

Puzzle game online running on a

bidirectional communication framework

based on Node.js and Socket.io

Master in Computer Engineering: Web Technology and Digital

Business

by

 Master's Final Project

Johanna Mesa Ramos

University of Las Palmas de Gran Canaria

June 2016

Supervisor Cayetano Guerra Artal

Computer Science and Artificial Intelligence

"Everybody wanna be a bodybuilder, but don't nobody wanna lift no heavy ass weight."

- Ronnie Coleman

ACKNOWLEDGEMENTS

It was back in 2013 when I found myself writing the acknowledgements of my then end

of career project. Today I am doing it again, but now for my master's degree. I have to

thank the University of Las Palmas de Gran Canaria (ULPGC) for this, not only for their

installment of the master's program, but also for bestowing upon me the scholarship

that has allowed me to undertake such a fantastic opportunity. From the bottom of my

heart, thank you.

There is also a thank you in store for my supervisor, Cayetano Guerra Artal. I do

appreciate all the guidance you have provided along these past few months, helping

me shape the idea I had into an actual master's final project.

I cannot go without showing my gratitude towards the university's administration staff.

They have always lent a helping hand since I started out my career path back in 2009,

they are an absolutely amazing team, thank you so much.

Last but not least, I want to thank my family and my other half. They are the ones who

keep me sane and who encourage me to finish strongly whatever project I happen to

have undertaken. I love you mami, I love you dad, I love you witcher.

[This page is intentionally left blank.]

TABLE OF CONTENTS

TABLE OF ILLUSTRATIONS ... 7

TABLE OF UML DIAGRAMS .. 7

TABLE OF RESULTS .. 8

SUMMARY ... 9

RESUMEN .. 9

CHAPTER 1 - INTRODUCTION .. 10

1.1 DOCUMENT STRUCTURE ... 10

1.2 STATE OF THE ART ... 11

FRAMEWORK ... 11

GAME ... 13

1.3 GOALS .. 14

FRAMEWORK ... 14

GAME ... 14

1.4 SPECIFIC SKILLS COVERED ... 15

TI01 .. 15

TI02 .. 15

TI04 .. 16

1.5 CONTRIBUTIONS .. 16

TECHNICAL ENVIRONMENT ... 16

PERSONAL .. 16

1.6 RESULTS ... 17

CHAPTER 2 - DEVELOPMENT ... 18

2.1 METHODOLOGY .. 18

INCREMENTAL MODEL .. 18

UNIFIED MODELING LANGUAGE ... 18

REQUIREMENTS THROUGH USE CASES ... 18

2.2 FRAMEWORK ... 19

REQUIREMENTS ... 19

DESIGN .. 23

DOCUMENTATION ... 34

2.3 GAME ... 37

REQUIREMENTS ... 37

DESIGN .. 40

Game Level Design .. 50

CHAPTER 3 - RESULTS .. 52

3.1 Framework .. 52

3.2 Game ... 54

CHAPTER 4 - BUSINESS PLAN .. 57

4.1 Elevator Pitch .. 57

4.2 Business Model Canvas ... 57

BMC ... 58

Bicomm's BMC .. 59

CHAPTER 5 - CONCLUSION AND PROJECT'S FUTURE .. 63

5.1 Conclusion ... 63

5.2 Project's future .. 64

BIBLIOGRAPHY ... 66

SOURCES OF IMAGES USED ... 68

7

TABLE OF ILLUSTRATIONS

Illustration 1. Client-Server polling. __ 11

Illustration 2. Client-Server long polling. __ 12

Illustration 3. Armor Games. ___ 13

Illustration 4. Kongregate. ___ 13

Illustration 5. Addicting Games. ___ 13

Illustration 6. Top part of Sign up page mock up. ___________________________________ 20

Illustration 7. Bottom part of Sign up page mock up. ________________________________ 20

Illustration 8. Sign in mock up. __ 22

Illustration 9. Dashboard mock up. __ 23

Illustration 10. JWT anatomy. __ 30

Illustration 11. JWT signature component. __ 30

Illustration 12. HTTP monitoring. __ 31

Illustration 13. JWT decoded. ___ 31

Illustration 14. Hijacking JWT inside cookie. _______________________________________ 32

Illustration 15. Full-duplex scheme. __ 34

Illustration 16. Normal flow Choose Controls mockup. _______________________________ 38

Illustration 17. Alternate flow Choose Controls mockup. _____________________________ 38

Illustration 18. Post condition mockup of alternate flow Choose Controls. _______________ 38

Illustration 19. Controls mock up. ___ 38

Illustration 20. BMC. __ 59

TABLE OF UML DIAGRAMS

UML Diagram 1. Sample deployment diagram of a Node.js system. _____________________ 24

UML Diagram 2. Bicomm's architecture. __ 25

UML Diagram 3. public folder. __ 25

UML Diagram 4. DAO (Data Access Object) design pattern applied to a document-oriented

database. __ 28

UML Diagram 5. Server and configuration files. ____________________________________ 33

UML Diagram 6. Interaction diagram of Bicomm's service. ____________________________ 34

UML Diagram 7. Game architecture. ___ 40

UML Diagram 8. gameEnginejs contents. ___ 41

UML Diagram 9. gameobjects contents. __ 42

UML Diagram 10. geom contents. ___ 43

UML Diagram 11. gameEnginejs/gui contents. _____________________________________ 44

UML Diagram 12. input contents. ___ 44

UML Diagram 13. GameStateManager.js __ 45

UML Diagram 14. js/gui contents. ___ 47

UML Diagram 15. Game specific game objects, js/gameobjects. _______________________ 47

UML Diagram 16. js/gamebojects/Level.js . __ 48

UML Diagram 17. js/states contents. ___ 48

UML Diagram 18. js/libs and js/CandyGoreWorld.js _________________________________ 49

UML Diagram 19. Game Level Design. __ 50

file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141149
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141150
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141151
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141279

8

TABLE OF RESULTS

Results 1. Bicomm sign up (Nexus). __ 52

Results 2. Bicomm sign up (Nexus). __ 52

Results 3. Bicomm sign in (PC). ___ 52

Results 4. Documentation (PC). ___ 53

Results 5. Dashboard (PC). ___ 53

Results 6. MongoDB. ___ 53

Results 7. Game entry. (Phone) ___ 54

Results 8. Choosing controls. (Phone) __ 54

Results 9. Choosing number of players. (Phone) ____________________________________ 54

Results 10. Single player game entry. (PC) ___ 54

Results 11. Two player game entry. (PC) __ 55

Results 12. Player controls. (PC) ___ 55

Results 13. Options Menu. (PC) ___ 55

Results 14. Help Menu. (PC) __ 55

Results 15. Level Select Menu. (PC) ___ 55

Results 16. Two players playing state. (PC) __ 56

Results 17. Single player game won state. (PC) _____________________________________ 56

Results 18. Single player playing state. (PC) __ 56

Results 19. Two players game won state. (PC) _____________________________________ 56

Results 20. Playing controls. (Phone) ___ 56

file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141455
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141456
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141457
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141458
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141459
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141460
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141461
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141462
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141463
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141464
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141465
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141466
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141467
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141468
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141469
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141470
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141471
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141472
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141473
file:///C:/Users/Joy/Desktop/tfmjohannaMesaRamos.docx%23_Toc455141474

Summary ULPGC

9

SUMMARY

The goal was to dive into the JavaScript runtime that is Node.js, to do so the following

idea was procured: build a framework that offers a real-time bidirectional

communication service, without clients having to install Node.js in their servers. In

addition, a basic JavaScript game, that uses the service, was programmed following

the book "Building JavaScript Games: for Phones, Tablets and Desktop" [3].

The framework was built through the phases of analysis, design, and implementation.

Once it was well established, the game became the focus of attention for which the

following points were carried out: game idea conception, design and production.

Finally, a basic rough draft of a business plan was generated for the service that the

developed framework offers.

RESUMEN

El objetivo era adentrarse en el sistema en tiempo de ejecución de JavasScript que es

Node.js, para ello se manifestó la siguiente idea: implementar un framework que

otorgue servicio de comunicación bidireccional en tiempo real, sin que los clientes

tengan que instalar Node.js en sus servidores. Además, se desarrolló un juego en

JavaScript que usa dicho servicio, siguiendo el libro "Building JavaScript Games: for

Phones, Tablets and Desktop" [3].

El framework se desarrolló siguiendo las fases de análisis, diseño e implementación.

Cuando quedó consolidado, el juego pasó a ser el foco de atención, realizando los

siguientes puntos: concepción de la idea del juego, diseño y producción.

Finalmente, un plan de negocio básico, que describe el servicio de comunicación, fue

generado.

Chapter 1 ULPGC

10

CHAPTER 1 - INTRODUCTION

Chapter 1 presents the following: document structure, current state and goals,

justification of the specific skills covered, contributions to both technical and personal

environment, and a brief mention of the outcomes.

During the course of the master's degree Node.js was briefly looked into. This new

technology offers a whole plethora of possibilities. Once the program finished, it was

decided that the master's final project would delve into Node.js further to expand the

student's knowledge about the subject. The idea was to create a framework that offers

a real-time bidirectional communication service, making it possible to use some of the

powerful open source libraries available in Node.js' package ecosystem, npm.

Moreover, because the student was also eager to learn about game development, it

was decided that a basic JavaScript game that utilizes the built framework could be

developed as well. This document encompasses the student's work in developing both

the framework and the game.

