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1 Introduction

Stochastic restrictions approach is one of the ways in which prior information could be modelled. The

rationale of using it lies on the fact that it brings efficiency gains in the estimation, subject to the

quality of the information available. In some cases, prior information comes from the theory, and

imposes restrictions among parameters that should hold in exact terms. This prior information could

be included in the model as a deterministic restriction, and the estimator that takes it into account

has smaller variance than the nonrestricted estimator. In other cases, prior information comes from

previous estimations of similar but different models or samples. This information could be considered

as a hint, or a range of values that should contain the value of the parameter with some probability.

In this case, deterministic restrictions should not be included in the estimation since the restricted

estimator will be biased. If this information is not taken into account in the estimation despite being

good, then the information will be wasted as well as the chance of improve the efficiency of the

estimator. An intermediate solution is to include it with certain predetermined degree of uncertainty.

This is the idea behind stochastic restrictions approach, and its interest is that brings efficiency gains,

as shown in Theil and Goldberger (1961) and Shiller (1973) for a linear model under normality of the

errors. Nevertheless, stochastic restrictions seem not to have much impact in the classic econometric

literature, mainly because of its irrelevance to explain asymptotic efficiency gains. On the other side,

in the bayesian approach, prior information is in the bases of the methodology, which is increasing

its applicability and diffusion in the profession. In some cases, for instance, the mixed logit model

(see McFadden and Train, 2000), the bayesian approach dominates the simulated maximum likelihood

estimation in terms of efficiency, mainly due to the prior information used in the bayesian approach

and not in the SML method and also, due to the high variance of the SML estimator resulting from

the high number of simulations needed to implement this method (See Train, 2001 and 2003).

Despite the finite sample efficiency gains, this result cannot be extended to the asymptotic distri-

butions of the estimator obtained using stochastic restrictions, since the efficiency gain vanishes as

sample size increases. This result is proved in Lütkepohl (1993), although, as he points out, it is not

useful in empirical terms. Therefore, it would be interesting to extend the finite sample properties of

the estimation under stochastic restrictions to the asymptotic context and then to its approximated

distribution. In this paper we show, as an auxiliary result, that stochastic restrictions yield asymptotic

efficiency gains under some specific assumptions about the asymptotics of prior information. Also, we

test in a Monte Carlo exercise that our approach provides better approximations to the distribution

of the estimator which takes into account stochastic restrictions than the standard approach.
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The main goal of this paper focuses in the description of a simulated based estimator in which prior

information is taken into account through the stochastic restrictions approach, and also, under the

same type of assumptions already introduced in the first objective. The new estimator, based on the

indirect inference (I.I.) estimator of Gourieroux et al (1993), is shown to be more efficient than the

baseline one. Simulation based methods, as the method of simulated moments of McFadden (1989),

Pakes and Pollard (1989), and the I.I. method (see also Smith, 1993, Lee and Ingram, 1991, for similar

approaches) provide powerful techniques to deal with nonlinear models when traditional methods fail.

Nevertheless, there is no a clear way by which prior information can be taken into account in simulation

based estimation methods. In this paper we achieve this goal through the extension of the I.I. method

by introducing stochastic restrictions in the initial I.I. criterion. We obtain the Indirect Inference

under Stochastic Restrictions (IIR) estimator, discuss its asymptotics properties and efficiency gains

compared to the I.I. estimator. A procedure to test the validity of the restrictions is also provided.

Finally, we apply the IIR methodology in a macroeconometric example to check its accuracy in the

estimation of a endogenous stochastic rate of depreciation of the stock of physical capital. Results

show the effectiveness of the proposed methodology in the solution of this kind of problems and at

the same time the significant efficiency gain of the IIR with respect to the I.I. method.

The structure of the paper is the following: section 2 provides the motivation for the assumption about

the parameter sequence in the priors specification. Section 3 describes the principle of the stochastic

restrictions, and discuss its efficiency gains in finite sample and stochastic terms. Section 4 shows the

Monte Carlo exercise in which the suggested finite sample approximation is proved to fit better than

the conventional. In Section 5 we define the new estimator and provide its asymptotic properties.

Section 6 focuses on a macroeconometric example and numerical evaluations of the efficiency gains of

the new estimator, and Section 7 concludes.

2 Asymptotic priors

This first result, related with asymptotic efficiency gains, is derived on the bases of a theoretical

assumption about the behavior of the variance of the stochastic restriction. More precisely, we consider

an asymptotic decreasing variance of the stochastic restrictions. As a result of it, it is preserved the

relative weights of prior and sample information in asymptotic terms, which is not the case in the

standard approach, and then the resulting variance of the estimator decreases. This assumption

makes the resulting asymptotic distribution fit the finite sample distribution better.

