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Abstract Social robots are receiving much interest in the robotics community.
The most important goal for such robots lies in their interaction capabilities. An
attention system is crucial, both as a filter to center the robot’s perceptual re-
sources and as a mean of letting the observer know that the robot has inten-
tionality. In this paper a simple but flexible and functional attentional model is
described. The model, which has been implemented in an interactive robot cur-
rently under development, fuses both visual and auditive information extracted
from the robot’s environment, and can incorporate knowledge-based influences
on attention.

1 Introduction

In the last years the robotics community has sought to endow robots with social and
interaction abilities, with the first survey recently published [6]. Researchers realized
that robots that excelled in certain tasks were by no means considered intelligent by
the general public. Social abilities are now considered very important in order to make
the robots more human. Emotion and multimodal communication are also two related
aspects that are still being researched.

In [11] the authors argue that a robot with attention would have a minimal level of
intentionality, since the attentional capacity involves a first level of goal representations.
Attention is a selection process whereby only a small part of the huge amount of sensory
information reaches higher processing centers. Attention allows to divide the visual
understanding problem into a rapid succession of local, computationally less expensive,
analysis problems. Human attention is divided in the literature into two functionally
independent stages: a preattentive stage, which operates in parallel over the whole visual
field, and an attentive stage, of limited capacity, which only processes an item at a
time. The preattentive stage detects intrinsically salient stimuli, while the attentive stage
carries out a more detailed and costly process with each detected stimulus. The saliency
values of the attentive stage depend on the current task, acquired knowledge, etc [8,10].

Probably the first robot that was explicitly designed to include some social abilities
is Kismet [1]. Kismet has had undeniable success in the robotics community because
it has been a serious effort in making a robot sociable. Among other diverse modules,
Kismet included an attention system, which is based on Wolfe’s "Guided Search 2.0



(GS2)" model [15]. GS2 is based on extracting basic features (color, motion, etc.) that
are linearly combined in a saliency map. In a winner-take-it-all approach, the region
of maximum activity is extracted from the saliency map. The focus of attention (FOA)
will then be directed to that region.

It is a well accepted fact that attention is controlled both by sensory salient and
cognitive factors (knowledge, current task) [2]. The effect of the lower level subsystem
(bottom-up influence) has been comprehensively studied and modelled. In contrast, the
effect of higher level subsystems (top-down influence) in attention is not yet clear [9].
Hewett [8] also suggests that volitive processes should control the whole attention pro-
cess, even though some of the controlled mechanisms are automatic in the human brain.
Therefore, high-level modules should have total access to the saliency map. This would
allow the attention focus to be directed by the point that a person is looking at, deic-
tic gestures, etc. Fixations to the point that a person is looking at are useful for joint
attention. In [14] an additional feature map is used for the purpose of assigning more
saliency to zones of joint attention between the robot and a person.

In the third version of Wolfe’s Guided Search [16] high-level modules act in two
ways. On the one hand they can modify the combination weights. On the other hand,
they can also act after each fixation, processing (recognizing, for example) the area of
the FOA, after which an "inhibition of return" (IR) signal is generated. IR is a signal
that inhibits the current FOA, so that it will not win in the saliency map for some time.

Top-down influences on attention are also accounted for in the FeatureGate model
[5]. In this model, a function is used to produce a distance between the low-level ob-
served features and those of the interest objects. In [13] the top-down influence is em-
bedded in the changing parameters that control a relaxation and energy minimization
process that produces the saliency map. Also, in [3] a neural network, controlled by
high-level processes, is used to regulate the flow of information of the feature maps
towards the saliency map. A model of attention similar to that of Kismet is introduced
in [12] for controlling a stereo head. Besides the feature maps combination (color, skin
tone, motion and disparity), space variant vision is used to simulate the human fovea.
However, the system does not account for top-down influences. Moreover, it uses 9 Pen-
tium processors, which is rather costly if the attention system is to be part of a complete
robot.

In [7] an attention system is presented where high-level modules do influence (can
act on) the whole saliency map. When, after a fixation, part of an object is detected,
saliency is increased in other locations of the visual field where other parts of the ob-
ject should be, considering also scaling and rotation. This would not be very useful in
poorly structured and dynamic environments. In the same system, a suppression model
equivalent to IR is used: after a fixation the saliency of the activated zone is decreased
in a fixed amount, automatically.

