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Abstract. The classification speed of state-of-the-art classifiers such as
SVM is an important aspect to be considered for emerging applications
and domains such as data mining and human-computer interaction. Usu-
ally, a test-time speed increase in SVMs is achieved by somehow reducing
the number of support vectors, which allows a faster evaluation of the
decision function. In this paper a novel approach is described for fast
classification in a PCA+SVM scenario. In the proposed approach, clas-
sification of an unseen sample is performed incrementally in increasingly
larger feature spaces. As soon as the classification confidence is above a
threshold the process stops and the class label is retrieved. Easy samples
will thus be classified using less features, thus producing a faster deci-
sion. Experiments in a gender recognition problem show that the method
is by itself able to give good speed-error tradeoffs, and that it can also
be used in conjunction with other SV-reduction algorithms to produce
tradeoffs that are better than with either approach alone.
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1 Introduction

One of the most frequent classification systems encountered in research is the
combination of PCA (Principal Component Analysis) and SVM (Support Vector
Machines). PCA is frequently used because of its simplicity and relative effec-
tiveness, while SVM have already demonstrated impressing classification capa-
bilities. The two techniques have been used together for face recognition and
verification, face detection, biosignal (i.e. EEG, ECG, EMG, CT scans...) classi-
fication, operations research, part inspection, biochemistry, anomaly detection,
text categorization, medicine composition analysis, etc. For a comprehensive list
of SVM applications the reader is referred to [1].

Despite the power of SVMs, they are orders of magnitude more costly at
query-time than other popular machine learning alternatives such as decision
trees and neural networks [2]. Classification speed is crucial for learning problems
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that use a large number of samples, like in emerging data mining applications.
In some domains the amount of data available is growing at exponential rates,
especially with the advent of global networks and the possibility of ubiquitous
generation of data. Human-computer and human-robot interaction applications
also need to produce fast responses, as for example in phoneme classification. Low
computational complexity is also required for embedded and mobile systems,
where available resources are rather limited.

Most of the research carried out in fast classification kernel machines has
involved reducing the number of support vectors [3]. Such reduction can be
achieved by approximating the discriminating hypersurface to a user-specified
accuracy. In [4] the approach taken was to reduce the complexity of the gener-
ated hypothesis by excluding some training samples, specifically subsets of the
support vectors obtained in the first place. In a similar fashion, [5] is based on
stopping the evaluation of support vectors of the hypothesis when the confidence
of the result (measured by the partial classification result) is above a threshold.
This requires the support vectors of the hypothesis to be ordered by decreasing
importance. In [6] pairs of close support vectors are iteratively substituted by a
new one. Similarly, in [7] the decision function is simplified by removing support
vectors that contribute less to the decision.

As shown above, most research in fast kernel machines has involved selecting
subsets of support vectors (or training samples in general). This paper describes
a framework for fast classification in PCA+SVM systems in which classification
is performed incrementally in increasingly larger feature spaces. As soon as the
classification confidence is above a threshold the process stops and the class label
is retrieved. Fast classification is not achieved by using less support vectors, but
by classifying in simpler spaces, which reduces the number of computations.
Section 2 explains the common PCA+SVM setting encountered in supervised
learning problems and describes the method proposed. Experimental results are
shown in Section 3. Finally, the main conclusions and lines of future work are
outlined.

2 Fast Classification in PCA+SVM Settings

PCA is often used to project input samples to a (generally lower dimensional)
space where classification is carried out. This is specially useful when the input
samples are images. Basically, PCA gives a set of orthogonal dimensions that
maximize the variance of the input samples. In face recognition, this set is called
eigenfaces, see [8]. Not all of these dimensions (eigenfaces) are useful for classi-
fication. Only the first n eigenfaces are appropriate for classification, with the
last eigenfaces typically encoding noise.

When a test sample X is to be projected with PCA, the operation to perform
is: Y = XW, where W is the transform matrix. When working with vectorized
images in the rows of X, the columns of W are the eigenfaces. As mentioned
above, usually only the first n columns of W are used in the multiplication.
This is thought to avoid the noise of the last eigenfaces. What should be a good
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value for n? There are reasons to believe that a large dimensional input space
would be needed to separate difficult samples, while ’easy’ samples could be
separated in simpler spaces (i.e. lower value for n). In the method proposed, a
different K value may be used for each specific test sample, instead of a fixed
dimension n. Fasy samples can be classified in a PCA space of a low number
K of dimensions. The necessary number of dimensions to use will be ultimately
given by the classifier output. For each test sample the system would classify it
in a low dimensional space first. If the classifier output is large enough (i.e. above
a fixed threshold) then classification will end and a class label will be retrieved.
Otherwise the process should be repeated in a more informative space of a larger
dimension, see Fig. 1.

Kiopu PCA projection X SVM y
using n eigenfaces classification

Xinput PCA projection X SVM M

using Ki eigenfaces [ classification \‘

i=itl No |y|> Threshold
or

Fig. 1. Top: Typical PCA+SVM classification procedure for a test sample. Bottom:
Fast PCA+SVM classification method for a test sample.