This kind of assumption might be considered too strong and, as mentioned in Kadane (1971), difficult
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to justify. However, in the context of IV estimation with weak instruments, in Bekker (1994) and

Staiger and Stock (1997) we find a similar assumption, justified by the goal of finding better approx-

imations to the finite sample distribution of the estimator of interest. The approximation is derived

from standard asymptotic theory mainly, but taking into account the extra assumption of a parameter

sequence, designed to make the resulting distribution fit the sample distribution better. Despite of

the objection of Kadane (1971), Bekker (1994) claim, “...since the finite sample distribution does not

depend on the behavior of observations in the case of further sampling, there is no reason why an ap-

proximation should1. Consequently, there is no need to make such “realistic” assumption...the quality

of the approximation is the only criterion for justifiability”. The parameter sequence we choose in

this paper lies on the variance of the stochastic restriction. We could also argue that the rationale

underlying on it lies is the fact that it makes the asymptotic distribution fit the finite sample distri-

bution better. But, added to that, we find a realistic motivation for it. We consider that the priors

are obtained from a sample which size also increase when asymptotics is considered. Then, we extend

to dynamic terms (defining the asymptotics in terms of both samples sizes) the property that the

priors are informative. In short, we assume that the priors are consistent, i.e., when the size of the

sample where priors are obtained increases, such priors are more informative. In other words, our key

assumption mean that experience matters, and this can be considered to be a natural fact. If priors

are informative in static terms, then its quality might increases in the case of additional sampling.

That is, priors keep on being informative as increases the size of the sample that generates them.

Finally, the key assumption also allow to blend prior and sample information when estimators based

on simulation have to be used. This is the case of models that generates high nonlinearities in the

traditional criterion, what makes standard methods not useful. Generally, the estimators obtained by

simulations, despite the fact that are the only solution to estimate some family of models, show high

variance, and hence, efficiency gains would be welcome. The key assumption, allow to extend the I.I.

advantages to a more efficient procedure.

3 Stochastic Restrictions and Efficiency Gains

In this section we discuss the relevance of taking into account prior information in the Nonlinear Least

Squares (NLS) estimation. We define the Nonlinear Least Squares under Stochastic Restriction (SR)

method, obtain its asymptotic distribution, and compare it with the NLS distribution under standard

1 It is important to note that in section 3, under standard assumptions, the finite sample efficiency gains due to
stochastic restrictions vanishes as the sample size increases. Then, also in our case the approximated distribution
depends on further sampling.
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asymptotic theory (this approach does not ascribe to SR any advantages against NLS) and under our

key assumption. The goal of this section is showing that stochastic restrictions are able to be modelled

asymptotically and bring efficiency gains. This result will be used in the next section to redefine the

I.I. estimator when stochastic restrictions are taking into account in the estimation.

Consider a general nonlinear model given by the equation yt = f(zt, θ) + εt. The NLS estimation of

θ is defined as the value θ̂NLS that minimizes the criterium function ΨT (θ) =
TP
t=1
[yt − f(zt; θ)]2 with

respect to θ. Calling F 01 =
∂f
∂θ — px1 vector, we have

1
T

h
∂2ΨT
∂θ∂θ0 (θ0)

i
=

F 01F1
T and the NLS asymptotic

distribution is
√
T (θ̂NLS − θ0)

d−→ N
³
0,σ2εp lim

¡
F 01F1/T

¢−1´ (1)

We consider now q stochastic restrictions on θ, q < p, modelled through the equation r = G(θ) + v,

where r is a qx1 vector and v ∼ N(0,σ2vIq), v independent of θ and ε. The resulting model is given

by:  y
r

 =
 f(x, θ)
G(θ)

+
 ε

v


In order to reach homoscedasticity, the model can be transformed and expressed is matrix form as:

ȳ = f̄(x̄, θ) + ε̄

with V (ε̄) = IT+q. Some additional notation should be introduced. Let F̄ =
∂f̄
∂θ and D = ∂G(θ)

∂θ a qxp

matrix. After some computation we reach the asymptotic distribution of the SR estimator:

√
T (θ̂SR − θ0)

d→ N

Ã
0, p lim

µ
1

T

F 01F1
σ2ε

+
1

T

D0D
σ2v

¶−1!
(2)

We now compare the asymptotic distributions given in (1) and (2) under different scenarios. The first

one corresponding to the standard asymptotic theory, while the alternative one is given by a particular

assumption made on the behavior of the variance of the error term v.

Proposition 1 . Under standard asymptotic analysis, the asymptotic distribution of the estimator SR

is identical to the asymptotic distribution of the NLS estimator.

Proof . Since σ2v is constant, p lim
³
1
T
D0D
σ2v

´
= 0. Then, the second term in the asymptotic variance

covariance matrix vanishes and

√
T (θ̂SR − θ0)

d→ N

Ã
0, p lim

µ
1

T

F 01F1
σ2ε

¶−1!
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which coincides with the asymptotic distribution of the NLS estimator given in equation (1)2.