1.1 DOCUMENT STRUCTURE

The document is structured in chapters, made up of sections, so as to portray the

information lineally, as follows:

 Chapter 1

This chapter's main focus is the project's introduction through the state of the

art, goals, justification of the specific skills covered, contributions to both

technical and personal environment, and a brief mention of the outcomes.

 Chapter 2

The second chapter delves into development of both the framework and the

game.

 Chapter 3

The final results of both the game and Bicomm (the framework) are portrayed

through images in this chapter.

 Chapter 4

The business plan that looks to identify the profitable activity that is Bicomm's

service is found in this chapter.

Chapter 1 ULPGC

11

 Chapter 5

The last chapter encloses the student's conclusions and future of the project.

1.2 STATE OF THE ART

FRAMEWORK

Upon building web applications, one often faces the fact that HTTP (Hypertext Transfer

Protocol) functions as a request-response protocol in the client-server model. On one

hand, a client issues a request, on the other hand the server receives and processes

said request, sending back the response. If the client carries out future requests, they

will not be related to the previous ones. A server cannot send the client anything unless

the client first sends a request. If the goal is for the server to communicate with the

client without them sending a request first then it must be implemented by one of the

following methods:

 Polling: client constantly asks the server if there is any data.

The problem with this is that the server still relies on the client initiating the

connection. If the server were to have data during the polling interval (time the

client waits between making polls) it would still have to wait for the client's poll,

ruining the 'real-time' requirement.

Illustration 1. Client-Server polling.

One way to fix that would be to lower the polling interval, but that would create

an overhead on the server side.

Another way is to use the technique called "long polling". A client opens an

Ajax-based connection to the server, but the server does not reply until it has

data. While this sounds like the sure way, it presents its own set of problems.

The amount of requests the server can handle lessens with every new request

because they remain open until the server has a response for it.

Chapter 1 ULPGC

12

Illustration 2. Client-Server long polling.

 HTML5 WebSockets.

The aforementioned techniques only simulate full duplex communication, with

each having their share of disadvantages. Along with HTML5 came the solution,

WebSockets. They offer a real bidirectional TCP (Transmission Control

Protocol) connection between the server and the client. In short, to establish a

WebSocket connection the client sends a WebSocket handshake request over

HTTP, the server responds with the details on how to open the TCP connection.

As simple as that. Why is this the solution? Because TCP is a connection-

oriented protocol, in other words, a connection is first established and

maintained until both ends of said connection have finished exchanging as

many messages as they need. In essence, TCP is a stateful protocol.

It is a promising way out, almost all major browsers support this (starting at a

certain version) as of today1. There are issues with some proxy servers though.

If the WebSocket protocol client implementation detects that the user agent is

configured to use a proxy when connecting to its destination it should use the

HTTP CONNECT method to set up a persistent tunnel, using an encrypted

WebSocket connection. It is the feature of an HTTP-compatible handshake that

allows an HTTP server to share its default HTTP and HTTPS ports (80 and

443) with a WebSocket gateway or server. Nonetheless, some proxies need to

upgrade to support WebSockets, or need further configuration to not cause the

connections to fail, especially if said connection is unencrypted. The client side

implementation of the WebSocket protocol is done via JavaScript and the

server side implementation depends on the language used (Java, Ruby on

Rails, C++, .Net, JavaScript ... etc).

The framework in this project is built using an HTML5 WebSockets

implementation.

1
" Web Sockets", Can I use, http://caniuse.com/#feat=websockets (June 01, 2016)

http://caniuse.com/%23feat=websockets

Chapter 1 ULPGC

13

These are the techniques available to carry out real-time bidirectional communication.

Anyone who would want to develop a service that requires this kind of communication

would also have to implement one of these techniques or all of them (to allow a

graceful downgrade for clients who have browser versions that do not support

WebSocket connection).

GAME

Thanks to browsers and web technologies thousands of online games are playable as

of today. A browser game is a computer game that is meant to be played on a browser,

over the internet. The genres of said games range from puzzle all the way to

adventure, appealing to both regular and casual players. Some famous free to play

game sites are: Kongregate2, Armor Games3, and Addicting Games4.

2
 Kongregate , http://www.kongregate.com/ , (June 01, 2016)

3
 Armor Games, http://armorgames.com/ , (June 01, 2016)

4
 Addicting Games, http://www.addictinggames.com/ , (June 01, 2016)

Illustration 4. Kongregate.

Illustration 3. Armor Games.

Illustration 5. Addicting Games.

http://www.kongregate.com/
http://armorgames.com/
http://www.addictinggames.com/

Chapter 1 ULPGC

14

1.3 GOALS

FRAMEWORK

Even if a service to be developed only needs basic communication, one of the

techniques explained in section 1.2 would still have to be used. Seems like a lot to

implement just to pass some messages between a server and a client. That is where

this project's framework goal comes in:

Set up a system in JavaScript, using Node.js, that will offer real-time

bidirectional communication without the client having to implement these

protocols nor use anything other than simple JavaScript on the client side. The

client will sign up in the system, download the necessary JavaScript library,

hook it up to their service, initialize basic parameters and they will be well on

their way to real-time full duplex communication with no effort at all.

GAME

This project's game objective is as follows:

Develop a browser game where the player may choose whether they want their

controls to be within the game (touch screen or PC mouse) or within another

device that has access to internet and a browser. The option of using controllers

on a different device will be possible thanks to the framework built in this

assignment. In order to make the most of said framework, multiplayer mode will

also be implemented. The student will learn about OOP (Object Oriented

Programming) in JavaScript and how to correctly separate classes to develop a

reusable basic game engine.

The idea of a game with the controllers on different devices already exists and its

fantastic show case can be found in "Chrome Experiments: Mobile Controller

Experiments" 5. Before coming up with the idea, the student did not know that Google

was already experimenting on the matter.

5
 "Mobile Controller Experiments", Chrome Experiments,

https://www.chromeexperiments.com/mobile-controller , (June 1, 2018)

https://www.chromeexperiments.com/mobile-controller

Chapter 1 ULPGC

15

1.4 SPECIFIC SKILLS COVERED

The master's degree that requires this thesis has a pool of specific skills that the

graduating student must acquire. In this section only a few of said skills will be

exposed, explaining how the thesis covers them. These skills' definition have been

obtained from the official page of the Computer Engineering School of Las Palmas de

Gran Canaria6.

TI01

Definition:

Ability to model, design, define an architecture, implement, administer, operate,

manage and maintain applications, networks, systems, services and software

content.

The TI01 skill has been adequately covered due to the student's work in:

 Designing, defining the architecture, and implementing the framework that

offers a distinct communication service.

 Modeling, designing, and implementing the use of the framework in a

JavaScript game by manipulating the developed game engine.

TI02

Definition:

Ability to understand and know how to apply the functioning and organization of

the Internet, the technologies and network protocols of the new generation, the

component models, middleware and services.

This skill has been sufficiently covered because of the framework's nature:

 The framework's service is offered through the Internet, using an open source

library that manages both HTML5 WebSockets and long polling to set up a two-

way communication line between server and client.

6
 "Máster en Ingeniería Informática. Escuela de Ingeniería Informática Universidad de Las Palmas de

Gran Canaria" EII, http://eii.ulpgc.es/archivos/MasterenIngenieriaInformatica2014.pdf, (June 1, 2016)

http://eii.ulpgc.es/archivos/MasterenIngenieriaInformatica2014.pdf

Chapter 1 ULPGC

16

 For the service to work properly one must understand what a cross-domain

solution is and its restrictions.

TI04

Definition:

Ability to design, develop, manage and evaluate certification mechanisms and

guarantee the security in treatment and access of information in a local

processing or distributed system.

This skill is met during the development of the framework:

 For the clients (other developers) to access the framework's service, it is

necessary to sign into the system and download the necessary libraries. The

sign in process was developed from scratch, understanding the importance of

encrypting sensible information and setting cookies only in appropriate domain

areas to sustain sessions.

1.5 CONTRIBUTIONS

TECHNICAL ENVIRONMENT

At the time the project was developed it was not possible to find a service that would

allow a client to have real-time bidirectional communication without having to install

specific technology such as Node.js. A quick Google search will show how to carry out

said communication, but not a service that already provides it without having to install

any additional software.

The developed framework opens up doors to any client, independently of whatever

server side scripting technique they are using (PHP, ASP, Groovy, Java, Phyton...etc),

who wants real-time bidirectional communication. The client need only sign into the

system, download the necessary JavaScript libraries and set up a few parameters to

be well on their way. The framework lets the client concentrate on their personal project

rather than use up precious time figuring out how to manage the communication.

PERSONAL

This project has given me the opportunity to delve into Node.js and the wondrous open

source library that is Socket.io. I was also able to dabble some into a document-

Chapter 1 ULPGC

17

oriented database, MongoDB. I am still amazed at the fact that JavaScript can now be

used in a server. Not only that, thanks to knowing about the technology through the

master's degree I was able to soon apply it practically in my job. I have also gone on to

use Electron, a framework that lets you use Node.js and its open source libraries to

build native desktop applications. Essentially Electron takes care of the hard parts

while letting you focus on the core of the application.

I was also very interested in building a game from scratch in order to understand its

process and structure. The I book I used as a guide was extremely helpful in providing

adequate direction, building games iteratively, adding more functionality within each

iteration. The book also promoted good coding practices and principles such as

refactoring and proper encapsulation to give way to reusability.

My JavaScript skills have immensely improved thanks to this experience, I am proud to

know such a powerful and versatile programming language.

1.6 RESULTS

In this section a brief mention of the project's results will be presented.