The loop of Figure 1 would have to be incremental in terms of computational
cost. Otherwise there would not be any speed gain over the use of a fixed dimen-
sion. The PCA projection of the input sample can be done incrementally, since
it is a matrix multiplication (see above).

It can be shown that SVM classification can be also made incremental in the
input space dimension as long as the new dimensions at each step are orthogonal
to the previous ones, which is the case when using PCA. Kernels typically used
(like polynomial, RBF and sigmoid) are functions either of a dot product or a
norm of samples. When classifying a sample, the cost of the kernel evaluations
is therefore dependent on the space dimension. For a given input sample, let us
suppose that classification has been already made in a space of dimension K; 1.
Therefore, we have already evaluated the kernel values k(x,x;). Let us suppose
that we set to classify the same sample in a space of dimension K; > K;_ ;. Here
the input and training samples can be respectively represented as x + Ax and
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X; + Ax;, where vectors x and x; are augmented with zeros in order to have
K; components. Ax and Ax; represent the values of the new AK = K; — K;_4
dimensions, with the other components set to zero.

With the assumption imposed on the input space, in this space of K; di-
mensions the following orthogonality relations hold: x1 Ax, x| Ax;, x; L Ax,
x; L Ax;. Using these orthogonality relations two cases are now possible:

— Dot product-based kernels (for example the polynomial kernel k(x,x;) =
(x-x; + 1)P):
(x4 Ax) - (%1 4+ Axi) =x - X3 + X Ax; + Ax - x3 + Ax - Ax; =
=x x5+ Ax - Ax; (1)

— Norm-based kernels (for example the RBF kernel: x(x,x;) = exp(—||x —
xi|[*/2p?)):
i p~)):
[1(x + Ax) = (xi + Axi)|[* =[x + Ax[|* +[|xi + Axi]|* =2(x + Ax)- (xi + Axi)
= \|x|\2+\|Ax|\2+2x-Ax+\|xiH2+HAxiH2+2xi~Axi—2(x + Ax) - (xi+Axi) =
=[|x| >+ Ax||* +||x: |2 4| | Axi||* — 2(x x5 4+ X - Ax; + Ax-x;+ Ax- Ax;)
— =l P A A P — 24 Axy

—~

2)

It can be seen that the computations are based on the dot product or norm
of the previous step plus some terms that can be computed with a constant
cost proportional to AK. Thus, in both cases the computation can be done
incrementally.

Note that the training cost of the proposed method is the same as in a non-
incremental classifier, only one training stage is carried out using a space of
whatever dimension n. Once we have a trained classifier, the proposed method
only works at test time, where we have the incremental classification of samples.

3 Experiments

Since the speed gain in the proposed method is based on classifier confidence, we
will have a trade-off between classification speed and error. In this respect, the
main performance indicator that will be used here is the error-speedup curve,
which represents test error as a function of classification speed gains. This curve
is obtained by varying the classifier confidence threshold (see Figure 1), with
values ranging from 0 to 1. An RBF kernel was used in all the experiments.
The question arises whether the proposed dimensionality reduction strategy
can be compared with SV-reduction. Note that there are cases in which one
reduction strategy will always be superior to the other and vice versa. For the
dimensionality reduction approach the results will depend on the number n of
dimensions used (i.e. the size of the feature space). On the other hand, the
performance of SV-reduction methods depends on the number of support vectors
which in turn depends on the parameters used for training the classifier (i.e.
the kernel parameter ’p’). The best values for these parameters depend on the
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problem at hand (and also on the number of training samples available). For
large values of n, for example, the proposed dimensionality reduction method
should give better error-speedup curves than the SV reduction method. For small
values of n the reverse will be true. For these reasons, a direct comparison is not
appropriate. Instead, we focused on combining the two strategies to test whether
better net results can be obtained.

The combination implies progressively reducing both the number of support
vectors and dimensions, following some order (i.e. choosing at each step between
SV-reduction or dimensionality reduction). Searching for the ordering that gives
the optimal error-speedup curve is not feasible, since there is a factorial number
of orderings.

Assuming independence between both reduction methods, approximations can
be obtained. In our case, a simple greedy search was carried out in the validation
set. The search involves choosing between reducing the dimension or reducing
the number of support vectors, at each step of the curve. The selection is made
according to the error decrease in the validation set produced by each option.

The proposed strategy was used in conjunction with the SV-reduction method
described in [5], in which classification speed is improved by using only the
most important support vectors in the classification function evaluation. In order
to achieve this, the support vectors are ordered by the absolute value of the
associated coefficient. With that algorithm, important computational savings
can be achieved without significant degradation in terms of recognition accuracy.

A gender recognition scenario was used in the experiments, using the typical
PCA+SVM combination. A number of face images were captured in our labora-
tory. These included talking and changes in facial expression, illumination and
pose. A total of 7256 male+7567 female images were gathered, and later nor-
malized in rotation and size to 39x43 pixels. In each run of the experiment, 300
of these images were randomly selected and randomly partitioned in a training
set of 120 images (60+60), a validation set of 80 images (404+40) and a test set
of 100 images (50+50).