Therefore, asymptotic analysis leads to the same distribution for θ̂SR and θ̂NLS , and stochastic re-

strictions brings no efficiency gains. Nevertheless, the previous result is not satisfactory when the

asymptotic distribution has to be used to approximate the variance of the estimator, specially when

the sample size is small. Because of this reason we consider a specific framework in which the analysis

is developed. We consider that prior information about parameters comes from previous experience

and such experience derives from observations that are taken from a sample of size T ∗. This obser-

vations comes from a model that is not essentially related with our model of interest, and hence, the

disturbance v is independent of ε. The asymptotic results in this new framework are defined as T and

T ∗ goes to infinity. The following assumptions are in order.

Assumption 01 (A01). The variance of v, the error term of the stochastic restriction, is σ∗2v = σ2v/T
∗

where T ∗ is the sample size of the model generating the prior information.

Assumption 02 (A02) T/T ∗ = 1 + op(1).

The purpose of A01 is to maintain the relative weights of prior information when taking limits. This

principle will be developed in a similar way in a more developed assumption in section 5.

Proposition 2 . Under (A01), (A02) and regular conditions on the regressors and errors of the model,

the SR estimator is asymptotically more efficient than the NLS estimator.

Proof . Under A01, the asymptotic distribution (2) becomes

√
T (θ̂SR − θ0)

d→ N

Ã
0, p lim

µ
1

T

F 01F1
σ2ε

+
1

T

D0D
σ∗2v

¶−1!

and, from A02

p lim

µ
1

T

D0D
σ∗2v

¶
= p lim

µ
D0D
σ2v

¶
Then, ½

p lim

µ
1

T

F 01F1
σ2ε

+
1

T

D0D
σ∗2v

¶¾−1
−
½
p lim

µ
1

T

F 01F1
σ2ε

¶¾−1
is a definite negative matrix, and θ̂SR is asymptotically more efficient than θ̂NLS , i.e., than the SR

estimator obtained under the standard analysis. When normality is not assumed, the result is also

extended to the approximated distributions3. An additional result is shown below in which we justify

the inclusion of assumption (A01).

2The suggested approximated distribution for finite sample SR estimator is θ̂SR ≈ N(θ0,σ2ε(F 01F1)−1)
3The approximate distribution for finite sample size is θ̂SR ≈ N

µ
θ0,
³
F 01F1
σ2ε

+ D0D
σ2v

´−1¶
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One additional result could be checked through a simulation exercise: when sample size is small, the

analytical expression of the approximated variance of the SR estimator found under (A01) and (A02)

is a better approximation of the observed variance of the SR estimator than the expression of the

approximated variance of the SR estimator derived from the standard asymptotic theory. This result

is shown in the next section.

4 Monte Carlo exercise about SR estimation

We consider the following model:

yt = bzt + ut (3)

ut = αut−1 + εt

where ε ∼ iid N(0,σε) and suppose that there is strong prior in favor of zero autocorrelation of the
errors. In terms of stochastic restrictions we have the equation α̃ = α + v, v ∼ N(0,σv), being σv

small and α̃ close to zero since prior information is correct and so that close to α = 0. We can write

the previous model as follows

yt = β1yt−1 + β2zt + β3zt−1 + εt

= x0tβ + εt (4)

where x0t = (yt−1, zt, zt−1), and β = (β1,β2,β3). Note that β1 = α; β2 = b and β3 = −αb. Calling
θ = (α, b)0 to the original model parameters (equations (3)), we can write β = β(θ), the vector of

parameters of the auxiliary model (equation (4)). Taking into account the stochastic restriction the

model is  Y
αh

 =
 X
R

β(θ) +
 ε

v

 (5)

where R = (1, 0, 0), αh is the prior information available about α and h is the index of simulation to

be explained below.

The purpose of this exercise is to test the accuracy to approximate the variance of the SR estimator

by means of the analytical expression deriving from the standard approach — which coincides with the

NLS estimation variance — and from the alternative approach suggested under (A01) and (A02). In

order to check this, we first simulate and estimate model (5) by SR method, compute the observed
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variance of the estimator across simulations and then compare it with alternative expressions to find

which one approximates it better. In other words, we try to check in this example whether or not the

stochastic restrictions are relevant or not in the approximated distributions resulting from alternative

approaches to measure it.

Sample size in the Monte Carlo experiment is T = 40 and the number of simulations is H = 5000.

In each simulation prior information about the values of α is extracted from a simulated distribution

N(0,σv) and values are denoted with index h, h = 1, ...,H. Different values of σv are considered to

extend the discussion, reflecting different levels of certainty of prior information4. True values of the

parameters are θ0 = (α0, b0) = (0, 1.5). Results are shown in Table 1 and should be considered as the

true properties of the estimator or, at least, close approximations since the number of simulations is

high.

In Table 2 are computed the alternative variances approximations: the one suggested by asymptotic

theory, in which stochastic restrictions result to be irrelevant, given by

dV1(θ̃NLS) '
µ
D0
µ
p lim(

X 0X
T
)
1

σ2ε

¶
D

¶−1
and the alternative approximation resulting from assumptions (A01) and (A02) given by

dV2(θ̃SR) ' µD0µp lim(X 0X
T
)
1

σ2ε
+
R0R
σ2α

¶
D

¶−1
The following conclusions are reached. First, as the alternative approach suggests, stochastic restric-

tions bring efficiency gains, as observed when column I is compared with columns II, III and IV in

Table 1. Also, efficiency increases with certainty about the prior information. Second, the analytical

form of the approximated variance obtained under (A01) and (A02) is closer to the real one than the

one suggested by the standard approach.