The framework, named Bicomm (allusion to bidirectional communication) was

successfully built and the service setup was less complicated than initially expected.

There is an important problem in the business plan that will be discussed in the last

chapter. Bicomm is accessible through the following web address until August 30th of

2016: http://bicomm.noip.me:8888/signup . To access the library one must sign up

using one of the following invitations: hellowehopeyoustay123, welcomenewcomer456,

ahoymatey987, ahbutyouhaveheardofme2, and butwhyistherumgone0. If you find that

all invitations have been used up, then feel free to use the following user:

username: iamterry

password: 123

The finished game can be played in the following address until August 30th of 2016:

http://woad.es/ . To experience the part of the game that uses the Bicomm service you

must choose for the controls to be on "Phone". There you may choose either single or

multi player mode.

The basic game engine developed for this game will be kept for future personal

references.

http://bicomm.noip.me:8888/signup
http://woad.es/

Chapter 2 ULPGC

18

CHAPTER 2 - DEVELOPMENT

In this chapter the development of both the framework and the game will be presented

through development methodology, requirements specification, design and the user

manual.

2.1 METHODOLOGY

It is of utmost importance to rely on a proved working methodology while carrying out a

project. A methodology helps carry out the project with the expected results, making

sure the software not only does things properly but also does what it is meant to do.

This section will briefly present the methodology used in this thesis and with what tools

were the requirements and architecture defined.

INCREMENTAL MODEL

In short this model divides the project development into various builds, where every

build grows and expands the one before it after it has been validated. Each build is

meant to be a manageable module, where a series of requirements are picked,

developed, tested and validated before moving on to the next module. This model was

picked because both framework and game could be well defined as a whole, so they

could be broken down and built incrementally. Another driving factor was the need to

get a working prototype of the framework early on so that the game could start to

interact with it.

UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML), born in 1994 to the hands of Grady Booch,

James Rumbaugh and Ivar Jacobson, is a modeling language used for general

purposes in software engineering. Through UML one can, in a standard way, provide a

way to visualize the intended system. In this thesis UML's structure diagrams are used

to define the architecture design of both Bicomm and the game.

REQUIREMENTS THROUGH USE CASES

Bicomm's and the game's requirements were obtained through The Process Group's

modifications and variations of "In Search of Excellent Requirements" by Karl E.

Wiegers [18]. The Use Case Approach is task-centric, revealing requirements by

explaining actions that need to be completed.

Chapter 2 ULPGC

19

2.2 FRAMEWORK

REQUIREMENTS

Only the principal use cases will be exposed in this section through the Use Case

Approach. To complement each use case, a rough drawn interface was carried out with

the tool Pencil Project7.

Sign up

Name Sign up

Actor User.

Description The User uses one of the available invitations to become a

Registered User.

Trigger User selects Sign up action.

Preconditions User is not a Registered User.

Post conditions User becomes a Registered User.

Priority High.

Normal Flow

1. Select Sign up action.

2. System verifies invitation.

3. Invitation is valid, user becomes

Registered User and Sign in action is

called.

Alternate Flow

3.a Invitation is invalid, error message is

prompted to the user.

3.b Invitation is already in use, error

message is prompted to the user.

7
 "Pencil Project", pencil, http://pencil.evolus.vn/, (June 3, 201)

http://pencil.evolus.vn/

Chapter 2 ULPGC

20

Derived Functional Requirements:

o Verify invitation

o Register User

o Invalidate invitation after successful sign up

 Illustration 6. Top part of Sign up page mock up.

 Illustration 7. Bottom part of Sign up page mock up.

Chapter 2 ULPGC

21

Sign in

Name Sign in

Actor Registered User.

Description The Registered User logs into the system.

Trigger User selects Sign in action.

Preconditions User is a Registered User.

Post conditions
User is signed into the system (has a cookie in browser that

allows them access to URLs under /auth_api).

Priority High.

Normal Flow

1. Select Sign in action.

2. System verifies Registered User.

3. Registered User is valid, a cookie is

placed in Registered User's browser,

establishing session.

4. Registered User is redirected to

Dashboard.

Alternate Flow

3. Registered User details are not valid,

an error message is shown.

Derived Functional Requirements:

o Verify Registered User

o Place cookie in Registered User's browser

Chapter 2 ULPGC

22

Illustration 8. Sign in mock up.

Download configuration file and library

Name Download configuration file and library

Actor Registered User.

Description The user downloads configuration file and library from

dashboard.

Trigger Registered User selects Download action.

Preconditions Registered User has logged in within the system.

Post conditions Configuration file and library has been downloaded.

Priority High.

Normal Flow

1. Select Download action.

2. System serves configuration file and

library in a .zip file.

Derived Functional Requirements:

o Identify User

o Verify User Session

Chapter 2 ULPGC

23

Illustration 9. Dashboard mock up.

DESIGN

This section will briefly introduce Node.js and then move on with the framework's

architecture, which will be presented through UML's structure diagrams supported with

explicatory paragraphs.

Node.js

Node.js was first released in 2009 thanks to its creator, Ryan Dahl. As per the

documentation8:

 "Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.

 Node.js uses an event-driven, non-blocking I/O model that makes it lightweight

 and efficient. Node.js' package ecosystem, npm, is the largest ecosystem of

 open source libraries in the world."

Node.js gave the developers of the world a way to create web applications that can

establish real-time, two-way connections. An interesting detail to mention about

Node.js is the fact that it is single threaded, using non-blocking I/O calls, which allow it

to support tens of thousands of concurrent connections without incurring the cost of

thread context switching. Its goal is to allow highly concurrent applications. This is

achieved by having any I/O performance use a callback. A direct negative of this set up

is that Node.js does not allow vertical scaling through CPU core number increase

without using additional modules.

8
 Nodejs.org Node.js, https://nodejs.org/en, (June 5, 2016)

https://nodejs.org/en

Chapter 2 ULPGC

24

Node.js on its own does not provide a web server out of the box, one has to add

required modules, create the server and accept and return responses. All of this is

done in the main JavaScript file that is run with the command $node app.js.

UML Diagram 1. Sample deployment diagram of a Node.js system.

Developers coming from other server side scripting languages might find it quite

different, and a bit daunting, to have to program, or configure npm modules, all those

things that a server like Apache or Nginx does automatically. But that is implied

whenever one uses new technology, it is just a matter of learning how to use it.

To complete Bicomm the subsequent technologies were used:

 Node.js

 Node.js modules

 MongoDB

 Bootstrap framework 3.3.1

 Less

 AES 256 encryption - CTR (Counter) mode

 jQuery 1.11.2

 HTML

 CSS

 JavaScript

Chapter 2 ULPGC

25

Framework architecture

Bicomm's architecture is resumed as follows.

UML Diagram 2. Bicomm's architecture.

The main file of the framework is app.js, it is in charge of creating the server, setting

request and response manipulation, and routing the real-time bidirectional

communication. The created server, as shown in the diagram, is set to listen on port

8888. The database used is document-oriented MongoDB. Each package in the

diagram will be introduced briefly to further understand the components of Bicomm.

 public

UML Diagram 3. public folder.

The public folder contains all the HTML that is served in response to client requests by

the server created in app.js . When clients access the dashboard the downloaded

content is the bicommFiles.tar.gz , which contains the needed JavaScript library and

configuration file: socket.io.js and socket.io-config.js .

An interesting aspect to mention is the fact that one can program route shortcuts in the

created server in app.js . For example, image files are in the route media/assets/ but if

one inspects the source code of the HTML pages, they will see that image routes are

Chapter 2 ULPGC

26

images/ , which is the shortcut that was created. It is a quick, easy way of hiding the

server's real folder structure to prying eyes.

The responsive style of the site was carried out thanks to the Bootstrap framework's 12

column grid system. As can be seen from the diagram, Bootstrap is accessed through

a CDN (Content Delivery Network) and its style customization is achieved by

manipulating the framework's Less files and adding the resulting CSS (Cascading Style

Sheet) file last. Less extends the CSS language by adding features that allow

variables, mixins and functions, as well as other techniques that are not available with

plain CSS. Less is a CSS pre-processor that manages to make CSS theme-able and

extendable. Less sheets will not work in browsers as substitutes for CSS sheets, it is

necessary to compile Less sheets to obtain the resulting CSS rules that all browsers

understand. There are two options for this, either compile Less files once and serve the

CSS result, or serve Less files directly along with the file less.js , in charge of compiling

in real-time. The latter is great for development but a poor choice for production when

performance and reliability are important. The CSS files in the style folder are the result

of compiling the appropriate LESS files in the comm_network folder. LESS files'

compilation and compression is carried out with the modules less and less-plugin-

clean-css, which can be called from the command line.

node_modules

Node.js modules are managed by the pre-installed package manager that is npm.

From the npm registry one can install any number of modules through the command

line. The modules found in npm range from simple helping libraries to complicated task

runners. As per npm site's definition, npm is:

"… a way to reuse code from other developers, and also a way to share your

code with them, and it makes it easy to manage the different versions of code."9

A detail to be remarked upon is the fact that whenever a module is installed one can

mark it as a project dependency by adding the option --save, which instructs npm to

include the package inside of the dependencies section of the project's package.json

file. Additionally, one can go further and use --save-dev to save packages that are

only needed during development, like the morgan module (an HTTP request logger

middleware). If the project needs to be moved, only the project's core files are needed

thanks to npm's install command, which will install all the project's dependencies

written in its package.json file. The node modules used in this project were:

9
 "What is npm?" npm, https://docs.npmjs.com/getting-started/what-is-npm, (June 6, 2016)

https://docs.npmjs.com/getting-started/what-is-npm

Chapter 2 ULPGC

27

 body-parser

This middleware allows client's form input to be read by storing it as a

JavaScript object that is accessible through req.body where req represents

the request that the server receives.

 express

This module allows rapid web development by providing a robust set of

features that give the developer the capability to set up middleware that can

respond to HTTP requests, define routing tables that are used to carry out

different actions depending on the HTTP Method and URL, and allow dynamic

HTML page rendering depending on the arguments passed to the templates.

 forever

This module is used to keep the Node.js server developed running perpetually.