The objective of this work was not to achieve a biologically faithful model, but to
implement a functional model of attention for a social robot. This paper is organized
as follows. Section 2 describes the proposed attention system, implemented for a social
robot that is currently being developed. Experiments are described and analyzed in
Section 3. Finally, the main conclusions are summarized in Section 4.



2 Attention model

In all the citations made above, the effect of high-level modules is limited to a selection
or guiding of the bottom-up influence (i.e. combination weights) and the modification
of the relevance of the object in the FOA. We propose that the influence of high-level
modules on attention should be more direct and flexible. Inhibition should be controlled
by these modules, instead of being an automatic mechanism. The following situation is
an example of such case: if I look at a particular person and I like her, inhibition should
be low, in order to revisit her soon. There could even be no inhibition, which would
mean that I would keep on looking at her. Note that by letting other processes control
the saliency map joint attention and inhibition of return can be implemented. Also, the
mechanism explained before that increases saliency in the zones where other parts of
objects should be can be implemented. In fact, any knowledge-directed influence on
attention can be included.

The objective of this work was to conceive a functional attention mechanism that
includes sound and vision cues. Therefore, the model proposed here is simple to imple-
ment, being the most complex calculations done in the feature extraction algorithms.
The activation (i.e. saliency) values are controlled by the following equation:

A(p, t) = ∑
i

Fi(vi · fi(p, t))+∑
j

G j(sj ·g j(p, t))+K ·C(p, t)+T(p, t) (1)

whereF andG are functions that are applied to the vision-based (fi) and sound-based
(g j ) feature maps in order to group activity zones and/or to account for the error in
the position of the detected activity zones. Spatial and temporal positions in the maps
are represented by thep andt variables.vi ,sj andK are constants.C is a function that
gives more saliency to zones near the current FOA:C(p, t) = e−γ|p−FOA(t−1)|. T(p, t)
represents the effect of high-level modules, which can act over the whole attention
field. The maximum of the activation map defines the FOA, as long as it is larger than
a thresholdU :

FOA(t) =
{

maxpA(p, t) i f maxpA(p, t) > U
FOA(t −1) otherwise

(2)

The model is depicted in Figure 1, using sound and vision for extracting feature
maps. Note that a joint attention mechanism would use the componentT of Equation 1,
which for all practical purposes is equivalent to the approach taken in [14] that used a
feature map for that end.

The implementation presented in this paper will use an auditive feature map: the
localization of a single sound source. Notwithstanding, this scheme can be used with
multiple sources, as long as they are separated by another technique.

The visual feature map is extracted from images taken with an omnidirectional cam-
era, using adaptive background differences. The aim was to detect blobs pertaining to
people around the robot. The first step is to discard part of the captured image, as we
want to watch only the frontal zone, covering 180 degrees from side to side (see Fig.



Figure 1. Model of attention. The feature maps must represent the same physical space than the
activation map. If sensors do not provide such values, a mapping would have to be done.

2). The background model is obtained as the mean value of a number of frames taken
when no person is present in the room. The modelM is updated with each input frame:

M(k+1) = M(k)+U(k) · [I(k)−M(k)], (3)

whereI is the input frame.U is the updating function:

U(k) = exp(−β ·D(k)), (4)

with:

D(k) = α ·D(k−1)+(1−α) · |I(k)− I(k−1)|, (5)

for α between 0 and 1. The parametersα andβ control the adaptation rate.
The method of adaptive background differences described above still had a draw-

back. Inanimate objects should be considered background as soon as possible. However,
as we are working at a pixel level, if we set theα andβ parameters too low we run the
risk of considering static parts of animate objects as background too. This problem can
be alleviated by processing the imageD. For each foreground blob, its values inD are
examined. The maximum value is found, and all the blob values inD are set to that
level. With this procedure the blob only enters the background model when all its pix-
els remain static. The blob does not enter the background model if at least one of its
pixels has been changing.

As for the sound-based feature map, the aim was to detect the direction of sound
sources (i.e. people). The signals gathered by a pair of microphones are amplified and



preprocessed to remove noise. Then the angle in the horizontal of a sound source is
extracted using the expression:

angle= arcsin((s· I/ f )/d), (6)

wheres is the sound speed,f is the sampling frequency,d is the distance between the
pair of microphones, andI is the interaural time difference (ITD). The ITD is a mea-
sure of the displacement between the signal gathered at one microphone and the signal
gathered at the other, and is obtained through correlation. The implemented sound lo-
calization system is described in more detail in [4].