5 Indirect Inference under Stochastic Restrictions

The method of Indirect Inference (I.I.) of Gourieroux et al (1993) (GMR93) and the methods of

simulated moments of Lee and Ingram (1991) and Duffie and Singleton (1993), (see similar methods

in Smith, 1993 and Gallant and Tauchen, 1994), provide a powerful technique to deal with nonlinear

models where traditional methods fail. In spite of the wide applicability of these methods, there is

4Additional properties of the exercise are available from the authors on request.
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not a methodology to take into account prior information in their implementation (see, for example,

Canova, 1994). In this section we suggest a way to solve this problem based on the stochastic restriction

approach. The analysis will be cast in the framework of the I.I., since this methodology is more general

and other simulated based estimation methods can be viewed as special cases.

First we define the new estimation method of Indirect Inference under Stochastic Restrictions (IIR)

and provide its distribution. Then, based on the approach introduced in section 2 we show that the

IIR estimator is more efficient than the I.I. method. Finally we suggest a method to test the validity

of the restrictions.

In the I.I. approach it is considered a p−dimension vector of parameters θ of a true model (M) and a
j — dimension vector of parameters β, j ≥ p of the auxiliary model. The binding function b(θ) could
be estimated from β̂(θ), a consistent criterion for β given a value of θ. The b(θ) function is twice

differentiable with respect to θ, where ∂b(θ)/∂θ = D1, is of full rank.

The I.I. estimator of θ, following GMR93, is defined as

θ̃II = argmin
©
m01Ω1m1

ª
where m1 = β̂ −

SP
s=1

β̂(θ)/S and Ω1 is a jxj symmetric and positive definite matrix to be determined

below. Under regular assumptions on auxiliary criterion ΨT (β) and the model, - in the Appendix this

assumptions are shown - the asymptotic distribution of the I.I. estimator is

√
T (θ̃II − θ0)

d−→ N

µ
0,

µ
1 +

1

S

¶
W1(Ω1)

¶

where

W1(Ω1) =
¡
D01Ω1D

0
1

¢−1
(D01Ω1Ω

∗−1
1 Ω1D1)

¡
D01Ω1D

0
1

¢−1
and Ω∗1 = J0H̄

−1
0 J0 being J0 = p lim−∂2ΨT (b(θ))

∂β∂β0 , H̄0 = H0−K0, being H0 and K0 are matrixes related
with properties of the variance-covariance matrix of

√
T ∂ΨT

∂β and specified in assumptions (A6) and

(A7) in the Appendix.

The matrix Ω1 is chosen according to the optimality criterion, and then taken as Ω1 = Ω∗1. In this

case, the asymptotic variance-covariance matrix of θ̃II (taking S −→∞) is

W ∗
1 =

¡
D01Ω

∗
1D1

¢−1 (6)

Since Ψ∞ = p lim
T→∞

ΨT , ΨT could be used in the place of Ψ∞ and a consistent estimator of the asymptotic
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variance of β̂ for H05.

We now consider the existence of prior information on the parameters of interest θ, what could formally

by written as stochastic restrictions: G(θ) = r + v, where E(v) = 0 and V (v) = Φ∗2, v independent of

the error term of the model. Further properties of v are to be specified below. Vector r contains the

known values that verifies the prior information, and the variance covariance matrix is chosen according

to the quality of the prior information. Function G(θ) is differentiable and such that ∂G/∂θ = D2 is

a qxp matrix of full rank in a neighborhood of θ0.

It is necessary to introduce some additional notation to define the new estimation method. Let

m0 = (m0
1, (G − r)0), D = (D1,D2)

0, and Ω a block diagonal matrix, with Ω1, Ω2 in their diagonal

respectively.

Definition The indirect inference under stochastic restriction estimator of θ is

θ̃IIR = argmin
θ

©
m0(θ)Ωm(θ)

ª
(7)

where

m0Ωm =
©
m0
1(θ)Ω1m1(θ) + (G(θ)− r)0Ω2(G(θ)− r)

ª
Some additional assumptions are in order to derive the asymptotic behavior of the IIR estimator.

A1)- A7). Are the regular conditions needed to obtain the asymptotic distributions if the I.I. estimator,

shown in the Appendix.

A8) ∂G(θ)
∂θ = D2 is a qxp matrix of full rank in a neighborhood of θ0.