A Node.js server can be started through the node command in the current

shell, but the process will stop running when the shell is closed, crashes or it is

forced to exit through Ctrl-C. With forever the child process (the Node.js web

server) will run as a daemon continuously, and if the server crashes for any

reason it will also restart it automatically.

 jsonwebtoken

The module is used to create and verify JSON (JavaScript Object Notation)

Web Tokens.

 less and less-plugin-clean-css

These modules are used to compile and compress LESS files.

 mongoose

The mongoose module is a MongoDB object modeling tool that allows model

definition through the Schema interface.

 morgan

 This module was only used during development to help log HTTP requests

directly to the shell.

Chapter 2 ULPGC

28

 socket.io

This module is key to the framework's service. The socket.io module allows

WebSocket connections to provide bidirectional communication in real-time.

models_manager and models

UML Diagram 4. DAO (Data Access Object) design pattern applied to a document-oriented
database.

The diagram shown encapsulates how MongoDB is accessed by the system. The DAO

(Data Access Object) design pattern was taken as reference and applied to the

manager.js file. A DAO is an object or an interface that provides access to an

underlying database or a persistence mechanism, ultimately isolating the Single

Responsibility Principle, which states:

 "A class should have only one reason to change."10

With the help of the mongoose module the documents in the database were

represented through the Schema interface. It is through manager.js that the server can

access the database without worrying about specific code interaction. Because all

documents are accessed the same way, there is no need to create model-specific

classes that access MongoDB, it can all be done with just the manager.js file, which is

made available to the server as a local module through module.exports. The

manager.js uses the models (invitation.js and user.js) to know what document in the

database it is supposed to query. All that needs to be done before querying manager.js

is to set the appropriate model.

security.js

It is necessary for the framework to be able to authenticate signed in users in order to

allow them access to the dashboard. The traditional way of authenticating is through

10

 "SRP: The Single Responsibility Principle" drive.google.com,
https://drive.google.com/file/d/0ByOwmqah_nuGNHEtcU5OekdDMkk/view?pli=1, (June 6, 2016)

https://drive.google.com/file/d/0ByOwmqah_nuGNHEtcU5OekdDMkk/view?pli=1

Chapter 2 ULPGC

29

server based authentication, where the server stores the user's logged in information

locally (either memory or disk). This implies a series problems:

 For every authenticated user the server creates a record somewhere locally.

The more authenticated users there are the more overhead the server

experiences.

 If scalability is part of the plan then sessions stored in memory will present a

problem when the cloud provider starts to replicate servers to handle increased

application load.

 CORS (cross-origin resource sharing) could become a problem, such as

forbidden requests, when the application wants to share the data across

multiple devices.

Taking into account the listed problems the token based authentication was used in

Bicomm. This authentication method is stateless, information about the user is not

stored in the server nor in a session. This instantly solves the scalability problem, now

the application can scale and add as many machines as it needs to without having to

worry about where a user is logged in (also referred to as session affinity). The usual

flow goes as follows:

1. User requests login with username and password

2. Server validates credentials

3. Credentials are valid so the server provides a signed token

4. Client stores signed token and sends it along with every request

5. Server verifies token and responds with the appropriate data

A big security pro about using token based authentication is preventing CSRF (cross-

site request forgery) attacks. This is because no cookie is sent with each request, the

token is sent as an HTTP header. More often than not though, the token is stored in a

cookie, but said cookie would only be a storage mechanism, not an authentication one.

The industry standard in token based authentication is JWT (JSON Web Tokens).11

JWT work across different programming languages and are self-contained, which is

why they can be transmitted through an HTTP header or through the URL.

11

 "JSON Web Token (JWT)" Internet Engineering Task Force (IETF), https://tools.ietf.org/html/rfc7519,
(June 6, 2016)

https://tools.ietf.org/html/rfc7519

Chapter 2 ULPGC

30

Illustration 10. JWT anatomy.

A JWT is made up of three parts separated by a dot, and they are the header, the

payload and the signature. The header itself is composed of two parts, the declaring

type (which is JWT) and the hashing algorithm used for the signature component, the

resulting JSON object is encoded with Base64, and the result is the header. The

payload will carry the information that the server wants to transmit plus information

about the token itself, also as a JSON object and Base64 encoded. The third and last

part of a JWT is the signature, which includes the header, the payload and a secret, all

encrypted with the hash algorithm specified in the header part of the JWT.

Illustration 11. JWT signature component.

The module jsonwebtoken was used to implement JWT authentication in Bicomm.

Thanks to the module the following was achieved:

 Existence of protected and unprotected routes (everything under /auth_api/ is

protected and requires a JWT) thanks to JWT validation.

 User authentication through a form, passing the username and password and

receiving a JWT in return. This token is stored in a cookie and passed along

whenever an /auth_api/ domain request is carried out by the client.

In the JWT Claims (the payload part of the JWT), the user's name and plan is

registered to avoid having the server look that information up every time the user

carries out a request. Saving user information as JWT Claims is a common practice,

but one must be aware of the fact that a JWT is easily decodable because its encoding

is Base64, in other words, it merely represents data in an ASCII (American Standard

Code for Information Interchange) string format. This is best described with an

Chapter 2 ULPGC

31

example. Using the tool Wireshark12 the sign in HTTP conversation was monitored to

extract the JWT.

Illustration 12. HTTP monitoring.

The secret token the server returned is the following:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyIjoiaWFtdGVycnkiLCJwbGFuIjoic

mVnIiwiaWF0IjoxNDY1NjUwMTQ2LCJleHAiOjE4OTc2NTAxNDZ9.SmfNfaq0G50MgA

mhDYY9SMdED7H5hNdopXFeMaUnsno

When introduced in jwt.io's debugger13 (making sure the algorithm is set to HS256 and

the signature's secret is mastertecwebnegdigitaltfmulpgc), the following decoded

information is obtained:

Illustration 13. JWT decoded.

As can be seen from the image, the JWT Claims are easily obtained. The signature's

secret is only necessary to validate the JWT, without it one can still decode the JWT's

payload, which contains the claims. To add a layer of security towards the information

in the claims the entire JWT is encrypted with the help of the file security.js, which uses

12

 "WireShark" https://www.wireshark.org/ (June 6, 2016)
13

 "Debugger" JWT, https://jwt.io/, (June 6, 2016)

https://www.wireshark.org/
https://jwt.io/

Chapter 2 ULPGC

32

the crypto module, employing the Advanced Encryption Standard encryption algorithm

with 256 bits key length in CTR mode. With this in place the JWT looks as follows:

8b2596226a422bc97d15f7e8dd405ed965b7377d4713b51a65f5f4d7838e4fb13f6885d2

176fd0c6014395e42db265ed1da94aee535705a111c216cd75f88834d57bf27ad419d82

3f0d44edc98743d9ce3b3b5dbe81085447475baacf3b3c703988d17f4386f0f15f6dc34a1

80de883de9cd421ee11b45fd2fd388b355727101cfc94bc4136660d9186902c0aa66e3e

05a65379412305fb9526be9f8f5bab0335b849f78e25fe65bdf

The downside of this is that with every request the JWT will have to be decrypted, not

to mention there still is a big flow in security with this design since there is a way for

someone to hijack the JWT stored in the cookie. With Wireshark one can still sniff out

the packets communicated in the network and attain the new encrypted data stored in

a cookie. Once that is obtained, all it takes is to add that same cookie to one's browser

through a JavaScript code as simple as:

document.cookie="security-

token=8b2596226a422bc97d15f7e8dd405ed965b7377d4713b51a65f5f4d783

8e4fb13f6885d2176fd0c6014395e42db265ed1da94aee535705a111c216cd75

f88834d57bf27ad419d823f0d44edc98743d9ce3b3b5dbe81085447475baacf3

b3c70fd38d07d23b6f0f15f6dc34a180de883de9cd421ee11b7bdb2cd1888555

721540c1d55af4084418c8147065d4946e918463604ea31c3137a6631aa3f9fb

93f004699ea26d9f6deb6384;path=/auth_api";

Illustration 14. Hijacking JWT inside cookie.

Once the command is executed and the page refreshed, access to all pages under

/auth_api/ is possible. The one way to fix these problems is to use a safe connection

through HTTPS, where all the requests are encrypted, including the headers and

Chapter 2 ULPGC

33

cookies. That is why it is extremely important to use HTTPS whenever session tokens

or cookies with sensitive information are shared.

app.js and bicommFiles.tar.gz

UML Diagram 5. Server and configuration files.

This is the main file where the core code of the framework is. Both the code for the

HTTP server and the bidirectional communication is here. The compressed directory

contains the client side script from the module socket.io and the necessary

configuration file that the client must set up accordingly to start using the service.

For the bidirectional communication service to work two options are valid14. On one

hand, the socket's connection can be forced to use only WebSockets, which are

inherently cross domain. On the other hand, CORS must be enabled server side by

having the following headers: Access-Control-Allow-Origin=*, and Access-

Control-Allow-Headers= X-Requested-With. The latter option was used in

Bicomm because it allows the Socket.io library to handle what best connection method

is suitable for the client, starting off with long polling and upgrading gradually to

WebSockets if the client supports them.

