+[21+(3]

0404040 680606 060Q 60806060

04040404 24242424 4 646464°€6

4 0404040 6 06 06060 60606060

04040404 2 4242424 46 464646

4 0404040 606 06060 606 060CG60

04040404 24242424 4 6 464648

. . 40404040 80606060 6060606860

Imageandcontnbutlons 04040404 242424248 46464646

accumulation
HR_C

Figure 81. Summation of the input compensated images in high-resolution and their

contributions inside the main processing loop.

@ After L.oop Memories
HR_A
102 0174 0182 0183 O
HR_A > x4 108 203 117 177 122 183 122 183
104 0175 0180 0184 O
111 209 119 178 122 183 124 186 HR_C
111 0179 0182 0184 0
114 208 120 179 122 183 124 185 60606060
v 110 0178 0183 0186 O 46 4646 4 6
116 214 120 182 123 184 124 182 606060860
v 46464646
60606060
1 . 46464646
x4 YT 6 06 06060
‘ 46464646
HR_C

68 0116 0121 0122 0
108 135 117 118 122 122 122 122
. ) ) . 69 0116 0120 0422 ©
Adjust SR image with weights 111139 119 118 122 122 124 124
74 0119 Q121 0122 O
114 138 120 119 122 122 124 123
73 018 0122 0124 O
116 142120 121 123 122 124 121

HR A,

Figure 82. Adjustment of the final accumulative image as a function of its contributions.
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5.3 Non-iterative super resolution 149

@ Final Adjust Memories
HR_C

60606060

46464646

HR C 6 0606060

- 46464646

6 0606060

46464646

HR_A 6 06 06060

4646464¢6

E_j:| 68 0116 0121 0122 0
L, ;B 108 135 117 118 122 122 122 122
HR_A Interpolate HR_ 69 0116 0120 0122 0

111 139119 118 122 122 124 124
74 0119 0121 0122 0
114 138 120 119122 122 124 123
73 0118 0122 0124 O
116 142120 121 123 122 124 121

!
=

68 104 116 119 121 122 122 122
108 135 117 118 122 122 122 122
Interpolate if holes (HR_C = 0) 69114 116 119 120 122 122 123

- 111 139 119 118 122 122 124 124
74 117 119 120 121 122 122 123
114 138 120 119 122 122 124 123
73118 118 121 122 123 124 123
116 142 120 121 123 122 124 121

HR B

Figure 83. Interpolation of the zeroes of the image with zero contribution.

The values that remains at zero (not information available) will be interpolated in the
last step of the algorithm (Figure 83), consulting the values of the contributions to avoid
interpolating the inner zeroes of the image, i.e. a pixel can have an allowable value of zero
and not for this reason the pixel has to be interpolated. Similarly to the iterative algorithms,
the super-resolution image is store in HR_B. This principle of using HR_B to store the final
super-resolution image will be keep through all the versions of the super-resolution algorithm
for clearness.

5.3.1.1 Moadifications in the motion estimator to handle non-
iterative algorithms

The Picasso architecture is intended to compress/decompress images, using different

commercial standards, but not to image processing applications.
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150 Mapping of the Super-Resolution Algorithm onto a Video Encoder

The motion compensator implemented in Picasso is designed to avoid visual
distortions in the resulting images when decompressing them, and in that sense, when an
image is shifted out of the physic boundaries, it fills the empty zone by replicating the
borders. As the motion vectors use to be small compared with the image size and to the less
attention of the human eye to the borders compared with the centre of the images, this effect
is negligible. But, when we want to obtain super-resolution improvements, the artificial
introduction of non-existing data produces important drops of the quality on the borders. As it
is obvious, the proper work in this case will be the motion compensator to fill the empty
values with zeroes, so that the algorithm will have an opportunity to fill the holes with valid
values coming from other images. The algorithm does not expect the spontaneous generation
of “new” data that have not been taken into account neither in the previous stages of the
algorithm nor in the contributions.

Therefore, the motion compensator must be modified in such a way that it replicates
the borders when working in compression/decompression mode and in return, it injects zeroes
when working in super-resolution mode.

5.3.1.2 Adjusts to apply the SRA in chrominance

Due to the different sampling scheme used for the luminance and the chrominances, it
is necessary to perform some modifications in the proposed algorithm to obtain super-
resolution improvements also in the chrominance values.

First of all, the way to take the samples to the high-resolution grid or up-sample, can
not be the same that with the luminance. This fact is reflected in Figure 84, where can be seen
how every chrominance pixel affects to four luminance pixels, and therefore, when taken to
the chrominance high-resolution grid, every pixel must be replicated four times, in order to
keep the chromatic coherence, as it is shown in Figure 85 (a).

For the same reason, the initial contributions can not be the same as the luminance. As
there is no zero-filling, all the chrominance pixels must initially have the same contributed
weight. In Figure 85 (b) are shown the initial contributions for the luminance and the
chrominances.
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Figure 85. Mapping of the chrominance C to the high-resolution grid by means of replicating

the pixels and its relationship with the luminance Y (a). Initial contributions for the

luminance and chrominance images (b).
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152 Mapping of the Super-Resolution Algorithm onto a Video Encoder

As the chrominance matrixes contributions are homogenous, it is clear that the motion
compensation will not affect them, and so, apparently, this step could be save. But, we can not
forget that the motion compensation injects zeroes in the borders, both for the luminance and
for the chrominances. That is why keeping the same compensation structure that in the
luminance will allow us to correct the border effect in the chrominances.

5.3.2 Motion estimation. Models & parameters.

In this section, some aspects concerning to one of the most critical parts in the super-
resolution algorithms will be reviewed: the motion estimator. We will put special emphasis in
how the different models affect to the image quality and the parameters that can be adjusted to

improve the super-resolution process.

5.3.2.1 Motion estimation models

Two different models have been used:

e The local motion model can be used when some objects are moving in the image.
Since the motion estimation is based on macro blocks (16 by 16 pixels), this is the
minimum granularity in the motion field.

e The global motion model can be used for a static scene recorded with a moving

camera. In other words, all the objects have the same motion.

The motion estimation is performed in several steps:

1. A motion estimation is carried out for each macro block, resulting in a motion
vector for each macro block.

2. The average motion vector is computed from the previous motion vectors. This
average vector can be used for global motion compensation.

3. A control step is introduced to evaluate the motion estimation metrics, and to choose
between local or global motion compensation. This control step also evaluates the
possibility of a context change, since no motion compensation can be used in the

case of a context change. This decision is taken for each macro-block.
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Figure 86. Motion estimator control block.

The evaluated metrics are:

e SAD LOCAL: Sum of Absolute Differences between the current macro block and the
previous macro block, compensated with the local motion vector. This number provides a
degree of match between the previous and the current macro block when using the local
motion vector.

e SAD GLOBAL: Sum of Absolute Differences between the current macro block and the
previous macro block, compensated with the global motion vector. This number provides
a degree of match between the previous and the current macro block when using the
global motion vector.

e SAD INTRA: Sum of Absolute Differences for every macro block between the average
value of the pixels and each pixel in the block. It provides a degree of the changes in the
block, and in consequence, gives information about the spatial frequencies in the block.

In addition to these metrics, which are obtained from the motion estimator
coprocessor, another metric is calculated in software. This is called mv_sad and it is the
absolute difference between the local motion vector and global motion vector per macro
block. This metric provides a degree of how different the local and global motion vectors are.
The larger this metrics is, the more the local vectors are promoted.

Since the global motion vector can only be calculated after completing the local
motion estimation, it is not possible to pipeline the motion estimator and compressor. This has
the following two consequences:
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154 Mapping of the Super-Resolution Algorithm onto a Video Encoder

1. It 1s necessary to store both the previous and current images in the loop memory loop.
Since in the original architecture the motion estimator and the compressor are pipelined,
only one image was stored in the loop memory.

2. The time to execute the entire processing is increased because those processors do not run
in parallel.

5.3.2.2 HR versus LR motion estimation

An important parameter for the motion estimation is the image resolution. As we are
using images in low and high resolution, the motion estimation can be done in both

resolutions. This feature can introduce some advantages and disadvantages, as described in
this section.

High resolution images have less aliasing, and hence result in a better motion
estimation.

High resolution images have 4 times more pixels than low resolution images. This
requires 4 times more motion estimations, and hence result in 4 times more motion
vectors. Recall that the motion estimation is the most compute intensive part of the
algorithm.

Carrying out the motion estimation on high resolution images, results in using the
same resolution for both the motion estimator and the compressor. This simplifies
the design considerably, since all hardware blocks are working in the same
resolution.

Doing the motion compensation in high resolution based on low resolution motion
vectors requires multiplying all motion vectors by a factor of 2. Since all the motion
vectors are factors of two, we loose precision in the motion estimation.

Taking into account all this factors, we performed several experiments using motion

estimation in low as well in high resolution. The results are shown in the following sections.
This is clearly a trade-off between simplicity, compute power and precision.
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5.3 Non-iterative super resolution 155

5.3.2.3 Quarter pixel and half pixel motion estimation

The precision of the motion estimator is very important for super resolution. The
Picasso architecture supports half pixel motion vectors, as required by the H.263 encoding
standard. However, this architecture has also been extended to quarter pixel motion vectors,
by adding another refinement step to the 3DRS algorithm.

This characteristic was also tested in some experiments. The obtained results are

shown in the next sections.

5.3.3 Algorithms for still images

In this section of non-iterative SRA for still images two main version will be
addressed. The first one, labelled as version v2.0 is intended to cope with a fixed number of
low-resolution images, while the second one, labelled as version v2.1 is a generalization of
the previous version to combine a variable number of low-resolution images. It will be
demonstrated that, provided sufficient and independent amount of data, the final quality will
increase with the number of low-resolution images combined.

5.3.3.1 Non-iterative basic SRA for still image (v2.0)

All the ideas exposed until now are gather in the version v2.0 of the SRA, which is
shown in Figure 87.

In this version, all the memories are 8-bit wide, except HR_A which is 10 bits, as it is
an accumulative memory. The larger value that a pixel can get is 25-1=255, so, the larger
accumulated value after sum four images is 255-4=1020, value that needs 10 bits to be stored
(2'°-1=1023). The contributions memory does not need to be 10 bits as the contribution
values are small. The maximum value after accumulate four contributions of size 4 is 16,
which loosely fits in 8 bits.

We have superscripted with an asterisk the ‘motion compensation’ operation to point
out its different operation with respect to the one used in image compression, in the sense that
it inject zeroes in the borders instead of replicating them.
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156 Mapping of the Super-Resolution Algorithm onto a Video Encoder

5.3.3.1.1 Block diagram and memory requirements for version v2.0

In Figure 88 is shown the block-diagram of the data-flow for version v2.0 of the

super-resolution algorithm shown in Figure 87.

* Non iterative super-resolution algorithm v2.0

Set the value of the improvement: scale

nr_frames = scale*scale, M’= scale*M, N’= scale*N

HR B,HR S, HR T,HR T2, HR Cont and HR S2 all of 8 bits and size [M’][N’]
HR_A is 10 bits and size [M’][N’]

LR_I[M][N] for the motion estimation

Read a set of aliased Low-Resolution images in LR _I[#nr frames}[M][N]

// First Image is the reference
MV_ref2fr[0] = 0,0

FORfr=1.3

MV_ref2fr]fr] = Calc_Motion_Estimation ( LR_I[fr], LR_I[0])
IF Global_Motion THEN Select_global_motion_vector()
MV_ref2frifr] = 2 .* MV _ref2fr[fr]

END FOR
HR_A.lum = Upsample_Holes(LR_I[0].lum) [SR_INIT_A]
HR_A.chrom = Upsample_Neighbours(LR_I[0].chrom)
HR_Cont = Create_image_contributions() [SR_INIT_CONT)]
FORfr=1..3

HR_S.Ium = Upsample__HoIes(LR_I[fr].Ium) [SR_UPSAMPLE]}

HR_S.chrom = Upsample_ Neighbours(LR_I[fr].chrom)

HR_S2 = Create_image_contributions()

HR.T = Motion_Compensation:(HR_S, MV_ref2fr[fr]) [SR_MOT_COMP]
HR_T2 = Motion_Compensation (HR_S2, MV_ref2frfr]) [SR_MOT_COMP_CONT]
HR_.A =HR_A+HR_T [SR_ADD]
HR_Cont = HR_Cont + HR_T2 [SR_ADD_CONT]
END FOR
HR_A = 4*"HR_A/HR_Cont
[SR_ADJUST_A]
IF (Hole) HR_B = Interpolate(HR_A) (SR_UPDATE]

Else HR B=HR_A
Clip(HR_B, 0, 255)

High Resolution result image in HR_B

Figure 87. Pseudo-code of the non-iterative algorithm version v2.0.
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Contributions

LR_I[0]

reference

HR_Cont [«—(H)«—

HR_T § HR_S2 [«

LR _I[fr]

HR_S

MV_mem[4] HR_T2

Figure 88. Block-diagram of the super-resolution algorithm version v2.0.

The block-diagram has been divided, on one side, in the zone that performs the image
processing, that makes use of memories HR_A, HR T, HR_S and LR_I[0..3], besides storing
the motion vectors in MV_mem[0..3], and in the other side, in a zone for the contributions
processing, that makes use of memories HR_S2, HR_T2 and HR_Cont. To highlight the
relations among them, we have denoted with solid lines the images flow, with dotted lines the
contributions flow and in dashed lines the motion vectors flow. Moreover, the functions of
‘upsample’ and ‘motion compensation’ have been superscripted with an asterisk to remark
their different behavioural when used in super-resolution.

In Table 6 is shown a summary of the memory requirements for version v2.0 of the
SRA, as described in Figure 88. It must be reminded that all memories are 8 bit except HR_A
which is 10 bit.

Memories HR_T and HR_T2 are not included in this measures as they are used in this
algorithm version to avoid the data overlap when performing the motion compensation, but
this problem will not exist in the hardware version over Picasso, as there exist a buffer of
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158 Mapping of the Super-Resolution Algorithm onto a Video Encoder

three macro-block slices that avoid that problem. In Table 15 are shown the total memory
requirements for several memory sizes.

Denomination Memory
Luminance (bits) Chrominance (bits) Total (bits)
HR_A (2:mb_x-2-mb_y-16-16-10) | (22-mb_x-2:mb_y-8-8-2-10) 15,360-mb_x-mb_y
"HR_B (22’mb_x-2-mb_y-16-16-8)| (2:mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
HR_S (22mb_x-22mb_y-16-16-8)| (2:-mb_x-2-mb_y-8-8-2-8) 12,288'mb_xmb_y
HR 82 (22mb_x-2-mb_y-16-16-8)| (2:mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
HR_Cont (2:mb_x-2mb_y-16-16-8)| (2:mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
3 Stripes HR (2:3-2:mb_y-16-16-8) (2-3-2:'mb_y-8-8-2-8) 36,864-mb_y
LR_I[0] (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072-mb_x-mb_y
LR_I[1] (mb_xmb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072:-mb_xmb_y
LR_I[2] (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072-mb_x-mb_y
LR_I[3] {mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072:mb_x-mb_y
MV_mem[0] (mb_x'mb_y-8) 0 8- mb_xmb_y
MV_mem[1] (mb_x'mb_y-8) 0 8- mb_x-mb_y
MV_mem][2] (mb_x-mb_y-8) 0 8- mb_x-mb_y
MV_mem][3] (mb_x-mb_y-8) 0 8- mb_x-mb_y
Total bits) |0 mb_y - mb_y -
(51,232 mb_x + 24,576 ) |(25,600- mb_x + 12,288) |(76.832:-mb_x+ 36,864)

Table 14. Summary of the memory requirements of version v2.0 of the SRA.
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Size mb x {mb_y (Kb yters})l (Mb yters%
SQCIF 8 6 477.19 0.47
QAVGA 9 7 622.37 0.61
QCIF 11 9 969.01 0.95
HAVGA 18 14 2,426.48 2.37
CIF 22 18 3,795.05 3.71
AVGA 36 28 9,579.94 9.36
VGA 40 30 11,389.69 11.12
4CIF 44 36 15,018.19 14.67
16CIF 88 72 59,748.75 58.35

Table 15. Memories used by version v2.0 of the super-resolution algorithm for
several image sizes.
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In Figure 89 are shown the data of Table 15 expressed in Kbytes. The memory
requirements are greater that in the case of the iterative algorithms because we are reserving a
whole memory for the contributions. Further on we will see that the contributions adjust can

be done at the macro-block level, what will save two high-resolution memories.

Memory required by version v2.0 of the SRA

70,000.00

60,000.00 WLW B e IS

50,000.00 § ~———— - ———

40,000.00 § - o m—ie e om e e —
|—e— Memory in Kbytes|
30,000.00 §- =+ -~ = = woems e e e

Kbytes of memory

20,000.00 {- - —-- - - - - -o-

10,000.00 { - - - -

—

0.00 ' T T T T
SQCIF  QAVGA QCIF HAVGA CIF AVGA VGA 4CIF 16CIF

Size of the input image

Figure 89. Memory used by the super-resolution algorithm version v2.0 for the most frequent

memory sizes.

5.3.3.1.2 Simulation results and quality analysis of version v2.0 using 2 pixel
precision

With the intention of performing a comparison with the previous iterative versions, the
first simulations have been carried out using the same test images (Kantoor, CIF format
(352x288) sub-sampled to QCIF (176x144) to feed the SRA that will submit an image of CIF
size again), the same starting frame (frame number zero) and the same displacements.
Therefore, any change in the resulting image quality will be only due to algorithm
modifications and in any case due to changes in the input data. The vector set is shown in
Table 13 and therefore their types are indicated in Table 12. The results for this test sequence

are shown if Figure 90.

Comparing these results with the ones obtained for versions v1.2 and v1.3 (Figure 91),
we can observe that the PSNR of the whole image (with borders) is significantly higher.
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160 Mapping of the Super-Resolution Algorithm onto a Video Encoder

PSNR Luminance. Kantoor 10 frames. SR vs Interpolation

24

—e— PSNR Luminance SR \/ .
—a— PSNR Luminance nearest neighbour interpolation
—a— PSNR Luminance bilinear interpolation

23

21 - S ——— 2 o s A s e e i

20

frame

Figure 90. PSNR of the output sequence using version v2.0 of the SRA versus the interpolated

images using nearest neighbour and bilinear interpolation.

If additionally the borders from the PSNR computation are subtracted, the chart of
Figure 92 is obtained. In this second case, the results for images of type ‘a’ are really
amazing. The PSNR is bounded to 99.9 dB, which would the value reached when both signals
were identical, as it is happening in this case. This astonishing precision is because in the
reconstruction process we are in fact following the inverse process to the test image
generation. It is not so weird a so accurate result. As a matter of fact, the proposed super-

resolution algorithm is inspired on this philosophy, which has been necessary to assess using

PSNR Luminance. Kantoor 10 frames.
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Figure 91. PSNR comparison using the KANTOOR sequence for version v2.0 of the SRA

versus the interpolated images and the iterative algorithms of versions v1.2 and
vl.3.

ion realizada por ULPGC. Biblioteca Universitaria, 2006

los autores. Digitali:

© Del



5.3 Non-iterative super resolution 161

real images and implementing it with the available resources.
As we did for the previous algorithm versions, instead of showing all the image
sequences, we will only show one of each significant type: the frame O of type ‘c.3’, the

frame 4 of type ‘a’, the frame 7 of type ‘c.2’ and the frame 9 of type ‘c.1’.

The obtained super-resolution frames are shown in Figure 93. At the left-hand side,
labelled with extension ‘1’, are shown the images of CIF size, and at the right-hand side,
labelled with extension ‘2°, are shown the associated errors when compared with the original
images. In the same way as in the previous cases, images of type ‘a’ (Figure 93 b) exhibit the
higher quality and consequently less image error, which is nearly zero in the central part of
the image. The divergences are due to the chrominances, whose quality does not reach the
luminance quality because of the previously commented problems about divergences of the
motion vectors between the used motion vectors (the luminance ones) and the real
chrominance motion vectors. Images of type ‘c.1’ (Figure 93 d) and ‘c.2’ (Figure 93 c¢) exhibit
an error predominance in the vertical and horizontal directions respectively. This fact is also
manifested in their bi-dimensional Fourier transforms, both in magnitude (Figure 94) and in
phase (Figure 95), where the horizontal error spectral components are almost zero in
magnitude and phase for images of type ‘c.2’ (Figure 94 c¢.2 and Figure 95 c.2) and almost
zero in the vertical direction (Figure 94 d.2 and Figure 95 d.2) for images of type ‘c.1’.
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Figure 92. Comparison of the PSNR’ without borders of the KANTOOR sequence for version
v2.0 of the SRA versus the interpolated images and the iterative algorithms

versions v1.2 and v1.3 .
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162 Mapping of the Super-Resolution Algorithm onto a Video Encoder

For images of type ‘a’, it can be appreciated the very low error exhibit in the spatial
domain and in a very wide zone of low and medium frequencies in the frequency domain.
This low error in the high frequencies is a clear indicative of information recovery in steep
areas as can being the edges of the objects contained in the image or the small details in the

background.

Although the chrominances use to have higher PSNR than the luminance due to their
lower entropy, as it really happen when the borders are taken into account (Figure 96 a), it is
not the same case when the image borders are removed (Figure 96 b). Since the process is
better tuned for luminance than for chrominances, when all the input samples are available
(images of type ‘a’) the PSNR of the luminance without borders is higher than the PSNR of

the chrominances.

Nevertheless, it is very interesting to perform a comparative between the PSNR values
of the chrominance (for instance the red chrominance that exhibits higher average PSNR)
achieved by this algorithm version and the iterative versions. If we represent the PSNR of the
full images (Figure 97 a) the image quality seems to be almost the same, but if the borders are
removed from the PSNR computation (Figure 97 b), then an important improvement in the
quality of the chrominances using this new algorithm version can be appreciated, obtaining an
average improve of 1.25 decibels against the bilinear interpolation, of 1.82 decibels against
version v1.2 and of 1.09 decibels against version v1.3.

The spectral correlations in magnitude and phase, with and without borders (Figure
98), show the expected behavioural, coherent with the PSNR variations. It is acceptable to
emphasize the high phase spectral correlation obtained, much higher than the one reached by
the iterative algorithms, even in the case of including the image borders in the computation.
Only in the frame number 9 the spectral correlation drops below the interpolation level, what

it is recovered after removing the borders.

It is also interesting to highlight a higher independence with the image borders in the
new algorithm. This is confirmed through the higher similitude of the curves with and without
borders. The reason is that this algorithm tries to recover information from the image borders,
interpolating the missing data, but never replicating them, thanks to the modifications

introduced in the motion compensator.
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5.3 Non-iterative super resolution 163

As it was expected, the image borders elimination produces spectral correlation of
unity value, what evidences the exact equivalence between the images of type ‘a’ without
borders obtained and the reference images, without borders for enabling the comparison.

5.3.3.1.3 Simulation results and quality analysis of version v2.0 using quarter
pixel precision

All the results shown until now have been obtained using motion estimation in low-
resolution with half pixel precision. However, it is clearly desirable to increase the precision
of the motion estimator to quarter pixel, and consequently the motion estimator has been
modified in this sense. Also the experimental setup has been modified, as has been described
in section 3.5 (experimental setup). We have opted for using again this same algorithm
(version v2.0) but using a higher precision in the estimation of the displacements. For this
new test we will use a new sequence call KRANT' of VGA size, which has a significant spatial
distribution of the objects in the scene, what leads to a frequency spectrum with clearly

oriented components, much less homogeneous that in the case of KA’NTOOR.

When changing the motion estimation accuracy, the base-cell also changes, and we
have to use the base-cell shown in Figure 60. However, while in the case of the motion
estimation with half pixel accuracy, it is possible to perform a super-resolution images
classification based on the position of the available samples, in this new case the total number
of possibilities is too high to establish an affordable classification. Concretely, the total
number of combinations, taking the samples four by four, and being N the total number of
pixels in the base-cell, is the one expressed in (29), that for N=4 (base-cell of half pixel)
results in 15 (these are the classifications made) but for N=16 (base-cell of quarter pixel)
results the much higher figure of 2516 combinations.

. N!
,(z::‘k!-(N—k)! 29

Given the huge amount of different samplings possibilities, we desist from making an
exhaustive classification, but it is still valid the general principle that the sampled selected by
the shifts will drastically affect the quality of the super-resolved images, reaching the
maximum quality when the shifts include the four pixel positions, that correspond to the shift
vectors (0,0), (0,2), (2,0) and (2,2) expressed in unities of very high resolution (VHR) pixels.

' KRANT means newspaper in Duich.
2 KANTOOR means office in Dutch.
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Figure 93. Super-resolved images (1) with their associated errors (2), of frame 0 (a), of frame
4 (b), of frame 7 (¢) and of frame 9 (d).
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Figure 94. Bi-dimensional Fourier transforms in magnitude of the super-resolved images (1)
with their associated errors (2), of frame 0 (a), of frame 4 (b), of frame 7 (c¢) and of
frame 9 (d).
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Figure 95. Bi-dimensional Fourier transforms in phase of the super-resolved images (1) with

their associated errors (2), of frame 0 (a), of frame 4 (b), of frame 7 (c) and of

frame 9 (d).
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Figure 97. PSNR’ of version v1.2, v1.3 and v2.0 and the interpolated images of the red
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the full images (a) and without borders (b).
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Figure 98. Spectral correlations in magnitude (1) and phase (2) of the luminance using the full

In Figure 99 can be seen the relationships among the changes in the scale and the unities
across the super-resolution and test image generation process. In the bottom of the chart has
been shown an example of shift with value (2,2) in very high resolution pixels, name given to
the image of big format, as could be VGA or CIF, to lately crop it, avoiding the undesirable
border effect. Starting from that image, cropped and shifted, it is decimated by a factor of Y2
and filtered to obtain the High-Resolution (HR) image that will serve as the reference in order
to obtain the quality measures. At the same time, the image is sub-sample by a factor of % to
generate aliasing, what will suppose the Low-Resolution (LR) input sequence to the SRA.
Once inside the developed system, the used unities are of quarter pixel, that can be equally
obtained multiplying by four the shifts in pixel unities. When going from low-resolution to
high resolution, both the images and the motion vectors are multiplied by two, and can be
verified that the shift generated in Very-High Resolution (VHR) of (2,2) pixels correspond to
a shift in the high-resolution image of (1,1) pixels. Although the VHR image is really shifted
(2,2) pixels, it is obvious that the relation between the HR and VHR images is a scale factor

of two. Therefore, we can see that shifts in unities of half pixel of high-resolution. Thus, two
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170 Mapping of the Super-Resolution Algorithm onto a Video Encoder

half-pixels are equivalent to one pixel, and can be seen in advance that the (2,2) shift in VHR
1s equivalent to (1,1) in high resolution.