A9)
√
T ∗(G(θ)− r) d−→ N(0,Ω∗−12 )

A10) T
T ∗ = op(1)

Assumption (A9) describes the asymptotic properties of the stochastic restrictions, and it leads to the

approximate distribution

G(θ)− r ≈ N(0, T ∗−1Ω∗−12 )

and hence similar to assumption (A01) introduced in section 3. The rationale behind this assumption

is the intention to maintain a constant relative weight between the sample and prior information

asymptotically. The relevance of this assumption lies on the fact, already discussed, that under this

5 In order to estimate H, the semiparametric procedure suggested by Andrews and Monahan (1992) could be applied.
The idea is to regress 1√

T

∂ΨT (β)
∂β

to an Arma vector and to estimate its variance covariance matrix from residuals in a non

parametric way (see, for instance, Newey and West (1987)). Another possibility is to estimate a VAR from 1√
T

∂ΨT (β)
∂β

(see Den Haan, et. al. (1995)).
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hypotheses, the approximate distribution for small sample size of the resulting estimator is closer to

the observed distribution of the estimator. Note that (A9) implies consistency of the random variable

r. Again, (A9) will bring efficiency gains in the restricted estimator. The asymptotic properties of the

IIR estimator are derived next.

Proposition 3 Under assumptions (A1) to (A10), the Indirect Inference under Stochastic Restrictions

estimator, θ̃IIR, is consistent, asymptotically normal and has the asymptotic distribution

√
T (θ̃IIR − θ0)

d−→ N

µ
0,

µ
1 +

1

S

¶
W (Ω)

¶

where

W (Ω) =
£
D01Ω

−1
1 D1 +D

0
2Ω
−1
2 D2

¤−1
x[D01Ω1Ω

∗−1
1 Ω1D1 +D

0
2Ω2Ω

∗−1
2 Ω2D2]

x
£
D01Ω1D1 +D

0
2Ω2D2

¤−1
This result is proved in the Appendix.

For the optimal matrix Ω1 = Ω∗1 = J0H̄
−1
0 J0 and Ω2 = Ω∗2 the variance-covariance matrix reduces to:

W ∗ = (D0Ω∗D)−1 (8)

where Ω∗ is the block diagonal matrix with Ω∗1 and Ω∗2 in the diagonal.

Proposition 4 Under assumptions (A1) to (A10) θ̃IIR is asymptotically more efficient than θ̃II

To proof this result, we compare equations (8) and (6). The difference

W ∗ −W ∗
1 = (D

0Ω∗D)−1 − (D01Ω∗1D1)−1

is a negative definite matrix since

D0Ω∗D −D01Ω∗1D1 = D02Ω∗2D2

is a positive definite matrix.

Finally, the validity of the restrictions could be tested from the approximated distribution of G(θ̃)

under H0 : G(θ)− r = v, taking v ∼ N(0,Ω∗−12 ). A Taylor approximation of G(θ) evaluated in any θ,
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θ̃ such that
√
T (θ̃ − θ0)

d−→ N(0,W ), yields

G(θ̃) = G(θ) +
∂G(θ)

∂θ

¯̄̄̄
θ=θ̃

(θ̃ − θ)

Since θ̃ ≈ N(θ, T−1W ), from (??), under H0, and assuming that θ̃ and v are independent, we have

G(θ̃) ≈ N(0, T−1(D02WD2 +Ω∗−12 ))

where D2 denotes the same matrix as in previous section.

6 A macroeconometric example

The stock of physical capital of an economy is one of the basic economic aggregates. However it is not

observable since it depends on the rate of depreciation. Nevertheless it could be estimated jointly with

the parameters of a production function. In most cases prior information on the rate of depreciation

is available from other sources (e.g. National Accounts). We consider here a simplified production

function yt = αkt + εt, where y and k are production and capital stock in logs respectively and α is

the elasticity of the capital stock. From the perpetual inventory method, capital stock is given by

Kt = I + (1 − δt)Kt−1 and different assumptions are made about the pattern δt. In the auxiliary

model, production is explained by current and lagged production and investment.

First we describe several cases in which the rate of depreciation is modelled thorough three different

ways: stochastic liner with normal error, uniform and Autorregresive. More specifically, the main

characteristics of the stochastic processes, in each one of the cases, are:

i) Case I. The rate of depreciation is given by the process

δt = γ0 + γ1zt + vt (9)

where zt = (It − It−1)/It−1, as in Hernández and Mauleón (2002a)6, v ∼ N(0,σ2v). Then,

δ ∼ N(γ0 + γ1z̄,
q
γ21σ

2
z + σ2v)

6The economic idea behind this assumption is that technological progress is incorporated in the production through
new investment. Such technological progress explain an increasing productivity in the new capital assets relative to the
vintage capital, and this causes obsolescence. This argument explain the positive relation between the rate of depreciation
and the rate at which investment varies in time, and hence that δ1 > 0. The part of the depreciation associated with the
use of capital is captured in parameter δ0.
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The stochastic restriction equation should be consistent with the process of the rate of depreciation.

Hence, an additional equation should be taken into account:.