The full duplex conversation is managed in the following steps:

1. Client connects (either long polling or WebSockets) with server and passes a

room id.

2. Server adds connected client to a room labeled as the room id passed.

3. Whenever client emits a 'controlAction' message to the server, the server will

broadcast the message to everyone that belongs to that socket's room.

14

 With the knowledge acquired the student answered the following question in stackoverflow.com
under the username JMR. "Cross-domain connection in Socket.IO" stackoverflow.com,
http://stackoverflow.com/questions/8970880/cross-domain-connection-in-socket-
io/33912510#33912510, (June 6, 2016)

http://stackoverflow.com/questions/8970880/cross-domain-connection-in-socket-io/33912510%2333912510
http://stackoverflow.com/questions/8970880/cross-domain-connection-in-socket-io/33912510%2333912510

Chapter 2 ULPGC

34

4. Any client in the same room as the one who emitted the 'controlAction'

message will receive the message. The client who emitted it will not receive it.

Illustration 15. Full-duplex scheme.

UML Diagram 6. Interaction diagram of Bicomm's service.

DOCUMENTATION

This section presents the "get started" documentation in Bicomm's site.15 The briefness

of said documentation is due to how simple it is to set up. Following are the steps one

must carry out to be well on their way to using Bicomm's service.

15

 "Documentation" Bicomm, http://bicomm.noip.me:8888/documentation, (June 8, 2016)

http://bicomm.noip.me:8888/documentation

Chapter 2 ULPGC

35

 Download the library and configuration file from your dashboard. The

downloaded files are required by your clients.

 A room id must be set up for every group of clients you want communicating.

You can't call IO.init() without setting the room id first. If you need different

groups of clients communicating, be sure to set appropriate room ids. Clients

with the same room id will communicate with each other.

IO.room_id = room_id;

IO.init();

 To set the action to be performed when the client receives a message:

IO.onReceiveAction = function(msg) {

 /*The message is contained in the msg variable, this is

the full duplex communication (receiving).*/

};

 To send a message to fellow clients with the same room id:

IO.sendAction("message to be sent as a string");

Practical Example

ClientA and ClientB are to communicate with each other. While ClientC and ClientD are

to communicate with each other and not with ClientA nor ClientB.

ClientA and ClientB's code:

IO.room_id = 'secretforchatroomONE';

IO.init();

IO.onReceiveAction = function(msg) {

 console.log(msg);

};

Then ClientA does:

IO.sendAction("I, ClientA, won't see this message.");

ClientB would see in their JavaScript console the message sent.

ClientC and ClientD's code:

http://bicomm.noip.me:8888/auth_api/client

Chapter 2 ULPGC

36

IO.room_id = 'secretforchatroomTWO';

IO.init();

IO.onReceiveAction = function(msg) {

 console.log(msg);

};

Then ClientC does:

IO.sendAction("I, ClientC, won't see this message.");

ClientD would see in their JavaScript console the message sent.

Chapter 2 ULPGC

37

2.3 GAME

REQUIREMENTS

Just like it was done for the framework, only the principal use cases will be exposed in

this section through the Use Case Approach. There is a rough drawn interface

complementing each use case.

Choose Controls

Name Choose Controls

Actor Player.

Description The Player chooses where they want the controls of the game

to be.

Trigger Player enters the game site.

Preconditions None.

Post conditions Player is taken to the game's main menu.

Priority High.

Normal Flow

1. Player selects PC . 2. System redirects player to game.

Alternate Flow

1. Player selects Phone.

3. Player selects either One or Two

Players.

2. System makes Choose Player Mode

action visible.

4. System redirects Player to game with

the appropriate controls' URL.

Derived Functional Requirements:

o Make it possible for user to pick where they want the game controls to be

o Generate appropriate URL(s) when player chooses controls on phone

Chapter 2 ULPGC

38

Illustration 16. Normal flow Choose Controls mockup.

Illustration 17. Alternate flow Choose Controls mockup.

Illustration 18. Post condition mockup of alternate flow Choose Controls.

Illustration 19. Controls mock up.

Chapter 2 ULPGC

39

Access Options' Menu

Name Access Options' Menu

Actor Player.

Description The Player accesses the game's options menu.

Trigger Player selects Access Options' Menu action.

Preconditions Player has chosen where they want the controls to be.

Post conditions Player is presented with the options' menu.

Priority Medium.

Normal Flow

1. Player selects Options' Menu .

3. Player changes options available.

2. Game presents options menu.

4. Game saves changes.

Derived Functional Requirements:

o Player can change game options such as music.

Choose Level

Name Choose Level

Actor Player.

Description The Player chooses a level to play.

Trigger Player selects Choose Level action.

Preconditions Player has chosen where they want the controls to be.

Post conditions Player is playing the level.

Priority High.

Normal Flow

1. Player selects a level.

2. Level is unlocked.

3. Game loads the level and the player

plays.

Chapter 2 ULPGC

40

Alternate Flow

2. Level is locked.

3. Game does not load the level.

Derived Functional Requirements:

o Player can choose what level to play.

DESIGN

The game's architecture will be described in this section through UML's structure

diagrams supported with explicatory paragraphs.

UML Diagram 7. Game architecture.

This is the game's general architecture. The server where the game is hosted does not

have any CMS (Content Management System) installed. The game is served simply

through an HTML file and interacts thanks to JavaScript. In the following sections each

part will be explained with more detail.

gameEnginejs

The gameEnginejs holds the game engine that was developed while implementing the

game. It consists of a series of classes that take care of various responsibilities such as

geometry and user input. The rest of the game is built upon this base, and it can easily

be reused for another game that might require its need.

Chapter 2 ULPGC

41

UML Diagram 8. gameEnginejs contents.

The contents of the game engine are made available through a set namespace. A

namespace is a technique often used in JavaScript to avoid collisions with other

objects or variables in the global namespace. The technique is also used to organize

modules (blocks of functionality) in manageable groups, like a game engine. The only

set back is that JavaScript does not provide a built-in support for namespaces as other

languages do. Nonetheless, it does provide objects and closures, which are used to

achieve the namespace design through a JavaScript mechanism that allows the

developer to define and call a function at the same time. Eric Miraglia16, engineering

manager for the YUI project at Yahoo, first talked about this technique as a "JavaScript

Module Pattern", back in 2007.

"use strict";

var gameEnginejs = (function noname (gameEnginejs)){

... Define module

gameEnginejs.myModule = MyModule;

return gameEnginejs;

})(gameEnginejs || {});

What is essentially been done here is creating an anonymous function and executing it

immediately, that way all the code inside the function will live in a closure, providing

privacy and state throughout the lifetime of the application. By returning the specified

module created within the closure, the basic Module Pattern is completed. Taking the

pattern to an advanced level, loose augmentation allows JavaScript applications to

16

 "A JavaScript Module Pattern" YUI, http://yuiblog.com/blog/2007/06/12/module-pattern/, (June 8
2016)

http://yuiblog.com/blog/2007/06/12/module-pattern/

Chapter 2 ULPGC

42

load scripts asynchronously, where each module can reside in its own file. Ultimately

what the expression gameEnginejs || {} does is pass the variable

gameEnginejs if it is defined or an empty object literal to start constructing upon.

Thanks to this, it will not matter the order in which the modules are added to the

namespace, the first time it happens with an empty object literal, and afterwards it will

be the gameEnginejs variable that has been defined.

A brief description of each component in the game engine follows.

IGameLoopObjects.js

This file is meant to define an interface that other classes will implement in order to be

considered as game loop objects. The methods defined here are needed for the game

loop requirements, such as handleInput, update, draw and reset.

 gameobjects

The gameobjects folder inside of gameEnginejs contains all the base classes that a

game might use to further develop other classes.

UML Diagram 9. gameobjects contents.

The GameObject class is the base class of the game engine, it contains basic

properties (like world position) and functions (like the ones set in the IGameLoopObject

interface). The world position property of the GameObject class calculates the object's

absolute x and y coordinates in the game world. It also contains the local position,

which is the object's position in respect to its parent's position. The world position is not

stored as a fixed number, but it is rather calculated upon called, by adding the object's

local position to its parent's world position. If the object has no parent, then its local

position is the same as its world position. All other classes in the game engine extend

from this base class. The GameObjectList class is meant to represent a list of

Chapter 2 ULPGC

43

GameObjects , with all the functionalities of a list (add, sort, remove, at, find,

clear...etc). It also overrides some of the GameObject's functions to better suit its

purpose. The GameObjectGrid class extends from the GameObjectList and its goal is

to represent a matrix of columns and rows. Even though the GameObjectGrid is a

GameObjectList it manages to be a grid through the following math equations to

determine row and column positions in a single dimensional list:

var row = Math.floor(this._gameObjects.length / this._columns);

var col = this._gameObjects.length % this._columns;

Last, the SpriteGameObject handles any GameObject that has a sprite of its own to

draw, or is represented by a sprite (an image).

Math.js and Sound.js

As the name of the Sound.js file suggests, this module is used to add sound to the

game, carrying out basic functions such as play or having properties such as volume.

The Math.js file is not an exported module to the gameEnginejs namespace, but it's

rather used to add functionality to JavaScript's Math built-in object.

geom

UML Diagram 10. geom contents.