For the test sequence KRANT, the first frame is selected, and are applied the
displacement vectors (expressed in very high resolution pixels) shown in Table 16, generated
17 output frames. All the vectors are randomly generated, except the first set of four vectors,

that it is artificially generated in the integer pixel positions of high-resolution to check the
maximum quality that the algorithm can achieve.

In Figure 100 is shown the reference frame (a.l) together with its bi-dimensional
Fourier transform in magnitude (a.2) and the low-resolution input sequence (b.1-e.1) together

with their correspondent bi-dimensional Fourier transform in magnitude (b.2-e.2).

As the image presents a clear orientation of the objects contained on it, its bi-
dimensional Fourier transform in magnitude will present very directional high-energy spectral
components. This feature helps to clearly identify the great amount of aliasing in the input

sequence. Since the aliasing is located in the pass-band of signal, it cannot be removed by
conventional filtering techniques.

Test images generation Super-resolution algorithm
“,‘Oﬁo,“ motion
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Original sub-
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Figure 99. Unities and scaling relationship among the shifts during the test and super-
resolution image generation process.
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5.3 Non-iterative super resolution 171

Also for reference are shown the interpolated images (a), in magnitude (b) and phase
(c), both for nearest neighbour interpolation (Figure 101) and for bilinear interpolation (Figure

102), together with their associated errors (2).

After the execution of the algorithm over 17 frames of the image shown in Figure 100
(a.1), sub-sample in a factor of quarter after being shifted the amounts and directions given by

the displacement vectors of Table 16, the PSNRs shown in Figure 103 (luminance with

(b.2) (c2) (d.2) (e2)

Figure 100. Frame zero of the test sequence KRANT (a.1) together with its bi-dimensional
Fourier transform in magnitude (a.2) and the low-resolution input sequence (b.1-
e.1) together with their correspondent bi-dimensional Fourier transform in

magnitude (b.2-e.2).

borders) have been obtained. The frame zero exhibits a PSNR of 99.9 decibels, as it was
foreseeable as it has all the input samples in integer pixel positions. The average PSNR
(without taking into account the output frame zero) is 30.47 dB, that overcomes in 7.28 dB the

average obtained for version v1.2 and in 2.23 dB the average obtained for version v1.3.
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Very high High Low Very high High Low
JSrame | resolution | resolution | resolution ||| frame| resolution | resolution resolution

vectors vectors vectors vectors vectors vectors
0 0 0 0 0 0 0 0] 0 0 0 0

0 2 0 1 0 0.5 0 9 3 -1 1.5 | -05 ) 0.75 | -0.25
0 2 0 1 0 0.5 2 -3 1 -1.5 | 05 |-0.75
2 2 1 1 05 | 05 0 -1 0 -0.5 0 |-0.25
0 0 0 0 0 0] 0 0 0 0 0 0

0 -1 -3 | 05| -1.5|-0.25] -0.75 10 2 -3 1 -1.5 | 05 |-0.75
-1 -3 | -05]-15]-025|-0.75 2 -1 1 05} 05 |-0.25
-1 2 (05| -1t |-025| -05 2 -2 1 -1 05 | -05
0 0 0 0 0 0 0 0] 0 0 0] 0

’ 3 2 1.5 1 0.75 | 0.5 " -1 2 -0.5 1 j-025| 05
3 1 1.5 1 05 ) 075 | 025 0 2 0 1 0 0.5
2 0 1 0 0.5 0 0 1 0 0.5 0 0.25
0 0 0 0 0 0 0 0 0 0 0 0

3 3 3 | 15 |-15}0.75|-0.75 2 1 2 0.5 1 025 | 05
2 -1 1 -05 | 0.5 |-0.25 3 3 1.5 1.5 ) 0.75 | 0.75
1 0 0.5 0 | 025 0] 2 1 1 05 | 05 | 025
0 0 0 0 0 0 0 0 0 0 0 0

4 3 2 1.5 1 0.75 05 13 0 1 0 0.5 0 0.25
1 3 05 (1.5 | 0.256 | 0.75 0 0 0 0 0 0
2 2 1 1 05 | 05 -3 0 | -15 0 |-075| O
0] 0 0 0 0 0] 0 0 0 0 0 0

5 -2 2 -1 1 051 05 14 -2 -3 -1 -1.5 § -05 {-0.75
-2 3 -1 15 | -0.5 | 0.75 0 -1 0 -0.5 0 [-0.25
-1 1 -05 | 05 |-025( 0.25 -3 -1 | -15| -05 |-0.75|-0.25
0 0 0 0 0 0 0 0 0 0 0] 0]

6 -2 -3 -1 | -1.5| -0.5 {-0.75 5 -1 0 -0.5 0 1-025] O
0 -1 0 | -05 0 |-0.25 -1 -1 | -05 | -051-0.25]|-0.25
-1 2 |-05] -1 |-025| -0.5 -1 -1} 051 -05|]-025]|-0.25
0 0 0 0 0 0 0 0 0 0 0 V]

- 2 2 1 1 05 | 05 16 -2 -3 -1 -1.5 ) -0.5 {-0.75
0 1 0 05 0 0.25 -2 -2 -1 -1 -05 | -0.5
1 2 0.5 t 025 | 05 0 0 0 0 0] 0
0 0 0 0 0 0

8 0 3 0 1.5 0 0.75
-3 1 -1.5 1 05 | -0.75| 0.25
0 1 0 0.5 0 0.25

Table 16. Displacement vectors randomly generated expressed in very high-resolution pixels, in

high-resolution pixels and their reduction to canonical vectors in the base cell of % pixel.

ion reafizada por ULPGC. Bibicteca Universitaria, 2008

ios sutores. Digitali

© el



5.3 Non-iterative super resolution 173

Showing in a same chart the PSNR of the sequence with and without borders (Figure
103) it can be appreciated that the qualities are very similar (the average error is 0.35 dB). As
the only difference with the experiments of the previous section relies on the difference in the
motion estimation accuracy, we can conclude that the precision increase in the motion

estimator makes this version of the algorithm less sensitive to the undesirable border effects.

Interpolated nearest image 0 Interpolated nearest Low-Resolution module 0 Interpolated nearest Low-Resolution phase 0

,

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

(a.1) (b.1) (c.1)

ernor Phase Reference-Interpolated nearest 0

Error image Reference-Interpolated nearest error Module Reference-Interpolated nearest 0

50 100 150 200 250 300 50 100 150 200 260 300

Figure 101. Nearest neighbour interpolated image, in the spatial domain (a), in the frequency
domain in magnitude (b) and in phase (c), together with their associated errors.
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Figure 102. Bilinear interpolated image, in the spatial domain (a), in the frequency domain in
magnitude (b) and in phase (c), together with their associated errors
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174 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Instead of showing all the frames, we will pay special attention to the process corners,
1.e. to the best and the worst cases. The frame with higher PSNR is the frame 10 and the worst
is the frame 15. In the Figure 104, is shown the frame 10 in the spatial domain (a), in the

frequency domain in magnitude (b) and in phase (c), together with their associated errors (2).

PSNR Luminance. Krant 17 frames. SR vs Interpolation

PSNR
8

- - -@- - - PSNR’Luminance without borders SR - - -8~ - - PSNR’Lumincnce without borders neares t neightour interpolation
- - -A- - - PSNR’Luminance without borders bilinecr inferpolation ——— P SNR Lumincnce withborders SR
—¥—— PSNR Luminance with borders neares t neighbour interpolation —@—— P SNR Luminance with borders hilinear inferpolation

Figure 103. PSNR of the luminance for the Krant sequence with and without borders for the
version v2.0 of the SRA with % pixel precision.
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Figure 104. Super-resolved frame 10 in the spatial domain (a), in the frequency domain in

magnitude (b) and in phase (c) together with their associated errors (2).
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5.3 Non-iterative super resolution 175

Representing together the bi-dimensional Fourier transforms in magnitude shown in
Figure 100 (a.2), Figure 100 (b.2) and Figure 104 (b.1) in Figure 105, it is clear how the
aliasing amount has considerably decreased in the spectrum of the super-resolution image (c)
compared with the aliasing present in the input images (b) and compared both with the
original spectrum (a). Nevertheless, already some aliasing remainders are still present,
especially in the more energetic diagonal bands in the high frequency zone, as it is denoted in

the figure.

aliasing

(@) (b) ©
Figure 105. Bi-dimensional Fourier transforms in magnitude of the luminance of original image
(a), of the first input image (b) and of the output super-resolved image number 10 (c).

The aliasing is also noticeable in the spatial domain as a quality loose due to the data
absence. This is clearly seen in the small details, as the letters, and in the continuity loss at the
edges of the pens in the right hand side of the picture. The super-resolution process enables
the incorporation of new information coming from other close images, considerable
increasing the quality of the resulting image. For instance, in Figure 106 is shown a detailed
enlargement of the upper-right corner of the first input image of the KRANT sequence (a) and
the same zone improved by means of the super-resolution techniques (b). Notice that before
applying the algorithm it was almost impossible to read the word ‘nieuw’ (new in Dutch) that
appears in the upper-right corner. The edges of the pens and the letters of the newspaper
headlines have clearly been improved. The resolution increase is made clear as a decrease in

the apparent average size of the pixels.

Paying attention to the worst quality image (frame 15 depicted in Figure 107), we can
appreciate that the aliasing amount is higher, although some aliasing has been removed

compared with the amount presented in the input images.
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176 Mapping of the Super-Resolution Algorithm onto a Video Encoder

(a) (b)
Figure 106. Enlarged detail of the first frame of the sequence KRANT, before (a) and after applying
the super-resolution algorithm v2.0 (b).

Super-Resolution module. SR frame 15 Super-Resolution phase. SR frame 15
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(b.1)

emor Module Reference-SuperResolution 15

150 200 250 300

(a.2) (b.2) (c.2)

50 100 150 200 250 300 50 100 150 200 250 300

Figure 107. Super-resolved frame 15 in the spatial domain (a), in the frequency domain in
magnitude (b) and in phase (c), together with the associated errors (2).

The spectral correlations also exhibit a lower difference between the images with and
without borders (Figure 108). The average absolute error in magnitude between both of them
is 5.8648-107 and in phase is 1.568-10”. However, although the average error in magnitude is
lower, the magnitude PSNR values are closer to the interpolation levels than the phase PSNR
values, reaching the interpolation levels in frames 1 and 15, which never occur with the
phases. The higher correlation and lower error between images with and without borders in

magnitude suggest a better performance of the algorithm in magnitude, what supposes a very
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5.3 Non-iterative super resolution 177

good point inasmuch as the human sight is more sensitive to the magnitude than to the phase
of the images. The higher distance of the phase correlation to the interpolation levels is due to
the improvement in the motion estimator accuracy that enables a better shift adjust among the

input images.

The PSNR and the spectral correlation in magnitude of the chrominances are higher
than the luminance (Figure 109), because of the lower entropy of the first ones, but on the

other hand, the phase spectral correlation of the luminance is higher than the chrominance

SCC magnitude Luminance. Krant 17 frames. SR vs Interpolation
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Figure 108. Spectral correlation coefficients in magnitude (a) and in phase (b) of the KRANT
sequence of 17 frames.
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178 Mapping of the Super-Resolution Algorithm onto a Video Encoder

ones. This is logic if we take into account that the motion vectors have been computed only
for the luminance, and so, it is reasonable that its phase will result better adjusted to the
original phase than the chrominance phases, for which have been used the luminance motion
vectors. Also can be appreciated a high similitude between the curves with and without
borders, although the merit figures without borders exhibit a slightly higher value than their

counterparts with borders.

5.3.3.2 Non-iterative incremental super-resolution algorithm (v2.1)

A detailed analyse of the pseudo-code of the version v2.0 of the super-resolution
algorithm in Figure 87, reveals that in fact there is no impediment to increase the number of
low-resolution images to be combined. It will be only necessary to modify three subjects:

1. Increase the number of input images in the algorithm loops.

2. Increase the number of bits of the accumulative memory HR_A to properly summate

the pixel values of several images.

3. Increase the number of bits of the contributions memory, although due to the lower
value of the contributions it is foreseeable that the memory word width will be much

lower than in the case of the memories intended to store the images.

It seems reasonable to suppose that, if the image displacements are randomly
distributed, then a higher number of frames combined will result in a higher possibility of
disposing new information available, what will rebound in a higher super-resolution image.

This assumption has been verified by executing the algorithm over several sequences.

In order to properly size the memory HR_A we have follow the next steps:

1. The maximum number of frame to accumulate is settled to 12. Then, in the worst
case, we must be able to store the number (28-1)-12 = 3060, as the input images are 8
bit wide.

2. To store the number 3060 are needed logx(3060) = 11.57 bits, that are upper-rounded
to 12 bits.

3. When performing the rounding in the number of bits, we have a fast increase in the
number of images to be combined in HR_A. The larger number that can be stored in
12 bits is 2'*-1 = 4095.

4. In 4095 fits 4095+255 = 16.05 images, what means that in the worst case we can store
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5.3 Non-iterative super resolution 179

16 input images of 8 bits wide each one.

The pseudo-code of the version v2.1 of the super-resolution algorithm is shown in

Figure 110, where HR_A is a 12 bits memory and the remainder memories are 8 bits wide.

PSNR. Krant 17 frames. Super-resolution results

PSNR

---&-- PSNR’ Luminance without borders SR ---x--- PSNR' Cb without borders SR
---4-- PSNR’ Cr without borders SR —a— PSNR Luminance with borders SR
—»— PSNR Cb with borders SR —e— PSNR Cr without borders SR

(a)

1.0001

0.9999

0.0007 - . —

0.9995 1

0.9993 1—

scc

0.9991 -

0.9989

0.9987 -

0.9985

frame

---&-- SCC Luminance without borders SR ---x-+- SCC Cb without borders SR
---4-- SCC Cr without borders SR —=a— SCC Luminance with borders SR
—*— SCC Cb with borders SR —=e—— SCC Cr with borders SR

(b)
SCC phase. Krant 17 frames. Super-resolution

R o . A~

0.48

scc

---¢-- SCC Luminance without borders SR ---x--- SCC Cb without borders SR
---4-- SCC Cr without borders SR —— SCC Luminance with borders SR
—»— SCC Cr with borders SR —=s— SCC Cb with borders SR

()
Figure 109. PSNR (a), spectral correlation coefficients in magnitude (b) and phase (c) of the
Krant sequence with borders (solid lines) and without borders (dot lines).
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180 Mapping of the Super-Resolution Algorithm onto a Video Encoder

5.3.3.2.1 Simulation results and quality analysis of version v2.1 using % pixel
precision

To verify that an increase in the number of combined frames corresponds with a
quality increase in the resulting image we have designed the following experiment: A set of
12 displacement vectors have been generated (Table 17), being the first vector the zero vector
and the remainder eleven random vectors. The first displacement vector is (0,0) to assure than
the resulting image (always adjusted to the first frame of the sequence) will be with zero

displacement with respect to the reference, enabling reliable quality measurements.

From this vectors set, the three first vectors are used to compose a super-resolved
image based on three low-resolution images starting from the frame 0 of the KRANT sequence.
After that, the first four vectors are applied again to the frame O of KRANT to generate a new
super-resolved image form four input images, and so on until a super-resolved image with 12
low-resolution frames has been generated. In total, have been generated
3+4+5+6+7+8+9+10+11+12=75 low-resolution frames to be used as inputs to the super-
resolution algorithm version v2.1. In Figure 111 is shown the followed scheme for the
generation of the test incremental sequence. These input 75 frames will generate 10 output
frames, whose qualities are shown in Figure 112.

As it was expected, as the number of input frames to combine increases, the PSNR
increases until reach 33.44 dB in the frame number 9, which come from the combination of
12 input low-resolution frames. Empirically, can be verified that after combining 6 input
frames (output frame number 3), i.e. when the 36.55 dB is reached, the human eye hardly
perceive enhancements in the quality of the image. In addition, it can be seen that the largest
increment in the quality (greater PSNR slope) takes place in the four first output frames. All
of this leads us to the conclusion that a system can be limited to combine 5 or 6 input frames,
depending on the available resources and the desired output quality.

It must be taken into account that the maximum quality for the iterative super-
resolution algorithms is of 34.5635 dB for the luminance after 73 iterations and for images of
type ‘a’, whereas in this last version this value is reached after combining 6 input frames

(34.5698 dB) and it is overcame in more than 3 dB combining some more additional frames.
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* Non iterative super-resolution algorithm v2.1

Set the value of the improvement: scale

nr_frames = scale*scale, M’= scale*M, N’= scale*N

HR B,HR S,HR _T,HR T2,HR Contand HR_S2 all of 8 bits and size [M’][N’].
HR_A is 12 bits and size [M’][N’].

LR _I[M][N] for the motion estimation

Store the first frame in LR_I_O[M][N] and the remainders in LR_I[M][N]

// First Image is the reference

HR_A.lum = Upsample_Holes(LR_|_0.lum)

[SR_INIT_A]
HR_A.chrom = Upsample_Neighbours(LR_|_0.chrom)
HR_Cont = Create_image_contributions {SR_INIT_CONT]
FORfr =1 .. nr_frames-1
MV_ref2fr = Calc_Motion_Estimation (LR_I, LR_|_0)
IF Global_Motion THEN Select_global_motion_vector()
MV _ref2fr =2 .* MV_ref2fr
HR_S.lum = Upsample_Holes(LR_l.lum)
. [SR_UPSAMPLE]
HR_S.chrom = Upsample_ Neighbours(LR_l.chrom)
HR_S2 = Create_image_contributions [SR_INIT_CONT]
HR_T = Motion_Compensation(HR_S, MV_ref2fr) [SR_MOT_COMP]
HR_T2 = Motion_Compensation(HR_S2, MV_ref2fr) [SR_MOT_COMP_CONT]
HR. A =HR_A+HR T [SR_ADD]
HR_Cont=HR_Cont + HR_T2 [SR_ADD_CONT]
END FOR
HR_A = 4*HR_A /HR_Cont {SR_ADJUST_A]
If (HR_Cont(i,j)==0) THEN HR_B = Int late(HR_A(i,j
(HR_Cont(i)==0) _B = Interpolate(HR_A(i)) (SR_UPDATE]

ELSE HR B=HR_A

Clip(HR_B, 0, 255)

High Resolution result image in HR_B

Figure 110. Pseudo-code of the non-iterative algorithm version v2.1.
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Input low-resolution
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Output high-resolution
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2>

\

>

/

Output high-resolution

Figure 111. Scheme followed in the generation of the incremental test sequence.

Vectors in Vectors in Vectors in Vectors in
Input frame Input frame

VHR HR VHR HR
0 0,0 0,0 6 0,1 0,05
1 2,2 1,1 7 2,1 -1,0.5
2 3,1 15,05 8 1,0 05,0
3 3,3 15,15 9 0,2 0,1
4 2,0 1,0 10 2,0 1,0
5 0,3 0,15 11 0,-2 0,-1

Table 17. Displacement vectors pseudo-randomly generated to incrementally reconstruct the

super-resolution image.

Regarding to the bilinear interpolation level, we are all the time above it: the minimum

distance is 2.51 dB and the maximum distance is 11.37 dB.
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In Figure 113 can be appreciated a slight increment in the PSNR, produced when the
image borders are removed. Nevertheless, it must be taken into account that a reduction in the
number of pixels of the image produces a small increase in the PSNR. In this case, the
average increase of 1.029 dB is due to this fact, and not because differences in the borders.
This hypothesis is verified through an ocular inspection of the error image (Figure 114) of
frame 9. The PSNR of the image without borders of this frame is 1.32 dB higher than the

image with borders, but in the image borders, no discontinuity can be observed. Therefore, we

PSNR

L

PSNR Luminance. Krant 75 frames. SR vs Interpolation

—e— PSNR Luminance SR
—a— PSNR Luminance nearest neighbour interpolation
—a— PSNR Luminance bilinear interpolation

PSNR
8

8

© -8

frame

Figure 112. PSNR of the KRANT sequence with 10 incremental output frames.
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Figure 113. PSNR of the KRANT sequence with and without borders.
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184 Mapping of the Super-Resolution Algorithm onto a Video Encoder

can conclude that the PSNR increase of these images is due to the reduction in the number of

pixels. This effect has been taken into account all over this work.

In Figure 114 can be appreciated that the image error in the space domain (a.2) is
highly uniform, what means a very low error with respect to the reference image. The bi-
dimensional Fourier transform in magnitude shows an almost complete removal of the
aliasing, exhibiting a minimal image error in the high-power spectral bands (b.2) that it is

approximately the same trend that follows the minimal spectral error in phase (c.2).

Super-Resolution module. SR frame 9 Super-Resolution phase. SR frame 9

50 00 150 200 2650 300 0 100 150 200 250 300

R)) (b.1) .
Emror image Reference-SuperResolution 9 error Module Reference-SuperResolution 9 error Phase Reference-SuperResolution 9

100 150 200 250 300 100 150 200 250 300

(a.2) (b.2) (c2)

50 100 150 200 250 300

Figure 114. Super-resolved frame 9 in the spatial domain (a), in the frequency domain in

magnitude (b) and in phase (c), together with their associated errors (2).

Super-Resolution module. SR frame O Super-Resolution phase. SR frame 0

50 100 150 200 250 300

(a.1) (b.1) (c.)
Eror image Reference-SuperResolution 0 error Module Reference-SuperResolution 0
P e — = T

50 100 150 200 250 300

(a.2) (b.2) (c.2)
Figure 115. Super-resolved frame O in the spatial domain (a), in the frequency domain in

magnitude (b) and in phase (c), together with their associated errors (2).
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5.3 Non-iterative super resolution 185

For completeness, it is also shown the worst image of the sequence (frame 0) coming
from combining three low-resolution frames (Figure 115). It is clear the higher amount of

aliasing and consequently higher errors in all the cases.

The chrominances PSNR are always above the interpolation levels, although they do
not follow the same luminance evolution. In Figure 116 is shown the PSNR of the red
chrominance, with higher energy that the blue one, which maximum and minimum
differences with respect to the bilinear interpolation level are of 0.982 dB and 2.27 dB

respectively.

In Figure 116 also can be appreciated the relative independence of the image quality
with respect to the inclusion of the image borders. As it happen with the luminance, the small

increment is justify through the decrease in the number of pixels.

In Figure 117 can be seen much higher values of the chrominance PSNR due to their
lower entropy. The red chrominance has an average value of 49.6631 dB, versus the average

value of 46.9091 of the blue chrominance and the average value of 34.6331 of the luminance.

In Figure 119 can be seen how the correlations with borders (solid lines) and without

borders (dotted lines) are very similar (the average correlation coefficient is magnitude with

5y PSNR Cr. Krant 10 frames. SR vs Interpolation
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Figure 116. Red chrominance of the PSNR of the super-resolved and the interpolated images
for the KRANT sequence with 10 incremental output frames with and without

borders.
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186 Mapping of the Super-Resolution Algorithm onto a Video Encoder

borders is 0.999600396, whereas without borders is 0.999669774 and in phase with borders is
0.624228535 and without borders 0.637115433), and like was established, the differences can
be attributed to the different sizes of the images. As in the previous version, from where this
version comes from, the magnitude correlations (a) are substantially higher than then the
luminance correlations, due to the lower entropy of the formers. The spectral correlation in
phase of the luminance (b) is higher than the chrominance ones, for having a better adjusted
movement. It can also be confirmed that the chrominance metrics does not follow the
luminance trends, and that the luminance follows the same increasing trend, both in module
and in phase.

—

PSNR. Krant 10 frames. Super-resolution resuits

L . S
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%

v ’
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2+ - - e —

—e— PSNR Luminance with borders SR
—»— PSNR Cb with borders SR
&5 4 —+— PSNR Cr with borders SR
0 1 2 3 4 5 6 7 8 9
frame

Figure 117. PSNR of the luminance and chrominances for the Krant sequence with 10

incremental output frames with borders.

Figure 118. Enlarged detail of the original image (a) and the super-resolution image (b) for the

KRANT sequence of 10 frames.
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5.3 Non-iterative super resolution 187

Table 18 gathers a summary of the average values of the different metrics along the
whole output sequence. It can be seen how the differences between the images with and
without borders have decreased, and how the PSNR and the magnitude correlation of the
luminance are lower than the chrominance ones, although in phase this trend is inverted,

being higher the luminance ones than the chrominance ones.

PSNR
With borders Without borders
Luminance 34.63 dB 35.66 dB
Blue chrominance 46.90 dB 47.24 dB
Red chrominance 49.66 dB 49.73 dB
SCC magnitude
With borders Without borders
Luminance 0.99960 0.99966
Blue chrominance 0.99998 0.99998
Red chrominance 0.99999 0.99999
SCC phase
With borders Without borders
Luminance 0.62422 0.63711
Blue chrominance 0.29255 0.31720
Red chrominance 0.26746 0.28298

Table 18. Average values of the PSNR, the SCC in magnitude and phase of the
KRANT sequence of 10 output frames with and without borders.

Figure 118 shows in detail the upper-right corner of the image Krant, before (a) and
after the super-resolution process (b). Is clear the quality improvement of the image, where is
possible to read the letters over the newspaper headlines.