δ̃ = γ0 + γ1z + ² (10)

i) Case II. The rate of depreciation is given by a uniform distribution. Then,

δ = v ∼ U [γ0; γ1] (11)

and the parameters to be estimated are the mean and the variance of the distribution, univocaly

related with dL and dU . In this case, prior information consist in a pair of values, γ̃0, and γ̃1, and

could be modelled as

δ̃ = ² ∼ U [γ̃0; γ̃1] (12)

where γ̃h are values close to parameters γh, h = 0, 1.

iii) Case III. The rate of depreciation follows an autorregresive process. Then,

δt = γ0 + γ1δt−1 + vt (13)

where v ∼ N(0,σ2v), |γ1| < 1. The equation about prior information to be taken into account should
be such that the prior value of δ was close to the expected value of the process of δ. Then, since the

process is stationary, prior information could be modelled as

δ̃ =
γ0

1− γ1
+ ² (14)

The equations above define the processes and the stochastic restrictions equations related with the

rate of depreciation of the capital stock. The model contain also some additional equations, as the

capital stock equation,

Kt = It + (1− δt)Kt−1

and finally, the production function equation,

log Yt = α log(Kt) + εt

where εt is the white noise disturbance.

13



We have simulated series for the rate of depreciation, capital stock and production. Then, we use the

only observable variables Yt and It, generated by the vector of parameters θ = (α, δ0, δ1,σv), (values

are shown in Table 5). The equations contained in the three models are, then, the equation of the

production function, of the capital stock and equations (9) and (10) in Case I, (11) and (12) in Case

II and (13) and (14) in Case III. The mentioned equations are considered to estimate each one of the

models through the restricted indirect inference estimator as we describe next.

6.1 IIR estimation

The IIR estimation is carried out taking priors of δ that are close with the true mean of the parameter

sequence, and with small variance. The auxiliary model are chosen according to their adequacy to the

main IIR criterion7. In such models production is explained by lagged investment and production.

The IIR estimator of θ is

θ̃IIR = argmin {QT}

where QT , taking OLS as the auxiliary criterion, is

QT =
h
β̂ −

X
β̂s(θ)/S

i0
(X 0X/σ2ε)

h
β̂ −

X
β̂s(θ)/S

i
+
(δ̃ −E(δ̃))2

σ2²

and β̂ the OLS estimator of the auxiliary model from the original data and β̂s the OLS estimator

obtained with simulated data in simulation s. The value δ̃ is the prior about δ. E(δ̃) equation and σ²

value will depend on the case that is considered, as described in Table 5. In general σ2ε is also unknown,

but we have considered it as known to simplify the estimation problem, although the estimation of

such parameter would not bring further difficulties.

In the simulation exercise, the number of replications and estimations of the model is 1000. Table 5

shows the results obtained for the different cases, and the Case III, where δ ∼ AR(1) results shows
bias in the mean and the variance of the estimators. Nevertheless, the conclusions that we reach tells

us that the method IIR performs well in general, and that could be an adequate tool to estimate a

stochastic rate of depreciation in macro models.

Also, as an additional exercise, estimations have been made by the I.I. and the IIR methods with the

same observations, in order to test the efficiency gains of the proposed method. In Table 6 we show

the results for the Cases I and II under the same true parameters vector than in the previous exercise.

For the Case II we have replicated the exercise for different values of σ², the variance of the stochastic

7More information about the auxiliary model and criteria could be requested to authors.

14



restrictions, in order to test the sensibility of the efficiency gains to different scenarios of uncertainty.

We also show in Table 6 that efficiency gains of the IIR estimator with respect to I.I. are important,

specially in Case I, and they depend positively, on the quality of prior information.

Finally, results in Table 6 show that IIR approach behaves properly and could be an useful approach

to estimate models in which it is necessary to estimate by simulation8 and in which prior information

on parameters is available.

7 Conclusion

In this paper we first prove that stochastic restrictions could bring efficiency gain in asymptotic

distributions, and also, in a particular example we check that the resulting distribution explain better

the distribution of the NLS estimator. Second, we propose a procedure to combine the method of

Indirect Inference (I.I.) of Gourieroux et al. (1993) with stochastic restrictions approach (Theil and

Goldberger (1961), Shiller (1972) and Litterman (1986)). The proposed method of Indirect Inference

under Stochastic Restriction (IIR) also suggest a way to extend any simulated based estimation method

to the context of stochastic restrictions, since these should be included into the criterion in the same

way. The IIR method is intended to provide a technique to incorporate prior information into highly

complex econometric procedures developed recently, in order to improve the estimation results. We

provide the distribution of the IIR estimator and a test for the validity of the restrictions. We show

that IIR estimator is more efficient than II estimator. Finally, a macroeconometric application is

suggested where IIR is implemented to estimate a stochastic endogenous rate of depreciation of the

capital stock of an economy.