The geom folder contains exported modules that are meant to aid in geometrical

needs. The Vector2D module represents a two dimensional vector, and provides

several functions to manipulate such a vector (addition, subtraction,

multiplication...etc). The Rectangle module, as its name states, represents a rectangle

with the help of the Vector2D module. Being able to represent a rectangle in an HTML5

Canvas is absolutely basic in terms of pin pointing where an object is and what area it

delimits within the Canvas' point grid. It helps to define portions of the screen, letting

the application know if a certain area is being touched, for example.

Chapter 2 ULPGC

44

SpriteSheet.js

If a game uses many sprites it becomes inefficient to load them one by one, especially

if the data is to be transmitted over the internet. It is not the same to have a single

request and download 30 sprites within a single sheet, than to have 30 individual

requests for each sprite. This technique does not apply only to game development, it is

often used to improve a site's speed, since CSS allows background positioning of

images, letting it use sprite sheets of icons. As it would be implied, the SpriteSheet

module allows the game to use sprite sheets instead of single sprites. The dimensions

of the sprite sheet (how many columns and rows) does not have to be set dynamically,

instead it is the name of the sprite sheet that must contain its proportions:

spr_name@COLSxROWS.png.

gui

UML Diagram 11. gameEnginejs/gui contents.

This folder contains commonly used GUI (Graphic User Interface) elements, such as a

Label or a Button. The modules are meant to be used on an HTML5 Canvas.

input

UML Diagram 12. input contents.

Chapter 2 ULPGC

45

The input folder handles all the basic ways a user could input information towards the

game: mouse, touch (touch devices), and keyboard. The Color.js file is merely a way of

accessing hexadecimal colors through their human readable name. A big difference

when developing with an HTML5 Canvas is that detection of user input through

common events such as mousedown or keydown are no longer enough. It is also

necessary to determine if the position where the event occurred forms part of a

GameObject such as a button. The game objects that tend to be clicked are those that

are drawn on the Canvas, those would be the SpriteGameObjects. Hence why that

class has a very useful property called boundingBox, which calculates the rectangle it

encloses within the Canvas. This property is then used to determine if the user input

event is destined for said SpriteGameObject.

Another design pattern is introduced in this folder, the Singleton Design Pattern17.

Summarized, the Singleton pattern is meant for classes that need only have one

instance and provide a global point of access to its information, along with lazy

initialization (initialize when it is called for the first time). The way to achieve this is by

exporting the module through an instance of the class rather than the class definition.

var gameEnginejs = (function(gameEnginejs) {

 function Mouse_Singleton() { ... }

 ...

 gameEnginejs.Mouse = new Mouse_Singleton();

 return gameEnginejs;

}) (gameEnginejs || {});

The classes that use this pattern are: Mouse.js, Keyboard.js and Touch.js.

GameStateManager.js

UML Diagram 13. GameStateManager.js

17

 "Singleton Design Pattern" SourcMaking, https://sourcemaking.com/design_patterns/singleton, (June
8 2016)

https://sourcemaking.com/design_patterns/singleton

Chapter 2 ULPGC

46

This class is in charge of managing the game's states, which also implies switching

between them when the need arises. This class also implements the Singleton Design

Pattern.

Canvas2D.js

The Canvas2D singleton class represents the HTML5 canvas used in the game,

offering various functionalities such as resize, clear, initialize, scale or drawImage.

Game.js and LAB.min.js

Last but not least are the Game.js and LAB.min.js. The traditional way of adding

JavaScript files (sequentially with the <script> tag) will not work because JavaScript

files are retrieved from a server, being unable to pin point the order in which they will

be loaded. The browser will not be able to interpret the code if the files are loaded in an

inappropriate order (because of the existing architecture, classes like GameObject

need to be loaded before GameObjectGrid). If a file is loaded with code that points to

another file that has not been loaded yet, the code will not work. To load JavaScript

dynamically and in a predefined order the script-loading tool LABjs18 is used, and that

is the LAB.min.js file. The Game.js file contains generic game code to start up a game

based on the developed game engine, some of its methods are: size, totalTime,

loadAssets, start...etc. The idea is for another class to use these methods to get a

specific game ready. An important inner property within this class is the

requestAnimationFrame, in charge of telling the browser that the application needs to

perform an animation and requests for it to call a specific function to update said

animation before the next repaint. The property finds out if the function

requestAnimationFrame is available in the current browser, if it is not it returns a

function that will call another function (a callback) after 16.6 milliseconds have passed,

in an attempt to simulate a basic requestAnimationFrame. Game.js also uses the

Singleton pattern.

var requestAnimationFrame = (function () {

 return window.requestAnimationFrame ||

 window.webkitRequestAnimationFrame ||

 window.mozRequestAnimationFrame ||

 window.oRequestAnimationFrame ||

 window.msRequestAnimationFrame ||

 function (callback) {

 window.setTimeout(callback, 1000 / 60);

18

 "Loading And Blocking JavaScript" LABjs, http://labjs.com/ , (June 15 2016)

http://labjs.com/

Chapter 2 ULPGC

47

 };

 })();

gui

UML Diagram 14. js/gui contents.

The OnOffButton.js represents a button that has two states: on or off. It manages to be

a single SpriteGameObject because it uses a sprite sheet (one row, two columns) to

represent both of its states. Meanwhile, the LevelButton.js represents the buttons the

user clicks to play a level in the game. It has to handle three states: solved, unsolved or

locked.

gameobjects

UML Diagram 15. Game specific game objects, js/gameobjects.

The VisibilityTimer.js is used as a timer during the game, the time is decreased with

every update called from the game's main loop from Game.js .

Chapter 2 ULPGC

48

The PairList.js is used to graphically represent how many candy pairs the player has

obtained. The Candy.js represents the candy objects in the game, and the Tile.js

represents what type of tile (normal, background, wall) will make up the TileField.js (the

board) in the game. The Controls.js represent the game controls within the game.

UML Diagram 16. js/gamebojects/Level.js .

Finally, the Level.js and MultiPlayerLevel.js (same dependencies) represent the levels

played in the game. Their responsibility is to build the level from the level designer's

plan and handle the user interaction.

states

UML Diagram 17. js/states contents.

Chapter 2 ULPGC

49

The states of the game are represented by the classes inside the js/states folder. There

is a basic class from which almost all extend, the GameSate class. The game was

developed with the mind that it is composed of different states (or scenes) that interact

with the player in different ways. The user navigates through these states throughout

the course of the game, spending most of their time at the PlayingState.js, in charge of

the actual game playing. It is the GameStateManager.js' job to deal with the different

states of the game, switch from one to the other and find them. The game states were

designed to run completely independently from each other.

CandyGoreWorld.js and libs

UML Diagram 18. js/libs and js/CandyGoreWorld.js

The libs folders holds the necessary Bicomm files needed for the full duplex real-time

communication. The jQuery library is used to enhance the control's experience (when

the user chooses the controls to be outside of the game); if it is a phone, and it allows

it, it lightly vibrates with every tap on the controls.

The CandyGoreWorld.js is in charge of initializing the game and loading the

appropriate sprites associated with the game.

style and assets

The styles folders holds the game site's images and CSS style. Because the style of

the site that presents the game was so basic, vanilla CSS with the help of the

Bootstrap framework, was employed.

The assets folder holds all the sprites and sprite sheets the game employs, as well as

the sound files. The graphics carried out for this game were done in Adobe Photoshop

Chapter 2 ULPGC

50

(thanks to the license provided by the University) after studying various lessons from

Bert Monroy in Lynda.com.19

HTML files

The entry point to the game is through index.html, in this page the player chooses

where they want the controls to be:

 On the PC (that means the controls are within the game)

 On phone

This choice is the one that uses Bicomm's service

o Single Player

o Two Players

The candygalore.html is the file that responds to the first choice and the

multiplayercandyGalore.html is for the second choice. The controls.html are the

controls outside of the game (when the player chooses controls to be on phone).

Game Level Design

UML Diagram 19. Game Level Design.

Part of developing a game is putting thought into the game level design, which in big

games is a job of its own. The ideal set up is for the game level designer to design

whatever kind of level they have in mind without knowing a lot about code. This allows

non-programmers to excel at their level design task, helping effectively in the

development of the game. To achieve this, the levels in this game are created through

characters arranged in a grid:

window.LEVELS.push({

 ...

 tiles : ["#########",

 "#.......#",

 "#...b...#",

19

 "Bert Monroy", Lynda.com, http://www.lynda.com/Bert-Monroy/27-1.html, (June 9, 2016)

http://www.lynda.com/Bert-Monroy/27-1.html

Chapter 2 ULPGC

51

 "#.......#",

 "#.......#",

 "#...b...#",

 "#.......#",

 "#########"]

});

Each character represents one of the classes previously presented. It is the Level.js

and MultiPlayerLevel.js's responsibility to read these levels in the form of characters

and translate them to game objects.

 '.' is the Tile.js

 ' ' is the Tile.js (background type)

 'r,b,g,o,p...' are the Candy.js (the letter represents the color, if the letter is

capitalized then the candy is initially boxed). When designing the level for two

players, to distinguish between which candy is for which player, the numbers 1

and 2 have to appear before these characters ('1b, 2r').

 '@' is a SpriteGameObject.js representing the kid that eats the candy

 Anything else is a Tile.js (wall type)

This makes it real easy to change existing levels or add new ones.

Chapter 3 ULPGC

52

CHAPTER 3 - RESULTS

This chapter will present the results of both the framework and the game through

images of the final products.

3.1 Framework

Results 2. Bicomm sign up (Nexus).

Results 1. Bicomm sign up (Nexus).