This kind of system is very well suitable for taking digital pictures (digital
photography) as they are still images. When the user wants to capture an image, he or she
presses the actuator that takes the first reference image, and automatically and continually the
system takes ‘n’ images more (‘n’ will depend on the desired final quality and the available
resources) to combine all of them in a higher resolution image. An image taken with a real 2
mega-pixel sensor will be processed to result as an image taken with a virtual 8 mega-pixel
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188 Mapping of the Super-Resolution Algorithm onto a Video Encoder

sensor. The images must contain some movement among them, as can be the case of hand-
held cameras.

5.3.3.2.2 Block diagram and memory requirements for version v2.1

In Figure 120 is shown the block-diagram of the data-flow for version v2-1 of the SRA
shown in Figure 110. As in the previous version v2.0, the block-diagram has been divided, by
one side in the zone occupied in the image processing, that makes use of memories HR A,
HR_T,HR S, LR I 0 and LR I, besides of storing the motion vectors in MV_ref2fr, and by
the other side, in the zone occupied in contributions processing, that makes use of memories
HR_S2, HR_T2 and HR_Cont. In order to clarify the relations among them, there have been
drown in solid lines the image flow, in dotted-lines the contribution flow and in dashed-lines
the motion vector flow. Moreover, the functions ‘upsample’ and ‘motion compensation’ have
been marked with and asterisk to point out their different performing when they are the in
super-resolution mode. With respect to version v2.0 two low-resolution memories have

disappeared and now it is only necessary to store one motion vector, aside from the HR_A
wide increasing to 12 bits.

In Table 19 it is shown a summary with the memory requirements in version v2.1 of
the SRA, as expressed if Figure 120.

Memories HR T and HR T2 are not included in these figures as they are used in this
algorithm version to avoid the data overlap when performing the motion compensation, but
this problem will not exist in the hardware version over Picasso, because there exist a 3
macro-block stripes buffer that avoids that problem. These 3 stripes have been included in the
memory requirement.

In Table 20 the total memory requirements for the most common image sizes are
shown. In Figure 121 the data of Table 19 in Kbytes together with the data of Table 15 for the
version v2.0 are graphically shown. The memory requirements for version v2.1 are slightly
lower than the ones for version v2.0 because two of the low-resolution memories are not
needed and because the same memory for the motion vectors is always reused. In any case,

the memory reduction is very slight and not significant against the total memory amounts
required.
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Figure 119. Spectral correlations in magnitude (a) in phase (b) of the luminance and the

(b)

chrominances for the KRANT sequence with 10 incremental output frames.
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Figure 120. Block-diagram of the super-resolution algorithm version v2.1.

Memory

Label
Luminance (bits) Chrominance (bits) Total (bits)
HR_A (2:mb_x-2-mb_y-16-16-12) | (2-mb_x-2-mb_y-8-8-2-12) 18,432-mb_x-mb_y
HR_B (2-mb_x-2-mb_y-16-16-8) (2:mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
HR_S (2-mb_x-2-mb_y-16-16-8) (2:-mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
HR_S2 (2-mb_x-2-mb_y-16:16-8) (2:mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
HR_Cont (2:mb_x-2-mb_y-16-16-8) (2-mb_x-2-mb_y-8-8-2-8) 12,288-mb_x-mb_y
3 Stripes HR (2:3-2-mb_y-16:16-8) (2:3-2:mb_y-8-8-2-8) 36,864-mb_y
LR_I[0] (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3,072-mb_x-mb_y
LR_I[1] (mb_x-mb_y-16-16-8) {mb_x-mb_y-8-8-2-8) 3,072-mb_x-mb_y
MV_mem[0] {mb_x-mb_y-8) 0 8- mb_x-mb_y
mb_y - mb_y - mb_y -
Total (bits)

(49,160- mb_x + 24,576 )

(24,576- mb_x + 12,288)

(73.736-mb_x+ 36,864)

Table 19. Summary of the memory used by version v2.1 of the super-resolution algorithm.
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Table 20. Memory amount used by version v2.1 of the super-resolution algorithm for

. Memory Memory
Size mb_x mb_y

(Kbytes) (Mbytes)
SQCIF 8 459.05 0.45
QAVGA 9 7 598.56 0.58
QCIF 11 9 931.60 0.91
HAVGA 18 14 2,331.25 2.28
CIF 22 18 3,645.39 3.56
AVGA 36 28 9,198.98 8.98
VGA 40 30 10,936.17 10.68
4CIF 44 36 14,419.55 14.08
16CIF 88 12 57,354.19 56.01

the most common image sizes used.
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Figure 121. Memory used by the super-resolution algorithms v2.1 and version v2.0 for

the most common image sizes.
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5.3.4 Algorithms for video sequences

In this section the last pair of super-resolution algorithms is presented. They come
from the modification of the previous versions for being able to work in a video framework.
This means that they accept as an input a video sequence and as an output a same length video
sequence. These last versions address the following aspects:

e The video movement must be compensated to the last input frame, seeking to follow
the scene movement.

e We must find a mechanism that allows incorporating the information available in the
new frames as they are being read.

e Likewise, it must be searched a mechanism that allows the algorithm to recover in the

presence of context changes and/or fast movements in the scene that produce
occlusions and objects out of focus.

e The memory amount must be further reduced, with the aim of fitting it in the on-chip

memory and therefore reduce cost and consumption.

In Figure 122 (a) the strategy followed until now by generating the first image using
the motion vector (0,0) and then adjust the remainder frames to the first frame or reference is
shown. However, in Figure 122 (b) the strategy followed in the algorithm for video, where the
movement is adjusted frame by frame, is shown.

5.3.4.1 Basic video algorithm description (v3.0)

In this part, the first algorithms for video sequences are developed. The main features
of this version are:

e The motion estimation is performed in low-resolution.

e The image is reconstructed based on the contributions information, what is especially
useful in the borders reconstruction.

A mechanism has been incorporated to make decisions based on the available

information, seeking to obtain always the higher possible quality.

The super-resolved image is stored with zeroes (holes) where such information is not

available, and the holes are interpolated in the output stage.
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Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7
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mv0 mvl mv2 mv3 mv4 mv5 mvé

()
Figure 122. Motion estimation strategies for still-image (a) and for video (b).

5.3.4.1.1 Robustness increase of the super-resolution algorithms

The super-resolution algorithms assume that the frames of the sequence are correlated
among them, with small movements among images that enable to incorporate new
information to the high-resolution image. Nevertheless, when applying these algorithms to
real sequences, it must be taken into account the following limitations:

e An object inside the image can move very fast, producing the occlusion of other
objects of the scene. That will preclude the addition of new information about those
later objects. It is also impossible to incorporate new information to the fast object, as
very large motion vectors will produce undesirable artefacts when trying to
compensate its movement at the block level.

e The fast movements of the camera produce changes among not correlated scenes.
This is known as ‘context changes’ or ‘scene changes’, and in this conditions no
information can be inferred from the previous image.

The only solution in these cases, in presence of information lack, is to interpolate
those elements that can not been improved through super-resolution techniques. In this sense,

we will make use of the information provided by the motion estimator to the compression
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194 Mapping of the Super-Resolution Algorithm onto a Video Encoder

software to help it the task of deciding the type of compression for every macro-block. The
available decision items are the following:
e Motion vectors. A very large motion vector, compared with the image size, is
indication of large local image displacements.
¢ SAD inter. It is the summation of the absolute differences between the present image
and the previous one, after the motion compensation. A value per macro-block is
given, depending on the motion vector. Very high values of this parameter suggest
that the macro-block has low correlation with the corresponding macro-block in the
previous image. Depending on the used motion vectors we can perform a sub-

classification in:

o Global SAD inter. It is the SAD obtained when the global motion vector is
used.
o Local SAD inter. It is the SAD obtained when local motion vectors are used.

e SAD intra. It is a measure of the variations inside the own image, being the SAD
computed for each macro-block as the absolute differences between every macro-
block pixel and the macro-block average value. Very high values of this parameter
suggest zones rich in details and, therefore, in high frequencies. A high SAD intra
value of a macro-block assures a more reliable motion vector for that macro-block.

e SAD SR. It is the summation of the absolute differences between the previous super-
resolved image and the present one, but only in the low-resolution pixel positions i.e.

only in the upper-left pixel of every four pixels in the basic 2-by-2 cell. It is a measure
between super-resolved images.

Figure 123 schematize the various inputs that help the system to make a decision
about the action to be taken for each macro-block:
o Apply super-resolution using local vectors.
e Apply super-resolution using the global vector.
¢ Interpolate the present macro-block.

From the motion vectors, a new decision parameter is incorporated, and it is called
‘mv_sad’, obtained as the absolute differences of every motion vector with the global motion
vector. If the ‘mv-sad’ is low, that means that the image is dominated by global movement,
while if it is high, that will mean that the image is dominated by local movements.
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5.3 Non-iterative super resolution 195

sad16_local; gy ———»f

sad16_globalj; gy —»; —» SR with Global Vectors
Make
sad_intra[LR] —_ ¥ SR with Local Vectors
Decision
sad_SRpyp; ———» ce1s1o —* Interpolation

mv sad —

Figure 123. Input-output scheme for making decisions about the super-resolution mode.

All these parameters are obtained from low-resolution images, what speeds-up their
computation. Performing a study over several sequences it has been determined a set of
thresholds that presents good quality results for the used test sequences. The algorithm to
make decisions is the one shown in Figure 124.

The algorithm starts by obtaining the values of the ‘sad local’ (sad16_local) and the
‘sad_intra’, together with the local motion vectors. All of them are outputs from the motion
estimator. From that local motion vectors, the global motion vector can be computed, either as
the average of all of them, as the selection of the most frequent pair or as the selection of the
horizontal and vertical components separately. The variable ‘local_penalty’ is initialized to a
threshold value LOCAL_PENALTY THRESHOLD. This variable seeks to favour or penalize the
global movement against the local movement or vice versa. Once the global vector is kwon, it
can be computed the ‘mv_sad’ as the summation of differences between every local vector
and the global vector. Moreover, by passing the global vector to the motion estimator, we can
get the SAD associated to the global vector as the ‘sad_global’.

If the ‘sad_mv’ is above the threshold MV_SAD THRESHOLD, then the global motion
must be favoured by incrementing the value of the variable ‘local _penalty’. In the opposite
case we will decrement it to favour the local movement. Later on, the ‘sad_local’ is updated
with the value of the ‘local_penalty’ to be compared with the ‘sad_global’. If the ‘sad_global’
is lower than the modified ‘local_sad’ then we will chose the global motion vector, else we
will choose the local motion vector. Once we have discriminated between local and global
movement, we have to discriminate between applying super-resolution with the chosen
motion vector or perform an interpolation. For that purpose, some thresholds have been
established in the following manner: If it is the first frame of a scene, we will always
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196 Mapping of the Super-Resolution Algorithm onto a Video Encoder

interpolate. If it is not the first frame of a sequence, we have to find out if we are in a context
change situation. In that sense, we apply the empiric equation (30).

sad_intra —sad16_local
sad_intra +sad16_local

context_change = 32- 30)

@ I Calculate sad16_local & sad_intra‘|

l Calculate global_vector l

| tocal_penalty = LOCAL_PENALTY_THRESHOLD

( Calculate sad16_global & mv_sad—(
@ IF (mv_sad < MV_SAD_THRESHOLD)
local_penalty += 2;

ELSE
local_penalty -=2;

@ IF (sad16_globalfmb_x}{mb_y] < (sad16_local[mb_x]J[mb_y]J+local_penalty))
SR_improve[2*mb_x]{2*mb_y] =1; /* Global vectors */
ELSE

@ SR_improve[2*mb_x][2*mb_y] =2; /* Local vectors */

IF (frame_no =0)

SR_improve[mb_x][mb_y]=0; /* Interpolate the first Block Always */
ELSE{

/* Calculate Context Switch figure (context_change)*/
sad_intra —sad16_local

context_change = 32- -
sad_intra + sad16_local

if(context_change < CONTEXT CHANGE_THRESHOLD) /* Context switch */
SR_improve[mb_x][mb_y]=0; /* Interpolate Block */

/* If previous SR image does not match actual one => interpolate */
IF (mv_sad>MV_SAD_THRESHOLD) /* High Local motion */
IF (sad_SR[mb_x][mb_y]>MV_SAD_SR_INTERPOLATION_THRESHOLD) SR_improve[mb_x][mb_y]=0;

}

Figure 124. Scheme followed for making decisions about the super-resolution mode in the
super-resolution algorithm.

Equation (30), that reflects the scale differences between the ‘sad_intra’ and the
‘sad_inter’, has demonstrated to be a quite stable estimator to determine the context change,
as will be later seen. If the value given by the equation (30) is below the threshold named
CONTEXT_CHANGE THRESHOLD, then we will interpolate. Finally, we estimate if there exist
much difference between the present and the previous image, in the sense that interpolation

will result in a better choice that super-resolution. We will interpolate if there exist a great
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5.3 Non-iterative super resolution 197

deal of local movement in the macro-block (‘mv_sad’ greater than the threshold
MV_SAD_THRESHOLD) or if besides the present super-resolution image exhibits large
differences compared with the input image (‘sad_SR’ greater than the threshold
MV_SAD_SR_INTERPOLATION_THRESHOLD).

These thresholds have been determined in an empirical way from the detailed study of
fourteen image sequences, and offer good quality in all the tested conditions. This
methodology increases even more the algorithm robustness, assuring that in no case we will
drop bellow the interpolation level.

In order to determine the thresholds we have performed a study of the values of the
parameters used as evaluators in different conditions. The most drastic case is the context
change, and in that sense it has been prepared a synthetic video sequence based on the KRANT
sequence. The first frame is taken and it is applied eight random vectors, generating eight
shifted frames. Next, we jump to the frame number 15, quite different, and it is again applied
eight new random shift vectors (Table 21). The result is a new sequence of 16 frames with
random shifts and an abrupt context change in the frame number 8 (starting the count from
zero). In Figure 125 are shown the frames 0 and 15 of the KRANT sequence.

Original | Sequence ) Original | Sequence ]

frame number Shift vector frame amber Shift vector
0 0 3 3 15 3 3 3
0 ! 2 15 9 2 2
0 2 0 1 15 10 0
0 3 12 5 11 3 2
0 4 3 -3 15 12 1 -1
0 : 20 15 13 0 2
0 6 2 3 15 14 1 2
0 ! 10 15 15 0 2

Table 21. Shift vectors applied to frames 0 and 15 of KRANT.

If the values of equation (30) are graphically represented for this sequence, it is
obtained the graph of Figure 126. The frame where the context change takes place is clearly
identified with values below 5. Consequently, this will be the value assigned to the threshold
CONTEXT_CHANGE__THRESHOLD.
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198 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Notice however that, not only the frame where the context change takes place is below
the threshold. There exist some other few macro-blocks that are also below the threshold and

therefore will be interpolated.

To determine the value of the threshold MV_SAD_THRESHOLD, we have to represent
the values of ‘mv_sad’, what it is depicted in Figure 127. In this case, also a value of 5 is

obtained for the threshold MV_SAD THRESHOLD.

(@) (b)

Figure 125. Frame O (a) and frame 15 (b) of the KRANT sequence.

Context switch in Krant 8frame0-8frame15

(sad_intra - sad_local) / (sad_intra + sad_local)

=30 +— = - S R STNR SR —— e o S S A A
macro-block

Figure 126. Determination of the threshold CONTEXT_CHANGE_THRESHOLD.
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MV SAD for the sequence Krant 8frame0-8frame15

MV SAD
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2944
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3162
3271
asso § |
3489
3598
3707

2072
2181 |
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2399 { |
2508
2617
2726

macro-block

Figure 127. Determination of the threshold MvV_SAD_THRESHOLD.

MV_SAD_SR_INTERPOLATION THRESHOLD is the third threshold to be determined

and in that sense it is necessary to observe the behavioural of the ‘sad_SR’, which is reflected

in Figure 128. In this case, the greater values are produced, as it was expected, in the context

change. A threshold value of 3000 assures at least a right interpolation in a context change

situation, although some macro-block with large errors also crosses that threshold.

It must be taken into account that the ‘sad_SR’ is only computed for the super-

resolution pixels, and therefore the remaining pixels are zero. This characteristic must be

SAD

6000

18000 -

16000

14000 -

12000 -

10000 -

8000

4000 -

SAD16 Local

MV_SAD SR INTERPOLATION THRESHOLD = 3000

2000 -

1 151 301 451 601 751 901 10511201 1351 1501 1651 1801 1951 2101 2251 2401 2551 2701 2851 3001 3151 3301 3451 3601 3751

macro-block

pecel]

Figure 128. Determination of the threshold MV_SAD_SR_INTERPOLATION_THRESHOLD.
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200 Mapping of the Super-Resolution Algorithm onto a Video Encoder

taken into account in order to avoid the comparison in the macro-blocks where the ‘sad_SR’
1s zero.

The value of the threshold LOCAL_PENALTY_THRESHOLD has been settled to the same
value as its increment, to duplicate or remove its weight as desired. Finally, Table 22 gathers
the value of the thresholds determined for the set of sequences used for test.

Threshold Value

MV_SAD_SR_INTERPOLATION_THRESHOLD 3000

MV__SAD_THRESHOLD 5

CONTEXT_CHANGE_THRESHOLD 5

Table 22. Thresholds used in version v3.0 of the super-resolution algorithm.

5.3.4.1.2 Pseudo-code of the algorithm version v3.0

In order to decrease the memory used by the algorithm we have opted for using a
feedback scheme, where the last super-resolution image is reused to increase the resolution of
the present image. In the whole scheme proposed, the new low-resolution image is
interpolated to high-resolution, leaving holes in the place of the pixels added to increase the
size. The pixels from the low-resolution image are considered valid and are all kept. The
algorithm tries to fill the generated holes with the information of the previous super-resolution
image, applying a similitude criterion per macro-blocks between the previous low-resolution
image and the new obtained image. If the criterion is not satisfied, the holes will be

interpolated with the surrounding information.

In Figure 131 and Figure 132, version v3.0 of the super-resolution algorithm is shown.
Although the final super-resolved image is still stored in HR_B, what have been preserved
throughout all the algorithm versions, in this case it has been necessary to define a new
memory HR_B2, where will be stored the super-resolution image with holes that will be fed-
back. Although it is necessary to fill the holes prior to display the image, it is necessary to
keep such holes inside the algorithm loop (feeding them back), because in that way it is
possible to fill the missing information without mixing it with spoiled values coming from the

interpolation of the neighbour pixels. The contributions memory HR_Cont is mapped in this
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5.3 Non-iterative super resolution 201

version onto a high-resolution memory for convenience, but it will really store values that can
be obtained at the block level for every macro-block. Therefore, neither is necessary to keep
their values between images nor to have the size of a full image. Just keeping a small

temporal memory of a macro-block size (64x6x8 in bits) will be enough.

The initialising phase only interpolates the first input image, as far as in the beginning
there is no additional information to add. However, in the encoder remains stored all the
generated holes i.e. the holes are interpolated only to be displayed. The memory HR_W stores
the same values as HR_Cont, but only for temporal purposes. The relation between HR_W
and HR_Cont is the same that the one between HR_B and HR_B?2, but for the contributions.

To increase the convergence in the motion estimator, the first step is to perform a
filtering of the low-resolution input images, which will be used to compute the motion
vectors. The previous low-resolution image, always filtered, is stored in LR_P. Although in
the part of the algorithm shown in Figure 131 appears a function Evaluate that compute the
summation of absolute differences, in fact these values are directly provided by the motion
estimator (that is why it was written in cursive) and not constitute a new function to be
implemented in the encoder. The tasks that must be executed in software are the selection of
the global vector and the ‘mv_sad’ computation per macro-block. Concretely, the ‘mv_sad’
per macro-block is computed as the summation of the absolute value of the differences of

their components in both directions, as reflected in equation (31).

mv_sad[mb_x |mb_y]= ]mv_local.x[mb_x][mb_y]— mv_global.x| +
(3D
Imv_local.ylmb_x Jlmb_y ]~ mv_global.y|
To compute the ‘sad_SR’ it necessary to previously compute and motion compensate
HR_B towards the previous image, as HR_B contains the previous super-resolved image

without holes.

The ‘sad-SR’ is computed as the summation of the absolute values of the differences
between the present and the previous super-resolution image in the low-resolution pixel

positions for every macro-block.
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202 Mapping of the Super-Resolution Algorithm onto a Video Encoder

1210 | 16

0 0 15 | 17

12 | 16

15 | 17

N>

Figure 129. Addition performed as a pixel replacement.

In temporal memories HR_T and HR_T?2 are stored the compensated images that are

used to avoid overwriting data when performing the motion compensation. These two

memories will not be necessary in the final hardware version as the integrated loop memory

management avoids memory overlaps. It is necessary to remind that the motion compensator

has been modified for super-resolution, injecting zeroes in the borders instead of replicating

them when the motion vector points out of the image boundaries. That is why we have called

it Motion_Compensation®.

The instructions SR_ADD_CONT and SR_ADD perform the summation of the

contributions and the previous compensated pixels with the present ones. Nonetheless, as the

Reference
lo-res
Low- Res. — p
7
input LRI ‘
\ 4 ‘
AV, Motion ‘| sad
Estimation
v sad16_local
ﬂ‘ L, sad16_global
sad_intra
LR_P mv_sad
Mori \ 4
otion
HR_B [P . Upsample
Compensation
Previous New
information information
y A 4
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Figure 130. Block-diagram of the data-flow of the super-resolution algorithm v3.0.
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5.3 Non-iterative super resolution 203

present data are composed by three quarters of zeroes and it is only important to keep the new
pixel, it is possible to replace the additions with a simple data replacement as shown in Figure
129. Therefore, we avoid the arithmetic addition operation. The variable ‘SR_improve’
informs if super-resolution improvements are going to be performed in the macro-block or
not. If SR is not used, the macro-block zeroes will be interpolated.

However, as several luminance pixels share the same chrominance value, it is not
possible to apply to the chrominances the same strategy and their values have to be firstly
added and secondly averaged with the instruction SR _ADJUST. The instruction
SR_UPDATE only affects to the memory that stores the image that is going to be displayed,
i.e. HR_B. It interpolates the holes that could not be filled by super-resolution. Obviously,
there cannot be holes in the chrominances, and consequently the instruction let the whole
chrominance images to pass to the output. The last step of the algorithm is to store the filtered
input low-resolution image in LR_P to be used in the next algorithm stage.

5.3.4.1.3 Block diagram and memory requirements for version v3.0

The block diagram of the data-flow for this version of the SRA is shown in Figure
130. In this figure all the temporal memories have been removed, only leaving those that will
be present in a real implementation, i.e.: LR_I, LR P and HR_B.

The path followed by the image data is highlighted with dark lines, the operators are
shadowed and the memories squared with no shadow and simple lines. When implementing
the algorithm it must be taken into account the addition of three macro-block stripes to avoid

the data overlap when performing the motion compensation.