3 Implementation and Experiments

The attention model has been implemented on the robot head shown in Figure 2. This
head includes an omnidirectional camera as a presence detector and a sound localization
system based on a pair of microphones placed on both sides of the head. The feature
and activation maps represent a half-plane in front of the robot. The FOA is used to
command the pan and tilt motors of the robot’s neck. For our particular implementation
we decided that sound events should not change the FOA on their own, but they should
make the nearest visual event win. Also, as a design decision we imposed that the effect
of sound events should have precedence over the effect ofC.

In our particular case the variablep takes values in the range[0,180] degrees and
F will not be used.v1 = 1, f1 = {0,1} represents the effect of a visual feature map
that detects foreground blobs using adaptive background differences and the omnidi-
rectional camera. The visual feature maps are not actually 1-D, but 1 1/2-D, as for each
angle we store the height of the blob, measured by the omnidirectional vision system.
This height is used to move the tilt motor of the robot’s neck.g1 = {0,1} represents
the output of the sound localization routine. The vision and sound localization modules
communicate with the attention module through TCP/IP sockets. To account for errors
in sound localization,G is a convolution with a functione(−D·|x|), D being a constant.
In order to meet these conditions the following should be verified:

– s1 < 1 (the FOA will not be directly set by the sound event).
– Suppose that 2 blobs are anywhere in the activation map. Then a sound event is

heard. One of the blobs will be closer to the sound source than the other. In order to
enforce the preferences mentioned above, the maximum activation that the farthest
blob could have should be less than the minimum activation that the nearest blob
could have. This can be put as 1+K +s1 ·e(−D·a) < 1+K ·e(−180∗γ) +s1 ·e(−D·b),
b and a being the distances from the blobs to the sound source, the largest and
the shortest one, respectively. That equation does not hold forb < a but it can be
verified forb < a− ε, with a very smallε.

Operating with these two equations the following valid set of values was obtained:
D = 0.01,K = 0.001,s1 = 0.9,γ = 0.15. For those valuesε = 0.67 degrees, which we
considered acceptable.

The effect of high-level processes (T) is not used in the implementation yet, as the
robot is still under development. The simplicity of the model and of the implementation



make the attention system efficient. With maps of 181 values, the average update time
for the activation map was 0.27ms (P-IV 1.4Ghz). In order to show how the model
performs, two foreground objects (a person and a coat stand) were placed near the
robot. A sample image taken by the omnidirectional camera are shown in Figure 2.
Initially, the FOA was at the coat stand. Then the person makes a noise and the FOA
shifts, and remains fixating the person. In order to see what happens at every moment
this situation can be divided into three stages: before the sound event, during the sound
event and after the sound event.

Figure 2. Left: the interactive robot being developed. Center: omnidirectional camera, placed in
front of the robot. Right: image taken by the omnidirectional vision system. The numbers indicate
the estimated height and the angle of the closest blob (the one with the largest height).

Figure 3 shows the state of the feature maps and the activation map at each stage.
Note that the vertical axis is shown in logarithmic coordinates, so that the effect of theC
component, which is very small, can be seen. The exponential contributions thus appear
in the figures as lines.

Before the sound event the FOA was at the blob on the left, approximately at 75
degrees, because it is the closest blob to the previous FOA (the robot starts working
looking at his front, 90 degrees). This is shown in the first two figures. The two next
figures show the effect of the sound event. The noise produces a peak near the blob on
the right (the person). That makes activation rise near that blob, which in turn makes
the blob win the FOA. The last two figures show how the FOA has been fixated to the
person. In absence of other contributions the effect of theC component implements a
tracking of the fixated object/person.

4 Conclusions

An attentional system is a necessary module in a complex human-like robot. With it, the
robot will be able to direct its attention to people in the environment, which is crucial for
interaction. In this paper a simple yet functional model of attention has been described,
drawing upon previous attentional systems for interactive robots. The model was imple-
mented using both auditive and visual features extracted from a zone surrounding the
robot. Visual features were extracted from video taken with an omnidirectional camera,



which gives the robot a 180 degrees attentional span. The attentional system is currently
running on a robotic head

The next step in our work will be to implement the high-level influences on the
attention focus. This influence is to be defined by the robot’s tasks and knowledge,
which obviously need the completion of other modules, such as an action selection
mechanism (with goals), memory and facial analysis.
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Figure 3. State of the feature and activation maps. On the left column the figures show the visual
and auditive feature maps. On the right column the figures show the resultant saliency map.