Results 3. Bicomm sign in (PC).

Chapter 3 ULPGC

53

Results 4. Documentation (PC).

Results 5. Dashboard (PC).

Results 6. MongoDB.

Chapter 3 ULPGC

54

3.2 Game

 Results 7. Game entry. (Phone)

 Results 8. Choosing controls. (Phone)

Results 9. Choosing number of players.
(Phone)

Results 10. Single player game entry. (PC)

Chapter 3 ULPGC

55

Results 12. Two player game entry. (PC)

Results 11. Player controls. (PC)

Results 13. Options Menu. (PC)

Results 14. Help Menu. (PC)

Results 15. Level Select Menu. (PC)

Chapter 3 ULPGC

56

Results 18. Single player playing state. (PC)

Results 17. Single player game won state. (PC)

Results 16. Two players playing state. (PC)

Results 19. Two players game won state. (PC)

Results 20. Playing controls. (Phone)

Chapter 4 ULPGC

57

CHAPTER 4 - BUSINESS PLAN

A formal business plan is a statement of business goals, targeting areas such as the

market, the product, the problem, capital and resource requirements, so on so forth.

This chapter presents a first draft of Bicomm's business plan defined through an

elevator pitch and the Business Model Canvas.

4.1 Elevator Pitch

The elevator pitch concept is born from the idea of being able to impress a possible

investor during a brief ride in an elevator. It is meant to quickly provide an overview of a

product. It first became popular and referenced to pitches made by entrepreneurs to

Silicon Valley capitalists. The characteristics that make up an elevator pitch are:

 Not longer than 30 seconds

 Approximately 80-90 words

 Answers some or all of the following: who you are, what you offer, what the

benefits are and how do you do it.

This business plan's elevator pitch is:

Ever asked one of your developers to conjure a real-time chat compatible with

all clients? Did they make you feel like if you were asking for the moon? Not any

more, not with Bicomm in play. Our company offers just that within minutes of

configuration, real-time communication for developers to set up in their system

without having to worry about technology compatibility. It's easy, stress-free and

powerful thanks to the now popular Node.js. Your developers will be happy and

they will make you happy, all thanks to Bicomm.

4.2 Business Model Canvas

The Business Model Canvas (BMC) was presented in the class "Entrepreneurship in

IT" for the Master in Computer Engineering: Web Technology and Digital Business20.

20

 "Máster en Ingeniería Informática: Tecnología Web y Negocio Digital",
http://eii.ulpgc.es/blogs/estudios-eii-mii/master-en-tecnologia-web-y-negocio-digital/ , (June 10, 2016)

http://eii.ulpgc.es/blogs/estudios-eii-mii/master-en-tecnologia-web-y-negocio-digital/

Chapter 4 ULPGC

58

BMC

The BMC is meant to give a coherent structure and view to a business plan through its

nine elements:

 Customers

This element describes the customers. Who are the customers? What do they

think? What do they do? In this segment the dimensions of the market are

also defined. A business can have a single or multi-sided market. A multi-

sided market has different types of clients, like a newspaper (the clients are

the readers on one hand, and the advertisers on the other).

 Value Proposition

The business's value must be presented in this element. What is it about the

business that will compel others to buy its service? The ideal link would be to

clearly explain how the customers defined in the Customers section have their

problems solved through the Value Proposition. If current alternatives exist,

then the company's outstanding differences must be explained, explaining

how they are better over the existing options.

 Channels

The business must have a way to reach their propositions. How are they

promoted, sold and delivered?

 Customer Relationships

The way in which a customer interacts with the company throughout the sales

and product lifecycle is defined as Customer Relationships.

 Revenue Streams

In this segment the ways in which the business earns revenue have to be

specified.

 Key Activities

The Key Activities are the principal actions the business carries out to deliver

its Value Proposition.

Chapter 4 ULPGC

59

 Key Resources

There are a certain set of assets the business needs to carry out its service,

those are the Key Resources.

 Key Partnerships

At times businesses establish partnerships to relieve unimportant activities

onto them, allowing the business to employ all of its attention towards the Key

Activities.

 Cost Structure

This element defines what the business spends money on, linking it to the

Revenue Streams.

Bicomm's BMC

Illustration 20. BMC.
21

Customers

Bicomm's service is directed towards a single side market, online projects that need to

set up simple full duplex communication in real-time. In order to use the service the

customers will need backend and frontend knowledge. This definition encloses all sort

of web development projects such as games, chats...etc.

21

 "Business Model Canvas", Espirex, http://espriex.co/business-model-canvas , (June 13 2016)

http://espriex.co/business-model-canvas

Chapter 4 ULPGC

60

Value Proposition

Bicomm offers a simple set up to get full duplex communication going within minutes.

The current alternatives to Bicomm are frameworks or libraries that are technology

dependent. This means the customers not only need to install the technology but also

know how to program in that specific language, setting up the library or framework

server side. They are a lot of setbacks if the customer wants to exchange a few

messages between their clients in real-time. That is where Bicomm comes in, the

service offered can be used in any kind of server-client (be it PHP, Ruby on Rails, Java

EE...) set up. The only technology it uses is the client side running JavaScript. The

configuration can be completed within minutes. In other words, it is fast and easy to

use.

Channels

The channels define how Bicomm communicates its proposition to the customers

previously defined. One of the business's main channels is its site. It is where

customers can sign up and hire the service, download the configuration files and read

the manual to know how to get started.

Another important channel is through Google AdWords. It is important for Bicomm to

become known to the Customer Segments it aims for, and Google AdWords allows this

through special keyword searches. When these keywords are used in Google's engine

then a link to the Bicomm site will be offered as an advertisement. This is quite

lucrative since Bicomm will be able to directly tackle the Customers segment it is

defined for, the customers whose problems can be solved by Bicomm's services. Some

of the keywords could be: communication, real-time, chat, online...etc.

Customer Relationships

This could be Bicomm's weakest point in regards to its Business Plan. The customer

does not directly interact with any person in order to start using Bicomm's service. Both

the sales and product lifecycle are all done through the web. Because one of Bicomm's

Value Propositions is the ease with which the service can be used it becomes

necessary for the documentation to have no faults and be understood even by entry

level developers. It would be advisable, in the future, for Bicomm to offer premium post-

sale service for those who require it.

Chapter 4 ULPGC

61

Revenue Streams

Bicomm's Revenue Streams are directly mapped to the Customers. Bicomm offers a

service where the client will set up the given library and use Bicomm's server as a

middleman for the communication between their clients and server. This implies that

each customer will be using different amounts of server-client traffic at any given time.

Due to this, a permanent license cannot be applied and a subscription model is better

suited instead. The customers would sign up for a subscription much similar to those

offered by web hosting services. The price would vary depending on the amount of

bandwidth desired.

Key Activities

The Key Activities are meant to list the crucial activities the business must carry out in

order to deliver its propositions. Bicomm is a service-driven business, making sure

clients' needs are met with the most up to date technology is one of the key activities

that it carries out. To be able to do this, things like maintaining expertise of Node.js

knowledge, and constant learning about users and new techniques to improve the

existing product are some of the Key Activities that need to be done.

Key Resources

As mentioned before, Bicomm is a service-driven business, offering one product: full

duplex communication in real-time. This helps filter out the assets that need to be in

place in order to fulfill the Key Activities. Bicomm's principal Key Resources are

Node.js and Socket.io expertise, as well as web traffic optimization (needed to satisfy

all clients equally, independently of their geographical location) and a good server

infrastructure.

Key Partnerships

Bicomm's service relies on the internet, offered by web hosting companies. It is easy

then to see that Bicomm's Key Partnership is their web hosting company, one that

should be able to satisfy their need in order to provide their Value Propositions to the

Customers.

Cost Structure

The Key Activities, Resources and Partnerships drive costs to maintain them. The cost

in terms of the Key Partnership would need to be able to cover the expected traffic that

is to be given to the Customers, so it could be variable as the business tests different

Chapter 4 ULPGC

62

business models. Of course, the Revenue Stream should cover those costs when

enough customers have signed up with Bicomm.

Chapter 5 ULPGC

63

CHAPTER 5 - CONCLUSION AND PROJECT'S FUTURE

5.1 Conclusion

This master's thesis concludes having achieved all the goals envisioned and something

more along the way. Bicomm was successfully established, allowing anyone to

implement full duplex communication in real-time within minutes. The framework's ease

of use was tested while developing an online game that creatively used the service to

add something more to the playing experience by providing controls through a phone.

Finally, establishing a business plan changed my view from developer to business

woman, having to think about how to turn an idea into a profitable scheme. It was eye

opening comprehending how important it is to have a business model well defined to

understand where the idea might be weak and what needs more development.

Carrying out this project from initial concept on paper to live site and game have

provided me with in depth knowledge about JavaScript, online game architecture,

game development and Photoshop. I have also dipped into Node.js and Socket.io, but

there is still a lot more to learn from those great technologies.

It was quite satisfactory to apply what I learned through my master's degree and this

thesis into my day job. Thanks to my knowledge in Node.js two projects in my work

have been carried out with this technology, shortening development time and achieving

applications that have worked smoothly since set in production. While developing

Bicomm, one of the problems I had trouble overcoming was the CORS implementation,

I could not quite find the information I needed. In the end, I managed to solve it and

helped others along the way, by posting my solution in the well known site that is

StackOverflow22.