In Table 23 is shown a summary with the memory requirements of version v3.0 of the
SRA expressed in low-resolution macro-blocks and excluding all the temporal memories.
Notice that the high-resolution memory used is in fact the one denominated HR B2, i.e.,
keeping the holes, and it is the moment of exporting the image out when the holes are
interpolated, leaving to output sub-system the task of storing the final image delivered by
Picasso.
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204 Mapping of the Super-Resolution Algorithm onto a Video Encoder

* Non iterative video super-resolution algorithm v3

[ Initial contribution: M = 4 . Each new image is the reference. (shadow lines are for data calculations)
LR _| = Read a new spatial-aliased low-resolution image
init: fr=0

IF (fr==0) THEN // Initialize. HR_B2 and HR_Cont are for feedback purposes
LR_P = filter(LR_l)
Clip(LR_P, 0, 255) [SR_INIT_P]

HR_A.lum = Upsample_Holes(LR_l.lum)

HR_A.chrom = Upsample_ Neighbours(LR |.chrom) [SR_INIT_A_B]

HR_B2=HR_A

HR_Cont = Create_image_contributions

HR_W = HR_Cont [um=(M 0)‘chrom=(M MJ [SR_INIT_CONT]
’ M M

IF (HR_W(i)==0) THEN HR_B.lum = Interpolate(HR_B2.lum)
ELSE HR B.lum=HR B2.lum
HR B.chrom = HR B2.chrom [SR_UPDATE]

Clip(HR_B, 0, 255) Clip(HR_B2, 0, 255)

fr=1;
ELSE

LR_T = filter(LR_[)
Clip(LR_T, 0, 255) [SR_FILTER]

MV _local[mb_x][mb_y} = Motion_Estimation (LR_P, LR_T)

sad16_local[mb_x])[mb_y] = Evaluate(LR_P, LR_T, MV_local[mb_x]imb_y})
sad_intra[mb_x][mb_y] = Evaluate(LR_P, LR_T, MV_local[mb_x]imb_y])

MV _giobal = Select_global_motion_vector(MV_iocal[mb_x][mb_y])
sad16_global[mb_x][mbyl=Evaluate(LR_P, LR_T, MV_global)

MV_sad = Calc_MV_sad(MV_local, MV_global) MV_sad = 3 |MV_locallnb_x]{mb_y]- MV_global
local_penalty = LocaL_PENALTY_THRESHOLD

IF (MV_sad < Mv_SAD_THRESHOLD)
local_penalty +=2
ELSE

local_penalty -=2

IF (sad16_global[mb_x][mb_y] < sad16_local[mb_x][mb_y}+ local_penaity)

SR_improve[2-mb_x][ 2-mb_y] = 1 // Global vectors
MV[mb_x][mb_y] = MV_global

ELSE
SR_improve[2-mb_x]f 2-mb_y] =2 /I Local vectors

MV[mb_x][mb_y} = MV_local[mb_x}[mb_y]

Figure 131. First part of the pseudo-code of the version v3.0 of the SRA.
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5.3 Non-iterative super resolution

HR_T = Motion_Compensation®(HR_B2, MV) [SR_MOT_COMP]
HR_T2 = Motion_Compensation® (HR_Cont, MV) [SR_MOT_COMP_CONT]
HR_S.lum = Upsample_Holes(LR_I.lum) SAMPLE

l HR_S.chrom = Upsample_ Neighbours(LR_|.chrom) [SR_UPSAMPLE]

I HR_S2 = Create_image_contributions 1um=("04 g);chrom={g z) | (SR_INIT_CONT]
HR_D = Motion_Compensation’°(HR_B, MV) [SR_MOT_COMP_B]
sad_SR = Calc_sad_SR(HR_S, HR_D) [SR_CALC_SAD]

— IF (frame_no == 0)
SR_improve[mb_x][mb_y]=0
— ELSE

/l Interpolate the first image always

sad_intra — sad16_local

context_change = 32 -
sad_intra + sad16_local

IF(context_change < CONTEXT_CHANGE_THRESHOLD) // Context switch
SR_improve[mb_x][mb_y]=0 // Interpolate block
IF (mv_sad > Mv_SAD_THRESHOLD) // High local motion
IF(sad_SR[mb_x][mb_y]>Mv_sao_Sr_INTErPoLATION_THRESHOLD) // High differences
SR_improve[mb_x][mb_y]=0 // Interpolate block
L_ END IF
IF (even & even) HR_W=HR_S2 (new contribution)
§ ELSE IF(SR_improve) HR W =HR_T2 (previous contribution)
ELSE HR W=0 (interpolation)
N [SR_ADD_CONT]
6| HR. W=HR_S82 + HR_T2 (HR_W=HR_S2+HR_T2)
IF (HR_W(i) ==0) THEN _ HR_Cont = 0
ELSE HR Cont=pm  (ed%®
IF (even & even) HR_A=HR_S (new pixel)
E| ELSE IF(SR_improve) HR_A=HR_T (previous pixel)
ELSE HR_A=0 (interpolation) [SRADD] n
= | IF(SR_improve) HR A=HR_S+HR_T (superresolution) -
©| ELSE HR_A=HR_S (interpolation)
IF (HR_W(i)==0) HR_B2 =0
ELSE HR B2 =M * HR_A/HR_W (feedback) [SR_ADJUST]
IF (HR_W(i)==0) THEN HR_B.lum = Interpolate(HR_B2.lum)
ELSE HR B.lum =HR B2.lum SR UPDATE
HR_B.chrom = HR_B2.chrom [SR_ ]
Clip(HR_B, 0, 255) Clip(HR_B2, 0, 255)
LR_P = filter(LR_I)
Clip(LR_P, 0, 255) (SR_INIT_P]
fr=1fr+1;
END IF

Figure 132. Second part of the pseudo-code of the version v3.0 of the SRA.
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Mapping of the Super-Resolution Algorithm onto a Video Encoder

Name Memory

Luminance (bits) Chrominance (bits) Total (bits)
HR B (2:'mb_x-2:mb_y-16:16-8) [ (2:mb_x2'mb_y-8-8-2-8) 12.288:mb_x'mb_y
3 Stripes HR (2:3-2:mb_y-16-16-8) (2:3-2-mb_y-8-8-2-8) 36.864-mb_y
LR_I {mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3.072'-mb_xmb_y
LR_P (mb_x-mb_y-16-16-8) (mb_x-mb_y-8-8-2-8) 3.072:-mb_x'mb_y
MV_mem {(mb_x'mb_y-8) 0 8- mb_x-mb_y
mb_y- mb_y- mb_y-
Total (bits)

(12.296-mb_x+24.576)

(6.144-mb_x+ 12.288)

(18.440-mb_x+36.864)

Table 23. Summary of the memory used by version v3.0 of the SRA.

In Table 24 are shown the total memory requirements for different image sizes.

Size mb x | mb_y Memory Memory

(Kbytes) (Mbytes)
SQCIF 8 6 36.01 0.04
QAVGA 9 7 40.51 0.04
QCIF 11 9 49.51 0.05
HAVGA 18 14 81.03 0.08
CIF 22 18 99.05 0.10
AVGA 36 28 162.12 0.16
VGA 40 30 180.15 0.18
4CIF 44 36 198.19 0.19
16CIF 88 72 396.77 0.39

Table 24. Memory used by version v3.0 of the super-resolution algorithm for

In Figure 133, the data of Table 24 in Kbytes are shown. The main condition is the
memory requirements to be very low, and in this case we can really talk about a realizable

different image sizes.
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5.3 Non-iterative super resolution

low-cost super-resolution algorithm over a hybrid video-encoder. The low-cost characteristics
are determined, on one side, by the possibility of implementing the algorithm with minimum

modifications and as an added value over the existing platform, and on the other side, by the

possibility of doing it without adding external memory (out-chip memory).

Memory required by version v3.0 of the SRA
400.00
350.00 §- -~ — e
300.00 A - e - )
2
g 250007 - - -
3
% 200.00 1
§ 150.00 1 :
4
100.00 { -
50.00 {
0.00 : , . , ; .
SQCF  QAVGA  QCIF  HAVGA  CF VGA 4CF  16CIF
Tsize of the input image
Figure 133. Memory used by the super-resolution algorithm v3.0 for the most common image
sizes.
Size mb_x mb_y vli2 &vl3 v2.0 v2.1 v3.0
(Kbytes) (Kbytes) (Kbytes) (Kbytes)
SQCIF 8 315.19 450.19 459.05 36.01
QAVGA 9 413.68 590.87 598.56 40.51
QCIF 11 650.07 928.51 931.60 49.51
HAVGA 18 14 1,654.73 2,363.48 2,331.25 81.03
CIF 22 18 2,600.30 3,714.05 3,645.39 99.05
AVGA 36 28 6,618.94 9,453.94 9,198.98 162.12
VGA 40 30 7,879.69 11,254.69 10,936.17 180.15
4CIF 44 36 10,401.19 14,856.19 14,419.55 198.19
16CIF 88 72 41,604.75 59,424.75 57,354.19 396.77

Table 25. Comparative of the memory used by the most significant versions of the SRA for

different memory sizes in Kbytes.
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208 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Table 25 shows a comparative of the memory amounts used by the most significant
super-resolution algorithms, and in Figure 134 is shown a comparative chart where is clear the
huge difference between this last version and the previous ones. In average, version v3.0 uses
35.63 times less memory than the iterative versions (v1.2 and v1.3) and 50.89 times less
memory than the non-iterative versions for still images (v2.0 and v2.1). The price to pay for
this drastic memory reduction is a slight decrease of the image quality, versus the quality

obtained by versions v2.0 and v2.1, as will be further explained.

Memory used by the most significant versions of the SRA

V//’]\
) 60000
‘ 50000
mn
vi.2and v1.3 o
B\V2.0 %
’ X
ov2.1 ;
0V3.0 and V3.1 ‘g‘
vi2andvi.3 \y = < w
2.0 £ L 5 §
il < 0O > 5
21 N N < SO 0 <
V3.0 and V3.1 < (0] i =
[ o > T
L &) > <
g + Format

Figure 134. Comparative of the memory used by the most significant versions of the SRA for

different memory sizes in Kbytes.

5.3.4.1.4 Simulation results and quality analysis of version v3.0 using % pixel
precision

In order to evaluate the image quality that the super-resolution algorithm can achieve,
several tests have been carried out, that can be classified in:

a) Tests with synthetic sequences. In this case images with artificial shifts and induced
aliasing have been used to generate the test sequences. They have the advantage of
knowing all the parameters: reference image, shifts and aliasing degree. That allows as
to obtain all kind of quantitative measures.

b) Tests with real movement sequences. These kinds of sequences are made with real
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5.3 Non-iterative super resolution 209

video sequences and induced aliasing. Although these are the kind of sequences that
the system is going to deal with (except the input anti-aliasing sub-system), they have
the drawback of not being possible to obtain quantitative quality measures. Only

qualitative measures are possible.

Within the set of tests with synthetic sequences, it has been used the KRANT sequence
with context change whose motion vectors are shown in Table 21. In Figure 135 is shown the
PSNR reached by the luminance signal that is the most important in the perceptual quality.
The quality for all the frames is quite higher than the interpolation qualities (a minimal 1.44
dB of improvement with respect to the bilinear interpolation and 5.54 dB as the maximum
improvement). The average quality is of 28.64 dB, versus the average 25.3 dB of the bilinear
interpolation. This average of 28.64 dB is somewhat lower than the 30.47 dB reached by
version v2.0. At the system, application and commercial levels must be studied if a decrease
of 1.83 dB will be compensated by a decrease of 50.89 times in the size of the integrated

memory required by version v3.0

PSNR Luminance. Krant 16 frames. SR vs Interpolation

—e— PSNR Luminance SR 7
23 4 —a— PSNR Luminance nearest neighbour interpolation
PSNR Luminance bilinear interpolation ‘
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 154]
| frame

Figure 135. PSNR of the luminance of the KRANT sequence of 16 frames with context change

in the frame number 8.

Figure 136 shows that the border effect barely have an effect on this algorithm version

and that, as it was expected, the chrominances exhibit better PSNR than the luminance due to

their lower entropy.
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Mapping of the Super-Resolution Algorithm onto a Video Encoder

Figure 136.

PSNR

9 10 1" 12 13 14

---&-- PSNR Luminance without borders SR
---4--- PSNR Cr without borders SR
—»— PSNR Cb with borders SR

---x--- PSNR Cb without borders SR
—a— PSNR Luminance with borders SR
—e— PSNR Cr without borders SR

number 8 with and without borders.

PSNR of the Krant sequence of 16 frames with context change in the frame

In the Figure 137 the spectral correlation coefficients in magnitude are shown. Frames

number 8 and 9 drop below the interpolation quality level due to the context change. The case

of frame 8 is because the context change is detected and the image is all interpolated. The

case of frame 9 is because the motion vector set does not contribute with a great deal of new

information and so, the quality is slighter higher than the interpolation level.

scc

SCC magnitude luminance. Krant 16 frames. SR vs Interpolation

0.9984 {{ —— SCC Luminance SR
—a— SCC Luminance nearest neighbour interpolation
SCC Luminance bilinear interpolation

4 5 6 7 8 9 10 11 12 13 14 15
frame

Figure 137. SCC in magnitude of the luminance of the KRANT sequence of 16 frames with

context change in the frame number 8.
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5.3 Non-iterative super resolution 211

In Figure 138 the SCC in magnitude, both of the luminance and of the chrominances
with and without borders are shown. Equally than with the PSNR the chrominance values
exhibit better behavioural and the variation with the borders are minimum before the context

change and slightly higher after. In phase the obtained behavioural are very similar.

With respect of applying version v3.0 to sequences with real movements, the
following experiment has been designed. The phrase ‘Let’s make things better’ has been
disposed in rows and columns with different font sizes (from 6 to 48 points), indicating the
size on the left, in vertical and horizontal orientations (Figure 139). This text has been recorded
using a low-grade camera (camera for PC ToUcam Vesta PCVC675K from Philips). As the
camera was held with the hand, that produced the necessary shifts to increase the images
resolution. Several sequences from different distances were taken. The presence of aliasing in
the input frames is only due to the camera itself and not to a previous subsample process that

artificially introduces the aliasing.

SCC magnitude. Krant 16 frames. Super-resolution
1.0002 ~

0.9997

0.9982 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
frame
---&-- SCC Luminance without borders SR ---x--- SCC Cb without borders SR
---4--- SCC Cr without borders SR —a— SCC Luminance with borders SR
—»— SCC Cb with borders SR —=e— SCC Cr with borders SR

Figure 138. SCC in magnitude of the KRANT sequence of 16 frames with context change in the
frame number 8 with and without borders.

In Figure 140 (a) it can be observed the frame number 5 of the input sequence and in
Figure 140 (b) the super-resolved image. In general it can be appreciated a recovery in the
character edges and a decrease in the background noise, what it is natural as every resulting

image comes form the average of some other related images.
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212 Mapping of the Super-Resolution Algorithm onto a Video Encoder

48 Let’s make things better
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44 Let’s make things better & — @
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. N g X
28 Let’s make things better > 2 ; é =~ O
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16 Let’s make things better R g = 2 g“ E 0% oQ wn w
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Figure 139. Test text for sequences with real movement.

One relevant aspect in the super-resolution improvements is the size of the fonts that
can be clearly read in the input image and in the super-resolved image. In Figure 141 an
enlarged detail of Figure 140 can be seen. It is clear how difficult it is to read the fonts of size
28 in the input image (a), while fonts of size 24 are uncertain to be read and fonts of size 20
are impossible to read. Conversely, in the super-resolution image these font sizes are easier to

read, even though that the characters of 20 points are still very blurred.

In Figure 142 (a), the frame number 7 of other test sequence is shown, but this time
bringing nearer the camera to the text, and the result after applying the super-resolution
algorithm (b). In the enlarged detail of Figure 143, it can be clearly seen the readable
improvements when applying the SRA on (a) to obtain (b).
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Figure 140. Frame number 5 of the input sequence (a) to the SRA and of the output super-resolved
sequence (b).

(b)

Figure 141. Enlarged detail of frame number 5 of the input sequence (a) and of the output

super-resolved sequence (b).
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48 Let’s make things
44 Let’s make things b
0 Let’s make things bett

48 Let's make things
44 Let’s make things b
40 Let's make things bett

36 Let's make things better 36 Let's make things better

32 Let's make things better 32 Let's make things better
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1
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Figure 142. Frame number 7 of the input sequence (a) and of the output sequence (b) of the

SRA.
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Figure 143. Enlarged detail of the frame number 7 of the input sequence (a) and of the output
sequence (b) of the SRA.
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5.3 Non-iterative super resolution 215

5.3.4.2 Modified algorithm for video sequences (v3.1)

This new version v3.1 is also intended for video sequences, where every new input
will be the image reference. When the first image comes (Figure 144), it is interpolated using
a bilinear interpolation algorithm, and stored in memory. The interpolation is done in such
way that the original values are not modified. A more detailed explanation is provided in

section 0. Then, this interpolated image is encoded, being the first output of the system.

After that, when a new image comes from the capture system, the following operations
are performed:

1. The image is interpolated using bilinear interpolation.

2. Block-base motion estimation is done between this new image and the previous
one stored in memory.

3. With the motion vectors obtained from this estimation, a motion compensation of
the previous image is done, obtaining the previous image motion-compensated.

4. Using those two images, an upgrade is done mixing pixels of both images as is
shown in the Figure 146.

5. This upgraded image is kept in memory.

6. The result of this upgrade is codified and transmitted.

In this way we obtain a continuous video flow in the output and, theoretically and in
the best case, we can obtain a high-resolution image after four images in the sequence. The
last step is to go back to the first step of the loop, interpolating the input image, when bad

motion estimation is detected, i.e. a context change is detected.

We can also show this process in a block view, as it is done in the Figure 145 to
Figure 147. Figure 145 shows the case of the first image of the loop, which is interpolated and
kept in memory to be the reference for the next motion estimation. Figure 146 shows the

process with the remainder images in the loop.

The main difference with version 3.0 is that the interpolation is performed in the input
image instead of in the output image to fill the holes. Another important difference is that
contributions have been removed as far as in this new version they only produced

improvements in the borders of the image, but not in the main body. This shortens in the
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216 Mapping of the Super-Resolution Algorithm onto a Video Encoder

algorithm features saves a great amount of image memory with slight looses in the perceptual

image quality.

The first step is to interpolate the new image at the input, and then carry out a motion
estimation between this interpolated image and the one kept in memory. With the results of
this motion estimation, the previous image kept in memory is compensated and updated with
new pixels from the input. This upgraded image is the output of the system and also the new

reference for the motion estimation, as is shown in Figure 147.
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Figure 144. Graphical view of the v3.1 super-resolution approach.
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Figure 145. Block view of the first image processing.
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Figure 146. Block view of the loop images processing
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Figure 147. Next step after Figure 146. In this step the upgraded image is kept in memory to be the
next reference in the motion estimation.

Once we have this block view, it is possible to identify the main operations to execute

in this approach. These operations are:

e Bilinear interpolation.
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218 Mapping of the Super-Resolution Algorithm onto a Video Encoder

e Motion estimation and compensation.
e Mixing of both images (current and previous).

e Keeping the upgraded image in the memory.

Therefore, to map the super resolution algorithm in the hybrid video encoder the following
blocks will be reused: the motion estimator, the motion compensator, the inverse motion
compensator and the loop memory. It is also necessary to implement the interpolation, which

is not currently considered in the original hybrid video encoder.

An important issue is that we use only the lossless part of the hybrid encoder to keep the
image in the loop memory. For that reason, a new path is established in the hybrid encoder to
avoid the DCT, IDCT, Q and IQ blocks, connecting the MC to the IMC directly. The DCT
and Q blocks are only used when the image is compressed.

This approach for video was tested using the artificial experimental setup, obtaining good

results as are shown in the Figure 148.

krant.vga

PSNR (dB)

Number of frames

—&— SNR luminance pel repetition —m— SNR luminance bilinear interpolation
—a— SNR luminance SRA

Figure 148. Results using artificial setup with the KRANT sequence.
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5.3 Non-iterative super resolution 219

5.3.4.2.1 Interpolation in the input

A new issue in this version is that the interpolation has been moved from the last step

to the first one. Two main ideas have driven this change:
» To decrease the algorithm complexity.

+ To reduce the number of hardware architectural changes to support super-resolution.

This target is achieved using interpolation in the input because we are using images

with the same size both for compression and for super-resolution.

The interpolation in the input is a bilinear interpolation. It is performed when the data
is read from the capture system. The image format is YUV 4:2:0 with interlaced format. It
means that we have four pixels of luminance (Y), one for blue chrominance (U) and another
one for red chrominance (V), ordered in a YYUYYYV structure. This structure is shown in
Figure 149.

Y Y,

uv :> Y, | Y, | U|Y |Y |V

Y, | Y,

Figure 149. Interlaced YUV 4:2:0 format.

In consequence, the interpolator reads two lines of luminance and one of chrominance

to write four lines of chrominance and two of chrominance.

To achieve a real-time interpolation directly from the input data upon a macro-block
basic, it is carried out always using historical data (previously read in other neighbour macro-
blocks of the same image). Some positions are interpolated using the current data, and the rest
using data kept in memory. The positions interpolated with the current data are depicted as
circles in Figure 150 (b). Previous values used to perform the bilinear interpolation are

shadowed in Figure 151.
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220 Mapping of the Super-Resolution Algorithm onto a Video Encoder

A=(P1+P2)/2

O(0]0|0 O[O0]|0]|0O
B=(P1+P3)/2
Olx]|0O|X X: original input data OlprP |A|P ¢ )
C=(P1+P2+P3+P4)/4
(0100 O: interpolated data O|B|Cc |D
D=(P2+P4)/2
OjX]OlX OJRJE | P E=(P3+P4)/2
€Y ®

Figure 150. Luminance interpolation: (a) position of original pixels and (b) data interpolation from the
original pixels P;.

With this approach, it is possible to interpolate the entire image without artefacts,
except in the top and left borders, where the pixels are simply copied from the nearest
position. This problem does not affect to the whole image perception and it is inevitable.

With the chrominance signal, a similar approach is followed, but in this case only one

original value is available. Then, the interpolation is done always with values kept in memory.

Doing the interpolation in the input, the contributions concept disappears. This fact
simplifies even more the motion compensation process, because only the image has to be
motion compensated and not the contributions.

F=(P,+P,+P, ’+P;’)/4
G=(P,+P;’)/2
H=(P,+P,+Py’+P,,)/4
I=(P,+P,,’)2
I=(Py+P,)2
K=(P,+Py+P, P, ;’)/4
L=(P;+P,5’)/2

Figure 151. Interpolation using previous values.
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5.3 Non-iterative super resolution 221

5.3.4.3 Motion estimation over real motion sequences

At this point, a new test system was adopted, trying to be closer to the real case. The
camera movement becomes real, keeping the aliasing generation in an artificial way. To do
that, a set of sequences of 50 frames each one was recorded. In these sequences, the camera
was held in the hand, trying to maintain it as quiet as possible in a motionless scene. With the
small tremble of the hand, the sequence has the small shifts that we simulated before. The

aliasing is generated as in previous steps by sub-sampling.

Finally, three sequences were selected and the system was tested with these sequences.

The first frames of those sequences are shown in the Figure 152.

5.3.4.3.1 Motion model problems

After performing the motion estimation we can chose between using directly the obtained
motion vectors (one motion vector per macro-block), described as local vectors, or computing
the global vector of the scene. Moreover, we can choose as seen in section 4.2.4.1 between
local or global vector for every macro-block. In this way the system was tested with several
sequences, obtaining the results shown in Figure 153 to Figure 155. In each one of these

charts, five curves are shown.
1. Luminance PSNR of each sequence using nearest neighbor interpolation.
2. Luminance PSNR using bilinear interpolation.

3. Luminance PSNR using super-resolution algorithm with control step to choose
between global or local motion.

4. Luminance PSNR when the local motion vector is always selected.

5. Luminance PSNR when global motion vector is always selected.

Some conclusions can be taken from these figures.

e PSNR of bilinear interpolation is around 3 dB better than PSNR of nearest neighbor

interpolation in all the sequences with aliasing.

e Super-resolution gives around 2 or 3 dB of improvement in PSNR respect to bilinear
interpolation.
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Because the global movement is present, the control step selects global motion vector

always.

Calculated global motion vector is not always the best option, as it is shown for
example in Figure 155. In this case, even if the global motion is present, the calculated
global motion vector does not give the correct motion estimation. Instead of that, local

motion vector fits better. The causes of that problem are:

o Rotations in the camera, which are not present in the motion estimation model
(Cartesian model).

o Objects at different distances. In that case farther objects have more movement

in the sequence than closer objects, even with global camera movement.

o Global vector has influence over the entire image. As consequence of it, a

small error in the motion vector can produce a big decreasing of the PSNR.

Figure 152. First frame of each recorded sequence, a) ‘Imtb’, b) ‘pen’ and c) ‘sockets’.
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Luminance PSNR of Imtb

PSNR(dB)

—a— Nearest neighbor interpolation

0 10 20 30 40 50
Frames
—>— Global motion vector —»— Activated control step
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Figure 153. Luminance PSNR of ‘Imtb’ sequence.
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Figure 154. Luminance PSNR of ‘pen’ sequence.
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Figure 155. Luminance PSNR of ‘sockets’ sequence.
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224 Mapping of the Super-Resolution Algorithm onto a Video Encoder

The control step was checked again in the next experiment to know its influence in the
quality. In this case, context change control should not have any influence in the performance,
because no context change is taken place. The context change part of the control step was
disabled to check it. The results are shown in the Figure 156 to Figure 157. In this case, the

nearest neighbour interpolation curve has been omitted and a new curve

change disabled has been included.

with the context

27,5

Luminance PSNR of Imtb.raw

26,5

25,5 1

PSNR (dB)

25
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—— Global motion vector —=— Context change disable = —e— Bilinear interpolation
—o&— Local motion vectors —=&— Activated context change
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Figure 156. Luminance PSNR of ‘Imtb’ when context change control is disabled.
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—»— Global motion vector
—e— Bilinear interpolation
—&— Activated context change
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Figure 157. Luminance PSNR of ‘sockets’ when context change control is disabled.

In these figures, we observe that the context change control step has influence in the

PSNR, even when no context change is happening.
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5.3 Non-iterative super resolution 225

With all these results, we optimized the control step. The control is based in a set of
metrics, functions and thresholds. The main operation is to optimize the thresholds to obtain
the best selection for each macro-block. The objectives of these thresholds optimizations are:

e Seclect between local and global model, taking the best of both. As was shown before, it

has not to take global motion always, even if the global motion is present.

e Avoid any influence of context change when it is not happening.

After some experiments, we detected that the threshold changes only move the
performance from global motion model to local motion model, but it never takes the best of
both. If the thresholds are moved to promote the local model, the performances are closer to
the local model. If the opposite way is taken, we have the global motion performance for all
the sequences. A new way to compute the global motion was experimented to better approach
the correct global motion vector. The results will prove that the context change influence was

solved.

Another criterion to do the motion estimation was applied, as to use the Square Error
(SE) instead of the Sum of Absolute Differences (SAD), but we did not find any clear

improvement.

5.3.4.3.2 Motion vector filtering

To solve the problem of motion estimation with real movement, a filtering in the
motion vectors spatial domain was done. The procedure to perform this filtering was the

following:
« Compute the local motion vectors.

+ Filter the local motion vectors in a sliding window of nine macro-blocks (3x3), with low-

pass filter weights.

*Use this filtered motion vectors as the definitive motion vectors, avoiding the control step.
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226 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Luminance PSNR of Imtb using filtered motion vectors
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Figure 158. Results filtering the motion vectors field.
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Figure 159. Results filtering the motion vectors field.

In this way, we avoid the control step and we obtain a “global in a region” local

motion vector closer to the real one.

An experiment was carried out obtaining the results shown in the Figure 158 to Figure
159. In this step, the accuracy of some motion vectors was very bad. Macro-blocks that
contain very few information had motion vectors with bad accuracy. Due to the size of the
window, one motion vector very different to its neighbors can affect them very deeply. One
way to avoid this motion vectors is to put some weights depending on the amount of

information of each macro-block. In this way, a new filter was designed. The new steps are:
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5.3 Non-iterative super resolution 227

+  Compute the local motion vectors.

+ Filter the local motion vectors in a sliding window of nine macro-blocks (3x3), with a
low-pass filter using the SAD INTRA values as weights.

+  Use this filtered motion vectors as the definitive motion vectors, avoiding again the

control step.

m.v.local SAD intra
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\../
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Figure 160. Filter using the SAD_intra values as weights.

The experiment was repeated, obtaining this time good results as it is shown in Figure
161 to Figure 163. With this approach, it is possible to keep the best of local and global
motion, obtaining the best quality of both.

Another important improvement with this technique is the reduction of the image
memory. In the case of motion models, to calculate the local motion vector was necessary to
wait until the motion vector of the whole image. Therefore, motion estimation and
compression couldn’t be done in parallel, and two entire images had to be stored.
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228 Mapping of the Super-Resolution Algorithm onto a Video Encoder

With this new approach, it is only necessary to wait until the motion estimation of the
next stripe. Motion estimation and other processing can be done in parallel, and the same
amount of memory than before is used.