PCA was previously applied over an independent set of 4000 face images
taken from the Internet. The eyes in each image were located manually and
then the image was normalized to 39x43. PCA was computed over this set of
4000 normalized images, retaining a number n of coefficients, see Figure 2. The
collected images were all projected onto this PCA space previous to training and
classifying.

Even though our goal in this work was not to obtain better absolute recog-
nition values, we wanted to test the algorithms in an independent database, a
subset of frontal faces of the FERET [9] data set was also considered. In this
case the working set was made up of a total of 177 male+177 female faces, nor-
malized to 52x60 pixels. In each experiment a random ordering of the samples
of each class was performed. PCA was applied to the first 144 of them (77477).
The training set had 120 samples (60+60), the validation set 40 (204-20) and
the test set the other 40 (20+20).
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Fig. 2. Left: some Internet faces, as detected and normalized. Right: the first 36 eigen-
faces obtained with PCA.

The experiments described here show the effects of the combination in two
different cases: a) dimensionality reduction performing better than SV-reduction
and b) SV-reduction performing better than dimensionality reduction. These
cases were achieved by adjusting the parameter p of the support vector classifier
and the value of n. The speedups were calculated as 100 minus the percentage
of numerical operations used for classification, with respect to the initial case of
dimensionality n and number of support vectors. Figure 3 shows the performance
for case a), i.e. dimensionality-reduction method better than SV-reduction.

Note that for large values of n (as was the case in Figure 3) the dimensionality
reduction curve is more horizontal, which makes it difficult to obtain significant
improvements with the combination. This occurs because with the validation set
the greedy algorithm could choose to reduce support vectors at a given point
when in fact the best option is to keep on reducing dimensionality (thus keep-
ing the error constant most of the time). This causes the performance of the
combination to be worse than with either of the two methods, especially if the
validation set is small. Since we have a validation set available, in such cases it

L
—5—Greedy combination —5—Greedy combination
——Dimensionality reduction 45| ——Dimensionality reduction
—+—SV reduction —+— SV reduction

20F 40

H
&

Test error
Test error
N
It

H
o

[ 10 20 30 40 50 60 70 80 ] 10 20 30 40 50 60 70 80
Speedup Speedup

Fig. 3. Left: Error-speedup curves for the three methods considered, using our labora-
tory database. 40 runs, random distributions of the samples in training, validation and
test sets. Kernel parameter p = 3000. The (initial) dimensionality n was calculated as
that which accounted for a 90% of the total variance. Right: Error-speedup curves for
the three methods considered, using the FERET database. Same conditions except for
kernel parameter p = 10000.



Fast Face Classification in Incrementally Growing Spaces 311

—&—Greedy combination
——Dimensionality reduction
—*— SV reduction

—&— Greedy combination
——Dimensionality reduction
—+— SV reduction

200

Test error
e
@

Test error

100

50 60 70 80 o 10 20 30 40 50 60 70 80
Speedup

40
Speedup

Fig. 4. Left: Error-speedup curves for the three methods considered, using our labo-
ratory database. 25 runs, random distributions of the samples in training, validation
and test sets. Kernel parameter p = 500. The (initial) dimensionality n was 4. Right:
Error-speedup curves for the three methods considered, using the FERET database. 50
runs, random distributions of the samples in training, validation and test sets. Kernel
parameter p = 1500. The (initial) dimensionality n was 25.

may be useful to set a threshold in the greedy search so that SV-reduction is
used only when large errors begin to appear with dimensionality reduction. Al-
ternatively, SV-reduction could be made to proceed only after the speedup gain
has reached a given point, which can be estimated (manually) with the valida-
tion set. The latter option was used in Figure 3, where SV-reduction only acted
after a speedup of 60% and 40% was reached using dimensionality reduction.
Figure 4 shows the performances for case b), i.e. SV-reduction better than
dimensionality-reduction. For the FERET images it was very difficult to find a
set of parameter values that made the SV-reduction method be clearly better
than dimensionality reduction. We postulate that this was due to the fact that
this data set was considerably more difficult (the images were larger, the PCA
space was obtained with fewer samples, many races were present, more significant
illumination variations, ...), which would have made the obtained support vectors
more critical for classification. Still, the figure shows how the greedy algorithm
allows to obtain an improvement for speedups between 10-40%, although after
that point the performance of the combination obviously turns worse than with
dimensionality reduction alone. Overall, the results shown above suggest that
even with a simple greedy combination a better net performance can be achieved.
With more computational effort better combinations could be used that take
advantage of the (in)dependence between feature space size and classifier size.

4 Conclusions

The test speed of state-of-the-art classifiers such as SVM is an important aspect
to be considered for certain applications. Usually, the reduction in classification
complexity in SVMs is achieved by reducing the number of support vectors used
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in the decision function. In this paper a novel approach has been described in
which the computational reduction is achieved by classifying each sample with
the minimum number of features necessary (note that the typical setting is to
use a fixed dimension for the input space). Experiments in a gender recognition
problem show that the method is by itself able to give good speed-error trade-
offs, and that it can also be used in conjunction with support vector-reduction
algorithms to produce trade-offs that are better than with either approach alone.
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