The knowledge I harnessed in JavaScript made me comfortable enough to play in this

year's Tuenti Challenge 623, solving the problems in JavaScript (executing them with

Node.js) and managing to become number 136 out of 781 even though I only got to

problem 5. Developing an architecture with OOP (Object Oriented Programming)

applied with JavaScript has opened my eyes to how powerful, and delightful, this

language truly is. I was very happy to develop the game, understanding the

22

 "Cross-domain connection in Socket.IO" , stackoverflow,
http://stackoverflow.com/questions/8970880/cross-domain-connection-in-socket-
io/33912510#33912510 , (June 15, 2016)
23

 "Phase 1: Final Ranking", Tuenti Challenge 6, https://contest.tuenti.net/Stats , (June 15, 2016)

http://stackoverflow.com/questions/8970880/cross-domain-connection-in-socket-io/33912510%2333912510
http://stackoverflow.com/questions/8970880/cross-domain-connection-in-socket-io/33912510%2333912510
https://contest.tuenti.net/Stats

Chapter 5 ULPGC

64

requirements needed and how to implement them. I will be keeping the game engine I

developed for reference or use in future projects.

While Photoshop and illustration was not part of the goals set in this master's thesis, I

ended up learning how to use it in order to provide the game with decent images. The

site Lynda.com was extremely helpful, as well as the opportunity to use Photoshop

thanks to the license provided by the ULPGC. The comprehension I gathered was

enough to help others by answering questions in the site, as a subdomain of

StackExchange, GraphicDesign24. When the ULPGC offered a chance to take the test

to qualify as an "Adobe Certified Associate in Visual Communication Using Adobe

Photoshop CC", at no cost to the student, I was quick to grab the chance, and proudly

earned the certificate.

I conclude that this thesis as well as the master's degree have greatly helped me

develop my knowledge in online technology, enhancing my full stack developer profile,

as well as opened a door to game development and illustration. As I look to the future I

think about delving into C++, virtual reality and artificial intelligence to pave my path

towards game development.

5.2 Project's future

The working results of this project are but a first draft to what could be. Bicomm

essentially has many improvements to be made to become a full blown business:

 Identify the client through the traffic received. At the moment Bicomm simply

offers the service to the petitions received, not knowing if the petition is from a

subscribed client or not.

 Measure and limit how much traffic a client produces. Without this feature the

Revenue Streams are nonexistent.

 Research how to protect the client from having his subscription hijacked. This

dilemma was looked into during the development and discussed but no

answer was attainable. The problem relies in that anybody can download the

client's JavaScript files to play the game, when one downloads the files they

are easily viewable through any browser console. Once inspected, they can

easily find the room id they use and obtain Bicomm's configuration file.

 Connect Bicomm with a paying gateway so clients can carry out a

subscription.

24

 "JMR", graphicdesign, http://graphicdesign.stackexchange.com/users/39730/jmr , (June 15, 2016)

http://graphicdesign.stackexchange.com/users/39730/jmr

Chapter 5 ULPGC

65

 Improve time response between the user sending the message and the

server receiving it (improve the time it takes the message to travel to Bicomm

server and then for it to be broadcasted).

As can be appreciated, Bicomm's project is quite young in its development, there's

plenty of room for future students to develop it further.

Bibliography ULPGC

66

BIBLIOGRAPHY

[1] Avin. Avin's Blog. "Adding CSRF token to jQueyr AJAX requests." 3 February 2013.

9 January 2016. <http://avinmathew.com/adding-csrf-token-to-jquery-ajax-requests/>

[2] Balliauw, Maarten. Maartenballiauw. "Techniques for real-time client-server

communication on the web (signalR to the rescue)." 29 November 2011. 3 December

2011. <http://blog.maartenballiauw.be/post/2011/11/29/Techniques-for-real-time-client-

server-communication.aspx>

[3] Egges, Arjan. Building JavaScript Games for Phones, Tablets, and Desktop.

Apress, 29 September 2014.

[4] Express. "Serving static files in Express." 8 December 2015.

 <http://expressjs.com/en/starter/static-files.html>

[5] Express. "Installing." 9 November 2015.

<http://expressjs.com/en/starter/installing.html>

[6] Hartmann, Christoph. Lollyrock. "Encrypt and decrypt content with Nodejs." 10

January 2015. <http://lollyrock.com/articles/nodejs-encryption/>

[7] Holbrook, Josh. Nodejitsu. "How to use crypto module." 20 August 2011. 9

December 2015. <https://docs.nodejitsu.com/articles/cryptography/how-to-use-crypto-

module>

[8] Kiessling, Manuel. "The Node Beginner Book." The Node Beginner Book. 9

November 2015 <http://nodebeginner.org/>

[9] King, Kelly. Codeplanet. " How to Make a Single Page Website." 18 October 2015.

15 December 2015. <https://codeplanet.io/how-to-make-a-single-page-website/>

[10] Kitamura, Eiji. Ubl, Malte. Html5rocks. "Introducing WebSockets: Bringing Sockets

to the Web." 20 October 2010. 19 December 2015.

<http://www.html5rocks.com/en/tutorials/websockets/basics/>

[11] Leggetter, Phil. Leggetter. "Making cross domain JavaScript requests using

XMLHttpRequest or XDomainRequest." 12 Match 2010. 13 November 2015.

<http://www.leggetter.co.uk/2010/03/12/making-cross-domain-javascript-requests-

using-xmlhttprequest-or-xdomainrequest.html>

http://avinmathew.com/adding-csrf-token-to-jquery-ajax-requests/%3e
http://blog.maartenballiauw.be/post/2011/11/29/Techniques-for-real-time-client-server-communication.aspx
http://blog.maartenballiauw.be/post/2011/11/29/Techniques-for-real-time-client-server-communication.aspx
http://expressjs.com/en/starter/static-files.html
http://expressjs.com/en/starter/installing.html
http://lollyrock.com/articles/nodejs-encryption/
https://docs.nodejitsu.com/articles/cryptography/how-to-use-crypto-module
https://docs.nodejitsu.com/articles/cryptography/how-to-use-crypto-module
http://nodebeginner.org/
https://codeplanet.io/how-to-make-a-single-page-website/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.leggetter.co.uk/2010/03/12/making-cross-domain-javascript-requests-using-xmlhttprequest-or-xdomainrequest.html
http://www.leggetter.co.uk/2010/03/12/making-cross-domain-javascript-requests-using-xmlhttprequest-or-xdomainrequest.html

Bibliography ULPGC

67

[12] mongoDB. "Install MongoDB on Red Hat Enterprise, Cent0S, Fedora, or Amazon

Linux". 4 December 2015. <https://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-

red-hat-centos-or-fedora-linux/ >

[13] mongoDB. "UNIX ulimit Settings". 4 December 2015.

<https://docs.mongodb.com/manual/reference/ulimit/>

[14] Mongoose. "Finding documents." 8 December 2015.

 <http://mongoosejs.com/docs/2.7.x/docs/finding-documents.html>

[15] Node.js. "Node.js v6.2.2 Documentation." 9 December 2015.

 <https://nodejs.org/api/>

[16] Petkov, Petko. Websecurify. "Hacking Nodejs and MongoDB." 11 August 2014. 10

January 2015. <http://blog.websecurify.com/2014/08/hacking-nodejs-and-

mongodb.html >

[17] Robbins, Charlie. Nodejitsu. "Keep a node.js server up with Forever." 30

November 2010. 12 November 2015 <http://blog.nodejitsu.com/keep-a-nodejs-server-

up-with-forever/>

[18] Sakry, Mary. Potter, Neil. Census. "Clearer Software Requirements Using a

Concise Template." 1 November 2015.

<http://www.census.gov/cspi/pdf/Clearer_Software_Requirements_Neil_Potter.pdf>

[19] Sevilleja, Chris. Scotch.io. "Learn to Use the New Router in ExpressJS 4.0." 14

April 2014. 2 December 2015. <https://scotch.io/tutorials/learn-to-use-the-new-router-

in-expressjs-4#our-sample-application>

[20] Socket.io. "Get Started: Chat application." 9 November 2015. <http://socket.io/get-

started/chat/>

https://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-red-hat-centos-or-fedora-linux/
https://docs.mongodb.org/v2.4/tutorial/install-mongodb-on-red-hat-centos-or-fedora-linux/
https://docs.mongodb.com/manual/reference/ulimit/
http://mongoosejs.com/docs/2.7.x/docs/finding-documents.html
https://nodejs.org/api/
http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html
http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html
http://blog.nodejitsu.com/keep-a-nodejs-server-up-with-forever/
http://blog.nodejitsu.com/keep-a-nodejs-server-up-with-forever/
http://www.census.gov/cspi/pdf/Clearer_Software_Requirements_Neil_Potter.pdf
https://scotch.io/tutorials/learn-to-use-the-new-router-in-expressjs-4%23our-sample-application
https://scotch.io/tutorials/learn-to-use-the-new-router-in-expressjs-4%23our-sample-application
http://socket.io/get-started/chat/
http://socket.io/get-started/chat/

Sources ULPGC

68

SOURCES OF IMAGES USED

[1] Anders Jildén. Unsplash. 19 January 2016. <https://unsplash.com/@andersjilden>

[2] Exasperation. Freepik. 20 January 2016. <http://www.freepik.com/free-

photo/exasperation_41662.htm#term=annoying&page=1&position=6>

[3] Subtle Patterns. 15 January 2016. <http://subtlepatterns.com/>

https://unsplash.com/@andersjilden
http://www.freepik.com/free-photo/exasperation_41662.htm%23term=annoying&page=1&position=6
http://www.freepik.com/free-photo/exasperation_41662.htm%23term=annoying&page=1&position=6
http://subtlepatterns.com/