In order to reduce the complexity of this filtering due to the multiplication by
SAD_intra, another approach was tried. In this approach, we use different values of
coefficients depending in the values of SAD _intra, increasing them where SAD _intra is high
and decreasing where SAD _intra is low. In this way, we use some comparisons instead of
multiplication. The results are almost similar, achieving the same advantages than with the

multiplication, but reducing the computational complexity.

The obtained data are shown in Figure 165. These figures show the first frame of each
sequence and the frame 20. The first frame is equivalent to a bilinear interpolation. After 20

frames, the images obtained using this approach with these sequences present good quality.

5.3.4.3.3 Exhaustive search

After achieving these results, we want to know what would be the best performance
that we can obtain from these sequences. We have to take into account that in this case the
movement is real, and the expected results are not as good as with artificial movement. The
main reasons for that are:

e All the shifts are possible, not only with quarter pixel accuracy.

e Not all the shifts that cover all the positions will be present, reducing the final
performance.

o The motion estimation errors.

We designed a system to simulate the algorithm using an exhaustive search in the
motion vectors. We also supposed a global motion model in all the sequences. The system is
represented in the Figure 164, and it is composed by three applications:

e An application (named SHIFTS) that generate all the possible shifted images in a certain
range and accuracy. With this application we obtain a sequence of moved images. It is
equivalent to a motion compensation using all the possible motion vectors.

e An application (named MIX) that mix all the previously generated shifted images with the
new low-resolution image.
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Luminance PSNR of Imtb using filtered m.v. SAD_intra weighted
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Figure 161. Results of ‘Imtb’ using filtered motion vectors using SAD_intra as weights.
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Figure 162.Results of ‘sockets’ using filtered motion vectors using SAD_intra as weights.
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Figure 163 Results of ‘pen’ using filtered motion vectors using SAD_intra as weights.
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Mapping of the Super-Resolution Algorithm onto a Video Encoder

e An application (named MATCH) that compares all the new images generated by mixing
the new low-resolution image with the previous best match shifted, with the original high-
resolution image. The output of this application is the image with best PSNR and we call

it the best match. This image will be used by SHIFTS to process the new incoming frame.

With this setup, the same sequences were processed and the results are exposed in
Figure 166 to Figure 168. We observed that our results used to be around 70% of the gap
between bilinear interpolation and exhaustive search. In this case, 3DRS algorithm is used and

sometimes the motion estimation is not perfect, but the results are not very far from the

optimum value.

A

Shifts

HR moved

Mix

HR mixed

LR input

Is first
image?

Figure 164. System to simulate the super resolution approach. In this system, an exhaustive search in

Yes

Upsample

the full field of global motion vectors is done.

5.3.4.4 HR versus LR motion estimation results

A consequence of the translation of the interpolation from the last step to the input is

that the motion estimation can be easily performed in high resolution.

Since the high-resolution images contain the low-resolution images, the motion

estimation can be easily performed in low resolution using only the original pixels from low-

resolution images.

A
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Figure 165. Results with the recorded sequences: a), b) and c) are low resolution images. d), f)
and h) are results obtained using bilinear interpolation. e), g) and h) are super
resolution images after 20 frames.
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232 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Luminance PSNR of Imtb
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Figure 166. Results of ‘Imtb’ using exhaustive search.
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Figure 167. Results of ‘pen’ using exhaustive search.
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Figure 168. Results of ‘sockets’ using exhaustive search.
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5.3 Non-iterative super resolution 233

Luminance PSNR of Imtb with HR and LR
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Figure 169. Results with high and low resolution motion estimation.

Some experiments were done to know the performance of motion estimation in low
and high resolution. The results are shown in Figure 169 and Figure 170. As was explained
before, this feature requires a trade-off between regularity and computing power. As
regularity and no hardware changes have driven all the process, and the results are almost

similar in both cases, motion estimation in high resolution has been chosen.

Luminance PSNR of sockets with motion estimation in HR and LR
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Figure 170. Results with high and low resolution motion estimation.
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234 Mapping of the Super-Resolution Algorithm onto a Video Encoder

5.3.4.5 Quarter pixel versus half pixel results

In order to increase the accuracy in the estimation of the real motion between scenes, a
new refinement step in the motion estimation was introduced. In this way, the 3DRS
algorithm performs one search step plus three refinements steps to achieve quarter pixel
accuracy, namely: a full-pixel refinement, a half-pixel refinement and a quarter-pixel
refinement. This accuracy is increased when the motion estimation is performed in high
resolution. Due to the increase of size, quarter-pixel motion estimation in high resolution is
equivalent to one-eight pixel accuracy in low-resolution. When passing from high-resolution
to low resolution the motion vectors must be divided by a factor of two. So, one-quarter

precision motion vectors are equivalent to one-eight precision from the low-resolution point

of view, where the input images came from.

Some experiments were done to check this feature. In these experiments, the motion
estimation was done in high resolution, therefore multiplying by two the resolution of the

vectors. In this case the motion estimator can detect motion with one-eight-pixel accuracy.

Two main experiments were carried out using the sequences ‘lmtb’ and ‘sockets’. In
the first experiment, the motion estimation was performed with half-pixel precision and
quarter pixel precision. The results are shown in Figure 171 and Figure 172.

Luminance PSNR of Imtb using QP and HP motion vectors

PSNR(dB)

T T

0 5 10 15 20 Er gr?les 30 35 40 45 50

—=— Using half pixel motion vectors —e— Bilinear interpolation
—=&— Using quarter pixel motion vectors

Figure 171. Results with quarter and half pixel precision motion estimation.
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Luminance PSNR of sockets with QP and HP motion vectors
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Figure 172. Results with quarter and half pixel precision motion estimation.

Luminance PSNR of Imtb QP obtained after filtering

PSNR(dB)

5 10 15 20 25 30 35 40 45 50
Frames

—»— HP refinement, QP after filtering = —e&— Bilinear interpolation
—&— QP refinement

Figure 173. Results with quarter pixel precision motion estimation with two steps of refinement

and with filtering.
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Figure 174. Results with quarter pixel precision motion estimation with two steps of refinement

and with filtering.
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236 Mapping of the Super-Resolution Algorithm onto a Video Encoder

Since after filtering the motion vectors it is possible to obtain motion vectors with
quarter pixel precision avoiding the second refinement step, a second experiment to test this
feature was carried out. In this case, half-pixel motion-vectors were filtered, allowing an
artificial precision of one-quarter pixel. Results are shown in Figure 173 and Figure 174.
Using this second technique results probed to be very similar as with quarter-pixel refinement

but with a one refinement step less in the motion estimation.

5.4 Conclusions

The quality of the super-resolved images depends, among other factors, on the
sampling of the input image. If the image set used to generate the super-resolved image has
1dentical samples, the super-resolution process has less new information available, generating
lower quality images.

When the input image sequence contains a great amount of aliasing, the motion

estimation process is highly improved by previously performing a low-pass filtering.

Table 26 shows a summary of the qualities obtained for the different versions of the
super-resolution algorithms. For the iterative algorithms the PSNR is computed after 8
iterations, as this number of iterations is a good trade-off among quality, quality drop in case
of data missing (images of type ‘b’, ‘c’ or ‘d’) and computing effort. Chrominances exhibit
higher PSNR due to their lower entropy, and version v1.3 (reference is the first frame) shows
an improvement of 5 dB with respect to version v1.2 (reference is the average frame).
Nevertheless, these results for the first versions strongly rely on the number of iterations and
in the position of the input samples.

These iterative algorithms using only the resources founded in a hybrid video encoder
suppose a first step to the target of a real-time super-resolution algorithm. Among the iterative
algorithms developed, one set (version two) is intended for still images and the other set
(version three) is for video sequences. Both sets are suitable to work in real time onto the
hybrid video encoder addressed in this work. The first set is also known as the static super-

resolution solution and the second one as the dynamic super-resolution solution.
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5.4 Conclusions 237

Version Type Average PSNR Average PSNR Average PSNR
Luminance Red chrominance | Blue chrominance
vi2 Tterative. 23.19 dB 3845d8 40.79 dB
Static SR
v13 lerative. 28.24 dB 38.24 dB 39.88 dB
SR static
Non Iterative.
v2.0 _ 30.47 dB 45.42 dB 4877 dB
SR static
Tterative.
v2.1 Non Iterative 34.63 dB 46.90 dB 49.66 dB
SR static
Iterative.
v3.0 Non Iterative 28.64 dB 4422 dB 4722 dB
SR dynamic
Tterative,
v3.1 Non Iterative 26.28 dB 4128 dB 4425 dB
SR dynamic

Table 26. Summary of the PSNR for the most significant versions of the developed super-
resolution algorithms.

Although the static super-resolution algorithms demonstrate a high image quality, they
have the drawback of demanding a large amount of memory to store intermediate image
results. Depending of the application, this can be a problem or not. For a photography
environment, the increase in the quality can justify the memory increase, as the system will
decrease the overall costs using lower resolution sensors.

These last sets of algorithms (version three) are intended for video and its functioning
is based on a feed back of the last super-resolved image. As it does not gather information
from various images, the pixels suffer from a temporal dilution process, producing a slight
quality loss (< 2 dB) when compared to the previous versions. Nonetheless, the decrease in
the memory required can compensate in many cases the quality losses, depending on the
application and on the available resources. These kinds of algorithms exhibit a high
independence of the metrics with respect to the border effect, whenever the contributions are
used.

The memory requirements of the most significant super-resolution algorithms are
presented in Table 27.
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Size mb_x | mb,_y vl.2 and v1.3 v2.0 v2.1 v3
- - (Kbytes) (Kbytes) (Kbytes) (Kbytes)

SQCIF 8 6 315.19 450.19 459.05 36.01
QAVGA 9 7 413.68 590.87 598.56 40.51
QCIF 11 9 650.07 928.51 931.60 49.51
HAVGA 18 14 1,654.73 2,363.48 2,331.25 81.03
CIF 22 18 2,600.30 3,714.05 3,645.39 99.05
AVGA 36 28 6,618.94 9,453.94 9,198.98 162.12
VGA 40 30 7,879.69 11,254.69 10,936.17 180.15
4CIF 44 36 10,401.19 14,856.19 14,419.55 198.19
16CIF 88 72 41,604.75 59,424.75 57,354.19 396.77

Table 27. Comparative table of the memory requirements for the most significant versions of
the developed super-resolution algorithms.

A new super-resolution algorithm version v3.1 is presented, which is more suitable for
low-cost implementations onto video encoders based on some simplifications of version v3.0.
This last algorithm not only has shown good performance with artificial sequences but also

with real sequences.

Last but not less, the algorithm has been tested with video sequences where the
movement is real, but the aliasing has been artificially produced. One of the key factors of this
algorithm when dealing with real sequences is the motion estimation. Several options have
been evaluated, finally adopting a solution based on filtering of the motion-vector, weighted
with the SAD INTRA as a measure of the high frequencies amount, and therefore of the
goodness of the estimated motion. This solution shows an excellent behavioral in many real
scenes. An exhaustive motion search solution has also been assessed and both solutions probe

to be quite similar.

Finally, the influence of some parameters on the super-resolved quality, as the image
resolution for the motion estimation or the precision of the motion vectors, has been analyzed.
The choice has been to perform the motion estimation in high-resolution and with a % pixel

precision as obtained from the filtering process.
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Chapter 6

Results! Because, man, I have gotten a lot of results, I know several
thousand things that won't work.

Thomas A. Edison (1847 - 1931)

Results

6.1 Introduction

Among the different results of this work, the final architecture as well as some
applications of super-resolution can be highlighted. These applications have been tested over
real sequences taken from a prototyping system. In these sequences, both the movements and
the aliasing are provided by the capture system, as in a real application case.

6.2 Final architecture

The final architecture is based in the initial proposal, where some additional changes
have been added to support super-resolution for video sequences. Some hardware
coprocessors have been modified and also some software tasks have been added. The main
rule followed in the entire mapping process to obtain this architecture was to avoid as many
changes in hardware as possible and to try to implement super-resolution as a software plug-
in. This main rule also had to consider the ability to reach real time. As a consequence of the
established, the final architecture has very small changes in hardware coprocessors and most
of the work is done by software executed in the general processor.

239
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Results

The hardware coprocessors that have been changed are:
e The input coprocessor.
¢ The motion estimator.

e The texture codec.

Each ones of these hardware changes, as well as the software ones, are explained in next
sections.

6.2.1 Input coprocessor

The input coprocessor was changed in order to support the bilinear interpolation of the
input image. The input processor reads only one quarter of the input image from the capture
system and then, puts in its output an image four times larger as a result of the bilinear
interpolation of the input. As the original input processor, it works stripe by stripe composed
by 16 image lines. Because it performs a bilinear interpolation, it reads 8 lines at the input and
writes 16 lines in the output. The amount of pixels per line depends of the image size, but it

also doubles the amount of pixels per line. The process followed to perform this interpolation
was already explained in section 0.

6.2.2 Motion estimator

The motion estimator hardware block has been changed by adding an anti-aliasing
filter, with the transfer function shown in Figure 175. The objective of this filter is to perform a
low pass filtering of each block in the pixel domain before to evaluate it. By this way, the
amount of aliasing is reduced and then better motion vectors are obtained.

6.2.3 Texture codec

Texture codec coprocessor is responsible to carry out most of the operations in the
compression algorithm. In super-resolution, it is responsible to do the motion compensation,
the mixing of both images and the compression. To do this mixing, it is necessary to perform
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6.2 Final architecture 241

some minor modifications in the compressor hardware. Then, when the motion compensation
is done, the output image will be the previous motion compensated image updated with pixels
of the new image. These hardware modifications include the updating into the motion

compensation process. In Figure 23 the tasks performed in the texture codec are shown.
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Figure 175. Impulse response of anti-aliasing filter.

6.2.4 General processor software

As it was discussed in section 5.3.4.3.2, the final taken approach was to filter the
motion vectors. This filtering is performed by software, keeping the motion vectors as
software variables. This software performs the following operations:

* Get both the motion vectors and the SAD_INTRA from the motion estimator
COprocessor.

+ Keep in memory these data.

* Perform the filtering in the motion vectors field, obtaining a new set of motion vectors.

In all the processing, only the lossless part of the hybrid video encoder is used. The
motion compensated image is passed to the inverse motion compensation (IMC) and then
stored in memory. Since the general processor is responsible for the communication, this
feature is taken into account by the software running in the general processor. It is important
to note that the DCT, Q, IQ and IDCT remove the higher frequencies in the image, and so,
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they should be avoided. These blocks are only used to compress the image, but are not kept

into the loop.

6.3 Applications

In this section, the performances of super-resolution algorithms are tested in real
situations. As it was shown in the previous section, the quality improvement depends on two

factors:
e Movement in the sequence.

e Presence of aliasing in the image.

The first factor was tested in the section 0. In this section, a method to obtain the
necessary shifts was described and also the system was optimized to support real movements.
The next step is to obtain aliasing in the image without any artificial system. This aliasing is
obtained from the capture system directly. In the next sections, a common image capture
system will be described. How to obtain the necessary aliasing and new approaches to take

advantage of that feature will also be discussed.

One important point to take into account at this moment is the lack of a reference
image. In previous steps, an original image as a reference was always considered. At this
point, as the aliasing is obtained from the capture system, there is not a reference. Therefore,
all the measurements about the quality and the improvement obtained using super resolution

are subjective.

6.3.1 Capture system

A common capture system is shown in Figure 176. In front of the system, there is a
lens to focus the scene on the sensor plane. This plane is commonly called image plane. The
most common technique to obtain a color image is to sense red, green and blue colors. In the
high quality products, three sensors are placed, one for each of these colors. Using some
mechanical or optical system, the image plane is focused on the three sensors, obtaining three

colors with the sensor resolution.
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6.3 Applications 243

In cheaper applications, only one sensor is used. In that case, in order to obtain three
colors a Color Filter Array (CFA) is placed in front of the sensor. By this way, each sensor
cell senses a different color. The most commonly used is the RGB Bayern pattern, which 1s

represented in the Figure 176.

After sensing the colors, a color reconstruction algorithm is applied to obtain the
colors where they are not sensed. There are several color reconstruction algorithms [PKT83],
[Jai89], [PRAI1], most of them based on different types of interpolation. After the color
reconstruction, another image processing is performed to obtain the definitive YUV signal,

which is the input of the compression system.

In order to obtain the YUV 4:2:0 signal, the following operations are done:
e To calculate the YUV 4:4:4 signal as:
o Y=03R+0.59G+0.11-B.
o U=Y-R
o V=Y-B
e To perform a low pass filtering on U and V signal.

e Sub-sample the U and V signals to obtain the YUV 4:2:0 format.

Scene Lens RGB Bayern Pattern
1 B
Col -
- olor
Sensor reconstruction
R
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Figure 176. Capture system for imaging.
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In order to obtain aliasing, three points are crucial:
e Jlens.
e Sensor configuration.

e Color reconstruction algorithm.

In this study, some sequences were recorded using a high quality lens. The resolution
of this lens was selected to be higher than the sensor resolution. By this way, we try to avoid
the lens optical low-pass filtering.

The aliasing appears in the sampling process. In this process, there are two main
factors:

o Sensor fill factor.

¢ Color sampling.

micro-
fons
=7 ~7— Ppixels

substrate

Figure 177. Micro lenses disposition.

The first one describes the ratio between the light sensitive area per pixel and the total
pixel area. In the new CMOS active pixel sensors, called SeeMOS, this factor can be as low
as 25%. That means that only one quarter of the pixel is light-sensitive. This factor is
increased using a small micro-lens in top of each pixel. With these lenses, some of the
incident light in the non-sensitive area is concentrated to the light-sensitive area. Those micro

lenses can increase the fill factor until 60 or 70%, but still remain some amount of aliasing.
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Figure 178. Color-sampled frequencies in the frequency space.

The second factor is the color sampling. In fact, each color signal is a reconstructed
signal. The maximum sampled frequency is represented in Figure 178. The axes of this figure
are the horizontal and vertical space frequencies, with the low frequencies located in the
middle of the square. The color squares represent the maximum sampled frequency for each
color: the bigger square with diamond shape represents the frequencies of the green color and
the smaller inner squares represent the frequencies of the red and blue colors. It is important
to note that the green signal has higher frequencies than red and blue ones. This limitation in

the frequency distribution produces some aliasing in the color spectral domain.

In the experiments carried out, the sensor used was the UPA1021 chip sensor, which

has the previously described characteristics.

6.3.2 Resolution enhancement and electronic zoom

The first experiment consisted in the use of the signal in YUV 4:2:0 as in previous
steps. In this case, the signal follows all the processing, but we choose different algorithms to
reconstruct the color signal. This processing must keep as much aliasing as possible in the
luminance signal, to obtain a good performance in super-resolution. Three algorithms were

tried:
e Standard reconstruction
e SmartGreenl

e SmartGreen3

i6n realizada por ULPGC. Biblioteca Universitaria, 2006

los autores. Digital:

© Del



246 Results

Standard reconstruction algorithms perform a bilinear interpolation of each color. This
reconstruction performs a strong low pass filtering, removing most of the aliasing present in
the luminance signal. Super resolution algorithm was applied using the obtained signal in
YUV 4:2:0. The results are shown in Figure 179 to Figure 182. After twenty frames, only a

small improvement is achieved due to the limited aliasing presence in the luminance signal.

SmartGreenl performs a bilinear interpolation over the red and blue signal. If high
frequencies are present, the green signal is guessed from the red or blue signal in places where
there are no green samples. In those places, the green signal is equal to the red or blue
sampled signal multiplied by some predefined coefficients. If this approach works well, the
green signal can achieve pixel resolution, and therefore, increases the luminance resolution.
This algorithm works better in gray areas, where R=G=B. SmartGreenl seems to keep more
aliasing information, and we expect better performance. Results are shown in the Figure 183 to
Figure 186. Nevertheless, no important quality improvement was achieved using this
reconstruction technique.

The last algorithm used to reconstruct the color space was the SmartGreen3. This
algorithm requires more computational power. In previous versions of SmartGreen, the
computed green signal from the red and blue values was used directly. This approach works
well in gray areas but made colorful images grayer. In SmartGreen3, this signal is only used
to enhance the edges and to help in the detection of false color due to color aliasing. The main
problem with this algorithm is that it performs a band-pass filtering of the luminance signal,
avoiding any option of aliasing. Then, we will not increase the quality of the image using this
algorithm in conjunction with super-resolution. Due to the good performance of this
technique, it can be a reference of sharpness for SR as one of the best qualities that the color
reconstruction algorithms can achieve. The results obtained using these algorithms are shown
in the Figure 187 to Figure 190.

The performance obtained using standard reconstruction or SmartGreenl with super
resolution are not better than using SmartGreen3. Moreover, the improvement of using super-
resolution in conjunction with SmartGreen3 is very small, so it is not very interesting to apply
super resolution in that case.
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Figure 179. Standard reconstruction and zoom with super resolution of ‘paper’, frame 1. For the
first frame, no SR is possible and so it is equal to bilinear interpolation.

Figure 180. Standard reconstruction and zoom with super resolution of ‘paper’, frame 1 detail.
For the first frame, no SR is possible and so it is equal to bilinear interpolation.
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Figure 182.Standard reconstruction and zoom with super resolution of ‘paper’.
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Figure 183. SmartGreenl reconstruction and zoom with super resolution of ‘paper’, frame 1. For
the first frame, no SR is possible and so it is equal to bilinear interpolation.

e

Figure 184. SmartGreenl reconstruction and zoom with super resolution of ‘paper’, frame 1
detail. For the first frame, no SR is possible and so it is equal to bilinear
interpolation.

i6n realizada por ULPGC. Biblioteca Universitaria, 2006

los autores. Digitali

© Del



250 Results

.{(‘*r «

d p,

Fup
‘ {]’tillrx .

‘,jf[{’
)/)

[
"

{

.J:;(j&

sl
Uy,

U:;s
50 A,

Te
es
1134

Figure 186. SmartGreenl reconstruction and zoom with super resolution of ‘paper’. Frame 20
detail.
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Figure 187. SmartGreen3 reconstruction and zoom with super resolution of ‘paper’, frame 1. For
the first frame, no SR is possible and so it is equal to bilinear interpolation.

Figure 188. SmartGreen3 reconstruction and zoom with super resolution of ‘paper’, frame 1
detail. For the first frame, no SR is possible and so it is equal to bilinear
interpolation.
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Figure 190. SmartGreen3 reconstruction and zoom with super resolution of ‘paper’. Frame 20
detail.
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6.3.3 Colour reconstruction

As the results obtained were not very satisfactory using the previous approaches, a
new application was tried. Since each color signal is sub-sampled, it is easier to achieve
aliasing in each one of these signals. In fact, the luminance signal is never a full sensed signal,
because it is composed by sampled values of one color and reconstructed values from the
other two color signals. Because the sensor works in RGB, it is better to work directly in this

domain.

Following this idea, it can be seen that the way that the sensor works is similar to our
approach to generate aliasing in previous steps. Indeed, the red and blue signal are sub-
sampled by a factor of two in both directions, and the green signal is sub-sampled, but loosing

only half of the samples.

Therefore, the idea is to reconstruct each color signal as color reconstruction
algorithms do, but obtaining pixel resolution using super resolution. This idea is exposed in
Figure 191. In this application, each color signal is treated as the luminance signal was before,
but the motion estimation is done based only on the green values. In this way, super-

resolution can substitute the color reconstruction algorithm.

RGB Bayem Pattern
| ] & (&

Subsequent
processing

Figure 191. Color reconstruction with SRA.
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The first image in the sequence is equivalent to standard reconstruction, but when new

images come to the system, the quality increases and good results are obtained.

To avoid a great amount of calculations, the motion vectors are computed over the
green values and the same motion vectors are applied to the red and blue matrixes. Another
reason to do 1it, is that different motion vectors for different colors can produce color aliasing
due to different calculated movements of each color. For this reason, the motion vectors must

be coherent over the three color planes.

In this case, super-resolution achieves good results. The images obtained are
comparable with SmartGreen3 ones, but there are some problems left:
e More than one image is needed to increase the quality.
e Errors in the motion estimation can produce bad results. The motion estimation

algorithm must be very accurate, or it has to be used only in certain scenes.

e A lot of calculations are needed to perform the motion estimation.

On the other hand, the most important advantages obtained are:

e It works better in colorful images, while SmartGreen has a lot of problems, because

this Iast one shift the false colors to the gray scale.

e In case of good motion estimation, the color aliasing is better suppressed.

Also another approach was tried, where the SRA is applied after the overall processing
in the image. This processing increases the differences between the values in the RGB
domain. For example, the matrix correcting process and the gamma correction provide more
differentiate values. This can be useful for the motion estimator to perform a better motion
estimation. The proposed process in this case is to follow the next steps:

e To reconstruct the color using standard reconstruction algorithm, what keeps the
original values. It is necessary because other processing need R, G and B data in all
the positions.

e To do all the processing (matrix correction, gamma correction, white balance, etc.)

e To take the sampled values from the original positions. These values are only
modified by the previous processing and not from the color reconstruction algorithms.
Using these values, we carry out the super resolution algorithm and reconstruct the

lost colors.
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With this approach, the obtained results are shown from Figure 192 to Figure 194. As it
usual in this kind of processing, where no reference image is available, the results are only
qualitative, but in Figure 194 a better color reconstruction is appreciated, with less color
aliasing in all the colors, but in special in the green color, which is less shifted to the gray

scales.

f:: '§§€" £Fon n
S EES ST s

Figure 192. Standard color reconstruction.

.

6.3.4 Colour reconstruction and resolution enhancement

Following the line of the last two applications of sections 6.3.2 and 6.3.3, it is possible
to join both of them in a single one. The basic idea is to increase the pixel resolution, but

using each color signal instead of the luminance signal.