8See Hernández and Mauleón (2002) for empirical implementation of a simpler method.
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Tables

TABLE 1

Properties of the SR estimator

σ2α

0.02 0.04 0.06

b α b α b α

Mean 1.499580 0.001056 1.4999353 -1.392e-05 1.500986 0.000873

Variance 0.025580 0.011769 0.025772 0.016660 0.025591 0.018979

MCE 0.025580 0.011770 0.025772 0.016660 0.025592 0.018979

TABLE 2

Alternative estimators of V (θ̃SR)dV1(θ̃SR) dV2(θ̃SR)
I II (σ2α = 0.02) III σ2α = 0.04 IV σ2α = 0.06

0.025000 -1.393e-19 0.011111 -6.191e-20 0.015384 -8.573e-20 0.017647 -9.834e-20

0.025097 0.025097 0.025097 0.025097
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TABLE 3

Patterns for the Rate of Depreciation

Case Linear dependence Uniform Distribution Autorregresive

Structure δt = γ0 + γ1zt + vt δ = v δt = γ0 + γ1δt−1 + vt

Error v ∼ N(0,σ2v) v ∼ U [γ0; γ1] v ∼ N(0,σ2v), |γ1| < 1
Stochastic Restriction δ̃ = δ0 + δ1z̄ + ² γ̃s = γs + ²; s = 0, 1 δ̃ = γ0

1−γ1 + ²

TABLE 4

Mean and standard deviation of IIR estimates

Patterns for δ

δt = γ0 + γ1zt + vt δ = v ∼ U [γ0; γ1] δt = γ0 + γ1δt−1 + vt

θ (α, γ0, γ1,σv) (α, γ0, γ1) (α, γ0, γ1,σv)

θ0 (0.4,0.06,0.01,0.004) (0.4,0.03,0.12) (0.4, 0.06, 0.2, 0.02)

α 0.400 0.403 0.3998

(0.002) (0.012) (0.0038)

γ0 0.060 0.038 0.0413

(0.003) (0.016) (0.0335)

γ1 0.009 0.118 0.4499

(5.4x10−4) (0.046) (0.4465)

σv 0.004 - 0.0266

(8.7x10−5) - (0.0408)
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TABLE 5

Properties of the IIR estimator

Case I Case II Case III

δt = δ0 + δ1zt + vt δ = v ∼ U [δL; δU ] δt = γ0 + γ1δt−1 + vt

θ0 (0.4,0.06,0.01,0.004) (0.4,0.03,0.12) (0.4, 0.06, 0.2, 0.02)

α 0.400 0.4014 0.3998

(0.002) (0.0047) (0.0038)

δ0 0.060 0.0374 0.0413

(0.003) (0.0065) (0.0335)

δ1 0.009 0.1174 0.4499

(5.4x10−4) (0.0066) (0.4465)

σ2v 0.004 - 0.0266

(8.7x10−5) - (0.0408)

TABLE 6

Efficiency gains of IIR estimator

Case I: δt = δ0 + δ1zt + vt II: δ = v ∼ U [δL; δU ]
θ0 (0.4,0.06,0.01,0.004) (0.4,0.03,0.12)

I.I. IISR I.I. IISR

σ² - 0.005 - 0.003 0.004 0.005

α 0.0399 0.3948 0.4024 0.4020 0.4013 0.4012

std(α) 0.0084 (5.5x10−4) (0.0132) (0.0065) (0.0074) (0.0112)

δ0 0.0633 0.0628 0.0491 0.0334 0.0325 0.0323

std(δ0) 0.0714 (1.7x10−5) (0.2416) (0.0094) (0.0110) (0.0163)

δ1 0.0058 0.0093 0.0976 0.1232 0.1222 0.1220

std(δ1) 0.0771 (0.0013) (0.2454) (0.0096) (0.0111) (0.0162)

σv 0.0065 0.0037 - - - -

std(σv) 0.0107 (0.0048)
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Appendix: Derivation of the asymptotic distribution of IIR estimator
Here we develop similar proofs to the used on the asymptotic properties of the I.I. estimator. To

show the asymptotic distribution of IIR estimator we need several regularity conditions, as for the I.I.

distribution. The most important are

A1) The general auxiliary criterion function ψT (yT , zT ;β) converges to a deterministic limit denoted

by ψ∞(θ,β) when T goes to infinity.

A2) This limit function has a unique maximum with respect to β, and this maximum is b(θ). That is,

b(θ) = argmaxβ{ψ∞(θ,β)}
A3) ψT and ψ∞ are differentiable with respect to β and lim∂ψT

∂β = ∂ψ∞
∂β

A4) The solution of the asymptotic first order condition ∂ψ∞(θ,β)
∂β = 0 is well defined in θ and β

A5) plim− ∂2ΨT (b(θ))
∂β∂β0 = −∂2Ψ∞(b(θ0))

∂β∂β0 = J0 and J−10 exist

A6)
√
T ∂ΨT (b(θ0))

∂β
d−→ N(0,H0)

A7) limT−→∞cov
h√
T

∂ΨT (y
s1
T )

∂β ,
√
T

∂ΨT (y
s2
T )

∂β

i
= K0 for s1 6= s2.