In section 6.3.1 was shown that there are two main sources of aliasing: the color
sampling and the fill factor of the sensor. Using this idea, we can exploit both sources of

aliasing in a new application.
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Figure 193. SmartGreen3 color reconstruction with false color detection and edge
enhancement.

Figure 194. Super resolution color reconstruction.
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We will apply the idea exposed in the Figure 195. With this application, we reconstruct
16 pixels from two green values and from one blue and red value. Therefore, more images

will be necessary to obtain a good quality, 8 in the ideal case.

The processing followed in this case consisted in:

e To reconstruct the color using a standard reconstruction algorithm, keeping the
original values.

e To perform all the other processing (matrix correction, gamma correction, white
balance, etc.)

e To take the sampled values from the original positions. These values are only
modified by the previous processing and not from the color reconstruction algorithms.

e To apply super-resolution, but using a 4x4 matrix instead of a 2x2 as in the previous
cases.

In this case, the motion vectors are also calculated using the green values and reused for the

other color matrixes.

RGB Bayern Pattern

Standard
reconstruction

other processing

>R N

T

Figure 195. Color reconstruction and zoom using super-resolution.

Some experiments were developed, obtaining the results shown in Figure 198 and
Figure 201. The usual way to obtain these images is to first perform a color reconstruction

algorithm followed by a bilinear interpolation. This approach was followed in the images of
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Figure 196, Figure 197, Figure 199 and Figure 200. These images serve us as a subjective
reference to compare against.

The obtained results seem quite good, also some advantages and disadvantages can be
found in this approach. The main disadvantages are:

e More than one image is needed to obtain good quality. Nevertheless, this is not a
problem for video sequences.

e Bad motion estimation can reduce its quality to bilinear interpolation quality, worse
than SmartGreen3 quality.

e It works in RGB data, and it is still necessary to convert to YUV format.

e To suppress the aliasing is a must when super resolution is not done.

Also some advantages are appreciated:

e Better resolution and suppression of color aliasing, achieving a good electronic

zooming.
e Reuse of the existing hardware in combination with video compression.
e Take advantage of undesirable characteristics as aliasing and hand-motion.

e Use of signal processing instead of mechanical parts to perform the zoom,

contributing in this way to reduce the overall device power dissipation.

6.4 Conclusions

In this chapter the modifications needed to be performed on the hardware coprocessors
jointly with some super-resolution applications has been shown. Most of the final
modifications have been made in the software running on the ARM7 processor and in the

input processor in order to perform the bilinear interpolation.

Several applications have been addressed using a real acquisition system. A study of
the system has been carried out, analyzing the processing flow in order to identify the possible
sources of aliasing. An important problem in this stage is the absence of a reference image to

be used in order to obtain quantitative metrics.
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Figure 197. SmartGreen3 color reconstruction followed by false color detection and bilinear
interpolation.
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Figure 199. Standard color reconstruction followed by edge enhancement and bilinear
interpolation.
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6.4 Conclusions

Figure 200. SmartGreen3 color reconstruction followed by false color detection and edge

enhancement and bilinear interpolation.

Figure 201. Super resolution reconstruction and zoom and edge enhancement.
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Three main applications related with electronic cameras and the image processing and
acquisition chain have been addressed:

¢ Resolution enhancement and electronic zoom, where three available color

reconstruction algorithms have been studied in order to keep the aliasing at the

input. As these algorithms do not allow passing a great amount of aliasing, the
super-resolution enhancement is not very noticeable.

e Color reconstruction, where it is exposed how to apply super-resolution as a

way to reconstruct the missing colors when a single sensor is used with a CFA.

e Color reconstruction and electronic zoom, where the two previous

applications are combined. In this last case good results are achieved, making

recommendable this kind of techniques for such applications.
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Chapter 7

When I examine myself and my methods of thought, I come to the
conclusion that the gift of fantasy has meant more to me than any talent
for abstract, positive thinking.

Albert Einstein (1879 - 1955)

Prediction is very difficult, especially about the future.
Niels Bohr (1885 - 1962)

Conclusions and Further
Research

7.1 Conclusions

After the study and classification of the different super-resolution algorithm found in
the scientific literature, new iterative versions have been created. These algorithms have been
optimized for being executed on modified hybrid video encoders. The iterative algorithms
have been modified in order to create non-iterative versions for dynamic super-resolution,
also implemented over the video-encoder. These versions have been developed and
implemented on the hybrid video-encoder platform named Picasso, developed at Philips
Nat.Lab in the ESAS group. The main goal has been to achieve super-resolution
improvements for video sequences with real-time and low-cost performances.

This platform supposes a powerful system for hybrid video encoding, where it is
interesting to point out the following characteristics:

e It implements the basic compression core for algorithms based on the discrete cosine
transform (DCT).

e The system is open to the implementation of new standards for video and still-image

263
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compression.

e The hardware-software partition provides very high performance.

e Memory compression in the DCT domain allows using only on-chip memories. By
means of avoiding the use of external memories an important decrease of the power
dissipation is achieved at the same time that the costs are minimized to a single
integrated circuit (IC).

e The design methodology allows the implementation and easy evaluation of new
applications over the platform, as could be the super-resolution function developed.

The Picasso platform is capable of compressing video sequences using the H.263
standard and implementing some the options of H.263+. Likewise, it is also prepared to give
support to the main compression core for MPEG-4. It can also compress static images in
JPEG format and libraries have been developed to enable multi-thread operations, what will

permit the execution of several formerly mentioned applications at the same time following a
time-sharing scheme of the resources.

The first algorithm set developed consists of the iterative algorithm for static super-
resolution, based in [BK99] and constitutes a first step through the planned objective of
obtaining low-cost and real-time super-resolution algorithms. The low-cost objective has been
achieved in the sense that the algorithm has successfully been implemented on the existing
video platform, with minimal hardware modifications. However, the real-time objective is not
accomplished with this kind of algorithm. Following this approach, a new non-iterative
algorithm scheme has been created, initially based on the concept on contributive weights,
capable of obtain super-resolution improvements in a single step. Moreover, reusing the last
super-resolved image, we succeed in keeping the memory sizes within the limits that allow
integrating them on-chip.

The first algorithm set is suitable for static super-resolution, i.e. the generation of a
single high-resolution image through the combination of several low-resolution images. In
Figure 85 the scheme of super-resolution image generation followed in this kind of algorithms
is shown. Versions v1.0, v1.1, v1.2 and v1.3 belong to the category of iterative algorithms for
static super-resolution. For the used test sequences, the average luminance qualities obtained
were of 23.19 dB for version v1.2 and 28.24 dB for version v1.3, as these are the most
significant versions among the iterative algorithms.

ion reafizada por ULPEC. Biblioteca Universitaria, 2008

los autores. Digitali

©Del



7.1 Conclusions 265

0 0 0 0 4 4 4 4
1 1 1 5 5 5
Frames 2 2 6 6
31 7
H & ¢
New . New
Current image Time > image

SuperResolution

Algorithm Window & New Hi-resolution
image

Figure 202. Scheme for the generation of static super-resolution images in the iterative
algorithms.

The quality of the super-resolution images strongly depend on the sampling performed
for the input images. If the image set used for generating the super-resolution image has
redundant samples, then the super-resolution process will be deprived of new information,

generating images of lower quality than the quality that could be obtained if every image will
contribute new information.

The experiments carried out demonstrate that the 3DRS motion estimation performs
equal to full-search for super-resolution enhancements. Therefore, using an exhaustive
method of motion estimation of high computational cost that does not have a relevant
repercussion in the final image quality makes no sense. A similar quality is obtained with a
much cheaper motion estimation method as it is the 3DRS already implemented in Picasso.

However, the use of low-pass filters in the input image before the motion-estimation is

indeed decisive, thus achieving important improvements in the quality and stability of the
image.

The second algorithm set brought in this work are the non-iterative ones, suitable to
work in real time. Inside the non-iterative algorithms we can perform a sub-classification in
algorithms for static super-resolution and algorithms for dynamic super-resolution. In Figure
203.a the scheme for the generation of images in the non-iterative algorithms for static super-
resolution is presented. Although the quality of the image is quite high, the non-iterative
algorithms have the serious drawback of demanding a lot of memory, making very difficult
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the objective of keeping the system inside low-cost restrictions. The second kinds of
algorithms (Figure 203.b) are thought for video (dynamic super-resolution) and their function
1s based on the feed-back of the resulting image.

During the evaluation phase of the quality of the obtained images, it was clear the
difficulty presented by the image borders to be processed as far as they break the algorithm
homogeneity. Initially the procedure to obtain test images was modified to avoid undesirable
artefacts in the borders when moving the image. This is simply done by starting from higher
image sizes, performing the shifts over them and finally, cropping the central part. After all,
through algorithm adjustments it was possible to incorporate the image borders processing
jointly with the contributive weights. This is achieved by introducing zeroes in the borders of
the shifted images that will be lately filled with new or interpolated data using the present
data. Nevertheless, due to the existing trade-off between quality and memory requirements, in
the last version 3.1 the decision of just interpolate the image borders was adopted, removing
the contributions and therefore obtaining some memory and processing saves.

Through the reusing of the data of the previous image, in versions v3.0 and v3.1 the
memory requirements are reduced in a factor of 50 times lower than the versions v2.0 and
v2.1, and 35 times lower than the versions v1.2 and v1.3. As these two latter versions do not
collect and accumulate the information coming from different images, the pixels suffer from
an effect of temporal dilution that produces a quality loss compared with the previous
versions. Nevertheless, experimentally the quality loss demonstrates to be lower than 2 dB.

In addition to the pixel filtering (conventional image filtering) the filtering of the
motion vectors has shown to be a very powerful technique to both increase the image quality
and reduce the control part of the algorithm. As the shifts have different effects on the objects
depending on the focal plane where they are located, this technique allows the computation of
a pseudo-global motion vector for every zone. To increase the quality of the filtered motion
vectors, these have been weighted with the SAD intra. This is a measure of the high
frequencies amount contained in every macro-block and therefore a measure of how good the
computed motion vectors are.
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Figure 203. Scheme for the generation of static super-resolution images in the iterative

algorithms.

Super-resolution has several applications in the image processing. Among the main
applications scope we can highlight performing digital zoom without the use of mechanical-
optical components, colour reconstruction from the raw colours delivered by the sensor,
increase of the resolution and size of an image or video sequence and some combinations of
them as could be the resolution enhancement together with the colour reconstruction.

The input system has a vital importance in the super-resolution process. It is
impossible to obtain super-resolution improvements using images where all the aliasing has
been removed. Nevertheless, this is the usual scenario in almost all the imaging systems. As
the aliasing is an undesirable feature in the input images for typical applications, it is removed
(as much as possible) before the imaging system starts the processing, using lenses with
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optical low-pass filters (OLP) incorporated, including micro-lenses over every pixel sensor or
low-pass filtering the images as they are captured. Removing the aliasing implies loosing a lot

of high frequency information, just the information that the super-resolution algorithms can
recover.

As a resume of this chapter, Figure 204 depicts a summary of all the developed super-
_resolution algorithms in this work and the main features of each one. In addition, in Table 28
a summary of the average quality obtained by the versions of the developed super-resolution
algorithms is presented. The non-iterative versions for dynamic super-resolution exhibit
qualities slightly lower than the static super-resolution but with much lower memory
requirements.

All the presented algorithms are intended to be executed onto the Picasso platform,
performing minor modifications and reusing some of the hardware. In this manner, the
capability of performing super-resolution improvements has been added to the previous
existing features of the encoder at a reduced cost.

r
/ * v1.0: Original SRA.

* v1.1: Adaptation to Hybrid encoder. Dual HRME.

Iterative < Code redistribution.

Algorithms ) )
* v1.2: Average image reference. Single LRME.

» v1.3: First image reference. Single LRME.

-

-

* v2.0: Fixed number of images. LRME.
Use of contributions

Still Image
* v2.1: Variable number of images.

LRME. Use of contributions.

Developed SRAs

Non Iterative
Algorithms

* v3.0: Output interpolation. LRME. Use
of contributions.

Video

* v3.1: Input interpolation. HRME. No use
\ \ of contributions.

Figure 204. Summary of the different developed super-resolution algorithms.

To finish up this research work, it is important to remark that we have demonstrated,

qualitatively and quantitatively, the quality improvements in static images and video that can
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be obtained using super-resolution algorithms implemented onto a hybrid video encoder with
real-time and low-cost features.

Version Type Average PSNR Average PSNR Average PSNR
Luminance Red chrominance | Blue chrominance
V1.2 lerative. 23.19 dB 38.45 dB 40.79 dB
Static SR
vl3 lterative. 28.24 dB 38.24 dB 39.88 dB
SR static
tive,
v2.0 No Iterative 30.47 dB 4542 dB 4877 dB
SR static
No Tterative.
v2.1 o lterative 34.63 dB 46.90 dB 49.66 dB
SR static
No Iterative,
v3.0 o lterative 28.64 dB 4422 dB 4722 dB
SR dynamic
No Tterative.
v3.1 o Herative 26.28 dB 4128 dB 4425 dB
SR dynamic

Table 28. Average PSNR for the most significant versions of the developed super-resolution
algorithms.

7.2 Further Research

The subjects developed in this work offer the possibility of continuing with the
research matters hereafter outlined.

a) Determine the appropriate input system that enables super-resolution
improvements. It has been clearly established the necessity of having some aliasing in the
input images. It is also clear that the aliasing is undesirable in most of the imaging systems
and therefore it is largely removed. Removing the obstacles that avoid the aliasing will have a
negative impact on the imaging system when super-resolution is not being used, but at the
same time these obstacle also suppose a limit on the quality of the images. It is a clear trade-
off between the quality of the high frequencies of the image and the image aliasing. An input
sub-system that would enable some aliasing when working with super-resolution and that
removes (probably through filtering) the aliasing when not working with super-resolution will
be highly desirable. The use of fixed micro-lenses clearly precludes the possibility of
obtaining super-resolution improvements.
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b) Incorporate temporal motion vector filtering. As the spatial motion vector
filtering has proven to be a powerful technique, some additional research should be done in
order to investigate if a temporal filtering of the motion vectors would have an important
improvement on the final image quality.

c¢) Use of super-resolution in the image decoding. The decoded images have been
low-pass filtered several times (by the loop-filters and by the combination DCT-quantizer that
removes the high frequency coefficients). Thus, it would be practically impossible to obtain
super-resolution improvements from them. But, if the quantizer coefficients were modified in
such a way that they enable to pass some high frequency information, we could sub-sample
the image prior coding, sending an image of 25% the size of the original size, and recompose
the original size by means of the super-resolution process after decoding it. It must be taken
into account that, as some high frequencies would be allowed to pass, the binary stream will
probably be slightly longer than the normal size (both streams would be covered by the
standards, and so, both could be decoded by any standard decoder, but only in the case that
the standard allows to change the quantification matrix). An optional way to obtain SR
improvements from a decoded video sequence will be using the enhancement layer described
in the MPEG-2 standard for SNR scalability. The enhancement layer contains high-frequency
information that can be used in the SR process to increase the size and resolution of the final
decoded and improved video sequence.

realizada por ULPGC. Biblioteca Universitaria, 2008

los autores. Digitalizaci

©Del



References

Science is organized knowledge. Wisdom is organized life.

Immanuel Kant (1724 - 1804)

References

[Ack93]

[Ack94]

[Ack95]

[AD97]

[Aki94]

[Aon92]

[APMO02]

B.D. ACKLAND, “A video-codec chip set for multimedia applications,”
AT&T Technical Journal, pp. 50-65, January 1993.

B.D. ACKLAND, “The role of VLSI in multimedia,” IEEE Journal of Solid
State Circuits, vol. 29, Issue 4, 1994.

B.D. ACKLAND, “VLSI for multimedia applications,” Proc. of 13"
Australian Microelectronics Conference, pp. 23-33, Adelaida, Australia del
Sur, The IREE Society, July 1995.

V. AVRIN and I. DINSTEIN, “Restoration and resolution enhancement of
video sequences,” ICASSP IV, pp. 549-553, 1997

T. AKIYAMA, “MPEG2 video codec using image compression DSP,” IEEE
Transantions on Consumer Electronics, vol. 40, issue 3, 1994.

K. AoNo, “A video digital signal processor with a vector-pipeline
architecture,” IEEE Jornal of Solid-State Circuits, vol. 27, issue 12, 1992.

Y. ALTUNBASAK, A.J. PATTI and R.M. MERSEREAU, “Super-resolution still
and video reconstruction from MPEG-coded video,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 12, issue 4, pp. 217-226,
April 2002.

271

reaiizada por ULPGC. Biblioteca Universitaria, 2008

es. Digitalizaci

o8 autore

© Del



272

References

[Ara94]

[Bai92]

[BBZ96]

[BCF+97]

[Bee97]

[BFB94]

[Bie95]

[BK0O]

[BK02]

T. ArRAKI, “Video DSP architecture for MPEG-2 codec,” Proceedings of the

1994 Conference on Acoustics, Speech and Signal Processing, vol. 2, pp.
417-420, 1994.

D. BAILEY, “Programmable vision processor/controller,” IEEE Micro, vol.
12, issue 5, pp. 33-39, October 1992.

B. BASCLE, A. BLAKE and A. ZISSERMAAN, “Motion deblurring and super-
resolution from an image sequence,” in Proceedings of European
Conference and Computer Vision ECCV HI, Cambridge, VK. Springer-
Verlag, pp. 573-582, 1996.

J.C. BAUER, E. CLOSSE, E. FLAMMAND, M. POIZE, J. PULOU and P. PENIER,
“SAXO: A retargetable optimized compiler for DSPs,” Proceedings of
ICSPAT, 1997.

MARC J. Op DE BEECK , “On the influence of aliasing and low pass filtering
on super resolution image reconstruction for video processing,” Nat-lab
technical note tn-390/97, Philips Research, Eindhoven, 1997. Company
Restricted.

J. L. BARRON, D. J. FLEET and S. S. BEAUCHERNIN, “Performance of Optical
Flow Techniques,” Journals of Computational Vision, vol. 12, pp. 43-77,
1994.

J. BIER, “DSP processors and cores: The options multiply,” Integrated
System Design Magazine, July 1995.

S. BAKER and T. KANADE, “Limits on super-resolution and how to break
them,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 372 -379, 2000.

S. BAKER and T. KANADE, “Limits on super-resolution and how to break
them,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, issue 9, pp. 1167 -1183, Sep 2002.

alizada por ULPGC. Biblioteca Universitaria, 2008

i6n re:

0, los autores. Digitali

©Del



References

273

[BK96]

[BK99]

[BK99b]

[BKV93]

[BMC+96]

[BMCH+97]

[BNCS92]

V. BHASKARAN, K. KONSTANTINIDES, Image and Video Compression
Standards: Algorithms and Architectures, second edition, Kluwer
Academic Publishers, 1997.

MARC J.R. Op DE BEECK and RICHARD P. KLEIHORST, “SuperResolution of
Regions of Interest in a Hybrid Video Encoder”, Philips Conference on
DSP, 1999.

SIMON BAKER and TAKEO KANADE, “Super-resolution optical flow,” Tech.
Rep. CMU-RI-TR-99-36, Robotics Institute, Carnegie Mellon University,
USA, 1999.

N.K. Bosg, H.C. KiM and H.M. VALENZUELA, “Recursive implementation
of Total Squares algorithm for image reconstruction from noisy under-
sampled multi-frames,” Proceedings of the IEEE International Conference
ASSP (ICASSP), vol. 5, Minneapolis MN, pp. 269-272, 1993.

T. BAUTISTA, GUSTAVO MARRERO CALLICO, P.P. CARBALLO and A. NUNEZ,
“Towards a low-cost processor architecture for multimedia,” Proceedings
of the XI Conference of Design of Integrated Circuits and Systems, pp.
445-450, Universitat Politecnica de Catalunya, CPDA, Barcelona,
November 1996.

TOMAS BAUTISTA, GUSTAVO MARRERO CALLICO, PEDRO P. CARBALLO and
ANTONIO NUNEZ, “Rapid-prototype of High-performance RISC Cores with
VHDL,” Fall 1997 Conference. VHDL International Users’ Forum (VIUF).
Edited by the IEEE Computer Society, Arlinton, Virginia, EE.UU, pp. 43-
52, October 1997.

T. BAUTISTA, A. NUNEZ, P.P. CARBALLO AND R. SARMIENTO, “Compilacién
y realizaciéon de una version con células estandares del TMS32010,” VII
Congreso de Disefio de Circuitos Integrados, pp. 371-376, Noviembre
1992.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

ios autores.

©Del



274

References

[Bot00]

[Bov00]

[Bro81]

[Bur93]

[Cam99]

[Can98]

[CBOO]

[CC90]

[CCu97]

[Cha01]

[Chi92]

VINCENT BOTTREAU, “Study of Motion Estimation Techniques for Motion
Compensated Temporal Filtering,” Philips Technical Report No. C2000-
729, January 2000. Company Restricted.

AD BoviK, Handbook of Image & Video Processing, Academic Press,
2000.

J.L. BROWN “Multichannel sampling of low pass signals,” IEEE Trans. on
Circuits and Systems, vol. CAS-28, no. 2, pp. 101-106, February 1981.

D. BURSKY, “Codec compresses image in real time,” Electronic Design, pp.
123-124, October 1993.

L. CaMiIcIOTTI, “Noise filters for consumer MPEG-2 encoders,” Private
Communications, 1999.

FRANK M. CANDOCIA, “A Unified Superresolution Approach for optical
and synthetic Aperture Radar Images,” Ph.D. dissertation, University of
Florida, 1998.

M.C. CHIANG AND T.E. BOULT ,“Efficient super-resolution via image
warping,” Image and Vision Computing, vol. 18, pp. 761-771, 2000.

C. K. CHUI AND G. CHEN, Kalman Filtering, Springer-Verlag, 1990.

C-Cube Microsystems, “One-to-one Digital video: Integration Encoding
and Decoding Technology on One Chip,” <http://www.c-cube.com>, 1997.

SUBHASIS CHAUDHURI editor, Super-resolution Imaging, Kluwer Academic
Publishers, 2001.

T. M. CHIN, “Dynamic Estimation in Computational Vision,” Ph.D.
Dissertation, Department of Electrical engineering and Computer Science,
MIT, February 1992.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

o8 autores.

© Del


http://www.c-cube.com

References

275

[CKK+94]

[CKM+93]

[CLLO02]

[CM98]

[CP98]

[CPLS85]

[CR99]

[CRS+98]

P. CHEESEMAN, B. KANEFSKY, R. KRAFT, J STUTZ and R. HANSON, “Super-
resolved surface reconstruction from multiple images,” technical report

F1IA-94-12, NASA Ames Research Center, Moffet Field, CA, December
1994.

T.M. CHIN, V. C.KARL, A. M. MARIANO and A. S. WILLSKY, “Square Root
Filtering in Time- Sequential Estimation of Random Fields,” Proc. SPIE,
vol. 1903, pp. 51-58, 1993.

YUPING CHENG, YILONG LU and ZHIPING LIN, “A super resolution SAR
imaging method based on CSA,” IEEE International Geoscience and
Remote Sensing Symposium IGARSS '02, vol. 6, pp. 3671 -3673, 2002.

DIDIER CALLE and ANNICK MONTANVERT, “Super-resolution inducing of
an image,” in Proceedings of the IEEE International Conference on Image
Processing, Chicago, USA, pp. 742-746, 1998.

F. M. CANDOCIA and J. C. PRINCIPE, “A Method using Multiple Models to
Superresolve SAR Imagery,” Proceedings of SPIE: Algorithms for
Synthetic Aperture Radar Imagery V, April 1998.

J.J. CLARK, M. R. PALMER and P.D. LAWRENCE, “A transformation method
for the reconstruction of functions from non uniformly spaced samples,”
IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 33, pp.
1151-1165, October 1985.

S. CHAUDHURI and A. N. RAJAGOPALAN, Depth from defocus ed images: A
real aperture imaging approach, Springer-Verlag, New York, 1999.

R. CMAR, L. RINDERS, P. SCHAUMONT, S. VERNALDE and I. BOLSENS, “A
methodology and design environment for DSP ASIC fixed point
refinement,” Proceedings of DATE, pp.271-276, Munich, RFA, IEEE
Computer Society, 1998.

realizada por ULPGC. Biblivteca Universitaria, 2008

. Digitalizaci

lus autores.

©Del



276

References

[CS98]

[CZ00]

[CZ01]

[Das95]

[DBP+00]

[DSP]

[DWW+96]

[EF95]

[EF97a]

D. CHEN and R.R. SCHULTZ, “Extraction of High-Resolution Frames from
MPEG Image Sequences,” In Proceeedings of the International Conference
of Image Processing, Chicago , IL, October 1998.

D. CAPEL and A. ZISSERMAN, “Super-resolution enhancement of text image
sequences,” Proceedings of the 15™ International Conference on Pattern
Recognition, vol 1, pp. 600-605, 2000.

D. CAPEL and A. ZISSERMAN, “Super-resolution from multiple views using
learnt image models,” Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2001),
vol. 2, pp. I1-627-11-634, 2001.

B. V. DASARATHY, Image Data Compression, IEEE Computer Society
Press, 1995.

F. DEKEYSER, P. BOUTHEMY, P. PEREZ and E. PAYOT, “Super-resolution
from noisy image sequences exploiting a 2D parametric motion model,”
Proceedings of the 15™ International Conference on Pattern Recognition,
vol. 3, pp. 350-353, 2000.

“DSP Overview at Texas Instruments,”
<http://www.ti.com/sc/docs/products/dsp/overview.htm>

S. DutTA, A. WOLFE, W. WoOLF and K.J. O’CONNOR, “VLSI Signal
Processing, IX,” chapter ‘Design issues for very-long-instruction-word
(VLIW) video signal processors’, pp. 95-104, IEEE Press, 1996.

M. ELAD and A. FEUER, “Recursive Optical Flow Estimation - Adaptive
Filtering Approach”, Internal Report #1009, the Technion - Israel Institute
of Technology, 1995

M. ELAD and A. FEUER, “Restoration of Single Super-Resolution Image
From Several Blurred, Noisy and Down-Sampled Measured Images,” IEEE
Trans. on Image Processing, vol. 6, no. 12, pp.1646-1658, 1997.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

los autores.