A8) ∂G(θ)
∂θ = D2 is of full rank

A9)
√
T ∗(G(θ0)− r) d−→ v ∼ N(0,Ω∗−12 )

A10) T
T ∗ = 1 + op(1)

Let us first prove the consistency of the IIR estimator. Under assumptions (A1) to (A4), following

Gourieroux et al. (1993) it is proved that the intermediate estimators β̂ and 1
S

SP
s=1

β̂S(θ)(≡ β̂ST (θ) to

simplify notation) converge to b(θ0) and b(θ) respectively. Also, from (A9), r −→ G(θ0). Then,

θ̂IIR = argmin
θ

©
m0(θ)Ωm(θ)

ª
= argmin

θ
{[β̂ − β̂ST (θ)]

0Ω1[β̂ − β̂ST (θ)]

+(G(θ)− r)0Ω2(G(θ)− r)}
−→ {[b(θ0)− b(θ)]0Ω1[β̂ − β̂ST (θ)]

[G(θ)−G(θ0)]0Ω2[G(θ)−G(θ0)]}
= {θ : b(θ) = b(θ0), G(θ) = G(θ0)} (since Ω1, Ω2 are positive definite)
= θ0 (since b and G are well defined)

Let us now find the asymptotic distribution of θ̂IIR. Under assumptions (A1) to (A7), asymptotic

expansions of β̂T and
1
S

SP
s=1

β̂S(θ0) are deduced from the first order condition. We have, that (following
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Gourieroux et al. (1993))

√
T (β̂T − b(θ0)) = J−10

√
T
∂ΨT (b(θ0))

∂β
+ op(1) (15)

and

√
T (β̂ST (θ0)− b(θ0)) =

J−10
S

√
T

SP
s=1

∂ΨT (y
s
T , b(θ0))

∂β
+ op(1) (16)

The asymptotic expansion of θ̂IIR(Ω) is deduced as follows. The first order condition for θ̂IIR (θ̂ for

short) from the criterion (7) is:

−∂β̂
0
ST [θ̂(Ω1)]

∂θ
Ω1[β̂T − β̂ST (θ̂(Ω1)] +

∂G0(θ̂)
∂θ

Ω2[G(θ̂)− r] = 0

An expansion around the limit value θ0 gives

−∂β̂
0
ST (θ0)

∂θ
Ω1
√
T [β̂T − β̂ST (θ0)] +

∂G0(θ0)
∂θ

Ω2
√
T [G(θ0)− r]

+
√
T

"
∂β̂

0
ST (θ0)

∂θ
Ω1

∂β̂ST (θ0)

∂θ
+

∂G0(θ0)
∂θ

Ω2
∂G(θ0)

∂θ

#
(θ̂IIR(Ω)− θ0)

= op(1) = S1 + S2 + S3 + S4 (say)

since S1+S3 = op(1), as shown in the asymptotic properties of the θ̂II estimator under the considered

assumptions. From (A9) and the consistency of θ̂IIR, it follows that S2 + S4 is also op(1). Rewriting

the above equation in the limit, and calling D1 =
∂b(θ0)
∂θ , D2 =

∂G(θ0)
∂θ

√
T (θ̂IIR(Ω)− θ0) =

£
D01Ω1D1 +D

0
2Ω2D2

¤−1
D01Ω1

√
T [β̂T − β̂ST (θ0)]

− £D01Ω1D1 +D02Ω2D2¤−1D02Ω2 √T√
T ∗
√
T ∗[G(θ0)− r] + op(1) (17)

From (16), (15), we get

√
T (β̂T − β̂ST (θ0)) = J

−1
0

√
T

·
∂ΨT
∂β
− 1
S

SP
s=1

∂ΨT (y
s
T )

∂β

¸

and using (A6), (A7),
√
T (β̂T − β̂ST (θ0))

d−→ N

µ
0,

µ
1 +

1

S

¶
Ω∗−11

¶
where Ω∗1 = J0H̄0J0, and H̄0 = H0 −K0.
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Finally, using assumptions (A8), (A9) and (A10):

√
T (θ̂IIR(Ω)− θ0)

d−→ N

µ
0,

µ
1 +

1

S

¶
W (Ω)

¶

where

W (Ω) =
£
D01Ω1D1 +D

0
2Ω2D2

¤−1
D01Ω1Ω

∗−1
1 Ω1D1

x
£
D01Ω1D1 +D

0
2Ω2D2

¤−1
+
£
D01Ω1D1 +D

0
2Ω2D2

¤−1
D02Ω2Ω

∗−1
2 Ω2D2

x
£
D02Ω2D2 +D

0
2Ω2D2

¤−1
=

£
D01Ω1D1 +D

0
2Ω2D2

¤−1
x[D01Ω1Ω

∗−1
1 Ω1D1 +D

0
2Ω2Ω

∗−1
2 Ω2D2]

x
£
D01Ω1D1 +D

0
2Ω2D2

¤−1
The optimal matrixes Ωi are respectively, Ω∗i as a consequence of theGauss-Markov theorem and the

asymptotic variance-covariance matrix of the IIR estimator

W ∗ =
£
D01Ω

∗
1D1 +D

0
2Ω
∗
2D2

¤−1
=
£
D0Ω∗D

¤−1
also taking S −→∞.
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