©Del


http://www.ti.comysc/docs/products/dsp/overview.htm

References

277

[EF97b]

[Egg00]

[E1a96]

[Eno93]

[Em97]

[Em98]

[ES00]

[EST97]

[Fan86]

[FDF98]

M. ELAD and A. FEUER, “Super-Resolution Restoration of Image Sequence
— Adaptative Filtering Approach,” Tech. Rep. 973, The Technion — Israel
Institute of Technologhy, 1994

PETER EGGLESTON, “Quality Photos from Digital Video: Salient Stills’
Algorithms Provide a Missing Link,” Advanced Imaging, pp. 39-41, May
2000.

MICHAEL ELAD, “Super-Resolution Reconstruction of images,” Ph.D.
dissertation, Israel Institute of Technology, 1996.

T. ENOMOTO, “A 300 MHz 16 bit programmable video signal processor
ULSI for a single chip teleconferencing system,” Proceedings of the 19™
European Solid-State Circuits Conference (ESSCIRC'93), September 1993.

R. ERNEST, Hardware / software co-design: Principles and Practice, Kluwer
Academic Publishers, 1997.

R. ERNEST, “Codesign of embedded systems: Status and trends,” IEEE
Design & Test of Computers, pp. 45-54, April 1998.

K.J. ERICKSON and R.R. SCHULTZ, “MPEG-1 super-resolution decoding for
the analysis of video still images,” Proceedings of the 4™ IEEE Southwest
Symposium on Image Analysis and Interpretation, pp. 13 -17, 2000.

P. E. EReN, M. L SEZAN and A M. TEKALP, “Robust, object based high
resolution image reconstruction from low resolution video,” IEEE
Transactions on Image Processing, vol. 6, pp. 1446 — 1451, Oct. 1997.

K. M. FANT, “A non aliasing, real time spatial transform technique,” IEEE
Computer Graphics and Applications, vol. 6, no. 1, pp. 71 — 80, 1986.

P. FARABOSCHI, G. DESOLI and J.A. FISCHER, “The latest word in digital and
media processing,” IEEE Signal Processing Magazine, vol. 15, issue 2, pp.
59-85, March 1998.

realizada por ULPEC. Biblivteca Universitaria, 2008

lus autores.

©Del



278

References

[FIPO2]

[FL95]

[Fos99]

[FP99]

[fro]

[Fur96]

[Galo1]

[GBA+02]

[Ger74]

[Ghi84]

W.T. FREEMAN, T.R. JONES and E.C. PASZTOR, “Example-based super-
resolution,” IEEE Computer Graphics and Applications, vol. 22, issue 2,
pp. 56 -65, March/April 2002.

D. J. FLEET and K. LANGLEY, “Recursive Filters for Optical Flow,” IEEE
Trans. Pattern analysis and Machine Intelligence, vol. 17, pp. 61-67, 1995.

R. FOSTER, “Simplifying design of systems-on-a-chip with rapid silicon
prototyping and reusable IP,” DATE User Forum, [EEE Computer Society,
pp- 147-151, Munich, 1999.

W.T. FReeMAN and E.C. PASZTOR, “Learning low-level vision,”
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, pp. 1182 -1189, 1999.

“Frontier Design,” <http://www.frontierd.com/artlibrary. htm>

STEVE FURBER, ARM System Architecture, Addison-Wesley, ISBN. 0-201-
40352-8, 1996.

D. LE GaLL, “MPEG: A video compression Standard for Multimedia
Applications,” Communications of the ACM, vol. 34, no. 4, April 1991.

B. K. GUNTURK, A.U. BATUR, Y. ALTUNBASAK, M.H. HAYES and R.M.
MERSEREAU, “Eigenface-based super-resolution for face recognition,”
Proceedings of the International Conference on Image Processing, vol. 2 ,
pp- 845 -848, 2002.

R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt.
Acta, vol. 21, pp. 709-720, 1974.

D. C. GHIGLIA, “Space-Invariant deblurring Given N Independently Blurred
Images of a Common Object,” Journal of Optical Society in America, vol.
1, pp. 398-402, April 1984.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

los autores.

©Del


http://www.frontierd.com/artlibrary.%20htm

References

279

[Gin0O0]

[GLM+94]

[GMC+98]

[GVN+94]

[GW8T]

[GZ97]

[H261]

[H262]

[H263++]

[H263+]

V. GINZBURG, “Locator with super-scanning phased array and its basic
features,” Proceedings of International IEEE Conference on Phased Array
Systems and Technology, pp. 181-184, 2000.

J. A. GOYETTE, G. D. LAPIN, MOON GI KANG and A. K. KATSAGGELOS ,
“Improving autoradiograph resolution using image restoration techniques,”
IEEE Engineering in Medicine and Biology Magazine, vol. 13, no. 3, pp.
571-574, Sept. 1994,

ALVARO GONZALEZ, GUSTAVO MARRERO, PEDRO P. CARBALLO, TOMAS
BAUTISTA and ANTONIO NURNEz, “Tratamiento de sefiales en DSPs
multiprocesadores. Algoritmo paralelo para MPEG en el sistema SDB
TMS320C80,” FAVI, International Conference on Automatic Control,
PADI2, Octubre 1998.

D. GaAJskl, F. VAHID, S. NARAYAN and J. GONG, Design of Embedded
Systems, Prentice Hall, 1994.

R. C. GONZALEZ and P. WINTZ, Digital Image Processing, Addison-Wesley
Publishers, 1987.

R. GUPTA and Y. ZORIAN, “Introducing core-based system design,” IEEE
Desipn & Test, vol. 14, no. 4, October 1997.

“Line transmission on non telephone signals. Video Codec for audiovisual
services at px64 Kbits/s,” ITU-T recommendation H.261, March 1993

ISO/IEC JTC1/SC29 CD 11544, “Coded Representation of picture and
audio information — progressive bi-level image compression,”
recommendation H.262, November 1993.

ITU-T recommendation H.263 Version 2 (H.263++). Video Coding for
Low Bitrate Communication. November 2000.

ITU-T recommendation H.263 Version 2 (H.263+) Video Coding for Low
Bitrate Communication. January 1998.

reaiizada por ULPGC. Biblioteca Universitaria, 2008

es. Digitalizacii

o8 autore

© Del



280

References

[H264]

[H263]

[Ha+99]

[HB95]

[HBA97]

[HBBYS]

[HBH+93)

[HKS84]

ITU-T Recommendation H.264/ISO/IEC 11496-10, “Advanced Video
Coding”, Document JVT-E002, September 2002.

“Video Coding for low bit rate communication”, ITU-T recommendation
H.263, July 1995.

MICHEL HARRAND et.al, “A single-chip CIF 30-Hz, H261, H263+ video
encoder/decoder with embedded display controller,” IEEE Journal of Solid-
State Circuits, vol. 34, no. 11, pp. 1627-1632, November 1999.

G. DE HAAN and P.W.A.C. BIEZEN, “Sub-pixel motion estimation with 3-D
recursive search block-matching,” Signal Processing on Image
Communication, vol. 6, pp. 485-498, 1995.

R.C. HARDIE, K.J. BARNARD and E.E. ARMSTRONG, “Joint MAP registration
and high resolution image estimation using a sequence of undersampled
images,” IEEE Trans. Image Process, vol. 6, pp. 1621-1633, 1997.

RUSSEL C. HARDIE, K. J. BARNARD, J. G BOGNAR, E. E. ARMSTRONG and E.
A. WATSON, “Joint high resolution image reconstruction from a sequence
of rotated and translated frames and its application to an infrared imaging
system,” Optical Engineering, vol. 37, no. 1, pp. 247-260, January 1998.

G. DE HaAN, P.W.A.C. BIEZEN, H. HUIJGEN and O.A. OJO, “True motion
estimation with 3-D recursive search block-matching”, IEEE Transaction
on Circuits and Systems for Video Technology, vol. 3, pp. 368-379,
October 1993.

B. R. HUNT and O. KUBLER, “Karhunen-Loeve Multispectral Image
Restoration, Part I -Theory,” IEEE Transaction on Acoustics, Speech and
Signal Processing, vol. 32, pp. 592-599, June 1984.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

{os autores.

©Del



References

281

[HK97]

[HKK97a]

[HKK97b]

[HS81]

[HT84]

[Hua83]

[Hun95]

[1IT93]

[Ike96]

MIN-CHEOL HONG, MOON GI KANG and AGGELOS K. KATSAGGELOS, “A
regularized multichannel restoration approach for globally optimal high
resolution video sequence,” in Proceedings of Conference on Visual
Communications and Image Processing, San Jose, CA, USA, pp. 1306—
1313, 1997.

M. HONG, MOON GI KANG and A. K. KATSAGGELOS, “Higher resolution
reconstruction of video signal based on generalised multichannel
regularisation,” in Proceedings of SPIE - The international Society for
optical Enginnering , VCIP97, March 1997.

M. HONG, MOON GI KANG and A. K. KATSAGGELOS, “A multichannel
restoration for globally optimal high resolution video,” IEEE ICIP 97,
October 1997.

B. K. P. HORN and B. G. SCHUNCK, “Determining Optical Flow,” Artificial
Intelligence, vol. 17, pp. 185-204, 1981.

T. S. HUANG and R. Y. TsAy, “Multiple Frame Image Restoration and
Registration,” in Advances in Computer Vision and Image Processing,
(Editor - T. S. Huang), vol. 1, pp. 317-339, JAI Press Inc., Greenwich, CT,
1984.

T. S. HUANG, “Image Sequence Processing And Dynamic Scene Analysis,”
Springer-Verlag, Berlin, 1983.

B.R. HUNT, “Super-resolution of images: algorithms, principles and
performance,” International Journal of imaging Systems and Technology,
vol. 6, pp. 297-304, 1995.

Integrated Information Technology, Inc. “Single Chip Video Codec and
Multimedia Communications Processor,” Preliminary Datasheet, 1993.

M. IKEDA, “A hardware/software concurrent design for real-time SPML
MPEG?2 video-encoder chip set,” Proceedings of the EDTC, pp. 320-326,
1996.

realizada por ULPEC. Biblioteca Universitaria, 2008

. Digitalizaci

los autores.

©Del



282

References

[Ino93]

[P91]

[IP93]

[ISD]

[Jai89]

[Jai189]

[Kat90]

[KBV90]

[KC98]

[KDE+89)

T. INONUE, “A 300-MHz 16-B BiCMOS video signal processor,” IEEE
Journal of Solid-State Circuits, vol. 28, issue 12, December 1993.

M. IRANI and S. PELEG, “Improving resolution by Image Registration,”
CVGIP: Graphical Models and Image Processing, vol. 53, pp. 231-239,
March 1991.

M. IRANI and S. PELEG, “Motion Analysis for Image Enhancement:
Resolution, Occlusion, and Transparency,” Journal of Visual
Communication and Image Representation (VCIR), vol. 4, pp. 324-335,
December 1993.

Integrated System Design, <http://www.isdmag.com/>
A. K. JAIN, Fundamentals In Digital Image Processing, Prentice-Hall, 1989.
A. K. JAIN, Fundamentals In Digital Image Processing, Prentice-Hall, 1989.

A. K. KATSAGGELOS, “A Multiple Input Image Restoration Approach,”
Journal of Visual Communication and Image Representation, vol. 1, pp. 93-
103, September 1990.

S. P. KiM, N. K. BOSE and H. M VALENZUELA, “Recursive Reconstruction
of High Resolution Image from Noisy undersampled multiframes,” IEEE
Trans. on ASSP, vol. 38, pp. 1013-1027, June 1990.

R.P. KLEIHORST and F.CABRERA, “VLSI implementation of DCT-domain
motion estimation and compensation,” In Proceedings of the 19"
Symposium on Information Theory in the Benelux, pp 21-28, Veldhoven,
The Netherlands, May 1998.

A. K. KATSAGGELOS, J. N. DRIESSEN, S. N. EFSTRATIADIS and R. L.
LAGENDIK, “SpatioTemporal Motion Compensated Noise Filtering of
Image Sequences,” in Proceedings of SPIE - The international Society for

optical Enginnering, vol. 1199, pp. 61-70, 1989.

realizada por ULPGC. Biblioteca Universitaria, 2008

los autores.

©Del


http://www.isdmag.com/

References

283

[KF02]

[KG98]

[KIA+93]

[Kim94]

[KKE+91]

[KL91]

[KMT+95]

[Kon96]

[Kou95]

O. KursuN and O. FAVOROV, “Single-frame super-resolution by a cortex
based mechanism using high level visual features in natural images,
“Proceedings of the 6™ IEEE Workshop on Applications of Computer
Vision (WACV 2002), pp. 112 -117, 2002.

AGGELOS KATSAGGELOS and NICK GALATSANOS, “Signal Recovery
Techniques for Image and Video Compression and Transmission,” ISBN:
0-7923-8298, Ed. Kluwer Academic Publishers 1998.

TAKASHI KOMATSU, TORU IGARASHI, KIYOHARU AIZAWA and TAKAHIRO
SAITO, “Very high resolution imaging scheme with multiple different-
aperture cameras,” Signal Processing: Image Communication, vol. 5, pp.
511-526, December 1993.

H. C. KM, “High Resolution Image Reconstruction from Undersampled
Muitiframes,” PhD thesis, The Pennsylvania State University, 1994.

A. K. KATSAGGELOS, R. P. KLEIHORST, S. N. EFSTRATIADIS and R. L.
LAGENDUK, “Adaptive Image Sequence Noise Filtering Methods,” in Proc.
SPIE - The international Society for optical Engineering, vol. 1606, pp.
716-727, 1991.

S. J. Ko and Y. H. LEE, “Nonlinear Spatio-Temporal Noise Suppression
Techniques with Applications in Image Sequence Processing,” IEEE
International Symposium CJS, vol. 5 pp. 662-665, 1991.

L. KoHN, G. MATURANA, M. TRMBLAY, M. PRABHU and G. ZYNER, “The
Visual Instruction Set (VIS) in UltraSPARCTM,” UltraSPARC
Microprocessor Whitepapers, SPARC Technology Business, 1995.

T. KonDO, “Two-chip MPEG-2 video encoder,” IEEE Micro, pp. 51-58,
1996.

WEIDONG Kou, Digital Image Compression Algorithms and Standards,
Kluwer Academic Publishers, 1995.

reaiizada por ULPGC. Biblinteca Universitaria, 2008

i0s autores.

© Del



284

References

[KPB38]

[KSS+85]

[KVL99]

[KVP0O]

[KW93]

[KWS+99]

{Lap95]

[LB91]

[LBSL97]

D. KEREN, S. PELEG and R. BRADA, “Image sequence enhancement using
sub-pixel displacements,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Ann Arbor, USA, pp. 742-746,
1988.

D.T.KuAN, A.A. SAWCHUCK, T.C.STRAND and P. CHAVEL, “Adaptive noise
smoothing filter for images with signal-dependent noise,” IEEE
Transaction on Patt. Anal. Machine Intell. PAMI-7, pp.165-177, March
1985.

RICHARD KLEIHORST, RENE VAN DER VLEUTEN and RAFAEL PESET LLOPIS,
“DCT-domain embedded compression for hybrid video coders”, Philips
Technical note 301/99. Company Confidential.

R. P. KLEIHORST, R. VAN DER VLEUTEN and R. PESET, “DCT-domain
embedded memory compression for hybrid video coders,” Journals of VLSI

- Signal Processing Systems, vol. 24, pp. 31-41, February 2000.

S.P. KiM and WEN-YU Su, “Recursive High-Resolution Reconstruction of
Blurred Multiframe Images,” IEEE Transactions on Image Processing, vol.
2, no. 4, pp 534-539, October 1993.

R. KLEIHORST, P. WIELAGE, R. SALTERS, R. PESET LLOPIS and R. VAN DER
VLEUTEN, “Variable-length encoding and decoding with content-
addressable memories”, Philips Technical Note 357/99. Company
Confidential.

P. LAPSEY, “NSP shows promise on the Pentiurn and PowerPC,”
Microprocessor Reports, vol. 8, pp. 11-15, 1995.

R. L. LAGENDIK and J. BIEMOND, Iterative Identification And Restoration
Of Images, Kluwer Academic Publishing, Boston, 1991.

P. LAPSEY, J. BIER, A. SHOHAM and E.A. LEg, “DSP Processor
Fundamentals,” IEEE Press, 1997.

1 realizada por ULPGC. Biblioteca Universitaria, 2008

s. Digitalizaci

{os autore:

©Del



References

285

[Lee80]

[Lee94]

[Lee95]

[Lee96]

[Lio91]

[Lip97]

[LKS81]

[LKL+01]

[LN97]

[LP95]

J.S. LEE, “Digital image enhancement and noise filtering by use of local
statistics,” IEEE Transaction on Patt. Anal. Machine Intell., PAMI-2, pp.
165-168, March 1980.

B.W. Leg, “Data flow processor for multi-standard video codec,”
Proceedings of the IEEE 1994 Customs Integrated Circuits Conference, pp.
103-106, 1994.

R.B. LEE, “Accelerating multimedia with enhanced processors,” IEEE
Micro, April 1995.

R.B. LEE, “Subword parallelism with MAX-2,” IEEE Micro, vol. 16, issue
4, pp. 51-59, August 1996.

M. L. Liou, “H.261 overview,” Communications of the ACM, vol. 34, no.
3, April 1991.

P. E. R. LippENS, “C-HEAP: CPU-controlled heterogeneous embedded
architectures for signal processing,” Private Communications, 1997.

B. Lucas and T. KANADE, “An Iterative Image Registration Technique with
application to Stereo Vision,” Proc. DARPA Image Understanding
Workshop, pp. 121-130, 1981.

RAFAEL PESET LLOPIS, RICHARD KLEIHORST, PAUL LIPPENS, MARCEL
OOSTERHUIS and RENE VAN DER VEULEN, “Architecture Overview of
Picasso Designs”, Natlab Technical note 336/99, 2001. Company
Confidential.

PAuL LipPENS and ANDRE NIEUWLAND, “C-HEAP, CPU-controlled
Heterogeneous Embedded Architectures for Signal Processing”, Philips
Technical Note 175/97. Company Confidential.

E. A. LEE and T.M. PARKS, “Dataflow process networks,” Proceedings of
the IEEE, vol. 83, no. 5, pp. 773-799, May 1995.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

los autores.

©Del



286

References

[LSO01]

[LSI9]

[LSV+96]

[LTZ+01]

[Mad95]

[Mar95]

[MCE+02]

[MCM-+02a]

ZHOUCHEN LIN and HEUNG-YEUNG SHUM, “On the fundamental limits of
reconstruction-based super-resolution algorithms,” Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2001), vol. 1, pp. I-1171 -1-1176, 2001.

“L64110/120/130 VISC Encoder Chipset,” LSI Press Release, 1996.

L. LAVAGNO, A. SANGIOVANNI-VINCENTELLI and HSIEH, “Embedded
System Codesign: Synthesis and Verification”, Kluwer Academie
Publishers, 1996.

XINGDONG LIANG, RAN TAO, SHIYONG ZHOU and YUE WANG,
“Multidimensional real aperture radar imaging,” Proceedings of the 2001
CIE International Conference on Radar, pp. 675 -678, 2001.

V.K. MADISETTI, “Virtual prototyping of embedded DSP systems,” Proc. of
IEEE International Conference Acoustics, Speech, and Signal Processing,
1995.

GUSTAVO MARRERO CALLICO, Disefio y Evaluacién de Arquitecturas
SPARC en VHDL, Simulacién y Sintesis, Master Thesis in
Telecommunication Engineer, November 1995.

M. MARRERO, P.P. CARBALLO, A. M. ESCUELA, GUSTAVO MARRERO
CALLICO and ANTONIO NUREZ, “A new approach for IPs design in
microelectronics design,” 4™ European Workshop on Microelectronics
Education. (EWME 2002), Vigo, Spain , pp. 153-156, May 2002.

M. MARRERO, P.P. CARBALLO, GUSTAVO MARRERO CALLICO and ANTONIO
NUREZ, “A design and reuse methodology for IP soft-cores with built-in
performance metrics,” IEEE Design and Diagnostics of Electronic Circuits
and Systems (5th International Workshop IEEE DDECS 2002), Brno,
Czech Republic, pp. 286-289, April 2002.

realizada por ULPGC. Biblioteca Universitaria, 2008

es. Digitalizaci

los autore

©Del



References

287

[MCM+02b] M. MARRERO, P.P. CARBALLO, GUSTAVO MARRERO CALLICO and ANTONIO

[MF02]

[MIP97]

[MLS8S]

[MPEG1]

[MPEG4]

[MPF+96]

[MPN+02]

NUNEZ, “A Quantitative Approach to Analyze and Bound the Synthesis-to-
Layout Performance-Spread of Soft IP Cores,” Proceedings of the XVII
Conference on Design of Circuits and Integrated Systems (DCIS'02), pp.
449-454, Santander, Spain, November 2002.

B. MARTINS and S. FORCHHAMMER, A unified approach to restoration,
deinterlacing and resolution enhancement in decoding MPEG-2 video, ”
IEEE Transactions on Circuits and Systems for Video Technology, vol.12,
issue 9, pp. 803 -811, 2002

MIP Technologies, Inc., <http://www.mips.com/>, MIPS Extension for
Digital Media with 3D,” March 1997.

D. MARTINEZ and J.S.LiM, “Implicit motion compensated noise reduction
of motion video scenes,” IEEE Proc. Int. Conf. Acoust. Speech and Signal
Processing. pp. 375-378, Tampa, Florida, USA, 1985.

ISO/IEC JTC1 CD 11172. “Coding of moving pictures and associated
audio for digital storage media up to 1.5 Mbp/s”. ISO 1992.

MPEG-4 Part 2: Visual (IS 14496-2), doc. N2502, Atlantic City, N.J.,
USA, October 1998.

JOAN L. MITCHELL, WILLIAN B. PENNEBAKER, CHAD E. FOGG and DIDIER J.
LEGALL, MPEG Video Compression Standard, Chapman & Hall, 1996.

GUSTAVO MARRERO CALLICO, RAFAEL PESET LLOPIS, ANTONIO NUNEZ,
RAMANATHN SETHURAMAN and MARC OP DE BEECK, “A Low-Cost
Implementation of Super-Resolution based on a Video Encoder,” 28"
Annual Conference of the IEEE Industrial Electronics Society (IECON
2002), vol. 2, pp.1439-1444, Seville, Spain, November 2002.

realizada por ULPGC. Biblinteca Universitaria, 2008

o8 autores.

© Del


http://www.mips.com/

288

References

[MPN+03a]

[MPN+03b]

[MT97]

[NASA99]

[NC89]

[NMGO1]

[Nun95]

[NYYO00]

GUSTAVO MARRERO CALLICO, RAFAEL PESET LLOPIS, ANTONIO NURNEZ and
RAMANATHAN SETHURAMAN, “Low-Cost and Real-Time Super-Resolution
over a Video Encoder IP,” Proceedings of the 2003 4™ International

Symposium on Quality Electronic Design, ISQED’2003, pp. 79-84, San
Jose, California, USA, March 2003.

GUSTAVO MARRERO CALLICO, RAFAEL PESET LLOPIS, ANTONIO NUNEZ
ORDORNEZ and RAMANATHAN SETHURAMAN, “Mapping of Real-Time and
Low-Cost Super-Resolution Algorithms on a Hybrid Video Encoder, ”
Proceedings of the SPIE ‘s 1% International Symposium on
Microtechnologies for the New Millennium 2003, vol. 5117, pp. 42-52,
Maspalomas, Spain, May 2003.

J.D.MELLOT and F. TAYLOR, “Very long instruction word architectures for
digital signal processing,” Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 1997.

NASA Ames super-resolution on Mars Pathfinder IMP images,
<http://ic.arc.nasa.gov/ic/projects/bayes-group/super-res/2d/mpf/ >

A.NUREZ and D. CARNAL, “MVM : a GaAS microprocessor for critical real
time applications,” Microprocessing and Microprogramming, vol. 25, pp.
289-298, North Holland Elsevier Science Publishers, 1989.

NHAT NGUYEN, P. MILANFAR and G. GOLUB, “A computationally efficient
superresolution image reconstruction algorithm,” IEEE Transactions on
Image Processing, vol. 10, issue 4 , pp. 573-583, Apr 2001.

A. NUREZ, “Tradeoffs in VLSI architectures for high performance signal
processing,” Proceeding of the 13™  Australian Microelectronics
Conference, pp. 123-135, Adelaida, The [EEE Society, 1995.

H. NAGAHARA, Y. YAGI and M. YACHIDA, “Super-resolution from an
omnidirectional image sequence,” 26™ Annual Conference of the IEEE
Industrial Electronics Society (IECON 2000), vol. 4 , pp. 2559 -2564, 2000.

iversitaria, 2008

realizada por ULPGC. Biblinteca Uni

a, los autores. Digitalizacion

©Del


http://ic.arc.nasa.gov/ic/projects/bayes-group/super-res/2d/mpf/

References

289

[NYYO02]

[01i98]

[Pap77]

[Per96]

[PG98]

[PH97]

[Pir98]

[PKL+99]

[PKS87]

H. NAGAHARA, Y. YAGI and M. YACHIDA, “Resolution improving method
for a 3D environment modeling using omnidirectional image sensor,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA '02), vol. 1, pp. 900 -907, 2002.

S. OLIVIER], “Enhanced Hybrid Recursive Motion Estimation for H.263
Video Coding”, Philips Technical Note 253/98. Company Confidential.

A. PAPOULIS, “Generalized Sampling Theorem,” WEE Trans. Circuits and
Systems, vol. 24, pp. 652-654, November 1977.

F. PEREIRA, “MPEG-4: A new challenge for the representation of audio-
visual information,” Proceedings of the Interntional Picture Coding
Symposium, pp. 7-16, Melbourne, March 1996.

R. PESET LLoPIS and K. G. W. GOOSSENS, “The Petrol Approach to High-
Level Power Estimation,” International Symposium on Low Power
Electronics and Design, Monterey, CA, pp. 130-132, 1998.

S. PELEG, J. HERMAN, ‘“Panoramic mosaics by manifold projection,”
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 338 -343, June 1997.

PETER PIRSCH, VLSI Implementations for Digital Signal Processing, John
Wiley, 1998.

R. PESET LLOPIS, R. KLEIHORST, P. LIPPENS, M. OOSTERHUIS and R. VAN
DER VLEUTEN, “Architecture Overview of Picasso Design,” Nat.Lab.
Technical Note 336/99, December 1999. Company Restricted

S. PELEG, D. KEREN and L. SCHWEITZER, “Improving Image Resolution
Using Subpixel Motion,” Pattern Recognition Letters, vol. 5, pp. 223-226,
March 1987.

reaiizada por ULPGC. Biblioteca Universitaria, 2008

es. Digitalizacii

o8 autore

© Del



290

References

[PKTS3]

[PLF+01]

[POR+00]

[POR+01]

[Pradi]

[PRK98]

[PRRZ00]

[PST94]

JLA. PARKER, R.V. KENYON and D.E. TROXEL, “Comparison of
interpolating methods for image resampling,” IEEE Transactions on
Medical Imaging, vol. 2, pp. 31-39, 1983.

D. PASTINA, P. LOMBARDO, A. FARINA and P. DADDI, “Super-resolution of
polarimetric SAR images of a ship,” IEEE 2001 International Geoscience
and Remote Sensing Symposium, IGARSS '01, vol. 5, pp. 2343-2345,
2001.

R. PESET LLoris, M. OOSTERHUIS, S. RAMANATHAN, P. LIPPENS, R.
KLEIHORST, R. VAN DER VLEUTEN and J. LIN, “A Low-Cost Low-Power
H.263 Video Encoder for Mobile Applications,” Second International
Symposium on Mobile Multimedia Systems & Applications, Delf, The
Netherlands, Nov. 2000.

R. PESET LLoPIS, M. OOSTERHUIS, S. RAMANATHAN, P. LIPPENS, A. VAN
DER WERF, S. MAUL and J. LIN, “HW-SW Codesign and Verification of a
Multi-Standard Video and Image Codec,” IEEE ISQED, San Jose,
California, pp. 393-398, March 2001.

W. K. PRATT, Digital Image Processing, Wiley-Interscience Publishing,
1991.

J. PARK, S. RHEE and MOON GI KANG, “Multichannel dealiasing technique
for superresolution,” ITC98, 1998.

S. PELEG, B. Rousso, A. RAV-ACHA and A. ZOMET, “Mosaicing on
adaptive manifolds,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, issue 10, pp.1144-1154, Oct 2000.

A. J. PATTI, M. I. SEZAN and A. M. TEKALP, “High-Resolution Image
Reconstruction from a Low-Resolution Image Sequence in the Presence of
Time-Varying Motion Blur,” Proceedings of TCIP, Austin - Texas, pp.
343-347, November 1994.

realizada por ULPGEC. Bibiinteca Universitaria, 2008

. Digitalizaci

los autores.

© Del



References

291

[PST95]

[PST97]

[PTS93]

[Pur98]

[PW96]

[RAS]

[RCO1a]

[RCO1b]

[Rj01]

A. J. PAaTTI, M. 1. SEZAN and A. M. TEKALP, “High-Resolution Standards
Conversion of Low Resolution Video,” IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Detroit, ML, vol. II,
pp. 2197-2200, May 1995.

ANDREW J. PATTI, M. IBRAHIM SEZAN and A. MURAT TEKALP, “Super-
resolution video reconstruction with arbitrary sampling lattices and nonzero
aperture time,” IEEE Transactions on Image Processing, vol. 6, no. 8, pp.
1064 — 1076, August 1997.

A. J. PATTI, A. M. TEKALP and M. T SEZAN, “Image Sequence Restoration
and De-Interlacing by Motion-Compensated Kalman Filtering,” SPIE, vol.
1903, 1993.

S. PURCELL, “The impact of Mpact 2,” IEEE Signal Processing Magazine,
vol. 15, issue 2, pp.102-107, March 1998.

A. PELEG and U. WEISER, “MMX technology extension to the Intel
architecture,” IEEE Micro, August 1996.

RASSP, “Rapid Prototyping of Application Specific Signal Processors,”
<http://rassp.scra.org/>

D. RAJAN and S. CHAUDHURI, “Simultaneous estimation of super-resolved
intensity and depth maps from low resolution defocused observations of a
scene,” Proceedings of the 8" IEEE International Conference on Computer
Vision (ICCV 2001), vol. 1, pp. 113 -118, 2001.

D. RAJAN and S. CHAUDHURI, “Generation of super-resolution images from
blurred observations using Markov random fields,” Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 3, pp. 1837 -1840, 2001.

DEEPU RAJAN, “Some new approaches to generation of super-resolution
images,” Ph.D. thesis, School of Biomedical Engineering, Indian Institute
of Technology, Bombay, 2001.

reafizada por ULPGC. Bibfioteca Universitaria, 2008

. Digitalizaci

{os autores.

©Del


http://rassp.scra.org/

292

References

[RK96]

[RPF97]

[RPFRYS]

[RS98]

[SAM+01]

[SBZ+96]

[SBZ95]

[Sch02]

K. RONNER and J. KNEIP, “Architecture and applications of the HiPAR
video signal processor,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, issue 1, February 1996.

B. Rousso, S. PELEG and 1. FINCI, “Mosaicing with Generalized Strips,” in
DARPA Image Understanding Workshop, pp. 255-260, May 1997.

B. Rousso, S. PELEG, I. FINCI and A. RAV-ACHA, “Universal mosaicing
using pipe projection,” 6™ International Conference on Computer Vision,
pp- 945 -950, January 1998.

S. RATHNAM and G. SLAVENBURG, “Processing the new world of interactive
media: The Trimedia VLIW CPU architecture,” IEEE Signal Processing
Magazine, vol.15, issue 2, pp. 108-117, March 1998.

S.M. SHRESTHA, I. ArAI, T. MIWA, Y. ToMIZAWA, “Signal processing of
ground penetrating radar using super resolution techniques”, Proceedings of
the 2001 IEEE Radar Conference, pp. 300 -305, 2001.

HASSAN SHEKARFOROUSH, MARE BERTHOD, JOSIANE ZERUBIA and
MICHAEL WERMAN, “Sub-pixel bayesian estimation of albedo and height,”
International Journal of Computer Vision; vol. 19, no. 3, pp. 289-300,
1996.

HASSAN SHEKARFOROUSH, MARE BERTHOD and JOSIANE ZERUBIA, “3D
super-resolution using Generalized Sampling Expansion,” in Proceedings
of the International Conference on Image Processing, Washington D.C., pp.
300-303, 1995.

R.R. SCHULTZ, “Super-resolution enhancement of native digital video
versus digitized NTSC sequences,” Proceedings of the 5™ IEEE Southwest
Symposium on Image Analysis and Interpretation pp. 193 -197, 2002

realizada por ULPGC. Biblioteca Universitaria, 2008

es. Digitalizaci

ios autor

©Del



References

293

[SCMMO0]

[Ses98]

[SHN93]

[Sin92a]

[Sin92b]

[SK95]

[SLJ+00]

[SM95]

[SO89]

V.N. SMELYANSKIY, P. CHEESEMAN, D.A. MALUF and R.D. MORRIS,
“Bayesian  super-resolved surface reconstruction from images,”
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 375 -382, 2000.

N. SESHAN, “High VelociTI processing,” IEEE Signal Processing Magazine
vol. 15, issue 2, pp. 86-101, 117, March 1998.

P. SEMENTILLI, B. HUNT and M. NADAR, “Analysis of the limit to super-
resolution in incoherent imaging,” Journal of Optical Society of America,
Series A, vol. 10, pp. 2265 — 2276, 1993.

A. SINGH, Optic Flow Computation: A Unified Perspective, WEE
Computer Society Press, 1992.

A. SINGH, “Incremental Estimation of Image Flow Using the Kalman
Filter,” J. Visual Communication and Image Representation, vol. 3, pp. 39-
57, 1992.

W. SUNG and K. KuM, “Simulation-based word-length optimization method
for fixed-point digital signal processing systems,” IEEE Transactions on
Signal Processing, vol. 43, pp. 3087-3090, December 1995.

WANG SHENGLI, ZHU LI, NI JINLIN and ZHANG GUANGY]I, “The study and
experiment on azimuth super-resolution using phase information,” 5™
International Conference on Signal Processing Proceedings WCCC-ICSP

2000, vol. 3, pp. 1868 -1871, 2000.

G.A. SHAW and V.K. MADISETTI, “Assessing and improving current
practice in the design of application specific signal processors,” The
RASSP Digest, vol. 2, issue 1, January 1995.

HENRY STARK and PEYMA Oskoul, “High-resolution image recovery from
image-plane arrays, using convex projections,” Journals of the Optical
Society of America, vol. 6, no. 11, pp 1715-1726, November 1989.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

los autores.

©Del



294

References

[SO89]

[Sor93]

[SPM98]

[SS90]

[SS94]

[SS95]

[SS96)

[SSO99]

[SSS00]

H. STARK and P. Oskuy, “High-resolution image recovery from image-plane
arrays using convex projections,” J. Optical Society of America, vol. 6, no.
11, pp. 1715 - 1726, Nov. 1989.

N. SOREK, “Image Motion Compensation Using Multiple exposures,”
Masters Thesis, The Technion - Israel Institute of Technology, 1993.

“IEEE Signal Processing Magazine, The Latest Word in Multimedia,” vol.
15, 1998.

C. SRINIVAS AND M. D. SRINATH, “A Stochastic Model-Based Approach for
Simultaneous Restoration I-Multiple Miss-registered Images,” SPIE, vol.
1360, pp. 1416-1427, 1990.

R. R. ScHULTZ and R. L. STEVENSON, “A Bayesian approach to image
expansion for improved definition,” IEEE Transactions on Image
Processing, vol. 3, no. 3, pp. 233-242, May 199%4.

R. S. SCHULTZ and R. L. STEVENSON, “Improved Definition Video Frame
Enhancement,” IEEE Conference on Acoustics, Speech and Signal
processing (ICASSP), Detroit, ML, vol. 10, pp. 2169-2172, May 1995.

R. S. ScHULTZ and R. L. STEVENSON, “Extraction of High-Resolution
Frames from Video Sequences,” IEEE Transaction on Image Processing,
vol. 5, pp. 996-1011, June 1996.

A.SMoLIC, T. SIKORA and J.-R. OHM, “Long-term global motion estimation
and its application for sprite coding, content description, and
segmentation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 9 Issue 8 , pp. 1227 -1242, Dec 1999.

D. SALE, R. R. ScHULTZ and R.J. SZCZERBA, “Super-resolution
enhancement of night vision image sequences, ” IEEE International
Conference on Systems, Man, and Cybernetics, vol. 3 , pp. 1633 -1638,
2000.

realizada por ULPEC. Biblivteca Universitaria, 2008

es. Digitalizaci

ios autor

©Del



References

295

[SVR+97]

[SWO1]

[SZ99]

[Sze96]

[TA+98]

[Tek95]

[Ter86]

[TEN+00]

[Tho94]

P. SCHAUMONT, S. VERNALDE, L. RIJNDERS, M. ENGELS and I. BOLSENS, “A
programming environment for the design of complex high speed ASICS,”
Proceedings of DAC, Anaheim, 1997.

A. SmoLic and T. WIEGAND, “High-Resolution Video Mosaicing,”

Proceedings of the IEEE International Conference on Image Processing
ICIP2001, Thessaloniki, Greece, October 2001.

N. R. SHAH and AVIDEH ZAKHOR, “Resolution enhancement of colour

video sequences,” IEEE Transactions on Image Processing, vol. 8, no. 6,
pp- 879-885, June 1999.

R. SzeLIsKI, “Video mosaics for virtual environments,” IEEE Computer
Graphics and Applications, vol. 16, issue 2, pp. 22 -30, Mar 1996.

M. TAKAHASHI et.al, “A 60-mW MPEG-4 video codec with clustered
voltage scaling with variable supply voltage scheme,” IEEE Journals of
Solid-State Circuits, vol. 33, no. 11, pp. 1772-1780, November 1998.

A. M. TEKALP, Digital Video Processing, Prentice Hall Signal Processing
Series, 1995.

D. TERZOPOELOS, “Image Analysis Using Multigrid Relaxation Methods,”
IEEE Trans. Pattern analysis and Machine Intelligence, vol. 8, pp. 129-139,
1986.

Y, TANABE, K. FUJISHIMA, T. NISHIMURA, Y. OGAWA and T. OHGANE, “An
adaptive antenna for spatial-domain path-diversity using a super-resolution
technique,” Proceedings of Vehicular Technology Conference VTC, IEEE
51*, vol. 1, pp. 1-5, Tokyo, 2000

SGS-Thomson Microelectronics, “MPEG-2/CCIR 601 Video Decoder,”
Preliminary Notes, June 1994.

realizada por ULPGC. Biblioteca Universitaria, 2008

. Digitalizaci

o8 autores.

© Del



296

References

[TK95]

[TLA+01]

[TNB02]

[TONH96]

[TOS92]

[Toy94]

[Tri01]

BRIAN C. ToM and AGGELOS K. KATSAGELOS, “Reconstruction of a high-
resolution image by simultaneous registration, restoration and interpolation
of low-resolution images,” in Proceedings of International Conference on
Image Processing, Washington D.C., pp. 539-542, 1995.

A.J. TATEM, H.G. LEWIS, P.M. ATKINSON, M.S. NIXON, “Super-resolution
mapping of multiple-scale land cover features using a Hopfield neural

network,” IEEE International Geoscience and Remote Sensing Symposium,
IGARSS '01, vol. 7, pp. 3200 -3202, 2001.

C.A. TAN, AR. Nix and M.A. BEACH, “Dynamic spatial-temporal
propagation measurement and super-resolution channel characterisation at
52 GHz in a corridor environment,” Proceedings of the Vehicular
Technology Conference VTC 2002-Fall, IEEE 56", pp. 797 -801, vol. 2 ,
2002.

M. TREMBLAY, J.M. O'CONNOR, V. NARAYANAN AND L. HE, “VIS speeds
new media processing,” IEEE Micro, vol. 16, issue 4, pp. 10-20, August
1996.

A. M. TExaLP, M. K. OzkaN and M. 1. SEzAN, “High-Resolution Image
Reconstruction from Lower-Resolution Image Sequences and Space
Varying Image Restoration,” IEEE International Conference on Acoustics,
Speech and Signal processing (ICASSP), San-Francisco, CA., vol. 3, pp.
169-172, March 1992

M. TOYOKURA, “A video DSP with a macroblock-level-pipeline and a
SIMD type vector-pipeline architecture for MPEG-2 CODEC,” IEEE
Journal of Solid-State Circuits, no. 29, vol. 12, 1994.

B. TRIGGS, “Empirical filter estimation for subpixel interpolation and
matching,“ Proceedings of the 8™ IEEE International Conference on
Computer Vision ICCV, vol.2, pp. 550 -557, 2001.

realizada por ULPGC. Biblioteca Universitaria, 2008

los autores. Digitalizaci

©Del



References

297

[UE90]

[UG92]

[VH99]

[VIS]

[WDMO99]

[WL00]

[WN94]

[WWV+97]

M. UNSER and M. EDEN, “Weighted averaging of a set of noisy images for
maximum signal to noise,” IEEE Transaction on ASSP (Acoustic Speech
and Signal Processing) no. 5, vol. 38. pp. 890-895, May 1990.

H. UrR and D. Gross, “Improved Resolution from Sub-pixel Shifted
Pictures,” CVGIP: Graphical Models and image Processing, vol. 54, pp.
181-186, March 1992.

LucAs J. VAN VLIET and CRIS L. LUENGO HENDRIKS, “Improving spatial
resolution in exchange of temporal resolution in aliased image sequences,”
in Proceedings of the 11™ Scandinavian Conference on Image Analysis,
Kaugerlussauaq, Greenland, pp. 493-499, 1999.

Sun Microsystems, Inc. “The Visual Instruction Set: on-chip support for
new media processing”. Whitepaper 95-022,
<http://www.sun.com/sparc/vis>.

WIRAWAN, PIERRE DUHAMEL and HENRI MAITRE, “Multi-channel high
resolution blind image restoration,” in Proceedings of IEEE ICASSP,
Arizona, USA, pp. 3229-3232, 1999.

R. WU and J. LI, “Autofocus and super-resolution synthetic aperture radar
image formation”, IEE Proceedings on Radar, Sonar and Navigation, vol.
147, issue 5 , pp. 217 -223, Oct 2000

D. O. WALSH and P. NIELSEN-DELANEY, “Direct method for super-
resolution,” Journal of Optical Sac. of America, Series A, vol. 11, no. 5, pp.
572 — 579, 1994.

A. VAN DER WERF , E. WATERLANDER, M. VERSTRAELEN, T. FRIEDRICH, F.
BRULS and R. TAKKEN, “IMcIC: a single-chip MPEG2 video encoder for
storage,” IEEE Journals of Solid-State Circuits, vol. 32, no. 11, pp. 1817-
1823, November 1997.

realizada por ULPGEC. Biblioteca Universitaria, 2008

es. Digitalizaci

ios autor

©Del


http://www.sun.com/sparc/vis

298

References

[XFH+01]

[Yen56]

[You78]

[YYR+01]

[Zer92]

[ZP00]

[ZP02]

[ZP98]

[ZRPO1]

Y1 XU, WEI FENG FENG, JUN YAN HAO, H K. HWANG, “Direction of arrival
estimation using super-resolution algorithm,” MTS/IEEE Conference and
Exhibition OCEANS, vol. 2, pp. 749 -755, 2001.

L.J. YEN, “On Nonuniform Sampling of Bandwidth Limited Signals,” IRE
Trans. Circuits Theory, vol. 3, pp. 251-257, April 1956.

D. C. Youra, “Generalized Image Restoration by the Method of
Alternating orthogonal Projections,” IEEE Transactions on Circuits &
Systems, vol. 25, pp. 694-702, 1978.

H. YAMADA, Y. YAMAGUCH]I, E. RODRIGUEZ, Y. KiM and W.M. BOERNER,
“Polarimetric SAR interferometry for forest canopy analysis by using the
super-resolution method,” IEEE 2001 International Geoscience and Remote
Sensing Symposium, IGARSS '01, vol. 3, pp. 1101 -1103, 2001.

M. B. ZERVAKIS, “Optimal Restoration of Multichannel Images based on
Constrained Mean-Square Estimation,” Journal of Visual Communication
and Image Representation, vol. 3 pp. 392-411, December 1992.

A. ZoMET and S. PELEG, “Efficient super-resolution and applications to
mosaics,” Proceedings of the 15™ International Conference on Pattern
Recognition, vol. 1, pp. 579 -583, 2000.

A. ZOMET and S. PELEG, “Multi-sensor super-resolution,” Proceedings of
the 6™ IEEE Workshop on Applications of Computer Vision (WACV
2002), pp. 27 -31, 2002.

A. ZoMET and S. PELEG, “Applying super-resolution to panoramic
mosaics,” Proceedings of the 4™ IEEE Workshop on Applications of
Computer Vision (WACV '98), pp. 286 -287, Oct 1998.

A. ZOoMET, A. RAV-ACHA and S. PELEG, “Robust super-resolution,”
Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2001), vol. 1, pp. 1-645 -I-650,
2001.

realizada por ULPGC. Biblioteca Universitaria, 2008

los autore

©Del




References

299

[ZSHS02]

W. ZHAO, H. SAWHNEY, M. HANSEN and S. SAMARASEKERA, “Super-fusion:
a super-resolution method based on fusion,” Proceedings of the 16"

International Conference on Pattern Recognition, vol. 2, pp. 269 -272,
2002.

itn realizada por ULPEC. Biblioteca Universitaria, 2008

to, los autores. Digitali

©Del



	Acronyms
	1INTRODUCTION
	1.1 Introduction
	1.2 Objective of the thesi
	1.3 Summary of results
	1.4 Thesis organization

	2 STATE-OF-THE-ART
	2.1 Introduction
	2.2 Image reconstruction using super-resolution
	2.2.1 Image reconstraction by static super-resolution
	2.2.2 Image reconstruction by means of dynamic super-resolution 
	2.2.3 Motion estimation

	2.3 Image and video processing architectures
	2.3.1 Standard processors adaptedto support video
	2.3.2 DSPs and Application Specific Signal Processors (ASSPs)

	2.4 Video specific processors
	2.5 Conclusions

	3 SUPER-RESOLUTION TECHNIQUES
	3.1 Introduction
	3.2 Theoretical basics
	3.2.1 Static versus dynamic super resolution

	3.3 Initial algorithm
	3.3.1 Pseudo-code of the basic iterative algorithm

	3.4 Limitations
	3.4.1 Aliasing
	3.4.2 Motion estimation
	3.4.3 Borders

	3.5 Experimental setup
	3.5.1 Artificial motion and aliasing
	3.5.2 Borders handling in the experimental setup
	3.5.3 Quality metrics
	3.5.4 Picture repetition

	3.6 Conclusions

	4 THE VIDEO ENCODER PLATFORM
	4.1 Introduction
	4.2 Applications
	4.3 Video Encoding
	4.3.1 Hybrid Encoder

	4.4 Video compression algorithms
	4.4.1 DCT domain memory
	4.4.2 Scalable coding
	4.4.3 Motion estimation

	4.5 Video encoding architecture
	4.5.1 C-HEAP
	4.5.1.1 C-HEAP architecture
	4.5.1.2 C-HEAP protocol

	4.5.2 Picasso implementation
	4.5.3 Hardware-software partitioning
	4.5.4 Pixel processor
	4.5.5 Motion estimator
	4.5.6 Texture processor
	4.5.7 Stream processor
	4.5.8 Software
	4.5.9 Embedded memories
	4.5.9.1 CPUmemory
	4.5.9.2 Image memory


	4.6 Picasso performance
	4.7 Conclusions

	5 MAPPING OF THE SUPER-RESOLUTION ALGORITHM ONTO A VIDEO ENCODER
	5.1 Introduction
	5.2 Iterative super resolution
	5.2.1 Algorithm description. Versión v1.0
	5.2.2 Overflows and code redistribution
	5.2.2.1 Optimizations to the iterative super-resolution algorithm versión v1.0 for being mapped in the original Picasso hybrid coder. Versión v1.1

	5.2.3 Transformations of the iterative algorithm with reference to the average image. Versión v1.2
	5.2.3.1 Memory requirements for versión v 1.2

	5.2.4 Experimental set-up adjusts to enable reliable measures of versión v1.2
	5.2.4.1 Quality analysis in the spatial domain
	5.2.4.2 Quality analysis inthe spatial frequency domain
	5.2.4.3 Borders effect

	5.2.5 Sampling issues: an image classifícation
	5.2.6 Quality behavioural with respect to the number of iterations of versión v1.2
	5.2.6.1 Connotations in the real sampling process
	5.2.6.2 Super-resolution improvements in the chrominance

	5.2.7 Iterative algorithm with reference to the first image. Versión v1.3 
	5.2.7.1 Pixel filtering to increase motion vectors accuracy
	5.2.7.2 Block diagram and memory requirements for versión v 1.3
	5.2.7.3 Simulation results and quality and behavioural analysis of versión v 1.3 of the iterative algorithm


	5.2.8 Motion estimation search strategy

	5.3 Non-iterative super resolution
	5.3.1 Algorithm description
	5.3.1.1 Modifications in the motion estimator to handle non-iterative algorithms
	5.3.1.2 Adjusts to apply the SRA in chrominance

	5.3.2 Motion estimation. Models & parameters
	5.3.2.1 Motion estimation models
	5.3.2.2 HR versus LR motion estimation
	5.3.2.3 Quarter pixel and halfpixel motion estimation

	5.3.3 Algorithms for still images
	5.3.3.1 Non-iterative basic SRA for still image (v2.0)
	5.3.3.1.1 Block diagram and memory requirements for versión v2.0 
	5.3.3.1.2 Simulation results and quality analysis of versión v2.0 using Va pixel precisión
	5.3.3.1.3 Simulation results and quality analysis of versión v2.0 using quarter pixel precisión

	5.3.3.2 Non-iterative incremental super-resolution algorithm (v2.1)
	5.3.3.2.1 Simulation results and quality analysis of versión v2.1 using % pixel precisión
	5.3.3.2.2 Block diagram and memory requirements for versión v2.1 


	5.3.4 Algorithms for video sequences
	5.3.4.1 Basic video algorithm description (v3.0)
	5.3.4.1.1 Robustness increase of the super-resolution algorithms
	5.3.4.1.2 Pseudo-code of the algorithm versión v3.0
	5.3.4.1.3 Block diagram and memory requirements for versión v3.0 
	5.3.4.1.4 Simulation results and quahty analysis of versión v3.0 using 1/4 pixel precisión

	5.3.4.2 Modifíed algorithm for video sequences (v3.1)
	5.3.4.2.1 Interpolation in the input

	5.3.4.3 Motion estimation over real motion sequences
	5.3.4.3.1 Motion model problems
	5.3.4.3.2 Motion vector 
	5.3.4.3.3 Exhaustive search

	5.3.4.4 HR versus LR motion estimation results
	5.3.4.5 Quarter pixel versus halfpixel results


	5.4 Conclusions

	6 RESULTS
	6.1 Introduction
	6.2 Final architecture
	6.2.1 Input coprocessor
	6.2.2 Motion estimator
	6.2.3 Texture codec
	6.2.4 General processor software

	6.3 Applications
	6.3.1 Capture system
	6.3.2 Resolution enhancement and electronic zoom
	6.3.3 Colour reconstruction
	6.3.4 Colour reconstruction and resolution enhancement

	6.4 Conclusions

	7 CONCLUSIONS AND FURTHER RESEARCH
	7.1 Conclusions
	7.2 Further Research

	References

